A polymorphism (rs1042522) in TP53 gene is a risk factor for Down Syndrome in Sicilian mothers.
Salemi, Michele; Barone, Concetta; Salluzzo, Maria Grazia; Giambirtone, Mariaconcetta; Scillato, Francesco; Galati Rando, Rosanna; Romano, Carmelo; Morale, Maria Concetta; Ridolfo, Federico; Romano, Corrado
2017-11-01
Trisomy 21 is the most frequent genetic cause of intellectual disability. Tumor Protein 53 (TP53) gene down-regulation triggers chromosomal instability. A TP53 gene polymorphism c.215G > C (rs1042522) is associated with accumulation of aneuploid cells. We analyzed the TP53 c.215G > C (rs1042522) polymorphism in Sicilian mothers of subjects with Down Syndrome (DS) within a case-control study. Nucleotide polymorphism was detected by pyrosequencing technology. The distribution of TP53 c.215G > C polymorphism showed significant difference between mothers of subjects with DS and controls. Our data show that TP53 c.215G > C polymorphism is a risk factor for DS in Sicilian mothers.
Schildkraut, Joellen M.; Goode, Ellen L; Clyde, Merlise A.; Iversen, Edwin S.; Moorman, Patricia G.; Berchuck, Andrew; Marks, Jeffrey R.; Lissowska, Jolanta; Brinton, Louise; Peplonska, Beata; Cunningham, Julie M.; Vierkant, Robert A.; Rider, David N.; Chenevix-Trench, Georgia; Webb, Penelope M.; Beesley, Jonathan; Chen, Xiaoqing; Phelan, Catherine; Sutphen, Rebecca; Sellers, Thomas A.; Pearce, Leigh; Wu, Anna H.; Van Den Berg, David; Conti, David; Elund, Christopher K.; Anderson, Rebecca; Goodman, Marc T.; Lurie, Galina; Carney, Michael E.; Thompson, Pamela J.; Gayther, Simon A.; Ramus, Susan J.; Jacobs, Ian; Kjaer, Susanne Krüger; Hogdall, Estrid; Blaakaer, Jan; Hogdall, Claus; Easton, Douglas F.; Song, Honglin; Pharoah, Paul D.P.; Whittemore, Alice S.; McGuire, Valerie; Quaye, Lydia; Anton-Culver, Hoda; Ziogas, Argyrios; Terry, Kathryn L.; Cramer, Daniel W.; Hankinson, Susan E.; Tworoger, Shelley S.; Calingaert, Brian; Chanock, Stephen; Sherman, Mark; Garcia-Closason, Montserrat
2009-01-01
The p53 protein is critical for multiple cellular functions including cell growth and DNA repair. We assessed whether polymorphisms in the region encoding TP53 were associated with risk of invasive ovarian cancer. The study population includes a total of 5,206 invasive ovarian cancer cases (2,829 of which were serous) and 8,790 controls from 13 case-control or nested case-control studies participating in the Ovarian Cancer Association Consortium (OCAC). Three of the studies performed independent discovery investigations involving genotyping of up to 23 single nucleotide polymorphisms (SNPs) in the TP53 region. Significant findings from this discovery phase were followed up for replication in the other OCAC studies. Mixed effects logistic regression was used to generate posterior median per allele odds ratios (ORs), 95% probability intervals (PIs) and Bayes factors (BFs) for genotype associations. Five SNPs showed significant associations with risk in one or more of the discovery investigations and were followed up by OCAC. Mixed effects analysis confirmed associations with serous invasive cancers for two correlated (r2 = 0.62) SNPs: rs2287498 (median per allele OR = 1.30; 95% PI = 1.07-1.57) and rs12951053 (median per allele OR = 1.19; 95% PI = 1.01 - 1.38). Analyses of other histological subtypes suggested similar associations with endometrioid but not with mucinous or clear cell cancers. This large study provides statistical evidence for a small increase in risk of ovarian cancer associated with common variants in the TP53 region. PMID:19276375
Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.
2015-01-01
P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416
The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism.
Ramos-Araque, Maria E; Rodriguez, Cristina; Vecino, Rebeca; Cortijo Garcia, Elisa; de Lera Alfonso, Mercedes; Sanchez Barba, Mercedes; Colàs-Campàs, Laura; Purroy, Francisco; Arenillas, Juan F; Almeida, Angeles; Delgado-Esteban, Maria
2018-04-23
Cerebral preconditioning (PC) confers endogenous brain protection after stroke. Ischemic stroke patients with a prior transient ischemic attack (TIA) may potentially be in a preconditioned state. Although PC has been associated with the activation of pro-survival signals, the mechanism by which preconditioning confers neuroprotection is not yet fully clarified. Recently, we have described that PC-mediated neuroprotection against ischemic insult is promoted by p53 destabilization, which is mediated by its main regulator MDM2. Moreover, we have previously described that the human Tp53 Arg72Pro single nucleotide polymorphism (SNP) controls susceptibility to ischemia-induced neuronal apoptosis and governs the functional outcome of patients after stroke. Here, we studied the contribution of the human Tp53 Arg72Pro SNP on PC-induced neuroprotection after ischemia. Our results showed that cortical neurons expressing the Pro72-p53 variant exhibited higher PC-mediated neuroprotection as compared with Arg72-p53 neurons. PC prevented ischemia-induced nuclear and cytosolic p53 stabilization in Pro72-p53 neurons. However, PC failed to prevent mitochondrial p53 stabilization, which occurs in Arg72-p53 neurons after ischemia. Furthermore, PC promoted neuroprotection against ischemia by controlling the p53/active caspase-3 pathway in Pro72-p53, but not in Arg72-p53 neurons. Finally, we found that good prognosis associated to TIA within 1 month prior to ischemic stroke was restricted to patients harboring the Pro72 allele. Our findings demonstrate that the Tp53 Arg72Pro SNP controls PC-promoted neuroprotection against a subsequent ischemic insult by modulating mitochondrial p53 stabilization and then modulates TIA-induced ischemic tolerance.
Somatic and germline TP53 alterations in second malignant neoplasms from pediatric cancer survivors
Sherborne, Amy L.; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R.; Mazor, Tali; Smirnoff, Ivan; Horvai, Andrew; Loh, Mignon; DuBois, Steven G.; Goldsby, Robert E.; Neglia, Joseph; Hammond, Sue; Robison, Leslie L.; Wustrack, Rosanna; Costello, Joseph; Nakamura, Alice O.; Shannon, Kevin; Bhatia, Smita; Nakamura, Jean L.
2016-01-01
Purpose Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design We performed whole exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in thirty-seven pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without history of a familial cancer predisposition syndrome but known to have developed SMNs. Results WES revealed TP53 mutations involving p53’s DNA binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53 mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53 coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in six patients and a synonymous single nucleotide polymorphism A639G in four others, resulting in ten out of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions Currently, germline TP53 is not routinely assessed in pediatric cancer patients. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive post-treatment monitoring. PMID:27683180
Jacovas, Vanessa Cristina; Rovaris, Diego Luiz; Peréz, Orlando; de Azevedo, Soledad; Macedo, Gabriel Souza; Sandoval, José Raul; Salazar-Granara, Alberto; Villena, Mercedes; Dugoujon, Jean-Michel; Bisso-Machado, Rafael; Petzl-Erler, Maria Luiza; Salzano, Francisco Mauro; Ashton-Prolla, Patricia; Ramallo, Virginia; Bortolini, Maria Cátira
2015-01-01
The diversity of the five single nucleotide polymorphisms located in genes of the TP53 pathway (TP53, rs1042522; MDM2, rs2279744; MDM4, rs1563828; USP7, rs1529916; and LIF, rs929271) were studied in a total of 282 individuals belonging to Quechua, Aymara, Chivay, Cabanaconde, Yanke, Taquile, Amantani, Anapia, Uros, Guarani Ñandeva, and Guarani Kaiowá populations, characterized as Native American or as having a high level (> 90%) of Native American ancestry. In addition, published data pertaining to 100 persons from five other Native American populations (Surui, Karitiana, Maya, Pima, and Piapoco) were analyzed. The populations were classified as living in high altitude (≥ 2,500 m) or in lowlands (< 2,500 m). Our analyses revealed that alleles USP7-G, LIF-T, and MDM2-T showed significant evidence that they were selected for in relation to harsh environmental variables related to high altitudes. Our results show for the first time that alleles of classical TP53 network genes have been evolutionary co-opted for the successful human colonization of the Andes.
Kulasekararaj, Austin G; Smith, Alexander E; Mian, Syed A; Mohamedali, Azim M; Krishnamurthy, Pramila; Lea, Nicholas C; Gäken, Joop; Pennaneach, Coralie; Ireland, Robin; Czepulkowski, Barbara; Pomplun, Sabine; Marsh, Judith C; Mufti, Ghulam J
2013-03-01
This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17-89 years) and median follow-up was 45 months [95% confidence interval (CI) 27-62 months]. TP53 mutations occurred in 30 (9.4%) patients, exclusively in isolated del5q (19%) and complex karyotype (CK) with -5/5q-(72%), correlated with International Prognostic Scoring System intermediate-2/high, TP53 protein expression, higher blast count and leukaemic progression. Patients with mutant TP53 had a paucity of mutations in other genes implicated in myeloid malignancies. Median overall survival of patients with TP53 mutation was shorter than wild-type (9 versus 66 months, P < 0.001) and it retained significance in multivariable model (Hazard Ratio 3.8, 95%CI 2.3-6.3,P < 0.001). None of the sequentially analysed samples showed a disappearance of the mutant clone or emergence of new clones, suggesting an early occurrence of TP53 mutations. A reduction in mutant clone correlated with response to 5-azacitidine, however clones increased in non-responders and persisted at relapse. The adverse impact of TP53 persists after adjustment for cytogenetic risk and is of practical importance in evaluating prognosis. The relatively common occurrence of these mutations in two different prognostic spectrums of MDS, i.e. isolated 5q- and CK with -5/5q-, possibly implies two different mechanistic roles for TP53 protein. © 2013 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Hainaut, Pierre
2014-01-01
Germline TP53 mutations predispose to multiple cancers defining Li-Fraumeni/Li-Fraumeni-like syndrome (LFS/LFL), a disease with large individual disparities in cancer profiles and age of onset. G-quadruplexes (G4s) are secondary structural motifs occurring in guanine tracks, with regulatory effects on DNA and RNA. We analyzed 85 polymorphisms within or near five predicted G4s in TP53 in search of modifiers of penetrance of LFS/LFL in Brazilian cancer families with (n = 35) or without (n = 110) TP53 mutations. Statistical analyses stratified on family structure showed that cancer tended to occur ~15 years later in mutation carriers who also carried the variant alleles of two polymorphisms within predicted G4-forming regions, rs17878362 (TP53 PIN3, 16 bp duplication in intron 3; P = 0.082) and rs17880560 (6 bp duplication in 3′ flanking region; P = 0.067). Haplotype analysis showed that this inverse association was driven by the polymorphic status of the remaining wild-type (WT) haplotype in mutation carriers: in carriers with a WT haplotype containing at least one variant allele of rs17878362 or rs17880560, cancer occurred ~15 years later than in carriers with other WT haplotypes (P = 0.019). No effect on age of cancer onset was observed in subjects without a TP53 mutation. The G4 in intron 3 has been shown to regulate alternative p53 messenger RNA splicing, whereas the biological roles of predicted G4s in the 3′ flanking region remain to be elucidated. In conclusion, this study demonstrates that G4 polymorphisms in haplotypes of the WT TP53 allele have an impact on LFS/LFL penetrance in germline TP53 mutation carriers. PMID:24336192
Peréz, Orlando; de Azevedo, Soledad; Macedo, Gabriel Souza; Sandoval, José Raul; Salazar-Granara, Alberto; Villena, Mercedes; Dugoujon, Jean-Michel; Bisso-Machado, Rafael; Petzl-Erler, Maria Luiza; Salzano, Francisco Mauro; Ashton-Prolla, Patricia; Ramallo, Virginia; Bortolini, Maria Cátira
2015-01-01
The diversity of the five single nucleotide polymorphisms located in genes of the TP53 pathway (TP53, rs1042522; MDM2, rs2279744; MDM4, rs1563828; USP7, rs1529916; and LIF, rs929271) were studied in a total of 282 individuals belonging to Quechua, Aymara, Chivay, Cabanaconde, Yanke, Taquile, Amantani, Anapia, Uros, Guarani Ñandeva, and Guarani Kaiowá populations, characterized as Native American or as having a high level (> 90%) of Native American ancestry. In addition, published data pertaining to 100 persons from five other Native American populations (Surui, Karitiana, Maya, Pima, and Piapoco) were analyzed. The populations were classified as living in high altitude (≥ 2,500 m) or in lowlands (< 2,500 m). Our analyses revealed that alleles USP7-G, LIF-T, and MDM2-T showed significant evidence that they were selected for in relation to harsh environmental variables related to high altitudes. Our results show for the first time that alleles of classical TP53 network genes have been evolutionary co-opted for the successful human colonization of the Andes. PMID:26382048
Onel, K B; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, M K; Onel, K
2009-01-01
The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE.
Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival.
Bartel, Frank; Jung, Juliane; Böhnke, Anja; Gradhand, Elise; Zeng, Katharina; Thomssen, Christoph; Hauptmann, Steffen
2008-01-01
Although p53 is one of the most studied genes/proteins in ovarian carcinomas, the predictive value of p53 alterations is still ambiguous. We performed analyses of the TP53 mutational status and its protein expression using immunohistochemistry. Moreover, the single nucleotide polymorphism SNP309 in the P2 promoter of the MDM2 gene was investigated. We correlated the results with age of onset and outcome from 107 patients with ovarian carcinoma. In our study, we identified a large group of patients with p53 overexpression despite having a wild-type gene (49% of all patients with wild-type TP53). This was associated with a significantly shortened overall survival time (P = 0.019). Patients with p53 alterations (especially those with overexpression of wild-type TP53) were also more refractory to chemotherapy compared with patients with normal p53 (P = 0.027). The G-allele of SNP309 is associated with an earlier age of onset in patients with estrogen receptor-overexpressing FIGO stage III disease (P = 0.048). In contrast, in patients with FIGO stage III disease, a weakened p53 pathway (either the G-allele of SNP309 or a TP53 mutation) was correlated with increased overall survival compared with patients whose tumors were wild-type for both TP53 and SNP309 (P = 0.0035). Our study provides evidence that both germ line and somatic alterations of the p53 pathway influence the incidence and survival of ovarian carcinoma, and it underscores the importance of assessing the functionality of p53 in order to predict the sensitivity of platinum-based chemotherapies and patient outcome.
Onel, KB; Huo, D; Hastings, D; Fryer-Biggs, J; Crow, MK; Onel, K
2009-01-01
The p53 tumour suppressor is the central regulator of apoptosis. Previously, the functional TP53 Arg72Pro polymorphism was found to be associated with systemic lupus erythematosus (SLE) in Koreans but not Spaniards. MDM2 is the major negative regulator of p53. An intronic polymorphism in MDM2, the SNP309, attenuates p53 activity and is associated with accelerated tumour development in premenopausal women. Polymorphic variation in MDM2 has never been studied in SLE. The aim of this study is to further assess the contribution of p53-pathway genetic variation to SLE by testing the association of the TP53 Arg72Pro polymorphism and the MDM2 SNP309 with SLE in a well-characterised and ethnically diverse cohort of patients with both childhood- and adult-onset SLE (n = 314). No association was found between the TP53 Arg72Pro polymorphism and SLE in patients of European descent, Asian descent or in African Americans, nor was an association found between the MDM2 SNP309 and SLE in patients of European descent or in African Americans. In addition, there was no correlation between either variant and early-onset disease or nephritis, an index of severe disease. It is concluded that neither the TP53 Arg72Pro polymorphism nor the MDM2 SNP309 contributes significantly to either susceptibility or disease severity in SLE. PMID:19074170
Chan, Ying; Zhu, Baosheng; Jiang, Hongguo; Zhang, Jinman; Luo, Ying; Tang, Wenru
2016-01-01
To evaluate the association of the TP53 codon 72 (rs 1042522) alone or in combination with HDM2 SNP309 (rs 2279744) polymorphisms with human infertility and IVF outcome, we collected 1450 infertility women undergoing their first controlled ovarian stimulation for IVF treatment and 250 fertile controls in the case-control study. Frequencies, distribution, interaction of genes, and correlation with infertility and IVF outcome of clinical pregnancy were analyzed. We found a statistically significant association between TP53 codon 72 polymorphism and IVF outcome (52.10% vs. 47.40%, OR = 0.83, 95%CI:0.71-0.96, p = 0.01). No significant difference was shown between TP53 codon 72, HDM2 SNP309 polymorphisms, human infertility, and between the combination of two genes polymorphisms and the clinical pregnancy outcome of IVF. The data support C allele as a protective factor for IVF pregnancy outcome. Further researches should be focused on the mechanism of these associations.
Yan, Yulan; Wu, Renzheng; Li, Shaojing; He, Jinlong
2015-06-01
In the light of the relationship between the TP53 Arg72Pro (rs1042522) polymorphism and the risk of endometriosis remains inclusive or controversial. For better understanding of the effect of TP53 Arg72Pro polymorphism on endometriosis risk, we performed a meta-analysis. The relevant studies were identified through a search of PubMed, Web of Science, EMBASE, Ovid, Springer, China National Knowledge Infrastructure (CNKI), cqvip, Wanfang database, and Chinese Biomedical Literature (CBM) databases up to December, 2014. The association between the TP53 Arg72Pro polymorphism and endometriosis risk was pooled by conducted by odds ratios and 95% confidence intervals. A total of fifteen case-control studies with 2683 cases and 3335 controls were eventually identified. There was significant association between Arg72Pro polymorphism and endometriosis risk in all of the five models in overall populations (C vs. G: OR=1.32, 95%CI=1.14-1.53, p=0.00; CC vs. GG: OR=1.80, 95%CI=1.28-2.53, p=0.001; GC vs. GG: OR=1.52, 95%CI=1.22-1.88, p=0.00; CC vs. OR=1.32, 95%CI=1.05-1.66, p=0.016; CC/GC vs. GG: OR=1.59, 95%CI=1.26-2.00, p=0.00). In the sub-group analysis according to ethnicity, the results suggested that TP53 Arg72Pro polymorphism was not associated with endometriosis risk in Caucasians. However, the significant association was found in Asians and Mixed race (MIX) under the five models. The results of this meta-analysis suggest that the TP53 Arg72Pro polymorphism can increase the risk of endometriosis, especially among Asians and MIX populations. Considering the limited sample size and ethnicities included in the meta-analysis, further larger scaled and well-designed studies are needed to confirm our results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Paskulin, D D; Cunha-Filho, J S L; Souza, C A B; Bortolini, M C; Hainaut, P; Ashton-Prolla, P
2012-01-01
p53 has a crucial role in human fertility by regulating the expression of leukemia inhibitory factor (LIF), a secreted cytokine critical for blastocyst implantation. To examine whether TP53 polymorphisms may be involved with in vitro fertilization (IVF) failure and endometriosis (END), we have assessed the associations between TP53 polymorphism in intron 2 (PIN2; G/C, intron 2), PIN3 (one (N, non-duplicated) or two (D, duplicated) repeats of a 16-bp motif, intron 3) and polymorphism in exon 4 (PEX4; C/G, p.P72R, exon 4) in 98 women with END and 115 women with post-IVF failure. In addition, 134 fertile women and 300 women unselected with respect to fertility-related features were assessed. TP53 polymorphisms and haplotypes were identified by amplification refractory mutation system polymerase chain reaction. TP53 PIN3 and PEX4 were associated with both END (P=0.042 and P=0.007, respectively) and IVF (P=0.004 and P=0.009, respectively) when compared with women both selected and unselected for fertility-related features. Haplotypes D-C and N-C were related to higher risk for END (P=0.002, P=0.001, respectively) and failure of IVF (P=0.018 and P=0.002, respectively) when compared with the Fertile group. These results support that specific TP53 haplotypes are associated with an increased risk of END-associated infertility and with post-IVF failure. PMID:23013791
Siddamalla, Swapna; Reddy, Tumu Venkat; Govatati, Suresh; Guruvaiah, Praveen; Deenadayal, Mamata; Shivaji, Sisinthy; Bhanoori, Manjula
2018-05-24
Polycystic Ovary Syndrome (PCOS) is a heterogeneous multifactorial endocrine metabolic disorder. In addition to hyperandrogenism, acne, hirsutism, obesity, oligoanovulation and infertility, insulin resistance is also a common feature in women of PCOS. Tumor suppressor genes (TSGs) perform essential function in the maintenance of genomic stability and regulatory pathways influencing the activity of several replication and transcription factors. The main aim of this study was to investigate the association of Single Nucleotide Polymorphisms of TP53, BRCA1and BRCA2 genes with the susceptibility to PCOS in South Indian women. Present study investigated association between TP53 gene (rs1042522 G/C), BRCA1 (rs71361504 -/GTT, rs3092986 T/C) and BRCA2 (rs206118 A/G) and, SNPs and PCOS risk. Genotyping of TSGs was carried out on DNA from PCOS patients (n = 110) and controls (n = 130) of South Indian origin by polymerase chain reaction (PCR) and confirmed by sequencing analysis. The genotype frequency and allele distributions of cases and controls were analyzed using Fisher's exact test. Haplotype frequencies for multiple loci and the standardized disequilibrium coefficient (D') for pair wise linkage disequilibrium (LD) were assessed by Haploview Software. Significant increase in frequencies ofTP53 (rs1042522 G/C), BRCA1 (rs71361504 -/GTT, rs3092986 T/C) genotypes and alleles in patients compared to controls. In addition, the frequency of the C/T (P = 0.002) and A/C (P = 0.012) haplotype was also significantly elevated in patients. But BRCA2 (rs206118 A/G) did not show significant association with PCOS. The TP53 and BRCA1 may constitute an inheritable risk factor for PCOS in South Indian women. Copyright © 2018 Elsevier B.V. All rights reserved.
Dong, Zhiyong; Zheng, Longzhi; Liu, Weimin; Wang, Cunchuan
2018-01-01
The relationship between TP53 codon 72 Pro/Arg gene polymorphism and colorectal cancer risk in Asians is still controversial, and this bioinformatics analysis and meta-analysis was performed to assess the associations. The association studies were identified from PubMed, and eligible reports were included. RevMan 5.3.1 software, Oncolnc, cBioPortal, and Oncomine online tools were used for statistical analysis. A random/fixed effects model was used in meta-analysis. The data were reported as risk ratios or mean differences with corresponding 95% CI. We confirmed that TP53 was associated with colorectal cancer, the alteration frequency of TP53 was 53% mutation and 7% deep deletion, and TP53 mRNA expression was different in different types of colorectal cancer based on The Cancer Genome Atlas database. Then, 18 studies were included that examine the association of TP53 codon 72 gene polymorphism with colorectal cancer risk in Asians. The meta-analysis indicated that TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asian population, but Arg/Arg genotype was not (Pro allele: odds ratios [OR]=1.20, 95% CI: 1.06 to 1.35, P =0.003; Pro/Pro genotype: OR=1.39, 95% CI: 1.15 to 1.69, P =0.0007; Arg/Arg genotype: OR=0.86, 95% CI: 0.74 to 1.00, P =0.05). Interestingly, in the meta-analysis of the controls from the population-based studies, we found that TP53 codon 72 Pro/Arg gene polymorphism was associated with colorectal cancer risk (Pro allele: OR=1.33, 95% CI: 1.15 to 1.55, P =0.0002; Pro/Pro genotype: OR=1.61, 95% CI: 1.28 to 2.02, P <0.0001; Arg/Arg genotype: OR=0.77, 95% CI: 0.63 to 0.93, P =0.009). TP53 was associated with colorectal cancer, but the different value levels of mRNA expression were not associated with survival rate of colon and rectal cancer. TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asians.
Liu, Weimin; Wang, Cunchuan
2018-01-01
Background The relationship between TP53 codon 72 Pro/Arg gene polymorphism and colorectal cancer risk in Asians is still controversial, and this bioinformatics analysis and meta-analysis was performed to assess the associations. Methods The association studies were identified from PubMed, and eligible reports were included. RevMan 5.3.1 software, Oncolnc, cBioPortal, and Oncomine online tools were used for statistical analysis. A random/fixed effects model was used in meta-analysis. The data were reported as risk ratios or mean differences with corresponding 95% CI. Results We confirmed that TP53 was associated with colorectal cancer, the alteration frequency of TP53 was 53% mutation and 7% deep deletion, and TP53 mRNA expression was different in different types of colorectal cancer based on The Cancer Genome Atlas database. Then, 18 studies were included that examine the association of TP53 codon 72 gene polymorphism with colorectal cancer risk in Asians. The meta-analysis indicated that TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asian population, but Arg/Arg genotype was not (Pro allele: odds ratios [OR]=1.20, 95% CI: 1.06 to 1.35, P=0.003; Pro/Pro genotype: OR=1.39, 95% CI: 1.15 to 1.69, P=0.0007; Arg/Arg genotype: OR=0.86, 95% CI: 0.74 to 1.00, P=0.05). Interestingly, in the meta-analysis of the controls from the population-based studies, we found that TP53 codon 72 Pro/Arg gene polymorphism was associated with colorectal cancer risk (Pro allele: OR=1.33, 95% CI: 1.15 to 1.55, P=0.0002; Pro/Pro genotype: OR=1.61, 95% CI: 1.28 to 2.02, P<0.0001; Arg/Arg genotype: OR=0.77, 95% CI: 0.63 to 0.93, P=0.009). Conclusion TP53 was associated with colorectal cancer, but the different value levels of mRNA expression were not associated with survival rate of colon and rectal cancer. TP53 Pro allele and Pro/Pro genotype were associated with colorectal cancer risk in Asians. PMID:29872345
Letouzé, Eric; Rosati, Roberto; Komechen, Heloisa; Doghman, Mabrouka; Marisa, Laetitia; Flück, Christa; de Krijger, Ronald R; van Noesel, Max M; Mas, Jean-Christophe; Pianovski, Mara A D; Zambetti, Gerard P; Figueiredo, Bonald C; Lalli, Enzo
2012-07-01
Childhood adrenocortical tumors (ACT) are rare malignancies, except in southern Brazil, where a higher incidence rate is associated to a high frequency of the founder R337H TP53 mutation. To date, copy number alterations in these tumors have only been analyzed by low-resolution comparative genomic hybridization. We analyzed an international series of 25 childhood ACT using high-resolution single nucleotide polymorphism arrays to: 1) detect focal copy number alterations highlighting candidate driver genes; and 2) compare genetic alterations between Brazilian patients carrying the R337H TP53 mutation and non-Brazilian patients. We identified 16 significantly recurrent chromosomal alterations (q-value < 0.05), the most frequent being -4q34, +9q33-q34, +19p, loss of heterozygosity (LOH) of chromosome 17 and 11p15. Focal amplifications and homozygous deletions comprising well-known oncogenes (MYC, MDM2, PDGFRA, KIT, MCL1, BCL2L1) and tumor suppressors (TP53, RB1, RPH3AL) were identified. In addition, eight focal deletions were detected at 4q34, defining a sharp peak region around the noncoding RNA LINC00290 gene. Although non-Brazilian tumors with a mutated TP53 were similar to Brazilian tumors, those with a wild-type TP53 displayed distinct genomic profiles, with significantly fewer rearrangements (P = 0.019). In particular, three alterations (LOH of chromosome 17, +9q33-q34, and -4q34) were significantly more frequent in TP53-mutated samples. Finally, two of four TP53 wild-type tumors displayed as sole rearrangement a copy-neutral LOH of the imprinted region at 11p15, supporting a major role for this region in ACT development. Our findings highlight potential driver genes and cellular pathways implicated in childhood ACT and demonstrate the existence of different oncogenic routes in this pathology.
Mallo, Mar; Del Rey, Mónica; Ibáñez, Mariam; Calasanz, M José; Arenillas, Leonor; Larráyoz, M José; Pedro, Carmen; Jerez, Andrés; Maciejewski, Jaroslaw; Costa, Dolors; Nomdedeu, Meritxell; Diez-Campelo, María; Lumbreras, Eva; González-Martínez, Teresa; Marugán, Isabel; Such, Esperanza; Cervera, José; Cigudosa, Juan C; Alvarez, Sara; Florensa, Lourdes; Hernández, Jesús M; Solé, Francesc
2013-07-01
Lenalidomide is an effective drug in low-risk myelodysplastic syndromes (MDS) with isolated del(5q), although not all patients respond. Studies have suggested a role for TP53 mutations and karyotype complexity in disease progression and outcome. In order to assess the impact of complex karyotypes on treatment response and disease progression in 52 lenalidomide-treated patients with del(5q) MDS, conventional G-banding cytogenetics (CC), single nucleotide polymorphism array (SNP-A), and genomic sequencing methods were used. SNP-A analysis (with control sample, lymphocytes CD3+, in 30 cases) revealed 5q losses in all cases. Other recurrent abnormalities were infrequent and were not associated with lenalidomide responsiveness. Low karyotype complexity (by CC) and a high baseline platelet count (>280 × 10(9) /l) were associated with the achievement of haematological response (P = 0·020, P = 0·013 respectively). Unmutated TP53 status showed a tendency for haematological response (P = 0·061). Complete cytogenetic response was not observed in any of the mutated TP53 cases. By multivariate analysis, the most important predictor for lenalidomide treatment failure was a platelet count <280 × 10(9) /l (Odds Ratio = 6·17, P = 0·040). This study reveals the importance of a low baseline platelet count, karyotypic complexity and TP53 mutational status for response to lenalidomide treatment. It supports the molecular study of TP53 in MDS patients treated with lenalidomide. © 2013 John Wiley & Sons Ltd.
Apsalikov, Bakytbek; Manambaeva, Zukhra; Ospanov, Erlan; Massabayeva, Meruyert; Zhabagin, Kuantkan; Zhagiparova, Zhanar; Maximov, Vladymir; Voropaeva, Elena; Apsalikov, Kazbek; Belikhina, Tatiana; Abdrahmanov, Ramil; Cherepkova, Elena; Tanatarov, Sayat; Massadykov, Adilzhan; Urazalina, Naylia
2016-01-01
Frequencies of polymorphisms of genes BRCA1 and TP53 in breast cancer (BC) patients with a BC family history and radiation history were assessed and compared in the Semey region of Kazakhstan. The study included 60 women directly irradiated by the activities of the Semipalatinsk test site with a calculated effective equivalent dose of 500 mSv and their first generation descendants (group BC+Her+Exp); 65 women with family BC and absence of radiological history - the effective equivalent dose due to anthropogenic sources not exceeding 50 mSv (group BC+Her-Exp). The comparison group consisted of 65 women patients with breast cancer without family and radiological history (BC-Her-Exp). The control group comprised 60 women without breast cancer and without family and radiological history (nonBC). We carried out the genotyping of the polymorphisms c.2311T>C, c.4308T>C and 5382insC of the BRCA1 gene and rs1042522 of the TP53 gene. The frequency of the polymorphism c.2311T>C was significantly higher in patients of the group BC+Her+Exp than in healthy women, and of the polymorphism 5382insC in BC+Her+Exp compared to all other groups. The frequency of the rs1042522 polymorphism of TP53 was significantly higher in all groups of patients with breast cancer compared with the control group. Differences between groups of women with breast cancer were significant only in BC+Her+Exp vs. BC+Her-Exp. Combinations of polymorphisms of the genes BRCA1 and TP53 predominated in women with a family and radiological history.
McGraw, K L; Zhang, L M; Rollison, D E; Basiorka, A A; Fulp, W; Rawal, B; Jerez, A; Billingsley, D L; Lin, H-Y; Kurtin, S E; Yoder, S; Zhang, Y; Guinta, K; Mallo, M; Solé, F; Calasanz, M J; Cervera, J; Such, E; González, T; Nevill, T J; Haferlach, T; Smith, A E; Kulasekararaj, A; Mufti, G; Karsan, A; Maciejewski, J P; Sokol, L; Epling-Burnette, P K; Wei, S; List, A F
2015-01-01
Nonsynonymous TP53 exon 4 single-nucleotide polymorphism (SNP), R72P, is linked to cancer and mutagen susceptibility. R72P associations with specific cancer risk, particularly hematological malignancies, have been conflicting. Myelodysplastic syndrome (MDS) with chromosome 5q deletion is characterized by erythroid hypoplasia arising from lineage-specific p53 accumulation resulting from ribosomal insufficiency. We hypothesized that apoptotically diminished R72P C-allele may influence predisposition to del(5q) MDS. Bone marrow and blood DNA was sequenced from 705 MDS cases (333 del(5q), 372 non-del(5q)) and 157 controls. Genotype distribution did not significantly differ between del(5q) cases (12.6% CC, 38.1% CG, 49.2% GG), non-del(5q) cases (9.7% CC, 44.6% CG, 45.7% GG) and controls (7.6% CC, 37.6% CG, 54.8% GG) (P=0.13). Allele frequency did not differ between non-del(5q) and del(5q) cases (P=0.91) but trended towards increased C-allele frequency comparing non-del(5q) (P=0.08) and del(5q) (P=0.10) cases with controls. Median lenalidomide response duration increased proportionate to C-allele dosage in del(5q) patients (2.2 (CC), 1.3 (CG) and 0.89 years (GG)). Furthermore, C-allele homozygosity in del(5q) was associated with prolonged overall and progression-free survival and non-terminal interstitial deletions that excluded 5q34, whereas G-allele homozygozity was associated with inferior outcome and terminal deletions involving 5q34 (P=0.05). These findings comprise the largest MDS R72P SNP analysis. PMID:25768405
Sugawara, Waka; Arai, Yasuhito; Kasai, Fumio; Fujiwara, Yuiko; Haruta, Masayuki; Hosaka, Rie; Nishida, Kazunori; Kurosumi, Masashi; Kobayashi, Yasuhito; Akagi, Kiwamu; Kaneko, Yasuhiko
2011-07-01
Germline TP53 mutations are found in Li-Fraumeni syndrome (LFS) patients, predisposed to soft tissue sarcoma and other malignancies. The mutations and succeeding genetic events are thought to cause LFS-associated cancer, whose genetic alterations have rarely been investigated. Here, we study two LFS or Li-Fraumeni-like syndrome (LFLS) patients whose cancers showed aggressive phenotypes. Patient 1 with LFS and TP53(R273H) developed a rhabdomyosarcoma twice at the ages of 18 months and 21 years. A single-nucleotide polymorphism array-based analysis revealed two amplicons in the second tumor; one at 5q11.2 containing MAP3K1 and the other at 11q22.2 containing BIRC2/3 and YAP1. Increase of kinase signaling of MAP3K1 along with anti-apoptosis function of BIRC2/3 may have facilitated progression of this tumor. Patient 2 with LFLS and wild-typeTP53 suffered from acute myeloid leukemia. The leukemic cells had TP53(I195T) and two amplicons; one at 8q24.1 containing DEPDC6 and the other at 8q24.2 containing TRIB1, MYC, and PVT1. Quantitative PCR confirmed amplification of the genes and FISH revealed co-amplification of DEPDC6 and PVT1 in the same double minutes. Quantitative RT-PCR revealed increased expression levels of TRIB1, but no or little expression of DEPDC6, MYC, and PVT1. The results indicate that TRIB1 may be the target gene in the amplicon in the leukemia cells. Mutant TP53 can be engaged in pathways triggering gene amplification through impairment of DNA double-stranded break repair. The amplified candidate oncogenes identified in this study may have played a part in cancer development and lead to the poor outcome of LFS or LFLS-associated tumors. Copyright © 2011 Wiley-Liss, Inc.
Alsbeih, Ghazi A; Al-Harbi, Najla M; Bin Judia, Sara S; Khoja, Hatim A; Shoukri, Mohamed M; Tulbah, Asma M
2017-07-01
Cervical cancer is a predominantly human papillomavirus (HPV)-driven disease worldwide. However, its incidence is unexplainably low in western Asia, including Saudi Arabia. Using this paradigm, we investigated the role of HPV infection rate and host genetic predisposition in TP53 G72C single nucleotide polymorphism (SNP) presumed to affect cancer incidence. Patients treated between 1990 and 2012 were reviewed, and a series of 232 invasive cervical cancer cases were studied and compared with 313 matched controls without cancer. SNP was genotyped by way of direct sequencing. HPV linear array analysis was used to detect and genotype HPV in tumor samples. The incidence of cervical cancer revealed bimodal peaks at 42.5 years, with a slighter rebound at 60.8 years. Among all cases, 77% were HPV-positive and 16 HPV genotypes were detected-mostly genotypes 16 (75%) and 18 (9%)-with no difference by age, histology, or geographical region. Although the TP53 G72C genotype was not associated with overall cervical cancer risk, it was significantly associated with HPV positivity (odds ratio, 0.57; 95% confidence interval, 0.36-0.90; P = .016). Furthermore, the variant C allele was significantly overtransmitted in the population (P < .0003). Cervical cancer incidence displays bimodal curve peaking at a young age with secondary rebound at older age. The combination of relative low HPV infection and variant TP53 72C allele overtransmission provide a plausible explanation for the low incidence of cervical cancer in our population. Therefore, HPV screening and host SNP genotyping may provide more relevant biomarkers to gauge the risk of developing cervical cancer. Cancer 2017;123:2459-66. © 2017 American Cancer Society. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
A more accurate detection of codon 72 polymorphism and LOH of the TP53 gene.
Baccouche, Sami; Mabrouk, Imed; Said, Salem; Mosbah, Ali; Jlidi, Rachid; Gargouri, Ali
2003-01-10
The polymorphism at codon 72 of the TP53 gene has been extensively studied for its involvement in cancerogenesis and loss of heterozygosity (LOH) detection. Usually, the exon 4 of the TP53 gene is amplified by polymerase chain reaction (PCR) on DNA extracted from blood and tumor tissues, then digested by AccII. In the case of heterozygosity, the comparison of AccII profile from blood and tumor DNA PCR products allowed the identification of a potential LOH in the TP53 locus. This method can be hindered by a partial AccII digestion and/or DNA contamination of non-tumor cells. To circumvent these problems, we have developed a new approach by using the AccII restriction site between exon 4 and exon 6. The PCR amplification of exon 4-6, followed by AccII digestion allowed us to detect without ambiguity any LOH case.
Li, Bing; Wang, Xin; Chen, Hong; Shang, Li-Xin; Wu, Nan
2015-01-01
Background: Although many epidemiologic studies investigated the TP53 codon 72 polymorphism and its association with cervical cancer (CC), definite conclusions cannot be drawn. Aim of the study: To evaluate the association between TP53 codon 72 polymorphism and risk of cervical cancer in the Chinese population. Methods: A computerized literature search was carried out in PubMed, Springer Link, Ovid, Chinese Biomedical Database (CBM), Chinese National Knowledge Infrastructure (CNKI), and Chinese Wanfang Database to collect relevant articles. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to calculate the strength of association. Results: A total of 16 studies including 1684 CC cases and 1178 controls were involved in this meta-analysis. Overall, significant increased association was found between the Pro/Pro carriers and CC risk when all studies in Chinese population pooled into the meta-analysis (heterozygous model: OR = 1.22, 95% CI: 1.01-1.46). In subgroup analyses stratified by ethnicity and source of controls, the same results were observed in Han and in hospital-based studies. Conclusion: Our results suggest that the TP53 codon 72 polymorphism may be potential biomarkers for CC risk in the Chinese population, especially for Han Chinese, and studies with wider spectrum of population are required for definite conclusions. PMID:26309559
A microdissection approach to detect molecular markers during progression of prostate cancer.
Berthon, P.; Dimitrov, T.; Stower, M.; Cussenot, O.; Maitland, N. J.
1995-01-01
To investigate the underlying mechanisms of carcinogenesis, we have developed a technique to determine the frequency of genetic changes in prostatic carcinoma tissue. We have demonstrated that at a ratio of between 1:4 and 1:9 mutant-normal alleles, the signal from a mutant TP53 allele is not apparent after polymerase chain reaction (PCR) amplification and further direct sequencing or single-strand conformation polymorphism (SSCP) analysis. To bypass this problem, which is inherent in the heterogeneity of the prostate tissue and of the tumour, we selected areas of graded prostate tumours (Gleason score) from cryosectioned preparations and microdissected these cells (20-100 cells). After anionic resin removal of proteins, PCR amplification of TP53 gene exons 5/6 and SSCP analysis, an abnormal SSCP band shift was observed in suspected tumour cells, compared with microdissected stromal cells used as an internal control, while (1) a crude preparation of tissue DNA carrying the tumour did not show any abnormality and (2) immunostaining by a set of monoclonal antibodies against TP53 protein remained negative. Nucleotide sequence analysis of the different bands confirmed the presence of a mutation in the TP53 gene exon 6 position 13,336 in an abnormal band for one specimen, while no mutation was detected in the normal SSCP band. By targeting recognised tumour cells we can find DNA mutations which are undetectable using the standard technique of whole-tissue DNA extraction, particularly in a heterogeneous tumour such as carcinoma of the prostate. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7547246
Ayoubi, Salah Eddine; Elkarroumi, Mohamed; El Khachibi, Meryam; Hassani Idrissi, Hind; Ayoubi, Hasnaa; Ennachit, Simohamed; Arazzakou, Mounia; Nadifi, Sellama
2018-06-25
The purpose of our case control study is to explore the potential association of tumor protein 53 (TP53) c.215G>C, p. (Arg72Pro) polymorphism (rs1042522) with the risk of breast cancer (BC) development in the Moroccan population. The study population consisted of 125 female patients with confirmed BC and 126 healthy controls. DNA samples were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism assay method using BstUI restriction enzyme. We showed that the homozygous genotype of TP53 72Pro variant was significantly associated with increased BC risk (OR 2.2, 95% CI 1.07-4.54, p = 0.03). The dominant and additive models of TP53 Pro allele were also correlated to the risk of BC (OR 2.13, 95% CI 1.07-4.23, p = 0.02 and OR 1.49, 95% CI 1.03-2.16, p = 0.03, respectively). Furthermore, the TP53 Arg72 variant was associated with protection against BC, either in the homozygous genotype, the dominant or the additive models (OR 0.45, 95% CI 0.22-0.93, p = 0.03; OR 0.46, 95% CI 0.23-0.92, p = 0.029 and OR 0.67, 95% CI 0.46-0.97, p = 0.03, respectively). Our results suggest that TP53 c.215G>C, p. (Arg72Pro) polymorphism may be considered as a genetic marker for predisposition to BC in Moroccan population. © 2018 S. Karger AG, Basel.
The codon 72 polymorphism of the TP53 gene and endometriosis risk: a meta-analysis.
Feng, Yi; Wu, Yuan-Yuan; Li, Li; Luo, Zhi-Juan; Lin, Zhong; Zhou, Ying-Hui; Yi, Tao; Lin, Xiao-Juan; Zhao, Qian-Ying; Zhao, Xia
2015-09-01
Endometriosis is a chronic, inflammatory and common gynaecological disease. This study investigated the association between TP53 codon 72 polymorphism and the risk of endometriosis. A search for relevant articles was conducted in PubMed, Embase, CNKI, Wanfang, Weipu databases and Google Scholar. The strength of the relationships between TP53 codon 72 polymorphism and the risk of endometriosis was assessed by odds ratios (OR) and with 95% confidence intervals (CI). Sixteen case-control studies in 15 articles were included. Significant association was found in the dominant model (CC + GC versus GG) with an OR of 1.38 and 95% CI (1.14, 1.67). The results suggested that individuals who carried CC homozygote and heterozygote GC might have a 38% increased endometriosis risk when compared with the homozygote GG. In the subgroup analysis by ethnicity, significantly increased risk was observed among Asians (OR = 1.62, 95% CI = 1.18-2.23, P = 0.003) and Latin Americans (OR = 1.54, 95% CI = 1.16-2.03, P = 0.002) but not in Caucasians (OR = 1.02, 95% CI = 0.80-1.30) for the dominant model. The current meta-analysis suggested that TP53 codon 72 polymorphism was associated with the endometriosis risk, especially in Asians and Latin Americans. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Zuiverloon, Tahlita C M; Nieuweboer, Annemieke J M; Vékony, Hedvig; Kirkels, Wim J; Bangma, Chris H; Zwarthoff, Ellen C
2012-01-01
Currently, bacillus Calmette-Guérin (BCG) intravesical instillations are standard treatment for patients with high-grade non-muscle-invasive bladder cancer; however, no markers are available to predict BCG response. To review the contemporary literature on markers predicting BCG response, to discuss the key issues concerning the identification of predictive markers, and to provide recommendations for further research studies. We performed a systematic review of the literature using PubMed and Embase databases in the period 1996-2010. The free-text search was extended by adding the following keywords: recurrence, progression, survival, molecular marker, prognosis, TP53, Ki-67, RB, fibronectin, immunotherapy, cytokine, interleukin, natural killer, macrophage, PMN, polymorphism, SNP, single nucleotide polymorphism, and gene signature. If thresholds for the detection of urinary interleukin (IL)-8, IL-18, and tumour necrosis factor apoptosis-inducing ligand levels are standardised, measurement of these cytokines holds promise in the assessment of BCG therapy outcome. Studies on immunohistochemical markers (ie, TP53, Ki-67, and retinoblastoma) display contradictory results, probably because of the small patient groups that were used and seem unsuitable to predict BCG response. Exploring combinations of protein levels might prove to be more helpful to establish the effect of BCG therapy. Single nucleotide polymorphisms, either in cytokines or in genes involved in DNA repair, need to be investigated in different ethnicities before their clinical relevance can be determined. Measurement of urinary IL-2 levels seems to be the most potent marker of all the clinical parameters reviewed. IL-2 levels are currently the most promising predictive markers of BCG response. For future studies focusing on new biomarkers, it is essential to make more use of new biomedical techniques such as microRNA profiling and genomewide sequencing. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.
A functionally significant SNP in TP53 and breast cancer risk in African-American women.
Murphy, Maureen E; Liu, Song; Yao, Song; Huo, Dezheng; Liu, Qin; Dolfi, Sonia C; Hirshfield, Kim M; Hong, Chi-Chen; Hu, Qiang; Olshan, Andrew F; Ogundiran, Temidayo O; Adebamowo, Clement; Domchek, Susan M; Nathanson, Katherine L; Nemesure, Barbara; Ambs, Stefan; Blot, William J; Feng, Ye; John, Esther M; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Ingles, Sue A; Press, Michael F; Deming, Sandra L; Rodriguez-Gil, Jorge L; Haiman, Christopher A; Olopade, Olufunmilayo I; Lunetta, Kathryn L; Palmer, Julie R; Ambrosone, Christine B
2017-01-01
A coding region polymorphism exists in the TP53 gene (Pro47Ser; rs1800371) in individuals of African descent, which reduces p53 tumor suppressor function in a mouse model. It has been unclear whether this functionally significant polymorphism alters cancer risk in humans. This analysis included 6907 women with breast cancer and 7644 controls from the AMBER, ROOT, and AABC consortia. We used multivariable logistic regression to estimate associations between the TP53 Pro47Ser allele and overall breast cancer risk. Because polymorphisms in TP53 tend to be associated with cancer risk in pre-menopausal women, we also limited our analyses to this population in the AMBER and ROOT consortia, where menopausal status was known, and conducted a fixed effects meta-analysis. In an analysis of all women in the AMBER, ROOT, and AABC consortia, we found no evidence for association of the Pro47Ser variant with breast cancer risk. However, when we restricted our analysis to only pre-menopausal women from the AMBER and ROOT consortia, there was a per allele odds ratio of 1.72 (95% confidence interval 1.08-2.76; p -value = 0.023). Although the Pro47Ser variant was not associated with overall breast cancer risk, it may increase risk among pre-menopausal women of African ancestry. Following up on more studies in human populations may better elucidate the role of this variant in breast cancer etiology. However, because of the low frequency of the polymorphism in women of African ancestry, its impact at a population level may be minimal.
Wang, Zhaoming; Rajaraman, Preetha; Melin, Beatrice S.; Chung, Charles C.; Zhang, Weijia; McKean-Cowdin, Roberta; Michaud, Dominique; Yeager, Meredith; Ahlbom, Anders; Albanes, Demetrius; Andersson, Ulrika; Beane Freeman, Laura E.; Buring, Julie E.; Butler, Mary Ann; Carreón, Tania; Feychting, Maria; Gapstur, Susan M.; Gaziano, J. Michael; Giles, Graham G.; Hallmans, Goran; Henriksson, Roger; Hoffman-Bolton, Judith; Inskip, Peter D.; Kitahara, Cari M.; Le Marchand, Loic; Linet, Martha S.; Li, Shengchao; Peters, Ulrike; Purdue, Mark P.; Rothman, Nathaniel; Ruder, Avima M.; Sesso, Howard D.; Severi, Gianluca; Stampfer, Meir; Stevens, Victoria L.; Visvanathan, Kala; Wang, Sophia S.; White, Emily; Zeleniuch-Jacquotte, Anne; Hoover, Robert; Fraumeni, Joseph F.; Chatterjee, Nilanjan; Hartge, Patricia; Chanock, Stephen J.
2016-01-01
We confirmed strong association of rs78378222:A>C (per allele odds ratio [OR] = 3.14; P = 6.48 × 10−11), a germline rare single-nucleotide polymorphism (SNP) in TP53, via imputation of a genome-wide association study of glioma (1,856 cases and 4,955 controls). We subsequently performed integrative analyses on the Cancer Genome Atlas (TCGA) data for GBM (glioblastoma multiforme) and LUAD (lung adenocarcinoma). Based on SNP data, we imputed genotypes for rs78378222 and selected individuals carrying rare risk allele (C). Using RNA sequencing data, we observed aberrant transcripts with ~3 kb longer than normal for those individuals. Using exome sequencing data, we further showed that loss of haplotype carrying common protective allele (A) occurred somatically in GBM but not in LUAD. Our bioinformatic analysis suggests rare risk allele (C) disrupts mRNA termination, and an allelic loss of a genomic region harboring common protective allele (A) occurs during tumor initiation or progression for glioma. PMID:25907361
Xu-Monette, Zijun Y.; Møller, Michael B.; Tzankov, Alexander; Montes-Moreno, Santiago; Hu, Wenwei; Manyam, Ganiraju C.; Kristensen, Louise; Fan, Lei; Visco, Carlo; Dybkær, Karen; Chiu, April; Tam, Wayne; Zu, Youli; Bhagat, Govind; Richards, Kristy L.; Hsi, Eric D.; Choi, William W. L.; van Krieken, J. Han; Huang, Qin; Huh, Jooryung; Ai, Weiyun; Ponzoni, Maurilio; Ferreri, Andrés J. M.; Wu, Lin; Zhao, Xiaoying; Bueso-Ramos, Carlos E.; Wang, Sa A.; Go, Ronald S.; Li, Yong; Winter, Jane N.; Medeiros, L. Jeffrey
2013-01-01
MDM2 is a key negative regulator of the tumor suppressor p53, however, the prognostic significance of MDM2 overexpression in diffuse large B-cell lymphoma (DLBCL) has not been defined convincingly. In a p53 genetically–defined large cohort of de novo DLBCL patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone (R-CHOP) chemotherapy, we assessed MDM2 and p53 expression by immunohistochemistry (n = 478), MDM2 gene amplification by fluorescence in situ hybridization (n = 364), and a single nucleotide polymorphism in the MDM2 promoter, SNP309, by SNP genotyping assay (n = 108). Our results show that MDM2 overexpression, unlike p53 overexpression, is not a significant prognostic factor in overall DLBCL. Both MDM2 and p53 overexpression do not predict for an adverse clinical outcome in patients with wild-type p53 but predicts for significantly poorer survival in patients with mutated p53. Variable p53 activities may ultimately determine the survival differences, as suggested by the gene expression profiling analysis. MDM2 amplification was observed in 3 of 364 (0.8%) patients with high MDM2 expression. The presence of SNP309 did not correlate with MDM2 expression and survival. This study indicates that evaluation of MDM2 and p53 expression correlating with TP53 genetic status is essential to assess their prognostic significance and is important for designing therapeutic strategies that target the MDM2-p53 interaction. PMID:23982177
Nagam, Srivani L S S; Katta, Saritha; Prasad, Vidudala V T S
2017-03-01
Reports on the association of TP53 polymorphisms with oral cancer are not only limited but also not specific to site and/or gender. Hence, we examined the effect of TP53 polymorphisms (EX4 215G>C, IVS3+40-41ins16 and IVS6+62G>A) on buccal mucosa cancer (BMC) and tongue cancer (TC) risk, survival of patients in relation to risk and clinical factors, gender wise (excepting for estimating hazards ratio [HR]), using Fisher's Exact Test, Kaplan-Meier analysis, and Cox-proportional hazards models. The exonic polymorphism increased BMC and TC risk in males by 2-4-fold. The IVS3+40-41ins16 was protective against BMC and TC in both genders, whereas IVS6+62G>A protected only males against TC. Genotype combinations and haplotypes which altered the risk of cancers in males and females were different. TC males, aged 40-44 years and females, aged 55-59 years survived better than BMC patients. The IVS3+40-41ins16 polymorphism differentially impacted survival of female patients exposed to tobacco. TC patients with EX4 215GC with lymphovascular spread (LVS) and metastasis exhibited higher HR while, patients with EX4 215CC and perineural invasion (PNI) showed lower HR. Impact of the intronic variants along with clinical parameters on survival and HR estimates varied between BMC and TC. Our bioinformatics analysis revealed the presence of CTCF binding site within TP53 gene. In conclusion, the polymorphisms altered risk and survival of BMC and TC in a gender specific manner, which varied with mode of tobacco and/or alcohol use. The current study, therefore underscores strong need for research, stratified by tumor site and gender. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vagnini, Laura D.; Nascimento, Adriana M.; Canas, Maria do Carmo T.; Renzi, Adriana; Oliveira-Pelegrin, Gabriela R.; Petersen, Claudia G.; Mauri, Ana L.; Oliveira, João Batista A.; Baruffi, Ricardo L.R.; Cavagna, Mario; Franco, José G.
2015-01-01
Objective The aim of this study was to investigate the relationship between herpesvirus-associated ubiquitin-specific protease (HAUSP A/G, rs1529916), tumor protein p53 (TP53 Arg/Pro, rs1042522), leukemia inhibitory factor (LIF G/T, rs929271), glycoprotein 130 (gp130 A/T, rs1900173) and vascular endothelial growth factor (VEGF G/A, rs1570360) polymorphisms and recurrent implantation failure (RIF) in Brazilian women. Subjects and Methods A total of 120 women with RIF (i.e. those with ≥5 cleaved embryos transferred and a minimum of 2 failed in vitro fertilization/intracytoplasmic sperm injection attempts) were included. The control group involved 89 women who had experienced at least 1 live birth (without any infertility treatment). DNA was extracted from the peripheral blood of all participants, and the abovementioned single-nucleotide polymorphisms (SNPs) were genotyped by real-time polymerase chain reaction. The data were evaluated using Fisher's test. Results A significant difference between the RIF and control groups was found in the VEGF gene where the GG genotype showed a 2.1-fold increased chance of not being included in the RIF group, while the presence of an A allele increased this risk 1.6-fold. No significant differences were found for the other polymorphisms. Conclusion This study showed an association between the VEGF -1154G/A polymorphism and RIF in Brazilian women. PMID:26305668
Tumor markers and rectal cancer: support for an inflammation-related pathway
Slattery, Martha L.; Wolff, Roger K.; Herrick, Jennifer; Caan, Bette J.; Samowitz, Wade
2009-01-01
Inflammation may be a key element in the etiology of colorectal cancer (CRC). In this study we examine associations between factors related to inflammation and specific rectal cancer mutations. A population-based study of 750 rectal cancer cases with interview and tumor DNA were compared to 1205 population-based controls. Study participants were from Utah and the Northern California Kaiser Permanente Medical Care Program. Tumor DNA was analyzed for TP53 and KRAS2 mutations and CpG Island methylator phenotype (CIMP). We assessed how these tumor markers were associated with use of anti-inflammatory drugs, polymorphisms in the IL6 genes (rs1800795 and rs1800796), and dietary antioxidants. Ibuprofen-type drugs, IL6 polymorphisms (rs1800796), and dietary alpha tocopherol and lycopene significantly altered likelihood of having a TP53 mutation. This was especially true for TP53 transversion mutations and dietary antioxidants (OR for beta carotene 0.51 95% CI 0.27,0.97, p trend 0.03; alpha tocopherol 0.41 95% CI 0.20,0.84, p trend 0.02) Beta carotene and ibuprofen significantly altered risk of KRAS2 tumors. The associations between lutein and tocopherol and TP53 and KRAS2 mutations were modified by IL6 genotype. These results suggest that inflammation-related factors may have unique associations with various rectal tumor markers. Many factors involved in an inflammation related pathway were associated with TP53 mutations and some dietary factors appeared to be modified by IL6 genotype. PMID:19452524
The TP53 gene polymorphisms and survival of sporadic breast cancer patients.
Bišof, V; Salihović, M Peričić; Narančić, N Smolej; Skarić-Jurić, T; Jakić-Razumović, J; Janićijević, B; Rudan, P
2012-06-01
The TP53 gene polymorphisms, Arg72Pro and PIN3 (+16 bp), can have prognostic and predictive value in different cancers including breast cancer. The aim of the present study is to investigate a potential association between different genotypes of these polymorphisms and clinicopathological variables with survival of breast cancer patients in Croatian population. Ninety-four women with sporadic breast cancer were retrospectively analyzed. Median follow-up period was 67.9 months. The effects of basic clinical and histopathological characteristics of tumor on survival were tested by Cox's proportional hazards regression analysis. The TNM stage was associated with overall survival by Kaplan-Meier analysis, univariate, and multivariate Cox's proportional hazards regression analysis, while grade was associated with survival by Kaplan-Meier analysis and univariate Cox's proportional hazards regression analysis. Different genotypes of the Arg72Pro and PIN3 (+16 bp) polymorphisms had no significant impact on survival in breast cancer patients. However, in subgroup of patients treated with chemotherapy without anthracycline, the A2A2 genotype of the PIN3 (+16 bp) polymorphism was associated with poorer overall survival than other genotypes by Kaplan-Meier analysis (P = 0.048). The TP53 polymorphisms, Arg72Pro and PIN3 (+16 bp), had no impact on survival in unselected sporadic breast cancer patients in Croatian population. However, the results support the role of the A2A2 genotype of the PIN3 (+16 bp) polymorphism as a marker for identification of patients that may benefit from anthracycline-containing chemotherapy.
Rivu, Sanzana Fareen; Apu, Mohd Nazmul Hasan; Shabnaz, Samia; Nahid, Noor Ahmed; Islam, Md Reazul; Al-Mamun, Mir Md Abdullah; Nahar, Zabun; Rabbi, Sikder Nahidul Islam; Ahmed, Maizbha Uddin; Islam, Mohammad Safiqul; Hasnat, Abul
2017-08-01
Till now no pharmacogenetic study of TP53 codon 72 (Arg72Pro) and CDH1 rs16260 (-160C
Labussière, Marianne; Rahimian, Amithys; Giry, Marine; Boisselier, Blandine; Schmitt, Yohann; Polivka, Marc; Mokhtari, Karima; Delattre, Jean-Yves; Idbaih, Ahmed; Alentorn, Agusti
2016-01-01
Background. The 1p19q non-codeleted gliomas with IDH mutation, defined as “molecular astrocytomas,” display frequent TP53 mutations and have an intermediate prognosis. We investigated the prognostic impact of copy number-neutral loss of heterozygosity (CNLOH) in 17p in this population. Methods. We analyzed 793 gliomas (206 grade II, 377 grade III, and 210 grade IV) by single nucleotide polymorphism array and for TP53 mutations. Results. Homodisomy revealed by CNLOH was observed in 156 cases (19.7%). It was more frequent in astrocytomas and oligoastrocytomas (98/256, 38%) than oligodendrogliomas (28/327, 8.6%; p < .0001) or glioblastoma multiforme (30/210, 14.3%; p < .0001), tightly associated with TP53 mutation (69/71 vs. 20/79; p = 2 × 10−16), and mutually exclusive with 1p19q codeletion (1/156 vs. 249/556; p < .0001). In the group of IDH-mutated 1p19q non-codeleted gliomas, CNLOH 17p was associated with longer survival (86.3 vs. 46.2 months; p = .004), particularly in grade III gliomas (overall survival >100 vs. 37.9 months; p = .007). These data were confirmed in an independent dataset from the Cancer Genome Atlas. Conclusion. CNLOH 17p is a prognostic marker and further refines the molecular classification of gliomas. Implications for Practice: Homodisomy of chromosome 17p (CNLOH 17p) is a frequent feature in IDH-mutated 1p19q non-codeleted gliomas (group 2). It is constantly associated with TP53 mutation. It was found, within this specific molecular group of gliomas (corresponding to molecular astrocytomas), that CNLOH 17p is associated with a much better outcome and may therefore represent an additional prognostic marker to refine the prognostic classification of gliomas. PMID:27401888
Molleví, David G; Serrano, Teresa; Ginestà, Mireia M; Valls, Joan; Torras, Jaume; Navarro, Matilde; Ramos, Emilio; Germà, Josep R; Jaurrieta, Eduardo; Moreno, Víctor; Figueras, Joan; Capellà, Gabriel; Villanueva, Alberto
2007-06-01
The aim of this study was to analyze the prognostic value of TP53 mutations in a consecutive series of patients with hepatic metastases (HMs) from colorectal cancer undergoing surgical resection. Ninety-one patients with liver metastases from colorectal carcinoma were included. Mutational analysis of TP53, exons 4-10, was performed by single-strand conformation polymorphism and sequencing. P53 and P21 protein immunostaining was assessed. Multivariate Cox models were adjusted for gender, number of metastasis, resection margin, presence of TP53 mutations and chemotherapy treatment. Forty-six of 91 (50.05%) metastases showed mutations in TP53, observed mainly in exons 5-8, although 14.3% (n = 13) were located in exons 9 and 10. Forty percent (n = 22) were protein-truncating mutations. TP53 status associated with multiple (> or =3) metastases (65.6%, P = 0.033), advanced primary tumor Dukes' stage (P = 0.011) and younger age (<57 years old, P = 0.03). Presence of mutation associated with poor prognosis in univariate (P = 0.017) and multivariate Cox model [hazard ratio (HR) = 1.80, 95% confidence interval (CI) = 1.07-3.06, P = 0.028]. Prognostic value was maintained in patients undergoing radical resection (R0 series, n = 79, P = 0.014). Mutation associated with a worse outcome in chemotherapy-treated patients (HR = 2.54, 95% CI = 1.12-5.75, P = 0.026). The combination of > or =3 metastases and TP53 mutation identified a subset of patients with very poor prognosis (P = 0.009). P53 and P21 protein immunostaining did not show correlation with survival. TP53 mutational status seems to be an important prognostic factor in patients undergoing surgical resection of colorectal cancer HMs.
Dahlin, Anna M; Hollegaard, Mads V; Wibom, Carl; Andersson, Ulrika; Hougaard, David M; Deltour, Isabelle; Hjalmars, Ulf; Melin, Beatrice
2015-10-01
Recent studies have described a number of genes that are frequently altered in medulloblastoma tumors and that have putative key roles in the development of the disease. We hypothesized that common germline genetic variations in these genes may be associated with medulloblastoma development. Based on recent publications, we selected 10 genes that were frequently altered in medulloblastoma: CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC, MYCN, PTCH1, TP53, and MLL2 (now renamed as KMT2D). Common genetic variants (single nucleotide polymorphisms) annotating these genes (n = 221) were genotyped in germline DNA (neonatal dried blood spot samples) from 243 childhood medulloblastoma cases and 247 control subjects from Sweden and Denmark. Eight genetic variants annotating three genes in the sonic hedgehog signaling pathway; CCND2, PTCH1, and GLI2, were found to be associated with the risk of medulloblastoma (P(combined) < 0.05). The findings were however not statistically significant following correction for multiple testing by the very stringent Bonferroni method. The results do not support our hypothesis that common germline genetic variants in the ten studied genes are associated with the risk of developing medulloblastoma.
Zarate, Ana Maria; Don, Julieta; Secchi, Dante; Carrica, Andres; Galindez Costa, Fernanda; Panico, Rene; Brusa, Martin; Barra, José Luis; Brunotto, Mabel
2017-05-01
The aim of this work was to evaluate the prevalence of TP53Arg72Pro mutations and their possible relationship with oral carcinoma and oral potentially malignant disorders in Argentine patients. A cross-sectional study was performed on 111 exfoliated cytologies from patients with oral cancer (OC), oral potentially malignant disorders (OPMD) and controls. The TP53Arg72Pro mutations were determined using conventional PCR. We evaluated univariate and multivariate study variables, setting p < 0.05. We found: (a) a low frequency of Pro72 variant in control group and a high frequency in OC and OPMD, as well in OC and oral leukoplakia (OL) diagnosis; (b) multivariate association among the TP53CC genotype and females over 45 years with no tobacco nor alcohol habits with oral lichen planus pathology; (c) multivariate association between the TP53GC genotype and males with alcohol and tobacco habits and OC and OL pathologies. Our results showed that the wild-type Arg72variant was related to control patients and Pro72variant was related to OC and OPMD, in Argentine patients.
Menzies, Georgina E.; Reed, Simon H.; Brancale, Andrea; Lewis, Paul D.
2015-01-01
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots. PMID:26400171
Pelle, Roger; Mwacharo, Joram M.; Njahira, Moses N.; Marcellino, Wani L.; Kiara, Henry; Malak, Agol K.; EL Hussein, Abdel Rahim M.; Bishop, Richard; Skilton, Robert A.
2017-01-01
East Coast fever (ECF), caused by Theileria parva infection, is a frequently fatal disease of cattle in eastern, central and southern Africa, and an emerging disease in South Sudan. Immunization using the infection and treatment method (ITM) is increasingly being used for control in countries affected by ECF, but not yet in South Sudan. It has been reported that CD8+ T-cell lymphocytes specific for parasitized cells play a central role in the immunity induced by ITM and a number of T. parva antigens recognized by parasite-specific CD8+ T-cells have been identified. In this study we determined the sequence diversity among two of these antigens, Tp1 and Tp2, which are under evaluation as candidates for inclusion in a sub-unit vaccine. T. parva samples (n = 81) obtained from cattle in four geographical regions of South Sudan were studied for sequence polymorphism in partial sequences of the Tp1 and Tp2 genes. Eight positions (1.97%) in Tp1 and 78 positions (15.48%) in Tp2 were shown to be polymorphic, giving rise to four and 14 antigen variants in Tp1 and Tp2, respectively. The overall nucleotide diversity in the Tp1 and Tp2 genes was π = 1.65% and π = 4.76%, respectively. The parasites were sampled from regions approximately 300 km apart, but there was limited evidence for genetic differentiation between populations. Analyses of the sequences revealed limited numbers of amino acid polymorphisms both overall and in residues within the mapped CD8+ T-cell epitopes. Although novel epitopes were identified in the samples from South Sudan, a large number of the samples harboured several epitopes in both antigens that were similar to those in the T. parva Muguga reference stock, which is a key component in the widely used live vaccine cocktail. PMID:28231338
TP53 mutations in primary breast carcinomas from white and African-Brazilian patients.
Nagai, Maria Aparecida; Schaer Barbosa, Helenemarie; Zago, Marco Antonio; Araújo Silva, Wilson; Nishimoto, Inês Nobuko; Salaorni, Sibeli; Guerreiro Costa, Lívia Nery Franco; Silva Araújo, Marcos; Caldas Oliveira, Ana Gabriela; Mourâo Neto, Mário; Brentani, Maria Mitzi
2003-07-01
We have attempted to determine the incidence, nature and clinical significance of TP53 mutation in a group of white (242 cases) and African-Brazilian (52 cases) patients with breast cancer. The interethnic admixture as estimated by STR markers showed that white subjects displayed 67.9+/-0.4%, 25.0+/-1.7% and 7.0%+/-1.6% and the black populations had 34.4+/-1.9%, 56.2+/-1.9 and 9.4+/-2.2% respectively of European, African and Amerindian genes. Clinical parameters such as age, lymph node status and steroid receptors were similar in both groups. African-Brazilian patients presented more advanced lesions. Mutation screening was performed using polymerase chain reaction-single strand conformation analysis followed by sequencing. Compared to whites (13.6%), a relatively high frequency of TP53 mutation was found in blacks (32.7%) (p=0.001). African-Brazilian women have a larger proportion of mutations in exons 5 and 7, whereas white women have more mutations in exon 8. Mutations within exon 4 were found only in tumors of white patients. The spectra of TP53 mutations show that A:T-->G:C nucleotide transversion and G:C-->C:G transition were more common in African-Brazilian women whereas G:C-->T:A transversion occurs very frequently in whites. A high prevalence of G:C-->A:T nucleotide transitions and deletions was detected in both groups. No association was found between p53 gene mutation and tumor or clinical parameters independently of the ethnic group. With a median follow-up of 35.6 months for whites and 43.4 months for the blacks, no differences in overall survival were found. If white patients were stratified according to the type and location of TP53 mutations, patients with mutations affecting amino acids directly involved in DNA or Zn binding displayed a poor prognosis. The pattern of mutations found in our population seems to reflect a base line pattern observed in populations with similar ethnic profile with some modifications, which might be derived from specific etiological factors.
Pelle, Roger; Graham, Simon P.; Njahira, Moses N.; Osaso, Julius; Saya, Rosemary M.; Odongo, David O.; Toye, Philip G.; Spooner, Paul R.; Musoke, Anthony J.; Mwangi, Duncan M.; Taracha, Evans L. N.; Morrison, W. Ivan; Weir, William; Silva, Joana C.; Bishop, Richard P.
2011-01-01
Background Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8+ T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8+ T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8+ T-cell epitopes, and to analyse the sequences for evidence of selection. Methodology/Principal Findings Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. Conclusions/Significance The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point. PMID:21559495
Pelle, Roger; Graham, Simon P; Njahira, Moses N; Osaso, Julius; Saya, Rosemary M; Odongo, David O; Toye, Philip G; Spooner, Paul R; Musoke, Anthony J; Mwangi, Duncan M; Taracha, Evans L N; Morrison, W Ivan; Weir, William; Silva, Joana C; Bishop, Richard P
2011-04-29
Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.
TP53 p.R72P genotype is a marker of poor prognosis in lung cancer.
Neumann, Mirko Peter; González, María Victoria; Pitiot, Ana S; Santamaría, Íñigo; Martínez, Cristina; Tardón, Adonina; Astudillo, Aurora; Balbín, Milagros
2018-01-01
Lung cancer is a leading cause of death worldwide, with poor survival rates despite diagnostic and therapeutic advances. Markers are needed in order to improve clinical patient management and survival. TP53 is frequently involved in lung cancer development with polymorphic sites potentially having a role in it. This study aims to determine the value of codon 72 missense polymorphic variant genotyping, TP53 R72P, as a prognostic factor in NSCLC patients. One hundred and fifteen NSCLC samples from patients exposed to tobacco smoke and silica dust from Asturias (Northern Spain) were genotyped by direct sequencing. Seventy-five percent tumour samples alleles coded for Arg. The R72P genotype was an independent predictor of lymph node status (HR = 3.6). The heterozygous genotype was associated to a reduced 5-year survival rate (28% vs 51% for homozygotes). Importantly, this result was specifically observed in these subsets of patients: those over 67 years, patients with silicosis, current smokers, patients with squamous cell carcinomas and, notably, with tumour free lymph nodes. Our results indicate a remarkable application of R72P genotyping in the clinical setting: refine patient subclassification to identify those with an adverse clinical course despite tumour free lymph node status.
Dato, Serena; Soerensen, Mette; De Rango, Francesco; Rose, Giuseppina; Christensen, Kaare; Christiansen, Lene; Passarino, Giuseppe
2018-06-01
In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1,089 unrelated nonagenarians from the Danish 1905 Birth Cohort Study and 736 Danish controls aged 46-55 years) for evaluating synergic interactions by SNPsyn. Synergies were further tested by the multidimensional reduction (MDR) approach, both intra- and interpathways. The best combinations (FDR<0.0001) resulted those encompassing IGF1R-rs12437963 and PTPN1-rs6067484, TP53-rs2078486 and ERCC2-rs50871, TXNRD1-rs17202060 and TP53-rs2078486, the latter two supporting a central role of TP53 in mediating the concerted activation of the DNA repair and pro-antioxidant pathways in human longevity. Results were consistently replicated with both approaches, as well as a significant effect on longevity was found for the GHSR gene, which also interacts with partners belonging to both IIS and DNA repair pathways (PAPPA, PTPN1, PARK7, MRE11A). The combination GHSR-MREA11, positively associated with longevity by MDR, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes of additional networks involved in human longevity. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Braakhuis, B J M; Rietbergen, M M; Buijze, M; Snijders, P J F; Bloemena, E; Brakenhoff, R H; Leemans, C R
2014-09-01
Little is known about the molecular carcinogenesis of oral squamous cell carcinoma (OSCC) in young adult patients. The aim of this study was to investigate the detailed TP53 mutation and human papilloma virus (HPV) status of OSCC in patients, younger than 45 years. TP53 mutations were determined with direct sequencing on paraffin-embedded carcinoma tissue from 31 young patients and compared with two older age OSCC reference groups: one from the same institute (N = 87) and an independent one (N = 675). Biologically active tumour HPV was detected by p16-immunohistochemistry followed by a HPV-DNA GP5 + /6 + -PCR. HPV16 was present in one OSCC (3%). TP53 mutations were found in 14 (45%) OSCC: five were missense and nine resulted in a truncated protein. Six of these latter were insertions or deletions of one or more nucleotides leading to frameshift, one was at a splice site and two resulted in a stop codon. The percentage of truncating mutations (64% of all mutations) was higher than that observed in the institute's reference group (44%, P = 0.23) and in the independent reference group (24%, P = 0.002). This study shows that TP53 mutations are common in OSCC of young adult patients; infection with biologically active HPV is rare. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Svobodova, Karla; Zemanova, Zuzana; Lhotska, Halka; Novakova, Milena; Podskalska, Lucie; Belickova, Monika; Brezinova, Jana; Sarova, Iveta; Izakova, Silvia; Lizcova, Libuse; Berkova, Adela; Siskova, Magda; Jonasova, Anna; Cermak, Jaroslav; Michalova, Kyra
2016-03-01
Complex karyotypes are seen in approximately 20% of patients with myelodysplastic syndromes (MDS) and are associated with a high risk of transformation to acute myeloid leukemia and poor outcomes in patients. Copy number neutral loss of heterozygosity (CN-LOH, i.e., both copies of a chromosomal pair or their parts originate from one parent) might contribute to increased genomic instability in the bone-marrow cells of patients with MDS. The pathological potential of CN-LOH, which arises as a clonal aberration in a proportion of somatic cells, consists of tumor suppressor gene and oncogene homozygous mutations. The aim of our study was to evaluate the frequency of CN-LOH at 17p in bone-marrow cells of newly diagnosed MDS patients with complex chromosomal aberrations and to assess its correlation with mutations in the TP53 gene (17p13.1). CN-LOH was detected in 40 chromosomal regions in 21 (29%) of 72 patients analyzed. The changes in 27 of the 40 regions identified were sporadic. The most common finding was CN-LOH of the short arm of chromosome 17, which was detected in 13 (18%) of 72 patients. A mutational analysis confirmed the homozygous mutation of TP53 in all CN-LOH 17p patients, among which two frameshift mutations are not registered in the International Agency for Research on Cancer TP53 Database. CN-LOH 17p correlated with aggressive disease (median overall survival 4 months) and was strongly associated with a complex karyotype in the cohort studied, which might cause rapid disease progression in high-risk MDS. No other CN-LOH region previously recorded in MDS or AML patients (1p, 4q, 7q, 11q, 13q, 19q, 21q) was detected in our cohort of patients with complex karyotype examined at the diagnosis of MDS. The LOH region appeared to be balanced (i.e., with no DNA copy number change) when examined with conventional and molecular cytogenetic methods. Therefore, a microarray that detects single-nucleotide polymorphisms is an ideal method with which to identify and further characterize CN-LOH. Our data should specify the prognosis and should lead to the identification of potential targets for therapeutic interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zeron-Medina, Jorge; Wang, Xuting; Repapi, Emmanouela; Campbell, Michelle R.; Su, Dan; Castro-Giner, Francesc; Davies, Benjamin; Peterse, Elisabeth F.P.; Sacilotto, Natalia; Walker, Graeme J.; Terzian, Tamara; Tomlinson, Ian P.; Box, Neil F.; Meinshausen, Nicolai; De Val, Sarah; Bell, Douglas A.; Bond, Gareth L.
2014-01-01
SUMMARY The ability of p53 to regulate transcription is crucial for tumor suppression and implies that inherited polymorphisms in functional p53-binding sites could influence cancer. Here, we identify a polymorphic p53 responsive element and demonstrate its influence on cancer risk using genome-wide data sets of cancer susceptibility loci, genetic variation, p53 occupancy, and p53-binding sites. We uncover a single-nucleotide polymorphism (SNP) in a functional p53-binding site and establish its influence on the ability of p53 to bind to and regulate transcription of the KITLG gene. The SNP resides in KITLG and associates with one of the largest risks identified among cancer genome-wide association studies. We establish that the SNP has undergone positive selection throughout evolution, signifying a selective benefit, but go on to show that similar SNPs are rare in the genome due to negative selection, indicating that polymorphisms in p53-binding sites are primarily detrimental to humans. PMID:24120139
Mabrouk, Imed; Baccouche, Sami; El-Abed, Rym; Mokdad-Gargouri, Raja; Mosbah, Ali; Saïd, Salem; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali
2003-12-01
The TP53 gene, frequently mutated in human cancers, carries several polymorphisms. The one most informative and studied concerns codon 72; a single base changes the CGC (arginine) to CCC (proline). The arginine form was considered to be a significant risk factor in the development of cancer. However, various reports on this polymorphism are controversial. We carried out the same investigation in two groups of patients, a group with bladder cancer and another with breast cancer, and in healthy controls in two regions of our country, using an improved PCR-RFLP method. The number of Arg/Arg, Arg/Pro, and Pro/Pro genotypes was as follows: 21, 23, 3 and 13, 19, 2 for patients (total 47) and controls (34), respectively, in the first group; 18, 9, 3 and 19, 26, 4 for patients (30) and controls (49), respectively, in the second group. Statistical analysis of the genotype and allele frequencies did not reveal any difference between patients and controls in both groups except for a weak difference between the homozygotes to heterozygotes in the second group with a chi square of 4.1 (P = 0.045); the number of breast cancer patients is actually low (30) and should be increased in order to assess such a conclusion. Our overall results are therefore not consistent with a high risk associated with TP53 codon 72 polymorphism in breast and in bladder cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, Kyle C., E-mail: kcuneo@umich.edu; Morgan, Meredith A.; Davis, Mary A.
2016-06-01
Purpose: Wee1 kinase inhibitors are effective radiosensitizers in cells lacking a G{sub 1} checkpoint. In this study we examined the potential effect of Wee1 kinase inhibition on inducing replication stress in hepatocellular carcinoma (HCC). Methods and Materials: Five independent datasets from the Oncomine database comparing gene expression in HCC compared to normal tissue were combined and specific markers associated with Wee1 sensitivity were analyzed. We then performed a series of in vitro experiments to study the effect of Wee1 inhibition on irradiated HCC cell lines with varying p53 mutational status. Clonogenic survival assays and flow cytometry using anti-γH2AX and phospho-histone H3more » antibodies with propidium iodide were performed to study the effect of AZD1775 on survival, cell cycle, and DNA repair. Additionally, nucleoside enriched medium was used to examine the effect of altering nucleotide pools on Wee1 targeted radiation sensitization. Results: Our analysis of the Oncomine database found high levels of CDK1 and other cell cycle regulators indicative of Wee1 sensitivity in HCC. In our in vitro experiments, treatment with AZD1775 radiosensitized and chemosensitized Hep3B, Huh7, and HepG2 cell lines and was associated with delayed resolution of γH2AX foci and the induction of pan-nuclear γH2AX staining. Wee1 inhibition attenuated radiation-induced G{sub 2} arrest in the Hep3B (TP53 null) and Huh7 (TP53 mutant) cell lines but not in the TP53 wild-type cell line HepG2. Supplementation with nucleosides reversed the radiation-sensitizing effect of AZD1775 and reduced the amount of cells with pan-nuclear γH2AX staining after radiation. Conclusions: Radiation sensitization with Wee1 inhibition occurs in cells regardless of their p53 mutational status. In this study we show for the first time that replication stress via the overconsumption of nucleotides plays an important role in AZD1775-induced radiation sensitization.« less
Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit; Wang, Jiping; Jasser, Samar; McDowell, Christina; Kadara, Humam; Zhang, Jiexin; Wang, Jing; William, William N; Lee, J Jack; Nguyen, Minh Ly; Pai, Sara I; Walline, Heather M; Shin, Dong M; Ferris, Robert L; Carey, Thomas E; Myers, Jeffrey N; Pickering, Curtis R
2018-01-01
Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society. © 2017 American Cancer Society.
Papillomavirus, p53 alteration, and primary carcinoma of the vulva.
Pilotti, S; D'Amato, L; Della Torre, G; Donghi, R; Longoni, A; Giarola, M; Sampietro, G; De Palo, G; Pierotti, M A; Rilke, F
1995-12-01
Twenty-nine samples from 28 cases of vulvar squamous cell carcinoma, of which 13 fulfilled the criteria of the bowenoid subtype (mean age 45 years, range 31-68) and 16 of the usual subtype of invasive squamous cell carcinoma (ISCC) (mean age 67.5 years, range 34-83) were investigated for human papillomavirus (HPV) DNA, TP53 alterations, and mdm2 and bcl-2 gene product deregulation. Microscopically all the bowenoid subtype cases (group I) showed a high-grade intraepithelial (VIN 3, carcinoma in situ) lesion associated with early invasive carcinoma in six cases and overt invasive carcinoma in one. By contrast, no evidence of early carcinoma was present in the ISCCs (group II). By in situ hybridization and/or Southern blot hybridization or polymerase chain reaction (PCR), HPV DNA was detected in all cases of group I and in four of 16 cases (25%) of group II, two only by Southern blot after PCR. By single-strand conformation polymorphism and immunocytochemistry only wild-type TP53 and absence of detectable p53 product, respectively, were found in all cases of group I, i.e., in high-risk HPV-positive carcinomas, whereas mutations and/or p53 overexpression accounted for 75% in group II, i.e., in mainly HPV-negative carcinomas. The TP53 gene mutations observed in invasive carcinomas were significantly related to node-positive cases (p = 0.04). Taken together and in agreement with in vitro data, these results support the view that an alteration of TP53, gained either by interaction with viral oncoproteins or by somatic mutations, is a crucial event in the pathogenesis of vulvar carcinomas, but that TP53 mutations are mainly associated with disease progression. Finally, a preliminary immunocytochemical analysis seems to speak against the possible involvement of both MDM2 and BCL-2 gene products in the development of vulvar carcinoma.
Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53
Rae, Joel; Hogan, Kate; Ejiama, Sarah; Girotti, Maria Romina; Cook, Martin; Dhomen, Nathalie; Marais, Richard
2014-01-01
Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear1,2. The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event3. To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a V600EBRAF mouse model. In mice expressing V600EBRAF in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. We show that sunscreen (UVA superior: UVB SPF50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours presented increased numbers of single nucleotide variants (SNVs) and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in ~40% of cases. TP53 is an accepted UVR target in non-melanoma skin cancer, but is not thought to play a major role in melanoma4. However, we show that mutant Trp53 accelerated V600EBRAF-driven melanomagenesis and that TP53 mutations are linked to evidence of UVR-induced DNA damage in human melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans5. We identify TP53/Trp53 as a UVR-target gene that cooperates with V600EBRAF to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma. PMID:24919155
Brody, Jonathan R.; Hucl, Tomas; Costantino, Christina L.; Eshleman, James; Gallmeier, Eike; Zhu, Heng; Heijden, Michael S. van der; Winter, Jordan M; Wikiewicz, Agnieszka K.; Yeo, Charles J.; Kern, Scott E.
2010-01-01
The major determinants of 5-flurouracil response would appear, based on accumulated literature, to be thymidylate synthase (TYMS, TS) expression levels, TS gene modifications, and TP53 status. We tested 5-fluorouracil sensitivity in yeast and human cancer cell models in which TS or TP53 alleles and expression were varied. Polymorphic TS tandem repeat status, TS expression levels reported, TS intragenic mutations, and TP53 status in outbred and experimental cancer cell lines did not predict 5-FU sensitivity or resistance. Novel observations included a dose-resistant persistence of unbound TS protein in many cancers and, upon 5-FU treatment of the colon cancer cell line, HCT116, evidence of allelic switching favoring transcripts of the mutant TS allele. The reported alleles having an intragenic mutation could not be causally associated with major degrees of 5-FU sensitivity. In yeast, TS protein was altered upon treatment with fluoro-deoxyuridine monophosphate, but 5-FU toxicity appeared largely to be RNA-based, being rescued by uridine rather than by thymidine. Cancer cell lines were also rescued from 5-FU toxicity with uridine rather than thymidine. Additionally, a TS (CDC21) knockout yeast strain, obviating any potential role for TS protein as a target, was hypersensitive to 5-FU. When denatured proteins from cancer cells treated with radio-labeled 5-FU were, labeled species with alternative molecular weights other than TS were visualized, providing further evidence for alternative 5-FU protein targets. These data emphasize that TS and TP53 status do not consistently explain the variance in responses of fluoropyrimidine-treated cancer cells, in part due to RNA-based toxicity. PMID:19155291
Olsson, Linda; Zettermark, Sofia; Biloglav, Andrea; Castor, Anders; Behrendtz, Mikael; Forestier, Erik; Paulsson, Kajsa; Johansson, Bertil
2016-07-01
Cytogenetic analyses of a consecutive series of 67 paediatric (median age 8 years; range 0-17) de novo acute myeloid leukaemia (AML) patients revealed aberrations in 55 (82%) cases. The most common subgroups were KMT2A rearrangement (29%), normal karyotype (15%), RUNX1-RUNX1T1 (10%), deletions of 5q, 7q and/or 17p (9%), myeloid leukaemia associated with Down syndrome (7%), PML-RARA (7%) and CBFB-MYH11 (5%). Single nucleotide polymorphism array (SNP-A) analysis and exon sequencing of 100 genes, performed in 52 and 40 cases, respectively (39 overlapping), revealed ≥1 aberration in 89%; when adding cytogenetic data, this frequency increased to 98%. Uniparental isodisomies (UPIDs) were detected in 13% and copy number aberrations (CNAs) in 63% (median 2/case); three UPIDs and 22 CNAs were recurrent. Twenty-two genes were targeted by focal CNAs, including AEBP2 and PHF6 deletions and genes involved in AML-associated gene fusions. Deep sequencing identified mutations in 65% of cases (median 1/case). In total, 60 mutations were found in 30 genes, primarily those encoding signalling proteins (47%), transcription factors (25%), or epigenetic modifiers (13%). Twelve genes (BCOR, CEBPA, FLT3, GATA1, KIT, KRAS, NOTCH1, NPM1, NRAS, PTPN11, SMC3 and TP53) were recurrently mutated. We conclude that SNP-A and deep sequencing analyses complement the cytogenetic diagnosis of paediatric AML. © 2016 John Wiley & Sons Ltd.
Usmani, Nawaid; Leong, Nelson; Martell, Kevin; Lan, Lanna; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Murtha, Albert; Amanie, John; Sloboda, Ron; Murray, David; Parliament, Matthew
2014-01-01
To identify clinical, dosimetric, and genetic factors that are associated with late urinary toxicity after a (125)I prostate brachytherapy implant. Genomic DNA from 296 men treated with (125)I prostate brachytherapy monotherapy was extracted from saliva samples for this study. A retrospective database was compiled including clinical, dosimetric, and toxicity data for this cohort of patients. Fourteen candidate single-nucleotide polymorphism (SNPs) from 13 genes (TP53, ERCC2, GSTP1, NOS, TGFβ1, MSH6, RAD51, ATM, LIG4, XRCC1, XRCC3, GSTA1, and SOD2) were tested in this cohort for correlations with toxicity. This study identified 217 men with at least 2 years of followup. Of these, 39 patients developed Grade ≥2 late urinary complications with a transurethral resection of prostate, urethral stricture, gross hematuria, or a sustained increase in their International Prostate Symptom Score. The only clinical or dosimetric factor that was associated with late urinary toxicity was age (p = 0.02). None of the 14 SNPs tested in this study were associated with late urinary toxicity in the univariate analysis. This study identified age as the only variable being associated with late urinary toxicity. However, the small sample size and the candidate gene approach used in this study mean that further investigations are essential. Genome-wide association studies are emerging as the preferred approach for future radiogenomic studies to overcome the limitations from a candidate gene approach. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
DNA mismatch repair gene polymorphisms affect survival in pancreatic cancer.
Dong, Xiaoqun; Li, Yanan; Hess, Kenneth R; Abbruzzese, James L; Li, Donghui
2011-01-01
DNA mismatch repair (MMR) maintains genomic stability and mediates cellular response to DNA damage. We aim to demonstrate whether MMR genetic variants affect overall survival (OS) in pancreatic cancer. Using the Sequenom method in genomic DNA, we retrospectively genotyped 102 single-nucleotide polymorphisms (SNPs) of 13 MMR genes from 706 patients with pancreatic adenocarcinoma seen at The University of Texas MD Anderson Cancer Center. Association between genotype and OS was evaluated using multivariable Cox proportional hazard regression models. At a false discovery rate of 1% (p ≤ .0015), 15 SNPs of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, TP73, and TREX1 in patients with localized disease (n = 333) and 6 SNPs of MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease (n = 373) were significantly associated with OS. In multivariable Cox proportional hazard regression models, SNPs of EXO1, MSH2, MSH3, PMS2L3, and TP73 in patients with localized disease, MSH2, MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease, and EXO1, MGMT, MSH2, MSH3, MSH6, PMS2L3, and TP73 in all patients remained significant predictors for OS (p ≤ .0015) after adjusting for all clinical predictors and all SNPs with p ≤ .0015 in single-locus analysis. Sixteen haplotypes of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, RECQL, TP73, and TREX1 significantly correlated with OS in all patients (p ≤ .001). MMR gene variants may have potential value as prognostic markers for OS in pancreatic cancer patients.
TP53 mutations, expression and interaction networks in human cancers
Wang, Xiaosheng; Sun, Qingrong
2017-01-01
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943
TP53 mutations, expression and interaction networks in human cancers.
Wang, Xiaosheng; Sun, Qingrong
2017-01-03
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.
Nutlin‐3a selects for cells harbouring TP 53 mutations
Hollstein, Monica; Arlt, Volker M.; Phillips, David H.
2016-01-01
TP53 mutations occur in half of all human tumours. Mutagen‐induced or spontaneous TP53 mutagenesis can be studied in vitro using the human TP53 knock‐in (Hupki) mouse embryo fibroblast (HUF) immortalisation assay (HIMA). TP53 mutations arise in up to 30% of mutagen‐treated, immortalised HUFs; however, mutants are not identified until TP53 sequence analysis following immortalisation (2–5 months) and much effort is expended maintaining TP53‐WT cultures. In order to improve the selectivity of the HIMA for HUFs harbouring TP53 mutations, we explored the use of Nutlin‐3a, an MDM2 inhibitor that leads to stabilisation and activation of wild‐type (WT) p53. First, we treated previously established immortal HUF lines carrying WT or mutated TP53 with Nutlin‐3a to examine the effect on cell growth and p53 activation. Nutlin‐3a induced the p53 pathway in TP53‐WT HUFs and inhibited cell growth, whereas most TP53‐mutated HUFs were resistant to Nutlin‐3a. We then assessed whether Nutlin‐3a treatment could discriminate between TP53‐WT and TP53‐mutated cells during the HIMA (n = 72 cultures). As immortal clones emerged from senescent cultures, each was treated with 10 µM Nutlin‐3a for 5 days and observed for sensitivity or resistance. TP53 was subsequently sequenced from all immortalised clones. We found that all Nutlin‐3a‐resistant clones harboured TP53 mutations, which were diverse in position and functional impact, while all but one of the Nutlin‐3a‐sensitive clones were TP53‐WT. These data suggest that including a Nutlin‐3a counter‐screen significantly improves the specificity and efficiency of the HIMA, whereby TP53‐mutated clones are selected prior to sequencing and TP53‐WT clones can be discarded. PMID:27813088
Screening for susceptibility genes in hereditary non-polyposis colorectal cancer.
Yu, Li; Yin, Bo; Qu, Kaiying; Li, Jingjing; Jin, Qiao; Liu, Ling; Liu, Chunlan; Zhu, Yuxing; Wang, Qi; Peng, Xiaowei; Zhou, Jianda; Cao, Peiguo; Cao, Ke
2018-06-01
In the present study, hereditary non-polyposis colorectal cancer (HNPCC) susceptibility genes were screened for using whole exome sequencing in 3 HNPCC patients from 1 family and using single nucleotide polymorphism (SNP) genotyping assays in 96 other colorectal cancer and control samples. Peripheral blood was obtained from 3 HNPCC patients from 1 family; the proband and the proband's brother and cousin. High-throughput sequencing was performed using whole exome capture technology. Sequences were aligned against the HAPMAP, dbSNP130 and 1,000 Genome Project databases. Reported common variations and synonymous mutations were filtered out. Non-synonymous single nucleotide variants in the 3 HNPCC patients were integrated and the candidate genes were identified. Finally, SNP genotyping was performed for the genes in 96 peripheral blood samples. In total, 60.4 Gb of data was retrieved from the 3 HNPCC patients using whole exome capture technology. Subsequently, according to certain screening criteria, 15 candidate genes were identified. Among the 96 samples that had been SNP genotyped, 92 were successfully genotyped for 15 gene loci, while genotyping for HTRA1 failed in 4 sporadic colorectal cancer patient samples. In 12 control subjects and 81 sporadic colorectal cancer patients, genotypes at 13 loci were wild-type, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 . The CEP290 genotype was mutant in 1 sporadic colorectal cancer patient and was wild-type in all other subjects. A total of 5 of the 12 control subjects and 30 of the 81 sporadic colorectal cancer patients had a mutant HTRA1 genotype. In all 3 HNPCC patients, the same mutant genotypes were identified at all 15 gene loci. Overall, 13 potential susceptibility genes for HNPCC were identified, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 .
Walsh, Kyle M; Anderson, Erik; Hansen, Helen M; Decker, Paul A; Kosel, Matt L; Kollmeyer, Thomas; Rice, Terri; Zheng, Shichun; Xiao, Yuanyuan; Chang, Jeffrey S; McCoy, Lucie S; Bracci, Paige M; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R
2013-02-01
Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P < 0.05), with all associations in the same direction as in previous reports. Several SNP associations showed considerable differences across histologic subtype. All eight successfully replicated associations were first identified by GWAS, although none of the putative risk SNPs from candidate-gene studies was associated in the full case-control sample (all P values > 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes. © 2012 WILEY PERIODICALS, INC.
Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk
2016-01-19
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.
Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J
2005-12-08
TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.
Ellinghaus, E; Stanulla, M; Richter, G; Ellinghaus, D; te Kronnie, G; Cario, G; Cazzaniga, G; Horstmann, M; Panzer Grümayer, R; Cavé, H; Trka, J; Cinek, O; Teigler-Schlegel, A; ElSharawy, A; Häsler, R; Nebel, A; Meissner, B; Bartram, T; Lescai, F; Franceschi, C; Giordan, M; Nürnberg, P; Heinzow, B; Zimmermann, M; Schreiber, S; Schrappe, M; Franke, A
2012-01-01
Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) — the most common chromosomal translocation observed in childhood ALL — which leads to an ETV6–RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, PCMH=8.94 × 10−9, OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10−11, OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10−9, OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10−7, OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6–RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis. PMID:22076464
Das, Mandakini; Sharma, Santanu Kumar; Sekhon, Gaganpreet Singh; Mahanta, Jagadish; Phukan, Rup Kumar; Jalan, Bimal Kumar
2017-05-01
The high incidence of esophageal cancer in Northeast India and the unique ethnic background and dietary habits provide a great opportunity to study the molecular genetics behind esophageal squamous cell carcinoma in this part of the region. We hypothesized that in addition to currently known environmental risk factors for esophageal cancer, genetic and epigenetic factors are also involved in esophageal carcinogenesis in Northeast India. Therefore, in this study, we explored the possible association between the two important G1 cell cycle regulatory genes p16 and p53 and environmental risk factors and risk of esophageal carcinogenesis. A total of 100 newly diagnosed esophageal cancer cases along with equal number of age-, sex-, and ethnicity-matched controls were included in this study. Methylation-specific polymerase chain reaction was used to determine the p16 promoter methylation status. Single-nucleotide polymorphism at codon 72 of p53 gene was assessed by the polymerase chain reaction-restriction fragment length polymorphism method. Aberrant methylation of p16 gene was seen in 81% of esophageal cancer cases. Hypermethylation of p16 gene was not found in healthy controls. p53 Pro/Pro genotype was found to be a risk genotype in Northeast India compared with Arg/Pro and Arg/Arg. p53 variant/polymorphism was significantly associated with esophageal cancer risk in the study population under all three genetic models, namely, dominant model (Arg/Pro + Pro/Pro vs Arg/Arg odds ratio = 2.25, confidence interval = 1.19-4.26; p = 0.012), recessive model (Arg/Arg + Arg/Pro vs Pro/Pro odds ratio = 2.35, confidence interval = 1.24-4.44; p = 0.008), and homozygous model (Pro/Pro vs Arg/Arg odds ratio = 3.33, confidence interval = 1.54-7.20; p = 0.002). However, p53 variant/polymorphism was not statistically associated with esophageal cancer risk under the heterozygous model (Pro/Pro vs Arg/Pro). In the case-only analysis based on p16 methylation, the p53 variant/polymorphism (Pro/Pro or Arg/Pro) showed significant association for esophageal cancer risk (odds ratio = 3.33, confidence interval = 1.54-7.20; p = 0.002). Gene-gene and gene-environment interaction using the case-only approach revealed a strong association between p16 methylation, p53 single-nucleotide polymorphism, and environmental factors and esophageal cancer risk. Cases with p16 methylation and p53 variant/polymorphism (Pro/Pro or Arg/Pro) along with both betel quid and tobacco chewing habit (odds ratio = 8.29, confidence interval = 1.14-60.23; p = 0.037) conferred eightfold increased risk toward esophageal cancer development. This study reveals a synergistic interaction between epigenetic, genetic, and environmental factors and risk of esophageal cancer in this high-incidence region of Northeast India. The inactivation of either p16 or p53 in a majority of esophageal cancer cases in this study suggests the possible crosstalk between the important cell cycle genes.
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-01-01
Background: Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. Aims: To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Study Design: Case-control study. Methods: The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Results: Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. Conclusion: The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients. PMID:28443596
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-05-05
Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Case-control study. The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients.
Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok
2016-04-15
Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
TP53 dysfunction in CLL: Implications for prognosis and treatment.
Te Raa, Gera D; Kater, Arnon P
2016-03-01
Despite the availability of novel targeted agents, TP53 defects remain the most important adverse prognostic factor in chronic lymphocytic leukemia (CLL). Detection of deletion of TP53 locus (17p deletion) by fluorescent in situ hybridization (FISH) has become standard and performed prior to every line of treatment as the incidence dramatically increases as relapses occur. As monoallelic mutations of TP53 equally affect outcome, novel methods are being developed to improve detection of TP53 defects and include next-generation sequencing (NGS) and functional assays. TP53 defects highly affect outcome of immunochemotherapy but also alter response durations of tyrosine kinase inhibitors. Although BCR-targeting agents and Bcl-2-inhibitos have achieved durable responses in some patients with TP53 defects, long-term follow-up is currently lacking. In this review biological and clinical consequences of TP53 dysfunction as well as applicability of currently available methods to detect TP53 defects are described. In addition, proposed novel therapeutic strategies specifically for patients with TP53 dysfunction are discussed. In summary, the only curative treatment option for TP53-defective CLL is still allogeneic hematopoietic stem cell transplantation. Other treatment strategies such as rationale combinations of agents with different (TP53 independent) targets, including kinase inhibitors and inhibitors of anti-apoptotic molecules but also immunomodulatory agents need to be further explored. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jakovljevic, Ksenija; Malisic, Emina; Cavic, Milena; Radulovic, Sinisa; Jankovic, Radmila
2012-07-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation and nucleotide synthesis. The common MTHFR single nucleotide polymorphism C677T has been reported to be associated with reduced enzymatic activity. In order to investigate the influence of this polymorphism on the risk of chronic myeloid leukemia (CML), we performed a case-control study in a Serbian population of 52 patients with CML and 53 healthy control subjects. MTHFR C677T polymorphism genotyping was assessed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The results demonstrated no statistical difference in MTHFR 677 frequency distribution between patient and control groups. Our findings suggest that MTHFR 677 gene variants have no significant influence on the susceptibility to CML in a Serbian population.
HPV-negative penile squamous cell carcinoma: disruptive mutations in the TP53 gene are common.
Kashofer, Karl; Winter, Elke; Halbwedl, Iris; Thueringer, Andrea; Kreiner, Marisa; Sauer, Stefan; Regauer, Sigrid
2017-07-01
The majority of penile squamous cell carcinomas is caused by transforming human papilloma virus (HPV) infection. The etiology of HPV-negative cancers is unclear, but TP53 mutations have been implicated. Archival tissues of 108 invasive squamous cell carcinoma from a single pathology institution in a low-incidence area were analyzed for HPV-DNA and p16 ink4a overexpression and for TP53 mutations by ion torrent next-generation sequencing. Library preparation failed in 32/108 squamous cell carcinomas. Institutional review board approval was obtained. Thirty of 76 squamous cell carcinomas (43%; average 63 years) were HPV-negative with 8/33 squamous cell carcinomas being TP53 wild-type (24%; average 63 years). Twenty-five of 33 squamous cell carcinomas (76%; average 65 years) showed 32 different somatic TP53 mutations (23 missense mutations in exons 5-8, 6 nonsense, 1 frameshift and 2 splice-site mutations). Several hotspot mutations were detected multiple times (R175H, R248, R282, and R273). Eighteen of 19 squamous cell carcinomas with TP53 expression in immunohistochemistry had TP53 mutations. Fifty percent of TP53-negative squamous cell carcinomas showed mostly truncating loss-of-function TP53 mutations. Patients without mutations had longer survival (5 years: 86% vs 61%; 10 years: 60% vs 22%), but valid clinically relevant conclusions cannot be drawn due to different tumor stages and heterogeneous treatment of the cases presented in this study. Somatic TP53 mutations are a common feature in HPV-negative penile squamous cell carcinomas and offer an explanation for HPV-independent penile carcinogenesis. About half of HPV-negative penile cancers are driven by oncogenic activation of TP53, while a quarter is induced by loss of TP53 tumor suppressor function. Detection of TP53 mutations should be carried out by sequencing, as immunohistochemical TP53 staining could not identify all squamous cell carcinomas with TP53 mutations.
TP53 mutation and survival in aggressive B cell lymphoma.
Zenz, Thorsten; Kreuz, Markus; Fuge, Maxi; Klapper, Wolfram; Horn, Heike; Staiger, Annette M; Winter, Doris; Helfrich, Hanne; Huellein, Jennifer; Hansmann, Martin-Leo; Stein, Harald; Feller, Alfred; Möller, Peter; Schmitz, Norbert; Trümper, Lorenz; Loeffler, Markus; Siebert, Reiner; Rosenwald, Andreas; Ott, German; Pfreundschuh, Michael; Stilgenbauer, Stephan
2017-10-01
TP53 is mutated in 20-25% of aggressive B-cell lymphoma (B-NHL). To date, no studies have addressed the impact of TP53 mutations in prospective clinical trial cohorts. To evaluate the impact of TP53 mutation to current risk models in aggressive B-NHL, we investigated TP53 gene mutations within the RICOVER-60 trial. Of 1,222 elderly patients (aged 61-80 years) enrolled in the study and randomized to six or eight cycles of CHOP-14 with or without Rituximab (NCT00052936), 265 patients were analyzed for TP53 mutations. TP53 mutations were demonstrated in 63 of 265 patients (23.8%). TP53 mutation was associated with higher LDH (65% vs. 37%; p < 0.001), higher international prognostic index-Scores (IPI 4/5 27% vs. 12%; p = 0.025) and B-symptoms (41% vs. 24%; p = 0.011). Patients with TP53 mutation were less likely to obtain a complete remission CR/CRu (CR unconfirmed) 61.9% (mut) vs. 79.7% (wt) (p = 0.007). TP53 mutations were associated with decreased event-free (EFS), progression-free (PFS) and overall survival (OS) (median observation time of 40.2 months): the 3 year EFS, PFS and OS were 42% (vs. 60%; p = 0.012), 42% (vs. 67.5%; p < 0.001) and 50% (vs. 76%; p < 0.001) for the TP53 mutation group. In a Cox proportional hazard analysis adjusting for IPI-factors and treatment arms, TP53 mutation was shown to be an independent predictor of EFS (HR 1.5), PFS (HR 2.0) and OS (HR 2.3; p < 0.001). TP53 mutations are independent predictors of survival in untreated patients with aggressive CD20+ lymphoma. TP53 mutations should be considered for risk models in DLBCL and strategies to improve outcome for patients with mutant TP53 must be developed. © 2017 UICC.
Ooms, Ariadne H A G; Gadd, Samantha; Gerhard, Daniela S; Smith, Malcolm A; Guidry Auvil, Jaime M; Meerzaman, Daoud; Chen, Qing-Rong; Hsu, Chih Hao; Yan, Chunhua; Nguyen, Cu; Hu, Ying; Ma, Yussanne; Zong, Zusheng; Mungall, Andrew J; Moore, Richard A; Marra, Marco A; Huff, Vicki; Dome, Jeffrey S; Chi, Yueh-Yun; Tian, Jing; Geller, James I; Mullighan, Charles G; Ma, Jing; Wheeler, David A; Hampton, Oliver A; Walz, Amy L; van den Heuvel-Eibrink, Marry M; de Krijger, Ronald R; Ross, Nicole; Gastier-Foster, Julie M; Perlman, Elizabeth J
2016-11-15
To investigate the role and significance of TP53 mutation in diffusely anaplastic Wilms tumors (DAWTs). All DAWTs registered on National Wilms Tumor Study-5 (n = 118) with available samples were analyzed for TP53 mutations and copy loss. Integrative genomic analysis was performed on 39 selected DAWTs. Following analysis of a single random sample, 57 DAWTs (48%) demonstrated TP53 mutations, 13 (11%) copy loss without mutation, and 48 (41%) lacked both [defined as TP53-wild-type (wt)]. Patients with stage III/IV TP53-wt DAWTs (but not those with stage I/II disease) had significantly lower relapse and death rates than those with TP53 abnormalities. In-depth analysis of a subset of 39 DAWTs showed seven (18%) to be TP53-wt: These demonstrated gene expression evidence of an active p53 pathway. Retrospective pathology review of TP53-wt DAWT revealed no or very low volume of anaplasia in six of seven tumors. When samples from TP53-wt tumors known to contain anaplasia histologically were available, abnormal p53 protein accumulation was observed by immunohistochemistry. These data support the key role of TP53 loss in the development of anaplasia in WT, and support its significant clinical impact in patients with residual anaplastic tumor following surgery. These data also suggest that most DAWTs will show evidence of TP53 mutation when samples selected for the presence of anaplasia are analyzed. This suggests that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification. Clin Cancer Res; 22(22); 5582-91. ©2016 AACR. ©2016 American Association for Cancer Research.
Ooms, Ariadne H.A.G.; Gadd, Samantha; Gerhard, Daniela S.; Smith, Malcolm A.; Guidry Auvil, Jaime M.; Meerzaman, Daoud; Chen, Qing-Rong; Hsu, Chih Hao; Yan, Chunhua; Nguyen, Cu; Hu, Ying; Ma, Yussanne; Zong, Zusheng; Mungall, Andrew J.; Moore, Richard A.; Marra, Marco A.; Huff, Vicki; Dome, Jeffrey S.; Chi, Yueh-Yun; Tian, Jing; Geller, James I.; Mullighan, Charles G.; Ma, Jing; Wheeler, David A.; Hampton, Oliver A.; Walz, Amy L.; van den Heuvel-Eibrink, Marry M.; de Krijger, Ronald R.; Ross, Nicole; Gastier-Foster, Julie M.; Perlman, Elizabeth J.
2016-01-01
Purpose To investigate the role and significance of TP53 mutation in diffusely anaplastic Wilms tumor (DAWT). Experimental Design All DAWTs registered on National Wilms Tumor Study-5 (n=118) with available samples were analyzed for TP53 mutations and copy loss. Integrative genomic analysis was performed on 39 selected DAWTs. Results Following analysis of a single random sample, 57 DAWT (48%) demonstrated TP53 mutations, 13(11%) copy loss without mutation, and 48(41%) lacked both (defined as TP53-wildtype (wt)). Patients with Stage III/IV TP53-wt DAWTs (but not those with Stage I/II disease) had significantly lower relapse and death rates than those with TP53 abnormalities. In-depth analysis of a subset of 39 DAWT showed 7(18%) to be TP53-wt: these demonstrated gene expression evidence of an active p53 pathway. Retrospective pathology review of TP53-wt DAWT revealed no or very low volume of anaplasia in 6/7 tumors. When samples from TP53-wt tumors known to contain anaplasia histologically were available, abnormal p53 protein accumulation was observed by immunohistochemistry. Conclusion These data support the key role of TP53 loss in the development of anaplasia in WT, and support its significant clinical impact in patients with residual anaplastic tumor following surgery. These data also suggest that most DAWTs will show evidence of TP53 mutation when samples selected for the presence of anaplasia are analyzed. This suggests that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification. PMID:27702824
McDade, Simon S.; Patel, Daksha; Moran, Michael; Campbell, James; Fenwick, Kerry; Kozarewa, Iwanka; Orr, Nicholas J.; Lord, Christopher J.; Ashworth, Alan A.; McCance, Dennis J.
2014-01-01
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair. PMID:24823795
Nuclear TP53: An unraveled function as transcriptional repressor of PINK1.
Checler, Frédéric; Goiran, Thomas; Alves da Costa, Cristine
2018-05-11
The tumor suppressor TP53/p53 is a key protein in both neurodegenerative diseases and cancer. Thus, TP53-linked cell death appears exacerbated in several age-related neuropathologies, while TP53 mutation-associated phenotypes indicate a loss of function accounting for approximately half of cancers. Thus, TP53 plays a pivotal role in these phenotypically distinct pathologies, a hypothesis reinforced by recent epidemiological studies suggesting an opposite risk to develop one type of pathology relative to the other. Dysfunctions in mitophagic processes also occur in both types of pathologies and again, TP53 has been proposed as one of the regulators of this cellular process. The consensus view postulates that TP53 exerts both anti- and pro-autophagy functions that are directly driven by a specific subcellular localization. Thus, TP53 positively modulates autophagy via the transcriptional control of several genes while it is acknowledged that its anti-autophagy phenotype is exclusively linked to a transcription-independent cytosolic control of an AMPK-MTOR cascade. Our study indicates that TP53 can also downregulate the specialized autophagy-related mitophagy response via the transcriptional repression of PINK1. This is the first demonstration of an anti-mitophagic control by nuclear TP53.
Na, Kiyong; Sung, Ji-Youn; Kim, Hyun-Soo
2017-12-01
Diffuse and strong nuclear p53 immunoreactivity and a complete lack of p53 expression are regarded as indicative of missense and nonsense mutations, respectively, of the TP53 gene. Tubo-ovarian and peritoneal high-grade serous carcinoma (HGSC) is characterized by aberrant p53 expression induced by a TP53 mutation. However, our experience with some HGSC cases with a wild-type p53 immunostaining pattern led us to comprehensively review previous cases and investigate the TP53 mutational status of the exceptional cases. We analyzed the immunophenotype of 153 cases of HGSC and performed TP53 gene sequencing analysis in those with a wild-type p53 immunostaining pattern. Immunostaining revealed that 109 (71.3%) cases displayed diffuse and strong p53 expression (missense mutation pattern), while 39 (25.5%) had no p53 expression (nonsense mutation pattern). The remaining five cases of HGSC showed a wild-type p53 immunostaining pattern. Direct sequencing analysis revealed that three of these cases harbored nonsense TP53 mutations and two had novel splice site deletions. TP53 mutation is almost invariably present in HGSC, and p53 immunostaining can be used as a surrogate marker of TP53 mutation. In cases with a wild-type p53 immunostaining pattern, direct sequencing for TP53 mutational status can be helpful to confirm the presence of a TP53 mutation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri
2014-12-24
TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
Characterizing genomic differences of human cancer stratified by the TP53 mutation status.
Wang, Mengyao; Yang, Chao; Zhang, Xiuqing; Li, Xiangchun
2018-06-01
The key roles of the TP53 mutation in cancer have been well established. TP53 is the most frequently mutated gene, and its inactivation is widespread among human cancer types. However, the landscape of genomic alterations in human cancers stratified by the TP53 mutation has not yet been described. We obtained somatic mutation and copy number change data of 6551 regular-mutated samples from the Cancer Genome Atlas (TCGA) and compared significantly mutated genes (SMGs), copy number alterations, mutational signatures and mutational strand asymmetries between cancer samples with and without the TP53 mutation. We identified 126 SMGs, 30 of which were statistically significant in both the TP53 mutant and wild-type groups. Several SMGs, such as VHL, SMAD4 and PTEN, showed a mutation bias towards the TP53 wild-type group, whereas ATRX, IDH1 and RB1 were more prevalent in the TP53 mutant group. Five mutational signatures were extracted from the combined TCGA dataset on which mutational asymmetry analysis was performed, revealing that the TP53 mutant group exhibited substantially greater replication and transcription biases. Furthermore, we found that alterations of multiple genes in a merged mutually exclusive network composed of BRAF, EGFR, PAK1, PIK3CA, PTEN, APC and TERT were related to shortened survival in the TP53 wild-type group. In summary, we characterized the genomic differences and similarities underlying human cancers stratified by the TP53 mutation and identified multi-gene alterations of a merged mutually exclusive network to be a poor prognostic factor for the TP53 wild-type group.
Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features.
Marques, Diego; Ferreira-Costa, Layse Raynara; Ferreira-Costa, Lorenna Larissa; Correa, Romualdo da Silva; Borges, Aline Maciel Pinheiro; Ito, Fernanda Ribeiro; Ramos, Carlos Cesar de Oliveira; Bortolin, Raul Hernandes; Luchessi, André Ducati; Ribeiro-Dos-Santos, Ândrea; Santos, Sidney; Silbiger, Vivian Nogueira
2017-10-07
To investigate the association between 16 insertion-deletions (INDEL) polymorphisms, colorectal cancer (CRC) risk and clinical features in an admixed population. One hundred and forty patients with CRC and 140 cancer-free subjects were examined. Genomic DNA was extracted from peripheral blood samples. Polymorphisms and genomic ancestry distribution were assayed by Multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. Clinicopathological data were obtained by consulting the patients' clinical charts, intra-operative documentation, and pathology scoring. Logistic regression analysis showed that polymorphism variations in IL4 gene was associated with increased CRC risk, while TYMS and UCP2 genes were associated with decreased risk. Reference to anatomical localization of tumor Del allele of NFKB1 and CASP8 were associated with more colon related incidents than rectosigmoid. In relation to the INDEL association with tumor node metastasis (TNM) stage risk, the Ins alleles of ACE , HLAG and TP53 (6 bp INDEL) were associated with higher TNM stage. Furthermore, regarding INDEL association with relapse risk, the Ins alleles of ACE , HLAG , and UGT1A1 were associated with early relapse risk, as well as the Del allele of TYMS . Regarding INDEL association with death risk before 10 years, the Ins allele of SGSM3 and UGT1A1 were associated with death risk. The INDEL variations in ACE , UCP2 , TYMS , IL4 , NFKB1 , CASP8 , TP53 , HLAG , UGT1A1 , and SGSM3 were associated with CRC risk and clinical features in an admixed population. These data suggest that this cancer panel might be useful as a complementary tool for better clinical management, and more studies need to be conducted to confirm these findings.
Xu, Yinfeng; Wan, Wei; Shou, Xin; Huang, Rui; You, Zhiyuan; Shou, Yanhong; Wang, Lingling; Zhou, Tianhua; Liu, Wei
2016-07-02
Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.
Qian, Maoxiang; Cao, Xueyuan; Devidas, Meenakshi; Yang, Wenjian; Cheng, Cheng; Dai, Yunfeng; Carroll, Andrew; Heerema, Nyla A.; Zhang, Hui; Moriyama, Takaya; Gastier-Foster, Julie M.; Xu, Heng; Raetz, Elizabeth; Larsen, Eric; Winick, Naomi; Bowman, W. Paul; Martin, Paul L.; Mardis, Elaine R.; Fulton, Robert; Zambetti, Gerard; Borowitz, Michael; Wood, Brent; Nichols, Kim E.; Carroll, William L.; Pui, Ching-Hon; Mullighan, Charles G.; Evans, William E.; Hunger, Stephen P.; Relling, Mary V.; Loh, Mignon L.
2018-01-01
Purpose Germline TP53 variation is the genetic basis of Li-Fraumeni syndrome, a highly penetrant cancer predisposition condition. Recent reports of germline TP53 variants in childhood hypodiploid acute lymphoblastic leukemia (ALL) suggest that this type of leukemia is another manifestation of Li-Fraumeni syndrome; however, the pattern, prevalence, and clinical relevance of TP53 variants in childhood ALL remain unknown. Patients and Methods Targeted sequencing of TP53 coding regions was performed in 3,801 children from the Children’s Oncology Group frontline ALL clinical trials, AALL0232 and P9900. TP53 variant pathogenicity was evaluated according to experimentally determined transcriptional activity, in silico prediction of damaging effects, and prevalence in non-ALL control populations. TP53 variants were analyzed for their association with ALL presenting features and treatment outcomes. Results We identified 49 unique nonsilent rare TP53 coding variants in 77 (2.0%) of 3,801 patients sequenced, of which 22 variants were classified as pathogenic. TP53 pathogenic variants were significantly over-represented in ALL compared with non-ALL controls (odds ratio, 5.2; P < .001). Children with TP53 pathogenic variants were significantly older at ALL diagnosis (median age, 15.5 years v 7.3 years; P < .001) and were more likely to have hypodiploid ALL (65.4% v 1.2%; P < .001). Carrying germline TP53 pathogenic variants was associated with inferior event-free survival and overall survival (hazard ratio, 4.2 and 3.9; P < .001 and .001, respectively). In particular, children with TP53 pathogenic variants were at a dramatically higher risk of second cancers than those without pathogenic variants, with 5-year cumulative incidence of 25.1% and 0.7% (P < .001), respectively. Conclusion Loss-of-function germline TP53 variants predispose children to ALL and to adverse treatment outcomes with ALL therapy, particularly the risk of second malignant neoplasms. PMID:29300620
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status.
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H; Künkele, Annette
2017-04-25
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E.; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H.; Künkele, Annette
2017-01-01
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40–70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma. PMID:28427187
Bertheau, Philippe; Turpin, Elisabeth; Rickman, David S; Espié, Marc; de Reyniès, Aurélien; Feugeas, Jean-Paul; Plassa, Louis-François; Soliman, Hany; Varna, Mariana; de Roquancourt, Anne; Lehmann-Che, Jacqueline; Beuzard, Yves; Marty, Michel; Misset, Jean-Louis; Janin, Anne; de Thé, Hugues
2007-03-01
In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m(2) epirubicin and 1,200 mg/m(2) cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status. This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin-cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features.
The UMD-p53 database: new mutations and analysis tools.
Béroud, Christophe; Soussi, Thierry
2003-03-01
The tumor suppressor gene TP53 (p53) is the most extensively studied gene involved in human cancers. More than 1,400 publications have reported mutations of this gene in 150 cancer types for a total of 14,971 mutations. To exploit this huge bulk of data, specific analytic tools were highly warranted. We therefore developed a locus-specific database software called UMD-p53. This database compiles all somatic and germline mutations as well as polymorphisms of the TP53 gene which have been reported in the published literature since 1989, or unpublished data submitted to the database curators. The database is available at www.umd.necker.fr or at http://p53.curie.fr/. In this paper, we describe recent developments of the UMD-p53 database. These developments include new fields and routines. For example, the analysis of putative acceptor or donor splice sites is now automated and gives new insight for the causal role of "silent mutations." Other routines have also been created such as the prescreening module, the UV module, and the cancer distribution module. These new improvements will help users not only for molecular epidemiology and pharmacogenetic studies but also for patient-based studies. To achieve theses purposes we have designed a procedure to check and validate data in order to reach the highest quality data. Copyright 2003 Wiley-Liss, Inc.
Terada, Kazuki; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kobayashi, Yutaka; Tajika, Kenji; Gomi, Seiji; Kurosawa, Saiko; Miyadera, Keiki; Tokura, Taichiro; Omori, Ikuko; Marumo, Atushi; Fujiwara, Yusuke; Yui, Shunsuke; Ryotokuji, Takeshi; Osaki, Yoshiki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Wakita, Satoshi; Tamai, Hayato; Fukuda, Takahiro; Inokuchi, Koiti
2018-01-01
TP53 gene abnormality has been reported to be an unfavorable prognostic factor in acute myeloid leukemia (AML). However, almost all studies of TP53 gene abnormality so far have been limited to mutation searches in the DNA binding domain. As there have been few reports examining both mutation and deletion over the full-length of the TP53 gene, the clinical characteristics of TP53 gene abnormality have not yet been clearly established. In this study, TP53 gene mutation was observed in 7.3% of the total 412 de novo AML cases (33 mutations in 30 cases), with mutation outside the DNA binding domain in eight cases (27%). TP53 gene deletion was observed in 3.1% of 358 cases. All cases had monoallelic deletion with TP53 gene mutation on the opposite allele. Multivariate analysis demonstrated that TP53 gene mutation in the DNA binding domain and outside the DNA binding domain was an independent poor prognostic factor for overall survival and relapse-free survival among the total cohort and it is also an unfavorable prognostic factor in FLT3-ITD-negative AML cases aged 70 years or below with intermediate cytogenetic prognosis. In stratified treatment, full-length search for TP53 gene mutation is therefore very important.
2009-01-01
Background This study evaluates the existence of numerical alterations of chromosome 17 and TP53 gene deletion in gastric adenocarcinoma. The p53 protein expression was also evaluated, as well as, possible associations with clinicopathological characteristics. Methods Dual-color fluorescence in situ hybridization and immunostaining were performed in twenty gastric cancer samples of individuals from Northern Brazil. Results Deletion of TP53 was found in all samples. TP53 was inactivated mainly by single allelic deletion, varying to 7–39% of cells/case. Aneusomy of chromosome 17 was observed in 85% of cases. Chromosome 17 monosomy and gain were both observed in about half of cases. Cells with gain of chromosome 17 frequently presented TP53 deletion. The frequency of cells with two chr17 and one TP53 signals observed was higher in diffuse than in intestinal-type GC. Immunoreactivity of p53 was found only in intestinal-type samples. The frequency of cells with two chr17 and two TP53 signals found was higher in samples with positive p53 expression than in negative cases in intestinal-type GC. Conclusion We suggest that TP53 deletion and chromosome 17 aneusomy is a common event in GC and other TP53 alterations, as mutation, may be implicated in the distinct carcinogenesis process of diffuse and intestinal types. PMID:19619279
Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma.
Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne-Marie; Brenton, James D
2016-10-01
TP53 mutations are ubiquitous in high-grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low-grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged-amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain-of-function (GOF or nonsynonymous), loss-of-function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low-grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%.
Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma
Köbel, Martin; Piskorz, Anna M; Lee, Sandra; Lui, Shuhong; LePage, Cecile; Marass, Francesco; Rosenfeld, Nitzan; Mes Masson, Anne‐Marie
2016-01-01
Abstract TP53 mutations are ubiquitous in high‐grade serous ovarian carcinomas (HGSOC), and the presence of TP53 mutation discriminates between high and low‐grade serous carcinomas and is now an important biomarker for clinical trials targeting mutant p53. p53 immunohistochemistry (IHC) is widely used as a surrogate for TP53 mutation but its accuracy has not been established. The objective of this study was to test whether improved methods for p53 IHC could reliably predict TP53 mutations independently identified by next generation sequencing (NGS). Four clinical p53 IHC assays and tagged‐amplicon NGS for TP53 were performed on 171 HGSOC and 80 endometrioid carcinomas (EC). p53 expression was scored as overexpression (OE), complete absence (CA), cytoplasmic (CY) or wild type (WT). p53 IHC was evaluated as a binary classifier where any abnormal staining predicted deleterious TP53 mutation and as a ternary classifier where OE, CA or WT staining predicted gain‐of‐function (GOF or nonsynonymous), loss‐of‐function (LOF including stopgain, indel, splicing) or no detectable TP53 mutations (NDM), respectively. Deleterious TP53 mutations were detected in 169/171 (99%) HGSOC and 7/80 (8.8%) EC. The overall accuracy for the best performing IHC assay for binary and ternary prediction was 0.94 and 0.91 respectively, which improved to 0.97 (sensitivity 0.96, specificity 1.00) and 0.95 after secondary analysis of discordant cases. The sensitivity for predicting LOF mutations was lower at 0.76 because p53 IHC detected mutant p53 protein in 13 HGSOC with LOF mutations. CY staining associated with LOF was seen in 4 (2.3%) of HGSOC. Optimized p53 IHC can approach 100% specificity for the presence of TP53 mutation and its high negative predictive value is clinically useful as it can exclude the possibility of a low‐grade serous tumour. 4.1% of HGSOC cases have detectable WT staining while harboring a TP53 LOF mutation, which limits sensitivity for binary prediction of mutation to 96%. PMID:27840695
Kashofer, Karl; Regauer, Sigrid
2017-08-01
This study evaluates the frequency and type of TP53 gene mutations and HPV status in 72 consecutively diagnosed primary invasive vulvar squamous cell carcinomas (SCC) during the past 5years. DNA of formalin-fixed and paraffin embedded tumour tissue was analysed for 32 HPV subtypes and the full coding sequence of the TP53 gene, and correlated with results of p53 immunohistochemistry. 13/72 (18%) cancers were HPV-induced squamous cell carcinomas, of which 1/13 (8%) carcinoma harboured a somatic TP53 mutation. Among the 59/72 (82%) HPV-negative cancers, 59/72 (82%) SCC were HPV-negative with wild-type gene in 14/59 (24%) SCC and somatic TP53 mutations in 45/59 (76%) SCC. 28/45 (62%) SCC carried one (n=20) or two (n=8) missense mutations. 11/45 (24%) carcinomas showed a single disruptive mutation (3× frame shift, 7× stop codon, 1× deletion), 3/45 SCC a splice site mutation. 3/45 (7%) carcinomas had 2 or 3 different mutations. 18 different "hot spot" mutations were observed in 22/45 cancers (49%; 5× R273, 3× R282; 2× each Y220, R278, R248). Immunohistochemical p53 over expression was identified in most SCC with missense mutations, but not in SCC with disruptive TP53 mutations or TP53 wild-type. 14/45 (31%) patients with TP53 mutated SCC died of disease within 12months (range 2-24months) versus 0/13 patients with HPV-induced carcinomas and 0/14 patients with HPV-negative, TP53 wild-type carcinomas. 80% of primary invasive vulvar SCC were HPV-negative carcinomas with a high frequency of disruptive mutations and "hot spot" TP53 gene mutations, which have been linked to chemo- and radioresistance. The death rate of patients with p53 mutated vulvar cancers was 31%. Immunohistochemical p53 over expression could not reliably identify SCC with TP53 gene mutation. Pharmacological therapies targeting mutant p53 will be promising strategies for personalized therapy in patients with TP53 mutated vulvar cancers. Copyright © 2017. Published by Elsevier Inc.
Kubesova, B; Pavlova, S; Malcikova, J; Kabathova, J; Radova, L; Tom, N; Tichy, B; Plevova, K; Kantorova, B; Fiedorova, K; Slavikova, M; Bystry, V; Kissova, J; Gisslinger, B; Gisslinger, H; Penka, M; Mayer, J; Kralovics, R; Pospisilova, S; Doubek, M
2018-01-01
The multistep process of TP53 mutation expansion during myeloproliferative neoplasm (MPN) transformation into acute myeloid leukemia (AML) has been documented retrospectively. It is currently unknown how common TP53 mutations with low variant allele frequency (VAF) are, whether they are linked to hydroxyurea (HU) cytoreduction, and what disease progression risk they carry. Using ultra-deep next-generation sequencing, we examined 254 MPN patients treated with HU, interferon alpha-2a or anagrelide and 85 untreated patients. We found TP53 mutations in 50 cases (0.2–16.3% VAF), regardless of disease subtype, driver gene status and cytoreduction. Both therapy and TP53 mutations were strongly associated with older age. Over-time analysis showed that the mutations may be undetectable at diagnosis and slowly increase during disease course. Although three patients with TP53 mutations progressed to TP53-mutated or TP53-wild-type AML, we did not observe a significant age-independent impact on overall survival during the follow-up. Further, we showed that complete p53 inactivation alone led to neither blast transformation nor HU resistance. Altogether, we revealed patient's age as the strongest factor affecting low-burden TP53 mutation incidence in MPN and found no significant age-independent association between TP53 mutations and hydroxyurea. Mutations may persist at low levels for years without an immediate risk of progression. PMID:28744014
Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie
2012-07-01
Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.
Analysis of TP53 codon 72 polymorphism in HPV-positive and HPV-negative penile carcinoma.
Tornesello, Maria Lina; Duraturo, Maria Luisa; Guida, Valentina; Losito, Simona; Botti, Gerardo; Pilotti, Silvana; Stefanon, Bernardina; De Palo, Giuseppe; Buonaguro, Luigi; Buonaguro, Franco M
2008-09-28
The association of the p53 polymorphism at codon 72 and susceptibility to develop human papillomavirus (HPV)-related cancer has been investigated in several studies with controversial results. In this study, 78 penile squamous cell carcinoma biopsies (n=17 from Uganda, n=61 from Italy) and blood samples from 150 healthy controls (n=57 from Uganda, n=93 from Italy) have been analyzed for the arginine and proline allele distribution. Among Ugandan cases the heterozygous, proline homozygous and arginine homozygous genotype frequency was 41.2%, 52.9% and 5.9%, respectively, and among controls was 40.3%, 54.4%, and 5.3%, respectively (P=0.9917). Conversely, among Italian cases genotype distribution was 42.6%, 4.9%, and 52.5%, and among controls was 34.4%, 7.5%, and 58.1%, respectively (P=0.5343). No significant differences in arginine and proline allele distribution were observed when the cases were stratified by HPV status. Therefore, no evidence of association between homozygosity for p53 arginine and HPV-related or HPV-unrelated penile squamous cell carcinoma was observed neither among Ugandan nor among Italian populations.
Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang
2018-02-23
The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.
Espié, Marc; de Reyniès, Aurélien; Feugeas, Jean-Paul; Plassa, Louis-François; Soliman, Hany; Varna, Mariana; de Roquancourt, Anne; Lehmann-Che, Jacqueline; Beuzard, Yves; Marty, Michel; Misset, Jean-Louis; Janin, Anne; de Thé, Hugues
2007-01-01
Background In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. Methods and Findings In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m2 epirubicin and 1,200 mg/m2 cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status. Conclusions This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin–cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features. PMID:17388661
Sulak, Michael; Fong, Lindsey; Mika, Katelyn; Chigurupati, Sravanthi; Yon, Lisa; Mongan, Nigel P; Emes, Richard D; Lynch, Vincent J
2016-01-01
A major constraint on the evolution of large body sizes in animals is an increased risk of developing cancer. There is no correlation, however, between body size and cancer risk. This lack of correlation is often referred to as 'Peto's Paradox'. Here, we show that the elephant genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy number occurred coincident with the evolution of large body sizes, the evolution of extreme sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant (Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are transcribed and likely translated. While TP53RTGs do not appear to directly function as transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These results suggest that an increase in the copy number of TP53 may have played a direct role in the evolution of very large body sizes and the resolution of Peto's paradox in Proboscideans. DOI: http://dx.doi.org/10.7554/eLife.11994.001 PMID:27642012
Sarkar, Jayanta; Dominguez, Emily; Li, Guojun; Kusewitt, Donna F; Johnson, David G
2014-08-01
A large number of epidemiological studies have linked a common single-nucleotide polymorphism (SNP) in the human p53 gene to risk for developing a variety of cancers. This SNP encodes either an arginine or proline at position 72 (R72P) of the p53 protein, which can alter the apoptotic activity of p53 via transcriptional and non-transcriptional mechanisms. This SNP has also been reported to modulate the development of human papilloma virus (HPV)-driven cancers through differential targeting of the p53 variant proteins by the E6 viral oncoprotein. Mouse models for the p53 R72P polymorphism have recently been developed but a role for this SNP in modifying cancer risk in response to viral and chemical carcinogens has yet to be established experimentally. Here, we demonstrate that the p53 R72P polymorphism modulates the hyperprolferative, apoptotic and inflammatory phenotypes caused by expression of the HPV16 E6 and E7 oncoproteins. Moreover, the R72P SNP also modifies the carcinogenic response to the chemical carcinogen 4NQO, in the presence and absence of the HPV16 transgene. Our findings confirm several human epidemiological studies associating the codon 72 proline variant with increased risk for certain cancers but also suggest that there are tissue-specific differences in how the R72P polymorphism influences the response to environmental carcinogens. © 2013 Wiley Periodicals, Inc.
TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth
Haricharan, Svasti; Brown, Powel
2015-01-01
Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30–50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types. PMID:26063617
TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.
Haricharan, Svasti; Brown, Powel
2015-06-23
Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.
Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A; Lamark, Trond; Macias, Maria J; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio
2012-01-01
Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28-42; region 2, 66-112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription.
Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A.; Lamark, Trond; Macias, Maria J.; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U.; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio
2012-01-01
Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28–42; region 2, 66–112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription. PMID:22470510
Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C.; Vera, Santiago R.; Fish-Trotter, Hannah; Williams, Robert W.; Childress, Richard D.
2017-01-01
Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia. PMID:28771594
Elam, Marshall B; Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C; Vera, Santiago R; Fish-Trotter, Hannah; Williams, Robert W; Childress, Richard D; Raghow, Rajendra
2017-01-01
Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja
Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leadingmore » to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.« less
"Off-on" electrochemical hairpin-DNA-based genosensor for cancer diagnostics.
Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt; Ferapontova, Elena E
2011-03-01
A simple and robust "off-on" signaling genosensor platform with improved selectivity for single-nucleotide polymorphism (SNP) detection based on the electronic DNA hairpin molecular beacons has been developed. The DNA beacons were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 3'-end, while the 5'-end was labeled with a methylene blue (MB) redox probe. A typical "on-off" change of the electrochemical signal was observed upon hybridization of the 27-33 nucleotide (nt) long hairpin DNA to the target DNA, in agreement with all the hitherto published data. Truncation of the DNA hairpin beacons down to 20 nts provided improved genosensor selectivity for SNP and allowed switching of the electrochemical genosensor response from the on-off to the off-on mode. Switching was consistent with the variation in the mechanism of the electron transfer reaction between the electrode and the MB redox label, for the folded beacon being characteristic of the electrochemistry of adsorbed species, while for the "open" duplex structure being formally controlled by the diffusion of the redox label within the adsorbate layer. The relative current intensities of both processes were governed by the length of the formed DNA duplex, potential scan rate, and apparent diffusion coefficient of the redox species. The off-on genosensor design used for detection of a cancer biomarker TP53 gene sequence favored discrimination between the healthy and SNP-containing DNA sequences, which was particularly pronounced at short hybridization times.
Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer
Diaz-Lagares, Angel; Crujeiras, Ana B.; Lopez-Serra, Paula; Soler, Marta; Setien, Fernando; Goyal, Ashish; Sandoval, Juan; Hashimoto, Yutaka; Martinez-Cardús, Anna; Gomez, Antonio; Heyn, Holger; Moutinho, Catia; Espada, Jesús; Vidal, August; Paúles, Maria; Galán, Maica; Sala, Núria; Akiyama, Yoshimitsu; Martínez-Iniesta, María; Farré, Lourdes; Villanueva, Alberto; Gross, Matthias; Diederichs, Sven; Guil, Sonia; Esteller, Manel
2016-01-01
Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell. PMID:27821766
NASA Astrophysics Data System (ADS)
Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.
2014-04-01
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53-/- mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53-/- mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Munne, Pauliina M; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G
2014-04-11
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53(-/-) mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53(-/-) mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Moore, Stephen R; Ritter, Linda E; Gibbons, Catherine F; Grosovsky, Andrew J
2005-10-01
Structural chromosomal rearrangements are commonly observed in tumor karyotypes and in radiation-induced genomic instability. Here we report the effects of TP53 deficiency on karyotypic stability before and after irradiation using related cells and clones differing in cellular TP53 status. The parental cell line, TK6, is a TP53 wild-type human B-lymphoblastoid line with a highly stable karyotype. In the two TK6 derivatives used here, TP53 has been inactivated by biochemical means (expression of HPV16 E6; TK6-5E) or genetic means (allelic inactivation; NH32). Biochemical inactivation of TP53 (TK6-5E) had little effect on the spontaneous karyotype, whereas allelic inactivation of TP53 (NH32) resulted in a modest increase in spontaneous karyotypic instability. After 2 Gy gamma irradiation, the number of unstable clones derived from TP53-deficient cells was significantly elevated compared to the TP53 wild-type counterpart. Extensively destabilized clones were common after irradiation in the set of clones derived from NH32 cells, and one was observed in the set of TK6-5E clones; however, they were never observed in TK6-derived clones. In two of the irradiated NH32 clones, whole chromosomes or chromosome bands were preferentially involved in alterations. These results suggest that genomic instability may differ both quantitatively and qualitatively as a consequence of altered TP53 expression. Some of the results showing repeated and preferential chromosome involvement in aberrations support a model in which instability may be driven by cis mechanisms.
Constant p53 Pathway Inactivation in a Large Series of Soft Tissue Sarcomas with Complex Genetics
Pérot, Gaëlle; Chibon, Frédéric; Montero, Audrey; Lagarde, Pauline; de Thé, Hugues; Terrier, Philippe; Guillou, Louis; Ranchère, Dominique; Coindre, Jean-Michel; Aurias, Alain
2010-01-01
Alterations of the p53 pathway are among the most frequent aberrations observed in human cancers. We have performed an exhaustive analysis of TP53, p14, p15, and p16 status in a large series of 143 soft tissue sarcomas, rare tumors accounting for around 1% of all adult cancers, with complex genetics. For this purpose, we performed genomic studies, combining sequencing, copy number assessment, and expression analyses. TP53 mutations and deletions are more frequent in leiomyosarcomas than in undifferentiated pleomorphic sarcomas. Moreover, 50% of leiomyosarcomas present TP53 biallelic inactivation, whereas most undifferentiated pleomorphic sarcomas retain one wild-type TP53 allele (87.2%). The spectrum of mutations between these two groups of sarcomas is different, particularly with a higher rate of complex mutations in undifferentiated pleomorphic sarcomas. Most tumors without TP53 alteration exhibit a deletion of p14 and/or lack of mRNA expression, suggesting that p14 loss could be an alternative genotype for direct TP53 inactivation. Nevertheless, the fact that even in tumors altered for TP53, we could not detect p14 protein suggests that other p14 functions, independent of p53, could be implicated in sarcoma oncogenesis. In addition, both p15 and p16 are frequently codeleted or transcriptionally co-inhibited with p14, essentially in tumors with two wild-type TP53 alleles. Conversely, in TP53-altered tumors, p15 and p16 are well expressed, a feature not incompatible with an oncogenic process. PMID:20884963
Xiao, Helen H; Makeyev, Yan; Butler, James; Vikram, Bhadrasain; Franklin, William A
2002-07-01
Mutations in TP53 occur in more than 50% of the lung cancer patients and are associated with an increased resistance to chemotherapy and radiotherapy. The human lung adenocarcinoma cell lines A549 and LXSN contain a wild-type TP53 and were growth arrested at both the G(1)- and G(2)-phase checkpoints after irradiation. However, a TP53-disrupted cell line, E6, was arrested only at the G(2)-phase checkpoint. UCN-01 (7-hydroxystaurosporine), a CHEK1 inhibitor that abrogates the G(2) block, has been reported to enhance radiation toxicity in human lymphoma and colon cancer cell lines. In this study, UCN-01 preferentially enhanced the radiosensitivity of the TP53-disrupted E6 cells compared to the TP53 wild-type cells. This effect was more pronounced in cells synchronized in early G(1) phase, where the E6 cells showed a higher resistance to radiation in the absence of drug. These results indicate that the combination of UCN-01 and radiation can more specifically target resistant TP53 mutated cancer cells and spare TP53 wild-type normal cells.
Wegert, Jenny; Vokuhl, Christian; Ziegler, Barbara; Ernestus, Karen; Leuschner, Ivo; Furtwängler, Rhoikos; Graf, Norbert; Gessler, Manfred
2017-10-01
TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non-fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87%), but this rate dropped to 26% for stages II-IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non-anaplastic fatal tumours, 26% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non-anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high-risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease.
Wegert, Jenny; Vokuhl, Christian; Ziegler, Barbara; Ernestus, Karen; Leuschner, Ivo; Furtwängler, Rhoikos; Graf, Norbert
2017-01-01
Abstract TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non‐fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87%), but this rate dropped to 26% for stages II–IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non‐anaplastic fatal tumours, 26% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non‐anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high‐risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease. PMID:29085664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rycyna, R.E.; Wallace, J.C.; Sharma, M.
Acetone-photosensitized UV irradiation of three thymine oligomers, d(TpT), d(TpTpT), and d(TpTpTpT), forms predominantly cis-syn cyclobutyl photodimers. C-18 reverse-phase high-performance liquid chromatography is used to purify the following positional isomers: d(TpT(p)T), d(T(p)TpT), d-(TpTpT(p)T), d(TpT(p)TpT), d(T(p)TpTpT), and d(T(p)TpT(p)T), where T(p)T represents the cis-syn photodimer. Conformational properties of the cis-syn dimers and adjacent thymine nucleotides have been investigated in solution by using /sup 1/H, /sup 13/C, and /sup 31/P NMR spectroscopy. These studies show that (1) the photodimer conformation in longer oligothymidylates is similar to that in the dinucleoside monophosphate and (2) the cis-syn dimer induces alterations to a greater degree on themore » 5' side than on the 3' side of the photodimer. Specifically, the photodimer distorts the exocyclic bonds epsilon (C3'-O3') in Tp- and ..gamma..(C5'-C4') in -pT(p)- on the 5' side and slightly alters the furanose equilibrium of the -pT nucleotide on the 3' side of the dimer.« less
Li, X L; Deng, Q F; Zhang, X; Wang, T; Chen, Z W; Bai, Y S; Wang, S H; Wu, T C; Guo, H
2016-10-06
Objective: To investigate the association and interaction of heat shock proteins B1(HSPB1)gene rs2868371 and tumor-suppressor protein p53(TP53)gene rs1042522 polymorphisms with chromosome damage levels among coke oven workers. Methods: We recruited 1 333 male workers from a state-run coke oven plant in Wuhan in September-October 2010. Among them, 949 who had worked in coke oven workplaces, including auxiliary facilities and bottom, side, and top ovens, were nominated as coke oven workers(i.e., exposed), and 384 administrative or medical staff whose workplaces were offices were used as controls. General characteristics and 5 ml of venous blood were collected from each participant. The plasma concentrations of benzo[a]pyrene-diolepoxide(BPDE)-albumin adducts and the lymphocytic micronucleus(MN)frequencies for each individual were detected by ELISA and cytokinesis-block micronucleus assay, respectively. Gene polymorphisms were genotyped using TaqMan assays via quantitative PCR(ABI Prism 7900HT), and the corresponding frequency ratios( FR )with 95% confidence intervals( CI )were computed for all assays. Results: In the exposed group, the MN frequencies were higher in HSPB1 rs2868371 GC, CC, and GC+ CC genotype carriers((3.88 ± 2.88)‰,(4.00 ± 2.66)‰, and(3.91 ± 2.83)‰, respectively)than in rs2868371 GG genotype carriers((3.52±2.67)‰; FR =1.10, 1.13, and 1.11; 95% CI : 1.02-1.19, 1.02-1.25, and 1.03-1.19, respectively), and the HSPB1 rs2868371C allele was associated with increased MN frequency( P trend =0.006). Further, in the exposed group, the MN frequencies were lower in TP53 rs1042522 CG and CG+GG genotype carriers((3.63±2.61)‰ and(3.66±2.61)‰, respectively)than in TP53 rs1042522 CC genotype carriers(3.95±3.06)‰( FR =0.87 and 0.90; 95% CI : 0.83-0.96 and 0.84-0.97, respectively). The effect of gene-gene interaction between HSPB1, rs2868371, and TP53 rs1042522 on MN frequency was significant among coke oven workers( P= 0.001). Further stratified analyses showed that the effects of the HSPB1 rs2868371C allele in increasing MN frequencies were robust in subjects aged >40 years( FR =1.07, 95% CI : 1.01-1.12), those working >20 years( FR =1.08, 95% CI : 1.02-1.14), those with BMI ≤24 kg/m 2 ( FR =1.07, 95% CI : 1.01-1.13), drinkers( FR =1.09, 95% CI : 1.02-1.16), and workers with higher BPDE-albumin adduct levels( FR =1.07, 95% CI : 1.01-1.13)( P trend =0.023, 0.013, 0.029, and 0.020, respectively). The decreasing effect of the TP53 rs1042522 G allele on MN frequencies was robust in subjects aged >40 years( FR =0.94, 95% CI : 0.89-0.99), those with BMI ≤24 kg/m 2 ( FR =0.94, 95% CI : 0.88-0.99), and drinkers( FR =0.94, 95% CI : 0.88-1.00)( P trend =0.031, 0.023, and 0.038, respectively). In addition, there were interactions between HSPB1 rs2868371 and age and between HSPB1 rs2868371 and working years in terms of MN frequency( P= 0.030 and 0.013, respectively). Conclusion: In coke oven workers, the HSPB1 rs2868371 C and TP53 rs1042522 G alleles were associated with increased and decreased chromosome damage levels, respectively, and their interaction effect on chromosome damage levels was significant.
Modeling the Etiology of p53-mutated Cancer Cells*
Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.
2016-01-01
p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024
Cheah, Y K; Cheng, R W; Yeap, S K; Khoo, C H; See, H S
2014-03-17
The identification of new biomarkers for early detection of highly recurrent head and neck cancer is urgently needed. MicroRNAs (miRNAs) are small and non-coding RNAs that regulate cancer-related gene expression, such as tumor protein 53 (TP53) gene expression. This study was carried out to analyze TP53 gene expression using real-time PCR and to determine changes in intracellular p53 level by flow cytometry after downregulation of miRNA-181a miRNA inhibitor in the FaDu cell line. TP53 gene expression showed a 3-fold increment and the p53 protein level was also increased in the miRNA-181a-treated cells. In conclusion, miRNA-181a binds to the TP53 gene and inhibits its expression, decreasing the synthesis of p53.
Chagtai, Tasnim; Popov, Sergey D.; Sebire, Neil J.; Vujanic, Gordan; Perlman, Elizabeth; Anderson, James R.; Grundy, Paul; Dome, Jeffrey S.; Pritchard-Jones, Kathy
2014-01-01
Purpose The presence of diffuse anaplasia in Wilms tumours (DAWT) is associated with TP53 mutations and poor outcome. As patients receive intensified treatment, we sought to identify whether TP53 mutational status confers additional prognostic information. Patients and Methods We studied 40 patients with DAWT with anaplasia in the tissue from which DNA was extracted and analysed for TP53 mutations and 17p loss. The majority of cases were profiled by copy number (n = 32) and gene expression (n = 36) arrays. TP53 mutational status was correlated with patient event-free and overall survival, genomic copy number instability and gene expression profiling. Results From the 40 cases, 22 (55%) had TP53 mutations (2 detected only after deep-sequencing), 20 of which also had 17p loss (91%); 18 (45%) cases had no detectable mutation but three had 17p loss. Tumours with TP53 mutations and/or 17p loss (n = 25) had an increased risk of recurrence as a first event (p = 0.03, hazard ratio (HR), 3.89; 95% confidence interval (CI), 1.26–16.0) and death (p = 0.04, HR, 4.95; 95% CI, 1.36–31.7) compared to tumours lacking TP53 abnormalities. DAWT carrying TP53 mutations showed increased copy number alterations compared to those with wild-type, suggesting a more unstable genome (p = 0.03). These tumours showed deregulation of genes associated with cell cycle and DNA repair biological processes. Conclusion This study provides evidence that TP53 mutational analysis improves risk stratification in DAWT. This requires validation in an independent cohort before clinical use as a biomarker. PMID:25313908
Maschietto, Mariana; Williams, Richard D; Chagtai, Tasnim; Popov, Sergey D; Sebire, Neil J; Vujanic, Gordan; Perlman, Elizabeth; Anderson, James R; Grundy, Paul; Dome, Jeffrey S; Pritchard-Jones, Kathy
2014-01-01
The presence of diffuse anaplasia in Wilms tumours (DAWT) is associated with TP53 mutations and poor outcome. As patients receive intensified treatment, we sought to identify whether TP53 mutational status confers additional prognostic information. We studied 40 patients with DAWT with anaplasia in the tissue from which DNA was extracted and analysed for TP53 mutations and 17p loss. The majority of cases were profiled by copy number (n = 32) and gene expression (n = 36) arrays. TP53 mutational status was correlated with patient event-free and overall survival, genomic copy number instability and gene expression profiling. From the 40 cases, 22 (55%) had TP53 mutations (2 detected only after deep-sequencing), 20 of which also had 17p loss (91%); 18 (45%) cases had no detectable mutation but three had 17p loss. Tumours with TP53 mutations and/or 17p loss (n = 25) had an increased risk of recurrence as a first event (p = 0.03, hazard ratio (HR), 3.89; 95% confidence interval (CI), 1.26-16.0) and death (p = 0.04, HR, 4.95; 95% CI, 1.36-31.7) compared to tumours lacking TP53 abnormalities. DAWT carrying TP53 mutations showed increased copy number alterations compared to those with wild-type, suggesting a more unstable genome (p = 0.03). These tumours showed deregulation of genes associated with cell cycle and DNA repair biological processes. This study provides evidence that TP53 mutational analysis improves risk stratification in DAWT. This requires validation in an independent cohort before clinical use as a biomarker.
Munne, Pauliina M.; Gu, Yuexi; Tumiati, Manuela; Gao, Ping; Koopal, Sonja; Uusivirta, Sanna; Sawicki, Janet; Wei, Gong-Hong; Kuznetsov, Sergey G.
2014-01-01
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers. PMID:24722541
Fagerholm, Rainer; Khan, Sofia; Schmidt, Marjanka K.; GarcClosas, Montserrat; Heikkilä, Päivi; Saarela, Jani; Beesley, Jonathan; Jamshidi, Maral; Aittomäki, Kristiina; Liu, Jianjun; Raza Ali, H.; Andrulis, Irene L.; Beckmann, Matthias W.; Behrens, Sabine; Blows, Fiona M.; Brenner, Hermann; Chang-Claude, Jenny; Couch, Fergus J.; Czene, Kamila; Fasching, Peter A.; Figueroa, Jonine; Floris, Giuseppe; Glendon, Gord; Guo, Qi; Hall, Per; Hallberg, Emily; Hamann, Ute; Holleczek, Bernd; Hooning, Maartje J.; Hopper, John L.; Jager, Agnes; Kabisch, Maria; Investigators, kConFab/AOCS; Keeman, Renske; Kosma, Veli-Matti; Lambrechts, Diether; Lindblom, Annika; Mannermaa, Arto; Margolin, Sara; Provenzano, Elena; Shah, Mitul; Southey, Melissa C.; Dennis, Joe; Lush, Michael; Michailidou, Kyriaki; Wang, Qin; Bolla, Manjeet K.; Dunning, Alison M.; Easton, Douglas F.; Pharoah, Paul D.P .; Chenevix-Trench, Georgia; Blomqvist, Carl; Nevanlinna, Heli
2017-01-01
TP53 overexpression is indicative of somatic TP53 mutations and associates with aggressive tumors and poor prognosis in breast cancer. We utilized a two-stage SNP association study to detect variants associated with breast cancer survival in a TP53-dependent manner. Initially, a genome-wide study (n = 575 cases) was conducted to discover candidate SNPs for genotyping and validation in the Breast Cancer Association Consortium (BCAC). The SNPs were then tested for interaction with tumor TP53 status (n = 4,610) and anthracycline treatment (n = 17,828). For SNPs interacting with anthracycline treatment, siRNA knockdown experiments were carried out to validate candidate genes. In the test for interaction between SNP genotype and TP53 status, we identified one locus, represented by rs10916264 (p(interaction) = 3.44 05E010-5; FDR-adjusted p = 0.0011) in estrogen receptor (ER) positive cases. The rs10916264 AA genotype associated with worse survival among cases with ER-positive, TP53-positive tumors (hazard ratio [HR] 2.36, 95% confidence interval [C.I] 1.45 - 3.82). This is a cis-eQTL locus for FBXO28 and TP53BP2; expression levels of these genes were associated with patient survival specifically in ER-positive, TP53-mutated tumors. Additionally, the SNP rs798755 was associated with survival in interaction with anthracycline treatment (p(interaction) = 9.57 05E010-5, FDR-adjusted p = 0.0130). RNAi-based depletion of a predicted regulatory target gene, FAM53A, indicated that this gene can modulate doxorubicin sensitivity in breast cancer cell lines. If confirmed in independent data sets, these results may be of clinical relevance in the development of prognostic and predictive marker panels for breast cancer. PMID:28179588
Classification of TP53 Mutations and HPV Predict Survival in Advanced Larynx Cancer
Scheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol
2016-01-01
OBJECTIVE Assess TP53 functional mutations in the context of other biomarkers in advanced larynx cancer. STUDY DESIGN Prospective analysis of pretreatment tumor TP53, HPV, Bcl-xL and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. METHODS TP53 exons 4-9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl and cyclin D1 expression. RESULTS TP53 Mutations were found in 22/58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13/58 (22.4%) patients, nonsense mutations in 4/58 (6.9%), and deletions in 5/58 (8.6%). High risk HPV was found in 20/52 (38.5%) tumors. A classification based on crystal Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low risk mutations (p=0.0315). A model including this TP53 classification, HPV status, cyclin D1 and Bcl-xL staining significantly predicts survival (p=0.0017). CONCLUSION EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. PMID:27345657
Tikkanen, Tuomas; Leroy, Bernard; Fournier, Jean Louis; Risques, Rosa Ana; Malcikova, Jitka; Soussi, Thierry
2018-07-01
Accurate annotation of genomic variants in human diseases is essential to allow personalized medicine. Assessment of somatic and germline TP53 alterations has now reached the clinic and is required in several circumstances such as the identification of the most effective cancer therapy for patients with chronic lymphocytic leukemia (CLL). Here, we present Seshat, a Web service for annotating TP53 information derived from sequencing data. A flexible framework allows the use of standard file formats such as Mutation Annotation Format (MAF) or Variant Call Format (VCF), as well as common TXT files. Seshat performs accurate variant annotations using the Human Genome Variation Society (HGVS) nomenclature and the stable TP53 genomic reference provided by the Locus Reference Genomic (LRG). In addition, using the 2017 release of the UMD_TP53 database, Seshat provides multiple statistical information for each TP53 variant including database frequency, functional activity, or pathogenicity. The information is delivered in standardized output tables that minimize errors and facilitate comparison of mutational data across studies. Seshat is a beneficial tool to interpret the ever-growing TP53 sequencing data generated by multiple sequencing platforms and it is freely available via the TP53 Website, http://p53.fr or directly at http://vps338341.ovh.net/. © 2018 Wiley Periodicals, Inc.
La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto
2016-03-01
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.
2012-01-01
Abstract Introduction Pre-clinical data suggest p53-dependent anthracycline-induced apoptosis and p53-independent taxane activity. However, dedicated clinical research has not defined a predictive role for TP53 gene mutations. The aim of the current study was to retrospectively explore the prognosis and predictive values of TP53 somatic mutations in the BIG 02-98 randomized phase III trial in which women with node-positive breast cancer were treated with adjuvant doxorubicin-based chemotherapy with or without docetaxel. Methods The prognostic and predictive values of TP53 were analyzed in tumor samples by gene sequencing within exons 5 to 8. Patients were classified according to p53 protein status predicted from TP53 gene sequence, as wild-type (no TP53 variation or TP53 variations which are predicted not to modify p53 protein sequence) or mutant (p53 nonsynonymous mutations). Mutations were subcategorized according to missense or truncating mutations. Survival analyses were performed using the Kaplan-Meier method and log-rank test. Cox-regression analysis was used to identify independent predictors of outcome. Results TP53 gene status was determined for 18% (520 of 2887) of the women enrolled in BIG 02-98. TP53 gene variations were found in 17% (90 of 520). Nonsynonymous p53 mutations, found in 16.3% (85 of 520), were associated with older age, ductal morphology, higher grade and hormone-receptor negativity. Of the nonsynonymous mutations, 12.3% (64 of 520) were missense and 3.6% were truncating (19 of 520). Only truncating mutations showed significant independent prognostic value, with an increased recurrence risk compared to patients with non-modified p53 protein (hazard ratio = 3.21, 95% confidence interval = 1.740 to 5.935, P = 0.0002). p53 status had no significant predictive value for response to docetaxel. Conclusions p53 truncating mutations were uncommon but associated with poor prognosis. No significant predictive role for p53 status was detected. Trial registration ClinicalTrials.gov NCT00174655 PMID:22551440
Neskey, David M.; Osman, Abdullah A.; Ow, Thomas J.; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C.; Hsu, Teng-Kuei; Pickering, Curtis R.; Ward, Alexandra; Patel, Ameeta; Yordy, John S.; Skinner, Heath D.; Giri, Uma; Sano, Daisuke; Story, Michael D.; Beadle, Beth M.; El-Naggar, Adel K.; Kies, Merrill S.; William, William N.; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N.; Lichtarge, Olivier
2015-01-01
TP53 is the most frequently altered gene in head and neck squamous cell carcinoma (HNSCC) with mutations occurring in over two third of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed Evolutionary Action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations which confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. PMID:25634208
Whole-genome analysis of a patient with early-stage small-cell lung cancer.
Han, J-Y; Lee, Y-S; Kim, B C; Lee, G K; Lee, S; Kim, E-H; Kim, H-M; Bhak, J
2014-12-01
We performed whole-genome sequencing (WGS) of a case of early-stage small-cell lung cancer (SCLC) to analyze the genomic features. WGS revealed a lot of single-nucleotide variations (SNVs), small insertion/deletions and chromosomal abnormality. Chromosomes 4p, 5q, 13q, 15q, 17p and 22q contained many block deletions. Especially, copy loss was observed in tumor suppressor genes RB1 and TP53, and copy gain in oncogene hTERT. Somatic mutations were found in TP53 and CREBBP. Novel nonsynonymous (ns) SNVs in C6ORF103 and SLC5A4 genes were also found. Sanger sequencing of the SLC5A4 gene in 23 independent SCLC samples showed another nsSNV in the SLC5A4 gene, indicating that nsSNVs in the SLC5A4 gene are recurrent in SCLC. WGS of an early-stage SCLC identified novel recurrent mutations and validated known variations, including copy number variations. These findings provide insight into the genomic landscape contributing to SCLC development.
Somatic and Germline TP53 Alterations in Second Malignant Neoplasms from Pediatric Cancer Survivors.
Sherborne, Amy L; Lavergne, Vincent; Yu, Katharine; Lee, Leah; Davidson, Philip R; Mazor, Tali; Smirnoff, Ivan V; Horvai, Andrew E; Loh, Mignon; DuBois, Steven G; Goldsby, Robert E; Neglia, Joseph P; Hammond, Sue; Robison, Leslie L; Wustrack, Rosanna; Costello, Joseph F; Nakamura, Alice O; Shannon, Kevin M; Bhatia, Smita; Nakamura, Jean L
2017-04-01
Purpose: Second malignant neoplasms (SMNs) are severe late complications that occur in pediatric cancer survivors exposed to radiotherapy and other genotoxic treatments. To characterize the mutational landscape of treatment-induced sarcomas and to identify candidate SMN-predisposing variants, we analyzed germline and SMN samples from pediatric cancer survivors. Experimental Design: We performed whole-exome sequencing (WES) and RNA sequencing on radiation-induced sarcomas arising from two pediatric cancer survivors. To assess the frequency of germline TP53 variants in SMNs, Sanger sequencing was performed to analyze germline TP53 in 37 pediatric cancer survivors from the Childhood Cancer Survivor Study (CCSS) without any history of a familial cancer predisposition syndrome but known to have developed SMNs. Results: WES revealed TP53 mutations involving p53's DNA-binding domain in both index cases, one of which was also present in the germline. The germline and somatic TP53- mutant variants were enriched in the transcriptomes for both sarcomas. Analysis of TP53- coding exons in germline specimens from the CCSS survivor cohort identified a G215C variant encoding an R72P amino acid substitution in 6 patients and a synonymous SNP A639G in 4 others, resulting in 10 of 37 evaluable patients (27%) harboring a germline TP53 variant. Conclusions: Currently, germline TP53 is not routinely assessed in patients with pediatric cancer. These data support the concept that identifying germline TP53 variants at the time a primary cancer is diagnosed may identify patients at high risk for SMN development, who could benefit from modified therapeutic strategies and/or intensive posttreatment monitoring. Clin Cancer Res; 23(7); 1852-61. ©2016 AACR . ©2016 American Association for Cancer Research.
Association of insertion-deletions polymorphisms with colorectal cancer risk and clinical features
Marques, Diego; Ferreira-Costa, Layse Raynara; Ferreira-Costa, Lorenna Larissa; Correa, Romualdo da Silva; Borges, Aline Maciel Pinheiro; Ito, Fernanda Ribeiro; Ramos, Carlos Cesar de Oliveira; Bortolin, Raul Hernandes; Luchessi, André Ducati; Ribeiro-dos-Santos, Ândrea; Santos, Sidney; Silbiger, Vivian Nogueira
2017-01-01
AIM To investigate the association between 16 insertion-deletions (INDEL) polymorphisms, colorectal cancer (CRC) risk and clinical features in an admixed population. METHODS One hundred and forty patients with CRC and 140 cancer-free subjects were examined. Genomic DNA was extracted from peripheral blood samples. Polymorphisms and genomic ancestry distribution were assayed by Multiplex-PCR reaction, separated by capillary electrophoresis on the ABI 3130 Genetic Analyzer instrument and analyzed on GeneMapper ID v3.2. Clinicopathological data were obtained by consulting the patients’ clinical charts, intra-operative documentation, and pathology scoring. RESULTS Logistic regression analysis showed that polymorphism variations in IL4 gene was associated with increased CRC risk, while TYMS and UCP2 genes were associated with decreased risk. Reference to anatomical localization of tumor Del allele of NFKB1 and CASP8 were associated with more colon related incidents than rectosigmoid. In relation to the INDEL association with tumor node metastasis (TNM) stage risk, the Ins alleles of ACE, HLAG and TP53 (6 bp INDEL) were associated with higher TNM stage. Furthermore, regarding INDEL association with relapse risk, the Ins alleles of ACE, HLAG, and UGT1A1 were associated with early relapse risk, as well as the Del allele of TYMS. Regarding INDEL association with death risk before 10 years, the Ins allele of SGSM3 and UGT1A1 were associated with death risk. CONCLUSION The INDEL variations in ACE, UCP2, TYMS, IL4, NFKB1, CASP8, TP53, HLAG, UGT1A1, and SGSM3 were associated with CRC risk and clinical features in an admixed population. These data suggest that this cancer panel might be useful as a complementary tool for better clinical management, and more studies need to be conducted to confirm these findings. PMID:29085228
Neskey, David M; Osman, Abdullah A; Ow, Thomas J; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C; Hsu, Teng-Kuei; Pickering, Curtis R; Ward, Alexandra; Patel, Ameeta; Yordy, John S; Skinner, Heath D; Giri, Uma; Sano, Daisuke; Story, Michael D; Beadle, Beth M; El-Naggar, Adel K; Kies, Merrill S; William, William N; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N; Lichtarge, Olivier
2015-04-01
TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations. ©2015 American Association for Cancer Research.
Gad, S; Lefèvre, S H; Khoo, S K; Giraud, S; Vieillefond, A; Vasiliu, V; Ferlicot, S; Molinié, V; Denoux, Y; Thiounn, N; Chrétien, Y; Méjean, A; Zerbib, M; Benoît, G; Hervé, J M; Allègre, G; Bressac-de Paillerets, B; Teh, B T; Richard, S
2006-01-01
BHD, TP53, and HNF1β on chromosome 17 were studied in 92 cases of renal cell carcinoma (46 chromophobe, 19 clear cell, 18 oncocytoma, and nine papillary). Six, thirteen, and zero cases had, respectively BHD, TP53, and HNF1β mutations, (84% mutations involved chromophobe), suggesting a role for BHD and TP53 in chromophobe subtype. PMID:17133269
Finkova, Alena; Vazna, Alzbeta; Hrachovina, Ondrej; Bendova, Sarka; Prochazkova, Kamila; Sedlacek, Zdenek
2009-08-01
Germline TP53 mutations are found in only 70% of families with the Li-Fraumeni syndrome (LFS), and with an even lower frequency in families suggestive of LFS but not meeting clinical criteria of the syndrome. Despite intense efforts, to date, no other genes have been associated with the disorder in a significant number of TP53 mutation-negative families. A search for defects in TP53 other than heterozygous missense mutations showed that neither intron variants nor sequence variants in the TP53 promoter are frequent in LFS, and multiexon deletions have been found to be responsible for LFS only in several cases. Another cancer predisposition syndrome, hereditary non-polyposis colon cancer, has been associated with epigenetic silencing of one allele of the MLH1 or MSH2 genes. This prompted us to test the methylation of the TP53 gene promoter in a set of 14 families suggestive of LFS using bisulphite sequencing of three DNA fragments from the 5' region of the gene. We found no detectable methylation at any of the CG dinucleotides tested. Thus, epigenetic silencing of the TP53 promoter is not a frequent cause of the disorder in families suggestive of LFS but with no germline mutations in the coding part of the gene.
Osman, Abdullah A.; Monroe, Marcus M.; Ortega Alves, Marcus V.; Patel, Ameeta A.; Katsonis, Panagiotis; Fitzgerald, Alison L.; Neskey, David M.; Frederick, Mitchell J.; Woo, Sang Hyeok; Caulin, Carlos; Hsu, Teng-Kuei; McDonald, Thomas O.; Kimmel, Marek; Meyn, Raymond E.; Lichtarge, Olivier; Myers, Jeffrey N.
2015-01-01
Although cisplatin has played a role in “standard-of-care” multimodality therapy for patients with advanced squamous cell carcinoma of the head and neck (HNSCC), the rate of treatment failure remains particularly high for patients receiving cisplatin whose tumors have mutations in the TP53 gene. We found that cisplatin treatment of HNSCC cells with mutant TP53 leads to arrest of cells in the G2 phase of the cell cycle, leading us to hypothesize that the wee-1 kinase inhibitor MK-1775 would abrogate the cisplatin-induced G2 block and thereby sensitize isogenic HNSCC cells with mutant TP53 or lacking p53 expression to cisplatin. We tested this hypothesis using clonogenic survival assays, flow cytometry, and in vivo tumor growth delay experiments with an orthotopic nude mouse model of oral tongue cancer. We also used a novel TP53 mutation classification scheme to identify which TP53 mutations are associated with limited tumor responses to cisplatin treatment. Clonogenic survival analyses indicate that nanomolar concentration of MK-1775 sensitizes HNSCC cells with high-risk mutant p53 to cisplatin. Consistent with its ability to chemosensitize, MK-1775 abrogated the cisplatin-induced G2 block in p53-defective cells leading to mitotic arrest associated with a senescence-like phenotype. Furthermore, MK-1775 enhanced the efficacy of cisplatin in vivo in tumors harboring TP53 mutations. These results indicate that HNSCC cells expressing high-risk p53 mutations are significantly sensitized to cisplatin therapy by the selective wee-1 kinase inhibitor, supporting the clinical evaluation of MK-1775 in combination with cisplatin for the treatment of patients with TP53 mutant HNSCC. PMID:25504633
LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma.
Chen, Xin; Gao, Yang; Li, Deheng; Cao, Yiqun; Hao, Bin
2017-12-01
Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Guffanti, Federica; Fratelli, Maddalena; Ganzinelli, Monica; Bolis, Marco; Ricci, Francesca; Bizzaro, Francesca; Chilà, Rosaria; Sina, Federica Paola; Fruscio, Robert; Lupia, Michela; Cavallaro, Ugo; Cappelletti, Maria Rosa; Generali, Daniele; Giavazzi, Raffaella; Damia, Giovanna
2018-01-01
A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients. PMID:29872499
Classification of TP53 mutations and HPV predict survival in advanced larynx cancer.
Scheel, Adam; Bellile, Emily; McHugh, Jonathan B; Walline, Heather M; Prince, Mark E; Urba, Susan; Wolf, Gregory T; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E; Bradford, Carol
2016-09-01
Assess tumor suppressor p53 (TP53) functional mutations in the context of other biomarkers in advanced larynx cancer. Prospective analysis of pretreatment tumor TP53, human papillomavirus (HPV), Bcl-xL, and cyclin D1 status in stage III and IV larynx cancer patients in a clinical trial. TP53 exons 4 through 9 from 58 tumors were sequenced. Mutations were grouped using three classifications based on their expected function. Each functional group was analyzed for response to induction chemotherapy, time to surgery, survival, HPV status, p16INK4a, Bcl-xl, and cyclin D1 expression. TP53 mutations were found in 22 of 58 (37.9%) patients with advanced larynx cancer, including missense mutations in 13 of 58 (22.4%) patients, nonsense mutations in four of 58 (6.9%), and deletions in five of 58 (8.6%). High-risk HPV was found in 20 of 52 (38.5%) tumors. A classification based on Evolutionary Action score of p53 (EAp53) distinguished missense mutations with high risk for decreased survival from low-risk mutations (P = 0.0315). A model including this TP53 classification, HPV status, cyclin D1, and Bcl-xL staining significantly predicts survival (P = 0.0017). EAp53 functional classification of TP53 mutants and biomarkers predict survival in advanced larynx cancer. NA. Laryngoscope, 126:E292-E299, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero
2014-05-01
Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Albitar, Maher; Sudarsanam, Sucha; Ma, Wanlong; Jiang, Shiping; Chen, Wayne; Funari, Vincent; Blocker, Forrest; Agersborg, Sally
2018-01-01
Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification. PMID:29568386
Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary.
Ahmed, Ahmed Ashour; Etemadmoghadam, Dariush; Temple, Jillian; Lynch, Andy G; Riad, Mohamed; Sharma, Raghwa; Stewart, Colin; Fereday, Sian; Caldas, Carlos; Defazio, Anna; Bowtell, David; Brenton, James D
2010-05-01
Numerous studies have tested the association between TP53 mutations in ovarian cancer and prognosis but these have been consistently confounded by limitations in study design, methodology, and/or heterogeneity in the sample cohort. High-grade serous (HGS) carcinoma is the most clinically important histological subtype of ovarian cancer. As these tumours may arise from the ovary, Fallopian tube or peritoneum, they are collectively referred to as high-grade pelvic serous carcinoma (HGPSC). To identify the true prevalence of TP53 mutations in HGPSC, we sequenced exons 2-11 and intron-exon boundaries in tumour DNA from 145 patients. HGPSC cases were defined as having histological grade 2 or 3 and FIGO stage III or IV. Surprisingly, pathogenic TP53 mutations were identified in 96.7% (n = 119/123) of HGPSC cases. Molecular and pathological review of mutation-negative cases showed evidence of p53 dysfunction associated with copy number gain of MDM2 or MDM4, or indicated the exclusion of samples as being low-grade serous tumours or carcinoma of uncertain primary site. Overall, p53 dysfunction rate approached 100% of confirmed HGPSCs. No association between TP53 mutation and progression-free or overall survival was found. From this first comprehensive mapping of TP53 mutation rate in a homogeneous group of HGPSC patients, we conclude that mutant TP53 is a driver mutation in the pathogenesis of HGPSC cancers. Because TP53 mutation is almost invariably present in HGPSC, it is not of substantial prognostic or predictive significance. Copyright (c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
ROS Modifiers and NOX4 Affect the Expression of the Survivin-Associated Radio-Adaptive Response.
Murley, Jeffrey S; Arbiser, Jack L; Weichselbaum, Ralph R; Grdina, David J
2018-04-13
The survivin-associated radio-adaptive response can be induced following exposure to ionizing radiation in the dose range from 5 to 100 mGy, and its magnitude of expression is dependent upon the TP53 mutational status of cells and ROS signaling. The purpose of the study was to investigate the potential role of ROS in the development of the survivin-associated adaptive response. Utilizing human colon carcinoma HCT116 TP53 wild type (WT) and HCT116 isogenic TP53 null mutant (Mut) cell cultures, the roles of inter- and intracellular ROS signaling on expression of the adaptive response as evidenced by changes in intracellular translocation of survivin measured by ELISA, and cell survival determined by a standard colony forming assay were investigated using ROS modifying agents that include emodin, N-acetyl-l-cysteine (NAC), fulvene-5, honokiol, metformin and rotenone. The role of NADPH oxidase 4 (NOX4) in the survivin-associated adaptive response was investigated by transfecting HCT116 cells, both WT and Mut, with two different NOX4 siRNA oligomers and Western blotting. A dose of 5 mGy or a 15min exposure to 50µM of the ROS producing drug emodin were equally effective in inducing a pro-survival adaptive response in TP53 WT and a radio-sensitization adaptive response in TP53 Mut HCT116 cells. Each response was associated with a corresponding translocation of survivin into the cytoplasm or nucleus, respectively. Exposure to 10mM NAC completely inhibited both responses. Exposure to 10µM honokiol induced responses similar to those observed following NAC exposure in TP53 WT and Mut cells. The mitochondrial complex 1 inhibitor rotenone was effective in reducing both cytoplasmic and nuclear survivin levels, but was ineffective in altering the expression of the adaptive response in either TP53 WT or Mut cells. In contrast, both metformin and fulvene-5, inhibitors of NOX4, facilitated the reversal of TP53 WT and Mut adaptive responses from pro-survival to radio-sensitization and vice versa, respectively. These changes were accompanied by corresponding reversals in the translocation of survivin to the nuclei of TP53 WT and to the cytoplasm of TP53 Mut cells. The potential role of NOX4 in the expression of the survivin-associated adaptive response was investigated by transfecting HCT116 cells with NOX4 siRNA oligomers to inhibit NOX4 expression. Under these conditions NOX4 expression was inhibited by about 50%, resulting in a reversal in the expression of the TP53 WT and Mut survivin-associated adaptive responses as was observed following metformin and fulvene-5 treatment. Exposure to 5 mGy resulted in enhanced NOX4 expression by about 40% in both TP53 WT and Mut cells, in contrast to only a 1 to 2% increase following a 2Gy only exposure. Utilizing mixed cultures of HCT116 TP53 WT and isogenic null Mut cells, as few as 10% TP53 Mut cells were sufficient to control the expression of the remaining 90% WT cells and resulted in an overall radio-sensitization response accompanied by the nuclear translocation of survivin characteristic of homogeneous TP53 Mut populations. Copyright © 2018. Published by Elsevier Inc.
Paget, Vincent; Lechevrel, Mathilde; André, Véronique; Le Goff, Jérémie; Pottier, Didier; Billet, Sylvain; Garçon, Guillaume; Shirali, Pirouz; Sichel, François
2012-01-01
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers. PMID:22319594
Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening
Jenkins, Mark A; Makalic, Enes; Dowty, James G; Schmidt, Daniel F; Dite, Gillian S; MacInnis, Robert J; Ait Ouakrim, Driss; Clendenning, Mark; Flander, Louisa B; Stanesby, Oliver K; Hopper, John L; Win, Aung K; Buchanan, Daniel D
2016-01-01
Aim: To determine whether single nucleotide polymorphisms (SNPs) can be used to identify people who should be screened for colorectal cancer. Methods: We simulated one million people with and without colorectal cancer based on published SNP allele frequencies and strengths of colorectal cancer association. We estimated 5-year risks of colorectal cancer by number of risk alleles. Results: We identified 45 SNPs with an average 1.14-fold increase colorectal cancer risk per allele (range: 1.05–1.53). The colorectal cancer risk for people in the highest quintile of risk alleles was 1.81-times that for the average person. Conclusion: We have quantified the extent to which known susceptibility SNPs can stratify the population into clinically useful colorectal cancer risk categories. PMID:26846999
Zhang, S-R; Li, D-B; Xue, J-W
2018-03-01
Given the important functions of TP53 pathway in various biological processes, this study aimed to investigate the expression of TP53 pathway-related proteins in ovarian carcinoma transplanted subcutaneously in nude mice with and without the presence of p53 inhibitor and to explore possible roles of p53 in the development of ovarian cancer. Thirty BALB/c-nu female nude mice were randomly divided into model group, control group and p53 inhibitor group (Pftα group). There were 10 rats in each group. The nude mice were subcutaneously inoculated with human ovarian cancer cell line SKOV3, and the tumor growth was observed. Morphological changes of tumor tissue were observed by hematoxylin and eosin (HE) staining. The mRNA and protein levels of TP53 pathway related factors-p53, p21 and mouse double minute 2 homolog (MDM2) were detected by RT-PCR and Western blot. p53 inhibitor can increase the growth rate of subcutaneously transplanted tumor in nude mice. p53 inhibitor could decrease the expression of p53 and p21 at both mRNA and protein levels and increase the expression of MDM2 at both mRNA and protein levels in ovarian carcinoma transplanted subcutaneously in nude mice. TP53 pathway may play pivotal roles in the development of ovarian cancer and TP53 pathway may be a new target for the treatment of ovarian cancer.
Seela, F; Röling, A
1992-01-01
The enzymatic synthesis of 7-deazapurine nucleoside containing DNA (501 bp) is performed by PCR-amplification (Taq polymerase) using a pUC18 plasmid DNA as template and the triphosphates of 7-deaza-2'-deoxyguanosine (c7Gd), -adenosine (c7Ad) and -inosine (c7Id). c7GdTP can fully replace dGTP resulting in a completely modified DNA-fragment of defined size and sequence. The other two 7-deazapurine triphosphates (c7AdTP) and (c7IdTP) require the presence of the parent purine 2'-deoxyribonucleotides. In purine/7-deazapurine nucleotide mixtures Taq polymerase prefers purine over 7-deazapurine nucleotides but accepts c7GdTP much better than c7AdTP or c7IdTP. As incorporation of 7-deazapurine nucleotides represents a modification of the major groove of DNA it can be used to probe DNA/protein interaction. Regioselective phosphodiester hydrolysis of the modified DNA-fragments was studied with 28 endodeoxyribonucleases. c7Gd is able to protect the DNA from the phosphodiester hydrolysis in more than 20 cases, only a few enzymes (Mae III, Rsa I, Hind III, Pvu II or Taq I) do still hydrolyze the modified DNA. c7Ad protects DNA less efficiently, as this DNA could only be modified in part. The absence of N-7 as potential binding position or a geometric distortion of the recognition duplex caused by the 7-deazapurine base can account for protection of hydrolysis. Images PMID:1738604
KRAS and TP53 mutations in inflammatory bowel disease-associated colorectal cancer: a meta-analysis
Du, Lijun; Kim, John J.; Shen, Jinhua; Chen, Binrui; Dai, Ning
2017-01-01
Although KRAS and TP53 mutations are common in both inflammatory bowel disease-associated colorectal cancer (IBD-CRC) and sporadic colorectal cancer (S-CRC), molecular events leading to carcinogenesis may be different. Previous studies comparing the frequency of KRAS and TP53 mutations in IBD-CRC and S-CRC were inconsistent. We performed a meta-analysis to compare the presence of KRAS and TP53 mutations among patients with IBD-CRC, S-CRC, and IBD without dysplasia. A total of 19 publications (482 patients with IBD-CRC, 4,222 with S-CRC, 281 with IBD without dysplasia) met the study inclusion criteria. KRAS mutation was less frequent (RR=0.71, 95%CI 0.56-0.90; P=0.004) while TP53 mutation was more common (RR=1.24, 95%CI 1.10-1.39; P<0.001) in patients with IBD-CRC compared to S-CRC. Both KRAS (RR=3.09, 95%CI 1.47-6.51; P=0.003) and TP53 (RR=2.15, 95%CI 1.07-4.31 P=0.03) mutations were more prevalent in patients with IBD-CRC compared to IBD without dysplasia. In conclusion, IBD-CRC and S-CRC appear to have biologically different molecular pathways. TP53 appears to be more important than KRAS in IBD-CRC compared to S-CRC. Our findings suggest possible roles of TP53 and KRAS as biomarkers for cancer and dysplasia screening among patients with IBD and may also provide targeted therapy in patients with IBD-CRC. PMID:28077799
Farhat, M; Poissonnier, A; Hamze, A; Ouk-Martin, C; Brion, J-D; Alami, M; Feuillard, J; Jayat-Vignoles, C
2014-05-01
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.
USDA-ARS?s Scientific Manuscript database
Butyrate affects cell proliferation, differentiation and motility. Butyrate inhibits histone deacetylase (HDAC) activities and induces cell cycle arrest and apoptosis. TP53 is one of the most active upstream regulators discovered by IPA in our RNA sequencing data set. The TP53 signaling pathway pl...
ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.
Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo
2017-02-01
Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5 ERCC2 (AA) as compared to UV5 ERCC2 (CC) after cisplatin treatment. The DNA damage level of UV5 ERCC2 (AA) was significant decreased compared to UV5 ERCC2 (CC) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5 ERCC2 (AA) alleviated the apoptosis compared to UV5 ERCC2 (CC) , meanwhile P53mRNA levels in UV ERCC2 (AA) was also lower when compared UV5 ERCC2 (CC) . It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kim, Dae Won; Haydu, Lauren E; Joon, Aron Y; Bassett, Roland L; Siroy, Alan E; Tetzlaff, Michael T; Routbort, Mark J; Amaria, Rodabe N; Wargo, Jennifer A; McQuade, Jennifer L; Kemnade, Jan; Hwu, Patrick; Woodman, Scott E; Roszik, Jason; Kim, Kevin B; Gershenwald, Jeffrey E; Lazar, Alexander J; Davies, Michael A
2017-04-15
BRAF V600 , NRAS, TP53, and BRAF Non-V600 are among the most common mutations detected in non-acral cutaneous melanoma patients. Although several studies have identified clinical and pathological features associated with BRAF V600 and NRAS mutations, limited data are available regarding the correlates and significance of TP53 and BRAF Non-V600 mutations. This study analyzed the patient demographics, primary tumor features, and clinical outcomes of a large cohort of non-acral cutaneous melanoma patients who had undergone clinically indicated molecular testing (n = 926). The prevalence of BRAF V600 , NRAS, TP53, and BRAF Non-V600 mutations was 43%, 21%, 19%, and 7%, respectively. The presence of a TP53 mutation was associated with older age (P = .019), a head and neck primary tumor site (P = .0001), and longer overall survival (OS) from the diagnosis of stage IV disease in univariate (P = .039) and multivariate analyses (P = .015). BRAF Non-V600 mutations were associated with older age (P = .005) but not with primary tumor features or OS from stage IV. Neither TP53 nor BRAF Non-V600 mutations correlated significantly with OS with frontline ipilimumab treatment, and the TP53 status was not significantly associated with outcomes with frontline BRAF inhibitor therapy. Eleven patients with BRAF Non-V600 mutations were treated with a BRAF inhibitor. Three patients were not evaluable for a response because of treatment cessation for toxicities; the remaining patients had disease progression as the best response to therapy. These results add to the understanding of the clinical features associated with TP53 and BRAF Non-V600 mutations in advanced cutaneous melanoma patients, and they support the rationale for evaluating the prognostic significance of TP53 in other cohorts of melanoma patients. Cancer 2017;123:1372-1381. © 2016 American Cancer Society. © 2016 American Cancer Society.
Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee
2017-04-25
Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.
Tang, Yue-Jia; Yu, Ting-Ting; Ma, Jing; Zhou, Ying; Xu, Min; Gao, Yi-Jin
2018-05-09
Li-Fraumeni syndrome is a kind of hereditary cancer predisposition syndromes, and is caused by TP53 gene mutation. Adrenocortical carcinoma (ACC) is commonly described as the most closely related tumor with this disease. Here, we present a case of a male infant with composite ACC and neuroblastoma who inherited a TP53 gene mutation from his mother, a 20-year-old carrier without any tumor to date. This TP53 gene mutation may be pathogenic and lead to composite malignancies of ACC and neuroblastoma.
Sina, Mahmud; Pedram, Mehrdad; Ghojazadeh, Morteza; Kochaki, Ahmad; Aghbali, Amirala
2014-11-01
Squamous cell carcinoma is the most common cancer of the oral cavity, and several etiologic factors are involved in its developing. Single nucleotide polymorphism (SNP) of the P53 gene codon 72 (P53c72) changes the structure of the protein and affects its activity. The prevalence of P53c72 different genotypes, which seems to vary with race and geographic location, has shown a strong correlation with many types of human cancers. The aim of this study was to investigate the correlation between P53c72polymorphism and risk of oral squamous cell carcinoma (OSCC) in the heavily populated Gilan Province in northern Iran. This case-control study was done on 55 paraffin-embedded samples from OSCC patients and 100 samples of non-dysplastic oral cavity lesions. The P53c72 genotypes were determined using the ARMS-PCR method. SPSS-15 software was used for statistical analysis. There were no significant statistical differences found between the prevalence of different P53c72 genotypes in the OSCC group vs. the control. However, the Pro/Pro genotype in OSCC samples showed a strong correlation with age, as 70% of such patients were below 50 years old. Interestingly, a large portion (40%) of the patients with the Pro/Pro genotype had the tumor in the lip area. Although P53c72 polymorphism does not appear to be a predisposing factor for OSCC in the population of Northern Iran, the Pro/Pro genotype could be considered as a risk factor for OSCC in adults below 50 years old and the anatomical location of the tumor.
p53 in breast cancer subtypes and new insights into response to chemotherapy.
Bertheau, Philippe; Lehmann-Che, Jacqueline; Varna, Mariana; Dumay, Anne; Poirot, Brigitte; Porcher, Raphaël; Turpin, Elisabeth; Plassa, Louis-François; de Roquancourt, Anne; Bourstyn, Edwige; de Cremoux, Patricia; Janin, Anne; Giacchetti, Sylvie; Espié, Marc; de Thé, Hugues
2013-08-01
Despite an obvious central role of p53 in the hallmarks of cancer, TP53 status is not yet used for the management of breast cancer. Recent findings may lead to reconsider the role of p53 in breast cancer. TP53 mutations are the most frequent genetic alterations in breast cancer, observed in 30% of breast carcinomas. Their distribution is highly linked to molecular tumor subtypes found in 26% of luminal tumors (17% of luminal A, 41% of luminal B), in 50% of HER2 amplified tumors, in 69% of molecular apocrine breast carcinomas and in 88% of basal-like carcinomas. The type of mutation is linked to the tumor subtype with higher frequency of base-pair substitutions in luminal tumors, whereas molecular apocrine and basal-like tumors present much higher frequency of complex mutations (deletions/insertions). The timing of TP53 mutation also depends on the tumor subtype, being the first important event in luminal tumors but occurring after PTEN loss in basal-like tumors. Regarding response to cytotoxic chemotherapy, the situation is far from the p53-dependent apoptosis paradigm with subsequent clinical response. We reported that TP53 mutated non inflammatory locally advanced breast carcinomas had a high rate of complete pathological response to dose-dense doxorubicin-cyclophosphamide chemotherapy, while TP53 wild-type (WT) tumors never achieved complete response. Using human breast cancer xenograft models, we suggested that this could be due to the induction of senescence in TP53 WT tumor cells. A recent work confirmed these findings in MMTV-Wnt1 mammary tumors, showing that growth arrest and senescent phenotype, not apoptosis, were induced in TP53 WT tumors following doxorubicin treatment, while lack of arrest in mutant tumors resulted in aberrant mitoses, cell death and a superior clinical response. Furthermore, in ER positive (ER(+)) breast tumors, it has been recently reported that ER represses the p53-mediated apoptotic response induced by DNA damage. Taken together, these data can help to better understand p53-mediated response to doxorubicin-based chemotherapy in breast cancer: in ER(+) TP53 WT breast cancers, ER-induced inhibition of p53 apoptotic response would lead preferentially to tumor cell senescence and subsequent resistance to treatment. Conversely, in ER negative (ER(-)) TP53 mutated breast cancers, accumulation of genetic abnormalities would lead to mitotic catastrophe and subsequent better response. In view of these recent results, p53 impact in breast cancer should be reconsidered. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uehara, Yuriko; Oda, Katsutoshi; Ikeda, Yuji; Koso, Takahiro; Tsuji, Shingo; Yamamoto, Shogo; Asada, Kayo; Sone, Kenbun; Kurikawa, Reiko; Makii, Chinami; Hagiwara, Otoe; Tanikawa, Michihiro; Maeda, Daichi; Hasegawa, Kosei; Nakagawa, Shunsuke; Wada-Hiraike, Osamu; Kawana, Kei; Fukayama, Masashi; Fujiwara, Keiichi; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki; Aburatani, Hiroyuki
2015-01-01
Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis. PMID:26043110
Saya, Sibel; Killick, Emma; Thomas, Sarah; Taylor, Natalie; Bancroft, Elizabeth K; Rothwell, Jeanette; Benafif, Sarah; Dias, Alexander; Mikropoulos, Christos; Pope, Jenny; Chamberlain, Anthony; Gunapala, Ranga; Izatt, Louise; Side, Lucy; Walker, Lisa; Tomkins, Susan; Cook, Jackie; Barwell, Julian; Wiles, Vicki; Limb, Lauren; Eccles, Diana; Leach, Martin O; Shanley, Susan; Gilbert, Fiona J; Hanson, Helen; Gallagher, David; Rajashanker, Bala; Whitehouse, Richard W; Koh, Dow-Mu; Sohaib, S Aslam; Evans, D Gareth; Eeles, Rosalind A
2017-07-01
In the United Kingdom, current screening guidelines for TP53 germline mutation carriers solely recommends annual breast MRI, despite the wide spectrum of malignancies typically seen in this group. This study sought to investigate the role of one-off non-contrast whole-body MRI (WB MRI) in the screening of asymptomatic TP53 mutation carriers. 44 TP53 mutation carriers and 44 population controls were recruited. Scans were read by radiologists blinded to participant carrier status. The incidence of malignancies diagnosed in TP53 mutation carriers against general population controls was calculated. The incidences of non-malignant relevant disease and irrelevant disease were measured, as well as the number of investigations required to determine relevance of findings. In TP53 mutation carriers, 6 of 44 (13.6, 95% CI 5.2-27.4%) participants were diagnosed with cancer during the study, all of which would be considered life threatening if untreated. Two were found to have two primary cancers. Two participants with cancer had abnormalities on the MRI which were initially thought to be benign (a pericardial cyst and a uterine fibroid) but transpired to be sarcomas. No controls were diagnosed with cancer. Fifteen carriers (34.1, 95% CI 20.5-49.9%) and seven controls (15.9, 95% CI 6.7-30.1%) underwent further investigations following the WB MRI for abnormalities that transpired to be benign (p = 0.049). The cancer detection rate in this group justifies a minimum baseline non-contrast WB MRI in germline TP53 mutation carriers. This should be adopted into national guidelines for management of adult TP53 mutation carriers in addition to the current practice of contrast enhanced breast MRI imaging.
Arnhold, Viktor; Schmelz, Karin; Proba, Jutta; Winkler, Annika; Wünschel, Jasmin; Toedling, Joern; Deubzer, Hedwig E.; Künkele, Annette; Eggert, Angelika; Schulte, Johannes H.; Hundsdoerfer, Patrick
2018-01-01
Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity. PMID:29416773
TP53 regulates miRNA association with AGO2 to remodel the miRNA-mRNA interaction network.
Krell, Jonathan; Stebbing, Justin; Carissimi, Claudia; Dabrowska, Aleksandra F; de Giorgio, Alexander; Frampton, Adam E; Harding, Victoria; Fulci, Valerio; Macino, Giuseppe; Colombo, Teresa; Castellano, Leandro
2016-03-01
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis. © 2016 Krell et al.; Published by Cold Spring Harbor Laboratory Press.
Gadhikar, Mayur A.; Sciuto, Maria Rita; Alves, Marcus Vinicius Ortega; Pickering, Curtis R.; Osman, Abdullah A.; Neskey, David M.; Zhao, Mei; Fitzgerald, Alison L.; Myers, Jeffrey N.; Frederick, Mitchell J
2014-01-01
Despite the use of multimodality therapy employing cisplatin to treat patients with advanced stage head and neck squamous cell carcinoma (HNSCC), there is an unacceptably high rate of treatment failure. TP53 is the most commonly mutated gene in HNSCC, and the impact of p53 mutation on response to cisplatin treatment is poorly understood. Here we show unambiguously that wild type TP53 (wtp53) is associated with sensitivity of HNSCC cells to cisplatin treatment while mutation or loss of TP53 is associated with cisplatin resistance. We also demonstrate that senescence is the major cellular response to cisplatin in wtp53 HNSCC cells and that cisplatin resistance in p53 null or mutant TP53 cells is due to their lack of senescence. Given the dependence on Chk1/2 kinases to mediate the DNA damage response in p53 deficient cells, there is potential to exploit this to therapeutic advantage through targeted inhibition of the Chk1/2 kinases. Treatment of p53 deficient HNSCC cells with the Chk inhibitor AZD7762 sensitizes them to cisplatin through induction of mitotic cell death. This is the first report demonstrating the ability of a Chk kinase inhibitor to sensitize TP53-deficient HNSCC to cisplatin in a synthetic lethal manner, which has significance given the frequency of TP53 mutations in this disease and because cisplatin has become part of standard therapy for aggressive HNSCC tumors. These pre-clinical data provide evidence that a personalized approach to the treatment of HNSCC based on Chk inhibition in p53 mutant tumors may be feasible. PMID:23839309
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2008-05-01
The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.
Blanco, Gonzalo; Puiggros, Anna; Baliakas, Panagiotis; Athanasiadou, Anastasia; García-Malo, MªDolores; Collado, Rosa; Xochelli, Aliki; Rodríguez-Rivera, María; Ortega, Margarita; Calasanz, Mª José; Luño, Elisa; Vargas, MªTeresa; Grau, Javier; Martínez-Laperche, Carolina; Valiente, Alberto; Cervera, José; Anagnostopoulos, Achilles; Gimeno, Eva; Abella, Eugènia; Stalika, Evangelia; Hernández-Rivas, Jesús Mª; Ortuño, Francisco José; Robles, Diego; Ferrer, Ana; Ivars, David; González, Marcos; Bosch, Francesc; Abrisqueta, Pau; Stamatopoulos, Kostas; Espinet, Blanca
2016-01-01
Patients with chronic lymphocytic leukemia (CLL) harboring TP53 aberrations (TP53abs; chromosome 17p deletion and/or TP53 mutation) exhibit an unfavorable clinical outcome. Chromosome 8 abnormalities, namely losses of 8p (8p−) and gains of 8q (8q+) have been suggested to aggravate the outcome of patients with TP53abs. However, the reported series were small, thus hindering definitive conclusions. To gain insight into this issue, we assessed a series of 101 CLL patients harboring TP53 disruption. The frequency of 8p− and 8q+ was 14.7% and 17.8% respectively. Both were associated with a significantly (P < 0.05) higher incidence of a complex karyotype (CK, ≥3 abnormalities) detected by chromosome banding analysis (CBA) compared to cases with normal 8p (N-8p) and 8q (N-8q), respectively. In univariate analysis for 10-year overall survival (OS), 8p− (P = 0.002), 8q+ (P = 0.012) and CK (P = 0.009) were associated with shorter OS. However, in multivariate analysis only CK (HR = 2.47, P = 0.027) maintained independent significance, being associated with a dismal outcome regardless of chromosome 8 abnormalities. In conclusion, our results highlight the association of chromosome 8 abnormalities with CK amongst CLL patients with TP53abs, while also revealing that CK can further aggravate the prognosis of this aggressive subgroup. PMID:27821812
Masetti, Michele; Acquaviva, Giorgia; Visani, Michela; Tallini, Giovanni; Fornelli, Adele; Ragazzi, Moira; Vasuri, Francesco; Grifoni, Daniela; Di Giacomo, Simone; Fiorino, Sirio; Lombardi, Raffaele; Tuminati, David; Ravaioli, Matteo; Fabbri, Carlo; Bacchi-Reggiani, Maria Letizia; Pession, Annalisa; Jovine, Elio; de Biase, Dario
2018-02-06
Pancreatic adenocarcinoma (PDAC) is one of the deadliest human malignancies. Although surgery is currently the only effective treatment for PDAC, most patients survive less than 20 months after tumor resection. The primary goal was to investigate alterations in KRAS, TP53, SMAD4 and CDKN2A/p16 in tumors from patients with exceptionally long survival after surgery. Tumors from 15 patients with PDAC that survived more than 55 months after surgery ("LS") were analyzed for KRAS, TP53, IDH1, NRAS and BRAF using next-generation sequencing. SMAD4 and CDKN2A/p16 was tested using immunohistochemistry. MGMT promoter methylation was investigated. Tumors from "LS" have a lower prevalence of KRAS and TP53 mutations and had more frequently SMAD4 retained expression, if compared with that of patients died within 24 months from surgery. The survival of patients with wild-type KRAS and TP53 tumors was more than twice longer than that of patients bearing KRAS and TP53 mutations (90.2 vs. 41.1 months). Patients with KRAS wild-type tumors and that retained SMAD4 expression had a survival twice longer than cases with alterations in both genes (83.8 vs. 36.7 months). Eleven tumors (39.3%) showed MGMT methylation. Our data indicate that absence of KRAS, TP53 and SMAD4 genetic alterations may identify a subset of pancreatic carcinomas with better outcome.
Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas
Montazeri, Zahra; Theodoratou, Evropi; Nyiraneza, Christine; Timofeeva, Maria; Chen, Wanjing; Svinti, Victoria; Sivakumaran, Shanya; Gresham, Gillian; Cubitt, Laura; Carvajal-Carmona, Luis; Bertagnolli, Monica M; Zauber, Ann G; Tomlinson, Ian; Farrington, Susan M; Dunlop, Malcolm G; Campbell, Harry; Little, Julian
2018-01-01
Background Low penetrance genetic variants, primarily single nucleotide polymorphisms, have substantial influence on colorectal cancer (CRC) susceptibility. Most CRCs develop from colorectal adenomas (CRA). Here, we report the first comprehensive field synopsis that catalogues all genetic association studies on CRA, with a parallel online database (http://www.chs.med.ed.ac.uk/CRAgene/). Methods We performed a systematic review, reviewing 9750 titles and then extracted data from 130 publications reporting on 181 polymorphisms in 74 genes. We conducted meta-analyses to derive summary effect estimates for 37 polymorphisms in 26 genes. We applied the Venice criteria and Bayesian False Discovery Probability (BFDP) to assess the levels of the credibility of associations. Results We considered the association with the rs6983267 variant at 8q24 as “highly credible”, reaching genome wide statistical significance in at least one meta-analysis model. We identified “less credible” associations (higher heterogeneity, lower statistical power, BFDP>0.02) with a further four variants of four independent genes: MTHFR c.677C>T p.A222V (rs1801133), TP53 c.215C>G p.R72P (rs1042522), NQO1 c.559C>T p.P187S (rs1800566), and NAT1 alleles imputed as fast acetylator genotypes. For the remaining 32 variants of 22 genes for which positive associations with CRA risk have been previously reported, the meta-analyses revealed no credible evidence to support these as true associations. Conclusions The limited number of credible associations between low penetrance genetic variants and CRA reflects the lower volume of evidence and associated lack of statistical power to detect associations of the magnitude typically observed for genetic variants and chronic diseases. The CRAgene database provides context for CRA genetic association data and will help inform future research directions. PMID:26451011
Ajore, Ram; Raiser, David; McConkey, Marie; Jöud, Magnus; Boidol, Bernd; Mar, Brenton; Saksena, Gordon; Weinstock, David M; Armstrong, Scott; Ellis, Steven R; Ebert, Benjamin L; Nilsson, Björn
2017-04-01
Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53 -intact tumors ( P ≪ 10 -10 ), and shRNA-mediated knockdown of RPGs activated p53 in TP53 -wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53 -mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Kamat, Chandrashekhar D.; Shmueli, Ron B.; Connis, Nick; Rudin, Charles M.; Green, Jordan J.; Hann, Christine L.
2013-01-01
Small cell lung cancer (SCLC) is an aggressive disease with one of the highest case-fatality rates among cancer. The recommended therapy for SCLC has not changed significantly over the past 30 years; new therapeutic approaches are a critical need. TP53 is mutated in the majority of SCLC cases and its loss is required in transgenic mouse models of the disease. We synthesized an array of biodegradable poly(beta-amino ester) (PBAE) polymers which self-assemble with DNA and assayed for transfection efficiency in the p53-mutant H446 SCLC cell line using high-throughput methodologies. Two of the top candidates were selected for further characterization and TP53 delivery in vitro and in vivo. Nanoparticle delivery of TP53 resulted in expression of exogenous p53, induction of p21, induction of apoptosis and accumulation of cells in sub-G1 consistent with functional p53 activity. Intratumoral injection of subcutaneous H446 xenografts with polymers carrying TP53 caused marked tumor growth inhibition. This is the first demonstration of TP53 gene therapy in SCLC using non-viral polymeric nanoparticles. This technology may have general applicability as a novel anti-cancer strategy based on restoration of tumor suppressor gene function. PMID:23364678
Zheng, Yun-Ling; Kosti, Ourania; Loffredo, Christopher; Bowman, Elise; Mechanic, Leah; Perlmutter, Donna; Jones, Raymond; Shields, Peter G.; Harris, Curtis
2010-01-01
Cell cycle checkpoints play critical roles in the maintenance of genomic integrity and inactivation of checkpoint genes, and are frequently perturbed in most cancers. In a case-control study of 299 non-small cell lung cancer cases and 550 controls in Maryland, we investigated the association between γ-radiation-induced G2/M arrest in cultured blood lymphocytes and lung cancer risk, and examined genotype-phenotype correlations between genetic polymorphisms of 20 genes involving in DNA repair and cell cycle control and γ-radiation-induced G2/M arrest. The study was specifically designed to examine race and gender differences in risk factors. Our data indicated that a less efficient DNA damage-induced G2/M checkpoint was associated with an increased risk of lung cancer in African American women with an adjusted odds ratio (OR) of 2.63 (95% CI = 1.01 – 7.26); there were no statistically significant associations for Caucasians, or African American men. When the African American women were categorized into quartiles, a significant reverse trend of decreased G2/M checkpoint function and increased lung cancer risk was present, with lowest-vs-highest quartile OR of 13.72 (95% CI = 2.30 – 81.92, Ptrend < 0.01). Genotype-phenotype correlation analysis indicated that polymorphisms in ATM, CDC25C, CDKN1A, BRCA2, ERCC6, TP53, and TP53BP1 genes were significantly associated with the γ-radiation-induced G2/M arrest phenotype. This study provides evidence that a less efficient G2/M checkpoint is significantly associated with lung cancer risk in African American women. The data also suggested that the function of G2/M checkpoint is modulated by genetic polymorphisms in genes involved in DNA repair and cell cycle control. PMID:19626602
Piskorz, Anna M.; Biggs, Heather; Addley, Helen; Freeman, Sue; Moyle, Penelope; Sala, Evis; Sayal, Karen; Hosking, Karen; Gounaris, Ioannis; Earl, Helena M.; Rosenfeld, Nitzan; Brenton, James D.
2016-01-01
Background Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP). Methods and Findings We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific TP53 assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%–22%) compared to 0.7% (IQR 0.3%–2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly all relapsed patients with disease volume > 32 cm3, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28–54) compared with a median time to nadir of 84 d (IQR 42–116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07–0.67, p = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%–92%) and 88% specificity (95% CI 64%–99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort. Conclusions In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment. PMID:27997533
Parkinson, Christine A; Gale, Davina; Piskorz, Anna M; Biggs, Heather; Hodgkin, Charlotte; Addley, Helen; Freeman, Sue; Moyle, Penelope; Sala, Evis; Sayal, Karen; Hosking, Karen; Gounaris, Ioannis; Jimenez-Linan, Mercedes; Earl, Helena M; Qian, Wendi; Rosenfeld, Nitzan; Brenton, James D
2016-12-01
Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP). We performed a retrospective analysis of serial plasma samples collected during routine clinical visits from 40 patients with HGSOC undergoing heterogeneous standard of care treatment. Patient-specific TP53 assays were developed for 31 unique mutations identified in formalin-fixed paraffin-embedded tumour DNA from these patients. These assays were used to quantify ctDNA in 318 plasma samples using microfluidic digital PCR. The TP53 mutant allele fraction (TP53MAF) was compared to serum CA-125, the current gold-standard response marker for HGSOC in blood, as well as to disease volume on computed tomography scans by volumetric analysis. Changes after one cycle of treatment were compared with TTP. The median TP53MAF prior to treatment in 51 relapsed treatment courses was 8% (interquartile range [IQR] 1.2%-22%) compared to 0.7% (IQR 0.3%-2.0%) for seven untreated newly diagnosed stage IIIC/IV patients. TP53MAF correlated with volumetric measurements (Pearson r = 0.59, p < 0.001), and this correlation improved when patients with ascites were excluded (r = 0.82). The ratio of TP53MAF to volume of disease was higher in relapsed patients (0.04% per cm3) than in untreated patients (0.0008% per cm3, p = 0.004). In nearly all relapsed patients with disease volume > 32 cm3, ctDNA was detected at ≥20 amplifiable copies per millilitre of plasma. In 49 treatment courses for relapsed disease, pre-treatment TP53MAF concentration, but not CA-125, was associated with TTP. Response to chemotherapy was seen earlier with ctDNA, with a median time to nadir of 37 d (IQR 28-54) compared with a median time to nadir of 84 d (IQR 42-116) for CA-125. In 32 relapsed treatment courses evaluable for response after one cycle of chemotherapy, a decrease in TP53MAF of >60% was an independent predictor of TTP in multivariable analysis (hazard ratio 0.22, 95% CI 0.07-0.67, p = 0.008). Conversely, a decrease in TP53MAF of ≤60% was associated with poor response and identified cases with TTP < 6 mo with 71% sensitivity (95% CI 42%-92%) and 88% specificity (95% CI 64%-99%). Specificity was improved when patients with recent drainage of ascites were excluded. Ascites drainage led to a reduction of TP53MAF concentration. The limitations of this study include retrospective design, small sample size, and heterogeneity of treatment within the cohort. In this retrospective study, we demonstrated that ctDNA is correlated with volume of disease at the start of treatment in women with HGSOC and that a decrease of ≤60% in TP53MAF after one cycle of chemotherapy was associated with shorter TTP. These results provide evidence that ctDNA has the potential to be a highly specific early molecular response marker in HGSOC and warrants further investigation in larger cohorts receiving uniform treatment.
Zhai, Rihong; Chen, Feng; Liu, Geoffrey; Su, Li; Kulke, Matthew H; Asomaning, Kofi; Lin, Xihong; Heist, Rebecca S; Nishioka, Norman S; Sheu, Chau-Chyun; Wain, John C; Christiani, David C
2010-05-10
Apoptosis pathway, gastroesophageal reflux symptoms (reflux), higher body mass index (BMI), and tobacco smoking have been individually associated with esophageal adenocarcinoma (EA) development. However, how multiple factors jointly affect EA risk remains unclear. In total, 305 patients with EA and 339 age- and sex-matched controls were studied. High-order interactions among reflux, BMI, smoking, and functional polymorphisms in five apoptotic genes (FAS, FASL, IL1B, TP53BP, and BAT3) were investigated by entropy-based multifactor dimensionality reduction (MDR), classification and regression tree (CART), and traditional logistic regression (LR) models. In LR analysis, reflux, BMI, and smoking were significantly associated with EA risk, with reflux as the strongest individual factor. No individual single nucleotide polymorphism was associated with EA susceptibility. However, there was a two-way interaction between IL1B + 3954C>T and reflux (P = .008). In both CART and MDR analyses, reflux was also the strongest individual factor for EA risk. In individuals with reflux symptoms, CART analysis indicated that strongest interaction was among variant genotypes of IL1B + 3954C>T and BAT3S625P, higher BMI, and smoking (odds ratio [OR], 5.76; 95% CI, 2.48 to 13.38), a finding independently found using MDR analysis. In contrast, for participants without reflux symptoms, the strongest interaction was found between higher BMI and smoking (OR, 3.27; 95% CI, 1.88 to 5.68), also echoed by entropy-based MDR analysis. Although a history of reflux is an important risk for EA, multifactor interactions also play important roles in EA risk. Gene-environment interaction patterns differ between patients with and without reflux symptoms.
Tiwari, Sameeksha; Awasthi, Manika; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N
2017-10-23
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Kuo, Chun-Ting; Chang, Chieh; Lee, Wen-Sen
2015-01-01
To investigate the molecular mechanism underlying folic acid (FA)-induced anti-colon caner activity, we showed that FA caused G0/G1 arrest in COLO-205. FA activated the proto-oncogene tyrosine-protein kinase Src (c-SRC)-mediated signaling pathway to enhance nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) nuclear translocation and binding onto the tumor protein p53 (TP53) gene promoter, and up-regulated expressions of TP53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). Knock-down of TP53 abolished FA-induced increases in the levels of CDKN1A and CDKN1B protein and G0/G1 arrest in COLO-205. Knock-down of folate receptor alpha (FRα) abolished FA-induced activations in the c-SRC-mediated pathway and increases in the levels of CDKN1A, CDKN1B and TP53 protein. These data suggest that FA inhibited COLO-205 proliferation through activating the FRα/c-SRC/mitogen-activated protein kinase 3/1 (ERK1/2)/NFκB/TP53 pathway-mediated up-regulations of CDKN1A and CDKN1B protein. In vivo studies demonstrated that daily i.p. injections of FA led to profound regression of the COLO-205 tumors and prolong the lifespan. In these tumors, the levels of CDKN1A, CDKN1B and TP53 protein were increased and von willebrand factor (VWF) protein levels were decreased. These findings suggest that FA inhibits COLO-205 colon cancer growth through anti-cancer cell proliferation and anti-angiogenesis. PMID:26056802
A porcine model of osteosarcoma
Saalfrank, A; Janssen, K-P; Ravon, M; Flisikowski, K; Eser, S; Steiger, K; Flisikowska, T; Müller-Fliedner, P; Schulze, É; Brönner, C; Gnann, A; Kappe, E; Böhm, B; Schade, B; Certa, U; Saur, D; Esposito, I; Kind, A; Schnieke, A
2016-01-01
We previously produced pigs with a latent oncogenic TP53 mutation. Humans with TP53 germline mutations are predisposed to a wide spectrum of early-onset cancers, predominantly breast, brain, adrenal gland cancer, soft tissue sarcomas and osteosarcomas. Loss of p53 function has been observed in >50% of human cancers. Here we demonstrate that porcine mesenchymal stem cells (MSCs) convert to a transformed phenotype after activation of latent oncogenic TP53R167H and KRASG12D, and overexpression of MYC promotes tumorigenesis. The process mimics key molecular aspects of human sarcomagenesis. Transformed porcine MSCs exhibit genomic instability, with complex karyotypes, and develop into sarcomas on transplantation into immune-deficient mice. In pigs, heterozygous knockout of TP53 was sufficient for spontaneous osteosarcoma development in older animals, whereas homozygous TP53 knockout resulted in multiple large osteosarcomas in 7–8-month-old animals. This is the first report that engineered mutation of an endogenous tumour-suppressor gene leads to invasive cancer in pigs. Unlike in Trp53 mutant mice, osteosarcoma developed in the long bones and skull, closely recapitulating the human disease. These animals thus promise a model for juvenile osteosarcoma, a relatively uncommon but devastating disease. PMID:26974205
NASA Technical Reports Server (NTRS)
Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.
2001-01-01
Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.
A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.
Neuzillet, Yann; Paoletti, Xavier; Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François
2012-01-01
TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12) and OR = 0.99 [0.37-2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.
A Meta-Analysis of the Relationship between FGFR3 and TP53 Mutations in Bladder Cancer
Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François
2012-01-01
TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18–0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28–0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23–1.36] (p = 0.12) and OR = 0.99 [0.37–2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage. PMID:23272046
Lu, Yuntao; Xiao, Limin; Liu, Yawei; Wang, Hai; Li, Hong; Zhou, Qiang; Pan, Jun; Lei, Bingxi; Huang, Annie; Qi, Songtao
2015-01-01
The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53+/+ and TP53-/- HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT. PMID:26553592
Yurgelun, Matthew B.; Masciari, Serena; Joshi, Victoria A.; Mercado, Rowena C.; Lindor, Noralane M.; Gallinger, Steven; Hopper, John L.; Jenkins, Mark A.; Buchanan, Daniel D.; Newcomb, Polly A.; Potter, John D.; Haile, Robert W.; Kucherlapati, Raju; Syngal, Sapna
2015-01-01
IMPORTANCE Li-Fraumeni syndrome, usually characterized by germline TP53 mutations, is associated with markedly elevated lifetime risks of multiple cancers, and has been linked to an increased risk of early-onset colorectal cancer. OBJECTIVE To examine the frequency of germline TP53 alterations in patients with early-onset colorectal cancer. DESIGN, SETTING, AND PARTICIPANTS This was a multicenter cross-sectional cohort study of individuals recruited to the Colon Cancer Family Registry (CCFR) from 1998 through 2007 (genetic testing data updated as of January 2015). Both population-based and clinic-based patients in the United States, Canada, Australia, and New Zealand were recruited to the CCFR. Demographic information, clinical history, and family history data were obtained at enrollment. Biospecimens were collected from consenting probands and families, including microsatellite instability and DNA mismatch repair immunohistochemistry results. A total of a 510 individuals diagnosed as having colorectal cancer at age 40 years or younger and lacking a known hereditary cancer syndrome were identified from the CCFR as being potentially eligible. Fifty-three participants were excluded owing to subsequent identification of germline mutations in DNA mismatch repair genes (n = 47) or biallelic MUTYH mutations (n = 6). INTERVENTIONS Germline sequencing of the TP53 gene was performed. Identified TP53 alterations were assessed for pathogenicity using literature and international mutation database searches and in silico prediction models. MAIN OUTCOMES AND MEASURES Frequency of nonsynonymous germline TP53 alterations. RESULTS Among 457 eligible participants (314, population-based; 143, clinic-based; median age at diagnosis, 36 years [range, 15–40 years]), 6 (1.3%; 95%CI, 0.5%–2.8%) carried germline missense TP53 alterations, none of whom met clinical criteria for Li-Fraumeni syndrome. Four of the identified TP53 alterations have been previously described in the literature in probands with clinical features of Li-Fraumeni syndrome, and 2 were novel alterations. CONCLUSIONS AND RELEVANCE In a large cohort of patients with early-onset colorectal cancer, germline TP53 mutations were detected at a frequency comparable with the published prevalence of germline APC mutations in colorectal cancer. With the increasing use of multigene next-generation sequencing panels in hereditary cancer risk assessment, clinicians will be faced with the challenge of interpreting the biologic and clinical significance of germline TP53 mutations in families whose phenotypes are atypical for Li-Fraumeni syndrome. PMID:26086041
Liu, Yi-Chang; Hsiao, Hui-Hua; Yang, Wen-Chi; Liu, Ta-Chih; Chang, Chao-Sung; Yang, Ming-Yu; Lin, Pai-Mei; Hsu, Jui-Feng; Lee, Ching-Ping; Lin, Sheng-Fung
2014-12-01
The genetic or functional inactivation of the p53 pathway plays an important role with regards to disease progression from the chronic phase (CP) to blast phase (BP) and imatinib treatment response in chronic myeloid leukemia (CML). Two functional single nucleotide polymorphisms (SNPs), p53 R72P and MDM2 SNP309, are associated with alternation of p53 activity, however the association regarding CML susceptibility and BP transformation under imatinib treatment is unclear. The MDM2 SNP309 genotype was determined by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing from 116 CML patients, including 104 in the CP at diagnosis, and 162 healthy Taiwanese controls. The p53 R72P polymorphism was examined in all CML patients. The SNP309 G/G genotype was associated with an increased risk of CML susceptibility (OR: 1.82, 95% CI: 1.03-3.22, P = 0.037), and an earlier age of disease onset (log-rank P = 0.005) compared with the T/T + T/G genotypes. Higher MDM2 mRNA expression was found in G/G genotype compared with T/T (P = 0.034) and T/T + T/G (P = 0.056) genotypes. No associations were found between the p53 R72P genotypes and clinical parameters and survival outcomes. Among 62 CP patients receiving imatinib as first-line therapy, the G/G genotype was associated with a shorter blast-free survival (log-rank P = 0.048) and more clonal evolution compared with the T/T + T/G genotypes. In patients with advanced diseases at diagnosis, the G/G genotype was associated with a poor overall survival (log-rank P = 0.006). Closely monitoring CML patients harboring the G/G genotype and further large-scale studies are warranted. © 2013 Wiley Periodicals, Inc.
Krug, Utz O.; Lee, Dhong Hyun Tony; Kawamata, Norihiko; Iwanski, Gabriela B.; Lasho, Terra; Weiss, Tamara; Nowak, Daniel; Koren-Michowitz, Maya; Kato, Motohiro; Sanada, Masashi; Shih, Lee-Yung; Nagler, Arnon; Raynaud, Sophie D.; Müller-Tidow, Carsten; Mesa, Ruben; Haferlach, Torsten; Gilliland, D. Gary; Tefferi, Ayalew; Ogawa, Seishi; Koeffler, H. Phillip
2010-01-01
Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia, and primary myelofibrosis show an inherent tendency for transformation into leukemia (MPN-blast phase), which is hypothesized to be accompanied by acquisition of additional genomic lesions. We, therefore, examined chromosomal abnormalities by high-resolution single nucleotide polymorphism (SNP) array in 88 MPN patients, as well as 71 cases with MPN-blast phase, and correlated these findings with their clinical parameters. Frequent genomic alterations were found in MPN after leukemic transformation with up to 3-fold more genomic changes per sample compared with samples in chronic phase (P < .001). We identified commonly altered regions involved in disease progression including not only established targets (ETV6, TP53, and RUNX1) but also new candidate genes on 7q, 16q, 19p, and 21q. Moreover, trisomy 8 or amplification of 8q24 (MYC) was almost exclusively detected in JAK2V617F− cases with MPN-blast phase. Remarkably, copy number–neutral loss of heterozygosity (CNN-LOH) on either 7q or 9p including homozygous JAK2V617F was related to decreased survival after leukemic transformation (P = .01 and P = .016, respectively). Our high-density SNP-array analysis of MPN genomes in the chronic compared with leukemic stage identified novel target genes and provided prognostic insights associated with the evolution to leukemia. PMID:20068225
Screening for common copy-number variants in cancer genes.
Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L
2010-12-01
For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.
Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika
2016-07-01
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika
2016-01-01
Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041
Cavallari, Maurizio; Quaglia, Francesca Maria; Lista, Enrico; Urso, Antonio; Guardalben, Emanuele; Martinelli, Sara; Saccenti, Elena; Bassi, Cristian; Lupini, Laura; Bardi, Maria Antonella; Volta, Eleonora; Tammiso, Elisa; Melandri, Aurora; Negrini, Massimo
2017-01-01
We investigated whether karyotype analysis and mutational screening by next generation sequencing could predict outcome in 101 newly diagnosed chronic lymphocytic leukemia patients with high-risk features, as defined by the presence of unmutated IGHV gene and/or 11q22/17p13 deletion by FISH and/or TP53 mutations. Cytogenetic analysis showed favorable findings (normal karyotype and isolated 13q14 deletion) in 30 patients, unfavorable (complex karyotype and/or 17p13/11q22 deletion) in 34 cases and intermediate (all other abnormalities) in 36 cases. A complex karyotype was present in 21 patients. Mutations were detected in 56 cases and were associated with unmutated IGHV status (p = 0.040) and complex karyotype (p = 0.047). TP53 disruption (i.e. TP53 mutations and/or 17p13 deletion by FISH) correlated with the presence of ≥ 2 mutations (p = 0.001) and a complex karyotype (p = 0.012). By multivariate analysis, an advanced Binet stage (p < 0.001) and an unfavorable karyotype (p = 0.001) predicted a shorter time to first treatment. TP53 disruption (p = 0.019) and the unfavorable karyotype (p = 0.028) predicted a worse overall survival. A shorter time to chemorefractoriness was associated with TP53 disruption (p = 0.001) and unfavorable karyotype (p = 0.025). Patients with both unfavorable karyotype and TP53 disruption presented a dismal outcome (median overall survival and time to chemorefractoriness of 28.7 and 15.0 months, respectively). In conclusion, karyotype analysis refines risk stratification in high-risk CLL patients and could identify a subset of patients with highly unfavorable outcome requiring alternative treatments. PMID:28427204
Wang, Zhijie; Piha-Paul, Sarina; Janku, Filip; Subbiah, Vivek; Shi, Naiyi; Gong, Jing; Wathoo, Chetna; Shaw, Kenna; Hess, Kenneth; Broaddus, Russell; Naing, Aung; Hong, David; Tsimberidou, Apostolia M.; Karp, Daniel; Yao, James; Meric-Bernstam, Funda; Fu, Siqing
2017-01-01
Purpose Genetic alterations such as activating KRAS and/or inactivating TP53 are thought to be the most common drivers to tumorigenesis. Therefore, we assessed phase I cancer patients with KRAS+/TP53+ mutations. Results Approximately 8% of patients referred to phase I clinical trials harbored concurrent KRAS and TP53 mutations. Patients who received a phase I trial therapy (n = 57) had a median OS of 12 months, compared with 4.6 months in those who were not treated (n = 106; p = 0.003). KRAS G13 and TP53 R273 mutations were associated with poor overall survival (OS), while antiangiogenesis and gene aberration-related therapies were associated with prolonged OS. A prognostic model using neutrophilia, thrombocytosis, hypoalbuminemia, body mass index <30 kg/m2, and the absence of lung metastasis was established and validated. Phase I cancer patients in the low-risk group had a median OS of 16.6 months compared with 5.4 months in the high-risk group (p < 0.001). Untreated patients in the low-risk group had a median OS of 6.7 months compared with 3.6 months in the high-risk group (p = 0.033). Experimental Design We analyzed 163 consecutive patients with advanced KRAS+/TP53+ mutant cancer who were referred to phase I clinical trials, to identify molecular aberrations, clinical characteristics, survivals, and potentially effective treatment regimens. Conclusions This study provided preliminary evidence that besides modulation of the proinflammatory state, antiangiogensis and concomitant gene aberration-related therapies may improve the treatment of KRAS+/TP53+ mutant cancer. PMID:28430579
KRAS and TP53 mutations in bronchoscopy samples from former lung cancer patients.
Gao, Weimin; Jin, Jide; Yin, Jinling; Land, Stephanie; Gaither-Davis, Autumn; Christie, Neil; Luketich, James D; Siegfried, Jill M; Keohavong, Phouthone
2017-02-01
Mutations in the KRAS and TP53 genes have been found frequently in lung tumors and specimens from individuals at high risk for lung cancer and have been suggested as predictive markers for lung cancer. In order to assess the prognostic value of these two genes' mutations in lung cancer recurrence, we analyzed mutations in codon 12 of the KRAS gene and in hotspot codons of the TP53 gene in 176 bronchial biopsies obtained from 77 former lung cancer patients. Forty-seven patients (61.0%) showed mutations, including 35/77 (45.5%) in the KRAS gene and 25/77 (32.5%) in the TP53 gene, among them 13/77 (16.9%) had mutations in both genes. When grouped according to past or current smoking status, a higher proportion of current smokers showed mutations, in particular those in the TP53 gene (P = 0.07), compared with ex-smokers. These mutations were found in both abnormal lesions (8/20 or 40%) and histologically normal tissues (70/156 or 44.9%) (P = 0.812). They consisted primarily of G to A transition and G to T transversion in both the KRAS (41/56 or 73.2%) and TP53 (24/34 or 70.6%) genes, consistent with mutations found in lung tumors of smoking lung cancer patients. Overall, recurrence-free survival (RFS) among all subjects could be explained by age at diagnosis, tumor stage, tumor subtype, and smoking (P < 0.05, Cox proportional hazard). Therefore, KRAS and TP53 mutations were frequently detected in bronchial tissues of former lung cancer patients. However, the presence of mutation of bronchial biopsies was not significantly associated with a shorter RFS time. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit.
Clipson, Alexandra; Barrans, Sharon; Zeng, Naiyan; Crouch, Simon; Grigoropoulos, Nicholas F; Liu, Hongxiang; Kocialkowski, Sylvia; Wang, Ming; Huang, Yuanxue; Worrillow, Lisa; Goodlad, John; Buxton, Jenny; Neat, Michael; Fields, Paul; Wilkins, Bridget; Grant, John W; Wright, Penny; Ei-Daly, Hesham; Follows, George A; Roman, Eve; Watkins, A James; Johnson, Peter W M; Jack, Andrew; Du, Ming-Qing
2015-07-01
A proportion of MYC translocation positive diffuse large B-cell lymphomas (DLBCL) harbour a BCL2 and/or BCL6 translocation, known as double-hit DLBCL, and are clinically aggressive. It is unknown whether there are other genetic abnormalities that cooperate with MYC translocation and form double-hit DLBCL, and whether there is a difference in clinical outcome between the double-hit DLBCL and those with an isolated MYC translocation. We investigated TP53 gene mutations along with BCL2 and BCL6 translocations in a total of 234 cases of DLBCL, including 81 with MYC translocation. TP53 mutations were investigated by PCR and sequencing, while BCL2 and BCL6 translocation was studied by interphase fluorescence in situ hybridization. The majority of MYC translocation positive DLBCLs (60/81 = 74%) had at least one additional genetic hit. In MYC translocation positive DLBCL treated by R-CHOP ( n = 67), TP53 mutation and BCL2, but not BCL6 translocation had an adverse effect on patient overall survival. In comparison with DLBCL with an isolated MYC translocation, cases with MYC/TP53 double-hits had the worst overall survival, followed by those with MYC/BCL2 double-hits. In MYC translocation negative DLBCL treated by R-CHOP ( n = 101), TP53 mutation, BCL2 and BCL6 translocation had no impact on patient survival. The prognosis of MYC translocation positive DLBCL critically depends on the second hit, with TP53 mutations and BCL2 translocation contributing to an adverse prognosis. It is pivotal to investigate both TP53 mutations and BCL2 translocations in MYC translocation positive DLBCL, and to distinguish double-hit DLBCLs from those with an isolated MYC translocation.
Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle
2016-10-18
TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes.
Clinic and Functional Analysis of p73R1 Mutations in Prostate Cancer
2006-02-01
sequence variants in Marfan syndrome and related connective tissue disorders. Genet Test 1:237-42. Matsuoka S, Huang M, Elledge SJ. 1998. Linkage of ATM... Syndrome (LFS; MIM# 151623), a highly penetrant familial cancer phenotype, usually associated with inherited mutations in TP53 (Bell, et al., 1999...TP53 (Table 1). Mutually exclusive mutations of CHEK2 and TP53 have been reported in patients with Li-Fraumeni syndrome (LFS) and also in patients
Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi
2017-01-01
Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679
MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas
Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F.; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang
2016-01-01
Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs. 25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2. In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance. PMID:27662657
MDM2 and CDK4 amplifications are rare events in salivary duct carcinomas.
Grünewald, Inga; Trautmann, Marcel; Busch, Alina; Bauer, Larissa; Huss, Sebastian; Schweinshaupt, Petra; Vollbrecht, Claudia; Odenthal, Margarete; Quaas, Alexander; Büttner, Reinhard; Meyer, Moritz F; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Stenner, Markus; Hartmann, Wolfgang
2016-11-15
Salivary duct carcinoma (SDC) is an aggressive adenocarcinoma of the salivary glands associated with poor clinical outcome. SDCs are known to carry TP53 mutations in about 50%, however, only little is known about alternative pathogenic mechanisms within the p53 regulatory network. Particularly, data on alterations of the oncogenes MDM2 and CDK4 located in the chromosomal region 12q13-15 are limited in SDC, while genomic rearrangements of the adjacent HMGA2 gene locus are well documented in subsets of SDCs. We here analyzed the mutational status of the TP53 gene, genomic amplification of MDM2, CDK4 and HMGA2 rearrangement/amplification as well as protein expression of TP53 (p53), MDM2 and CDK4 in 51 de novo and ex pleomorphic adenoma SDCs.25 of 51 cases were found to carry TP53 mutations, associated with extreme positive immunohistochemical p53 staining levels in 13 cases. Three out of 51 tumors had an MDM2 amplification, one of them coinciding with a CDK4 amplification and two with a HMGA2 rearrangement/amplification. Two of the MDM2 amplifications occurred in the setting of a TP53 mutation. Two out of 51 cases showed a CDK4 amplification, one synchronously being MDM2 amplified and the other one displaying concurrent low copy number increases of both, MDM2 and HMGA2.In summary, we here show that subgroups of SDCs display genomic amplifications of MDM2 and/or CDK4, partly in association with TP53 mutations and rearrangement/amplification of HMGA2. Further research is necessary to clarify the role of chromosomal region 12q13-15 alterations in SDC tumorigenesis and their potential prognostic and therapeutic relevance.
Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer
Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir
2014-01-01
Purpose The mismatch repair (MMR) system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in the MMR proteins have a 102 –103-fold increase in the mutation rate. Single nucleotide polymorphisms (SNPs) of MMR genes have been shown to cause a reduction in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer (PC) and that p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. Material and Methods DNA samples from 110 cases of prostate cancer and healthy controls (n=110) were analyzed by SSCP and PCR-RFLP to determine the genotypic frequency of five different polymorphic loci on two MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare the genotype frequency between patients and controls. Results A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR, 1.87; 95% CI, 1.0–3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR, 1.57; 95% CI, 0.92–2.72). Among p53 codon72 Arg/Pro + Pro/Pro carriers, the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR = 2.1, 95% CI; 1.05–4.34). Conclusion This is the first report on the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer. PMID:18355840
Mardini, Ana C; Pereira, Fernanda S; Schuler-Faccini, Lavínia; Matte, Ursula
2017-04-01
Although the birth of twins has always attracted attention, there are no known genetic or environmental factors that can determine the birth of monozygotic (MZ) twins. And even for dizygotic (DZ) twins, genetic influences are not completely understood. A previous study from our group has shown that the C allele of polymorphism rs1042522 in the TP53 gene was more frequent in the mothers of twins than in the mothers of singletons in a small village in South Brazil. In order to clarify whether this was an isolated factor, we performed a population-based, observational case-control study. Samples were selected from a state-funded program of paternity investigation. Samples were considered cases when two of the children had the same date of birth, whereas controls were those samples in which at least two children were born in different dates. The first subsequent sample fulfilling control criteria was included after each case. From 2007 to 2013, 32,661 records were searched and 283 (0.9%) twins were found (119 MZ and 164 DZ). Genotypic and allele frequencies were not different between mothers of twins or mothers of singletons. However, mothers of MZ twins showed a higher frequency of GG genotype and lower frequency of the C allele when compared to mothers of DZ twins. Also, the proportion of MZ twins (42%) was higher than usually reported (30%). Finally, the proportion of twins found in this study seems to be more realistic, as this sample was allegedly not from users of assisted reproduction techniques.
Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation
Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel
2016-01-01
Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. DOI: http://dx.doi.org/10.7554/eLife.08711.001 PMID:26984279
Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle
2016-01-01
Background TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. Methods 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Results Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Conclusions Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes. PMID:27611952
The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells
NASA Technical Reports Server (NTRS)
Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard
2003-01-01
The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.
Blanco-Marchite, Cristina; Sánchez-Sánchez, Francisco; López-Garrido, María-Pilar; Iñigez-de-Onzoño, Mercedes; López-Martínez, Francisco; López-Sánchez, Enrique; Alvarez, Lydia; Rodríguez-Calvo, Pedro-Pablo; Méndez-Hernández, Carmen; Fernández-Vega, Luis; García-Sánchez, Julián; Coca-Prados, Miguel; García-Feijoo, Julián
2011-01-01
Purpose. To investigate the role of WDR36 and P53 sequence variations in POAG susceptibility. Methods. The authors performed a case-control genetic association study in 268 unrelated Spanish patients (POAG1) and 380 control subjects matched for sex, age, and ethnicity. WDR36 sequence variations were screened by either direct DNA sequencing or denaturing high-performance liquid chromatography. P53 polymorphisms p.R72P and c.97–147ins16bp were analyzed by single-nucleotide polymorphism (SNP) genotyping and PCR, respectively. Positive SNP and haplotype associations were reanalyzed in a second sample of 211 patients and in combined cases (n = 479). Results. The authors identified almost 50 WDR36 sequence variations, of which approximately two-thirds were rare and one-third were polymorphisms. Approximately half the variants were novel. Eight patients (2.9%) carried rare mutations that were not identified in the control group (P = 0.001). Six Tag SNPs were expected to be structured in three common haplotypes. Haplotype H2 was consistently associated with the disease (P = 0.0024 in combined cases). According to a dominant model, genotypes containing allele P of the P53 p.R72P SNP slightly increased glaucoma risk. Glaucoma susceptibility associated with different WDR36 genotypes also increased significantly in combination with the P53 RP risk genotype, indicating the existence of a genetic interaction. For instance, the OR of the H2 diplotype estimated for POAG1 and combined cases rose approximately 1.6 times in the two-locus genotype H2/RP. Conclusions. Rare WDR36 variants and the P53 p.R72P polymorphism behaved as moderate glaucoma risk factors in Spanish patients. The authors provide evidence for a genetic interaction between WDR36 and P53 variants in POAG susceptibility, although this finding must be confirmed in other populations. PMID:21931130
Kashiyama, Tomoko; Oda, Katsutoshi; Ikeda, Yuji; Shiose, Yoshinobu; Hirota, Yasuhide; Inaba, Kanako; Makii, Chinami; Kurikawa, Reiko; Miyasaka, Aki; Koso, Takahiro; Fukuda, Tomohiko; Tanikawa, Michihiro; Shoji, Keiko; Sone, Kenbun; Arimoto, Takahide; Wada-Hiraike, Osamu; Kawana, Kei; Nakagawa, Shunsuke; Matsuda, Koichi; McCormick, Frank; Aburatani, Hiroyuki; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki
2014-01-01
DS-7423, a novel, small-molecule dual inhibitor of phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR), is currently in phase I clinical trials for solid tumors. Although DS-7423 potently inhibits PI3Kα (IC50 = 15.6 nM) and mTOR (IC50 = 34.9 nM), it also inhibits other isoforms of class I PI3K (IC50 values: PI3Kβ = 1,143 nM; PI3Kγ = 249 nM; PI3Kδ = 262 nM). The PI3K/mTOR pathway is frequently activated in ovarian clear cell adenocarcinomas (OCCA) through various mutations that activate PI3K-AKT signaling. Here, we describe the anti-tumor effect of DS-7423 on a panel of nine OCCA cell lines. IC50 values for DS-7423 were <75 nM in all the lines, regardless of the mutational status of PIK3CA. In mouse xenograft models, DS-7423 suppressed the tumor growth of OCCA in a dose-dependent manner. Flow cytometry analysis revealed a decrease in S-phase cell populations in all the cell lines and an increase in sub-G1 cell populations following treatment with DS-7423 in six of the nine OCCA cell lines tested. DS-7423-mediated apoptosis was induced more effectively in the six cell lines without TP53 mutations than in the three cell lines with TP53 mutations. Concomitantly with the decreased phosphorylation level of MDM2 (mouse double minute 2 homolog), the level of phosphorylation of TP53 at Ser46 was increased by DS-7423 in the six cell lines with wild-type TP53, with induction of genes that mediate TP53-dependent apoptosis, including p53AIP1 and PUMA at 39 nM or higher doses. Our data suggest that the dual PI3K/mTOR inhibitor DS-7423 may constitute a promising molecular targeted therapy for OCCA, and that its antitumor effect might be partly obtained by induction of TP53-dependent apoptosis in TP53 wild-type OCCAs. PMID:24504419
Suzuki, Shugo; Takeshita, Kentaro; Asamoto, Makoto; Takahashi, Satoru; Kandori, Hitoshi; Tsujimura, Kazunari; Saito, Fumiyo; Masuko, Kazuo; Shirai, Tomoyuki
2009-01-31
To identify genes important in hepatocellular carcinogenesis, especially processes involved in malignant transformation, we focused on differences in gene expression between adenomas and carcinomas by DNA microarray. Eighty-one genes for which expression was specific in carcinomas were analyzed using Ingenuity Pathway Analysis software and Gene Ontology, and found to be associated with TP53 and regulators of cell proliferation. In the genes associated with TP53, we selected high mobility group box (HMGB) for detailed analysis. Immunohistochemistry revealed expression of HMGBs in carcinomas to be significantly higher than in other lesions among both human and rat liver, and a positive correlation between HMGBs and TP53 was detected in rat carcinomas. Knock-down of HMGB 2 expression in a rat hepatocellular carcinoma cell line by RNAi resulted in inhibition of cell growth, although no effects on invasion were evident in vitro. These results suggest that acquisition of malignant potential in the liver requires specific signaling pathways related to high cell proliferation associated with TP53. In particular, HMGBs appear to have an important role for progression and cell proliferation associated with loss of TP53 function in rat and in human hepatocarcinogenesis.
Zhou, Ruoji; Xu, An; Wang, Donghui; Zhu, Dandan; Mata, Helen; Huo, Zijun; Tu, Jian; Liu, Mo; Mohamed, Alaa M T; Jewell, Brittany E; Gingold, Julian; Xia, Weiya; Rao, Pulivarthi H; Hung, Mien-Chie; Zhao, Ruiying; Lee, Dung-Fang
2018-03-01
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancers. Many hot-spot mutations of TP53 confer novel functions not found in wild-type p53 and contribute to tumor development and progression. We report on the generation of a H1 human embryonic stem cell line carrying a homozygous TP53 R282W mutation using TALEN-mediated genome editing. The generated cell line demonstrates normal karyotype, maintains a pluripotent state, and is capable of generating a teratoma in vivo containing tissues from all three germ layers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C
2014-01-01
In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616
Knappskog, Stian; Chrisanthar, Ranjan; Løkkevik, Erik; Anker, Gun; Østenstad, Bjørn; Lundgren, Steinar; Risberg, Terje; Mjaaland, Ingvil; Leirvaag, Beryl; Miletic, Hrvoje; Lønning, Per E
2012-03-15
Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM's potential role in resistance to chemotherapy. We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2-p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define "low" ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer.
Insights into wild-type and mutant p53 functions provided by genetically engineered mice.
Donehower, Lawrence A
2014-06-01
Recent whole-exome sequencing studies of numerous human cancers have now conclusively shown that the TP53 tumor-suppressor gene is the most frequently mutated gene in human cancers. Despite extensive studies of the TP53 gene and its encoded protein (p53), our understanding of how TP53 mutations contribute to cancer initiation and progression remain incomplete. Genetically engineered mice with germline or inducible Trp53 somatic mutations have provided important insights into the mechanisms by which different types of p53 mutation influence cancer development. Trp53 germline mutations that alter specific p53 structural domains or posttranslation modification sites have benefitted our understanding of wild-type p53 functions in a whole organism context. Moreover, genetic approaches to reestablish functional wild-type p53 to p53-deficient tissues and tumors have increased our understanding of the therapeutic potential of restoring functional p53 signaling to cancers. This review outlines many of the key insights provided by the various categories of Trp53 mutant mice that have been generated by multiple genetic engineering approaches. © 2014 WILEY PERIODICALS, INC.
Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A; Ostrosky-Wegman, Patricia
2015-01-01
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.
Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A.; Ostrosky-Wegman, Patricia
2015-01-01
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment. PMID:26309132
Use of multivariate analysis to suggest a new molecular classification of colorectal cancer
Domingo, Enric; Ramamoorthy, Rajarajan; Oukrif, Dahmane; Rosmarin, Daniel; Presz, Michal; Wang, Haitao; Pulker, Hannah; Lockstone, Helen; Hveem, Tarjei; Cranston, Treena; Danielsen, Havard; Novelli, Marco; Davidson, Brian; Xu, Zheng-Zhou; Molloy, Peter; Johnstone, Elaine; Holmes, Christopher; Midgley, Rachel; Kerr, David; Sieber, Oliver; Tomlinson, Ian
2013-01-01
Abstract Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53–CIN–MSI–BRAF–KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI+ and/or BRAF-mutant; (2) CIN+ and/or TP53– mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN+, TP53-wild-type; (4) KRAS– and/or PIK3CA-mutant, CIN–, TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN+ CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN+ cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:23165447
Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S
2014-01-01
In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. Mol. Reprod. Dev. 81: 552–556, 2014. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:24659575
2013-01-01
Background There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Methods Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. Results PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. Conclusions We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal carcinomas and could be used as a biomarker to predict the resistance of colorectal carcinomas to the treatment by this IGF-1R inhibitor. PMID:24182354
Development and translational imaging of a TP53 porcine tumorigenesis model
Sieren, Jessica C.; Meyerholz, David K.; Wang, Xiao-Jun; Davis, Bryan T.; Newell, John D.; Hammond, Emily; Rohret, Judy A.; Rohret, Frank A.; Struzynski, Jason T.; Goeken, J. Adam; Naumann, Paul W.; Leidinger, Mariah R.; Taghiyev, Agshin; Van Rheeden, Richard; Hagen, Jussara; Darbro, Benjamin W.; Quelle, Dawn E.; Rogers, Christopher S.
2014-01-01
Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53R167H/R167H mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53R167H/R167H pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers. PMID:25105366
Suda, Tetsuji; Yoshihara, Mitsuyo; Nakamura, Yoshiyasu; Sekiguchi, Hironobu; Godai, Ten-I; Sugano, Nobuhiro; Tsuchida, Kazuhito; Shiozawa, Manabu; Sakuma, Yuji; Tsuchiya, Eiju; Kameda, Yoichi; Akaike, Makoto; Matsukuma, Shoichi; Miyagi, Yohei
2011-07-01
MDM4, a homolog of MDM2, is considered a key negative regulator of p53. Gene amplification of MDM4 has been identified in a variety of tumors. MDM2 or MDM4 gene amplification is only associated with the wild-type TP53 gene in retinoblastomas, thus the amplification of the two genes is mutually exclusive. Previously, we demonstrated that MDM2 amplification and TP53 alteration were not mutually exclusive in colorectal cancer, and we identified a subset of colorectal cancer patients without alterations in either the TP53 or the MDM2 gene. In this study, we investigated the gene amplification status of MDM4 in the same set of colorectal cancer cases. Unexpectedly, MDM4 amplification was rare, detected in only 1.4% (3 out of 211) of colorectal cancer cases. All the three gene-amplified tumors also harbored TP53-inactivating mutations. This contradicts the simple mutually exclusive relationship observed in retinoblastomas. Surprisingly, two of the three MDM4-amplified tumors also demonstrated MDM2 amplification. Paradoxically, the MDM4 protein levels were decreased in the tumor tissue of the gene-amplified cases compared with levels in the matched normal mucosa. We speculate that MDM4 might play a role in colorectal carcinogenesis that is not limited to negative regulation of p53 in combination with MDM2. The functional significance of MDM4 is still unclear and further studies are needed.
p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation
Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.
2011-01-01
p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464
Si, H; Lu, H; Yang, X; Mattox, A; Jang, M; Bian, Y; Sano, E; Viadiu, H; Yan, B; Yau, C; Ng, S; Lee, S K; Romano, R-A; Davis, S; Walker, R L; Xiao, W; Sun, H; Wei, L; Sinha, S; Benz, C C; Stuart, J M; Meltzer, P S; Van Waes, C; Chen, Z
2016-11-03
The Cancer Genome Atlas (TCGA) network study of 12 cancer types (PanCancer 12) revealed frequent mutation of TP53, and amplification and expression of related TP63 isoform ΔNp63 in squamous cancers. Further, aberrant expression of inflammatory genes and TP53/p63/p73 targets were detected in the PanCancer 12 project, reminiscent of gene programs comodulated by cREL/ΔNp63/TAp73 transcription factors we uncovered in head and neck squamous cell carcinomas (HNSCCs). However, how inflammatory gene signatures and cREL/p63/p73 targets are comodulated genome wide is unclear. Here, we examined how the inflammatory factor tumor necrosis factor-α (TNF-α) broadly modulates redistribution of cREL with ΔNp63α/TAp73 complexes and signatures genome wide in the HNSCC model UM-SCC46 using chromatin immunoprecipitation sequencing (ChIP-seq). TNF-α enhanced genome-wide co-occupancy of cREL with ΔNp63α on TP53/p63 sites, while unexpectedly promoting redistribution of TAp73 from TP53 to activator protein-1 (AP-1) sites. cREL, ΔNp63α and TAp73 binding and oligomerization on NF-κB-, TP53- or AP-1-specific sequences were independently validated by ChIP-qPCR (quantitative PCR), oligonucleotide-binding assays and analytical ultracentrifugation. Function of the binding activity was confirmed using TP53-, AP-1- and NF-κB-specific REs or p21, SERPINE1 and IL-6 promoter luciferase reporter activities. Concurrently, TNF-α regulated a broad gene network with cobinding activities for cREL, ΔNp63α and TAp73 observed upon array profiling and reverse transcription-PCR. Overlapping target gene signatures were observed in squamous cancer subsets and in inflamed skin of transgenic mice overexpressing ΔNp63α. Furthermore, multiple target genes identified in this study were linked to TP63 and TP73 activity and increased gene expression in large squamous cancer samples from PanCancer 12 TCGA by CircleMap. PARADIGM inferred pathway analysis revealed the network connection of TP63 and NF-κB complexes through an AP-1 hub, further supporting our findings. Thus, inflammatory cytokine TNF-α mediates genome-wide redistribution of the cREL/p63/p73, and AP-1 interactome, to diminish TAp73 tumor suppressor function and reciprocally activate NF-κB and AP-1 gene programs implicated in malignancy.
USDA-ARS?s Scientific Manuscript database
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...
Evaluation of genome damage in subjects occupationally exposed to possible carcinogens.
Zeljezic, Davor; Mladinic, Marin; Kopjar, Nevenka; Radulovic, Azra Hursidic
2016-09-01
In occupational exposures, populations are simultaneously exposed to a mixture of chemicals. We aimed to evaluate DNA damage due to possible carcinogen exposure (phenylhydrazine, ethylene oxide, dichloromethane, and 1,2-dichloroethane) in lymphocytes of pharmaceutical industry workers from the same production line. Population comprised 16 subjects (9 females and 7 males) who were exposed to multiple chemicals for 8 months. Genome damage was assessed using alkaline comet assay, micronucleus assay, and comet assay coupled with fluorescent in situ hybridization (comet-FISH). After 8 months of exposure, the issue of irregular use of all available personal protective equipment (PPE) came into light. To decrease the risk of exposure, strict use of PPE was enforced. After 8 months of strict PPE use, micronuclei frequency and comet assay parameters in lymphocytes of pharmaceutical workers significantly decreased compared with prior period of irregular PPE use. Comet-FISH results indicated a significant shift in distribution of signals for the TP 53 gene toward a more frequent occurrence in the comet tail. Prolonged exposure to possible carcinogens may hinder DNA repair mechanisms and affect structural integrity of TP 53 Two indicators of loss of TP 53 gene integrity have risen, namely, TP 53 fragmentation rate in lymphocytes with persistently elevated primary damage and incidence of TP 53 deletions in undamaged lymphocytes. © The Author(s) 2015.
Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations
Kamitaki, Nolan; Mitchell, Jana; Avior, Yishai; Mello, Curtis; Kashin, Seva; Mekhoubad, Shila; Ilic, Dusko; Charlton, Maura; Saphier, Genevieve; Handsaker, Robert E.; Genovese, Giulio; Bar, Shiran; Benvenisty, Nissim; McCarroll, Steven A.; Eggan, Kevin
2017-01-01
Human pluripotent stem cells (hPSCs) can self-renew indefinitely, making them an attractive source for regenerative therapies. This expansion potential has been linked with acquisition of large copy number variants (CNVs) that provide mutant cells with a growth advantage in culture1–3. However, the nature, extent, and functional impact of other acquired genome sequence mutations in cultured hPSCs is not known. Here, we sequenced the protein-coding genes (exomes) of 140 independent human embryonic stem cell (hESC) lines, including 26 lines prepared for potential clinical use4. We then applied computational strategies for identifying mutations present in a subset of cells5. Though such mosaic mutations were generally rare, we identified five unrelated hESC lines that carried six mutations in the TP53 gene that encodes the tumor suppressor P53. Notably, the TP53 mutations we observed are dominant negative and are the mutations most commonly seen in human cancers. We used droplet digital PCR to demonstrate that the TP53 mutant allelic fraction increased with passage number under standard culture conditions, suggesting that P53 mutation confers selective advantage. When we then mined published RNA sequencing data from 117 hPSC lines, we observed another nine TP53 mutations, all resulting in coding changes in the DNA binding domain of P53. Strikingly, in three lines, the allelic fraction exceeded 50%, suggesting additional selective advantage resulting from loss of heterozygosity at the TP53 locus. As the acquisition and favored expansion of cancer-associated mutations in hPSCs may go unnoticed during most applications, we suggest that careful genetic characterization of hPSCs and their differentiated derivatives should be carried out prior to clinical use. PMID:28445466
2012-01-01
Introduction Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATM's potential role in resistance to chemotherapy. Methods We sequenced ATM and assessed gene expression levels in pre-treatment biopsies from 71 locally advanced breast cancers treated in the neoadjuvant setting with doxorubicin monotherapy or mitomycin combined with 5-fluorouracil. Findings were confirmed in a separate patient cohort treated with epirubicin monotherapy. Each tumor was previously analyzed for CHEK2 and TP53 mutation status. Results While ATM mutations were not associated with chemo-resistance, low ATM expression levels predicted chemo-resistance among patients with tumors wild-type for TP53 and CHEK2 (P = 0.028). Analyzing the ATM-chk2-p53 cascade, low ATM levels (defined as the lower 5 to 50% percentiles) or mutations inactivating TP53 or CHEK2 robustly predicted anthracycline resistance (P-values varying between 0.001 and 0.027 depending on the percentile used to define "low" ATM levels). These results were confirmed in an independent cohort of 109 patients treated with epirubicin monotherapy. In contrast, ATM-levels were not suppressed in resistant tumors harboring TP53 or CHEK2 mutations (P > 0.5). Conclusions Our data indicate loss of function of the ATM-Chk2-p53 cascade to be strongly associated with resistance to anthracycline/mitomycin-containing chemotherapy in breast cancer. PMID:22420423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallai, Carlo, E-mail: carlo.fallai@istitutotumori.mi.i; Perrone, Federica; Licitra, Lisa
Purpose: To study the prognostic value of the TP53 mutation and human papilloma virus (HPV) status in oropharyngeal squamous cell carcinoma (OPSCC). Methods and materials: The TP53 mutation and HPV status were analyzed in 78 cases of locoregionally advanced OPSCC. The possible correlation of these factors with locoregiownal control, relapse-free survival, disease-specific survival, and overall survival (OS) was also investigated. Results: Of these 78 cases, 22 had disruptive and 22 had non-disruptive (silent) TP53 mutations; the remaining 34 cases had wild-type (WT) TP53. HPV 16 DNA was found in 9 cases (11%), but all HPV-positive (HPV+) cases carried a functionalmore » p53 protein, except for 1 case that had a silent mutation. HPV+ patients fared better than HPV-negative (HPV-) patients in terms of all survival parameters, with highly statistically significant differences between the groups. Specifically, no distant metastases were observed in the HPV+ patients, whereas they occurred in 17% of the HPV- patients. However, no difference was observed between the WT TP53 and mutation group, even when this was analyzed in terms of disruptive and non-disruptive mutations. Regardless, treatment with chemotherapy nearly doubled the 5-year OS rates, both in the mutation (42% vs. 22%) and WT (30 vs. 16%) group, but only the mutation group showed improvement in all survival parameters. In addition, the second tumor-free 5-year survival rate was 72% in HPV- cases, but no second tumors were observed in HPV+ and WT p53 cases. Conclusions: Patients with HPV+ OPSCC have an excellent prognosis after radiochemotherapy, but cisplatin-based chemotherapy may not confer a satisfactory outcome, especially in WT cases, thereby justifying the additional or alternative use of taxanes and epidermal growth factor receptors inhibitors. Uncommon distant metastases and second tumors in the HPV+ group may be cause for clinicians to review the follow-up policies in these patients.« less
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca
Purpose: Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Methods and Materials: Individualmore » genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Results: Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR = 53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR = 38.26; 95% CI, 1.19-1232.52). Conclusions: To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings.« less
Gabor, Krisztina Mita; Schermann, Geza; Lautner-Csorba, Orsolya; Rarosi, Ferenc; Erdelyi, Daniel J; Endreffy, Emoke; Berek, Krisztina; Bartyik, Katalin; Bereczki, Csaba; Szalai, Csaba; Semsei, Agnes F
2015-04-01
Cytarabine (cytosine arabinoside, ara-C) is a chemotherapeutical agent used in the treatment of pediatric acute lymphoblastic leukemia (ALL). Adverse drug reactions, such as interpatient variability in sensitivity to ara-C, are considerable and may cause difficulties during chemotherapy. Single nucleotide polymorphisms (SNPs) can play a significant role in modifying nucleoside-drug pharmacokinetics and pharmacodynamics and thus the development of adverse effects. Our aim was to determine whether polymorphisms in genes encoding transporters and enzymes responsible for the metabolism of ara-C are associated with toxicity and clinical outcome in a patient population with childhood ALL. We studied 8 SNPs in the CDA, DCK, DCTD, SLC28A3, and SLC29A1 genes in 144 patients with childhood acute lymphoblastic leukemia treated according to ALLIC BFM 1990, 1995 and 2002 protocols. DCK rs12648166 and DCK rs4694362 SNPs were associated with hematologic toxicity (OR = 2.63, CI 95% = 1.37-5.04, P = 0.0036 and OR = 2.53, CI 95% = 1.34-4.80, P = 0.0044, respectively). Our results indicate that DCK polymorphisms might be important genetic risk factors for hematologic toxicity during ALL treatment with ara-C. Individualized chemotherapy based on genetic profiling may help to optimize ara-C dosing, leading to improvements in clinical outcome and reduced toxicity. © 2015 Wiley Periodicals, Inc.
High frequency of TP53 but not K-ras gene mutations in Bolivian patients with gallbladder cancer.
Asai, Takao; Loza, Ernesto; Roig, Guido Villa-Gomez; Ajioka, Yoichi; Tsuchiya, Yasuo; Yamamoto, Masaharu; Nakamura, Kazutoshi
2014-01-01
Although genetic characteristics are considered to be a factor influencing the geographic variation in the prevalence of gallbladder cancer (GBC), they have not been well studied in Bolivia, which has a high prevalence rate of GBC. The purpose of this study was to examine the frequency of TP53 and K-ras mutations in Bolivian patients with GBC and to compare them with our previous data obtained in other high-GBC-prevalence countries, namely Japan, Chile, and Hungary. DNA was extracted from cancer sites in paraffin-embedded tissue from 36 patients using a microdissection technique. TP53 mutations at exons 5 to 8 and K-ras mutations at codons 12, 13 and 61 were examined using direct sequencing techniques. The data obtained were compared with those in the other high-GBC-prevalence countries. Of the 36 patients, 18 (50.0%) had a TP53 mutation (one mutation in each of 17 patients and three mutations in one patient), and only one (2.8%) had a K-ras mutation. Of the 20 TP53 mutations, 12 were of the transition type (60.0%). This rate was significantly lower than that in Chile (12/12, P<0.05). In addition, three mutations were of the CpG transition type (15.0%), which is a feature of endogenous mutation. All three were found in the hot spot region of the TP53 gene. In contrast, G:C to T:A transversion was found in Bolivia, suggesting the presence of exogenous carcinogens. Our findings suggest that the development of GBC in Bolivia is associated with both exogenous carcinogens and endogenous mechanisms. The identification of an environmental risk factor for GBC is needed to confirm these findings.
Le Bris, Yannick; Struski, Stéphanie; Guièze, Romain; Rouvellat, Caroline; Prade, Naïs; Troussard, Xavier; Tournilhac, Olivier; Béné, Marie C; Delabesse, Eric; Ysebaert, Loïc
2017-12-01
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder of remarkable heterogeneity as demonstrated by cytogenetics and molecular analyses. Complex karyotype (CK), TP53 deletions and/or mutations (TP53 disruption), IGVH mutational status, and, more recently, recurrent somatic mutations have been identified as prognostic markers in CLL. On a cohort of 110 patients with CLL treated with first-line fludarabin, cyclophosphamide, and rituximab treatment compared with 33 untreated (watch and wait) patients with CLL, we report more frequent complex karyotypes (34 vs 15%; P = .05), unmutated IGHV (70 vs 21%; P < .0001), ATM deletion (25 vs 6%, P = .02), and NOTCH mutation (3 vs 17%, P = .04). Among treated patients, 39 relapsed during the follow-up period. These patients were characterized before treatment by a higher incidence of trisomy 12 (38 vs 11%, P < .001) and TP53 disruption (31 vs 4%, P = .0002). A significantly shorter 5-year overall survival was found for treated patients with CK (72.4 vs 85.8%; P = .007), unmutated IGHV (70 vs 100%; P = .04), or TP53 disruption (55.7 vs 82.7%; P < .0001). Three risk groups were defined based on the status of TP53 disruption or unmutated IGVH, which differed significantly in terms of 5-year overall survival. Moreover, the presence of CK impacted pejoratively 5-year overall survival and progression-free survival in all these 3 groups. Conventional karyotyping therefore appears to be of value, CK being an additional factor, undetectable in classical FISH, in patients with CLL at the stage when therapy becomes required. Copyright © 2016 John Wiley & Sons, Ltd.
Molecular Classification of Low-Grade Diffuse Gliomas
Kim, Young-Ho; Nobusawa, Sumihito; Mittelbronn, Michel; Paulus, Werner; Brokinkel, Benjamin; Keyvani, Kathy; Sure, Ulrich; Wrede, Karsten; Nakazato, Yoichi; Tanaka, Yuko; Vital, Anne; Mariani, Luigi; Stawski, Robert; Watanabe, Takuya; De Girolami, Umberto; Kleihues, Paul; Ohgaki, Hiroko
2010-01-01
The current World Health Organization classification recognizes three histological types of grade II low-grade diffuse glioma (diffuse astrocytoma, oligoastrocytoma, and oligodendroglioma). However, the diagnostic criteria, in particular for oligoastrocytoma, are highly subjective. The aim of our study was to establish genetic profiles for diffuse gliomas and to estimate their predictive impact. In this study, we screened 360 World Health Organization grade II gliomas for mutations in the IDH1, IDH2, and TP53 genes and for 1p/19q loss and correlated these with clinical outcome. Most tumors (86%) were characterized genetically by TP53 mutation plus IDH1/2 mutation (32%), 1p/19q loss plus IDH1/2 mutation (37%), or IDH1/2 mutation only (17%). TP53 mutations only or 1p/19q loss only was rare (2 and 3%, respectively). The median survival of patients with TP53 mutation ± IDH1/2 mutation was significantly shorter than that of patients with 1p/19q loss ± IDH1/2 mutation (51.8 months vs. 58.7 months, respectively; P = 0.0037). Multivariate analysis with adjustment for age and treatment confirmed these results (P = 0.0087) and also revealed that TP53 mutation is a significant prognostic marker for shorter survival (P = 0.0005) and 1p/19q loss for longer survival (P = 0.0002), while IDH1/2 mutations are not prognostic (P = 0.8737). The molecular classification on the basis of IDH1/2 mutation, TP53 mutation, and 1p/19q loss has power similar to histological classification and avoids the ambiguity inherent to the diagnosis of oligoastrocytoma. PMID:21075857
Cell-intrinsic determinants of ibrutinib-induced apoptosis in Chronic Lymphocytic Leukemia
Amin, Nisar A.; Balasubramanian, Sriram; Saiya-Cork, Kamlai; Shedden, Kerby; Hu, Nan; Malek, Sami N.
2016-01-01
Purpose Ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, is approved for the treatment of relapsed CLL and CLL with del17p. Mechanistically, ibrutinib interferes with BCR signaling as well as multiple CLL cell to microenvironment interactions. Given the importance of ibrutinib in the management of CLL, a deeper understanding of factors governing sensitivity and resistance is warranted. Experimental Design We studied 48 longitudinally sampled paired CLL samples, 42 of which were procured before and after standard CLL chemotherapies, and characterized them for well-studied CLL molecular traits as well as by whole exome sequencing and SNP 6.0 array profiling. We exposed these samples to 0.25 μM – 5 μM of ibrutinib ex vivo and measured apoptosis fractions as well as BCR signaling by immunoblotting. We disrupted TP53 in HG3, PGA1 and PG-EBV cell lines and measured BCR signaling and ibrutinib responses. Results CLL samples demonstrated a surprisingly wide range of ex vivo sensitivities to ibrutinib with IC50 values ranging from 0.4 μM – 9.7 μM. Unmutated IGVH status, elevated ZAP70 expression and trisomy 12 were associated with heightened sensitivity to ibrutinib treatment. Five CLL samples were substantially more resistant to ibrutinib following relapse from chemotherapy; of these, three had acquired a del17p/TP53 mutated status. A validation sample of 15 CLL carrying TP53 mutations, of which 13 carried both del17p and a TP53 mutation confirmed substantially less sensitivity to ibrutinib-induced apoptosis. Conclusions This study identifies that CLL harboring del17p/TP53 mutated cells are substantially less sensitive to ibrutinib-induced apoptosis than del17p/TP53 wild type cells. PMID:27535981
Chen, Jinyun; Etzel, Carol J; Amos, Christopher I; Zhang, Qing; Viscofsky, Nancy; Lindor, Noralane M; Lynch, Patrick M; Frazier, Marsha L
2009-11-01
Lynch syndrome is an autosomal dominant syndrome of familial malignancies resulting from germ line mutations in DNA mismatch repair (MMR) genes. Our goal was to take a pathway-based approach to investigate the influence of polymorphisms in cell cycle-related genes on age of onset for Lynch syndrome using a tree model. We evaluated polymorphisms in a panel of cell cycle-related genes (AURKA, CDKN2A, TP53, E2F2, CCND1, TP73, MDM2, IGF1, and CDKN2B) in 220 MMR gene mutation carriers from 129 families. We applied a novel statistical approach, tree modeling (Classification and Regression Tree), to the analysis of data on patients with Lynch syndrome to identify individuals with a higher probability of developing colorectal cancer at an early age and explore the gene-gene interactions between polymorphisms in cell cycle genes. We found that the subgroup with CDKN2A C580T wild-type genotype, IGF1 CA-repeats >or=19, E2F2 variant genotype, AURKA wild-type genotype, and CCND1 variant genotype had the youngest age of onset, with a 45-year median onset age, while the subgroup with CDKN2A C580T wild-type genotype, IGF1 CA-repeats >or=19, E2F2 wild-type genotype, and AURKA variant genotype had the latest median age of onset, which was 70 years. Furthermore, we found evidence of a possible gene-gene interaction between E2F2 and AURKA genes related to CRC age of onset. Polymorphisms in these cell cycle-related genes work together to modify the age at the onset of CRC in patients with Lynch syndrome. These studies provide an important part of the foundation for development of a model for stratifying age of onset risk among those with Lynch syndrome.
Xiao, Shuai; Wang, Rensheng; Wu, Xiangwei; Liu, Wen; Ma, Shanshan
2018-02-01
P73 antisense RNA 1T (non-protein coding), known as TP73-AS1 or PDAM, is a long noncoding RNA (lncRNA), which may regulate apoptosis by regulation of p53-dependent antiapoptotic genes. An abnormal change of TP73-AS1 expression was noticed in cancers. The effects of TP73-AS1 in brain glioma growth and the underlying mechanism remain unclear so far. In this study, the effect of TP73-AS1 in human brain glioma cell lines and clinical tumor samples was detected so as to reveal its role and function. In this study, TP73-AS1 was specifically upregulated in brain glioma cell lines and promoted glioma cell growth through targeting miR-124. TP73-AS1 knocking down suppressed human brain glioma cell proliferation, invasion, and metastasis in vitro. The inhibitory effect of TP73-AS1 knocking down on glioma cell proliferation and invasion could partly be restored by miR-124 inhibition. In addition, miR-124-dependent inhibitor of apoptosis-stimulating protein of p53 (iASPP) regulation was required in TP73-AS1-induced brain glioma cell growth. Data from this study revealed that TP73-AS1 inhibited the brain glioma growth and metastasis as a competing endogenous RNA (ceRNA) through miR-124-dependent iASPP regulation. In conclusion, we regarded TP73-AS1 as an oncogenic lncRNA promoting brain glioma proliferation and metastasis and a potential target for human brain glioma treatment.
Hara, Kieko; Saito, Tsuyoshi; Hayashi, Takuo; Yimit, Alkam; Takahashi, Michiko; Mitani, Keiko; Takahashi, Makoto; Yao, Takashi
2015-09-01
Appendiceal mucinous tumors (AMTs) are classified as low-grade appendiceal mucinous neoplasms (LAMNs) or mucinous adenocarcinomas (MACs), although their carcinogenesis is not well understood. As somatic activating mutations of GNAS are considered to be characteristic of LAMNs while TP53 mutations have been shown to be specific to MACs, MACs are unlikely to result from transformation of LAMNs. However, emerging evidence also shows the presence of GNAS mutations in MACs. We examined 16 AMTs (11 LAMNs and 5 MACs) for genetic alterations of GNAS, KRAS, BRAF, TP53, CTNNB1, and TERT promoter in order to elucidate the possibility of a shared genetic background in the two tumor types. Extensive histological examination revealed the presence of a low-grade component in all cases of MAC. GNAS mutations were detected in two LAMNs and in one MAC, although the GNAS mutation in this MAC was a nonsense mutation (Q227X) expected not to be activating mutation. TP53 mutations were detected in three LAMNs; they were frequently detected in MACs. KRAS mutations were detected in three LAMNs and three MACs, and CTNNB1 mutations were detected in two LAMNs. KRAS mutation and activating mutation of GNAS occurred exclusively in AMTs. BRAF and TERT mutations were not detected. Overexpression of p53 was observed in only two MACs, and p53 immunostaining clearly discriminated the high-grade lesion from a low-grade component in one. These findings suggest that p53 overexpression plays an important role in the carcinogenesis of AMTs and that, in addition to mutations of GNAS, KRAS and TP53 alterations might be shared by AMTs, thus providing evidence for the possible progression of LAMNs to MAC. Copyright © 2015 Elsevier GmbH. All rights reserved.
Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A
2016-07-01
Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wang, Dingzhong; Tang, Wei; Wu, Xiaojie; Wang, Xinyi; Chen, Gengjia; Chen, Qiang; Li, Na; Liu, Feng
2012-08-21
Toehold-mediated strand displacement reaction (SDR) is first introduced to develop a simple quartz crystal microbalance (QCM) biosensor without an enzyme or label at normal temperature for highly selective and sensitive detection of single-nucleotide polymorphism (SNP) in the p53 tumor suppressor gene. A hairpin capture probe with an external toehold is designed and immobilized on the gold electrode surface of QCM. A successive SDR is initiated by the target sequence hybridization with the toehold domain and ends with the unfolding of the capture probe. Finally, the open-loop capture probe hybridizes with the streptavidin-coupled reporter probe as an efficient mass amplifier to enhance the QCM signal. The proposed biosensor displays remarkable specificity to target the p53 gene fragment against single-base mutant sequences (e.g., the largest discrimination factor is 63 to C-C mismatch) and high sensitivity with the detection limit of 0.3 nM at 20 °C. As the crucial component of the fabricated biosensor for providing the high discrimination capability, the design rationale of the capture probe is further verified by fluorescence sensing and atomic force microscopy imaging. Additionally, a recovery of 84.1% is obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of employing this biosensor in detecting SNPs in biological samples.
Single nucleotide polymorphisms and haplotype frequencies of CYP3A5 in a Japanese population.
Saeki, Mayumi; Saito, Yoshiro; Nakamura, Takahiro; Murayama, Norie; Kim, Su-Ryang; Ozawa, Shogo; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Nakajima, Toshiharu; Saito, Hirohisa; Kitamura, Yutaka; Kamatani, Naoyuki; Sawada, Jun-ichi
2003-06-01
In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A5 in a Japanese population, we sequenced the proximal promoter region, all exons, and the surrounding intronic regions using genomic DNA from 187 Japanese subjects. Thirteen SNPs, including seven novel ones: 13108T>C, 16025A>G, 16903A>G, 16993C>G, 27448C>A, 29782A>G, and 31551T>C (A of the translational start codon of GenBank Accession # NG_000004.2 is numbered 1 according to the CYP Allele Nomenclature), were identified. The most common SNP was 6986A>G (key SNP for CYP3A5*3), with a 0.759 frequency. Two novel SNPs, 29782A>G (I456V) and 31551T>C (I488T), as well as 12952T>C (*5 marker) were found, but these alterations were always associated with the *3A marker SNPs, 6986A>G and 31611C>T. Using these 13 SNPs, haplotype analysis was performed and five novel *1 haplotypes (subtypes) (*1e to *1i) and six novel *3 haplotypes (subtypes) (*3d to *3i) were identified. Our findings suggest that CYP3A5*3 is the major defective allele and that other functional exonic SNPs are rare in the Japanese. Copyright 2003 Wiley-Liss, Inc.
Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.
2016-01-01
The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325
Khalaila, Jawad M; Elami, Amir; Caraco, Yoseph
2007-10-01
Single nucleotide polymorphisms at nucleotides 46, 79 and 491 of the beta2 adrenergic receptor (beta2AR) gene modify its pharmacological properties and may alter the response to agonists. The purpose of this study was to evaluate the role played by beta2AR polymorphisms on isoproterenol-induced relaxation of internal mammary arteries ex vivo. Internal mammary leftover segments were collected from 96 patients undergoing coronary artery bypass operation. Vascular rings were allowed to reach equilibrium with physiological Krebs solution before precontraction with U46619. Using the organ bath technique, cumulative dose-response curve of isoproterenol was constructed and average EC50 calculated. beta2AR genotyping was performed using a PCR-RFLP analysis. Arterial segments obtained from Gly16 homozygotes displayed reduced sensitivity to isoproterenol compared with carriers of Arg16 allele(s) [Mean (-log) EC50+/-SD, 6.42+/-0.24, 95% confidence interval (CI) 6.32-6.53 vs. 6.67+/-0.25, 95% CI 6.62-6.73, P<0.001]. Among Gly16 homozygotes, the presence of two Glu27 alleles restored vascular response to the level noted among Arg16 carriers (6.58+/-0.17, 95% CI 6.41-6.76). The least response to isoproterenol was noted in a single patient carrying the Gly16Gly-Gln27Glu-Thr164Ile combined genotype requiring almost six-fold higher isoproterenol concentration than carriers of the wild-type genotype to achieve half the maximal arterial dilatation (17.78 x 10(-7) vs. 3.01 x 10(-7) +/- 2.62 x 10(-7) mol/l). Vascular dilatation by isoproterenol is determined by a complex interaction between polymorphisms at nucleotides 46, 79 and 491 of the beta2AR gene. Further studies are warranted to evaluate the effect of additional polymorphisms in the coding and noncoding regions on vascular reactivity.
Forero-Castro, Maribel; Robledo, Cristina; Benito, Rocío; Bodega-Mayor, Irene; Rapado, Inmaculada; Hernández-Sánchez, María; Abáigar, María; Maria Hernández-Sánchez, Jesús; Quijada-Álamo, Miguel; María Sánchez-Pina, José; Sala-Valdés, Mónica; Araujo-Silva, Fernanda; Kohlmann, Alexander; Luis Fuster, José; Arefi, Maryam; de Las Heras, Natalia; Riesco, Susana; Rodríguez, Juan N; Hermosín, Lourdes; Ribera, Jordi; Camos Guijosa, Mireia; Ramírez, Manuel; de Heredia Rubio, Cristina Díaz; Barragán, Eva; Martínez, Joaquín; Ribera, José M; Fernández-Ruiz, Elena; Hernández-Rivas, Jesús-María
2017-07-11
In B-cell precursor acute lymphoblastic leukaemia (B-ALL), the identification of additional genetic alterations associated with poor prognosis is still of importance. We determined the frequency and prognostic impact of somatic mutations in children and adult cases with B-ALL treated with Spanish PETHEMA and SEHOP protocols. Mutational status of hotspot regions of TP53, JAK2, PAX5, LEF1, CRLF2 and IL7R genes was determined by next-generation deep sequencing in 340 B-ALL patients (211 children and 129 adults). The associations between mutation status and clinicopathological features at the time of diagnosis, treatment outcome and survival were assessed. Univariate and multivariate survival analyses were performed to identify independent prognostic factors associated with overall survival (OS), event-free survival (EFS) and relapse rate (RR). A mutation rate of 12.4% was identified. The frequency of adult mutations was higher (20.2% vs 7.6%, P=0.001). TP53 was the most frequently mutated gene (4.1%), followed by JAK2 (3.8%), CRLF2 (2.9%), PAX5 (2.4%), LEF1 (0.6%) and IL7R (0.3%). All mutations were observed in B-ALL without ETV6-RUNX1 (P=0.047) or BCR-ABL1 fusions (P<0.0001). In children, TP53mut was associated with lower OS (5-year OS: 50% vs 86%, P=0.002) and EFS rates (5-year EFS: 50% vs 78.3%, P=0.009) and higher RR (5-year RR: 33.3% vs 18.6% P=0.037), and was independently associated with higher RR (hazard ratio (HR)=4.5; P=0.04). In adults, TP53mut was associated with a lower OS (5-year OS: 0% vs 43.3%, P=0.019) and a higher RR (5-year RR: 100% vs 61.4%, P=0.029), whereas JAK2mut was associated with a lower EFS (5-year EFS: 0% vs 30.6%, P=0.035) and a higher RR (5-year RR: 100% vs 60.4%, P=0.002). TP53mut was an independent risk factor for shorter OS (HR=2.3; P=0.035) and, together with JAK2mut, also were independent markers of poor prognosis for RR (TP53mut: HR=5.9; P=0.027 and JAK2mut: HR=5.6; P=0.036). TP53mut and JAK2mut are potential biomarkers associated with poor prognosis in B-ALL patients.
Sequential mutations in Notch1, Fbxw7, and Tp53 in radiation-induced mouse thymic lymphomas.
Jen, Kuang-Yu; Song, Ihn Young; Banta, Karl Luke; Wu, Di; Mao, Jian-Hua; Balmain, Allan
2012-01-19
T-cell acute lymphoblastic lymphomas commonly demonstrate activating Notch1 mutations as well as mutations or deletions in Fbxw7. However, because Fbxw7 targets Notch1 for degradation, genetic alterations in these genes are expected to be mutually exclusive events in lymphomagenesis. Previously, by using a radiation-induced Tp53-deficient mouse model for T-cell acute lymphoblastic lymphoma, we reported that loss of heterozygosity at the Fbxw7 locus occurs frequently in a Tp53-dependent manner. In the current study, we show that these thymic lymphomas also commonly exhibit activating Notch1 mutations in the proline-glutamic acid-serine-threonine (PEST) domain. Moreover, concurrent activating Notch1 PEST domain mutations and single-copy deletions at the Fbxw7 locus occur with high frequency in the same individual tumors, indicating that these changes are not mutually exclusive events. We further demonstrate that although Notch1 PEST domain mutations are independent of Tp53 status, they are completely abolished in mice with germline Fbxw7 haploinsufficiency. Therefore, Notch1 PEST domain mutations only occur when Fbxw7 expression levels are intact. These data suggest a temporal sequence of mutational events involving these important cancer-related genes, with Notch1 PEST domain mutations occurring first, followed by Fbxw7 deletion, and eventually by complete loss of Tp53.
Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas.
Kuboki, Yuko; Shimizu, Kyoko; Hatori, Takashi; Yamamoto, Masakazu; Shibata, Noriyuki; Shiratori, Keiko; Furukawa, Toru
2015-03-01
We aimed to identify molecular biomarkers for assessing the progression of intraductal papillary mucinous neoplasm of the pancreas (IPMN). We retrospectively investigated molecular aberrations and their associations with clinicopathological features in 172 IPMNs. GNAS and KRAS mutations were detected in 48% and 56% of IPMNs, respectively. No mutations of EGFR, PIK3CA GNAO1, GNAQ, or GNAI2 were observed. Significant associations were observed between IPMN morphological types and GNAS mutations, KRAS mutations, the expression of phosphorylated MAPK (pMAPK), AKT, and phosphorylated AKT (pAKT), nuclear accumulation of β-catenin, SMAD4 loss, and TP53 overexpression; histological grades and the expression of EGFR, pMAPK, AKT, and pAKT, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression; invasive phenotypes and KRAS mutations, the nuclear β-catenin, and SMAD4 loss; and prognosis and SMAD4 loss and TP53 overexpression. Multivariate analysis to compare prognostic impacts of multiple molecular features revealed that TP53 overexpression was an independent prognostic factor (P = 0.030; hazard ratio, 5.533). These results indicate that mutations in GNAS and KRAS, the expression of EGFR and pMAPK, the nuclear β-catenin, SMAD4 loss, and TP53 overexpression may be relevant for assessing the clinical course of IPMN, including its progression into different morphological types, invasion, and prognosis.
Wichmann, Gunnar; Rosolowski, Maciej; Krohn, Knut; Kreuz, Markus; Boehm, Andreas; Reiche, Anett; Scharrer, Ulrike; Halama, Dirk; Bertolini, Julia; Bauer, Ulrike; Holzinger, Dana; Pawlita, Michael; Hess, Jochen; Engel, Christoph; Hasenclever, Dirk; Scholz, Markus; Ahnert, Peter; Kirsten, Holger; Hemprich, Alexander; Wittekind, Christian; Herbarth, Olf; Horn, Friedemann; Dietz, Andreas; Loeffler, Markus
2015-12-15
Stratification of head and neck squamous cell carcinomas (HNSCC) based on HPV16 DNA and RNA status, gene expression patterns, and mutated candidate genes may facilitate patient treatment decision. We characterize head and neck squamous cell carcinomas (HNSCC) with different HPV16 DNA and RNA (E6*I) status from 290 consecutively recruited patients by gene expression profiling and targeted sequencing of 50 genes. We show that tumors with transcriptionally inactive HPV16 (DNA+ RNA-) are similar to HPV-negative (DNA-) tumors regarding gene expression and frequency of TP53 mutations (47%, 8/17 and 43%, 72/167, respectively). We also find that an immune response-related gene expression cluster is associated with lymph node metastasis, independent of HPV16 status and that disruptive TP53 mutations are associated with lymph node metastasis in HPV16 DNA- tumors. We validate each of these associations in another large data set. Four gene expression clusters which we identify differ moderately but significantly in overall survival. Our findings underscore the importance of measuring the HPV16 RNA (E6*I) and TP53-mutation status for patient stratification and identify associations of an immune response-related gene expression cluster and TP53 mutations with lymph node metastasis in HNSCC. © 2015 UICC.
Liu, Ying; Xu, Shu Ning; Chen, Yong Shun; Wu, Xiao Yuan; Qiao, Lei; Li, Ke; Yuan, Long
2016-07-12
Paclitaxel plays a major role in the treatment of advanced esophageal squamous cell carcinoma. However, there is no biomarker that could be used to predict the clinical response of paclitaxel. This work was conducted to investigate the association of genetic polymorphisms in FBW7 and its substrate genes and the clinical response of paclitaxel. Patients with advanced esophageal squamous cell carcinoma were treated with paclitaxel 175 mg/m2 over 3 hours day 1 and cisplatin 75 mg/m2 day 1, every 3 weeks. The genotypes of 11 FBW7 and its substrate gene polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Statistical analysis revealed that patients with mTOR rs1057079 AG (ORadjusted: 4.59; 95% CI: 1.78-11.86) genotype had significant correlation with the clinical response of paclitaxel when compared with AA genotype after adjustment for sex, age, and chemotherapy cycle. The median progression-free survival (PFS) of patients with advanced ESCC who received paclitaxel plus cisplatin (TP) as first-line treatment is 14.3 months (95% CI: 9.0-19.60 months). The median PFS (mPFS) of AG genotypes and AA genotypes in mTOR rs1057079 were 17.31 months (95% CI: 15.9-18.67 months) and 9.8 months (95% CI: 8.58-11.02 months) (p=0.019), respectively.
Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri
2011-07-01
There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P < .001). Survival assessed from the time of abnormality detection was significantly reduced in patients with both missense (P < .001) and nonmissense p53 mutations (P = .004). In addition, patients harboring missense mutation located in p53 DNA-binding motifs (DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.
Choudhry, Shweta; Baskin, Laurence S; Lammer, Edward J; Witte, John S; Dasgupta, Sudeshna; Ma, Chen; Surampalli, Abhilasha; Shen, Joel; Shaw, Gary M; Carmichael, Suzan L
2015-05-01
Estrogenic endocrine disruptors acting via estrogen receptors α (ESR1) and β (ESR2) have been implicated in the etiology of hypospadias, a common congenital malformation of the male external genitalia. We determined the association of single nucleotide polymorphisms in ESR1 and ESR2 genes with hypospadias in a racially/ethnically diverse study population of California births. We investigated the relationship between hypospadias and 108 ESR1 and 36 ESR2 single nucleotide polymorphisms in 647 cases and 877 population based nonmalformed controls among infants born in selected California counties from 1990 to 2003. Subgroup analyses were performed by race/ethnicity (nonHispanic white and Hispanic subjects) and by hypospadias severity (mild to moderate and severe). Odds ratios for 33 of the 108 ESR1 single nucleotide polymorphisms had p values less than 0.05 (p = 0.05 to 0.007) for risk of hypospadias. However, none of the 36 ESR2 single nucleotide polymorphisms was significantly associated. In stratified analyses the association results were consistent by disease severity but different sets of single nucleotide polymorphisms were significantly associated with hypospadias in nonHispanic white and Hispanic subjects. Due to high linkage disequilibrium across the single nucleotide polymorphisms, haplotype analyses were conducted and identified 6 haplotype blocks in ESR1 gene that had haplotypes significantly associated with an increased risk of hypospadias (OR 1.3 to 1.8, p = 0.04 to 0.00001). Similar to single nucleotide polymorphism analysis, different ESR1 haplotypes were associated with risk of hypospadias in nonHispanic white and Hispanic subjects. No significant haplotype association was observed for ESR2. The data provide evidence that ESR1 single nucleotide polymorphisms and haplotypes influence the risk of hypospadias in white and Hispanic subjects, and warrant further examination in other study populations. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Schneider-Hassloff, H; Straube, B; Jansen, A; Nuscheler, B; Wemken, G; Witt, S H; Rietschel, M; Kircher, T
2016-07-01
The oxytocin system is involved in human social behavior and social cognition such as attachment, emotion recognition and mentalizing (i.e. the ability to represent mental states of oneself and others). It is shaped by social experiences in early life, especially by parent-infant interactions. The single nucleotid polymorphism rs53576 in the oxytocin receptor (OXTR) gene has been linked to social behavioral phenotypes. In 195 adult healthy subjects we investigated the interaction of OXTR rs53576 and childhood attachment security (CAS) on the personality traits "adult attachment style" and "alexithymia" (i.e. emotional self-awareness), on brain structure (voxel-based morphometry) and neural activation (fMRI) during an interactive mentalizing paradigm (prisoner's dilemma game; subgroup: n=163). We found that in GG-homozygotes, but not in A-allele carriers, insecure childhood attachment is - in adulthood - associated with a) higher attachment-related anxiety and alexithymia, b) higher brain gray matter volume of left amygdala and lower volumes in right superior parietal lobule (SPL), left temporal pole (TP), and bilateral frontal regions, and c) higher mentalizing-related neural activity in bilateral TP and precunei, and right middle and superior frontal gyri. Interaction effects of genotype and CAS on brain volume and/or function were associated with individual differences in alexithymia and attachment-related anxiety. Interactive effects were in part sexually dimorphic. The interaction of OXTR genotype and CAS modulates adult personality as well as brain structure and function of areas implicated in salience processing and mentalizing. Rs53576 GG-homozygotes are partially more susceptible to childhood attachment experiences than A-allele carriers. Copyright © 2016 Elsevier Inc. All rights reserved.
Bushman, Lane R; Kiser, Jennifer J; Rower, Joseph E; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L; Anderson, Peter L
2011-09-10
An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research. Copyright © 2011 Elsevier B.V. All rights reserved.
Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe
2011-09-01
Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR=53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR=38.26; 95% CI, 1.19-1232.52). To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings. Copyright © 2011 Elsevier Inc. All rights reserved.
Ariffin, Hany; Hainaut, Pierre; Puzio-Kuter, Anna; Choong, Soo Sin; Chan, Adelyne Sue Li; Tolkunov, Denis; Rajagopal, Gunaretnam; Kang, Wenfeng; Lim, Leon Li Wen; Krishnan, Shekhar; Chen, Kok-Siong; Achatz, Maria Isabel; Karsa, Mawar; Shamsani, Jannah; Levine, Arnold J; Chan, Chang S
2014-10-28
The Li-Fraumeni syndrome (LFS) and its variant form (LFL) is a familial predisposition to multiple forms of childhood, adolescent, and adult cancers associated with germ-line mutation in the TP53 tumor suppressor gene. Individual disparities in tumor patterns are compounded by acceleration of cancer onset with successive generations. It has been suggested that this apparent anticipation pattern may result from germ-line genomic instability in TP53 mutation carriers, causing increased DNA copy-number variations (CNVs) with successive generations. To address the genetic basis of phenotypic disparities of LFS/LFL, we performed whole-genome sequencing (WGS) of 13 subjects from two generations of an LFS kindred. Neither de novo CNV nor significant difference in total CNV was detected in relation with successive generations or with age at cancer onset. These observations were consistent with an experimental mouse model system showing that trp53 deficiency in the germ line of father or mother did not increase CNV occurrence in the offspring. On the other hand, individual records on 1,771 TP53 mutation carriers from 294 pedigrees were compiled to assess genetic anticipation patterns (International Agency for Research on Cancer TP53 database). No strictly defined anticipation pattern was observed. Rather, in multigeneration families, cancer onset was delayed in older compared with recent generations. These observations support an alternative model for apparent anticipation in which rare variants from noncarrier parents may attenuate constitutive resistance to tumorigenesis in the offspring of TP53 mutation carriers with late cancer onset.
Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas
Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed
2016-01-01
Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041
Mistry, Hema; Nduka, Chidozie; Connock, Martin; Colquitt, Jill; Mantopoulos, Theodoros; Loveman, Emma; Walewska, Renata; Mason, James
2018-04-01
Venetoclax is licensed to treat relapsed or refractory (R/R) chronic lymphocytic leukaemia (CLL). As part of the Single Technology Appraisal (STA) ID944, the National Institute for Health and Care Excellence (NICE) invited AbbVie, the manufacturer, to submit evidence on the use of venetoclax, within its licensed indication. The Evidence Review Group (ERG), Warwick Evidence, was asked to provide an independent and critical review of the submitted evidence. Evidence came from three single-arm trials in CLL patients with or without 17p deletion [del(17p])/TP53 chromosomal abnormalities. The anticipated licensed indication specified that venetoclax-eligible del(17p)/TP53 patients should have not responded to, or be deemed unsuitable for, B-cell receptor inhibitor (BCRi) therapy, and that non-del(17p)/TP53 patients should have not responded to both chemoimmunotherapy and BCRi therapy. The three trials were heterogeneous in terms of both del(17p)/TP53 status and previous exposure to BCRi therapy. The M13-982 study investigated 158 R/R CLL patients with the 17p deletion, but only a small number had received previous BCRi therapy; the M12-175 study investigated 67 patients with CLL or small lymphocytic lymphoma, some with the 17p deletion, but very few previously treated with BCRi therapy; and the M14-032 study included 105 patients previously treated with BCRi therapy (either idelalisib or ibrutinib), some of whom had unknown mutation status. The ERG concluded that the study populations did not directly conform to those specified in the licensed indication or in the NICE scope. Outcomes reported included overall response rate (ORR), duration of response, progression-free survival (PFS) and overall survival (OS); adverse events were reported for the pooled population of all three studies, as well as separately for each study. The median PFS was 41.4 and 27.2 months among patients in the M12-175 and M13-982 trials, respectively, whereas the median PFS was not reached in the M14-032 trial. Some results were designated academic in confidence and cannot be reported here. The submission provided a de novo partitioned survival cost-effectiveness model with three health states: pre-progression, post-progression and dead. Transition probabilities between health states were estimated using Weibull models for PFS and OS. The ERG judged the model structure to be appropriate. Venetoclax was compared with best supportive care (BSC) in patients with or without del(17p)/TP53 mutation status, and with palliative care (PC). To populate the del(17p)/TP53 venetoclax arm, the submission pooled del(17p)/TP53 patients from all three studies and fitted Weibull models for PFS and OS. PFS and OS models for non-del(17p)/TP53 venetoclax patients were obtained by applying hazard ratios (HRs) to the del(17p)/TP53 OS and PFS models, derived using Cox's regression analysis comparing del(17p)/TP53 and non-del(17p)/TP53 patients pooled from the M14-032 and M12-175 studies. The ERG expressed reservations about the company's pooling procedure, but acknowledged its expedience given the small evidence base. For the BSC comparator arm, the submission used the rituximab + placebo arm from a randomised controlled trial comparing idelalisib + rituximab versus placebo + rituximab ('study 116'). Weibull regression data for OS and PFS were taken from the idelalisib STA (ID764) submitted by Gilead to NICE. The ERG considered the use of the study 116 rituximab arm to be inconsistent with the licensed indication for venetoclax because these patients had neither not responded to nor were inappropriate for BCRi therapy, being eligible to be randomised to idelalisib. Another difficulty was the requirement for a technical correction in survival analysis because of considerable switching from rituximab to idelalisib. The ERG considered that post-progression survival of patients from the idelalisib arm of study 116 provided a more appropriate representation of BSC since these patients had not responded to BCRi therapy, consistent with venetoclax's licensed indication. For PC, the company submission used data from the UK CLL Forum. The company's base-case analysis indicated that venetoclax was clinically effective, but the resulting incremental cost-effectiveness ratios (ICERs) for del(17p)/TP53 (£39,940/quality-adjusted life-year [QALY] gained) and non-del(17p)/TP53 (£47,370/QALY gained) patients were well above the NICE threshold of £20,000-30,000/QALY. The ERG identified two errors in the implementation of the company's parametric models-one related to the implementation of HRs, and the other to the derivation of the Weibull shape parameters obtained from the Gilead idelalisib submission. The ERG made plausible adjustments to the company's base-case and corrected errors, resulting in a reduced estimate of the cost effectiveness of venetoclax in non-del(17p)/TP53 and del(17p)/TP53 indications; in the ERG's preferred base case, using post-progression survival of patients in the idelalisib arm of study 116 as the BSC comparator, deterministic ICERs were higher than the company's base-case for both indications: £57,476/QALY gained for del(17p)/TP53 and £77,779/QALY gained for non-del(17p)/TP53. The NICE Appraisal Committee's preliminary recommendation was that venetoclax used within its licensed indication should not be recommended for use in the National Health Service (NHS). In response to the preliminary recommendation, the company submitted new analyses; however, at a subsequent appraisal committee meeting, the original recommendation was upheld and the committee concluded there were large uncertainties around the clinical effectiveness of venetoclax and BSC, and that under the committee's preferred assumptions, the ICERs were higher than those generally considered cost effective, even when end-of-life criteria were taken into account. The company submitted further evidence, and the final guidance recommended venetoclax for use with the Cancer Drugs Fund for the two populations in this technology appraisal.
Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.
Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A
2010-08-01
Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Rieber, Manuel; Strasberg-Rieber, Mary
2014-03-15
Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia
Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo
2017-01-01
Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34+ AML cells with a large variability in basal autophagy between AMLs observed. The autophagy flux was higher in AMLs classified as poor risk, which are frequently associated with TP53 mutations (TP53mut), compared with favorable- and intermediate-risk AMLs. In addition, the higher flux was associated with a higher expression level of several autophagy genes, but was not affected by alterations in p53 expression by knocking down p53 or overexpression of wild-type p53 or p53R273H. AML CD34+ cells were more sensitive to the autophagy inhibitor hydroxychloroquine (HCQ) than normal bone marrow CD34+ cells. Similar, inhibition of autophagy by knockdown of ATG5 or ATG7 triggered apoptosis, which coincided with increased expression of p53. In contrast to wild-type p53 AML (TP53wt), HCQ treatment did not trigger a BAX and PUMA-dependent apoptotic response in AMLs harboring TP53mut. To further characterize autophagy in the leukemic stem cell-enriched cell fraction AML CD34+ cells were separated into ROSlow and ROShigh subfractions. The immature AML CD34+-enriched ROSlow cells maintained higher basal autophagy and showed reduced survival upon HCQ treatment compared with ROShigh cells. Finally, knockdown of ATG5 inhibits in vivo maintenance of AML CD34+ cells in NSG mice. These results indicate that targeting autophagy might provide new therapeutic options for treatment of AML since it affects the immature AML subfraction. PMID:28703806
Li-Fraumeni syndrome: cancer risk assessment and clinical management.
McBride, Kate A; Ballinger, Mandy L; Killick, Emma; Kirk, Judy; Tattersall, Martin H N; Eeles, Rosalind A; Thomas, David M; Mitchell, Gillian
2014-05-01
Carriers of germline mutations in the TP53 gene, encoding the cell-cycle regulator and tumour suppressor p53, have a markedly increased risk of cancer-related morbidity and mortality during both childhood and adulthood, and thus require appropriate and effective cancer risk management. However, the predisposition of such patients to multiorgan tumorigenesis presents a specific challenge for cancer risk management programmes. Herein, we review the clinical implications of germline mutations in TP53 and the evidence for cancer screening and prevention strategies in individuals carrying such mutations, as well as examining the potential psychosocial implications of lifelong management for a ubiquitous cancer risk. In addition, we propose an evidence-based framework for the clinical management of TP53 mutation carriers and provide a platform for addressing the management of other cancer predisposition syndromes that can affect multiple organs.
Puiggros, Anna; Collado, Rosa; Calasanz, Maria José; Ortega, Margarita; Ruiz-Xivillé, Neus; Rivas-Delgado, Alfredo; Luño, Elisa; González, Teresa; Navarro, Blanca; García-Malo, MaDolores; Valiente, Alberto; Hernández, José Ángel; Ardanaz, María Teresa; Piñan, María Ángeles; Blanco, María Laura; Hernández-Sánchez, María; Batlle-López, Ana; Salgado, Rocío; Salido, Marta; Ferrer, Ana; Abrisqueta, Pau; Gimeno, Eva; Abella, Eugènia; Ferrá, Christelle; Terol, María José; Ortuño, Francisco; Costa, Dolors; Moreno, Carol; Carbonell, Félix; Bosch, Francesc; Delgado, Julio; Espinet, Blanca
2017-01-01
Genomic complexity identified by chromosome banding analysis (CBA) predicts a worse clinical outcome in CLL patients treated either with standard or new treatments. Herein, we analyzed the clinical impact of complex karyotypes (CK) with or without high-risk FISH deletions (ATM and/or TP53, HR-FISH) in a cohort of 1045 untreated MBL/CLL patients. In all, 99/1045 (9.5%) patients displayed a CK. Despite ATM and TP53 deletions were more common in CK (25% vs 7%; P < 0.001; 40% vs 5%; P < 0.001, respectively), only 44% (40/90) patients with TP53 deletions showed a CK. CK group showed a significant higher two-year cumulative incidence of treatment (48% vs 20%; P < 0.001), as well as a shorter overall survival (OS) (79 mo vs not reached; P < 0.001). When patients were categorized regarding CK and HR-FISH, those with both characteristics showed the worst median OS (52 mo) being clearly distinct from those non-CK and non-HR-FISH (median not reached), but no significant differences were detected between cases with only CK or HR-FISH. Both CK and TP53 deletion remained statistically significant in the multivariate analysis for OS. In conclusion, CK group is globally associated with advanced disease and poor prognostic markers. Further investigation in larger cohorts with CK lacking HR-FISH is needed to elucidate which mechanisms underlie the poor outcome of this subgroup. PMID:28903342
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine
2014-06-14
The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.
2014-01-01
Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies. PMID:24927749
Chen, Zhongxue; Ng, Hon Keung Tony; Li, Jing; Liu, Qingzhong; Huang, Hanwen
2017-04-01
In the past decade, hundreds of genome-wide association studies have been conducted to detect the significant single-nucleotide polymorphisms that are associated with certain diseases. However, most of the data from the X chromosome were not analyzed and only a few significant associated single-nucleotide polymorphisms from the X chromosome have been identified from genome-wide association studies. This is mainly due to the lack of powerful statistical tests. In this paper, we propose a novel statistical approach that combines the information of single-nucleotide polymorphisms on the X chromosome from both males and females in an efficient way. The proposed approach avoids the need of making strong assumptions about the underlying genetic models. Our proposed statistical test is a robust method that only makes the assumption that the risk allele is the same for both females and males if the single-nucleotide polymorphism is associated with the disease for both genders. Through simulation study and a real data application, we show that the proposed procedure is robust and have excellent performance compared to existing methods. We expect that many more associated single-nucleotide polymorphisms on the X chromosome will be identified if the proposed approach is applied to current available genome-wide association studies data.
Biton, Jerome; Mansuet-Lupo, Audrey; Pécuchet, Nicolas; Alifano, Marco; Ouakrim, Hanane; Arrondeau, Jennifer; Boudou-Rouquette, Pascaline; Goldwasser, Francois; Leroy, Karen; Goc, Jeremy; Wislez, Marie; Germain, Claire; Laurent-Puig, Pierre; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Blons, Hélène F; Damotte, Diane
2018-05-15
By unlocking anti-tumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed. We performed in depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and to PD-L1 expression, and a public clinical database was used to validate the results obtained. We showed that distinct combinations of STK11 , EGFR and TP53 mutations, were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations ( TP53 -mut/ STK11 - EGFR -WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T cell density and PD-L1 expression. In this tumor subtype, pathways related to T cell chemotaxis, immune cell cytotoxicity, and antigen processing were up-regulated. Finally, a prolonged progression-free survival (PFS: HR=0.32; 95% CI, 0.16-0.63, p <0.001) was observed in anti-PD-1 treated patients harboring TP53 -mut/ STK11 - EGFR -WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression. Our study reveals that different combinations of TP53 , EGFR and STK11 mutations , together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Copyright ©2018, American Association for Cancer Research.
NASA Technical Reports Server (NTRS)
Wiese, C.; Gauny, S. S.; Liu, W. C.; Cherbonnel-Lasserre, C. L.; Kronenberg, A.
2001-01-01
Allelic loss is an important mutational mechanism in human carcinogenesis. Loss of heterozygosity (LOH) at an autosomal locus is one outcome of the repair of DNA double-strand breaks (DSBs) and can occur by deletion or by mitotic recombination. We report that mitotic recombination between homologous chromosomes occurred in human lymphoid cells exposed to densely ionizing radiation. We used cells derived from the same donor that express either normal TP53 (TK6 cells) or homozygous mutant TP53 (WTK1 cells) to assess the influence of TP53 on radiation-induced mutagenesis. Expression of mutant TP53 (Met 237 Ile) was associated with a small increase in mutation frequencies at the hemizygous HPRT (hypoxanthine phosphoribosyl transferase) locus, but the mutation spectra were unaffected at this locus. In contrast, WTK1 cells (mutant TP53) were 30-fold more susceptible than TK6 cells (wild-type TP53) to radiation-induced mutagenesis at the TK1 (thymidine kinase) locus. Gene dosage analysis combined with microsatellite marker analysis showed that the increase in TK1 mutagenesis in WTK1 cells could be attributed, in part, to mitotic recombination. The microsatellite marker analysis over a 64-cM region on chromosome 17q indicated that the recombinational events could initiate at different positions between the TK1 locus and the centromere. Virtually all of the recombinational LOH events extended beyond the TK1 locus to the most telomeric marker. In general, longer LOH tracts were observed in mutants from WTK1 cells than in mutants from TK6 cells. Taken together, the results demonstrate that the incidence of radi-ation-induced mutations is dependent on the genetic background of the cell at risk, on the locus examined, and on the mechanisms for mutation available at the locus of interest.
Cell-Intrinsic Determinants of Ibrutinib-Induced Apoptosis in Chronic Lymphocytic Leukemia.
Amin, Nisar A; Balasubramanian, Sriram; Saiya-Cork, Kamlai; Shedden, Kerby; Hu, Nan; Malek, Sami N
2017-02-15
Purpose: Ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor, is approved for the treatment of relapsed chronic lymphocytic leukemia (CLL) and CLL with del17p. Mechanistically, ibrutinib interferes with B-cell receptor (BCR) signaling as well as multiple CLL cell-to-microenvironment interactions. Given the importance of ibrutinib in the management of CLL, a deeper understanding of factors governing sensitivity and resistance is warranted. Experimental Design: We studied 48 longitudinally sampled paired CLL samples, 42 of which were procured before and after standard CLL chemotherapies, and characterized them for well-studied CLL molecular traits as well as by whole-exome sequencing and SNP 6.0 array profiling. We exposed these samples to 0.25 to 5 μmol/L of ibrutinib ex vivo and measured apoptosis fractions as well as BCR signaling by immunoblotting. We disrupted TP53 in HG3, PGA1, and PG-EBV cell lines and measured BCR signaling and ibrutinib responses. Results: CLL samples demonstrated a surprisingly wide range of ex vivo sensitivities to ibrutinib, with IC 50 values ranging from 0.4 to 9.7 μmol/L. Unmutated IGVH status, elevated ZAP70 expression, and trisomy 12 were associated with heightened sensitivity to ibrutinib treatment. Five CLL samples were substantially more resistant to ibrutinib following relapse from chemotherapy; of these, three had acquired a del17p/ TP53 -mutated status. A validation sample of 15 CLL carrying TP53 mutations, of which 13 carried both del17p and a TP53 mutation, confirmed substantially less sensitivity to ibrutinib-induced apoptosis. Conclusions: This study identifies that CLL harboring del17p/ TP53 -mutated cells are substantially less sensitive to ibrutinib-induced apoptosis than del17p/ TP53 wild-type cells. Clin Cancer Res; 23(4); 1049-59. ©2016 AACR . ©2016 American Association for Cancer Research.
Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction
Shrine, Nick R. G.; Loehr, Laura R.; Zhao, Jing Hua; Manichaikul, Ani; Lopez, Lorna M.; Smith, Albert Vernon; Heckbert, Susan R.; Smolonska, Joanna; Tang, Wenbo; Loth, Daan W.; Curjuric, Ivan; Hui, Jennie; Latourelle, Jeanne C.; Henry, Amanda P.; Aldrich, Melinda; Bakke, Per; Beaty, Terri H.; Bentley, Amy R.; Borecki, Ingrid B.; Brusselle, Guy G.; Burkart, Kristin M.; Chen, Ting-hsu; Couper, David; Crapo, James D.; Davies, Gail; Dupuis, Josée; Franceschini, Nora; Gulsvik, Amund; Hancock, Dana B.; Harris, Tamara B.; Hofman, Albert; Imboden, Medea; James, Alan L.; Khaw, Kay-Tee; Lahousse, Lies; Launer, Lenore J.; Litonjua, Augusto; Liu, Yongmei; Lohman, Kurt K.; Lomas, David A.; Lumley, Thomas; Marciante, Kristin D.; McArdle, Wendy L.; Meibohm, Bernd; Morrison, Alanna C.; Musk, Arthur W.; Myers, Richard H.; North, Kari E.; Postma, Dirkje S.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Rochat, Thierry; Rotter, Jerome I.; Artigas, María Soler; Starr, John M.; Uitterlinden, André G.; Wareham, Nicholas J.; Wijmenga, Cisca; Zanen, Pieter; Province, Michael A.; Silverman, Edwin K.; Deary, Ian J.; Palmer, Lyle J.; Cassano, Patricia A.; Gudnason, Vilmundur; Barr, R. Graham; Loos, Ruth J. F.; Strachan, David P.; London, Stephanie J.; Boezen, H. Marike; Probst-Hensch, Nicole; Gharib, Sina A.; Hall, Ian P.; O’Connor, George T.; Tobin, Martin D.; Stricker, Bruno H.
2012-01-01
Rationale: Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known. Objectives: Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases. Methods: Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV1 and its ratio to FVC (FEV1/FVC) both less than their respective lower limits of normal as determined by published reference equations. Measurements and Main Results: The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV1/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis. Conclusions: These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction. PMID:22837378
Somatic mutations in early onset luminal breast cancer
de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo
2018-01-01
Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292
TGF-β Polymorphisms Are a Risk Factor for Chagas Disease
Ferreira, Roberto Rodrigues; Madeira, Fabiana da Silva; Alves, Gabriel Farias; Chambela, Mayara da Costa; Curvo, Eduardo de Oliveira Vaz; Moreira, Aline dos Santos; Almeida de Sá, Renata; Cabello, Pedro Hernan; Bailly, Sabine; Araujo-Jorge, Tania Cremonini; Saraiva, Roberto Magalhães
2018-01-01
Transforming growth factor β1 (TGF-β1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF-β1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (−800 G>A, −509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position −509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, −509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population. PMID:29670670
TGF-β Polymorphisms Are a Risk Factor for Chagas Disease.
Ferreira, Roberto Rodrigues; Madeira, Fabiana da Silva; Alves, Gabriel Farias; Chambela, Mayara da Costa; Curvo, Eduardo de Oliveira Vaz; Moreira, Aline Dos Santos; Almeida de Sá, Renata; Mendonça-Lima, Leila; Cabello, Pedro Hernan; Bailly, Sabine; Feige, Jean-Jacques; Araujo-Jorge, Tania Cremonini; Saraiva, Roberto Magalhães; Waghabi, Mariana Caldas
2018-01-01
Transforming growth factor β 1 (TGF- β 1) is an important mediator in Chagas disease. Furthermore, patients with higher TGF- β 1 serum levels show a worse clinical outcome. Gene polymorphism may account for differences in cytokine production during infectious diseases. We tested whether TGFB1 polymorphisms could be associated with Chagas disease susceptibility and severity in a Brazilian population. We investigated five single-nucleotide polymorphisms (-800 G>A, -509 C>T, +10 T>C, +25 G>C, and +263 C>T). 152 patients with Chagas disease (53 with the indeterminate form and 99 with the cardiac form) and 48 noninfected subjects were included. Genotypes CT and TT at position -509 of the TGFB1 gene were more frequent in Chagas disease patients than in noninfected subjects. Genotypes TC and CC at codon +10 of the TGFB1 gene were also more frequent in Chagas disease patients than in noninfected subjects. We found no significant differences in the distribution of the studied TGFB1 polymorphisms between patients with the indeterminate or cardiac form of Chagas disease. Therefore, -509 C>T and +10 T>C TGFB1 polymorphisms are associated with Chagas disease susceptibility in a Brazilian population.
2013-01-01
Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216
Lung Tumor KRAS and TP53 Mutations in Nonsmokers Reflect Exposure to PAH-Rich
Coal Combustion Emissions
Use of smoky coal in unvented homes in Xuan Wei County, Yunnan Province, China, is associated with lung cancer among nonsmoking females. Such women have the highest...
Abstract
We determined the TP53 and codon 12 KRAS mutations in lung tumors from 24 nonsmokers whose tumors were associated with exposure to smoky coal. Among any tumors studied previously, these showed the highest percentage of mutations that (a) were G -+ T transver...
Compositions and methods for detecting single nucleotide polymorphisms
Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.
2016-11-22
Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.
Mastellaro, Maria J; Seidinger, Ana L; Kang, Guolian; Abrahão, Renata; Miranda, Eliana C M; Pounds, Stanley B; Cardinalli, Izilda A; Aguiar, Simone S; Figueiredo, Bonald C; Rodriguez-Galindo, Carlos; Brandalise, Silvia R; Yunes, José A; Barros-Filho, Antônio de A; Ribeiro, Raul C
2017-08-15
The tumor protein p53 (TP53) arginine-to-histidine mutation at codon 337 (R337H) predisposes children to adrenocortical tumors (ACTs) and, rarely, to other childhood tumors, but its impact on adult cancer remains undetermined. The objective of this study was to investigate the frequency and types of cancer in relatives of children with ACT who carry the TP53 R337H mutation. TP53 R337H testing was offered to relatives of probands with ACT. The parental lineage segregating the R337H mutation was identified in all families. The frequency and distribution of cancer types were compared according to R337H status. The authors' data also were compared with those publicly available for children with TP53 mutations other than R337H. The mean and median follow-up times for the probands with ACT were 11.2 years and 9.7 years (range, 3-32 years), respectively. During this time, cancer was diagnosed in 12 of 81 first-degree relatives (14.8%) carrying the R337H mutation but in only 1 of 94 noncarriers (1.1%; P = .0022). At age 45 years, the cumulative risk of cancer was 21% (95% confidence interval, 5%-33%) in carriers and 2% (95% confidence interval, 0%-4%) in noncarriers (P = .008). The frequency of cancer was higher in the R337H segregating lineages than in the nonsegregating lineages (249 of 1410 vs 66 of 984 individuals; P < .001). Breast and gastric cancer were the most common types. TP53 R337H carriers have a lifelong predisposition to cancer with a bimodal age distribution: 1 peak, represented by ACT, occurs in the first decade of life, and another peak of diverse cancer types occurs in the fifth decade. The current findings have implications for genetic counseling and surveillance of R337H carriers. Cancer 2017;123:3150-58. © 2017 American Cancer Society. © 2017 American Cancer Society.
Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q
2010-11-01
Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.
Jiménez, Cristina; Jara-Acevedo, María; Corchete, Luis A; Castillo, David; Ordóñez, Gonzalo R; Sarasquete, María E; Puig, Noemí; Martínez-López, Joaquín; Prieto-Conde, María I; García-Álvarez, María; Chillón, María C; Balanzategui, Ana; Alcoceba, Miguel; Oriol, Albert; Rosiñol, Laura; Palomera, Luis; Teruel, Ana I; Lahuerta, Juan J; Bladé, Joan; Mateos, María V; Orfão, Alberto; San Miguel, Jesús F; González, Marcos; Gutiérrez, Norma C; García-Sanz, Ramón
2017-01-01
Identification and characterization of genetic alterations are essential for diagnosis of multiple myeloma and may guide therapeutic decisions. Currently, genomic analysis of myeloma to cover the diverse range of alterations with prognostic impact requires fluorescence in situ hybridization (FISH), single nucleotide polymorphism arrays, and sequencing techniques, which are costly and labor intensive and require large numbers of plasma cells. To overcome these limitations, we designed a targeted-capture next-generation sequencing approach for one-step identification of IGH translocations, V(D)J clonal rearrangements, the IgH isotype, and somatic mutations to rapidly identify risk groups and specific targetable molecular lesions. Forty-eight newly diagnosed myeloma patients were tested with the panel, which included IGH and six genes that are recurrently mutated in myeloma: NRAS, KRAS, HRAS, TP53, MYC, and BRAF. We identified 14 of 17 IGH translocations previously detected by FISH and three confirmed translocations not detected by FISH, with the additional advantage of breakpoint identification, which can be used as a target for evaluating minimal residual disease. IgH subclass and V(D)J rearrangements were identified in 77% and 65% of patients, respectively. Mutation analysis revealed the presence of missense protein-coding alterations in at least one of the evaluating genes in 16 of 48 patients (33%). This method may represent a time- and cost-effective diagnostic method for the molecular characterization of multiple myeloma. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.
Gu, De-Leung; Chen, Yen-Hsieh; Shih, Jou-Ho; Lin, Chi-Hung; Jou, Yuh-Shan; Chen, Chian-Feng
2013-12-21
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
Malignancy Risk Models for Oral Lesions
Zarate, Ana M.; Brezzo, María M.; Secchi, Dante G.; Barra, José L.
2013-01-01
Objectives: The aim of this work was to assess risk habits, clinical and cellular phenotypes and TP53 DNA changes in oral mucosa samples from patients with Oral Potentially Malignant Disorders (OPMD), in order to create models that enable genotypic and phenotypic patterns to be obtained that determine the risk of lesions becoming malignant. Study Design: Clinical phenotypes, family history of cancer and risk habits were collected in clinical histories. TP53 gene mutation and morphometric-morphological features were studied, and multivariate models were applied. Three groups were estabished: a) oral cancer (OC) group (n=10), b) OPMD group (n=10), and c) control group (n=8). Results: An average of 50% of patients with malignancy were found to have smoking and drinking habits. A high percentage of TP53 mutations were observed in OC (30%) and OPMD (average 20%) lesions (p=0.000). The majority of these mutations were GC ? TA transversion mutations (60%). However, patients with OC presented mutations in all the exons and introns studied. Highest diagnostic accuracy (p=0.0001) was observed when incorporating alcohol and tobacco habits variables with TP53 mutations. Conclusions: Our results prove to be statistically reliable, with parameter estimates that are nearly unbiased even for small sample sizes. Models 2 and 3 were the most accurate for assessing the risk of an OPMD becoming cancerous. However, in a public health context, model 3 is the most recommended because the characteristics considered are easier and less costly to evaluate. Key words:TP53, oral potentially malignant disorders, risk factors, genotype, phenotype. PMID:23722122
Aristolochic acid-associated urothelial cancer in Taiwan
Chen, Chung-Hsin; Dickman, Kathleen G.; Moriya, Masaaki; Zavadil, Jiri; Sidorenko, Viktoriya S.; Edwards, Karen L.; Gnatenko, Dmitri V.; Wu, Lin; Turesky, Robert J.; Wu, Xue-Ru; Pu, Yeong-Shiau; Grollman, Arthur P.
2012-01-01
Aristolochic acid, a potent human carcinogen produced by Aristolochia plants, is associated with urothelial carcinoma of the upper urinary tract (UUC). Following metabolic activation, aristolochic acid reacts with DNA to form aristolactam (AL)-DNA adducts. These lesions concentrate in the renal cortex, where they serve as a sensitive and specific biomarker of exposure, and are found also in the urothelium, where they give rise to a unique mutational signature in the TP53 tumor-suppressor gene. Using AL-DNA adducts and TP53 mutation spectra as biomarkers, we conducted a molecular epidemiologic study of UUC in Taiwan, where the incidence of UUC is the highest reported anywhere in the world and where Aristolochia herbal remedies have been used extensively for many years. Our study involves 151 UUC patients, with 25 patients with renal cell carcinomas serving as a control group. The TP53 mutational signature in patients with UUC, dominated by otherwise rare A:T to T:A transversions, is identical to that observed in UUC associated with Balkan endemic nephropathy, an environmental disease. Prominent TP53 mutational hotspots include the adenine bases of 5′AG (acceptor) splice sites located almost exclusively on the nontranscribed strand. A:T to T:A mutations also were detected at activating positions in the FGFR3 and HRAS oncogenes. AL-DNA adducts were present in the renal cortex of 83% of patients with A:T to T:A mutations in TP53, FGFR3, or HRAS. We conclude that exposure to aristolochic acid contributes significantly to the incidence of UUC in Taiwan, a finding with significant implications for global public health. PMID:22493262
Wu, Lei; He, Yao; Zhang, Di
2015-11-01
To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.
CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population.
Zhao, Yun-Jing; Wang, Yue-Ping; Yang, Wen-Zhu; Sun, Hong-Wei; Ma, Hong-Wei; Zhao, Ya-Ru
2015-11-01
Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism. © The Author(s) 2015.
Mutation Spectra of Smoky Coal Combustion Emissions in Salmonella Reflect the TP53
and KRAS Mutations in Lung Tumors from Smoky Coal-Exposed Individuals
Abstract
Nonsmoking women in Xuan Wei County, Yunnan Province, China who use smoky coal for cooking and h...
TP53 mutations in squamous-cell carcinomas of the conjunctiva: evidence for UV-induced mutagenesis.
Ateenyi-Agaba, Charles; Dai, Min; Le Calvez, Florence; Katongole-Mbidde, Edward; Smet, Anouk; Tommasino, Massimo; Franceschi, Silvia; Hainaut, Pierre; Weiderpass, Elisabete
2004-09-01
Squamous cell carcinoma of the conjunctiva is associated with sun exposure and often occurs in HIV-positive individuals. We have analysed TP53 mutations in 21 cases of squamous cell carcinoma and 22 controls with benign conjunctival lesions from a region (Uganda, Africa) with a high prevalence of heavy sun exposure and HIV infection. TP53 mutations were detected in 11 cases (52%) and 3 controls (14%). Seven of the mutations (6 in cases and 1 in controls) were CC-->TT transitions, a molecular signature of mutagenesis by solar UV rays. A similar prevalence (56%) of TP53 mutations was found in 18 squamous cell carcinoma cases positive for epidermodysplasia verruciformis human papillomavirus types. The prevalence of CC-->TT transitions reported here is the highest observed in any cancer type and matches that of skin cancers in subjects with xeroderma pigmentosum, an inherited disease with hypersensitivity to UV damage. These results confirm at the molecular level the causal role of solar UV rays in the aetiology of squamous cell carcinoma of the conjunctiva and suggest that infection with epidermodysplasia verruciformis types of human papillomavirus may act as a cofactor to increase the sensitivity of conjunctiva cells to UV-induced mutagenesis.
Braun, Daniela A.; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A.; Schanze, Denny; Ashraf, Shazia; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I. Chiara; Sanchez-Ferras, Oraly; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E.; Pabst, Werner L.; Warejko, Jillian; Daga, Ankana; LeBerre, Tamara Basta; Matejas, Verena; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T.; Gipson, Patrick E.; Hsu, Chyong-Hsin; Kari, Jameela A.; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okasha; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth; Rump, Patrick; Schnur, Rhonda E.; Shiihara, Takashi; Sinha, Manish; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A.; Tsai, Wen-Hui; Tsai, Jeng-Daw; Vester, Udo; Viskochil, David H.; Vatanavicharn, Nithiwat; Waxler, Jessica L.; Wolf, Matthias T.F.; Wong, Sik-Nin; Poduri, Annapurna; Truglio, Gessica; Mane, Shrikant; Lifton, Richard P.; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Calleweart, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm
2018-01-01
Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms. PMID:28805828
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue
Mei, Hui; Shi, Changhua; Jimenez, Randi M.; Wang, Yajun; Kardouh, Miramar
2017-01-01
Abstract Threose nucleic acid (TNA) is an artificial genetic polymer capable of undergoing Darwinian evolution to produce aptamers with affinity to specific targets. This property, coupled with a backbone structure that is refractory to nuclease digestion, makes TNA an attractive biopolymer system for diagnostic and therapeutic applications. Expanding the chemical diversity of TNA beyond the natural bases would enable the development of functional TNA molecules with enhanced physiochemical properties. Here, we describe the synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue (1,3-diaza-2-oxo-phenothiazine, tCfTP) that maintains Watson-Crick base pairing with guanine. Polymerase-mediated primer-extension assays reveal that tCfTP is efficiently added to the growing end of a TNA primer. Detailed kinetic assays indicate that tCfTP and tCTP have comparable rates for the first nucleotide incorporation step (kobs1). However, addition of the second nucleotide (kobs2) is 700-fold faster for tCfTP than tCTP due the increased effects of base stacking. Last, we found that TNA replication using tCfTP in place of tCTP exhibits 98.4% overall fidelity for the combined process of TNA transcription and reverse transcription. Together, these results expand the chemical diversity of enzymatically generated TNA molecules to include a hydrophobic base analogue with strong fluorescent properties that is compatible with in vitro selection. PMID:28472363
Grotegut, Chad A; Ngan, Emily; Garrett, Melanie E; Miranda, Marie Lynn; Ashley-Koch, Allison E; Swamy, Geeta K
2017-09-01
Oxytocin is a potent uterotonic agent that is widely used for induction and augmentation of labor. Oxytocin has a narrow therapeutic index and the optimal dosing for any individual woman varies widely. The objective of this study was to determine whether genetic variation in the oxytocin receptor (OXTR) or in the gene encoding G protein-coupled receptor kinase 6 (GRK6), which regulates desensitization of the oxytocin receptor, could explain variation in oxytocin dosing and labor outcomes among women being induced near term. Pregnant women with a singleton gestation residing in Durham County, NC, were prospectively enrolled as part of the Healthy Pregnancy, Healthy Baby cohort study. Those women undergoing an induction of labor at 36 weeks or greater were genotyped for 18 haplotype-tagging single-nucleotide polymorphisms in OXTR and 7 haplotype-tagging single-nucleotide polymorphisms in GRK6 using TaqMan assays. Linear regression was used to examine the relationship between maternal genotype and maximal oxytocin infusion rate, total oxytocin dose received, and duration of labor. Logistic regression was used to test for the association of maternal genotype with mode of delivery. For each outcome, backward selection techniques were utilized to control for important confounding variables and additive genetic models were used. Race/ethnicity was included in all models because of differences in allele frequencies across populations, and Bonferroni correction for multiple testing was used. DNA was available from 482 women undergoing induction of labor at 36 weeks or greater. Eighteen haplotype-tagging single-nucleotide polymorphisms within OXTR and 7 haplotype-tagging single-nucleotide polymorphisms within GRK6 were examined. Five single-nucleotide polymorphisms in OXTR showed nominal significance with maximal infusion rate of oxytocin, and two single-nucleotide polymorphisms in OXTR were associated with total oxytocin dose received. One single-nucleotide polymorphism in OXTR and two single-nucleotide polymorphisms in GRK6 were associated with duration of labor, one of which met the multiple testing threshold (P = .0014, rs2731664 [GRK6], mean duration of labor, 17.7 hours vs 20.2 hours vs 23.5 hours for AA, AC, and CC genotypes, respectively). Three single-nucleotide polymorphisms, two in OXTR and one in GRK6, showed nominal significance with mode of delivery. Genetic variation in OXTR and GRK6 is associated with the amount of oxytocin required as well as the duration of labor and risk for cesarean delivery among women undergoing induction of labor near term. With further research, pharmacogenomic approaches may potentially be utilized to develop personalized treatment to improve safety and efficacy outcomes among women undergoing induction of labor. Copyright © 2017 Elsevier Inc. All rights reserved.
Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip
2018-05-06
The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.
Distinct tumor protein p53 mutants in breast cancer subgroups.
Dumay, Anne; Feugeas, Jean-Paul; Wittmer, Evelyne; Lehmann-Che, Jacqueline; Bertheau, Philippe; Espié, Marc; Plassa, Louis-François; Cottu, Paul; Marty, Michel; André, Fabrice; Sotiriou, Christos; Pusztai, Lajos; de Thé, Hugues
2013-03-01
Tumor protein p53 (TP53) is mutated in approximately 30% of breast cancers, but this frequency fluctuates widely between subclasses. We investigated the p53 mutation status in 572 breast tumors, classified into luminal, basal and molecular apocrine subgroups. As expected, the lowest mutation frequency was observed in luminal (26%), and the highest in basal (88%) tumors. Luminal tumors showed significantly higher frequency of substitutions (82 vs. 65%), notably A/T to G/C transitions (31 vs. 15%), whereas molecular apocrine and basal tumors presented much higher frequencies of complex mutations (deletions/insertions) (36 and 33%, respectively, vs. 18%). Accordingly, missense mutations were significantly more frequent in luminal tumors (75 vs. 54%), whereas basal tumors displayed significantly increased rates of TP53 truncations (43 vs. 25%), resulting in loss of function and/or expression. Interestingly, as basal tumors, molecular apocrine tumors presented with a high rate of complex mutations, but paradoxically, these were not associated with increased frequency of p53 truncation. As in luminal tumors, this could reflect a selective pressure for p53 gain of function, possibly through P63/P73 inactivation. Collectively, these observations point not only to different mechanisms of TP53 alterations, but also to different functional consequences in the different breast cancer subtypes. Copyright © 2012 UICC.
Friend or Foe: MicroRNAs in the p53 network.
Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo
2018-04-10
The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.
Lee, Ji Yeon; Vinayagamoorthy, Nadimuthu; Han, Kyungdo; Kwok, Seung Ki; Ju, Ji Hyeon; Park, Kyung Su; Jung, Seung-Hyun; Park, Sung-Won; Chung, Yeun-Jun; Park, Sung-Hwan
2016-01-01
To evaluate associations of genetic polymorphisms in cytochrome P450 (CYP) isoforms 2D6, 3A5, and 3A4 with blood concentrations of hydroxychloroquine (HCQ) and its metabolite, N-desethyl HCQ (DHCQ), in patients with systemic lupus erythematosus (SLE). SLE patients taking HCQ for >3 months were recruited and were genotyped for 4 single-nucleotide polymorphisms in CYP2D6*10, CYP3A5*3, and CYP3A4*18B. Blood HCQ and DHCQ concentrations ([HCQ] and [DHCQ]) were measured and their association with corresponding genotypes was investigated. A total of 194 patients were included in the analysis. CYP2D6*10 polymorphisms (rs1065852 and rs1135840) were significantly associated with the [DHCQ]:[HCQ] ratio after adjustment for age, sex, dose per weight per day, and SLE Disease Activity Index score (P = 0.03 and P < 0.01, respectively). In adjusted models, the [DHCQ]:[HCQ] ratio was highest in patients with the G/G genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the A/A genotype (P = 0.03). Similarly, the [DHCQ]:[HCQ] ratio was highest in patients with the C/C genotype of the CYP2D6*10 (rs1135840) polymorphism and lowest in those with the G/G genotype (P < 0.01). The CYP2D6*10 (rs1065852) polymorphism was significantly related to the [DHCQ] (P = 0.01). However, the polymorphisms of CYP3A5*3 and CYP3A4*18B did not show any significant association with the [HCQ], [DHCQ], or [DHCQ]:[HCQ] ratio. Our study showed that the [DHCQ]:[HCQ] ratio was related to CYP2D6 polymorphisms in Korean lupus patients taking oral HCQ. CYP polymorphisms may explain why there is wide variation in blood HCQ concentrations. The role of an individual's CYP polymorphisms should be considered when prescribing oral HCQ. © 2016, American College of Rheumatology.
Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M.; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A.; Maciejewski, Jaroslaw P.; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki
2017-01-01
Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53-mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53-mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. PMID:28223278
Yoshizato, Tetsuichi; Nannya, Yasuhito; Atsuta, Yoshiko; Shiozawa, Yusuke; Iijima-Yamashita, Yuka; Yoshida, Kenichi; Shiraishi, Yuichi; Suzuki, Hiromichi; Nagata, Yasunobu; Sato, Yusuke; Kakiuchi, Nobuyuki; Matsuo, Keitaro; Onizuka, Makoto; Kataoka, Keisuke; Chiba, Kenichi; Tanaka, Hiroko; Ueno, Hiroo; Nakagawa, Masahiro M; Przychodzen, Bartlomiej; Haferlach, Claudia; Kern, Wolfgang; Aoki, Kosuke; Itonaga, Hidehiro; Kanda, Yoshinobu; Sekeres, Mikkael A; Maciejewski, Jaroslaw P; Haferlach, Torsten; Miyazaki, Yasushi; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Makishima, Hideki; Ogawa, Seishi
2017-04-27
Genetic alterations, including mutations and copy-number alterations, are central to the pathogenesis of myelodysplastic syndromes and related diseases (myelodysplasia), but their roles in allogeneic stem cell transplantation have not fully been studied in a large cohort of patients. We enrolled 797 patients who had been diagnosed with myelodysplasia at initial presentation and received transplantation via the Japan Marrow Donor Program. Targeted-capture sequencing was performed to identify mutations in 69 genes, together with copy-number alterations, whose effects on transplantation outcomes were investigated. We identified 1776 mutations and 927 abnormal copy segments among 617 patients (77.4%). In multivariate modeling using Cox proportional-hazards regression, genetic factors explained 30% of the total hazards for overall survival; clinical characteristics accounted for 70% of risk. TP53 and RAS-pathway mutations, together with complex karyotype (CK) as detected by conventional cytogenetics and/or sequencing-based analysis, negatively affected posttransplant survival independently of clinical factors. Regardless of disease subtype, TP53 -mutated patients with CK were characterized by unique genetic features and associated with an extremely poor survival with frequent early relapse, whereas outcomes were substantially better in TP53 -mutated patients without CK. By contrast, the effects of RAS-pathway mutations depended on disease subtype and were confined to myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Our results suggest that TP53 and RAS-pathway mutations predicted a dismal prognosis, when associated with CK and MDS/MPNs, respectively. However, for patients with mutated TP53 or CK alone, long-term survival could be obtained with transplantation. Clinical sequencing provides vital information for accurate prognostication in transplantation. © 2017 by The American Society of Hematology.
Anderson, Mary Ann; Deng, Jing; Seymour, John F; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R; Westerman, David; Si, Eric G; Majewski, Ian J; Segal, David; Heitner Enschede, Sari L; Huang, David C S; Davids, Matthew S; Letai, Anthony; Roberts, Andrew W
2016-06-23
BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. © 2016 by The American Society of Hematology.
Anderson, Mary Ann; Deng, Jing; Seymour, John F.; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R.; Westerman, David; Si, Eric G.; Majewski, Ian J.; Segal, David; Heitner Enschede, Sari L.; Huang, David C. S.; Davids, Matthew S.; Letai, Anthony
2016-01-01
BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. PMID:27069256
Kong, Fenfen; Liu, Fei; Li, Wei; Guo, Xiaomeng; Wang, Zuhua; Zhang, Hanbo; Li, Qingpo; Luo, Lihua; Du, Yongzhong; Jin, Yi; You, Jian
2016-12-01
Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS 10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI 25K /pTP53, and PCS 10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Valproic acid treatment response in vitro is determined by TP53 status in medulloblastoma.
Mascaro-Cordeiro, Bruna; Oliveira, Indhira Dias; Tesser-Gamba, Francine; Pavon, Lorena Favaro; Saba-Silva, Nasjla; Cavalheiro, Sergio; Dastoli, Patrícia; Toledo, Silvia Regina Caminada
2018-05-22
Histone deacetylate inhibitors (HDACi), as valproic acid (VA), have been reported to enhance efficacy and to prevent drug resistance in some tumors, including medulloblastoma (MB). In the present study, we investigated VA role, combined to cisplatin (CDDP) in cell viability and gene expression of MB cell lines. Dose-response curve determined IC 50 values for each treatment: (1) VA single, (2) CDDP single, and (3) VA and CDDP combined. Cytotoxicity and flow cytometry evaluated cell viability after exposure to treatments. Quantitative PCR evaluated gene expression levels of AKT, CTNNB1, GLI1, KDM6A, KDM6B, NOTCH2, PTCH1, and TERT, before and after treatment. Besides, we performed next-generation sequencing (NGS) for PTCH1, TERT, and TP53 genes. The most effective treatment to reduce viability was combined for D283MED and ONS-76; and CDDP single for DAOY cells (p < 0.0001). TERT, GLI1, and AKT genes were overexpressed after treatments with VA. D283MED and ONS-76 cells presented variants in TERT and PTCH1, respectively and DAOY cell line presented a TP53 mutation. MB tumors belonging to SHH molecular subgroup, with TP53 MUT , would be the ones that present high risk in relation to VA use during the treatment, while TP53 WT MBs can benefit from VA therapy, both SHH and groups 3 and 4. Our study shows a new perspective about VA action in medulloblastoma cells, raising the possibility that VA may act in different patterns. According to the genetic background of MB cell, VA can stimulate cell cycle arrest and apoptosis or induce resistance to treatment via signaling pathways activation.
Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT.
Chen, Shang-Wen; Lin, Chien-Yu; Ho, Cheng-Man; Chang, Ya-Sian; Yang, Shu-Fen; Kao, Chia-Hung; Chang, Jan-Gowth
2015-08-01
The aim of this study was to understand the association between various genetic mutation and (18)F-FDG PET-related parameters in patients with colorectal cancer (CRC). One hundred three CRC patients who had undergone preoperative PET/CTs were included in this study. Several PET/CT-related parameters, including SUV(max), and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width (TW) were measured. Using high-resolution melting methods for genetic mutation analysis, tumor- and PET/CT-related parameters were correlated with various genetic alterations including TP53, KRAS, APC, BRAF, and PIK3CA. Mann-Whitney U test and logistic regression analysis were carried out for this analysis. Genetic alterations in TP53, KRAS, and APC were found in 41 (40%), 34 (33%), and 27 (26%) of tumors, respectively. PIK3CA and BRAF were exhibited by 5 and 4 of the patients with CRC. TP53 mutants exhibited higher SUV(max). The odds ratio was 1.28 (P = 0.04; 95% confidence interval, 1.01-1.61). Tumors with a mutated KRAS had an increased accumulation of FDG using a 40% threshold level for maximal uptake of TW (TW(40%)), whereas the odds ratio was 1.15 (P = 0.001; 95% confidence interval, 1.06-1.24). The accuracy of SUV(max) greater than 10 in predicting TP53 mutation was 60%, whereas that for TW(40%) for KRAS was 61%. Increased SUV(max) and TW(40%) were associated in CRC tumors with TP53 and KRAS mutations, respectively. Further studies are required because of the low predictive accuracy.
Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.
Euskirchen, Philipp; Bielle, Franck; Labreche, Karim; Kloosterman, Wigard P; Rosenberg, Shai; Daniau, Mailys; Schmitt, Charlotte; Masliah-Planchon, Julien; Bourdeaut, Franck; Dehais, Caroline; Marie, Yannick; Delattre, Jean-Yves; Idbaih, Ahmed
2017-11-01
Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...
Kerr, Jonathan R; Kaushik, Narendra; Fear, David; Baldwin, Don A; Nuwaysir, Emile F; Adcock, Ian M
2005-07-15
This study was undertaken to further examine the role of the host response to parvovirus B19 in the development of symptoms and consequences of viral persistence. Genomic DNA from 42 patients with symptomatic B19 infection was analyzed using the HuSNP assay (Affymetrix), and the results were compared with those from analysis of 53 healthy control individuals. Fifty-seven single-nucleotide polymorphisms were identified that were significantly associated with symptomatic infection. Total RNA from peripheral blood mononuclear cells from 57 B19-seropositive and 13 B19-seronegative donors was analyzed by hybridization to a single-color microarray representing 9522 human genes. Ninety-two genes were shown to be differentially expressed. Differential expression was confirmed in 6 of 38 genes (SKIP, MACF1, SPAG7, FLOT1, c6orf48, and RASSF5) tested using real-time quantitative polymerase chain reaction in a different group of healthy subjects. Genes identified in both studies play a functional role in the cytoskeleton, integrin signaling, and oncosuppression, themes that have been shown to be important in parvovirus infections.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
Godfrey, Jack D; Morton, Jennifer P; Wilczynska, Ania; Sansom, Owen J; Bushell, Martin D
2018-05-29
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease with poor prognostic implications. This is partly due to a large proportion of PDACs carrying mutations in TP53, which impart gain-of-function characteristics that promote metastasis. There is evidence that microRNAs (miRNAs) may play a role in both gain-of-function TP53 mutations and metastasis, but this has not been fully explored in PDAC. Here we set out to identify miRNAs which are specifically dysregulated in metastatic PDAC. To achieve this, we utilised established mouse models of PDAC to profile miRNA expression in primary tumours expressing the metastasis-inducing mutant p53 R172H and compared these to two control models carrying mutations, which promote tumour progression but do not induce metastasis. We show that a subset of miRNAs are dysregulated in mouse PDAC tumour tissues expressing mutant p53 R172H , primary cell lines derived from mice with the same mutations and in TP53 null cells with ectopic expression of the orthologous human mutation, p53 R175H . Specifically, miR-142-3p is downregulated in all of these experimental models. We found that DNA methyltransferase 1 (Dnmt1) is upregulated in tumour tissue and cell lines, which express p53 R172H . Inhibition or depletion of Dnmt1 restores miR-142-3p expression. Overexpression of miR-142-3p attenuates the invasive capacity of p53 R172H -expressing tumour cells. MiR-142-3p dysregulation is known to be associated with cancer progression, metastasis and the miRNA is downregulated in patients with PDAC. Here we link TP53 gain-of-function mutations to Dnmt1 expression and in turn miR-142-3p expression. Additionally, we show a correlation between expression of these genes and patient survival, suggesting that they may have potential to be therapeutic targets.
TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.
Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza
2017-08-01
Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.
Goswami, Rashmi S; Patel, Keyur P; Singh, Rajesh R; Meric-Bernstam, Funda; Kopetz, E Scott; Subbiah, Vivek; Alvarez, Ricardo H; Davies, Michael A; Jabbar, Kausar J; Roy-Chowdhuri, Sinchita; Lazar, Alexander J; Medeiros, L Jeffrey; Broaddus, Russell R; Luthra, Rajyalakshmi; Routbort, Mark J
2015-06-01
We used a clinical next-generation sequencing (NGS) hotspot mutation panel to investigate clonal evolution in paired primary and metastatic tumors. A total of 265 primary and metastatic tumor pairs were sequenced using a 46-gene cancer mutation panel capable of detecting one or more single-nucleotide variants as well as small insertions/deletions. Mutations were tabulated together with tumor type and percentage, mutational variant frequency, time interval between onset of primary tumor and metastasis, and neoadjuvant therapy status. Of note, 227 of 265 (85.7%) tumor metastasis pairs showed identical mutation calls. Of the tumor pairs with identical mutation calls, 160 (60.4%) possessed defining somatic mutation signatures and 67 (25.3%) did not exhibit any somatic mutations. There were 38 (14.3%) cases that showed at least one novel mutation call between the primary and metastasis. Metastases were almost two times more likely to show novel mutations (n = 20, 7.5%) than primary tumors (n = 12, 4.5%). TP53 was the most common additionally mutated gene in metastatic lesions, followed by PIK3CA and SMAD4. PIK3CA mutations were more often associated with metastasis in colon carcinoma samples. Clinical NGS hotspot panels can be useful in analyzing clonal evolution within tumors as well as in determining subclonal mutations that can expand in future metastases. PIK3CA, SMAD4, and TP53 are most often involved in clonal divergence, providing potential targets that may help guide the clinical management of tumor progression or metastases. ©2015 American Association for Cancer Research.
Yang, Guan-Jun; Zhong, Hai-Jing; Ko, Chung-Nga; Wong, Suk-Yu; Vellaisamy, Kasipandi; Ye, Min; Ma, Dik-Lung; Leung, Chung-Hang
2018-03-06
The rhodium(iii) complex 1 was identified as a potent Wee1 inhibitor in vitro and in cellulo. It decreased Wee1 activity and unscheduled mitotic entry, and induced cell damage and death in TP53-mutated triple-negative breast cancer cells. 1 represents a promising scaffold for further development of more potent metal-based Wee1 antagonists.
Bilateral wilms tumor with TP53-related anaplasia.
Popov, Sergey D; Vujanic, Gordan M; Sebire, Neil J; Chagtai, Tasnim; Williams, Richard; Vaidya, Sucheta; Pritchard-Jones, Kathy
2013-01-01
Wilms tumor (WT) with diffuse anaplasia has an unfavorable prognosis and is often (>70%) associated with mutations in the TP53 gene. Although most WTs are unilateral, 5-10% are bilateral, and they are almost always present with nephrogenic rests. The latter are considered a precursor of WT. Two cases of bilateral WTs with nephroblastomatosis, in which anaplastic changes were detected over a period of time, were analyzed using clinical, radiological, histopathological, and molecular-genetic data. TP53 was analyzed by direct sequencing of its full coding sequence and intron-exon boundaries in 11 fragments. DNA was extracted from paraffin-embedded or frozen specimens. High-resolution genomic copy number profiling was carried out by UCL Genomics on the Affymetrix Human Mapping 250K Nsp or Genome-Wide Human SNP Array 6.0 platform. Both cases demonstrated a strong association between the appearance of anaplastic clones and TP53 mutations. Synchronous ganglioneuroma was diagnosed in one case. Our cases are unique as they represent a long disease history and demonstrate the difficulties in managing rare cases of bilateral WT with anaplasia. These cases also emphasize the practical importance of modern molecular-genetic techniques and their clinical application. Moreover, they highlight the issue of the adequate sampling needed in order to gather comprehensive, efficient, and sufficient information about genetic events in a single tumor.
Collado, Rosa; Puiggros, Anna; López-Guerrero, José Antonio; Calasanz, Ma José; Larráyoz, Ma José; Ivars, David; García-Casado, Zaida; Abella, Eugènia; Orero, Ma Teresa; Talavera, Elisabet; Oliveira, Ana Carla; Hernández-Rivas, Jesús Ma; Hernández-Sánchez, María; Luño, Elisa; Valiente, Alberto; Grau, Javier; Portal, Inmaculada; Gardella, Santiago; Salgado, Anna Camino; Giménez, Ma Teresa; Ardanaz, Ma Teresa; Campeny, Andrea; Hernández, José Julio; Álvarez, Sara; Espinet, Blanca; Carbonell, Félix
2017-11-28
Although i(17q) [i(17q)] is frequently detected in hematological malignancies, few studies have assessed its clinical role in chronic lymphocytic leukemia (CLL). We recruited a cohort of 22 CLL patients with i(17q) and described their biological characteristics, mutational status of the genes TP53 and IGHV and genomic complexity. Furthermore, we analyzed the impact of the type of cytogenetic anomaly bearing the TP53 defect on the outcome of CLL patients and compared the progression-free survival (PFS) and overall survival (OS) of i(17q) cases with those of a group of 38 CLL patients harboring other 17p aberrations. We detected IGHV somatic hypermutation in all assessed patients, and TP53 mutations were observed in 71.4% of the cases. Patients with i(17q) were more commonly associated with complex karyotypes (CK) and tended to have a poorer OS than patients with other anomalies affecting 17p13 (median OS, 44 vs 120 months, P = 0.084). Regarding chromosomal alterations, significant differences in the median OS were found among groups (P = 0.044). In conclusion, our findings provide new insights regarding i(17q) in CLL and show a subgroup with adverse prognostic features. Copyright © 2017 Elsevier B.V. All rights reserved.
BRCA1, TP53, and CHEK2 germline mutations in uterine serous carcinoma.
Pennington, Kathryn P; Walsh, Tom; Lee, Ming; Pennil, Christopher; Novetsky, Akiva P; Agnew, Kathy J; Thornton, Anne; Garcia, Rochelle; Mutch, David; King, Mary-Claire; Goodfellow, Paul; Swisher, Elizabeth M
2013-01-15
Uterine serous carcinoma (USC) is not recognized as part of any defined hereditary cancer syndrome, and its association with hereditary breast and ovarian carcinoma and Lynch syndrome are uncertain. Using targeted capture and massively parallel genomic sequencing, 151 subjects with USC were assessed for germline mutations in 30 tumor suppressor genes, including BRCA1 (breast cancer 1, early onset), BRCA2, the DNA mismatch repair genes (MLH1 [mutL homolog 1], MSH2 [mutS homolog 2], MSH6, PMS2 [postmeiotic segregation increased 2]), TP53 (tumor protein p53), and 10 other genes in the Fanconi anemia-BRCA pathway. Ten cases with < 10% serous histology were also assessed. Seven subjects (4.6%) carried germline loss-of-function mutations: 3 subjects (2.0%) with mutations in BRCA1, 2 subjects (1.3%) with mutations in TP53, and 2 subjects (1.3%) with mutations in CHEK2 (checkpoint kinase 2). One subject with < 10% serous histology had an MSH6 mutation. Subjects with MSH6 and TP53 mutations had neither personal nor family histories suggestive of Lynch or Li-Fraumeni syndromes. Of the 22 women with USC and a personal history of breast carcinoma, the frequency of BRCA1 mutations was 9%, compared to 0.9% in 119 women with no such history. Approximately 5% of women with USC have germline mutations in 3 different tumor suppressor genes: BRCA1, CHEK2, and TP53. Mutations in DNA mismatch repair genes that cause Lynch syndrome are rare in USC. The germline BRCA1 mutation rate in USC subjects of 2% is higher than expected in a nonfounder population, suggesting that USC is associated with hereditary breast and ovarian carcinoma in a small proportion of cases. Women with USC and breast cancer should be offered genetic testing for BRCA1 and BRCA2 mutations. Copyright © 2012 American Cancer Society.
Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis.
Arjonen, Antti; Kaukonen, Riina; Mattila, Elina; Rouhi, Pegah; Högnäs, Gunilla; Sihto, Harri; Miller, Bryan W; Morton, Jennifer P; Bucher, Elmar; Taimen, Pekka; Virtakoivu, Reetta; Cao, Yihai; Sansom, Owen J; Joensuu, Heikki; Ivaska, Johanna
2014-03-01
Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
Synesiou, Elena; Fairbanks, Lynnette D; Simmonds, H Anne; Slominska, Ewa M; Smolenski, Ryszard T; Carrey, Elizabeth A
2011-06-01
We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD(+) metabolites (nicotinamide, N(1)-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N(1)-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD(+) from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD(+) analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD(+) analogue that inhibits IMP dehydrogenase in other cells.
Recurrent astrocytoma in a child: a report of cytogenetics and TP53 gene mutation screening.
Dam, A.; Fock, J. M.; Hayes, V. M.; Molenaar, W. M.; van den Berg, E.
2000-01-01
An 8-year-old girl presented with a cerebral tumor and 3 recurrences within 15 months. The primary tumor was a low-grade astrocytoma, but the recurrences showed progressively malignant phenotypes with increasing mitotic activity and MIB-1 labeling indices. Radiotherapy was given between the first and the second recurrences. Cytogenetic analysis of the first and the second recurrences showed abnormal karyotypes. There seemed to be 2 common breakpoints in these 2 recurrences. TP53 gene mutation screening, using comprehensive denaturing gradient gel electrophoresis, revealed among others a possibly causative mutation of exon 5 in 3 of 4 tumor samples. The meaning of TP53 mutations in low-grade astrocytomas is still unclear, but the highly abnormal karyotypes, which are unusual in these tumors, probably provide genetic evidence for the unexpected aggressive behavior of the tumor in this patient. PMID:11302339
Origin of the polymorphism of the involucrin gene in Asians.
Djian, P; Delhomme, B; Green, H
1995-01-01
The involucrin gene, encoding a protein of the terminally differentiated keratinocyte, is polymorphic in the human. There is polymorphism of marker nucleotides a two positions in the coding region, and there are over eight polymorphic forms based on the number and kind of 10-codon tandem repeats in that part of the coding region most recently added in the human lineage. The involucrin alleles of Caucasians and Africans differ in both nucleotides and repeat patterns. We show that the involucrin alleles of East Asians (Chinese and Japanese) can be divided into two populations according to whether they possess the two marker nucleotides typical of Africans or Caucasians. The Asian population bearing Caucasian-type marker nucleotides has repeat patterns similar to those of Caucasians, whereas Asians bearing African-type marker nucleotides have repeat patterns that resemble those of Africans more than those of Caucasians. The existence of two populations of East Asian involucrin alleles gives support for the existence of a Eurasian stem lineage from which Caucasians and a part of the Asian population originated. PMID:7762559
Yu, Hong; Liu, Jun; Yang, Aiping; Yang, Guohui; Yang, Wenjun; Lei, Heyue; Quan, Jianjun; Zhang, Zengyu
2016-04-01
Genetic factors play an important role in childhood autism. This study is to determine the association of single-nucleotide polymorphisms in dopa decarboxylase (DDC) and dopamine receptor-1 (DRD1) genes with childhood autism, in a Chinese Han population. A total of 211 autistic children and 250 age- and gender-matched healthy controls were recruited. The severity of disease was determined by Children Autism Rating Scale scores. TaqMan Probe by real-time polymerase chain reaction was used to determine genotypes and allele frequencies of single-nucleotide polymorphism rs6592961 in DDC and rs251937 in DRD1. Case-control and case-only studies were respectively performed, to determine the contribution of both single-nucleotide polymorphisms to the predisposition of disease and its severity. Our results showed that there was no significant association of the genotypes and allele frequencies of both single-nucleotide polymorphisms concerning childhood autism and its severity. More studies with larger samples are needed to corroborate their predicting roles. © The Author(s) 2015.
Demirci, Berna; Lee, Yoosook; Lanzaro, Gregory C; Alten, Bulent
2012-05-01
Culex theileri Theobald (Diptera: Culicidae) is one of the most common mosquito species in northeastern Turkey and serves as a vector for various zoonotic diseases including West Nile virus. Although there have been some studies on the ecology of Cx. theileri, very little genetic data has been made available. We successfully sequenced 11 gene fragments from Cx. theileri specimens collected from the northeastern part of Turkey. On average, we found a Single nucleotide polymorphism every 45 bp. Transitions outnumbered transversions, at a ratio of 2:1. This is the first report of genetic polymorphisms in Cx. theileri and Single nucleotide polymorphism discovered from this study can be used to investigate population structure and gene-environmental interactions.
Strom, Sara S; Estey, Elihu; Outschoorn, Ubaldo Martinez; Garcia-Manero, Guillermo
2010-04-01
In acute myeloid leukemia (AML), cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to interindividual differences in DNA repair capacity, influencing outcome. We studied the role of six polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) in overall and disease-free survival among 170 adult de novo patients with intermediate cytogenetics (diploid [n = 117]; non-diploid [n = 53]), treated with induction chemotherapy. Kaplan-Meier and Cox proportional hazards models were performed. Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type genotype (median survival 22 vs. 40 months, p = 0.03). Diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type genotype (median survival 15 vs. 30 months, p = 0.02). After adjusting for clinical and sociodemographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying, compared to those with the wild-type genotypes (HR = 2.49; 95% CI: 1.06-5.85). No associations were observed for disease-free survival. This combined genotype may modulate treatment effect, decreasing overall survival. These findings could in the future help select treatments for patients with normal cytogenetics.
Ghosh, Anil; Lai, Cecilia; McDonald, Sarah; Suraweera, Nirosha; Sengupta, Neel; Propper, David; Dorudi, Sina; Silver, Andrew
2013-02-01
Colorectal adenomas display features of senescence, but these are often lost upon progression to carcinoma, indicating that oncogene induced senescence (OIS) could be a roadblock in colorectal cancer (CRC) development. Heat shock proteins (HSPs) have been implicated in the prognosis of CRC and HSP based therapy is a current interest for drug development. Recent cell culture studies have suggested that in the absence of a TP53 mutation, OIS mediated by PI3K/AKT activation can be circumvented by high expression of HSPs. Furthermore, while PI3K/AKT activation and KRAS mutations are independent inducers of OIS, PI3K/AKT activation can suppress KRAS-induced OIS when both are present in cultured cells. As KRAS mutations, PI3K/AKT activation and TP53 mutations are all common features of CRC, it is possible that the requirement for HSP to inhibit OIS in CRC is dependent on the mutation spectrum of a tumour. However, work on HSP that utilised mutation profiled human tumour tissues has been limited. Here, we characterised the expression of two major HSP proteins (HSP27 and 72) by immunohistochemistry (IHC), the mutation status of TP53, KRAS and PIK3CA genes by direct sequencing and the activation status of AKT by IHC in a cohort of unselected primary CRC (n=74). We compare our data with findings generated from cell-based studies. Expression of HSP27 and HSP72 was correlated to clinicopathological and survival data but no significant association was found. We also established the mutation status of TP53, KRAS and PIK3CA genes and the activation status of AKT in our CRC panel. We did not detect any associations between HSP27 or HSP72 expression with TP53 mutation status. However, HSP27 expression in CRCs was strongly associated with the co-presence of wildtype KRAS and activated PI3K/AKT (p=0.004), indicating a possible role of HSP27 in overcoming PI3K/AKT induced OIS in tumours. Our studies suggest a role for using archival tissues in validating hypotheses generated from cell culture based investigations. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Zhi; Reynolds, Gavin P; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-11-01
Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Reynolds, Gavin P.; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-01-01
Background: Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). Methods: A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks’ antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Results: Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. Conclusions: These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. PMID:27521242
2012-01-01
Background While lenalidomide (LEN) shows high efficacy in myelodysplastic syndromes (MDS) with del[5q], responses can be also seen in patients presenting without del[5q]. We hypothesized that improved detection of chromosomal abnormalities with new karyotyping tools may better predict response to LEN. Design and methods We have studied clinical, molecular and cytogenetic features of 42 patients with MDS, myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes and secondary acute myeloid leukemia (sAML) without del[5q] by metaphase cytogenetics (MC) who underwent therapy with LEN. Results Fluorescence in situ hybridization (FISH) or single nucleotide polymorphism array (SNP-A)-based karyotyping marginally increased the diagnostic yield over MC, detecting 2/42 (4.8%) additional cases with del[5q], one of whom were responded to LEN. Responses were more often observed in patients with a normal karyotype by MC (60% vs abnormal MC; 17%, p = .08) and those with gain of chromosome 8 material by either of all 3 karyotyping methods (83% vs all other chromosomal abnormalities; 44% p = .11). However, 5 out of those 6 patients received combined LEN/AZA therapy and it may also suggest those with gain of chromosome 8 material respond well to AZA. The addition of FISH or SNP-A did not improve the predictive value of normal cytogenetics by MC. Mutational analysis of TET2, UTX, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2, and DNMT-3A was performed on 21 of 41 patients, and revealed 13 mutations in 11 patients, but did not show any molecular markers of responsiveness to LEN. Conclusions Normal karyotype and gain of chromosome 8 material was predictive of response to LEN in non-del[5q] patients with myeloid malignancies. PMID:22390313
Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu
2015-01-01
The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410
van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G
2013-01-01
Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104
Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; Santos, Patricia Koehler Dos; Ribeiro, Patricia Lisbôa Izetti; Oliveira, Cristina Brinkmann de Netto; Calvez-Kelm, Florence Le; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia
2016-05-24
In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.
Badal, Brateil; Solovyov, Alexander; Di Cecilia, Serena; Chan, Joseph Minhow; Chang, Li-Wei; Iqbal, Ramiz; Aydin, Iraz T.; Rajan, Geena S.; Chen, Chen; Abbate, Franco; Arora, Kshitij S.; Tanne, Antoine; Gruber, Stephen B.; Johnson, Timothy M.; Fullen, Douglas R.; Phelps, Robert; Bhardwaj, Nina; Bernstein, Emily; Ting, David T.; Brunner, Georg; Schadt, Eric E.; Greenbaum, Benjamin D.; Celebi, Julide Tok
2017-01-01
BACKGROUND. Melanoma is a heterogeneous malignancy. We set out to identify the molecular underpinnings of high-risk melanomas, those that are likely to progress rapidly, metastasize, and result in poor outcomes. METHODS. We examined transcriptome changes from benign states to early-, intermediate-, and late-stage tumors using a set of 78 treatment-naive melanocytic tumors consisting of primary melanomas of the skin and benign melanocytic lesions. We utilized a next-generation sequencing platform that enabled a comprehensive analysis of protein-coding and -noncoding RNA transcripts. RESULTS. Gene expression changes unequivocally discriminated between benign and malignant states, and a dual epigenetic and immune signature emerged defining this transition. To our knowledge, we discovered previously unrecognized melanoma subtypes. A high-risk primary melanoma subset was distinguished by a 122-epigenetic gene signature (“epigenetic” cluster) and TP53 family gene deregulation (TP53, TP63, and TP73). This subtype associated with poor overall survival and showed enrichment of cell cycle genes. Noncoding repetitive element transcripts (LINEs, SINEs, and ERVs) that can result in immunostimulatory signals recapitulating a state of “viral mimicry” were significantly repressed. The high-risk subtype and its poor predictive characteristics were validated in several independent cohorts. Additionally, primary melanomas distinguished by specific immune signatures (“immune” clusters) were identified. CONCLUSION. The TP53 family of genes and genes regulating the epigenetic machinery demonstrate strong prognostic and biological relevance during progression of early disease. Gene expression profiling of protein-coding and -noncoding RNA transcripts may be a better predictor for disease course in melanoma. This study outlines the transcriptional interplay of the cancer cell’s epigenome with the immune milieu with potential for future therapeutic targeting. FUNDING. National Institutes of Health (CA154683, CA158557, CA177940, CA087497-13), Tisch Cancer Institute, Melanoma Research Foundation, the Dow Family Charitable Foundation, and the Icahn School of Medicine at Mount Sinai. PMID:28469092
Lorenz, Susanne; Barøy, Tale; Sun, Jinchang; Nome, Torfinn; Vodák, Daniel; Bryne, Jan-Christian; Håkelien, Anne-Mari; Fernandez-Cuesta, Lynnette; Möhlendick, Birte; Rieder, Harald; Szuhai, Karoly; Zaikova, Olga; Ahlquist, Terje C.; Thomassen, Gard O. S.; Skotheim, Rolf I.; Lothe, Ragnhild A.; Tarpey, Patrick S.; Campbell, Peter; Flanagan, Adrienne
2016-01-01
In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies. PMID:26672768
Hosoda, Waki; Chianchiano, Peter; Griffin, James F; Pittman, Meredith E; Brosens, Lodewijk Aa; Noë, Michaël; Yu, Jun; Shindo, Koji; Suenaga, Masaya; Rezaee, Neda; Yonescu, Raluca; Ning, Yi; Albores-Saavedra, Jorge; Yoshizawa, Naohiko; Harada, Kenichi; Yoshizawa, Akihiko; Hanada, Keiji; Yonehara, Shuji; Shimizu, Michio; Uehara, Takeshi; Samra, Jaswinder S; Gill, Anthony J; Wolfgang, Christopher L; Goggins, Michael G; Hruban, Ralph H; Wood, Laura D
2017-05-01
High-grade pancreatic intraepithelial neoplasia (HG-PanIN) is the major precursor of pancreatic ductal adenocarcinoma (PDAC) and is an ideal target for early detection. To characterize pure HG-PanIN, we analysed 23 isolated HG-PanIN lesions occurring in the absence of PDAC. Whole-exome sequencing of five of these HG-PanIN lesions revealed a median of 33 somatic mutations per lesion, with a total of 318 mutated genes. Targeted next-generation sequencing of 17 HG-PanIN lesions identified KRAS mutations in 94% of the lesions. CDKN2A alterations occurred in six HG-PanIN lesions, and RNF43 alterations in five. Mutations in TP53, GNAS, ARID1A, PIK3CA, and TGFBR2 were limited to one or two HG-PanINs. No non-synonymous mutations in SMAD4 were detected. Immunohistochemistry for p53 and SMAD4 proteins in 18 HG-PanINs confirmed the paucity of alterations in these genes, with aberrant p53 labelling noted only in three lesions, two of which were found to be wild type in sequencing analyses. Sixteen adjacent LG-PanIN lesions from ten patients were also sequenced using targeted sequencing. LG-PanIN harboured KRAS mutations in 94% of the lesions; mutations in CDKN2A, TP53, and SMAD4 were not identified. These results suggest that inactivation of TP53 and SMAD4 are late genetic alterations, predominantly occurring in invasive PDAC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Daher, Tamas; Tur, Mehmet Kemal; Brobeil, Alexander; Etschmann, Benjamin; Witte, Biruta; Engenhart-Cabillic, Rita; Krombach, Gabriele; Blau, Wolfgang; Grimminger, Friedrich; Seeger, Werner; Klussmann, Jens Peter; Bräuninger, Andreas; Gattenlöhner, Stefan
2018-06-01
In head and neck squamous cell carcinoma (HNSCC), the occurrence of concurrent lung malignancies poses a significant diagnostic challenge because metastatic HNSCC is difficult to discern from second primary lung squamous cell carcinoma (SCC). However, this differentiation is crucial because the recommended treatments for metastatic HNSCC and second primary lung SCC differ profoundly. We analyzed the origin of lung tumors in 32 patients with HNSCC using human papillomavirus (HPV) typing and targeted next generation sequencing of all coding exons of tumor protein 53 (TP53). Lung tumors were clearly identified as HNSCC metastases or second primary tumors in 29 patients, thus revealing that 16 patients had received incorrect diagnoses based on clinical and morphological data alone. The HPV typing and mutation analysis of all TP53 coding exons is a valuable diagnostic tool in patients with HNSCC and concurrent lung SCC, which can help to ensure that patients receive the most suitable treatment. © 2018 Wiley Periodicals, Inc.
Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan
2018-01-01
To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (p<0.001), education (p<0.001), smoking (p<0.001), tri-iodothyronine (P <0.001), thyroxin (p<0.001) and thyroid-stimulating hormone (p<0.000) levels in blood were associated with Graves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.
A novel MALDI–TOF based methodology for genotyping single nucleotide polymorphisms
Blondal, Thorarinn; Waage, Benedikt G.; Smarason, Sigurdur V.; Jonsson, Frosti; Fjalldal, Sigridur B.; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V.
2003-01-01
A new MALDI–TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3′-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708
Apostolidis, Pani A.; Lindsey, Stephan; Miller, William M.
2012-01-01
During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects. PMID:22548738
Characterisation of single domain ATP-binding cassette protien homologues of Theileria parva.
Kibe, M K; Macklin, M; Gobright, E; Bishop, R; Urakawa, T; ole-MoiYoi, O K
2001-09-01
Two distinct genes encoding single domain, ATP-binding cassette transport protein homologues of Theileria parva were cloned and sequenced. Neither of the genes is tandemly duplicated. One gene, TpABC1, encodes a predicted protein of 593 amino acids with an N-terminal hydrophobic domain containing six potential membrane-spanning segments. A single discontinuous ATP-binding element was located in the C-terminal region of TpABC1. The second gene, TpABC2, also contains a single C-terminal ATP-binding motif. Copies of TpABC2 were present at four loci in the T. parva genome on three different chromosomes. TpABC1 exhibited allelic polymorphism between stocks of the parasite. Comparison of cDNA and genomic sequences revealed that TpABC1 contained seven short introns, between 29 and 84 bp in length. The full-length TpABC1 protein was expressed in insect cells using the baculovirus system. Application of antibodies raised against the recombinant antigen to western blots of T. parva piroplasm lysates detected an 85 kDa protein in this life-cycle stage.
Pomo, Joseph M; Taylor, Robert M; Gullapalli, Rama R
2016-01-01
Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellular carcinoma (HCC) cell lines, each with differing TP53 mutational status (wt vs mutant vs null). Spheroid viability and death was systematically measured over a course of a 10 day growth period using various assays. We also examined the TP53 and E-cadherin (CDH1) mRNA and protein expression status in each cell line of the 2-D and 3-D cell models. A novel finding of our study was the identification of variable 3-D spheroid morphology in individual cell lines, ranging from large and compact, to small and unstable spheroid morphologies. The observed morphological differences between the spheroids were robust and consistent over the duration of spheroid culture growth of 10 days in a repeatable manner. Highly variable CDH1 expression was identified depending on the TP53 mutational status of the individual HCC cell line, which may explain the variable spheroid morphology. We observed consistent patterns of TP53 and CDH1 expression in both 2-D and 3-D culture models. In conclusion, we show that 3-D spheroids are a useful model to determine the morphological growth characteristics of cell lines which are not immediately apparent in routine 2-D culture methods. 3-D culture methods may provide a better alternative to study the process of epithelial-mesenchymal transition (EMT) which is important in the process of liver cancer metastasis.
Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors
Bagrodia, Aditya; Lee, Byron H.; Lee, William; Cha, Eugene K.; Sfakianos, John P.; Iyer, Gopa; Pietzak, Eugene J.; Gao, Sizhi Paul; Zabor, Emily C.; Ostrovnaya, Irina; Kaffenberger, Samuel D.; Syed, Aijazuddin; Arcila, Maria E.; Chaganti, Raju S.; Kundra, Ritika; Eng, Jana; Hreiki, Joseph; Vacic, Vladimir; Arora, Kanika; Oschwald, Dayna M.; Berger, Michael F.; Bajorin, Dean F.; Bains, Manjit S.; Schultz, Nikolaus; Reuter, Victor E.; Sheinfeld, Joel; Bosl, George J.; Al-Ahmadie, Hikmat A.; Solit, David B.
2016-01-01
Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture–based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease. PMID:27646943
Yamada, Yoshiji; Sakuma, Jun; Takeuchi, Ichiro; Yasukochi, Yoshiki; Kato, Kimihiko; Oguri, Mitsutoshi; Fujimaki, Tetsuo; Horibe, Hideki; Muramatsu, Masaaki; Sawabe, Motoji; Fujiwara, Yoshinori; Taniguchi, Yu; Obuchi, Shuichi; Kawai, Hisashi; Shinkai, Shoji; Mori, Seijiro; Arai, Tomio; Tanaka, Masashi
2017-06-13
We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher's exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10-6), or metabolic syndrome (P <1.20 × 10-6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms-rs7350481 (C/T) at chromosome 11q23.3-also being significantly (P < 3.13 × 10-4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively.
Arko, B; Prezelj, J; Komel, R; Kocijancic, A; Hudler, P; Marc, J
2002-09-01
Osteoprotegerin (OPG) is a recently discovered member of the TNF receptor superfamily that acts as an important paracrine regulator of bone remodeling. OPG knockout mice develop severe osteoporosis, whereas administration of OPG can prevent ovariectomy-induced bone loss. These findings implicate a role for OPG in the development of osteoporosis. In the present study, we screened the OPG gene promoter for sequence variations and examined their association with bone mineral density (BMD) in 103 osteoporotic postmenopausal women. Single-strand conformation polymorphism analysis followed by DNA sequencing revealed a presence of four nucleotide substitutions: 209 G-->A, 245 T-->G, 889 C-->T, and 950 T-->C. The frequencies of genotypes were as follows: GG (89.3%), GA (10.7%) for 209 G-->A polymorphism; TT (89.3%), TG (10.7%) for 245 T-->G polymorphism; and TT (25.2%), TC (53.4%), CC (21.4%) for 950 T-->C polymorphism. Substitution 889 C-->T was found in only two patients. Statistically significant association of genotypes with BMD at the lumbar spine (P = 0.005) was observed for 209 G-->A and 245 T-->G polymorphisms. Haplotype GATG was associated with lower BMD as compared with GGTT haplotype. Our results suggest that 209 G-->A and 245 T-->G polymorphisms in the OPG gene promoter may contribute to the genetic regulation of BMD.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
Kusumi, Junko; Zidong, Li; Kado, Tomoyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori
2010-01-01
Conclusions: Taxodium distichum had significantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.
p53 on the crossroad between regeneration and cancer.
Charni, Meital; Aloni-Grinstein, Ronit; Molchadsky, Alina; Rotter, Varda
2017-01-01
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
TP53 status and response to chemotherapy in breast cancer.
Bertheau, Philippe; Espié, Marc; Turpin, Elisabeth; Lehmann, Jacqueline; Plassa, Louis-François; Varna, Mariana; Janin, Anne; de Thé, Hugues
2008-01-01
Despite its central role in the control of apoptosis, senescence and cell cycle arrest, the tumor suppressor protein p53 remains an enigma for its possible role in predicting response to chemotherapy in cancer patients. Many studies remained inconclusive, others showed a better response for tumors with normal p53, and some recent studies showed adverse effects of normal p53 for response to treatment. p53 is not only a powerful pro-apoptotic factor in response to drug-induced DNA damages but also a potential inducer of cell cycle arrest, protecting tumor cells from further cytotoxic damages. Our review describes the classical as well as the more recent concepts. In order to draw definite conclusions, future works should use more reliable methods to assess the TP53 status and should address more homogeneous tumor subpopulations treated with homogeneous chemotherapy regimens. Copyright 2008 S. Karger AG, Basel.
MDM4 is a key therapeutic target in cutaneous melanoma
Gembarska, Agnieszka; Luciani, Flavie; Fedele, Clare; Russell, Elisabeth A; Dewaele, Michael; Villar, Stéphanie; Zwolinska, Aleksandra; Haupt, Sue; de Lange, Job; Yip, Dana; Goydos, James; Haigh, Jody J; Haupt, Ygal; Larue, Lionel; Jochemsen, Aart; Shi, Hubing; Moriceau, Gatien; Lo, Roger S; Ghanem, Ghanem; Shackleton, Mark; Bernal, Federico; Marine, Jean-Christophe
2013-01-01
The inactivation of the p53 tumor suppressor pathway, which often occurs through mutations in TP53 (encoding tumor protein 53) is a common step in human cancer. However, in melanoma—a highly chemotherapy-resistant disease—TP53 mutations are rare, raising the possibility that this cancer uses alternative ways to overcome p53-mediated tumor suppression. Here we show that Mdm4 p53 binding protein homolog (MDM4), a negative regulator of p53, is upregulated in a substantial proportion (∼65%) of stage I–IV human melanomas and that melanocyte-specific Mdm4 overexpression enhanced tumorigenesis in a mouse model of melanoma induced by the oncogene Nras. MDM4 promotes the survival of human metastatic melanoma by antagonizing p53 proapoptotic function. Notably, inhibition of the MDM4-p53 interaction restored p53 function in melanoma cells, resulting in increased sensitivity to cytotoxic chemotherapy and to inhibitors of the BRAF (V600E) oncogene. Our results identify MDM4 as a key determinant of impaired p53 function in human melanoma and designate MDM4 as a promising target for antimelanoma combination therapy. PMID:22820643
BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer.
Wieser, Verena; Gaugg, Inge; Fleischer, Martina; Shivalingaiah, Giridhar; Wenzel, Soeren; Sprung, Susanne; Lax, Sigurd F; Zeimet, Alain G; Fiegl, Heidelinde; Marth, Christian
2018-04-03
Checkpoint molecules such as programmed cell death protein-1 (PD-1) and its ligand PD-L1 are critically required for tumor immune escape. The objective of this study was to investigate tumoral PD-1 and PD-L1 mRNA-expression in a cohort of ovarian cancer (OC) patients in relation to tumor mutations. We analyzed mRNA expression of PD-1 , PD-L1 and IFNG by quantitative real-time PCR in tissue of 170 patients with low grade-serous (LGSOC), high-grade serous (HGSOC), endometrioid and clear cell OC compared to 28 non-diseased tissues (ovaries and fallopian tubes) in relation to tumor protein 53 ( TP53 ) and breast cancer gene 1/2 ( BRCA1/2 ) mutation status. TP53 -mutated OC strongly expressed PD-L1 compared to TP53 wild-type OC ( p = 0.028) and BRCA1/2 -mutated OC increasingly expressed PD-1 ( p = 0.024) and PD-L1 ( p = 0.012) compared to BRCA1/2 wild-type OC. For the first time in human, we noted a strong correlation between tumoral IFNG and PD-1 or PD-L1 mRNA-expression, respectively ( p < 0.001). OC tissue increasingly expressed PD-1 compared to healthy controls (vs. ovaries: p < 0.001; vs. tubes: p = 0.018). PD-1 and PD-L1 mRNA-expression increased with higher tumor grade ( p = 0.008 and p = 0.027, respectively) and younger age (< median age, p = 0.001). Finally, in the major subgroup of our cohort, FIGO stage III/IV HGSOC, high PD-1 and PD-L1 mRNA-expression was associated with reduced progression-free ( p = 0.024) and overall survival ( p = 0.049) but only in the univariate analysis. Our study suggests that in OC PD-1 / PD-L1 mRNA-expression is controlled by IFNγ and affected by TP53 and BRCA1/2 mutations. We suggest that these mutations might serve as potential predictive factors that guide anti- PD1 / PD-L1 immunotherapy.
Sergio, Luiz Philippe S; Lucinda, Leda M F; Reboredo, Maycon M; de Paoli, Flavia; Fonseca, Lídia M C; Pinheiro, Bruno V; Mencalha, Andre L; Fonseca, Adenilson S
2018-03-01
Purpose/Aim of the study: Patients suffering from chronic obstructive pulmonary disease (COPD) in association with acute respiratory distress syndrome (ARDS) present oxidative stress in lung cells, with production of free radicals and DNA lesions in pulmonary and adjacent cells. Once the DNA molecule is damaged, a set of enzymatic mechanisms are trigged to preserve genetic code integrity and cellular homeostasis. These enzymatic mechanisms include the base and the nucleotide excision repair pathways, as well as telomere regulation. Thus, the aim of this work was to evaluate the mRNA levels from APEX1, ERCC2, TP53, and TRF2 genes in lung tissue from Wistar rats affected by acute lung injury in response to sepsis and emphysema. Adult male Wistar rats were randomized into 4 groups (n = 6, for each group): control, emphysema, sepsis, and emphysema with sepsis. Pulmonary emphysema was induced by intratracheal instillation of elastase (12 IU/animal) and sepsis induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS) injection (10 mg/kg). Lungs were removed, and samples were withdrawn for histological analysis and total RNA extraction, cDNA synthesis, and mRNA level evaluation by real time quantitative polymerase chain reaction. Data show acute lung injury by LPS and emphysema by elastase and that APEX1, ERCC2, TP53, and TRF2 mRNA levels are increased significantly (p < 0.01) in emphysema with sepsis group. Our results suggest that alteration in mRNA levels from DNA repair and genomic stability could be part of cell response to acute lung injury in response to emphysema and sepsis.
Knight, Jennifer F.; Lesurf, Robert; Zhao, Hong; Pinnaduwage, Dushanthi; Davis, Ryan R.; Saleh, Sadiq M. I.; Zuo, Dongmei; Naujokas, Monica A.; Chughtai, Naila; Herschkowitz, Jason I.; Prat, Aleix; Mulligan, Anna Marie; Muller, William J.; Cardiff, Robert D.; Gregg, Jeff P.; Andrulis, Irene L.; Hallett, Michael T.; Park, Morag
2013-01-01
Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Metmt) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Metmt mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Metmt, significantly increased tumor penetrance over Metmt or Trp53 loss alone. Unlike Metmt tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Metmt tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC. PMID:23509284
Sohl, Christal D.; Kasiviswanathan, Rajesh; Kim, Jiae; Pradere, Ugo; Schinazi, Raymond F.; Copeland, William C.; Mitsuya, Hiroaki; Baba, Masanori
2012-01-01
Two novel thymidine analogs, 3′-fluoro-3′-deoxythymidine (FLT) and 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre–steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2′,3′-didehydro-2′,3′-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4′-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2′,3′-didehydro-2′,3′-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials. PMID:22513406
Sprouse, Courtney; Gordish-Dressman, Heather; Orkunoglu-Suer, E Funda; Lipof, Jason S; Moeckel-Cole, Stephanie; Patel, Ronak R; Adham, Kasra; Larkin, Justin S; Hubal, Monica J; Kearns, Amy K; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Tosi, Laura L; Devaney, Joseph M
2014-01-01
Genome-wide association studies have identified thousands of variants that are associated with numerous phenotypes. One such variant, rs13266634, a nonsynonymous single nucleotide polymorphism in the solute carrier family 30 (zinc transporter) member eight gene, is associated with a 53% increase in the risk of developing type 2 diabetes (T2D). We hypothesized that individuals with the protective allele against T2D would show a positive response to short-term and long-term resistance exercise. Two cohorts of young adults-the Eccentric Muscle Damage (EMD; n = 156) cohort and the Functional Single Nucleotide Polymorphisms Associated with Muscle Size and Strength Study (FAMuSS; n = 874)-were tested for association of the rs13266634 variant with measures of skeletal muscle response to resistance exercise. Our results were sexually dimorphic in both cohorts. Men in the EMD study with two copies of the protective allele showed less post-exercise bout strength loss, less soreness, and lower creatine kinase values. In addition, men in the FAMuSS, homozygous for the protective allele, showed higher pre-exercise strength and larger arm skeletal muscle volume, but did not show a significant difference in skeletal muscle hypertrophy or strength with resistance training.
USDA-ARS?s Scientific Manuscript database
Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...
Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms
USDA-ARS?s Scientific Manuscript database
We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...
USDA-ARS?s Scientific Manuscript database
Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...
Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling
Till, Bradley J.; Zerr, Troy; Bowers, Elisabeth; Greene, Elizabeth A.; Comai, Luca; Henikoff, Steven
2006-01-01
Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease. PMID:16893952
Zheng, Miao-miao; Yue, Li-jie; Zhang, Hong-hong; Yang, Chun-lan; Xie, Cai
2013-08-01
To assess whether polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene is associated with susceptibility to acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) in Chinese Han children. The study has included 87 patients with ALL, 22 patients with AML and 120 healthy controls. All subjects were analyzed with reverse transcriptase-polymerase chain reaction-denaturing gradient gel electrophoresis and sequencing. A 677CT genotype of the MTHFR gene was associated with decreased risk of ALL (OR=0.23, 95%CI: 0.07-0.79). However, MTHFR A1298C genotypes were not associated with the risk of either disease. 677TT/1298AA and 677CC/1298AC genotypes were associated with increased risk of ALL(OR=3.78, 95% CI: 1.38-10.40; OR=3.17, 95% CI: 1.18-8.53, respectively), whereas the genotype 677CT/1298AA was associated with susceptibility to AML (OR=0.23, 95% CI: 0.06-0.97). Our data suggested that C677T polymorphism of MTHFR gene may increase the risk of childhood AML.
Dreger, Peter; Montserrat, Emili
2015-03-01
Allogeneic hematopoietic stem cell transplantation (alloHSCT) has been considered as the treatment of choice for patients with high-risk chronic lymphocytic leukemia (CLL) (i.e., refractory to purine analogs, short response (<24 months) to intensive treatments, and/or presence of 17p/TP53 abnormalities). Currently, new and highly effective therapeutic agents targeting BCR-mediated intracellular signal transduction have been incorporated into the CLL treatment armamentarium. These signal transduction inhibitors (STI) will change the algorithms of high-risk CLL (HR-CLL) management. Despite the limited body of evidence, there is sufficient rationale for withholding alloHSCT in patients with 17p-/TP53mut CLL in first remission. In contrast, the perspectives of patients with relapsed 17p-/TP53mut CLL remain uncertain even if responding to STI. The same accounts for patients with HR-CLL progressing under STI. In both scenarios, it is reasonable to consider alloHSCT, ideally after response to alternative STI regimens.
Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly.
Braun, Daniela A; Rao, Jia; Mollet, Geraldine; Schapiro, David; Daugeron, Marie-Claire; Tan, Weizhen; Gribouval, Olivier; Boyer, Olivia; Revy, Patrick; Jobst-Schwan, Tilman; Schmidt, Johanna Magdalena; Lawson, Jennifer A; Schanze, Denny; Ashraf, Shazia; Ullmann, Jeremy F P; Hoogstraten, Charlotte A; Boddaert, Nathalie; Collinet, Bruno; Martin, Gaëlle; Liger, Dominique; Lovric, Svjetlana; Furlano, Monica; Guerrera, I Chiara; Sanchez-Ferras, Oraly; Hu, Jennifer F; Boschat, Anne-Claire; Sanquer, Sylvia; Menten, Björn; Vergult, Sarah; De Rocker, Nina; Airik, Merlin; Hermle, Tobias; Shril, Shirlee; Widmeier, Eugen; Gee, Heon Yung; Choi, Won-Il; Sadowski, Carolin E; Pabst, Werner L; Warejko, Jillian K; Daga, Ankana; Basta, Tamara; Matejas, Verena; Scharmann, Karin; Kienast, Sandra D; Behnam, Babak; Beeson, Brendan; Begtrup, Amber; Bruce, Malcolm; Ch'ng, Gaik-Siew; Lin, Shuan-Pei; Chang, Jui-Hsing; Chen, Chao-Huei; Cho, Megan T; Gaffney, Patrick M; Gipson, Patrick E; Hsu, Chyong-Hsin; Kari, Jameela A; Ke, Yu-Yuan; Kiraly-Borri, Cathy; Lai, Wai-Ming; Lemyre, Emmanuelle; Littlejohn, Rebecca Okashah; Masri, Amira; Moghtaderi, Mastaneh; Nakamura, Kazuyuki; Ozaltin, Fatih; Praet, Marleen; Prasad, Chitra; Prytula, Agnieszka; Roeder, Elizabeth R; Rump, Patrick; Schnur, Rhonda E; Shiihara, Takashi; Sinha, Manish D; Soliman, Neveen A; Soulami, Kenza; Sweetser, David A; Tsai, Wen-Hui; Tsai, Jeng-Daw; Topaloglu, Rezan; Vester, Udo; Viskochil, David H; Vatanavicharn, Nithiwat; Waxler, Jessica L; Wierenga, Klaas J; Wolf, Matthias T F; Wong, Sik-Nin; Leidel, Sebastian A; Truglio, Gessica; Dedon, Peter C; Poduri, Annapurna; Mane, Shrikant; Lifton, Richard P; Bouchard, Maxime; Kannu, Peter; Chitayat, David; Magen, Daniella; Callewaert, Bert; van Tilbeurgh, Herman; Zenker, Martin; Antignac, Corinne; Hildebrandt, Friedhelm
2017-10-01
Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.
2016-01-01
There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191
Navas, Maria-Cristina; Suarez, Iris; Carreño, Andrea; Uribe, Diego; Rios, Wilson Alfredo; Cortes-Mancera, Fabian; Martel, Ghyslaine; Vieco, Beatriz; Lozano, Diana; Jimenez, Carlos; Gouas, Doriane; Osorio, German; Hoyos, Sergio; Restrepo, Juan Carlos; Correa, Gonzalo; Jaramillo, Sergio; Lopez, Rocio; Bravo, Luis Eduardo; Arbelaez, Maria Patricia; Scoazec, Jean-Yves; Abedi-Ardekani, Behnoush; Santella, Regina M.; Chemin, Isabelle; Hainaut, Pierre
2011-01-01
Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection. PMID:22114738
Gellert, Pascal; Segal, Corrinne V; Gao, Qiong; López-Knowles, Elena; Martin, Lesley-Ann; Dodson, Andrew; Li, Tiandao; Miller, Christopher A; Lu, Charles; Mardis, Elaine R; Gillman, Alexa; Morden, James; Graf, Manuela; Sidhu, Kally; Evans, Abigail; Shere, Michael; Holcombe, Christopher; McIntosh, Stuart A; Bundred, Nigel; Skene, Anthony; Maxwell, William; Robertson, John; Bliss, Judith M; Smith, Ian; Dowsett, Mitch
2016-11-09
Pre-surgical studies allow study of the relationship between mutations and response of oestrogen receptor-positive (ER+) breast cancer to aromatase inhibitors (AIs) but have been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor responders (based on Ki67 change), we find significantly more somatic mutations than good responders. Subclones exclusive to baseline or surgical cores occur in ∼30% of tumours. In phase II, we combine targeted sequencing on another 28 treated patients with phase I. We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with 71% concordance between paired cores. TP53 mutations are associated with poor response. We conclude that multiple biopsies are essential for confident mutational profiling of ER+ breast cancer and TP53 mutations are associated with resistance to oestrogen deprivation therapy.
The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype.
Ruijs, Marielle W G; Broeks, Annegien; Menko, Fred H; Ausems, Margreet G E M; Wagner, Anja; Oldenburg, Rogier; Meijers-Heijboer, Hanne; van't Veer, Laura J; Verhoef, Senno
2009-02-17
CHEK2 has previously been excluded as a major cause of Li-Fraumeni syndrome (LFS). One particular CHEK2 germline mutation, c.1100delC, has been shown to be associated with elevated breast cancer risk. The prevalence of CHEK2*1100delC differs between populations and has been found to be relatively high in the Netherlands. The question remains nevertheless whether CHEK2 germline mutations contribute to the Li-Fraumeni phenotype. We have screened 65 Dutch TP53-negative LFS/LFL candidate patients for CHEK2 germline mutations to determine their contribution to the LFS/LFL phenotype. We identified six index patients with a CHEK2 sequence variant, four with the c.1100delC variant and two sequence variants of unknown significance, p.Phe328Ser and c.1096-?_1629+?del. Our data show that CHEK2 is not a major LFS susceptibility gene in the Dutch population. However, CHEK2 might be a factor contributing to individual tumour development in TP53-negative cancer-prone families.
Velz, Julia; Olschewski, Martin; Goetz, Barbara; Pietsch, Torsten; Dilloo, Dagmar
2017-01-01
Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis. Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants. PMID:28159923
Craveiro, Rogerio B; Ehrhardt, Michael; Velz, Julia; Olschewski, Martin; Goetz, Barbara; Pietsch, Torsten; Dilloo, Dagmar
2017-07-18
Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis.Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants.
van Ginkel, Joost H; Huibers, Manon M H; van Es, Robert J J; de Bree, Remco; Willems, Stefan M
2017-06-19
During posttreatment surveillance of head and neck cancer patients, imaging is insufficiently accurate for the early detection of relapsing disease. Free circulating tumor DNA (ctDNA) may serve as a novel biomarker for monitoring tumor burden during posttreatment surveillance of these patients. In this exploratory study, we investigated whether low level ctDNA in plasma of head and neck cancer patients can be detected using Droplet Digital PCR (ddPCR). TP53 mutations were determined in surgically resected primary tumor samples from six patients with high stage (II-IV), moderate to poorly differentiated head and neck squamous cell carcinoma (HNSCC). Subsequently, mutation specific ddPCR assays were designed. Pretreatment plasma samples from these patients were examined on the presence of ctDNA by ddPCR using the mutation-specific assays. The ddPCR results were evaluated alongside clinicopathological data. In all cases, plasma samples were found positive for targeted TP53 mutations in varying degrees (absolute quantification of 2.2-422 mutational copies/ml plasma). Mutations were detected in wild-type TP53 background templates of 7667-156,667 copies/ml plasma, yielding fractional abundances of down to 0.01%. Our results show that detection of tumor specific TP53 mutations in low level ctDNA from HNSCC patients using ddPCR is technically feasible and provide ground for future research on ctDNA quantification for the use of diagnostic biomarkers in the posttreatment surveillance of HNSCC patients.
Evangelisti, Cecilia; de Biase, Dario; Kurelac, Ivana; Ceccarelli, Claudio; Prokisch, Holger; Meitinger, Thomas; Caria, Paola; Vanni, Roberta; Romeo, Giovanni; Tallini, Giovanni; Gasparre, Giuseppe; Bonora, Elena
2015-03-21
Thyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit. Total DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing. In our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified. These findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.
Tucci, Felicia Anna; Broering, Ruth; Johansson, Patricia; Schlaak, Joerg F; Küppers, Ralf
2013-03-01
Hepatitis C virus (HCV) is considered to have a causative role in B-cell lymphoproliferative diseases, including B-cell lymphomas, in chronic virus carriers. Previous data from in vitro HCV-infected B-cell lines and peripheral blood mononuclear cells from HCV-positive individuals suggested that HCV might have a direct mutagenic effect on B cells, inducing mutations in the tumor suppressor gene TP53 and the proto-oncogenes BCL6 and CTNNB1 (β-catenin). To clarify whether HCV indeed has a mutagenic effect on B cells in vivo, we analyzed naive and memory B cells from the peripheral blood of four chronic HCV carriers and intrahepatic B cells from the livers of two HCV-positive patients for mutations in the three reported target genes. However, no mutations were found in the TP53 and CTNNB1 genes. For BCL6, which is a physiological target of the somatic hypermutation process in germinal-center B cells, the mutation levels identified were not higher than those reported in the respective B-cell subsets in healthy individuals. Hence, we conclude that in chronic HCV carriers, the virus does not generally induce mutations in the cancer-related genes TP53, CTNNB1, and BCL6 in B cells. Based on these findings, new targets have to be investigated as potential mediators of HCV-associated B-cell lymphomagenesis.
Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja
2016-01-01
The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089
Palmero, Edenir Inêz; Alemar, Bárbara; Schüler-Faccini, Lavínia; Hainaut, Pierre; Moreira-Filho, Carlos Alberto; Ewald, Ingrid Petroni; dos Santos, Patricia Koehler; Ribeiro, Patricia Lisbôa Izetti; de Oliveira, Cristina Brinkmann; Kelm, Florence Le Calvez; Tavtigian, Sean; Cossio, Silvia Liliana; Giugliani, Roberto; Caleffi, Maira; Ashton-Prolla, Patricia
2016-01-01
Abstract In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil. PMID:27223485
NASA Astrophysics Data System (ADS)
Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.
2015-11-01
Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.
Manoukian, Siranoush; Peissel, Bernard; Frigerio, Simona; Lecis, Daniele; Bartkova, Jirina; Roversi, Gaia; Radice, Paolo; Bartek, Jiri; Delia, Domenico
2011-11-01
CHEK2 gene mutations occur in a subset of patients with familial breast cancer, acting as moderate/low penetrance cancer susceptibility alleles. Although CHEK2 is no longer recognized as a major determinant of the Li-Fraumeni syndrome, a hereditary condition predisposing to cancer at multiple sites, it cannot be ruled out that mutations of this gene play a role in malignancies arising in peculiar multi-cancer families. To assess the contribution of CHEK2 to the breast cancer/sarcoma phenotype, we screened for germ-line sequence variations of the gene among 12 probands from hereditary breast/ovarian cancer families with one case of sarcoma that tested wild-type for mutations in the BRCA1, BRCA2, and TP53 genes. Two cases harbored previously unreported mutations in CHEK2, the c.507delT and c.38A>G, leading to protein truncation (p.Phe169LeufsX2) and amino acid substitution (p.His13Arg), respectively. These mutations were not considered common polymorphic variants, as they were undetected in 230 healthy controls of the same ethnic origin. While the c.38A>G encodes a mutant protein that behaves in biochemical assays as the wild-type form, the c.507delT is a loss-of-function mutation. The identification of two previously unreported CHEK2 variants, including a truncating mutation leading to constitutional haploinsufficiency, in individuals belonging to families selected for breast cancer/sarcoma phenotype, supports the hypothesis that the CHEK2 gene may act as a factor contributing to individual tumor development in peculiar familial backgrounds.
Pinazo-Durán, M D; Shoaie-Nia, K; Sanz-González, S M; Raga-Cervera, J; García-Medina, J J; López-Gálvez, M I; Galarreta-Mira, D; Duarte, L; Campos-Borges, C; Zanón-Moreno, V
2018-05-01
To identify genes involved in the pathogenic mechanisms of non-proliferative diabetic retinopathy (NPDR), among which include oxidative stress, extracellular matrix changes, and/or apoptosis, in order to evaluate the risk of developing this retinal disease in a type2 diabetic (DM2) population. A case-control study was carried out on 81 participants from the Valencia Study on Diabetic Retinopathy (VSDR) of both genders, with ages 25-85years. They were classified into: (i)DM2 group (n=49), with DR (+DR; n=14) and without DR (-DR; n=35), and (ii)control group (GC; n=32). The protocols included a personal interview, standardised ophthalmological examination, and blood collection (to analyse the DNA for determining the gene expression (TP53, MMP9, and SLC23A2) in the study groups. Statistical analyses were performed using the SPSS v22.0 program. The TP53 and MMP9 genes showed a higher expression in the DM2 group compared to the GC, although the difference was only significant for the MMP9 gene (TP53: 10.40±1.20 vs. 8.23±1.36, P=.084; MMP9: 1.45±0.16 vs. 0.95±0.16, P=.036), and the SLC23A2 gene showed a significant lower expression in the DM2 vs CG (5.58±0.64 vs. 11.66±1.90, P=.026). When sub-dividing the DM2 group according to the presence of retinopathy, the expression of the TP53, MMP9 and SLC23A2 genes showed significant differences between the DM2-RD, DM2+RD and GC groups (TP53: 9.95±1.47 vs. 11.52±2.05 vs. 8.23±1.36, P=.038; MMP9: 1.47±0.20 vs. 1.41±0.27 vs. 0.95±0.16, P=.021; SLC23A2: 5.61±0.77 vs. 5.51±1.21 vs. 11.66±1.90, P=.018). Genes involved in extracellular matrix integrity (MMP9) and/or apoptosis (TP53), could be considered potential markers of susceptibility to the development/progression of NPDR. Interestingly, the SLC232A2 gene (ascorbic acid transporter) can be considered a protector of the risk of the development/progression of the retinopathy. Copyright © 2018. Publicado por Elsevier España, S.L.U.
USDA-ARS?s Scientific Manuscript database
Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...
USDA-ARS?s Scientific Manuscript database
Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...
USDA-ARS?s Scientific Manuscript database
Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...
Prospects for inferring pairwise relationships with single nucleotide polymorphisms
Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody
2003-01-01
An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...
USDA-ARS?s Scientific Manuscript database
Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...
USDA-ARS?s Scientific Manuscript database
Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...
Bogusz, Agata M
2017-01-01
Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC , BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53 (x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2.
2017-01-01
Posttransplant lymphoproliferative disorders (PTLDs) are a diverse group of lymphoid or plasmacytic proliferations frequently driven by Epstein-Barr virus (EBV). EBV-negative PTLDs appear to represent a distinct entity. This report describes an unusual case of a 33-year-old woman that developed a monomorphic EBV-negative PTLD consistent with diffuse large B-cell lymphoma (DLBCL) 13 years after heart-lung transplant. Histological examination revealed marked pleomorphism of the malignant cells including nodular areas reminiscent of classical Hodgkin lymphoma (cHL) with abundant large, bizarre Hodgkin-like cells. By immunostaining, the malignant cells were immunoreactive for CD45, CD20, CD79a, PAX5, BCL6, MUM1, and p53 and negative for CD15, CD30, latent membrane protein 1 (LMP1), and EBV-encoded RNA (EBER). Flow cytometry demonstrated lambda light chain restricted CD5 and CD10 negative B-cells. Fluorescence in situ hybridization studies (FISH) were negative for cMYC, BCL2, and BCL6 rearrangements but showed deletion of TP53 and monosomy of chromosome 17. Next-generation sequencing studies (NGS) revealed numerous genetic alterations including 6 pathogenic mutations in ASXL1, BCOR, CDKN2A, NF1, and TP53(x2) genes and 30 variants of unknown significance (VOUS) in ABL1, ASXL1, ATM, BCOR, BCORL1, BRNIP3, CDH2, CDKN2A, DNMT3A, ETV6, EZH2, FBXW7, KIT, NF1, RUNX1, SETPB1, SF1, SMC1A, STAG2, TET2, TP53, and U2AF2. PMID:28487787
Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J
2011-12-01
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Deval, Jerome; Hong, Jin; Wang, Guangyi; Taylor, Josh; Smith, Lucas K.; Fung, Amy; Stevens, Sarah K.; Liu, Hong; Jin, Zhinan; Dyatkina, Natalia; Prhavc, Marija; Stoycheva, Antitsa D.; Serebryany, Vladimir; Liu, Jyanwei; Smith, David B.; Tam, Yuen; Zhang, Qingling; Moore, Martin L.; Fearns, Rachel; Chanda, Sushmita M.; Blatt, Lawrence M.; Symons, Julian A.; Beigelman, Leo
2015-01-01
Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules. PMID:26098424
p53-independent p21 induction by MELK inhibition.
Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun
2017-08-29
MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated.
p53-independent p21 induction by MELK inhibition
Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun
2017-01-01
MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528
Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean
2012-01-01
Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Song, Hye-Rim; Kim, Hee Nam; Kweon, Sun-Seog; Choi, Jin-Su; Shim, Hyun Jeong; Cho, Sang Hee; Chung, Ik Joo; Park, Young-Kyu; Kim, Soo Hyun; Choi, Yoo-Duk; Joo, Kyung Woong; Shin, Min-Ho
2013-11-01
A recent genome-wide association study (GWAS) identified new susceptibility single-nucleotide polymorphisms (SNPs) rs13361707 (PRKAA1 and PTGER4 gene on 5p13.1) and rs9841504 (ZBTB20 gene on 3q13.31) that were significantly associated with non-cardia gastric cancer. The aim of this study was to determine whether rs13361707 and rs9841504 polymorphisms are associated with the risk of gastric cancer in a Korean population. We conducted a large-scale case-control study of 3245 gastric cancer patients and 1700 controls. The allele frequencies for rs13361707 C and rs9841504 G were 53.5% and 18.3% among gastric cancer cases, compared with 47.1% and 17.2% among controls, respectively. We found that rs13361707 TC and CC genotypes were associated with increased risk for gastric cancer (odds ratios [OR] = 1.29; 95% confidence interval [CI] = 1.11-1.51 for TC vs. TT and 1.68; 1.41-2.01 for CC vs. TT). However, we found no significant association between rs9841504 and gastric cancer risk (OR = 1.11; 0.97-1.28 for CG vs. CC; OR = 1.09; 0.77-1.53 for GG vs. CC). We observed no significant interactions between rs13361707 and rs9841504 polymorphisms and age, gender, smoking habit, alcohol consumption, and clinicopathologic characteristics such as anatomical tumor location and histological type. Our study showed that the rs13361707 polymorphism was associated with increased risk of gastric cancer in a Korean population. This finding provides further evidence that genetic variant of PRKAA1 and PTGER4 genes may contribute to the gastric carcinogenesis. However, we found no association between rs9841504 and gastric cancer risk. © 2013 Wiley Periodicals, Inc.
Polymorphism at codon 36 of the p53 gene.
Felix, C A; Brown, D L; Mitsudomi, T; Ikagaki, N; Wong, A; Wasserman, R; Womer, R B; Biegel, J A
1994-01-01
A polymorphism at codon 36 in exon 4 of the p53 gene was identified by single strand conformation polymorphism (SSCP) analysis and direct sequencing of genomic DNA PCR products. The polymorphic allele, present in the heterozygous state in genomic DNAs of four of 100 individuals (4%), changes the codon 36 CCG to CCA, eliminates a FinI restriction site and creates a BccI site. Including this polymorphism there are four known polymorphisms in the p53 coding sequence.
The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential
Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre
2015-01-01
Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205
El-Sabrout, Karim; Aggag, Sarah A.
2017-01-01
Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458
Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder
ERIC Educational Resources Information Center
Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.
2012-01-01
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…
USDA-ARS?s Scientific Manuscript database
Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...
USDA-ARS?s Scientific Manuscript database
Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Stodden, G R; Lindberg, M E; King, M L; Paquet, M; MacLean, J A; Mann, J L; DeMayo, F J; Lydon, J P; Hayashi, K
2015-05-07
Type II endometrial carcinomas (ECs) are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. As TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1(d/d)Trp53(d/d)) clearly demonstrate architectural features characteristic of type II ECs, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6 months of age. Further, Cdh1(d/d)Trp53(d/d) tumors in 12-month-old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphological intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1(d/d)Trp53(d/d) mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1(d/d)Trp53(d/d) mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1(d/d)Trp53(d/d) mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1(d/d)Trp53(d/d) uteri. Further, inflammatory mediators secreted from CDH1-negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory-related genes through activation of nuclear factor-κB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages and promotes aggressive ECs.
Stodden, Genna R.; Lindberg, Mallory E.; King, Mandy L.; Paquet, Marilène; MacLean, James A.; Mann, Jordan L.; DeMayo, Francesco J.; Lydon, John P.; Hayashi, Kanako
2015-01-01
Type II endometrial carcinomas are estrogen independent, poorly differentiated tumors that behave in an aggressive manner. Since TP53 mutation and CDH1 inactivation occur in 80% of human endometrial type II carcinomas, we hypothesized that mouse uteri lacking both Trp53 and Cdh1 would exhibit a phenotype indicative of neoplastic transformation. Mice with conditional ablation of Cdh1 and Trp53 (Cdh1d/dTrp53d/d) clearly demonstrate architectural features characteristic of type II endometrial carcinomas, including focal areas of papillary differentiation, protruding cytoplasm into the lumen (hobnailing) and severe nuclear atypia at 6-mo of age. Further, Cdh1d/dTrp53d/d tumors in 12-mo old mice were highly aggressive, and metastasized to nearby and distant organs within the peritoneal cavity, such as abdominal lymph nodes, mesentery and peri-intestinal adipose tissues, demonstrating that tumorigenesis in this model proceeds through the universally recognized morphologic intermediates associated with type II endometrial neoplasia. We also observed abundant cell proliferation and complex angiogenesis in the uteri of Cdh1d/dTrp53d/d mice. Our microarray analysis found that most of the genes differentially regulated in the uteri of Cdh1d/dTrp53d/d mice were involved in inflammatory responses. CD163 and Arg1, markers for tumor-associated macrophages, were also detected and increased in the uteri of Cdh1d/dTrp53d/d mice, suggesting that an inflammatory tumor microenvironment with immune cell recruitment is augmenting tumor development in Cdh1d/dTrp53d/d uteri. Further, inflammatory mediators secreted from CDH1 negative, TP53 mutant endometrial cancer cells induced normal macrophages to express inflammatory related genes through activation of NFκB signaling. These results indicate that absence of CDH1 and TP53 in endometrial cells initiates chronic inflammation, promotes tumor microenvironment development following the recruitment of macrophages, and promotes aggressive endometrial carcinomas. PMID:24998851
Volkert, Sarah; Kohlmann, Alexander; Schnittger, Susanne; Kern, Wolfgang; Haferlach, Torsten; Haferlach, Claudia
2014-05-01
We analyzed 1,200 patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) harboring a 5q deletion in order to clarify whether the type of 5q loss is associated with other biological markers and prognosis. We investigated all patients by chromosome banding analysis, FISH with a probe for EGR1 (5q31) and, if necessary, to resolve complex karyotypes with 24-color-FISH. Moreover, 420 patients were analyzed for mutations in the TP53 gene. The patient cohort was subdivided based on type of 5q loss: Patients with interstitial deletions and patients with 5q loss due to unbalanced rearrangements or monosomy 5. Loss of the long arm of chromosome 5 due to an unbalanced rearrangement occurred more often in AML (286/627; 45.6%) than MDS (188/573; 32.8%; P < 0.001). In both entities, patients with 5q loss due to unbalanced translocations showed complex karyotypes more frequently (MDS: 179/188; 95.2% vs. 124/385; 32.2%; P < 0.001; AML: 274/286; 95.8% vs. 256/341; 75.1%; P < 0.001). Moreover, in MDS unbalanced 5q translocations were associated with clonal evolution (109/188; 58.0% vs. 124/385; 32.2%; P < 0.001), mutation of TP53 (64/67; 95.5% vs. 40/120; 40.0%; P < 0.001), and shorter survival (15.3 months vs. not reached; P < 0.001). In MDS, complex karyotype was an independent adverse prognostic factor (HR = 5.34; P = 0.032), whereas in AML presence of TP53 mutations was the strongest adverse prognostic factor (HR = 2.21; P = 0.026). In conclusion, in AML and MDS, loss of the long arm of chromosome 5 due to unbalanced translocations is associated with complex karyotype and in MDS, moreover, with clonal evolution, mutations in the TP53 gene and adverse prognosis. Copyright © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Imane; EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque; Lebanese Atomic Energy Commission – CNRS, Beirut
Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOHmore » and/or MSI) in the PM{sub 2.5-0.3}-exposed coculture model. PM{sub 2.5-0.3} exposure of human AM from the coculture model induced marked cell cycle alterations after 24 h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM{sub 2.5-0.3} was reported in the L132 cells. Exposure of human AM from the coculture model to PM{sub 2.5-0.3} resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM{sub 2.5-0.3} induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability. - Highlights: • Better knowledge on health adverse effects of air pollution PM{sub 2.5}. • Human alveolar macrophage and normal human epithelial lung cell coculture. • Molecular abnormalities from TP53-RB gene signaling pathway. • Loss of heterozygosity and microsatellite instability. • Pathologic changes in morphology and number of cells in relation to airway remodeling.« less
Wang, Qiyan; Bai, Jian; Abliz, Amir; Liu, Ying; Gong, Kenan; Li, Jingjing; Shi, Wenjie; Pan, Yaqi; Liu, Fangfang; Lai, Shujuan; Yang, Haijun; Lu, Changdong; Zhang, Lixin; Chen, Wei; Xu, Ruiping; Cai, Hong; Ke, Yang; Zeng, Changqing
2015-08-01
Esophageal squamous cell carcinoma (ESCC) has a high mortality rate. To determine the molecular basis of ESCC development, this study sought to identify characteristic genome-wide alterations in ESCC, including exonic mutations and structural alterations. The clinical implications of these genetic alterations were also analyzed. Exome sequencing and verification were performed for nine pairs of ESCC and the matched blood samples, followed by validation with additional samples using Sanger sequencing. Whole-genome SNP arrays were employed to detect copy number alteration (CNA) and loss of heterozygosity (LOH) in 55 cases, including the nine ESCC samples subjected to exome sequencing. A total of 108 non-synonymous somatic mutations (NSSMs) in 102 genes were verified in nine patients. The chromatin modification process was found to be enriched in our gene ontology (GO) analysis. Tumor genomes with TP53 mutations were significantly more unstable than those without TP53 mutations. In terms of the landscape of genomic alterations, deletion of 9p21.3 covering CDKN2A/2B (30.9%), amplification of 11q13.3 covering CCND1 (30.9%), and TP53 point mutation (50.9%) occurred in two-thirds of the cases. These results suggest that the deregulation of the G1 phase during the cell cycle is a key event in ESCC. Furthermore, six minimal common regions were found to be significantly altered in ESCC samples and three of them, 9p21.3, 7p11.2, and 3p12.1, were associated with lymph node metastasis. With the high correlation of TP53 mutation and genomic instability in ESCC, the amplification of CCND1, the deletion of CDKN2A/2B, and the somatic mutation of TP53 appear to play pivotal roles via G1 deregulation and therefore helps to classify this cancer into different genomic subtypes. These findings provide clinical significance that could be useful in future molecular diagnoses and therapeutic targeting. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
Brat, Daniel J; Verhaak, Roel G W; Aldape, Kenneth D; Yung, W K Alfred; Salama, Sofie R; Cooper, Lee A D; Rheinbay, Esther; Miller, C Ryan; Vitucci, Mark; Morozova, Olena; Robertson, A Gordon; Noushmehr, Houtan; Laird, Peter W; Cherniack, Andrew D; Akbani, Rehan; Huse, Jason T; Ciriello, Giovanni; Poisson, Laila M; Barnholtz-Sloan, Jill S; Berger, Mitchel S; Brennan, Cameron; Colen, Rivka R; Colman, Howard; Flanders, Adam E; Giannini, Caterina; Grifford, Mia; Iavarone, Antonio; Jain, Rajan; Joseph, Isaac; Kim, Jaegil; Kasaian, Katayoon; Mikkelsen, Tom; Murray, Bradley A; O'Neill, Brian Patrick; Pachter, Lior; Parsons, Donald W; Sougnez, Carrie; Sulman, Erik P; Vandenberg, Scott R; Van Meir, Erwin G; von Deimling, Andreas; Zhang, Hailei; Crain, Daniel; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Troy; Sherman, Mark; Yena, Peggy; Black, Aaron; Bowen, Jay; Dicostanzo, Katie; Gastier-Foster, Julie; Leraas, Kristen M; Lichtenberg, Tara M; Pierson, Christopher R; Ramirez, Nilsa C; Taylor, Cynthia; Weaver, Stephanie; Wise, Lisa; Zmuda, Erik; Davidsen, Tanja; Demchok, John A; Eley, Greg; Ferguson, Martin L; Hutter, Carolyn M; Mills Shaw, Kenna R; Ozenberger, Bradley A; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Jensen, Mark A; Liu, Jia; Pihl, Todd; Raman, Rohini; Wan, Yunhu; Wu, Ye; Ally, Adrian; Auman, J Todd; Balasundaram, Miruna; Balu, Saianand; Baylin, Stephen B; Beroukhim, Rameen; Bootwalla, Moiz S; Bowlby, Reanne; Bristow, Christopher A; Brooks, Denise; Butterfield, Yaron; Carlsen, Rebecca; Carter, Scott; Chin, Lynda; Chu, Andy; Chuah, Eric; Cibulskis, Kristian; Clarke, Amanda; Coetzee, Simon G; Dhalla, Noreen; Fennell, Tim; Fisher, Sheila; Gabriel, Stacey; Getz, Gad; Gibbs, Richard; Guin, Ranabir; Hadjipanayis, Angela; Hayes, D Neil; Hinoue, Toshinori; Hoadley, Katherine; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven; Jones, Corbin D; Kucherlapati, Raju; Lai, Phillip H; Lander, Eric; Lee, Semin; Lichtenstein, Lee; Ma, Yussanne; Maglinte, Dennis T; Mahadeshwar, Harshad S; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew L; Mieczkowski, Piotr A; Moore, Richard A; Mose, Lisle E; Mungall, Andrew J; Pantazi, Angeliki; Parfenov, Michael; Park, Peter J; Parker, Joel S; Perou, Charles M; Protopopov, Alexei; Ren, Xiaojia; Roach, Jeffrey; Sabedot, Thaís S; Schein, Jacqueline; Schumacher, Steven E; Seidman, Jonathan G; Seth, Sahil; Shen, Hui; Simons, Janae V; Sipahimalani, Payal; Soloway, Matthew G; Song, Xingzhi; Sun, Huandong; Tabak, Barbara; Tam, Angela; Tan, Donghui; Tang, Jiabin; Thiessen, Nina; Triche, Timothy; Van Den Berg, David J; Veluvolu, Umadevi; Waring, Scot; Weisenberger, Daniel J; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Xu, Andrew W; Yang, Lixing; Zack, Travis I; Zhang, Jianhua; Aksoy, B Arman; Arachchi, Harindra; Benz, Chris; Bernard, Brady; Carlin, Daniel; Cho, Juok; DiCara, Daniel; Frazer, Scott; Fuller, Gregory N; Gao, JianJiong; Gehlenborg, Nils; Haussler, David; Heiman, David I; Iype, Lisa; Jacobsen, Anders; Ju, Zhenlin; Katzman, Sol; Kim, Hoon; Knijnenburg, Theo; Kreisberg, Richard Bailey; Lawrence, Michael S; Lee, William; Leinonen, Kalle; Lin, Pei; Ling, Shiyun; Liu, Wenbin; Liu, Yingchun; Liu, Yuexin; Lu, Yiling; Mills, Gordon; Ng, Sam; Noble, Michael S; Paull, Evan; Rao, Arvind; Reynolds, Sheila; Saksena, Gordon; Sanborn, Zack; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Shen, Ronglai; Shmulevich, Ilya; Sinha, Rileen; Stuart, Josh; Sumer, S Onur; Sun, Yichao; Tasman, Natalie; Taylor, Barry S; Voet, Doug; Weinhold, Nils; Weinstein, John N; Yang, Da; Yoshihara, Kosuke; Zheng, Siyuan; Zhang, Wei; Zou, Lihua; Abel, Ty; Sadeghi, Sara; Cohen, Mark L; Eschbacher, Jenny; Hattab, Eyas M; Raghunathan, Aditya; Schniederjan, Matthew J; Aziz, Dina; Barnett, Gene; Barrett, Wendi; Bigner, Darell D; Boice, Lori; Brewer, Cathy; Calatozzolo, Chiara; Campos, Benito; Carlotti, Carlos Gilberto; Chan, Timothy A; Cuppini, Lucia; Curley, Erin; Cuzzubbo, Stefania; Devine, Karen; DiMeco, Francesco; Duell, Rebecca; Elder, J Bradley; Fehrenbach, Ashley; Finocchiaro, Gaetano; Friedman, William; Fulop, Jordonna; Gardner, Johanna; Hermes, Beth; Herold-Mende, Christel; Jungk, Christine; Kendler, Ady; Lehman, Norman L; Lipp, Eric; Liu, Ouida; Mandt, Randy; McGraw, Mary; Mclendon, Roger; McPherson, Christopher; Neder, Luciano; Nguyen, Phuong; Noss, Ardene; Nunziata, Raffaele; Ostrom, Quinn T; Palmer, Cheryl; Perin, Alessandro; Pollo, Bianca; Potapov, Alexander; Potapova, Olga; Rathmell, W Kimryn; Rotin, Daniil; Scarpace, Lisa; Schilero, Cathy; Senecal, Kelly; Shimmel, Kristen; Shurkhay, Vsevolod; Sifri, Suzanne; Singh, Rosy; Sloan, Andrew E; Smolenski, Kathy; Staugaitis, Susan M; Steele, Ruth; Thorne, Leigh; Tirapelli, Daniela P C; Unterberg, Andreas; Vallurupalli, Mahitha; Wang, Yun; Warnick, Ronald; Williams, Felicia; Wolinsky, Yingli; Bell, Sue; Rosenberg, Mara; Stewart, Chip; Huang, Franklin; Grimsby, Jonna L; Radenbaugh, Amie J; Zhang, Jianan
2015-06-25
Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).
Urschitz, Johann; Sultan, Omar; Ward, Kenneth
2011-01-01
Objective Various Asian and Pacifific Islander groups have higher prevalence rates of type 2 diabetes and gestational diabetes. This increased incidence is likely to include genetic factors. Single nucleotide polymorphisms in the retinol binding protein 4 gene have been linked to the occurrence of type 2 diabetes. Hypothesizing a link between retinol binding protein 4 and gestational diabetes, we performed a candidate gene study to look for an association between an important retinol binding protein gene polymorphism (rs3758539) and gestational diabetes. Study Design Blood was collected from Caucasian, Asian, and Pacific Islander women diagnosed with gestational diabetes and from ethnically matched non-diabetic controls. DNA was extracted and real time PCR technology (TaqMan, Applied Biosystems) used to screen for the rs3758539 single nucleotide polymorphism located 5′ of exon 1 of the retinol binding protein 4 gene. Results Genotype and allele frequencies in the controls and gestational diabetes cases were tested using chi-square contingency tests. Genotype frequencies were in Hardy-Weinberg equilibrium. There was no association between the rs3758539 retinol binding protein 4 single nucleotide polymorphism and gestational diabetes in the Caucasian, Filipino, or Pacific Islander groups. Conclusion Interestingly, the rs3758539 retinol binding protein 4 single nucleotide polymorphism was not found to be associated with gestational diabetes. The absence of association suggests that gestational and type 2 diabetes may have more divergent molecular pathophysiology than previously suspected. PMID:21886308
Niemiec, Pawel; Nowak, Tomasz; Iwanicki, Tomasz; Gorczynska-Kosiorz, Sylwia; Balcerzyk, Anna; Krauze, Jolanta; Grzeszczak, Wladyslaw; Wiecha, Maria; Zak, Iwona
2015-01-01
Single nucleotide polymorphisms (SNPs) of the USF1 gene (upstream stimulatory factor 1) influence plasma lipid levels. This study aims to determine whether USF1 SNPs interact with traditional risk factors of atherosclerosis to increase coronary artery disease (CAD) risk. In the present study serum lipid levels and USF1 gene polymorphisms (rs2516839 and rs3737787) were determined in 470 subjects: 235 patients with premature CAD and 235 controls. A trend of increasing triglycerides (TG) levels in relation to the C allele dose of rs2516839 SNP was observed. The synergistic effect of cigarette smoking and C allele carrier state on CAD risk was also found (SIM = 2.69, p = 0.015). TG levels differentiated significantly particular genotypes in smokers (1.53 mmol/L for TT, 1.80 mmol/L for CT and 2.27 mmol/L for CC subjects). In contrast, these differences were not observed in the non-smokers subgroup (1.57 mmol/L for TT, 1.46 mmol/L for CT and 1.49 mmol/L for CC subjects). In conclusion, the rs2516839 polymorphism may modulate serum triglyceride levels in response to cigarette smoking. Carriers of the C allele seem to be particularly at risk of CAD, when exposed to cigarette smoking. PMID:26068452
MicroRNA-34a: A Key Regulator in the Hallmarks of Renal Cell Carcinoma
Hussein, Mohammad H.; Al-Qahtani, Saeed Awad M.; Shaalan, Aly A. M.
2017-01-01
Renal cell carcinoma (RCC) incidence has increased over the past two decades. Recent studies reported microRNAs as promising biomarkers for early cancer detection, accurate prognosis, and molecular targets for future treatment. This study aimed to evaluate the expression levels of miR-34a and 11 of its bioinformatically selected target genes and proteins to test their potential dysregulation in RCC. Quantitative real-time PCR for miR-34a and its targets; MET oncogene; gene-regulating apoptosis (TP53INP2 and DFFA); cell proliferation (E2F3); and cell differentiation (SOX2 and TGFB3) as well as immunohistochemical assay for VEGFA, TP53, Bcl2, TGFB1, and Ki67 protein expression have been performed in 85 FFPE RCC tumor specimens. Clinicopathological parameter correlation and in silico network analysis have also implicated. We found RCC tissues displayed significantly higher miR-34a expression level than their corresponding noncancerous tissues, particularly in chromophobic subtype. MET and E2F3 were significantly upregulated, while TP53INP2 and SOX2 were downregulated. ROC analysis showed high diagnostic performance of miR-34a (AUC = 0.854), MET (AUC = 0.765), and E2F3 (AUC = 0.761). The advanced pathological grade was associated with strong TGFB1, VEGFA, and Ki67 protein expression and absent Tp53 staining. These findings indicate miR-34a along with its putative target genes could play a role in RCC tumorigenesis and progression. PMID:29104726
Karathanasis, Nikolaos V; Stiakaki, Eftichia; Goulielmos, George N; Kalmanti, Maria
2011-01-01
Acute lymphoblastic leukemia (ALL) is the most common form of malignancy in children. Recently, many studies have examined factors influencing both the susceptibility to ALL and the metabolism of widely used chemotherapeutic agents. These factors include, among others, single-nucleotide polymorphisms in various genes, such as the gene encoding for methylenetetrahydrofolate reductase (MTHFR), which has been proven polymorphic at the nucleotide positions 677 and 1298. Thirty-five children with ALL and 48 healthy adults of Cretan origin were genotyped for the presence of the MTHFR 677 and 1298 single-nucleotide polymorphisms. The possible correlation of the polymorphisms with the risk for ALL and the presence of methotrexate-induced toxicities were examined. No significant association between the MTHFR genotypes and the susceptibility to ALL was observed. A borderline statistically significant relationship was detected after methotrexate administration, between the C677T genotype (polymorphisms) and leukopenia (p = 0.050) and between the A1298C polymorphism and normal aspartate transaminase and alanine transaminase values (p = 0.065 and p = 0.053, respectively), which was strengthened for aspartate transaminase, after grouping the A1298A and A1298C genotypes together (p = 0.039). In our population the MTHFR C677T and A1298C polymorphisms are related with hematologic toxicity and hepatotoxicity, respectively, and could be suggested as prognostic factors for these adverse events.
Flórez, M M; Fêo, H B; da Silva, G N; Yamatogi, R S; Aguiar, A J; Araújo, J P; Rocha, N S
2017-09-01
Transmissible venereal tumour (TVT) generally presents different degrees of aggressiveness, which makes them unresponsive to conventional treatment protocols. This implies a progressive alteration of their biological profile. This study aimed to evaluate the cytotoxicity, cell survival, apoptosis and cell cycle alterations in TVT cell cultures subjected to treatment with vincristine. Similarly, it assessed possible implications of MDR-1, TP53, BCL-2, and BAX gene expressions in eight TVT primary cultures for both resistance to chemotherapy and biological behaviour. When comparing TVT cells receiving vincristine to those untreated, a statistical difference related to increased cytotoxicity and decreased survival rates, and alterations in G1 and S cell cycle phases were found but without detectable differences in apoptosis. Increased MDR-1 gene expression was observed after treatment. The groups did not differ statistically in relation to the TP53, BAX and BCL-2 genes. Although preliminary, the findings suggest that such augmented expression is related to tumour malignancy and chemotherapy resistance. © 2016 John Wiley & Sons Ltd.
Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B; Crawford, Howard C; Arrowsmith, Cheryl; Kalloger, Steve E; Renouf, Daniel J; Connor, Ashton A; Cleary, Sean; Schaeffer, David F; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K
2015-11-01
There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.
The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.
Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia
2018-02-28
Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.
Kurushima, J. D.; Lipinski, M. J.; Gandolfi, B.; Froenicke, L.; Grahn, J. C.; Grahn, R. A.; Lyons, L. A.
2012-01-01
Summary Both cat breeders and the lay public have interests in the origins of their pets, not only in the genetic identity of the purebred individuals, but also the historical origins of common household cats. The cat fancy is a relatively new institution with over 85% of its 40–50 breeds arising only in the past 75 years, primarily through selection on single-gene aesthetic traits. The short, yet intense cat breed history poses a significant challenge to the development of a genetic marker-based breed identification strategy. Using different breed assignment strategies and methods, 477 cats representing 29 fancy breeds were analysed with 38 short tandem repeats, 148 intergenic and five phenotypic single nucleotide polymorphisms. Results suggest the frequentist method of Paetkau (accuracy single nucleotide polymorphisms = 0.78, short tandem repeats = 0.88) surpasses the Bayesian method of Rannala and Mountain (single nucleotide polymorphisms = 0.56, short tandem repeats = 0.83) for accurate assignment of individuals to the correct breed. Additionally, a post-assignment verification step with the five phenotypic single nucleotide polymorphisms accurately identified between 0.31 and 0.58 of the mis-assigned individuals raising the sensitivity of assignment with the frequentist method to 0.89 and 0.92 single nucleotide polymorphisms and short tandem repeats respectively. This study provides a novel multi-step assignment strategy and suggests that, despite their short breed history and breed family groupings, a majority of cats can be assigned to their proper breed or population of origin, i.e. race. PMID:23171373
The Single Nucleotide Polymorphism Consortium
NASA Technical Reports Server (NTRS)
Morgan, Michael
2003-01-01
I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.
Analysis of single nucleotide polymorphisms in case-control studies.
Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer
2011-01-01
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.
Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen
2012-09-04
A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.
A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms
ERIC Educational Resources Information Center
Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.
2016-01-01
The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…
USDA-ARS?s Scientific Manuscript database
The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...
Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism.
Eriksson, Matilda; Ambroise, Gorbatchev; Ouchida, Amanda Tomie; Lima Queiroz, Andre; Smith, Dominique; Gimenez-Cassina, Alfredo; Iwanicki, Marcin P; Muller, Patricia A; Norberg, Erik; Vakifahmetoglu-Norberg, Helin
2017-12-15
TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53. Copyright © 2017 American Society for Microbiology.
Lager, Malin; Mernelius, Sara; Löfgren, Sture; Söderman, Jan
2016-01-01
Healthcare-associated infections caused by Escherichia coli and antibiotic resistance due to extended-spectrum beta-lactamase (ESBL) production constitute a threat against patient safety. To identify, track, and control outbreaks and to detect emerging virulent clones, typing tools of sufficient discriminatory power that generate reproducible and unambiguous data are needed. A probe based real-time PCR method targeting multiple single nucleotide polymorphisms (SNP) was developed. The method was based on the multi locus sequence typing scheme of Institute Pasteur and by adaptation of previously described typing assays. An 8 SNP-panel that reached a Simpson's diversity index of 0.95 was established, based on analysis of sporadic E. coli cases (ESBL n = 27 and non-ESBL n = 53). This multi-SNP assay was used to identify the sequence type 131 (ST131) complex according to the Achtman's multi locus sequence typing scheme. However, it did not fully discriminate within the complex but provided a diagnostic signature that outperformed a previously described detection assay. Pulsed-field gel electrophoresis typing of isolates from a presumed outbreak (n = 22) identified two outbreaks (ST127 and ST131) and three different non-outbreak-related isolates. Multi-SNP typing generated congruent data except for one non-outbreak-related ST131 isolate. We consider multi-SNP real-time PCR typing an accessible primary generic E. coli typing tool for rapid and uniform type identification.
Structural basis for the D-stereoselectivity of human DNA polymerase β
Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.
2017-01-01
Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499
Suenaga, Mitsukuni; Schirripa, Marta; Cao, Shu; Zhang, Wu; Yang, Dongyun; Ning, Yan; Cremolini, Chiara; Antoniotti, Carlotta; Borelli, Beatrice; Mashima, Tetsuo; Okazaki, Satoshi; Berger, Martin D; Miyamoto, Yuji; Gopez, Roel; Barzi, Afsaneh; Lonardi, Sara; Yamaguchi, Toshiharu; Falcone, Alfredo; Loupakis, Fotios; Lenz, Heinz-Josef
2018-06-01
The C-C motif chemokine ligand 5/C-C motif chemokine receptor 5 (CCL5/CCR5) pathway has been shown to induce endothelial progenitor cell migration, resulting in increased vascular endothelial growth factor A expression. We hypothesized that genetic polymorphisms in the CCL5/CCR5 pathway predict efficacy and toxicity in patients with metastatic colorectal cancer (mCRC) treated with regorafenib. We analyzed genomic DNA extracted from 229 tumor samples from 2 different cohorts of patients who received regorafenib: an evaluation cohort of 79 Japanese patients and a validation cohort of 150 Italian patients. Single nucleotide polymorphisms of CCL5/CCR5 pathway-related genes were analyzed by PCR-based direct sequencing. CCL4 rs1634517 and CCL3 rs1130371 were associated with progression-free survival in the evaluation cohort (hazard ratio [HR] 1.54, P = .043; HR 1.48, P = .064), and progression-free survival (HR 1.74, P < .001; HR 1.66, P = .002) and overall survival (HR 1.65, P = .004; HR 1.65, P = .004) in the validation cohort. The allelic frequencies of CCL5 single nucleotide polymorphisms varied between the evaluation and validation cohorts (G/G variant in rs2280789, 21.5% vs. 1.3%, P < .001; T/T variant in rs3817655, 22.8% vs. 2.7%, P < .001). In the evaluation cohort, patients with the G/G variant in rs2280789 had a higher incidence of grade 3+ hand-foot skin reaction compared to any A allele (53% vs. 27%, P = .078), and similarly to the T/T variant in rs3817655 compared to any A allele (56% vs. 26%, P = .026). Genetic variants in the CCL5/CCR5 pathway may serve as prognostic markers and may predict severe hand-foot skin reaction in mCRC patients receiving regorafenib therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Mycobacterium leprae: genes, pseudogenes and genetic diversity
Singh, Pushpendra; Cole, Stewart T
2011-01-01
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636
Nooij, Linda S; Ter Haar, Natalja T; Ruano, Dina; Rakislova, Natalia; van Wezel, Tom; Smit, Vincent T H B M; Trimbos, Baptist J B M Z; Ordi, Jaume; van Poelgeest, Mariette I E; Bosse, Tjalling
2017-11-15
Purpose: Vulvar cancer (VC) can be subclassified by human papillomavirus (HPV) status. HPV-negative VCs frequently harbor TP53 mutations; however, in-depth analysis of other potential molecular genetic alterations is lacking. We comprehensively assessed somatic mutations in a large series of vulvar (pre)cancers. Experimental Design: We performed targeted next-generation sequencing (17 genes), p53 immunohistochemistry and HPV testing on 36 VC and 82 precursors (sequencing cohort). Subsequently, the prognostic significance of the three subtypes identified in the sequencing cohort was assessed in a series of 236 VC patients (follow-up cohort). Results: Frequent recurrent mutations were identified in HPV-negative vulvar (pre)cancers in TP53 (42% and 68%), NOTCH1 (28% and 41%), and HRAS (20% and 31%). Mutation frequency in HPV-positive vulvar (pre)cancers was significantly lower ( P = 0.001). Furthermore, a substantial subset of the HPV-negative precursors (35/60, 58.3%) and VC (10/29, 34.5%) were TP53 wild-type (wt), suggesting a third, not-previously described, molecular subtype. Clinical outcomes in the three different subtypes (HPV + , HPV - /p53wt, HPV - /p53abn) were evaluated in a follow-up cohort consisting of 236 VC patients. Local recurrence rate was 5.3% for HPV + , 16.3% for HPV - /p53wt and 22.6% for HPV - /p53abn tumors ( P = 0.044). HPV positivity remained an independent prognostic factor for favorable outcome in the multivariable analysis ( P = 0.020). Conclusions: HPV - and HPV + vulvar (pre)cancers display striking differences in somatic mutation patterns. HPV - /p53wt VC appear to be a distinct clinicopathologic subgroup with frequent NOTCH1 mutations. HPV + VC have a significantly lower local recurrence rate, independent of clinicopathological variables, opening opportunities for reducing overtreatment in VC. Clin Cancer Res; 23(22); 6781-9. ©2017 AACR . ©2017 American Association for Cancer Research.
Kim, Jusik; Choi, Inseo; Lee, Youngsoo
2017-11-01
Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.
Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome
Leppert, Tami; Anex, Deon S.; Hilmer, Jonathan K.; Matsunami, Nori; Baird, Lisa; Stevens, Jeffery; Parsawar, Krishna; Durbin-Johnson, Blythe P.; Rocke, David M.; Nelson, Chad; Fairbanks, Daniel J.; Wilson, Andrew S.; Rice, Robert H.; Woodward, Scott R.; Bothner, Brian; Hart, Bradley R.; Leppert, Mark
2016-01-01
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts. PMID:27603779
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; Prata, Mara de Moura Gondim; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-02-01
This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL.
Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura
2015-01-01
Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; de Moura Gondim Prata, Mara; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-01-01
OBJECTIVE: This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. METHOD: A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. RESULTS: Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. CONCLUSIONS: These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL. PMID:26934237
Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C.; Kolodner, Richard D.; Edelmann, Winfried; Wang, Jean Y. J.
2008-01-01
Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients. PMID:18768816
Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C; Kolodner, Richard D; Edelmann, Winfried; Wang, Jean Y J
2008-09-16
Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients.
USDA-ARS?s Scientific Manuscript database
Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...
ERIC Educational Resources Information Center
Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli
2010-01-01
Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…
USDA-ARS?s Scientific Manuscript database
The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...
Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins
2016-01-01
Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...
ERIC Educational Resources Information Center
Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui
2017-01-01
Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…
Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.
2007-01-01
A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140
NASA Astrophysics Data System (ADS)
Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.
2006-02-01
Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.
AML outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients
Strom, Sara S; Estey, Elihu H; Outschoorn, Ubaldo Martinez; Guillermo, Garcia-Manero
2010-01-01
Purpose Acute Myeloid Leukemia (AML) is frequently associated with genetic abnormalities. Based on pre-treatment cytogenetics, patients are classified into favorable, intermediate and poor subgroups. Cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to inter-individual differences in DNA repair capacity (DRC) which could influence outcome. Methods We studied the role of 6 polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) within NER pathway on overall and disease-free survival among 170 adult de-novo AML patients with intermediate cytogenetics [diploid (n=117); non-diploid (n=53)], treated with induction chemotherapy. Kaplan-Meier methods and Cox proportional hazards models were performed. Results Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type (AA) genotype (median survival 22 vs. 40 months, log-rank p = 0.03). Similarly diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type (CC) genotype (median survival 15 vs. 30 months, log-rank p = 0.02). Among diploid patients, after adjusting for clinical and socio-demographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying compared to those with the wild-type genotypes (HR=2.49; 95%CI: 1.06–5.85). No significant associations were observed for disease-free survival in AML patients. Conclusion By reduced DRC, this combined genotype may result in greater susceptibility to treatment effects decreasing overall survival. These findings could in the future help in selecting treatment strategies for patients with normal cytogenetics. PMID:20141440
Hot spot mutations in Finnish non-small cell lung cancers.
Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari
2016-09-01
Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Soares, Paulo C; Abdelhay, Eliana S; Thuler, Luiz Claudio S; Soares, Bruno Moreira; Demachki, Samia; Ferro, Gessica Valéria Rocha; Assumpção, Paulo P; Lamarão, Leticia Martins; Ribeiro Pinto, Luis Felipe; Burbano, Rommel Mario Rodríguez
2018-02-21
Anal residual tumors are consensually identified within six months of chemoradiotherapy and represent a persistent lesion that may have prognostic value for overall survival. The aim of this study was to evaluate the association of HPV and HIV status, p16 expression level and TP53 mutations with the absence of residual tumors (local response) in Squamous Cell Carcinoma (SCC) of the anal canal after chemoradiotherapy. We performed a study on 78 patients with SCC of the anal canal who submitted to chemoradiotherapy and were followed for a six-month period to identify the absence or presence of residual tumors. HPV DNA was identified by polymerase chain reaction and direct sequencing, HIV RNA was detected by TaqMan amplification, p16 expression was detected by western blotting, and the mutational analysis of TP53 was performed by direct sequencing; additionally, samples carrying mutations underwent fluorescent in sit hybridization. The evaluation of the tumor response to treatment was conducted six months after the conclusion of chemoradiotherapy. The following classifications were used to evaluate the outcomes: a) no response (presence of residual tumor) and b) complete response (absence of residual tumor). The significant variables associated with the absence of residual tumors were HPV positive, p16 overexpressed, wild-type TP53, female gender, and stages I and II. Only the presence of HPV was independently correlated with the clinical response; this variable increased the chances of a response within six months by 31-fold. The presence of HPV in tumor cells was correlated with the absence of a residual tumor. This correlation is valuable and can direct future therapeutic approaches in the anal canal.
Frasco, Melissa A; Karim, Roksana; Van Den Berg, David; Watanabe, Richard M; Anastos, Kathryn; Cohen, Mardge; Gange, Stephen J; Gustafson, Deborah R; Liu, Chenglong; Tien, Phyllis C; Mack, Wendy J; Pearce, Celeste L
2014-07-31
Type 2 diabetes mellitus incidence is increased in HIV-infected persons. We examined the associations of diabetes mellitus with known diabetes mellitus-risk alleles from the general population in the context of HIV infection, and explored effect modification by combination antiretroviral therapy (cART). The Women's Interagency HIV Study is a prospective cohort of HIV-infected women. Seventeen European-derived diabetes mellitus-risk polymorphisms were genotyped in the eligible participants of the Women's Interagency HIV Study. Analyses were run separately for non-African Americans (Whites, Hispanics, Asians, and other; n = 378, 49 with incident diabetes mellitus) and African Americans (n = 591, 49 with incident diabetes mellitus). Cox proportional-hazards models were fit to estimate hazard ratios for diabetes mellitus overall and within strata of cART. In non-African Americans, heterogeneity across cART regimen was observed for nine of the 14 polymorphisms (phet < 0.05). One polymorphism was statistically significantly inversely associated with diabetes mellitus risk among women taking two nucleotide reverse transcriptase inhibitors (NRTIs) + non-nucleotide reverse transcriptase inhibitor (NNRTI). Five polymorphisms were statistically significantly associated with diabetes mellitus among women treated with at least two NRTIs + at least one protease inhibitor and one polymorphism was associated with diabetes mellitus among those treated with at least three NRTIs ± NNRTI. The hazard ratio per risk allele for IGF2BP2 rs1470579 was 2.67 (95% confidence interval 1.67-4.31) for women taking cART with at least two NRTIs + at least one protease inhibitor and 2.45 (95% confidence interval 1.08-5.53) in women taking at least three NRTIs ± NNRTI (phet = 2.50 × 10⁻³). No such associations were observed in the African Americans. Genetic susceptibility to diabetes mellitus, based on the variants studied, is substantially elevated among HIV-infected women using cART containing three or more NRTI/protease inhibitor components. A personalized medicine approach to cART selection may be indicated for HIV-infected persons carrying these diabetes mellitus-risk variants.
Genomic instability--an evolving hallmark of cancer.
Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D
2010-03-01
Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.
Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K
2014-04-01
Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.
Xu, Xiuduan; Wang, Hongli; Liu, Shasha; Xing, Chen; Liu, Yang; Aodengqimuge; Zhou, Wei; Yuan, Xiaoyan; Ma, Yongfu; Hu, Meiru; Hu, Yongliang; Zou, Shuxian; Gu, Ye; Peng, Shuangqing; Yuan, Shengtao; Li, Weiping; Ma, Yuanfang; Song, Lun
2016-10-02
ABSTARCT Epidemiological and clinical studies have increasingly shown that fine particulate matter (PM2.5) is associated with a number of pathological respiratory diseases, such as bronchitis, asthma, and chronic obstructive pulmonary disease, which share the common feature of airway inflammation induced by particle exposure. Thus, understanding how PM2.5 triggers inflammatory responses in the respiratory system is crucial for the study of PM2.5 toxicity. In the current study, we found that exposing human bronchial epithelial cells (immortalized Beas-2B cells and primary cells) to PM2.5 collected in the winter in Wuhan, a city in southern China, induced a significant upregulation of VEGFA (vascular endothelial growth factor A) production, a signaling event that typically functions to control chronic airway inflammation and vascular remodeling. Further investigations showed that macroautophagy/autophagy was induced upon PM2.5 exposure and then mediated VEGFA upregulation by activating the SRC (SRC proto-oncogene, non-receptor tyrosine kinase)-STAT3 (signal transducer and activator of transcription 3) pathway in bronchial epithelial cells. By exploring the upstream signaling events responsible for autophagy induction, we revealed a requirement for TP53 (tumor protein p53) activation and the expression of its downstream target DRAM1 (DNA damage regulated autophagy modulator 1) for the induction of autophagy. These results thus extend the role of TP53-DRAM1-dependent autophagy beyond cell fate determination under genotoxic stress and to the control of proinflammatory cytokine production. Moreover, PM2.5 exposure strongly induced the activation of the ATR (ATR serine/threonine kinase)-CHEK1/CHK1 (checkpoint kinase 1) axis, which subsequently triggered TP53-dependent autophagy and VEGFA production in Beas-2B cells. Therefore, these findings suggest a novel link between processes regulating genomic integrity and airway inflammation via autophagy induction in bronchial epithelial cells under PM2.5 exposure.
Recurrent TP53 missense mutation in cancer patients of Arab descent.
Zick, Aviad; Kadouri, Luna; Cohen, Sherri; Frohlinger, Michael; Hamburger, Tamar; Zvi, Naama; Plaser, Morasha; Avital, Eilat; Breuier, Shani; Elian, Firase; Salah, Azzam; Goldberg, Yael; Peretz, Tamar
2017-04-01
Hereditary cancer comprises more than 10% of all breast cancer cases. Identification of germinal mutations enables the initiation of a preventive program that can include early detection or preventive treatment and may also have a major impact on cancer therapy. Several recurrent mutations were identified in the BRCA1/2 genes in Jewish populations however, in other ethnic groups in Israel, no recurrent mutations were identified to date. Our group established panel sequencing in cancer patients to identify recurrent, founder, and new mutations in the heterogeneous and diverse populations in Israel, We evaluated five breast cancer patients of Arab descent diagnosed with cancer before the age of 50 years and identified the previously described TP53 mutation, c.541C>T, R181C (rs587782596), in two women from unrelated Arab families. The two probands were diagnosed with breast cancer at a young age (27 and 34 years) and had significant family history spanning a wide range of tumors (breast cancer (BC), papillary thyroid cancer, glioblastoma multiform (GBM), colon cancer and leukemia). The R181C variant is expected to disrupt p53 at the ASPP2 binding domain but not the DNA binding domain and is defined by Clinvar as likely pathogenic and in HGMD as disease mutation. We further tested 85 unrelated Arab cancer patients and father of a BC carrier patient for TP53 c.541C>T using a real time polymerase chain reaction (RT-PCR) approach and identified four additional carriers, two with BC one with lung cancer, and the father of a BC carrier patient, diagnosed with GBM. Another carrier suffering from BC was identified using a Myriad panel, suggesting a recurrent mutation in this population with a frequency of 5/42 (11.9%) of our selected BC patients. We suggest testing Arab women with a breast cancer at a young age, Arab patients with multiple malignancies, or with suggestive family history for TP53 c.541C>T.
Fortuno, Cristina; James, Paul A; Young, Erin L; Feng, Bing; Olivier, Magali; Pesaran, Tina; Tavtigian, Sean V; Spurdle, Amanda B
2018-05-18
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multi-sequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of non-functional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Infant sex-specific placental cadmium and DNA methylation associations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, April F., E-mail: april.mohanty@va.gov; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Farin, Fred M., E-mail: freddy@u.washington.edu
Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively.more » Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these findings. Such investigations may further our understanding of epigenetic mechanisms underlying maternal Cd burden with suboptimal fetal growth associations. - Highlights: • We examine sex-specific placental-Cd and -genome-wide DNA methylation associations. • In females, associated sites were at/near genes involved in cell damage response. • In males, associated sites were at/near angiogenesis and organ development genes. • Our study supports infant sex-specific placental Cd-DNA methylation associations.« less
Zhang, Boyu; Jia, Yanbin; Yuan, Yanbo; Yu, Xin; Xu, Qi; Shen, Yucun; Shen, Yan
2004-09-01
Several lines of evidence suggest that dysfunctions of neurotransmitters are associated with schizophrenia. DOPA decarboxylase (DDC) is an enzyme involved directly in the synthesis of dopamine and serotonin, and indirectly in the synthesis of noradrenaline. Therefore, the DDC gene can be considered a candidate gene for schizophrenia. We performed an association study between three single nucleotide polymorphisms in the DDC gene and paranoid schizophrenia. However, in our study no significant differences were found in the genotype distributions and allele frequencies between 80 paranoid schizophrenics and 108 controls for any of the polymorphisms. Neither did the haplotypes of the single nucleotide polymorphisms show any association with paranoid schizophrenia. Therefore, we conclude that the polymorphisms studied do not play a major role in paranoid schizophrenia pathogenesis in the population investigated.
USDA-ARS?s Scientific Manuscript database
In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...
Eliakim, Alon; Ben Zaken, Sigal; Meckel, Yoav; Yamin, Chen; Dror, Nitzan; Nemet, Dan
2015-12-01
We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.
Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.
2016-01-01
Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun
2007-01-01
Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779
ERIC Educational Resources Information Center
Melloy, Patricia G.
2015-01-01
A two-part laboratory exercise was developed to enhance classroom instruction on the significance of p53 mutations in cancer development. Students were asked to mine key information from an international database of p53 genetic changes related to cancer, the IARC TP53 database. Using this database, students designed several data mining activities…
Nakaoka, Hirofumi; Takahashi, Tomoko; Akiyama, Koichi; Cui, Tailin; Tajima, Atsushi; Krischek, Boris; Kasuya, Hidetoshi; Hata, Akira; Inoue, Ituro
2010-08-01
Recently, a genome-wide association study identified associations between single nucleotide polymorphisms on chromosome 9p21 and risk of harboring intracranial aneurysm (IA). Aneurysm characteristics or subphenotypes of IAs, such as history of subarachnoid hemorrhage, presence of multiple IAs and location of IAs, are clinically important. We investigated whether the association between 9p21 variation and risk of IA varied among these subphenotypes. We conducted a case-control study of 981 cases and 699 controls in Japanese. Four single nucleotide polymorphisms tagging the 9p21 risk locus were genotyped. The OR and 95% CI were estimated using logistic regression analyses. Among the 4 single nucleotide polymorphisms, rs1333040 showed the strongest evidence of association with IA (P=1.5x10(-6); per allele OR, 1.43; 95% CI, 1.24-1.66). None of the patient characteristics (gender, age, smoking, and hypertension) was a significant confounder or effect modifier of the association. Subgroup analyses of IA subphenotypes showed that among the most common sites of IAs, the association was strongest for IAs of the posterior communicating artery (OR, 1.69; 95% CI, 1.26-2.26) and not significant for IAs in the anterior communicating artery (OR, 1.22; 95% CI, 0.96-1.57). When dichotomizing IA sites, the association was stronger for IAs of the posterior circulation-posterior communicating artery group (OR, 1.73; 95% CI, 1.32-2.26) vs the anterior circulation group (OR, 1.28; 95% CI, 1.07-1.53). Heterogeneity in these ORs was significant (P=0.032). The associations did not vary when stratifying by history of subarachnoid hemorrhage (OR, 1.42; 95% CI, 1.18-1.71 for ruptured IA; OR, 1.27; 95% CI, 1.00-1.62 for unruptured IA) or by multiplicity of IA (OR, 1.57; 95% CI, 1.21-2.03 for multiple IAs; OR, 1.36; 95% CI, 1.15-1.61 for single IA). Our results suggest that genetic influence on formation may vary between IA subphenotypes.
Chao, Angel; Lai, Chyong-Huey; Lee, Yun-Shien; Ueng, Shir-Hwa; Lin, Chiao-Yun; Wang, Tzu-Hao
2015-01-15
Endometrial cancer that occurs concurrently with peritoneal malignant mesothelioma (PMM) is difficult to diagnose preoperatively. A postmenopausal woman had endometrial cancer extending to the cervix, vagina and pelvic lymph nodes, and PMM in bilateral ovaries, cul-de-sac, and multiple peritoneal sites. Adjuvant therapies included chemotherapy and radiotherapy. Targeted, massively parallel DNA sequencing and molecular inversion probe microarray analysis revealed a germline TP53 mutation compatible with Li-Fraumeni-like syndrome, somatic mutations of PIK3CA in the endometrial cancer, and a somatic mutation of GNA11 and JAK3 in the PMM. Large-scale genomic amplifications and some deletions were found in the endometrial cancer. The patient has been stable for 24 months after therapy. One of her four children was also found to carry the germline TP53 mutation. Molecular characterization of the coexistent tumors not only helps us make the definite diagnosis, but also provides information to select targeted therapies if needed in the future. Identification of germline TP53 mutation further urged us to monitor future development of malignancies in this patient and encourage cancer screening in her family.
De novo duplication of 17p13.1-p13.2 in a patient with intellectual disability and obesity.
Kuroda, Yukiko; Ohashi, Ikuko; Tominaga, Makiko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Masuno, Mitsuo; Kurosawa, Kenji
2014-06-01
17p13.1 Deletion encompassing TP53 has been described as a syndrome characterized by intellectual disability and dysmorphic features. Only one case with a 17p13.1 duplication encompassing TP53 has been reported in a patient with intellectual disability, seizures, obesity, and diabetes mellitus. Here, we present a patient with a 17p13.1 duplication who exhibited obesity and intellectual disability, similar to the previous report. The 9-year-old proposita was referred for the evaluation of intellectual disability and obesity. She also exhibited insulin resistance and liver dysfunction. She had wide palpebral fissures, upturned nostrils, a long mandible, short and slender fingers, and skin hyperpigmentation. Array comparative genomic hybridization (array CGH) detected a 3.2 Mb duplication of 17p13.1-p13.2 encompassing TP53, FXR2, NLGN2, and SLC2A4, which encodes the insulin-responsive glucose transporter 4 (GLUT4) associated with insulin-stimulated glucose uptake in adipocytes and muscle. We suggest that 17p13.1 duplication may represent a clinically recognizable condition characterized partially by a characteristic facial phenotype, developmental delay, and obesity. © 2014 Wiley Periodicals, Inc.
George, Julie; Walter, Vonn; Peifer, Martin; Alexandrov, Ludmil B; Seidel, Danila; Leenders, Frauke; Maas, Lukas; Müller, Christian; Dahmen, Ilona; Delhomme, Tiffany M; Ardin, Maude; Leblay, Noemie; Byrnes, Graham; Sun, Ruping; De Reynies, Aurélien; McLeer-Florin, Anne; Bosco, Graziella; Malchers, Florian; Menon, Roopika; Altmüller, Janine; Becker, Christian; Nürnberg, Peter; Achter, Viktor; Lang, Ulrich; Schneider, Peter M; Bogus, Magdalena; Soloway, Matthew G; Wilkerson, Matthew D; Cun, Yupeng; McKay, James D; Moro-Sibilot, Denis; Brambilla, Christian G; Lantuejoul, Sylvie; Lemaitre, Nicolas; Soltermann, Alex; Weder, Walter; Tischler, Verena; Brustugun, Odd Terje; Lund-Iversen, Marius; Helland, Åslaug; Solberg, Steinar; Ansén, Sascha; Wright, Gavin; Solomon, Benjamin; Roz, Luca; Pastorino, Ugo; Petersen, Iver; Clement, Joachim H; Sänger, Jörg; Wolf, Jürgen; Vingron, Martin; Zander, Thomas; Perner, Sven; Travis, William D; Haas, Stefan A; Olivier, Magali; Foll, Matthieu; Büttner, Reinhard; Hayes, David Neil; Brambilla, Elisabeth; Fernandez-Cuesta, Lynnette; Thomas, Roman K
2018-03-13
Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1 high /DLL3 high /NOTCH low , type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1 low /DLL3 low /NOTCH high , and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.
Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F
2016-01-01
Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late-phase severe adverse effects independently of the TP53 status in vitro. Our findings indicated the feasibility of the combination of Ad-FIR with DNA damaging agents for future esophageal cancer treatment.
NKX2-1 expression as a prognostic marker in early-stage non-small-cell lung cancer.
Moisés, Jorge; Navarro, Alfons; Santasusagna, Sandra; Viñolas, Nuria; Molins, Laureano; Ramirez, José; Osorio, Jeisson; Saco, Adela; Castellano, Joan Josep; Muñoz, Carmen; Morales, Sara; Monzó, Mariano; Marrades, Ramón María
2017-12-13
NKX2-1, a key molecule in lung development, is highly expressed in non-small cell lung cancer (NSCLC), particularly in lung adenocarcinoma (ADK), where it is a diagnostic marker. Studies of the prognostic role of NKX2-1 in NSCLC have reported contradictory findings. Two microRNAs (miRNAs) have been associated with NKX2-1: miR-365, which targets NKX2-1; and miR-33a, which is downstream of NKX2-1. We have examined the effect of NKX2-1, miR-365 and miR-33a on survival in a cohort of early-stage NSCLC patients and in sub-groups of patients classified according to the mutational status of TP53, KRAS, and EGFR. mRNA and miRNA expression was determined using TaqMan assays in 110 early-stage NSCLC patients. TP53, KRAS, and EGFR mutations were assessed by Sanger sequencing. NKX2-1 expression was upregulated in never-smokers (P = 0.017), ADK (P < 0.0001) and patients with wild-type TP53 (P = 0.001). A negative correlation between NKX2-1 and miR-365 expression was found (ρ = -0.287; P = 0.003) but there was no correlation between NKX2-1 and miR-33a expression. Overall survival (OS) was longer in patients with high expression of NKX2-1 than in those with low expression (80.8 vs 61.2 months (P = 0.035), while a trend towards longer OS was observed in patients with low miR-365 levels (P = 0.07). The impact of NKX2-1 on OS and DFS was higher in patients with neither TP53 nor KRAS mutations. Higher expression of NKX2-1 was related to higher OS (77.6 vs 54 months; P = 0.017) and DFS (74.6 vs 57.7 months; P = 0.006) compared to low expression. The association between NKX2-1 and OS and DFS was strengthened when the analysis was limited to patients with stage I disease (P = 0.005 and P=0.003 respectively). NKX2-1 expression impacts prognosis in early-stage NSCLC patients, particularly in those with neither TP53 nor KRAS mutations.
Murat, M; Aekeper, A; Yuan, L Y; Alim, T; Du, G J; Abdusamat, A; Wu, G W; Aniwer, Y
2015-10-29
Here, we have investigated the correlation between calcium oxalate stone formation and Fn gene polymorphisms in urinary calculi patients among the Uighur population (Xinjiang region). In this case control study, genomic DNA extracted from the peripheral blood of 129 patients with calcium oxalate stones (patient group) and 94 normal people (control group) was used to genotype polymorphisms in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene by polymerase chain reaction-restriction fragment length polymorphism. Subsequently, the association between different genotypes and susceptibility to calcium oxalate stone formation was compared among the patient and control groups. Single nucleotide polymorphisms (SNPs) were detected in the rs6725958, rs10202709, and rs35343655 sites of the Fn gene among the patient and control groups. The genotype distributions of the three loci complied with the Hardy-Weinberg equilibrium. The results of allele frequencies of the patient/control group for polymorphisms in the rs6725958 site of the Fn gene were C = 179 (69.92%)/119 (63.30%) and A = 77 (30.08%)/69 (36.70%), in the rs10202709 site were C = 245 (95.70%)/176 (93.63%) and T = 11 (4.30%)/12 (6.38%), and in the rs35343655 site of the Fn gene were A = 139 (54.30%)/87 (46.28%) and G = 117 (45.70%)/101 (53.72%). We observed no significant differences between the three SNPs and development of calcium oxalate stones. Polymorphisms in rs6725958, rs10202709, and rs35343655 of the Fn gene had no obvious effect on the susceptibility to the development of calcium oxalate stones in the Uighur population, residing in the Xinjiang region of China.
Comprehensive genomic profiles of small cell lung cancer
George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.
2016-01-01
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.; ...
2016-09-07
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo
2016-01-01
Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941
Cryan, Jane B; Haidar, Sam; Ramkissoon, Lori A; Bi, Wenya Linda; Knoff, David S; Schultz, Nikolaus; Abedalthagafi, Malak; Brown, Loreal; Wen, Patrick Y; Reardon, David A; Dunn, Ian F; Folkerth, Rebecca D; Santagata, Sandro; Lindeman, Neal I; Ligon, Azra H; Beroukhim, Rameen; Hornick, Jason L; Alexander, Brian M; Ligon, Keith L; Ramkissoon, Shakti H
2014-09-30
Classifying adult gliomas remains largely a histologic diagnosis based on morphology; however astrocytic, oligodendroglial and mixed lineage tumors can display overlapping histologic features. We used multiplexed exome sequencing (OncoPanel) on 108 primary or recurrent adult gliomas, comprising 65 oligodendrogliomas, 28 astrocytomas and 15 mixed oligoastrocytomas to identify lesions that could enhance lineage classification. Mutations in TP53 (20/28, 71%) and ATRX (15/28, 54%) were enriched in astrocytic tumors compared to oligodendroglial tumors of which 4/65 (6%) had mutations in TP53 and 2/65 (3%) had ATRX mutations. We found that oligoastrocytomas harbored mutations in TP53 (80%, 12/15) and ATRX (60%, 9/15) at frequencies similar to pure astrocytic tumors, suggesting that oligoastrocytomas and astrocytomas may represent a single genetic or biological entity. p53 protein expression correlated with mutation status and showed significant increases in astrocytomas and oligoastrocytomas compared to oligodendrogliomas, a finding that also may facilitate accurate classification. Furthermore our OncoPanel analysis revealed that 15% of IDH1/2 mutant gliomas would not be detected by traditional IDH1 (p.R132H) antibody testing, supporting the use of genomic technologies in providing clinically relevant data. In all, our results demonstrate that multiplexed exome sequencing can support evaluation and classification of adult low-grade gliomas with a single clinical test.
A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation
Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio
2014-01-01
Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836
Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi
2014-10-01
Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.
Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
Engin, H Billur; Kreisberg, Jason F; Carter, Hannah
2016-01-01
Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes that encode proteins participating in interactions that are perturbed recurrently across tumors. In summary, mutation of specific protein interactions is an important contributor to tumor heterogeneity and may have important implications for clinical outcomes.
Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang
2016-06-14
Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).
DNA Nucleotide Sequence Restricted by the RI Endonuclease
Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.
1972-01-01
The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974
2013-10-01
identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in cytokine genes, as well demographic, clinical, and...Center. The purpose of the proposed project is to identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in...research team continues to meet monthly to discuss progress with regards to recruitment, enrollment, and data collection. Training in Genetics In year
Common breast cancer risk variants in the post-COGS era: a comprehensive review.
Maxwell, Kara N; Nathanson, Katherine L
2013-12-20
Breast cancer has a strong heritable component, with approximately 15% of cases exhibiting a family history of the disease. Mutations in genes such as BRCA1, BRCA2 and TP53 lead to autosomal dominant inherited cancer susceptibility and confer a high lifetime risk of breast cancers. Identification of mutations in these genes through clinical genetic testing enables patients to undergo screening and prevention strategies, some of which provide overall survival benefit. In addition, a number of mutant alleles have been identified in genes such as CHEK2, PALB2, ATM and BRIP1, which often display incomplete penetrance and confer moderate lifetime risks of breast cancer. Studies are underway to determine how to use the identification of mutations in these genes to guide clinical practice. Altogether, however, mutations in high and moderate penetrance genes probably account for approximately 25% of familial breast cancer risk; the remainder may be due to mutations in as yet unidentified genes or lower penetrance variants. Common low penetrance alleles, which have been mainly identified through genome-wide association studies (GWAS), are generally present at 10 to 50% population frequencies and confer less than 1.5-fold increases in breast cancer risk. A number of single nucleotide polymorphisms (SNPs) have been identified and risk associations extensively replicated in populations of European ancestry, the number of which has substantially increased as a result of GWAS performed by the Collaborative Oncological Gene-environment Study consortium. It is now estimated that 28% of familial breast cancer risk is explained by common breast cancer susceptibility loci. In some cases, SNP associations may be specific to different subsets of women with breast cancer, as defined by ethnicity or estrogen receptor status. Although not yet clinically established, it is hoped that identification of common risk variants may eventually allow identification of women at higher risk of breast cancer and enable implementation of breast cancer screening, prevention or treatment strategies that provide clinical benefit.
Common breast cancer risk variants in the post-COGS era: a comprehensive review
2013-01-01
Breast cancer has a strong heritable component, with approximately 15% of cases exhibiting a family history of the disease. Mutations in genes such as BRCA1, BRCA2 and TP53 lead to autosomal dominant inherited cancer susceptibility and confer a high lifetime risk of breast cancers. Identification of mutations in these genes through clinical genetic testing enables patients to undergo screening and prevention strategies, some of which provide overall survival benefit. In addition, a number of mutant alleles have been identified in genes such as CHEK2, PALB2, ATM and BRIP1, which often display incomplete penetrance and confer moderate lifetime risks of breast cancer. Studies are underway to determine how to use the identification of mutations in these genes to guide clinical practice. Altogether, however, mutations in high and moderate penetrance genes probably account for approximately 25% of familial breast cancer risk; the remainder may be due to mutations in as yet unidentified genes or lower penetrance variants. Common low penetrance alleles, which have been mainly identified through genome-wide association studies (GWAS), are generally present at 10 to 50% population frequencies and confer less than 1.5-fold increases in breast cancer risk. A number of single nucleotide polymorphisms (SNPs) have been identified and risk associations extensively replicated in populations of European ancestry, the number of which has substantially increased as a result of GWAS performed by the Collaborative Oncological Gene–environment Study consortium. It is now estimated that 28% of familial breast cancer risk is explained by common breast cancer susceptibility loci. In some cases, SNP associations may be specific to different subsets of women with breast cancer, as defined by ethnicity or estrogen receptor status. Although not yet clinically established, it is hoped that identification of common risk variants may eventually allow identification of women at higher risk of breast cancer and enable implementation of breast cancer screening, prevention or treatment strategies that provide clinical benefit. PMID:24359602
Salvianti, Francesca; Rotunno, Giada; Galardi, Francesca; De Luca, Francesca; Pestrin, Marta; Vannucchi, Alessandro Maria; Di Leo, Angelo; Pazzagli, Mario; Pinzani, Pamela
2015-09-01
The purpose of the study was to explore the feasibility of a protocol for the isolation and molecular characterization of single circulating tumor cells (CTCs) from cancer patients using a single-cell next generation sequencing (NGS) approach. To reach this goal we used as a model an artificial sample obtained by spiking a breast cancer cell line (MDA-MB-231) into the blood of a healthy donor. Tumor cells were enriched and enumerated by CellSearch(®) and subsequently isolated by DEPArray™ to obtain single or pooled pure samples to be submitted to the analysis of the mutational status of multiple genes involved in cancer. Upon whole genome amplification, samples were analysed by NGS on the Ion Torrent PGM™ system (Life Technologies) using the Ion AmpliSeq™ Cancer Hotspot Panel v2 (Life Technologies), designed to investigate genomic "hot spot" regions of 50 oncogenes and tumor suppressor genes. We successfully sequenced five single cells, a pool of 5 cells and DNA from a cellular pellet of the same cell line with a mean depth of the sequencing reaction ranging from 1581 to 3479 reads. We found 27 sequence variants in 18 genes, 15 of which already reported in the COSMIC or dbSNP databases. We confirmed the presence of two somatic mutations, in the BRAF and TP53 gene, which had been already reported for this cells line, but also found new mutations and single nucleotide polymorphisms. Three variants were common to all the analysed samples, while 18 were present only in a single cell suggesting a high heterogeneity within the same cell line. This paper presents an optimized workflow for the molecular characterization of multiple genes in single cells by NGS. The described pipeline can be easily transferred to the study of single CTCs from oncologic patients.
Xu, C; Yang, X; Wang, Y; Ding, N; Han, R; Sun, Y; Wang, Y
2017-07-01
Frequencies of two glucose transporter 1 (GLUT1) single-nucleotide polymorphisms (SNPs) (XbaI G>T and HaeIII T>C) were studied with urothelial cell carcinomas of the bladder (UCC) and 204 normal persons. And the expression of the p53, Ki67 and GLUT1 was assayed by immunohistochemistry. The frequency of the TT genotype and T allele of the XbaI G>T SNP was decreased in the patients with UCC. The frequency of the CC genotype and C allele of the HaeIII T>C SNP was decreased in the patients with UCC. The GLUT1 XbaI genotype GG was more frequent in higher tumor stage and higher tumor grade patients. In the XbaI G>T SNP, the GG genotype was significantly related to higher Remmele immunoreactive score (IRS) of Ki67 and higher IRS of GLUT1. In conclusion, the TT genotype in XbaI G>T SNP and CC genotype of HaeIII T>C SNP may have protective effect in the carcinogenesis process of UCC. In the XbaI G>T SNP, the GG genotype of was positively related to tumor proliferation, glucose metabolism, tumor grade and stage. Therefore, the variant might become a possible proliferation-related prognostic factor for UCC.
Sohl, Christal D.; Szymanski, Michal R.; Mislak, Andrea C.; Shumate, Christie K.; Amiralaei, Sheida; Schinazi, Raymond F.; Anderson, Karen S.; Yin, Y. Whitney
2015-01-01
Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3′-dideoxy-5-fluoro-3′-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3′-dideoxy-3′-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity. PMID:26124101
Pang, Y H; Lei, C Z; Zhang, C L; Lan, X Y; Shao, S M; Gao, X M; Chen, H
2012-01-01
PCR-SSCP and DNA sequencing methods were applied to reveal single nucleotide polymorphisms (SNPs) in the bovine VEGF-B gene in 675 samples belonging to three native Chinese cattle breeds. We found 3 SNPs and a duplication NC_007330.5: g. [782 A>G p. (Gly112 =) (;) 1000-1001dup CT (;) 1079 C>T (;) 2129 G>A p. (Arg184Gln)]. We also observed a statistically significant association of the polymorphism (1000-1001dup CT) in intron 3 of the VEGF-B gene with the body weight of the Nanyang cattle (p < 0.05). This polymorphisms of VEGF-B gene need to be verified among a larger cattle population before it can be identified as a marker for bovine body weight.
Evasion of cell senescence in SHH medulloblastoma.
Tamayo-Orrego, Lukas; Swikert, Shannon M; Charron, Frédéric
2016-08-17
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1 +/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Evasion of cell senescence in SHH medulloblastoma
Tamayo-Orrego, Lukas; Swikert, Shannon M.; Charron, Frédéric
2016-01-01
ABSTRACT The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/− mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis. PMID:27229128
Genetic risk profiling and gene signature modeling to predict risk of complications after IPAA.
Sehgal, Rishabh; Berg, Arthur; Polinski, Joseph I; Hegarty, John P; Lin, Zhenwu; McKenna, Kevin J; Stewart, David B; Poritz, Lisa S; Koltun, Walter A
2012-03-01
Severe pouchitis and Crohn's disease-like complications are 2 adverse postoperative complications that confound the success of the IPAA in patients with ulcerative colitis. To date, approximately 83 single nucleotide polymorphisms within 55 genes have been associated with IBD. The aim of this study was to identify single-nucleotide polymorphisms that correlate with complications after IPAA that could be utilized in a gene signature fashion to predict postoperative complications and aid in preoperative surgical decision making. One hundred forty-two IPAA patients were retrospectively classified as "asymptomatic" (n = 104, defined as no Crohn's disease-like complications or severe pouchitis for at least 2 years after IPAA) and compared with a "severe pouchitis" group (n = 12, ≥ 4 episodes pouchitis per year for 2 years including the need for long-term therapy to maintain remission) and a "Crohn's disease-like" group (n = 26, presence of fistulae, pouch inlet stricture, proximal small-bowel disease, or pouch granulomata, occurring at least 6 months after surgery). Genotyping for 83 single-nucleotide polymorphisms previously associated with Crohn's disease and/or ulcerative colitis was performed on a customized Illumina genotyping platform. The top 2 single-nucleotide polymorphisms statistically identified as being independently associated with each of Crohn's disease-like and severe pouchitis were used in a multivariate logistic regression model. These single-nucleotide polymorphisms were then used to create probability equations to predict overall chance of a positive or negative outcome for that complication. The top 2 single-nucleotide polymorphisms for Crohn's disease-like complications were in the 10q21 locus and the gene for PTGER4 (p = 0.006 and 0.007), whereas for severe pouchitis it was NOD2 and TNFSF15 (p = 0.003 and 0.011). Probability equations suggested that the risk of these 2 complications greatly increased with increasing number of risk alleles, going as high as 92% for severe pouchitis and 65% for Crohn's disease-like complications. In this IPAA patient cohort, mutations in the 10q21 locus and the PTGER4 gene were associated with Crohn's disease-like complications, whereas mutations in NOD2 and TNFSF15 correlated with severe pouchitis. Preoperative genetic analysis and use of such gene signatures hold promise for improved preoperative surgical patient selection to minimize these IPAA complications.
D'Souza, Wendy; Pradhan, Sultan; Saranath, Dhananjaya
2017-08-01
Oral cancer has a high incidence primarily because of tobacco chewing habits. However, a small proportion of habitués develop oral cancer, implying a role for genomic variants in its susceptibility. Thirteen single nucleotide polymorphisms (SNPs) in an Indian cohort comprising patients with oral cancer (n = 500) and healthy controls (n = 500) were genotyped using allelic discrimination real-time polymerase chain reaction (PCR). Prevalence of SNPs rs11130760, rs1957358, rs2306058, rs4883543, rs12637722, rs1457115, rs2353292, rs709821, rs2194861, rs4789378, rs3827538, rs2667552, and rs2886093 was determined in the Indian cohort. A significant association of rs11130760 GG (odds ratio [OR] 1.41; 95% confidence interval [CI] 1.08-1.84) and rs1957358 TT (OR 1.44; 95% CI 1.10-1.90) indicated increased risk; whereas rs1957358 TC (OR 0.67; 95% CI 0.53-0.87) and rs2306058 CT (OR 0.72; 95% CI 0.56-0.93) reflected decreased risk. The SNP rs11130760 wild-type (WT) allele G indicated an increased risk for oral cancer (OR 1.38; 95% CI 1.09-1.73), whereas SNP allele T indicated a decreased risk (OR 0.73; 95% CI 0.58-0.92) for oral cancer. Our study identified SNPs with susceptibility to oral cancer in high-risk populations. © 2017 Wiley Periodicals, Inc.
Allelic loss studies do not provide evidence for the "endometriosis-as-tumor" theory.
Prowse, Amanda H; Fakis, Giannoulis; Manek, Sanjiv; Churchman, Michael; Edwards, Sarah; Rowan, Andrew; Koninckx, Philippe; Kennedy, Stephen; Tomlinson, Ian P M
2005-04-01
To identify consistent genetic changes in endometriosis samples to determine whether endometriosis lesions are true neoplasms. We analyzed ovarian endometriosis lesions for loss of heterozygosity (LOH) at 12 loci of potential importance (D9S1870, D9S265, D9S270, D9S161, D11S29, D1S199, D8S261, APOA2, PTCH, TP53, D10S541, and D10S1765), including some at which genetic changes were previously reported in endometriosis. Molecular biology laboratory in a university hospital department. Seventeen women with ovarian endometriosis. Laser capture microdissection to separate the endometriotic epithelium, the adjacent endometriotic stroma, and surrounding normal ovarian stromal tissue, followed by DNA extraction and polymerase chain reaction amplification of polymorphic microsatellite markers. Fluorescence-based quantitation for the LOH analysis. We identified LOH in only one lesion at one locus (D8S261). Our data do not support the hypothesis that ovarian endometriosis is a true neoplasm.
2014-01-01
Background Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production. In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy. Methods The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used. Results Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B. Conclusions Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs requiring metabolism via the cytochrome P450 system. PMID:24986243
Wang, Yanru; Freedman, Jennifer A; Liu, Hongliang; Moorman, Patricia G; Hyslop, Terry; George, Daniel J; Lee, Norman H; Patierno, Steven R; Wei, Qingyi
2017-08-15
Evidence suggests that cells with a stemness phenotype play a pivotal role in oncogenesis, and prostate cells exhibiting this phenotype have been identified. We used two genome-wide association study (GWAS) datasets of African descendants, from the Multiethnic/Minority Cohort Study of Diet and Cancer (MEC) and the Ghana Prostate Study, and two GWAS datasets of non-Hispanic whites, from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and the Breast and Prostate Cancer Cohort Consortium (BPC3), to analyze the associations between genetic variants of stemness-related genes and racial disparities in susceptibility to prostate cancer. We evaluated associations of single-nucleotide polymorphisms (SNPs) in 25 stemness-related genes with prostate cancer risk in 1,609 cases and 2,550 controls of non-Hispanic whites (4,934 SNPs) and 1,144 cases and 1,116 controls of African descendants (5,448 SNPs) with correction by false discovery rate ≤0.2. We identified 32 SNPs in five genes (TP63, ALDH1A1, WNT1, MET and EGFR) that were significantly associated with prostate cancer risk, of which six SNPs in three genes (TP63, ALDH1A1 and WNT1) and eight EGFR SNPs showed heterogeneity in susceptibility between these two racial groups. In addition, 13 SNPs in MET and one in ALDH1A1 were found only in African descendants. The in silico bioinformatics analyses revealed that EGFR rs2072454 and SNPs in linkage with the identified SNPs in MET and ALDH1A1 (r 2 > 0.6) were predicted to regulate RNA splicing. These variants may serve as novel biomarkers for racial disparities in prostate cancer risk. © 2017 UICC.
2011-01-01
Abstract The addition of relatively short flap sequence at the 5′-end of one of the polymerase chain reaction (PCR) primers considerably improves performance of real-time assays based on 5′-nuclease activity. This new technology, called Snake, was shown to supersede the conventional methods like TaqMan, Molecular Beacons, and Scorpions in the signal productivity and discrimination of target polymorphic variations as small as single nucleotides. The present article describes a number of reaction conditions and methods that allow further improvement of the assay performance. One of the identified approaches is the use of duplex-destabilizing modifications such as deoxyinosine and deoxyuridine in the design of the Snake primers. This approach was shown to solve the most serious problem associated with the antisense amplicon folding and cleavage. As a result, the method permits the use of relatively long—in this study—14-mer flap sequences. Investigation also revealed that only the 5′-segment of the flap requires the deoxyinosine/deoxyuridine destabilization, whereas the 3′-segment is preferably left unmodified or even stabilized using 2-amino deoxyadenosine d(2-amA) and 5-propynyl deoxyuridine d(5-PrU) modifications. The base-modification technique is especially effective when applied in combination with asymmetric three-step PCR. The most valuable discovery of the present study is the effective application of modified deoxynucleoside 5′-triphosphates d(2-amA)TP and d(5-PrU)TP in Snake PCR. This method made possible the use of very short 6-8-mer 5′-flap sequences in Snake primers. PMID:21050073
Lack of correlation between p53 codon 72 polymorphism and anal cancer risk
Contu, Simone S; Agnes, Grasiela; Damin, Andrea P; Contu, Paulo C; Rosito, Mário A; Alexandre, Claudio O; Damin, Daniel C
2009-01-01
AIM: To investigate the potential role of p53 codon 72 polymorphism as a risk factor for development of anal cancer. METHODS: Thirty-two patients with invasive anal carcinoma and 103 healthy blood donors were included in the study. p53 codon 72 polymorphism was analyzed in blood samples through polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. RESULTS: The relative frequency of each allele was 0.60 for Arg and 0.40 for Pro in patients with anal cancer, and 0.61 for Arg and 0.39 for Pro in normal controls. No significant differences in distribution of the codon 72 genotypes between patients and controls were found. CONCLUSION: These results do not support a role for the p53 codon 72 polymorphism in anal carcinogenesis. PMID:19777616
Lee, Bridgin G.; Anastasia, Agustin; Hempstead, Barbara L.; Lee, Francis S.
2015-01-01
Introduction: Nicotine withdrawal is characterized by both affective and cognitive symptoms. Identifying genetic polymorphisms that could affect the symptoms associated with nicotine withdrawal are important in predicting withdrawal sensitivity and identifying personalized cessation therapies. In the current study we used a mouse model of a non-synonymous single nucleotide polymorphism in the translated region of the brain-derived neurotrophic factor (BDNF) gene that substitutes a valine (Val) for a methionine (Met) amino acid (Val66Met) to examine the relationship between the Val66Met single nucleotide polymorphism and nicotine dependence. Methods: This study measured proBDNF and the BDNF prodomain levels following nicotine and nicotine withdrawal and examined a mouse model of a common polymorphism in this protein (BDNFMet/Met) in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test. Results: Using the BDNF knock-in mouse containing the BDNF Val66Met polymorphism we found: (1) blunted anxiety-like behavior in BDNFMet/Met mice following withdrawal in three behavioral paradigms: novelty-induced hypophagia, marble burying, and the open-field test; (2) the anxiolytic effects of chronic nicotine are absent in BDNFMet/Met mice; and (3) an increase in BDNF prodomain in BDNFMet/Met mice following nicotine withdrawal. Conclusions: Our study is the first to examine the effect of the BDNF Val66Met polymorphism on the affective symptoms of withdrawal from nicotine in mice. In these mice, a single-nucleotide polymorphism in the translated region of the BDNF gene can result in a blunted withdrawal, as measured by decreased anxiety-like behavior. The significant increase in the BDNF prodomain in BDNFMet/Met mice following nicotine cessation suggests a possible role of this ligand in the circuitry remodeling after withdrawal. PMID:25744957
Association between polymorphisms in prostanoid receptor genes and aspirin-intolerant asthma.
Kim, Sang-Heon; Kim, Yoon-Keun; Park, Heung-Woo; Jee, Young-Koo; Kim, Sang-Hoon; Bahn, Joon-Woo; Chang, Yoon-Seok; Kim, Seung-Hyun; Ye, Young-Min; Shin, Eun-Soon; Lee, Jong-Eun; Park, Hae-Sim; Min, Kyung-Up
2007-04-01
Genetic predisposition is linked to the pathogenesis of aspirin-intolerant asthma. Most candidate gene approaches have focused on leukotriene-related pathways, whereas there have been relatively few studies evaluating the effects of polymorphisms in prostanoid receptor genes on the development of aspirin-intolerant asthma. Therefore, we investigated the potential association between prostanoid receptor gene polymorphisms and the aspirin-intolerant asthma phenotype. We screened for genetic variations in the prostanoid receptor genes PTGER1, PTGER2, PTGER3, PTGER4, PTGDR, PTGIR, PTGFR, and TBXA2R using direct sequencing, and selected 32 tagging single nucleotide polymorphisms among the 77 polymorphisms with frequencies >0.02 based on linkage disequilibrium for genotyping. We compared the genotype distributions and allele frequencies of three participant groups (108 patients with aspirin-intolerant asthma, 93 patients with aspirin-tolerant asthma, and 140 normal controls). Through association analyses studies of the 32 single nucleotide polymorphisms, the following single nucleotide polymorphisms were found to have significant associations with the aspirin-intolerant asthma phenotype: -616C>G (P=0.038) and -166G>A (P=0.023) in PTGER2; -1709T>A (P=0.043) in PTGER3; -1254A>G (P=0.018) in PTGER4; 1915T>C (P=0.015) in PTGIR; and -4684C>T (P=0.027), and 795T>C (P=0.032) in TBXA2R. In the haplotype analysis of each gene, the frequency of PTGIR ht3[G-G-C-C], which includes 1915T>C, differed significantly between the aspirin-intolerant asthma patients and aspirin-tolerant asthma patients (P=0.015). These findings suggest that genetic polymorphisms in PTGER2, PTGER3, PTGER4, PTGIR, and TBXA2R play important roles in the pathogenesis of aspirin-intolerant asthma.
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pei-Chun; Chen, Yen-Ching; Research Center for Gene, Environment, and Human Health, College of Public Health, National Taiwan University, Taiwan
Purpose: To identify germline polymorphisms to predict concurrent chemoradiation therapy (CCRT) response in esophageal cancer patients. Materials and Methods: A total of 139 esophageal cancer patients treated with CCRT (cisplatin-based chemotherapy combined with 40 Gy of irradiation) and subsequent esophagectomy were recruited at the National Taiwan University Hospital between 1997 and 2008. After excluding confounding factors (i.e., females and patients aged {>=}70 years), 116 patients were enrolled to identify single nucleotide polymorphisms (SNPs) associated with specific CCRT responses. Genotyping arrays and mass spectrometry were used sequentially to determine germline polymorphisms from blood samples. These polymorphisms remain stable throughout disease progression,more » unlike somatic mutations from tumor tissues. Two-stage design and additive genetic models were adopted in this study. Results: From the 26 SNPs identified in the first stage, 2 SNPs were found to be significantly associated with CCRT response in the second stage. Single nucleotide polymorphism rs16863886, located between SGPP2 and FARSB on chromosome 2q36.1, was significantly associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.62-10.30) under additive models. Single nucleotide polymorphism rs4954256, located in ZRANB3 on chromosome 2q21.3, was associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.57-10.87). The predictive accuracy for CCRT response was 71.59% with these two SNPs combined. Conclusions: This is the first study to identify germline polymorphisms with a high accuracy for predicting CCRT response in the treatment of esophageal cancer.« less
Mattar, Rejane; Monteiro, Maria S; Villares, Cibele A; Santos, Aníbal F; Silva, Joyce M K; Carrilho, Flair J
2009-10-02
Adult-type hypolactasia, the physiological decline of lactase some time after weaning, was previously associated with the LCT -13910C>T polymorphism worldwide except in Africa. Lactase non-persistence is the most common phenotype in humans, except in northwestern Europe with its long history of pastoralism and milking. We had previously shown association of LCT -13910C>T polymorphism with adult-type hypolactasia in Brazilians; thus, we assessed its frequency among different Brazilian ethnic groups. We investigated the ethnicity-related frequency of this polymorphism in 567 Brazilians [mean age, 42.1 +/- 16.8 years; 157 (27.7%) men]; 399 (70.4%) White, 50 (8.8%) Black, 65 (11.5%) Brown, and 53 (9.3%) Japanese-Brazilian. DNA was extracted from leukocytes; LCT -13910C>T polymorphism was analyzed by PCR-restriction fragment length polymorphism. Prevalence of the CC genotype associated with hypolactasia was similar (57%) among White and Brown groups; however, prevalence was higher among Blacks (80%) and those of Japanese descent (100%). Only 2 (4%) Blacks had TT genotype, and 8 (16%) had the CT genotype. Assuming an association between CC genotype and hypolactasia, and CT and TT genotypes with lactase persistence, 356 (62.8%) individuals had hypolactasia and 211 (37.2%) had lactase persistence. The White and Brown groups had the same hypolactasia prevalence (approximately 57%); nevertheless, was 80% among Black individuals and 100% among Japanese-Brazilians (P < 0.01). The lactase persistence allele, LCT -13910T, was found in about 43% of both White and Brown and 20% of the Black Brazilians, but was absent among all Japanese Brazilians studied.
Esteller, M.; GarcÃa, A.; MartÃnez-Palones, J. M.; Xercavins, J.; Reventós, J.
1997-01-01
A case-control study was designed to identify associations between polymorphisms at p53, cytochrome P-450 (CYP1A1) and glutathione-S-transferases and endometrial cancer susceptibility. Among all polymorphisms analysed, an insertional variant in p53 (P53PIN3) and two polymorphisms in the 3'-end and exon 7 of CYP1A1 showed significant association with enhanced endometrial cancer risk. Images Figure 1 Figure 2 PMID:9155064
Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.
2016-01-01
Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631
MYC, FBXW7 and TP53 copy number variation and expression in Gastric Cancer
2013-01-01
Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer. PMID:24053468
Hein, David W.
2009-01-01
Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125
Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija
2012-04-01
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.
Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej
2016-01-01
Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.
Liang, Diana H; Ensor, Joe E; Liu, Zhe-Bin; Patel, Asmita; Patel, Tejal A; Chang, Jenny C; Rodriguez, Angel A
2016-01-01
Due to the spatial and temporal genomic heterogeneity of breast cancer, genomic sequencing obtained from a single biopsy may not capture the complete genomic profile of tumors. Thus, we propose that cell-free DNA (cfDNA) in plasma may be an alternate source of genomic information to provide comprehensive data throughout a patient's clinical course. We performed a retrospective chart review of 100 patients with stage 4 or high-risk stage 3 breast cancer. The degree of agreement between genomic alterations found in tumor DNA (tDNA) and cfDNA was determined by Cohen's Kappa. Clinical disease progression was compared to mutant allele frequency using a two-sided Fisher's exact test. The presence of mutations and mutant allele frequency was correlated with progression-free survival (PFS) using a Cox proportional hazards model and a log-rank test. The most commonly found genomic alterations were mutations in TP53 and PIK3CA, and amplification of EGFR and ERBB2. PIK3CA mutation and ERBB2 amplification demonstrated robust agreement between tDNA and cfDNA (Cohen's kappa = 0.64 and 0.77, respectively). TP53 mutation and EGFR amplification demonstrated poor agreement between tDNA and cfDNA (Cohen's kappa = 0.18 and 0.33, respectively). The directional changes of TP53 and PIK3CA mutant allele frequency were closely associated with response to therapy (p = 0.002). The presence of TP53 mutation (p = 0.0004) and PIK3CA mutant allele frequency [p = 0.01, HR 1.074 (95 % CI 1.018-1.134)] was excellent predictors of PFS. Identification of selected cancer-specific genomic alterations from cfDNA may be a noninvasive way to monitor disease progression, predict PFS, and offer targeted therapy.
Chen, Qian; Zheng, Peng-Sheng; Yang, Wen-Ting
2016-06-14
Enhancer of zeste homolog 2 (EZH2), a catalytic core component of the Polycomb repressive complex 2 (PRC2), stimulates the silencing of target genes through histone H3 lysine 27 trimethylation (H3K27me3). Recent findings have indicated EZH2 is involved in the development and progression of various human cancers. However, the exact mechanism of EZH2 in the promotion of cervical cancer is largely unknown. Here, we show that EZH2 expression gradually increases during the progression of cervical cancer. We identified a significant positive correlation between EZH2 expression and cell proliferation in vitro and tumor formation in vivo by the up-regulation or down-regulation of EZH2 using CRISPR-Cas9-mediated gene editing technology and shRNA in HeLa and SiHa cells. Further investigation indicated that EZH2 protein significantly accelerated the cell cycle transition from the G0/G1 to S phase. TOP/FOP-Flash reporter assay revealed that EZH2 significantly activated Wnt/β-catenin signaling and the target genes of Wnt/β-catenin pathway were up-regulated, including β-catenin, cyclin D1, and c-myc. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed that EZH2 inhibited the expression of glycogen synthase kinase-3β (GSK-3β) and TP53 through physically interacting with motifs in the promoters of the GSK-3β and TP53 genes. Additionally, blockage of the Wnt/β-catenin pathway resulted in significant inhibition of cell proliferation, and activation of the Wnt/β-catenin pathway resulted in significant enhancement of cell proliferation, as induced by EZH2. Taken together, our data demonstrate that EZH2 promotes cell proliferation and tumor formation in cervical cancer through activating the Wnt/β-catenin pathway by epigenetic silencing via GSK-3β and TP53.
Chen, Qian; Zheng, Peng-Sheng; Yang, Wen-Ting
2016-01-01
Enhancer of zeste homolog 2 (EZH2), a catalytic core component of the Polycomb repressive complex 2 (PRC2), stimulates the silencing of target genes through histone H3 lysine 27 trimethylation (H3K27me3). Recent findings have indicated EZH2 is involved in the development and progression of various human cancers. However, the exact mechanism of EZH2 in the promotion of cervical cancer is largely unknown. Here, we show that EZH2 expression gradually increases during the progression of cervical cancer. We identified a significant positive correlation between EZH2 expression and cell proliferation in vitro and tumor formation in vivo by the up-regulation or down-regulation of EZH2 using CRISPR-Cas9-mediated gene editing technology and shRNA in HeLa and SiHa cells. Further investigation indicated that EZH2 protein significantly accelerated the cell cycle transition from the G0/G1 to S phase. TOP/FOP-Flash reporter assay revealed that EZH2 significantly activated Wnt/β-catenin signaling and the target genes of Wnt/β-catenin pathway were up-regulated, including β-catenin, cyclin D1, and c-myc. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed that EZH2 inhibited the expression of glycogen synthase kinase-3β (GSK-3β) and TP53 through physically interacting with motifs in the promoters of the GSK-3β and TP53 genes. Additionally, blockage of the Wnt/β-catenin pathway resulted in significant inhibition of cell proliferation, and activation of the Wnt/β-catenin pathway resulted in significant enhancement of cell proliferation, as induced by EZH2. Taken together, our data demonstrate that EZH2 promotes cell proliferation and tumor formation in cervical cancer through activating the Wnt/β-catenin pathway by epigenetic silencing via GSK-3β and TP53. PMID:27092879
Walline, Heather M; Carey, Thomas E; Goudsmit, Christine M; Bellile, Emily L; D'Souza, Gypsyamber; Peterson, Lisa A; McHugh, Jonathan B; Pai, Sara I; Lee, J Jack; Shin, Dong M; Ferris, Robert L
2017-02-01
In this study, high-risk HPV (hrHPV) incidence, prognostic biomarkers, and outcome were assessed in HIV-positive (case) and HIV-negative (control) patients with head and neck squamous cell cancer (HNSCC). HIV-positive cases were matched to controls by tumor site, sex, and age at cancer diagnosis. A tissue microarray (TMA) was constructed and DNA isolated from tumor tissue. MultiPlex-PCR MassArray, L1-PCR, and in situ hybridization were used to assess hrHPV. TMA sections were stained for p16ink4a, TP53, RB, CCND1, EGFR, and scored for intensity and proportion of positive tumor cells. The HNSCC cohort included 41 HIV-positive cases and 41 HIV-negative controls. Tumors from 11 of 40 (28%) cases, and 10 of 41 (24%) controls contained hrHPV. p16 expression, indicative of E7 oncogene activity, was present in 10 of 11 HPV-positive cases and 7 of 10 HPV-positive controls. Low p16 and high TP53 expression in some HPV-positive tumors suggested HPV-independent tumorigenesis. Survival did not differ in cases and controls. RB expression was significantly associated with poor survival (P = 0.01). High TP53 expression exhibited a trend for poorer survival (P = 0.12), but among cases, association with poor survival reached statistical significance (P = 0.04). The proportion of HPV-positive tumors was similar, but the heterogeneity of HPV types was higher in the HIV-positive cases than in HIV-negative controls. High RB expression predicted poor survival, and high TP53 expression was associated with poorer survival in the HIV-positive cases but not HIV-negative controls. HIV infection did not increase risk of death from HNSCC, and HPV-positive tumors continued to be associated with a significantly improved survival, independent of HIV status. Mol Cancer Res; 15(2); 179-88. ©2016 AACR. ©2016 American Association for Cancer Research.
A Physical Mechanism and Global Quantification of Breast Cancer
Yu, Chong; Wang, Jin
2016-01-01
Initiation and progression of cancer depend on many factors. Those on the genetic level are often considered crucial. To gain insight into the physical mechanisms of breast cancer, we construct a gene regulatory network (GRN) which reflects both genetic and environmental aspects of breast cancer. The construction of the GRN is based on available experimental data. Three basins of attraction, representing the normal, premalignant and cancer states respectively, were found on the phenotypic landscape. The progression of breast cancer can be seen as switching transitions between different state basins. We quantified the stabilities and kinetic paths of the three state basins to uncover the biological process of breast cancer formation. The gene expression levels at each state were obtained, which can be tested directly in experiments. Furthermore, by performing global sensitivity analysis on the landscape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regulations (HER2⊣TP53, CDK2⊣BRCA1, ATM→MDM2, TP53→ATM) were identified as being critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer and tumor suppressor gene, respectively. This further validates the feasibility of our model and the reliability of our prediction results. The regulation ATM→MDM2 has been extensive studied on DNA damage but not on breast cancer. We notice the importance of ATM→MDM2 on breast cancer. Previous studies of breast cancer have often focused on individual genes and the anti-cancer drugs are mainly used to target the individual genes. Our results show that the network-based strategy is more effective on treating breast cancer. The landscape approach serves as a new strategy for analyzing breast cancer on both the genetic and epigenetic levels and can help on designing network based medicine for breast cancer. PMID:27410227
Kurnit, Katherine C; Kim, Grace N; Fellman, Bryan M; Urbauer, Diana L; Mills, Gordon B; Zhang, Wei; Broaddus, Russell R
2017-07-01
Although the majority of low grade, early stage endometrial cancer patients will have good survival outcomes with surgery alone, those patients who do recur tend to do poorly. Optimal identification of the subset of patients who are at high risk of recurrence and would benefit from adjuvant treatment has been difficult. The purpose of this study was to evaluate the impact of somatic tumor mutation on survival outcomes in this patient population. For this study, low grade was defined as endometrioid FIGO grades 1 or 2, while early stage was defined as endometrioid stages I or II (disease confined to the uterus). Next-generation sequencing was performed using panels comprised of 46-200 genes. Recurrence-free and overall survival was compared across gene mutational status in both univariate and multivariate analyses. In all, 342 patients were identified, 245 of which had endometrioid histology. For grades 1-2, stages I-II endometrioid endometrial cancer patients, age (HR 1.07, 95% CI 1.03-1.10), CTNNB1 mutation (HR 5.97, 95% CI 2.69-13.21), and TP53 mutation (HR 4.07, 95% CI 1.57-10.54) were associated with worse recurrence-free survival on multivariate analysis. When considering endometrioid tumors of all grades and stages, CTNNB1 mutant tumors were associated with significantly higher rates of grades 1-2 disease, lower rates of deep myometrial invasion, and lower rates of lymphatic/vascular space invasion. When both TP53 and CTNNB1 mutations were considered, presence of either TP53 mutation or CTNNB1 mutation remained a statistically significant predictor of recurrence-free survival on multivariate analysis and was associated with a more precise confidence interval (HR 4.69, 95% CI 2.38-9.24). Thus, mutational analysis of a 2 gene panel of CTNNB1 and TP53 can help to identify a subset of low grade, early stage endometrial cancer patients who are at high risk of recurrence.
Use of mutation profiles to refine the classification of endometrial carcinomas
Cheang, Maggie CU; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P.; Mutch, David G.; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C. Blake; Huntsman, David G
2014-01-01
The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following 9 genes; ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF and PPP2R5C. Based on this gene panel each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles we were able to identify subtype outliers, i.e. cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours; endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations), and serous-type (TP53 and PPP2R1A mutations). While this nine gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics. PMID:22653804
Winqvist, Maria; Asklid, Anna; Andersson, PO; Karlsson, Karin; Karlsson, Claes; Lauri, Birgitta; Lundin, Jeanette; Mattsson, Mattias; Norin, Stefan; Sandstedt, Anna; Hansson, Lotta; Österborg, Anders
2016-01-01
Ibrutinib, a Bruton’s tyrosine kinase inhibitor is approved for relapsed/refractory and del(17p)/TP53 mutated chronic lymphocytic leukemia. Discrepancies between clinical trials and routine health-care are commonly observed in oncology. Herein we report real-world results for 95 poor prognosis Swedish patients treated with ibrutinib in a compassionate use program. Ninety-five consecutive patients (93 chronic lymphocytic leukemia, 2 small lymphocytic leukemia) were included in the study between May 2014 and May 2015. The median age was 69 years. 63% had del(17p)/TP53 mutation, 65% had Rai stage III/IV, 28% had lymphadenopathy ≥10cm. Patients received ibrutinib 420 mg once daily until progression. At a median follow-up of 10.2 months, the overall response rate was 84% (consistent among subgroups) and 77% remained progression-free. Progression-free survival and overall survival were significantly shorter in patients with del(17p)/TP53 mutation (P=0.017 and P=0.027, log-rank test); no other factor was significant in Cox proportional regression hazards model. Ibrutinib was well tolerated. Hematomas occurred in 46% of patients without any major bleeding. Seven patients had Richter’s transformation. This real-world analysis on consecutive chronic lymphocytic leukemia patients from a well-defined geographical region shows the efficacy and safety of ibrutinib to be similar to that of pivotal trials. Yet, del(17p)/TP53 mutation remains a therapeutic challenge. Since not more than half of our patients would have qualified for the pivotal ibrutinib trial (RESONATE), our study emphasizes that real-world results should be carefully considered in future with regards to new agents and new indications in chronic lymphocytic leukemia. PMID:27198718