Sample records for nucleotide sequence comparisons

  1. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70.

    PubMed Central

    Hunt, C; Morimoto, R I

    1985-01-01

    We have determined the nucleotide sequence of the human hsp70 gene and 5' flanking region. The hsp70 gene is transcribed as an uninterrupted primary transcript of 2440 nucleotides composed of a 5' noncoding leader sequence of 212 nucleotides, a 3' noncoding region of 242 nucleotides, and a continuous open reading frame of 1986 nucleotides that encodes a protein with predicted molecular mass of 69,800 daltons. Upstream of the 5' terminus are the canonical TATAAA box, the sequence ATTGG that corresponds in the inverted orientation to the CCAAT motif, and the dyad sequence CTGGAAT/ATTCCCG that shares homology in 12 of 14 positions with the consensus transcription regulatory sequence common to Drosophila heat shock genes. Comparison of the predicted amino acid sequences of human hsp70 with the published sequences of Drosophila hsp70 and Escherichia coli dnaK reveals that human hsp70 is 73% identical to Drosophila hsp70 and 47% identical to E. coli dnaK. Surprisingly, the nucleotide sequences of the human and Drosophila genes are 72% identical and human and E. coli genes are 50% identical, which is more highly conserved than necessary given the degeneracy of the genetic code. The lack of accumulated silent nucleotide substitutions leads us to propose that there may be additional information in the nucleotide sequence of the hsp70 gene or the corresponding mRNA that precludes the maximum divergence allowed in the silent codon positions. PMID:3931075

  2. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses.

    PubMed Central

    Khan, A S

    1984-01-01

    The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. PMID:6328017

  3. Human ribosomal RNA gene: nucleotide sequence of the transcription initiation region and comparison of three mammalian genes.

    PubMed Central

    Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M

    1982-01-01

    The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460

  4. WEB-server for search of a periodicity in amino acid and nucleotide sequences

    NASA Astrophysics Data System (ADS)

    E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.

    2017-12-01

    A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.

  5. Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses.

    PubMed Central

    Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T

    1987-01-01

    The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486

  6. Dynamics of actin evolution in dinoflagellates.

    PubMed

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.

  7. Nucleotide sequence determination of guinea-pig casein B mRNA reveals homology with bovine and rat alpha s1 caseins and conservation of the non-coding regions of the mRNA.

    PubMed Central

    Hall, L; Laird, J E; Craig, R K

    1984-01-01

    Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375

  8. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family.

    PubMed Central

    Hobbs, A A; Rosen, J M

    1982-01-01

    The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707

  9. Molecular detection of viral agents in free-ranging and captive neotropical felids in Brazil.

    PubMed

    Furtado, Mariana M; Taniwaki, Sueli A; de Barros, Iracema N; Brandão, Paulo E; Catão-Dias, José L; Cavalcanti, Sandra; Cullen, Laury; Filoni, Claudia; Jácomo, Anah T de Almeida; Jorge, Rodrigo S P; Silva, Nairléia Dos Santos; Silveira, Leandro; Ferreira Neto, José S

    2017-09-01

    We describe molecular testing for felid alphaherpesvirus 1 (FHV-1), carnivore protoparvovirus 1 (CPPV-1), feline calicivirus (FCV), alphacoronavirus 1 (feline coronavirus [FCoV]), feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and canine distemper virus (CDV) in whole blood samples of 109 free-ranging and 68 captive neotropical felids from Brazil. Samples from 2 jaguars ( Panthera onca) and 1 oncilla ( Leopardus tigrinus) were positive for FHV-1; 2 jaguars, 1 puma ( Puma concolor), and 1 jaguarundi ( Herpairulus yagouaroundi) tested positive for CPPV-1; and 1 puma was positive for FIV. Based on comparison of 103 nucleotides of the UL24-UL25 gene, the FHV-1 sequences were 99-100% similar to the FHV-1 strain of domestic cats. Nucleotide sequences of CPPV-1 were closely related to sequences detected in other wild carnivores, comparing 294 nucleotides of the VP1 gene. The FIV nucleotide sequence detected in the free-ranging puma, based on comparison of 444 nucleotides of the pol gene, grouped with other lentiviruses described in pumas, and had 82.4% identity with a free-ranging puma from Yellowstone Park and 79.5% with a captive puma from Brazil. Our data document the circulation of FHV-1, CPPV-1, and FIV in neotropical felids in Brazil.

  10. Information capacity of nucleotide sequences and its applications.

    PubMed

    Sadovsky, M G

    2006-05-01

    The information capacity of nucleotide sequences is defined through the specific entropy of frequency dictionary of a sequence determined with respect to another one containing the most probable continuations of shorter strings. This measure distinguishes a sequence both from a random one, and from ordered entity. A comparison of sequences based on their information capacity is studied. An order within the genetic entities is found at the length scale ranged from 3 to 8. Some other applications of the developed methodology to genetics, bioinformatics, and molecular biology are discussed.

  11. Nucleotide sequence of the phosphoglycerate kinase gene from the extreme thermophile Thermus thermophilus. Comparison of the deduced amino acid sequence with that of the mesophilic yeast phosphoglycerate kinase.

    PubMed Central

    Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L

    1988-01-01

    Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437

  12. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    PubMed Central

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC

    2006-01-01

    Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935

  13. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses.

    PubMed

    Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X

    1993-05-01

    The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.

  14. A space-efficient algorithm for local similarities.

    PubMed

    Huang, X Q; Hardison, R C; Miller, W

    1990-10-01

    Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.

  15. cDNA cloning of the human peroxisomal enoyl-CoA hydratase: 3-Hydroxyacyl-CoA dehydrogenase bifunctional enzyme and localization to chromosome 3q26. 3-3q28: A free left Alu arm is inserted in the 3[prime] noncoding region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoefler, G.; Forstner, M.; Hulla, W.

    1994-01-01

    Enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme is one of the four enzymes of the peroxisomal, [beta]-oxidation pathway. Here, the authors report the full-length human cDNA sequence and the localization of the corresponding gene on chromosome 3q26.3-3q28. The cDNA sequence spans 3779 nucleotides with an open reading frame of 2169 nucleotides. The tripeptide SKL at the carboxy terminus, known to serve as a peroxisomal targeting signal, is present. DNA sequence comparison of the coding region showed an 80% homology between human and rat bifunctional enzyme cDNA. The 3[prime] noncoding sequence contains 117 nucleotides homologous to an Alu repeat. Based on sequence comparison,more » they propose that these nucleotides are a free left Alu arm with 86% homology to the Alu-J family. RNA analysis shows one band with highest intensity in liver and kidney. This cDNA will allow in-depth studies of molecular defects in patients with defective peroxisomal bifunctional enzyme. Moreover, it will also provide a means for studying the regulation of peroxisomal [beta]-oxidation in humans. 33 refs., 5 figs.« less

  16. Nucleotide sequences of Japanese isolates of citrus vein enation virus.

    PubMed

    Nakazono-Nagaoka, Eiko; Fujikawa, Takashi; Iwanami, Toru

    2017-03-01

    The genomic sequences of five Japanese isolates of citrus vein enation virus (CVEV) isolates that induce vein enation were determined and compared with that of the Spanish isolate VE-1. The nucleotide sequences of all Japanese isolates were 5,983 nt in length. The genomic RNA of Japanese isolates had five potential open reading frames (ORF 0, ORF 1, ORF 2, ORF 3, and ORF 5) in the positive-sense strand. The nucleotide sequence identity among the Japanese isolates and Spanish isolate VE-1 ranged from 98.0% to 99.8%. Comparison of the partial amino acid sequences of ten Japanese isolates and three Spanish isolates suggested that four amino acid residues, at positions of 83, 104, and 113 in ORF 2 and position 41 in ORF 5, might be unique to some Japanese isolates.

  17. Nucleotide sequence analysis of the 3' terminal region of a wasabi strain of crucifer tobamovirus genomic RNA: subgrouping of crucifer tobamoviruses.

    PubMed

    Shimamoto, I; Sonoda, S; Vazquez, P; Minaka, N; Nishiguchi, M

    1998-01-01

    The 3' terminal 2378 nucleotides of a wasabi strain of crucifer tobamovirus (CTMV-W) infectious to crucifer plants was determined. This includes the 3' non-coding region of 235 nucleotides, coat protein (CP) gene (468 nucleotides), movement protein (MP) gene (798 nucleotides) and C-terminal partial readthrough portion of 180 K protein gene (940 nucleotides). Comparison of the sequence with homologous regions of thirteen other tobamovirus genomes showed that it had much higher identity to those of four other crucifer tobamoviruses, 85.2% to cr-TMV and turnip vein-clearing virus (TVCV), 87.4% to oilseed rape mosaic virus (ORMV) and 87.1% to TMV-Cg, than to those of other tobamoviruses. Thus CTMV-W was most similar to ORMV and TMV-Cg in sequence, but only marginally so, whereas the location and size of its MP gene was the same as cr-TMV amd TVCV. These results, together with other analyses, show that CTMV-W is a new crucifer tobamovirus, that the five crucifer tobamoviruses can be classified into two subgroups based on MP gene organization, and that the rate of sequence change is not the same in all lineages.

  18. A new begomovirus associated with alpha- and betasatellite molecules isolated from Vernonia cinerea in China.

    PubMed

    Zulfiqar, Awais; Zhang, Jie; Cui, Xiaofeng; Qian, Yajuan; Zhou, Xueping; Xie, Yan

    2012-01-01

    A begomovirus disease complex associated with Vernonia cinerea showing yellow vein symptoms was studied. The full-length genomic DNA was comprised of 2739 nucleotides (nt) and contained the typical genome structure of begomoviruses. Comparison analysis showed that it shared the highest (78.9%) nucleotide sequence identity with recently characterized Vernonia yellow vein virus (VeYVV) from India. For associated satellites, betasatellite showed the highest nucleotide sequence identity (52.1%) with Vernonia yellow vein virus betasatellite (VeYVVB) and alphasatellite shared the highest sequence identity (70.7%) with Gossypium mustelinium symptomless alphasatellite (GMusSLA). It is a member of a distinct species with cognate alpha- and betasatellites for which the name Vernonia yellow vein Fujian virus (VeYVFjV) is proposed.

  19. The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus.

    PubMed

    Zhang, Wenwei; Cheng, Zhuomin; Xu, Lei; Wu, Maosen; Waterhouse, Peter; Zhou, Guanghe; Li, Shifang

    2009-01-01

    The complete nucleotide sequence of the ssRNA genome of a Chinese GPV isolate of barley yellow dwarf virus (BYDV) was determined. It comprised 5673 nucleotides, and the deduced genome organization resembled that of members of the genus Polerovirus. It was most closely related to cereal yellow dwarf virus-RPV (77% nt identity over the entire genome; coat protein amino acid identity 79%). The GPV isolate also differs in vector specificity from other BYDV strains. Biological properties, phylogenetic analyses and detailed sequence comparisons suggest that GPV should be considered a member of a new species within the genus, and the name Wheat yellow dwarf virus-GPV is proposed.

  20. Genome Comparisons Reveal a Dominant Mechanism of Chromosome Number Reduction in Grasses and Accelerated Genome Evolution in Triticeae

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...

  1. The World Health Organization Global Programme on AIDS proposal for standardization of HIV sequence nomenclature. WHO Network for HIV Isolation and Characterization.

    PubMed

    Korber, B T; Osmanov, S; Esparza, J; Myers, G

    1994-11-01

    The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.

  2. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  3. A nucleotide sequence comparison of coxsackievirus B4 isolates from aquatic samples and clinical specimens.

    PubMed Central

    Hughes, M. S.; Hoey, E. M.; Coyle, P. V.

    1993-01-01

    Ten coxsackievirus B4 (CVB4) strains isolated from clinical and environmental sources in Northern Ireland in 1985-7, were compared at the nucleotide sequence level. Dideoxynucleotide sequencing of a polymerase chain reaction (PCR) amplified fragment, spanning the VP1/P2A genomic region, classified the isolates into two distinct groups or genotypes as defined by Rico-Hesse and colleagues for poliovirus type 1. Isolates within each group shared approximately 99% sequence identity at the nucleotide level whereas < or = 86% sequence identity was shared between groups. One isolate derived from a clinical specimen in 1987 was grouped with six CVB4 isolates recovered from the aquatic environment in 1986-7. The second group comprised CVB4 isolates from clinical specimens in 1985-6. Both groups were different at the nucleotide level from the prototype strain isolated in 1950. It was concluded that the method could be used to sub-type CVB4 isolates and would be of value in epidemiological studies of CVB4. Predicted amino acid sequences revealed non-conservation of the tyrosine residue at the VP1/P2A cleavage site but were of little value in distinguishing CVB4 variants. PMID:8386098

  4. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif.

    PubMed Central

    Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S

    1994-01-01

    To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378

  5. The complete genomic sequence of a tentative new polerovirus identified in barley in South Korea.

    PubMed

    Zhao, Fumei; Lim, Seungmo; Yoo, Ran Hee; Igori, Davaajargal; Kim, Sang-Min; Kwak, Do Yeon; Kim, Sun Lim; Lee, Bong Choon; Moon, Jae Sun

    2016-07-01

    The complete nucleotide sequence of a new barley polerovirus, tentatively named barley virus G (BVG), which was isolated in Gimje, South Korea, has been determined using an RNA sequencing technique combined with polymerase chain reaction methods. The viral genomic RNA of BVG is 5,620 nucleotides long and contains six typical open reading frames commonly observed in other poleroviruses. Sequence comparisons revealed that BVG is most closely related to maize yellow dwarf virus-RMV, with the highest amino acid identities being less than 90 % for all of the corresponding proteins. These results suggested that BVG is a member of a new species in the genus Polerovirus.

  6. Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana.

    PubMed

    Fujisaki, K; Hagihara, F; Kaido, M; Mise, K; Okuno, T

    2003-01-01

    Spring beauty latent virus (SBLV), a bromovirus, systemically and efficiently infected Arabidopsis thaliana, whereas the well-studied bromoviruses brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV) did not infect and poorly infected A. thaliana, respectively. We constructed biologically active cDNA clones of SBLV genomic RNAs and determined their complete nucleotide sequences. Interestingly, SBLV RNA3 contains both the box B motif in the intercistronic region, as does BMV, and the subgenomic promoter-like sequence in the 5' noncoding region, as does CCMV. Sequence comparisons of SBLV, BMV, CCMV, and broad bean mottle virus demonstrated that SBLV is closely related to BMV and CCMV.

  7. PCV: An Alignment Free Method for Finding Homologous Nucleotide Sequences and its Application in Phylogenetic Study.

    PubMed

    Kumar, Rajnish; Mishra, Bharat Kumar; Lahiri, Tapobrata; Kumar, Gautam; Kumar, Nilesh; Gupta, Rahul; Pal, Manoj Kumar

    2017-06-01

    Online retrieval of the homologous nucleotide sequences through existing alignment techniques is a common practice against the given database of sequences. The salient point of these techniques is their dependence on local alignment techniques and scoring matrices the reliability of which is limited by computational complexity and accuracy. Toward this direction, this work offers a novel way for numerical representation of genes which can further help in dividing the data space into smaller partitions helping formation of a search tree. In this context, this paper introduces a 36-dimensional Periodicity Count Value (PCV) which is representative of a particular nucleotide sequence and created through adaptation from the concept of stochastic model of Kolekar et al. (American Institute of Physics 1298:307-312, 2010. doi: 10.1063/1.3516320 ). The PCV construct uses information on physicochemical properties of nucleotides and their positional distribution pattern within a gene. It is observed that PCV representation of gene reduces computational cost in the calculation of distances between a pair of genes while being consistent with the existing methods. The validity of PCV-based method was further tested through their use in molecular phylogeny constructs in comparison with that using existing sequence alignment methods.

  8. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    PubMed

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  9. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.

    PubMed

    Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry

    2017-08-03

    Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.

  10. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936

    PubMed Central

    Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry

    2017-01-01

    ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979

  11. Simian immunodeficiency viruses from African green monkeys display unusual genetic diversity.

    PubMed Central

    Johnson, P R; Fomsgaard, A; Allan, J; Gravell, M; London, W T; Olmsted, R A; Hirsch, V M

    1990-01-01

    African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence. PMID:2304139

  12. Nucleotide sequence of the ribosomal RNA gene of Physarum polycephalum: intron 2 and its flanking regions of the 26S rRNA gene.

    PubMed Central

    Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y

    1981-01-01

    The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776

  13. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  14. Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.

    PubMed

    Alkhateeb, Abedalrhman; Rueda, Luis

    2017-08-01

    Next-generation sequencing technology generates a huge number of reads (short sequences), which contain a vast amount of genomic data. The sequencing process, however, comes with artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We present Zseq, a linear method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq algorithm is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by Zseq have longer genomic sequences than other tested methods. Estimating the threshold of the cutoff point is introduced using labeling rules with optimistic results.

  15. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  16. Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene.

    PubMed

    Song, Q Q; Chai, Z X; Xin, J W; Zhao, S J; Ji, Q M; Zhang, C F; Ma, Z J; Zhong, J C

    2015-03-13

    To determine the level of genetic diversity and phylogenetic relationships among Tibetan yak populations, the mitochondrial DNA cytochrome c oxidase subunit 3 (COIII) genes of 378 yak individuals from 16 populations were analyzed in this study. The results showed that the length of cytochrome c oxidase subunit 3 gene sequences was 781 bp, with nucleotide frequencies of 29.2, 29.4, 26.1, and 15.2% for T, C, A, and G, respectively. A total of 26 haplotypes were identified, with 69 polymorphic sites, including 11 parsimony-informative sites and 58 single-nucleotide polymorphism sites. No deletions/insertions were found in sequence comparison, indicating that nucleotide mutation types were transitions and transversions. Haplotype and nucleotide diversities were 0.562 and 0.00138, respectively, indicating a high level of genetic diversity in Tibetan yak populations. Phylogenetic relationship analysis indicated that Tibetan yak populations are divided into 2 groups.

  17. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed Central

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-01-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  18. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: themore » mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.« less

  19. Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat

    USDA-ARS?s Scientific Manuscript database

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  20. Initial Detection and Molecular Characterization of Namaycush Herpesvirus (Salmonid Herpesvirus 5) in Lake Trout.

    PubMed

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    A novel herpesvirus was found by molecular methods in samples of Lake Trout Salvelinus namaycush from Lake Erie, Pennsylvania, and Lake Ontario, Keuka Lake, and Lake Otsego, New York. Based on PCR amplification and partial sequencing of polymerase, terminase, and glycoprotein genes, a number of isolates were identified as a novel virus, which we have named Namaycush herpesvirus (NamHV) salmonid herpesvirus 5 (SalHV5). Phylogenetic analyses of three NamHV genes indicated strong clustering with other members of the genus Salmonivirus, placing these isolates into family Alloherpesviridae. The NamHV isolates were identical in the three partially sequenced genes; however, they varied from other salmonid herpesviruses in nucleotide sequence identity. In all three of the genes sequenced, NamHV shared the highest sequence identity with Atlantic Salmon papillomatosis virus (ASPV; SalHV4) isolated from Atlantic Salmon Salmo salar in northern Europe, including northwestern Russia. These results lead one to believe that NamHV and ASPV have a common ancestor that may have made a relatively recent host jump from Atlantic Salmon to Lake Trout or vice versa. Partial nucleotide sequence comparisons between NamHV and ASPV for the polymerase and glycoprotein genes differ by >5% and >10%, respectively. Additional nucleotide sequence comparisons between NamHV and epizootic epitheliotropic disease virus (EEDV/SalHV3) in the terminase, glycoprotein, and polymerase genes differ by >5%, >20%, and >10%, respectively. Thus, NamHV and EEDV may be occupying discrete ecological niches in Lake Trout. Even though NamHV shared the highest genetic identity with ASPV, each of these viruses has a separate host species, which also implies speciation. Additionally, NamHV has been detected over the last 4 years in four separate water bodies across two states, which suggests that NamHV is a distinct, naturally replicating lineage. This, in combination with a divergence in nucleotide sequence from EEDV, indicates that NamHV is a new species in the genus Salmonivirus. Received April 20, 2015; accepted October 11, 2015.

  1. Molecular characterization of the virulent infectious hematopoietic necrosis virus (IHNV) strain 220-90

    PubMed Central

    2010-01-01

    Background Infectious hematopoietic necrosis virus (IHNV) is the type species of the genus Novirhabdovirus, within the family Rhabdoviridae, infecting several species of wild and hatchery reared salmonids. Similar to other rhabdoviruses, IHNV has a linear single-stranded, negative-sense RNA genome of approximately 11,000 nucleotides. The IHNV genome encodes six genes; the nucleocapsid, phosphoprotein, matrix protein, glycoprotein, non-virion protein and polymerase protein genes, respectively. This study describes molecular characterization of the virulent IHNV strain 220-90, belonging to the M genogroup, and its phylogenetic relationships with available sequences of IHNV isolates worldwide. Results The complete genomic sequence of IHNV strain 220-90 was determined from the DNA of six overlapping clones obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of 220-90 comprises 11,133 nucleotides (GenBank GQ413939) with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. An additional uracil nucleotide was found at the end of the 5'-trailer region, which was not reported before in other IHNV strains. The first 15 of the 16 nucleotides at the 3'- and 5'-termini of the genome are complementary, and the first 4 nucleotides at 3'-ends of the IHNV are identical to other novirhadoviruses. Sequence homology and phylogenetic analysis of the glycoprotein genes show that 220-90 strain is 97% identical to most of the IHNV strains. Comparison of the virulent 220-90 genomic sequences with less virulent WRAC isolate shows more than 300 nucleotides changes in the genome, which doesn't allow one to speculate putative residues involved in the virulence of IHNV. Conclusion We have molecularly characterized one of the well studied IHNV isolates, 220-90 of genogroup M, which is virulent for rainbow trout, and compared phylogenetic relationship with North American and other strains. Determination of the complete nucleotide sequence is essential for future studies on pathogenesis of IHNV using a reverse genetics approach and developing efficient control strategies. PMID:20085652

  2. Differences in the second internal transcribed spacer of four species of Nematodirus (Nematoda: Molineidae).

    PubMed

    Newton, L A; Chilton, N B; Beveridge, I; Gasser, R B

    1998-02-01

    Genetic differences among Nematodirus spathiger, Nematodirus filicollis, Nematodirus helvetianus and Nematodirus battus in the nucleotide sequence of the second internal transcribed spacer (ITS-2) of ribosomal DNA ranged from 3.9 to 24.7%. Pairwise comparisons of their ITS-2 sequences indicated that the most genetically similar species were N. spathiger and N. helvetianus. N. battus was the most genetically distinct species, with differences ranging from 22.8 to 24.7% with respect to the other three species. Some of the nucleotide differences among species provided different endonuclease restriction sites that could be used in restriction fragment length polymorphism studies. The ITS-2 sequence data may prove useful in studies of the systematics of molineid nematodes.

  3. Nucleotide Sequence Database Comparison for Routine Dermatophyte Identification by Internal Transcribed Spacer 2 Genetic Region DNA Barcoding.

    PubMed

    Normand, A C; Packeu, A; Cassagne, C; Hendrickx, M; Ranque, S; Piarroux, R

    2018-05-01

    Conventional dermatophyte identification is based on morphological features. However, recent studies have proposed to use the nucleotide sequences of the rRNA internal transcribed spacer (ITS) region as an identification barcode of all fungi, including dermatophytes. Several nucleotide databases are available to compare sequences and thus identify isolates; however, these databases often contain mislabeled sequences that impair sequence-based identification. We evaluated five of these databases on a clinical isolate panel. We selected 292 clinical dermatophyte strains that were prospectively subjected to an ITS2 nucleotide sequence analysis. Sequences were analyzed against the databases, and the results were compared to clusters obtained via DNA alignment of sequence segments. The DNA tree served as the identification standard throughout the study. According to the ITS2 sequence identification, the majority of strains (255/292) belonged to the genus Trichophyton , mainly T. rubrum complex ( n = 184), T. interdigitale ( n = 40), T. tonsurans ( n = 26), and T. benhamiae ( n = 5). Other genera included Microsporum (e.g., M. canis [ n = 21], M. audouinii [ n = 10], Nannizzia gypsea [ n = 3], and Epidermophyton [ n = 3]). Species-level identification of T. rubrum complex isolates was an issue. Overall, ITS DNA sequencing is a reliable tool to identify dermatophyte species given that a comprehensive and correctly labeled database is consulted. Since many inaccurate identification results exist in the DNA databases used for this study, reference databases must be verified frequently and amended in line with the current revisions of fungal taxonomy. Before describing a new species or adding a new DNA reference to the available databases, its position in the phylogenetic tree must be verified. Copyright © 2018 American Society for Microbiology.

  4. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    PubMed

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachman, M.W.; Aquadro, C.F.; Brown, W.M.

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions.more » We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.« less

  6. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    PubMed

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  7. Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

    PubMed Central

    Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.

    2011-01-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875

  8. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency.

    PubMed

    Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J; Burnett, John C; Zhou, Jiehua

    2016-09-22

    The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct "biased sequences" and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the "biased sequences" was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.

  9. Complete genome sequence of a new begomovirus associated with yellow mosaic disease of Hemidesmus indicus in India.

    PubMed

    Reddy, M Sreekanth; Kanakala, S; Srinivas, K P; Hema, M; Malathi, V G; Sreenivasulu, P

    2014-05-01

    The complete DNA A genome of a virus isolate associated with yellow mosaic disease of a medicinal plant, Hemidesmus indicus, from India was cloned and sequenced. The length of DNA A was 2825 nucleotides, 35 nucleotides longer than the unit genome of monopartite begomoviruses. Comparison of the nucleotide sequence of DNA A of the virus isolate with those of other begomoviruses showed maximum sequence identity of 69 % to DNA A of ageratum yellow vein China virus (AYVCNV; AJ558120) and 68 % with tomato yellow leaf curl virus- LBa4 (TYLCV; EF185318), and it formed a distinct clade in phylogenetic analysis. The genome organization of the present virus isolate was found to be similar to that of Old World monopartite begomoviruses. The genome was considered to be monopartite, because association of DNA B and β satellite DNA components was not detected. Based on its sequence identity (<70 %) to all other begomoviruses known to date and ICTV (International Committee on Taxonomy of Viruses) species demarcating criteria (<89 % identity), it is considered a member of a novel begomovirus species, and the tentative name "Hemidesmus yellow mosaic virus" (HeYMV) is proposed.

  10. A gp41-based heteroduplex mobility assay provides rapid and accurate assessment of intrasubtype epidemiological linkage in HIV type 1 heterosexual transmission Pairs.

    PubMed

    Manigart, Olivier; Boeras, Debrah I; Karita, Etienne; Hawkins, Paulina A; Vwalika, Cheswa; Makombe, Nathan; Mulenga, Joseph; Derdeyn, Cynthia A; Allen, Susan; Hunter, Eric

    2012-12-01

    A critical step in HIV-1 transmission studies is the rapid and accurate identification of epidemiologically linked transmission pairs. To date, this has been accomplished by comparison of polymerase chain reaction (PCR)-amplified nucleotide sequences from potential transmission pairs, which can be cost-prohibitive for use in resource-limited settings. Here we describe a rapid, cost-effective approach to determine transmission linkage based on the heteroduplex mobility assay (HMA), and validate this approach by comparison to nucleotide sequencing. A total of 102 HIV-1-infected Zambian and Rwandan couples, with known linkage, were analyzed by gp41-HMA. A 400-base pair fragment within the envelope gp41 region of the HIV proviral genome was PCR amplified and HMA was applied to both partners' amplicons separately (autologous) and as a mixture (heterologous). If the diversity between gp41 sequences was low (<5%), a homoduplex was observed upon gel electrophoresis and the transmission was characterized as having occurred between partners (linked). If a new heteroduplex formed, within the heterologous migration, the transmission was determined to be unlinked. Initial blind validation of gp-41 HMA demonstrated 90% concordance between HMA and sequencing with 100% concordance in the case of linked transmissions. Following validation, 25 newly infected partners in Kigali and 12 in Lusaka were evaluated prospectively using both HMA and nucleotide sequences. Concordant results were obtained in all but one case (97.3%). The gp41-HMA technique is a reliable and feasible tool to detect linked transmissions in the field. All identified unlinked results should be confirmed by sequence analyses.

  11. DNA Barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii)

    PubMed Central

    Arif, Ibrahim A.; Khan, Haseeb A.; Williams, Joseph B.; Shobrak, Mohammad; Arif, Waad I.

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia. PMID:22408462

  12. Genetic characterization of L-Zagreb mumps vaccine strain.

    PubMed

    Ivancic, Jelena; Gulija, Tanja Kosutic; Forcic, Dubravko; Baricevic, Marijana; Jug, Renata; Mesko-Prejac, Majda; Mazuran, Renata

    2005-04-01

    Eleven mumps vaccine strains, all containing live attenuated virus, have been used throughout the world. Although L-Zagreb mumps vaccine has been licensed since 1972, only its partial nucleotide sequence was previously determined (accession numbers , and ). Therefore, we sequenced the entire genome of L-Zagreb vaccine strain (Institute of Immunology Inc., Zagreb, Croatia). In order to investigate the genetic stability of the vaccine, sequences of both L-Zagreb master seed and currently produced vaccine batch were determined and no difference between them was observed. A phylogenetic analysis based on SH gene sequence has shown that L-Zagreb strain does not belong to any of established mumps genotypes and that it is most similar to old, laboratory preserved European strains (1950s-1970s). L-Zagreb nucleotide and deduced protein sequences were compared with other mumps virus sequences obtained from the GenBank. Emphasis was put on functionally important protein regions and known antigenic epitopes. The extensive comparisons of nucleotide and deduced protein sequences between L-Zagreb vaccine strain and other previously determined mumps virus sequences have shown that while the functional regions of HN, V, and L proteins are well conserved among various mumps strains, there can be a substantial amino acid difference in antigenic epitopes of all proteins and in functional regions of F protein. No molecular pattern was identified that can be used as a distinction marker between virulent and attenuated strains.

  13. Identification of two allelic IgG1 C(H) coding regions (Cgamma1) of cat.

    PubMed

    Kanai, T H; Ueda, S; Nakamura, T

    2000-01-31

    Two types of cDNA encoding IgG1 heavy chain (gamma1) were isolated from a single domestic short-hair cat. Sequence analysis indicated a higher level of similarity of these Cgamma1 sequences to human Cgamma1 sequence (76.9 and 77.0%) than to mouse sequence (70.0 and 69.7%) at the nucleotide level. Predicted primary structures of both the feline Cgamma1 genes, designated as Cgamma1a and Cgamma1b, were similar to that of human Cgamma1 gene, for instance, as to the size of constant domains, the presence of six conserved cysteine residues involved in formation of the domain structure, and the location of a conserved N-linked glycosylation site. Sequence comparison between the two alleles showed that 7 out of 10 nucleotide differences were within the C(H)3 domain coding region, all leading to nonsynonymous changes in amino acid residues. Partial sequence analysis of genomic clones showed three nucleotide substitutions between the two Cgamma1 alleles in the intron between the CH2 and C(H)3 domain coding regions. In 12 domestic short-hair cats used in this study, the frequency of Cgamma1a allele (62.5%) was higher than that of the Cgamma1b allele (37.5%).

  14. Human somatostatin I: sequence of the cDNA.

    PubMed Central

    Shen, L P; Pictet, R L; Rutter, W J

    1982-01-01

    RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875

  15. Combined hairpin-antisense compositions and methods for modulating expression

    DOEpatents

    Shanklin, John; Nguyen, Tam

    2014-08-05

    A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.

  16. Combined hairpin-antisense compositions and methods for modulating expression

    DOEpatents

    Shanklin, John; Nguyen, Tam Huu

    2015-11-24

    A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.

  17. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.

  18. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.

    PubMed

    Vandenbol, M; Jauniaux, J C; Grenson, M

    1989-11-15

    The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.

  19. The emergence and evolution of life in a "fatty acid world" based on quantum mechanics.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2011-02-01

    Quantum mechanical based electron correlation interactions among molecules are the source of the weak hydrogen and Van der Waals bonds that are critical to the self-assembly of artificial fatty acid micelles. Life on Earth or elsewhere could have emerged in the form of self-reproducing photoactive fatty acid micelles, which gradually evolved into nucleotide-containing micelles due to the enhanced ability of nucleotide-coupled sensitizer molecules to absorb visible light. Comparison of the calculated absorption spectra of micelles with and without nucleotides confirmed this idea and supports the idea of the emergence and evolution of nucleotides in minimal cells of a so-called Fatty Acid World. Furthermore, the nucleotide-caused wavelength shift and broadening of the absorption pattern potentially gives these molecules an additional valuable role, other than a purely genetic one in the early stages of the development of life. From the information theory point of view, the nucleotide sequences in such micelles carry positional information providing better electron transport along the nucleotide-sensitizer chain and, in addition, providing complimentary copies of that information for the next generation. Nucleotide sequences, which in the first period of evolution of fatty acid molecules were useful just for better absorbance of the light in the longer wavelength region, later in the PNA or RNA World, took on the role of genetic information storage.

  20. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.

  1. Leek yellow stripe virus isolates from Brazil form a distant clade based on the P1 gene

    USDA-ARS?s Scientific Manuscript database

    The complete genomic sequence of a garlic isolate of Leek yellow stripe virus from Brazil (LYSV-MG) has been determined, and phylogenetic comparisons made to LYSV isolates from other parts of the world. In addition, the nucleotide sequence of the 5'UTR and part of the P1 gene of multiple LYSV isolat...

  2. Nucleotide sequencing analysis of a LEU gene of Candida maltosa which complements leuB mutation of Escherichia coli and leu2 mutation of Saccharomyces cerevisiae.

    PubMed

    Takagi, M; Kobayashi, N; Sugimoto, M; Fujii, T; Watari, J; Yano, K

    1987-01-01

    The expression of a LEU gene from Candida maltosa (designated as C-LEU2) isolated previously (Kawamura et al. 1983) was shown to be regulated, when transferred into Saccharomyces cerevisiae, by leucine and threonine in the medium, as in the case of LEU2 gene of S. cerevisiae. The coding region together with the regulatory region was subcloned and the nucleotide sequence was determined. When the sequence of the coding region was compared with that of LEU2, the homology was 72% for base pairs and 76% for deduced amino acids. Comparison of the regulatory region of C-LEU2 with those of LEU1 and LEU2 suggested a few short consensus sequences which are involved in regulation of gene expression by leucine and threonine in the medium.

  3. Genetic discovery in Xylella fastidiosa through sequence analysis of selected randomly amplified polymorphic DNAs.

    PubMed

    Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C

    2005-02-01

    Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.

  4. Isolation of a gammaherpesvirus similar to asinine herpesvirus-2 (AHV-2) from a mule and a survey of mules and donkeys for AHV-2 infection by real-time PCR.

    PubMed

    Bell, Stephanie A; Pusterla, Nicola; Balasuriya, Udeni B R; Mapes, Samantha M; Nyberg, Nicole L; MacLachlan, N James

    2008-07-27

    Equids are commonly infected by herpesviruses, but isolation of herpesviruses from mules has apparently not been previously reported. Furthermore, the genomic relationships among the various equid herpesviruses are poorly characterized. We describe the isolation and preliminary characterization of a mule gammaherpesvirus tentatively identified as asinine herpesvirus-2 (AHV-2; also designated equid herpesvirus-7 (EHV-7)) from the nasal secretions (NS) of a healthy mule in northern California. The virus was initially identified by transmission electron microscopic examination of lysates of cell culture inoculated with NS collected from the mule. A 913 nucleotide sequence of the DNA polymerase gene was amplified using degenerate primers, and comparison of this sequence with those of various other herpesviruses showed that the mule herpesvirus was most closely related to EHV-2 (AHV-2 sequences were not available for comparison). The sequence of a shorter portion (166 nucleotides) of the mule herpesvirus DNA polymerase gene was identical to that of the published sequence of an asinine gammaherpesvirus, previously designated as AHV-4-3 (AY054992). AHV-2 was detected by real-time polymerase chain reaction assay in the NS of approximately 8% of a cohort of 114 healthy mules and 13 donkeys.

  5. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  6. A HIV-1 heterosexual transmission chain in Guangzhou, China: a molecular epidemiological study.

    PubMed

    Han, Zhigang; Leung, Tommy W C; Zhao, Jinkou; Wang, Ming; Fan, Lirui; Li, Kai; Pang, Xinli; Liang, Zhenbo; Lim, Wilina W L; Xu, Huifang

    2009-09-25

    We conducted molecular analyses to confirm four clustering HIV-1 infections (Patient A, B, C & D) in Guangzhou, China. These cases were identified by epidemiological investigation and suspected to acquire the infection through a common heterosexual transmission chain. Env C2V3V4 region, gag p17/p24 junction and partial pol gene of HIV-1 genome from serum specimens of these infected cases were amplified by reverse transcription polymerase chain reaction (RT-PCR) and nucleotide sequenced. Phylogenetic analyses indicated that their viral nucleotide sequences were significantly clustered together (bootstrap value is 99%, 98% and 100% in env, gag and pol tree respectively). Evolutionary distance analysis indicated that their genetic diversities of env, gag and pol genes were significantly lower than non-clustered controls, as measured by unpaired t-test (env gene comparison: p < 0.005; gag gene comparison: p < 0.005; pol gene comparison: p < 0.005). Epidemiological results and molecular analyses consistently illustrated these four cases represented a transmission chain which dispersed in the locality through heterosexual contact involving commercial sex worker.

  7. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica . All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  8. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  9. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis

    PubMed Central

    Zheng, Jin-shuang; Sun, Cheng-zhen; Zhang, Shu-ning; Hou, Xi-lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974

  10. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    PubMed

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  11. An improved model for whole genome phylogenetic analysis by Fourier transform.

    PubMed

    Yin, Changchuan; Yau, Stephen S-T

    2015-10-07

    DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genomic organization and sequence of the Gus-s/sup a/ allele of the murine. beta. -glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funkenstein, B.; Leary, S.L.; Stein, J.C.

    1988-03-01

    The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less

  13. Intervening sequences in a plant gene-comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin

    NASA Astrophysics Data System (ADS)

    Sun, S. M.; Slightom, J. L.; Hall, T. C.

    1981-01-01

    A plant gene coding for the major storage protein (phaseolin, G1-globulin) of the French bean was isolated from a genomic library constructed in the phage vector Charon 24A. Comparison of the nucleotide sequence of part of the gene with that of the cloned messenger RNA (cDNA) revealed the presence of three intervening sequences, all beginning with GTand ending with AG. The 5' and 3' boundaries of intervening sequences TVS-A (88 base pairs) and IVS-B (124 base pairs) are similar to those described for animal and viral genes, but the 3' boundary of IVS-C (129 base pairs) shows some differences. A sequence of 185 amino acids deduced from the cloned DMAs represents about 40% of a phaseolin polypeptide.

  14. The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system

    PubMed Central

    2011-01-01

    The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899

  15. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level.

    PubMed

    Brunak, S; Engelbrecht, J

    1996-06-01

    A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.

  16. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, G K; Hillier, L; Brandstrom, M

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to theirmore » wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.« less

  17. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    PubMed Central

    2007-01-01

    Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273

  18. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less

  19. Comparison of Human and Guinea Pig Acetylcholinesterase Sequences and Rates of Oxime-Assisted Reactivation

    DTIC Science & Technology

    2010-01-01

    of appropriate animal model systems. For OP poisoning, the guinea pig (Cavia porcellus) is a commonly used animal model because guinea pigs more...endogenous bioscavenger in vivo. Although guinea pigs historically have been used to test OP poisoning therapies, it has been found recently that guinea pig AChE...transcribed mRNA encoding guinea pig AChE, amplified the resulting cDNA, and sequenced this product. The nucleotide and deduced amino acid sequences of

  20. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  1. DNA sequence of the lymphotropic variant of minute virus of mice, MVM(i), and comparison with the DNA sequence of the fibrotropic prototype strain.

    PubMed

    Astell, C R; Gardiner, E M; Tattersall, P

    1986-02-01

    The sequence of molecular clones of the genome of MVM(i), a lymphotropic variant of minute virus of mice, was determined and compared with that of MVM(p), the fibrotropic prototype strain. At the nucleotide level there are 163 base changes: 129 transitions and 34 transversions. Most nucleotide changes are silent, with only 27 amino acids changes predicted, of which 22 are conservative. Notable differences between the MVM(i) and MVM(p) genomes which may account for the cell specificities of these viruses occur within the 3' nontranslated regions. The differences discussed include the absence of a 65-base-pair direct in MVM(i), the presence of only two polyadenylation sites in MVM(i) compared with four in MVM(p), and sequences that bear a resemblance to enhancer sequences. Also included in this paper is an important correction to the MVM(p) sequence (C.R. Astell, M. Thomson, M. Merchlinsky, and D. C. Ward, Nucleic Acids Res. 11:999-1018, 1983).

  2. High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency

    PubMed Central

    Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J.; Burnett, John C.; Zhou, Jiehua

    2016-01-01

    The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct “biased sequences” and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the “biased sequences” was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy. PMID:27652575

  3. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for nucleotide and/or amino acid sequence data. 1.822 Section 1.822 Patents, Trademarks, and... Amino Acid Sequences § 1.822 Symbols and format to be used for nucleotide and/or amino acid sequence data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data shall...

  4. Isolation and molecular characterization of partial FSH and LH receptor genes in Arabian camels (Camelus dromedarius)

    PubMed Central

    Jelokhani-Niaraki, Saber; Tahmoorespur, Mojtaba; Bitaraf-Sani, Morteza

    2015-01-01

    Very little is known about LHR and FSHR genes of domestic dromedary camels. The main objective of this study was to determine and analyze partial genomic regions of FSHR and LHR genes in dromedary camels for the first time. To this end, a total of50 DNA samples belonging to dromedary camels raised in Iran were sent for sequencing (25 samples of each gene). We compared the nucleotide sequences of Camelus dromedarius with corresponding sequences of previously published FSHR and LHR genes in bactrian camels and other species. According to the data, the same nucleotide variation was identified in both regions of the two camel species. The alignment of deduced protein sequences of the two different species revealed an amino acid variation at the FSHR region. No evidence of amino acid variation was observed, however, in LHR sequences. Phylogenetic analysis indicated that both camel species had a close relationship and clustered together in a separate branch. This was further confirmed by genetic distance values illustrating significant sequence identity between Camelus dromedarius and Camelus bactrianus. Interestingly, sequence comparisons revealed heterozygote patterns in FSHR sequences isolated from dromedary camels of Iran. In comparison to other species, this camel contains three amino acid substitutions at 5, 67, and 105 positions in the FSHR coding region. These positions are found exclusively in camels and can be considered as species specific. The results of our study can be used for hormone functionality research (FSHR and LHR) as well as reproduction-linked polymorphisms and breeding programs. PMID:27844002

  5. Isolation and molecular characterization of partial FSH and LH receptor genes in Arabian camels (Camelus dromedarius).

    PubMed

    Jelokhani-Niaraki, Saber; Tahmoorespur, Mojtaba; Bitaraf-Sani, Morteza

    2015-06-01

    Very little is known about LHR and FSHR genes of domestic dromedary camels. The main objective of this study was to determine and analyze partial genomic regions of FSHR and LHR genes in dromedary camels for the first time. To this end, a total of50 DNA samples belonging to dromedary camels raised in Iran were sent for sequencing (25 samples of each gene). We compared the nucleotide sequences of Camelus dromedarius with corresponding sequences of previously published FSHR and LHR genes in bactrian camels and other species. According to the data, the same nucleotide variation was identified in both regions of the two camel species. The alignment of deduced protein sequences of the two different species revealed an amino acid variation at the FSHR region. No evidence of amino acid variation was observed, however, in LHR sequences. Phylogenetic analysis indicated that both camel species had a close relationship and clustered together in a separate branch. This was further confirmed by genetic distance values illustrating significant sequence identity between Camelus dromedarius and Camelus bactrianus . Interestingly, sequence comparisons revealed heterozygote patterns in FSHR sequences isolated from dromedary camels of Iran. In comparison to other species, this camel contains three amino acid substitutions at 5, 67, and 105 positions in the FSHR coding region. These positions are found exclusively in camels and can be considered as species specific. The results of our study can be used for hormone functionality research ( FSHR and LHR ) as well as reproduction-linked polymorphisms and breeding programs.

  6. Zn-metalloprotease sequences in extremophiles

    NASA Astrophysics Data System (ADS)

    Holden, T.; Dehipawala, S.; Golebiewska, U.; Cheung, E.; Tremberger, G., Jr.; Williams, E.; Schneider, P.; Gadura, N.; Lieberman, D.; Cheung, T.

    2010-09-01

    The Zn-metalloprotease family contains conserved amino acid structures such that the nucleotide fluctuation at the DNA level would exhibit correlated randomness as described by fractal dimension. A nucleotide sequence fractal dimension can be calculated from a numerical series consisting of the atomic numbers of each nucleotide. The structure's vibration modes can also be studied using a Gaussian Network Model. The vibration measure and fractal dimension values form a two-dimensional plot with a standard vector metric that can be used for comparison of structures. The preference for amino acid usage in extremophiles may suppress nucleotide fluctuations that could be analyzed in terms of fractal dimension and Shannon entropy. A protein level cold adaptation study of the thermolysin Zn-metalloprotease family using molecular dynamics simulation was reported recently and our results show that the associated nucleotide fluctuation suppression is consistent with a regression pattern generated from the sequences's fractal dimension and entropy values (R-square { 0.98, N =5). It was observed that cold adaptation selected for high entropy and low fractal dimension values. Extension to the Archaemetzincin M54 family in extremophiles reveals a similar regression pattern (R-square = 0.98, N = 6). It was observed that the metalloprotease sequences of extremely halophilic organisms possess high fractal dimension and low entropy values as compared with non-halophiles. The zinc atom is usually bonded to the histidine residue, which shows limited levels of vibration in the Gaussian Network Model. The variability of the fractal dimension and entropy for a given protein structure suggests that extremophiles would have evolved after mesophiles, consistent with the bias usage of non-prebiotic amino acids by extremophiles. It may be argued that extremophiles have the capacity to offer extinction protection during drastic changes in astrobiological environments.

  7. The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5' termini.

    PubMed

    Huiet, L; Feldstein, P A; Tsai, J H; Falk, B W

    1993-12-01

    Primer extension analyses and a PCR-based cloning strategy were used to identify and characterize 5' nucleotide sequences on the maize stripe virus (MStV) RNA4 mRNA transcripts encoding the major noncapsid protein (NCP). Direct RNA sequence analysis by primer extension showed that the NCP mRNA transcripts had 10-15 nucleotides beyond the 5' terminus of the MStV RNA4 nucleotide sequence. MStV genomic RNAs isolated from ribonucleoprotein particles (RNPs) lacked the additional 5' nucleotides. cDNA clones representing the 5' region of the mRNA transcripts were constructed, and the nucleotide sequences of the 5' regions were determined for 16 clones. Each was found to have a distinct 10-15 nucleotide sequence immediately 5' of the MStV RNA4 sequence. Eleven of 16 clones had the correct MStV RNA4 5' nucleotide sequence, while five showed minor variations at or near the 5' most MStV RNA4 nucleotide. These characteristics show strong similarities to other viral mRNA transcripts which are synthesized by cap snatching.

  8. Exploring single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes in the jellyfish (Rhopilema esculentum) by transcriptome sequencing.

    PubMed

    Li, Yunfeng; Zhou, Zunchun; Tian, Meilin; Tian, Yi; Dong, Ying; Li, Shilei; Liu, Weidong; He, Chongbo

    2017-08-01

    In this study, single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes (DEGs) in the oral parts, gonads, and umbrella parts of the jellyfish Rhopilema esculentum were analyzed by RNA-Seq technology. A total of 76.4 million raw reads and 72.1 million clean reads were generated from deep sequencing. Approximately 119,874 tentative unigenes and 149,239 transcripts were obtained. A total of 1,034,708 SNP markers were detected in the three tissues. For microsatellite mining, 5088 SSRs were identified from the unigene sequences. The most frequent repeat motifs were mononucleotide repeats, which accounted for 61.93%. Transcriptome comparison of the three tissues yielded a total of 8841 DEGs, of which 3560 were up-regulated and 5281 were down-regulated. This study represents the greatest sequencing effort carried out for a jellyfish and provides the first high-throughput transcriptomic resource for jellyfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister-group to protostomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helfenbein, Kevin G.; Fourcade, H. Matthew; Vanjani, Rohit G.

    2004-05-01

    We report the first complete mitochondrial (mt) DNA sequence from a member of the phylum Chaetognatha (arrow worms). The Paraspadella gotoi mtDNA is highly unusual, missing 23 of the genes commonly found in animal mtDNAs, including atp6, which has otherwise been found universally to be present. Its 14 genes are unusually arranged into two groups, one on each strand. One group is punctuated by numerous non-coding intergenic nucleotides, while the other group is tightly packed, having no non-coding nucleotides, leading to speculation that there are two transcription units with differing modes of expression. The phylogenetic position of the Chaetognatha withinmore » the Metazoa has long been uncertain, with conflicting or equivocal results from various morphological analyses and rRNA sequence comparisons. Comparisons here of amino acid sequences from mitochondrially encoded proteins gives a single most parsimonious tree that supports a position of Chaetognatha as sister to the protostomes studied here. From this, one can more clearly interpret the patterns of evolution of various developmental features, especially regarding the embryological fate of the blastopore.« less

  10. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide and...

  11. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide and...

  12. Identification and characterization of Theileria ovis surface protein (ToSp) resembled TaSp in Theileria annulata.

    PubMed

    Shayan, P; Jafari, S; Fattahi, R; Ebrahimzade, E; Amininia, N; Changizi, E

    2016-05-01

    Ovine theileriosis is an important hemoprotozoal disease of sheep and goats in tropical and subtropical regions which caused high economic loses in the livestock industry. Theileria annulata surface protein (TaSp) was used previously as a tool for serological analysis in livestock. Since the amino acid sequences of TaSp is, at least, in part very conserved in T. annulata, Theileria lestoquardi and Theileria china I and II, it is very important to determine the amino acid sequence of this protein in Theileria ovis as well, to avoid false interpretation of serological data based on this protein in small animal. In the present study, the nucleotide sequence and amino acid sequence of T. ovis surface protein (ToSp) were determined. The comparison of the nucleotide sequence of ToSp showed 96, 96, 99, and 86 % homology to the corresponding nucleotide sequence of TaSp genes by T. annulata, T. China I, T. China II and T. lestoquardi, previously registered in GenBank under accession nos. AJ316260.1, AY274329.1, DQ120058.1, and EF092924.1 respectively. The amino acid sequence analysis showed 95, 81, 98 and 70 % homology to the corresponding amino acid sequence of T. annulata, T chinaI, T china II and T. lestoquardi, registered in GenBank under accession nos. CAC87478.1, AAP36993.1, AAZ30365.1 and AAP36999.11, respectively. Interestingly, in contrast to the C terminus, a significant difference in amino acid sequence in the N teminus of the ToSp protein could be determined compared to the other known corresponding TaSp sequences, which make this region attractive for designing of a suitable tool for serological diagnosis.

  13. Phylogenetic Characterizations of Highly Mutated EV-B106 Recombinants Showing Extensive Genetic Exchanges with Other EV-B in Xinjiang, China.

    PubMed

    Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo

    2017-02-23

    Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5-80.8% nucleotide identity and 95.4-97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China.

  14. Phylogenetic Characterizations of Highly Mutated EV-B106 Recombinants Showing Extensive Genetic Exchanges with Other EV-B in Xinjiang, China

    PubMed Central

    Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo

    2017-01-01

    Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5–80.8% nucleotide identity and 95.4–97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China. PMID:28230168

  15. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  16. Studies of Xenopus laevis mitochondrial DNA: D-loop mapping and characterization of DNA-binding proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairns, S.S.

    1987-01-01

    In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage ofmore » the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.« less

  17. Statistical method to compare massive parallel sequencing pipelines.

    PubMed

    Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P

    2017-03-01

    Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.

  18. A comparison of coding sequence and cytogenetic localization of the myostatin gene in the dog, red fox, arctic fox and Chinese raccoon dog.

    PubMed

    Grzes, M; Nowacka-Woszuk, J; Szczerbal, I; Czerwinska, J; Gracz, J; Switonski, M

    2009-01-01

    The gene encoding myostatin (MSTN), due to its crucial function for growth of skeletal muscle mass, is an important candidate for muscularity. In this study we analyzed the nucleotide sequence and FISH localization of this gene in 4 canids, including 3 farm species. The nucleotide sequence of the MSTN coding fragment turned out to be highly conserved, since its identity among the studied species was very high and varied between 99.4 and 99.7%. Only 1, widely spread, silent single nucleotide polymorphism (SNP) was found in exon 1 of the Chinese raccoon dog. The MSTN gene was localized close to the centromere in one-armed chromosomes of the dog (37q11) and bi-armed chromosomes of the red fox (16p11) and arctic fox (10q11), with an exception of the Chinese raccoon dog chromosome (2q14-q21). This chromosome is orthologous to 3 canine chromosomes and thus the MSTN was found more interstitially. Our results are in agreement with the hypothesis that karyotypes of the canids evolved mainly through centric fusion/fission events, while tandem fusions occurred rarely. (c) 2009 S. Karger AG, Basel.

  19. Molecular characterization and phylogenetic analysis of Explanatum explanatum in India based on nucleotide sequences of ribosomal ITS2 and the mitochondrial gene nad1.

    PubMed

    Hayashi, Kei; Mohanta, Uday K; Ohari, Yuma; Neeraja, Tambireddy; Singh, T Shantikumar; Sugiyama, Hiromu; Itagaki, Tadashi

    2016-12-01

    The aim of this study was to analyze the phylogenetic relationship between Explanatum explanatum populations in India and other countries of the Indian subcontinent. Seventy liver amphistomes collected from four localities in India were identified as E. explanatum based on the nucleotide sequences of ribosomal ITS2. The flukes were then analyzed phylogenetically based on the nucleotide sequence of the mitochondrial gene nad1 in comparison with flukes from Bangladesh and Nepal. In the resulting phylogenetic tree, the nad1 haplotypes from India were divided into four clades, and the flukes showing the haplotypes of clades A and C were predominant in India. The haplotypes of the clades A and C have also been detected in Bangladesh and Nepal, and therefore, it seems they occur commonly throughout the Indian subcontinent. The results of AMOVA suggested that gene flow was likely to occur between E. explanatum populations in these countries. These countries are geographically close and have been historically and culturally connected to each other, and therefore, the movements of host ruminants among these countries might have been involved in the migration of the flukes and their gene flow.

  20. Full Genome Sequence of Egg Drop Syndrome Virus Strain FJ12025 Isolated from Muscovy Duckling.

    PubMed

    Fu, Guanghua; Chen, Hongmei; Huang, Yu; Cheng, Longfei; Fu, Qiuling; Shi, Shaohua; Wan, Chunhe; Chen, Cuiteng; Lin, Jiansheng

    2013-08-22

    Egg drop syndrome virus (EDSV) strain FJ12025 was isolated from a 9-day-old Muscovy duckling. The results of the sequence showed that the genome of strain FJ12025 is 33,213 bp in length, with a G+C content of 43.03%. When comparing the genome sequence of strain FJ12025 to that of laying duck original strain AV-127, we found 50 single-nucleotide polymorphisms (SNPs) between the two viral genome sequences. A genomic sequence comparison of FJ12025 and AV-127 will help to understand the phenotypic differences between the two viruses.

  1. Nucleotide sequence of the gene for the Mr 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950

    PubMed Central

    Zurawski, Gerard; Bohnert, Hans J.; Whitfeld, Paul R.; Bottomley, Warwick

    1982-01-01

    The gene for the so-called Mr 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is ≈ 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of Mr 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of Mr 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA. Images PMID:16593262

  2. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... DEPARTMENT OF COMMERCE Patent and Trademark Office Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request... Patent applications that contain nucleotide and/or amino acid sequence disclosures must include a copy of...

  3. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    PubMed

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  4. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  5. Sequence determination and analysis of the NSs genes of two tospoviruses.

    PubMed

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  6. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    PubMed Central

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  7. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M [Tracy, CA; Radnedge, Lyndsay [San Mateo, CA; Andersen, Gary L [Berkeley, CA; Ott, Linda L [Livermore, CA; Slezak, Thomas R [Livermore, CA; Kuczmarski, Thomas A [Livermore, CA; Motin, Vladinir L [League City, TX

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  8. Nucleotide sequences specific to Brucella and methods for the detection of Brucella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCready, Paula M; Radnedge, Lyndsay; Andersen, Gary L

    Nucleotide sequences specific to Brucella that serves as a marker or signature for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  9. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  10. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae.

    PubMed

    Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K

    2010-02-01

    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

  11. [Molecular cloning and characterization in silico of phospholipase A(2) transcript isolated from Lachesis muta peruvian snake venom].

    PubMed

    Jimenez, Karim L; Zavaleta, Amparo I; Izaguirre, Victor; Yarleque, Armando; Inga, Rosio R

    2010-01-01

    Isolate and characterize in silico gene phospholipase A(2) (PLA(2)) isolated from Lachesis muta venom of the Peruvian Amazon. Technique RT-PCR from total RNA was using specific primers, the amplified DNA product was inserted into the pGEM vector for subsequent sequencing. By bioinformatic analysis identified an open reading frame of 414 nucleotides that encoded 138 amino acids including a signal peptide of 16 aminoacids, molecular weight and pI were 13,976 kDa and 5.66 respectively. The aminoacid sequence was called Lm-PLA(2)-Peru, contains an aspartate at position 49, this aminoacid in conjunction with other conserved residues such as Tyr-28, Gly-30, Gly-32, His-48, Tyr52, Asp99 are important for enzymatic activity. The comparison with the amino acid sequence data banks showed of similarity between PLA(2) from Lachesis stenophrys (93%) and other PLA(2) snake venoms and over 80% of other sPLA(2) family Viperidae venoms. A phylogenetic analysis showed that Lm-PLA(2)-Peru grouped with other acidic [Asp(49)] sPLA(2) previously isolated from Bothriechis schlegelii venom showing 89 % nucleotide sequence identity. Finally, the computer modeling indicated that enzyme had the characteristic structure of sPLA(2) group II that consisted of three α-helices, a β-wing, a short helix and a calcium-binding loop. The nucleotide sequence corresponding to the first transcript of gene from PLA(2) cloned of Lachesis muta venom, snake from the Peruvian rainforest.

  12. Estimating the Population Mutation Rate from a de novo Assembled Bactrian Camel Genome and Cross-Species Comparison with Dromedary ESTs

    PubMed Central

    2014-01-01

    The Bactrian camel (Camelus bactrianus) and the dromedary (Camelus dromedarius) are among the last species that have been domesticated around 3000–6000 years ago. During domestication, strong artificial (anthropogenic) selection has shaped the livestock, creating a huge amount of phenotypes and breeds. Hence, domestic animals represent a unique resource to understand the genetic basis of phenotypic variation and adaptation. Similar to its late domestication history, the Bactrian camel is also among the last livestock animals to have its genome sequenced and deciphered. As no genomic data have been available until recently, we generated a de novo assembly by shotgun sequencing of a single male Bactrian camel. We obtained 1.6 Gb genomic sequences, which correspond to more than half of the Bactrian camel’s genome. The aim of this study was to identify heterozygous single-nucleotide polymorphisms (SNPs) and to estimate population parameters and nucleotide diversity based on an individual camel. With an average 6.6-fold coverage, we detected over 116 000 heterozygous SNPs and recorded a genome-wide nucleotide diversity similar to that of other domesticated ungulates. More than 20 000 (85%) dromedary expressed sequence tags successfully aligned to our genomic draft. Our results provide a template for future association studies targeting economically relevant traits and to identify changes underlying the process of camel domestication and environmental adaptation. PMID:23454912

  13. A comprehensive bioinformatic analysis of hepatitis D virus full-length genomes.

    PubMed

    Delfino, C M; Cerrudo, C S; Biglione, M; Oubiña, J R; Ghiringhelli, P D; Mathet, V L

    2018-02-06

    In association with hepatitis B virus (HBV), hepatitis delta virus (HDV) is a subviral agent that may promote severe acute and chronic forms of liver disease. Based on the percentage of nucleotide identity of the genome, HDV was initially classified into three genotypes. However, since 2006, the original classification has been further expanded into eight clades/genotypes. The intergenotype divergence may be as high as 35%-40% over the entire RNA genome, whereas sequence heterogeneity among the isolates of a given genotype is <20%; furthermore, HDV recombinants have been clearly demonstrated. The genetic diversity of HDV is related to the geographic origin of the isolates. This study shows the first comprehensive bioinformatic analysis of the complete available set of HDV sequences, using both nucleotide and protein phylogenies (based on an evolutionary model selection, gamma distribution estimation, tree inference and phylogenetic distance estimation), protein composition analysis and comparison (based on the presence of invariant residues, molecular signatures, amino acid frequencies and mono- and di-amino acid compositional distances), as well as amino acid changes in sequence evolution. Taking into account the congruent and consistent results of both nucleotide and amino acid analyses of GenBank available sequences (recorded as of January, 2017), we propose that the eight hepatitis D virus genotypes may be grouped into three large genogroups fully supported by their shared characteristics. © 2018 John Wiley & Sons Ltd.

  14. Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine

    NASA Astrophysics Data System (ADS)

    Xing, Pengwei; Su, Ran; Guo, Fei; Wei, Leyi

    2017-04-01

    N6-methyladenosine (m6A) refers to methylation of the adenosine nucleotide acid at the nitrogen-6 position. It plays an important role in a series of biological processes, such as splicing events, mRNA exporting, nascent mRNA synthesis, nuclear translocation and translation process. Numerous experiments have been done to successfully characterize m6A sites within sequences since high-resolution mapping of m6A sites was established. However, as the explosive growth of genomic sequences, using experimental methods to identify m6A sites are time-consuming and expensive. Thus, it is highly desirable to develop fast and accurate computational identification methods. In this study, we propose a sequence-based predictor called RAM-NPPS for identifying m6A sites within RNA sequences, in which we present a novel feature representation algorithm based on multi-interval nucleotide pair position specificity, and use support vector machine classifier to construct the prediction model. Comparison results show that our proposed method outperforms the state-of-the-art predictors on three benchmark datasets across the three species, indicating the effectiveness and robustness of our method. Moreover, an online webserver implementing the proposed predictor has been established at http://server.malab.cn/RAM-NPPS/. It is anticipated to be a useful prediction tool to assist biologists to reveal the mechanisms of m6A site functions.

  15. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai.

    PubMed

    Izzard, Leonard; Fuller, Andrew; Blacksell, Stuart D; Paris, Daniel H; Richards, Allen L; Aukkanit, Nuntipa; Nguyen, Chelsea; Jiang, Ju; Fenwick, Stan; Day, Nicholas P J; Graves, Stephen; Stenos, John

    2010-12-01

    In July 2006, an Australian tourist returning from Dubai, in the United Arab Emirates (UAE), developed acute scrub typhus. Her signs and symptoms included fever, myalgia, headache, rash, and eschar. Orientia tsutsugamushi serology demonstrated a 4-fold rise in antibody titers in paired serum collections (1:512 to 1:8,192), with the sera reacting strongest against the Gilliam strain antigen. An Orientia species was isolated by the in vitro culture of the patient's acute blood taken prior to antibiotic treatment. The gene sequencing of the 16S rRNA gene (rrs), partial 56-kDa gene, and the full open reading frame 47-kDa gene was performed, and comparisons of this new Orientia sp. isolate to previously characterized strains demonstrated significant sequence diversity. The closest homology to the rrs sequence of the new Orientia sp. isolate was with three strains of O. tsutsugamushi (Ikeda, Kato, and Karp), with a nucleotide sequence similarity of 98.5%. The closest homology to the 47-kDa gene sequence was with O. tsutsugamushi strain Gilliam, with a nucleotide similarity of 82.3%, while the closest homology to the 56-kDa gene sequence was with O. tsutsugamushi strain TA686, with a nucleotide similarity of 53.1%. The molecular divergence and geographically unique origin lead us to believe that this organism should be considered a novel species. Therefore, we have proposed the name "Orientia chuto," and the prototype strain of this species is strain Dubai, named after the location in which the patient was infected.

  16. Isolation of a Novel Orientia Species (O. chuto sp. nov.) from a Patient Infected in Dubai ▿

    PubMed Central

    Izzard, Leonard; Fuller, Andrew; Blacksell, Stuart D.; Paris, Daniel H.; Richards, Allen L.; Aukkanit, Nuntipa; Nguyen, Chelsea; Jiang, Ju; Fenwick, Stan; Day, Nicholas P. J.; Graves, Stephen; Stenos, John

    2010-01-01

    In July 2006, an Australian tourist returning from Dubai, in the United Arab Emirates (UAE), developed acute scrub typhus. Her signs and symptoms included fever, myalgia, headache, rash, and eschar. Orientia tsutsugamushi serology demonstrated a 4-fold rise in antibody titers in paired serum collections (1:512 to 1:8,192), with the sera reacting strongest against the Gilliam strain antigen. An Orientia species was isolated by the in vitro culture of the patient's acute blood taken prior to antibiotic treatment. The gene sequencing of the 16S rRNA gene (rrs), partial 56-kDa gene, and the full open reading frame 47-kDa gene was performed, and comparisons of this new Orientia sp. isolate to previously characterized strains demonstrated significant sequence diversity. The closest homology to the rrs sequence of the new Orientia sp. isolate was with three strains of O. tsutsugamushi (Ikeda, Kato, and Karp), with a nucleotide sequence similarity of 98.5%. The closest homology to the 47-kDa gene sequence was with O. tsutsugamushi strain Gilliam, with a nucleotide similarity of 82.3%, while the closest homology to the 56-kDa gene sequence was with O. tsutsugamushi strain TA686, with a nucleotide similarity of 53.1%. The molecular divergence and geographically unique origin lead us to believe that this organism should be considered a novel species. Therefore, we have proposed the name “Orientia chuto,” and the prototype strain of this species is strain Dubai, named after the location in which the patient was infected. PMID:20926708

  17. ESTs from Seeds to Assist the Selective Breeding of Jatropha curcas L. for Oil and Active Compounds

    PubMed Central

    Gomes, Kleber A; Almeida, Tiago C; Gesteira, Abelmon S; Lôbo, Ivon P; Guimarães, Ana Carolina R; de Miranda, Antonio B; Van Sluys, Marie-Anne; da Cruz, Rosenira S; Cascardo, Júlio CM; Carels, Nicolas

    2010-01-01

    We report here on the characterization of a cDNA library from seeds of Jatropha curcas L. at three stages of fruit maturation before yellowing. We sequenced a total of 2200 clones and obtained a set of 931 non-redundant sequences (unigenes) after trimming and quality control, ie, 140 contigs and 791 singlets with PHRED quality ≥10. We found low levels of sequence redundancy and extensive metabolic coverage by homology comparison to GO. After comparison of 5841 non-redundant ESTs from a total of 13193 reads from GenBank with KEGG, we identified tags with nucleotide variations among J. curcas accessions for genes of fatty acid, terpene, alkaloid, quinone and hormone pathways of biosynthesis. More specifically, the expression level of four genes (palmitoyl-acyl carrier protein thioesterase, 3-ketoacyl-CoA thiolase B, lysophosphatidic acid acyltransferase and geranyl pyrophosphate synthase) measured by real-time PCR proved to be significantly different between leaves and fruits. Since the nucleotide polymorphism of these tags is associated to higher level of gene expression in fruits compared to leaves, we propose this approach to speed up the search for quantitative traits in selective breeding of J. curcas. We also discuss its potential utility for the selective breeding of economically important traits in J. curcas. PMID:26217103

  18. Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal.

    PubMed

    Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2013-06-01

    Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.

  19. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed Central

    Bergman, Casey M.; Haddrill, Penelope R.

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center. PMID:25717372

  20. Strain-specific and pooled genome sequences for populations of Drosophila melanogaster from three continents.

    PubMed

    Bergman, Casey M; Haddrill, Penelope R

    2015-01-01

    To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.

  1. A measure of the denseness of a phylogenetic network. [by sequenced proteins from extant species

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1978-01-01

    An objective measure of phylogenetic denseness is developed to examine various phylogenetic criteria: alpha- and beta-hemoglobin, myoglobin, cytochrome c, and the parvalbumin family. Attention is given to the number of nucleotide replacements separating homologous sequences, and to the topology of the network (in other words, to the qualitative nature of the network as defined by how closely the studied species are related). Applications include quantitative comparisons of species origin, relation, and rates of evolution.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  3. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    PubMed Central

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  4. Molecular systematics of higher primates: genealogical relations and classification.

    PubMed Central

    Miyamoto, M M; Koop, B F; Slightom, J L; Goodman, M; Tennant, M R

    1988-01-01

    We obtained 5' and 3' flanking sequences (5.4 kilobase pairs) from the psi eta-globin gene region of the rhesus macaque (Macaca mulatta) and combined them with available nucleotide data. The completed sequence, representing 10.8 kilobase pairs of contiguous noncoding DNA, was compared to the same orthologous regions available for human (Homo sapiens, as represented by five different alleles), common chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus). The nucleotide sequence for Macaca mulatta provided the outgroup perspective needed to evaluate better the relationships of humans and great apes. Pairwise comparisons and parsimony analysis of these orthologues clearly demonstrated (i) that humans and great apes share a high degree of genetic similarity and (ii) that humans, chimpanzees, and gorillas form a natural monophyletic group. These conclusions strongly favor a genealogical classification for higher primates consisting of a single family (Hominidae) with two subfamilies (Homininae for Homo, Pan, and Gorilla and Ponginae for Pongo). PMID:3174657

  5. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also formore » the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.« less

  6. Typing and comparative genome analysis of Brucella melitensis isolated from Lebanon.

    PubMed

    Abou Zaki, Natalia; Salloum, Tamara; Osman, Marwan; Rafei, Rayane; Hamze, Monzer; Tokajian, Sima

    2017-10-16

    Brucella melitensis is the main causative agent of the zoonotic disease brucellosis. This study aimed at typing and characterizing genetic variation in 33 Brucella isolates recovered from patients in Lebanon. Bruce-ladder multiplex PCR and PCR-RFLP of omp31, omp2a and omp2b were performed. Sixteen representative isolates were chosen for draft-genome sequencing and analyzed to determine variations in virulence, resistance, genomic islands, prophages and insertion sequences. Comparative whole-genome single nucleotide polymorphism analysis was also performed. The isolates were confirmed to be B. melitensis. Genome analysis revealed multiple virulence determinants and efflux pumps. Genome comparisons and single nucleotide polymorphisms divided the isolates based on geographical distribution but revealed high levels of similarity between the strains. Sequence divergence in B. melitensis was mainly due to lateral gene transfer of mobile elements. This is the first report of an in-depth genomic characterization of B. melitensis in Lebanon. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Molecular characterization and expression of the M6 gene of grass carp hemorrhage virus (GCHV), an aquareovirus.

    PubMed

    Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y

    2001-07-01

    The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.

  8. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M [Tracy, CA; Radnedge, Lyndsay [San Mateo, CA; Andersen, Gary L [Berkeley, CA; Ott, Linda L [Livermore, CA; Slezak, Thomas R [Livermore, CA; Kuczmarski, Thomas A [Livermore, CA; Vitalis, Elizabeth A [Livermore, CA

    2007-02-06

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  9. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M [Tracy, CA; Radnedge, Lyndsay [San Mateo, CA; Andersen, Gary L [Berkeley, CA; Ott, Linda L [Livermore, CA; Slezak, Thomas R [Livermore, CA; Kuczmarski, Thomas A [Livermore, CA; Vitalis, Elizabeth A [Livermore, CA

    2009-02-24

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  10. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homologymore » (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.« less

  11. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  12. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Nucleotide sequence and phylogenetic analysis of Cucurbit yellow stunting disorder virus RNA 2.

    PubMed

    Livieratos, Ioannis C; Coutts, Robert H A

    2002-06-01

    The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.

  14. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  15. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses.

    PubMed

    Gritsun, T S; Frolova, T V; Pogodina, V V; Lashkevich, V A; Venugopal, K; Gould, E A

    1993-02-01

    A strain of tick-borne encephalitis virus known as Vasilchenko (Vs) exhibits relatively low virulence characteristics in monkeys, Syrian hamsters and humans. The gene encoding the envelope glycoprotein of this virus was cloned and sequenced. Alignment of the sequence with those of other known tick-borne flaviviruses and identification of the recognised amino acid genetic marker EHLPTA confirmed its identity as a member of the TBE complex. However, Vs virus was distinguishable from eastern and western tick-borne serotypes by the presence of the sequence AQQ at amino acid positions 232-234 and also by the presence of other specific amino acid substitutions which may be genetic markers for these viruses and could determine their pathogenetic characteristics. When compared with other tick-borne flaviviruses, Vs virus had 12 unique amino acid substitutions including an additional potential glycosylation site at position (315-317). The Vs virus strain shared closest nucleotide and amino acid homology (84.5% and 95.5% respectively) with western and far eastern strains of tick-borne encephalitis virus. Comparison with the far eastern serotype of tick-borne encephalitis virus, by cross-immunoelectrophoresis of Vs virions and PAGE analysis of the extracted virion proteins, revealed differences in surface charge and virus stability that may account for the different virulence characteristics of Vs virus. These results support and enlarge upon previous data obtained from molecular and serological analysis.

  16. Structural analysis of the 5{prime} region of mouse and human Huntington disease genes reveals conservation of putative promoter region and Di- and trinucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Biaoyang; Nasir, J.; Kalchman, M.A.

    1995-02-10

    We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less

  17. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    PubMed

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  18. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): A novel paramyxovirus associated with proliferative gill inflammation

    USGS Publications Warehouse

    Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.

    2008-01-01

    Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.

  19. Intraspecific variation between the ITS sequences of Toxocara canis, Toxocara cati and Toxascaris leonina from different host species in south-western Poland.

    PubMed

    Fogt-Wyrwas, R; Mizgajska-Wiktor, H; Pacoń, J; Jarosz, W

    2013-12-01

    Some parasitic nematodes can inhabit different definitive hosts, which raises the question of the intraspecific variability of the nematode genotype affecting their preferences to choose particular species as hosts. Additionally, the issue of a possible intraspecific DNA microheterogeneity in specimens from different parts of the world seems to be interesting, especially from the evolutionary point of view. The problem was analysed in three related species - Toxocara canis, Toxocara cati and Toxascaris leonina - specimens originating from Central Europe (Poland). Using specific primers for species identification, internal transcribed spacer (ITS)-1 and ITS-2 regions were amplified and then sequenced. The sequences obtained were compared with sequences previously described for specimens originating from other geographical locations. No differences in nucleotide sequences were established in T. canis isolated from two different hosts (dogs and foxes). A comparison of ITS sequences of T. canis from Poland with sequences deposited in GenBank showed that the scope of intraspecific variability of the species did not exceed 0.4%, while in T. cati the differences did not exceed 2%. Significant differences were found in T. leonina, where ITS-1 differed by 3% and ITS-2 by as much as 7.4% in specimens collected from foxes in Poland and dogs in Australia. Such scope of differences in the nucleotide sequence seems to exceed the intraspecific variation of the species.

  20. Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses.

    PubMed

    Rowe, Janet M; Fabre, Marie-Françoise; Gobena, Daniel; Wilson, William H; Wilhelm, Steven W

    2011-05-01

    Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene. © 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.

  1. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.

    PubMed

    Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph

    2006-08-01

    Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.

  2. Circulation of Endemic Type 2 Vaccine-Derived Poliovirus in Egypt from 1983 to 1993

    PubMed Central

    Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen

    2003-01-01

    From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5′ untranslated region (5′ UTR) and noncapsid- 3′ UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide. PMID:12857906

  3. Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993.

    PubMed

    Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen

    2003-08-01

    From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5' untranslated region (5' UTR) and noncapsid- 3' UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide.

  4. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.

    PubMed

    Beverly, Michael; Hagen, Caitlin; Slack, Olga

    2018-02-01

    The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.

  5. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana.

    PubMed

    Liu, Yanan; Wang, Baoju; Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2016-01-01

    The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development in the woodchuck model.

  6. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana

    PubMed Central

    Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2016-01-01

    The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development in the woodchuck model. PMID:27806133

  7. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus).

    PubMed

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-05-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% identical in ORF5. These sequence comparisons and previously studied biological properties indicate that PeVYV is a distinctly different virus and belongs to a new species of the genus Polerovirus.

  8. Characterization of apple stem grooving virus and apple chlorotic leaf spot virus identified in a crab apple tree.

    PubMed

    Li, Yongqiang; Deng, Congliang; Bian, Yong; Zhao, Xiaoli; Zhou, Qi

    2017-04-01

    Apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and prunus necrotic ringspot virus (PNRSV) were identified in a crab apple tree by small RNA deep sequencing. The complete genome sequence of ACLSV isolate BJ (ACLSV-BJ) was 7554 nucleotides and shared 67.0%-83.0% nucleotide sequence identity with other ACLSV isolates. A phylogenetic tree based on the complete genome sequence of all available ACLSV isolates showed that ACLSV-BJ clustered with the isolates SY01 from hawthorn, MO5 from apple, and JB, KMS and YH from pear. The complete nucleotide sequence of ASGV-BJ was 6509 nucleotides (nt) long and shared 78.2%-80.7% nucleotide sequence identity with other isolates. ASGV-BJ and the isolate ASGV_kfp clustered together in the phylogenetic tree as an independent clade. Recombination analysis showed that isolate ASGV-BJ was a naturally occurring recombinant.

  9. Hepatitis delta genotypes in chronic delta infection in the northeast of Spain (Catalonia).

    PubMed

    Cotrina, M; Buti, M; Jardi, R; Quer, J; Rodriguez, F; Pascual, C; Esteban, R; Guardia, J

    1998-06-01

    Based on genetic analysis of variants obtained around the world, three genotypes of the hepatitis delta virus have been defined. Hepatitis delta virus variants have been associated with different disease patterns and geographic distributions. To determine the prevalence of hepatitis delta virus genotypes in the northeast of Spain (Catalonia) and the correlation with transmission routes and clinical disease, we studied the nucleotide divergence of the consensus sequence of HDV RNA obtained from 33 patients with chronic delta hepatitis (24 were intravenous drug users and nine had no risk factors), and four patients with acute self-limited delta infection. Serum HDV RNA was amplified by the polymerase chain reaction technique and a fragment of 350 nucleotides (nt 910 to 1259) was directly sequenced. Genetic analysis of the nucleotide consensus sequence obtained showed a high degree of conservation among sequences (93% of mean). Comparison of these sequences with those derived from different geographic areas and pertaining to genotypes I, II and III, showed a mean sequence identity of 92% with genotype I, 73% with genotype II and 61% with genotype III. At the amino acid level (aa 115 to 214), the mean identity was 87% with genotype I, 63% with genotype II and 56% with genotype III. Conserved regions included the RNA editing domain, the carboxyl terminal 19 amino acids of the hepatitis delta antigen and the polyadenylation signal of the viral mRNA. Hepatitis delta virus isolates in the northeast of Spain are exclusively genotype I, independently of the transmission route and the type of infection. No hepatitis delta virus subgenotypes were found, suggesting that the origin of hepatitis delta virus infection in our geographical area is homogeneous.

  10. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    USGS Publications Warehouse

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  11. Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes.

    PubMed

    Crosslin, James M; Hamm, Philip B; Kirk, William W; Hammond, Rosemarie W

    2010-04-01

    Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20-25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3' terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.

  12. Complete Genomic Sequence and Comparative Analysis of the Genome Segments of Sweet Potato Chlorotic Stunt Virus in China

    PubMed Central

    Qin, Yanhong; Wang, Li; Zhang, Zhenchen; Qiao, Qi; Zhang, Desheng; Tian, Yuting; Wang, Shuang; Wang, Yongjiang; Yan, Zhaoling

    2014-01-01

    Background Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. Methodology/Principal Findings The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. Conclusions/Significance We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV in China as well as genetic relationships among isolates from China and other countries. PMID:25170926

  13. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  14. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  15. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  16. Comparison of the genomes and transcriptomes associated with the different protease secretions of Aspergillus oryzae 100-8 and 3.042.

    PubMed

    Zhao, Guozhong; Yao, Yunping; Hou, Lihua; Wang, Chunling; Cao, Xiaohong

    2014-10-01

    Aspergillus oryzae is used to produce traditional fermented foods and beverages. A. oryzae 3.042 produces a neutral protease and an alkaline protease but rarely an acid protease, which is unfavourable to soy-sauce fermentation. A. oryzae 100-8 was obtained by N(+) ion implantation mutagenesis of A. oryzae 3.042, and the protease secretions of these two strains are different. Sequencing the genome of A. oryzae 100-8 and comparing it to the genomes of A. oryzae 100-8 and 3.042 revealed some differences, such as single nucleotide polymorphisms, nucleotide deletion or insertion. Some of these differences may reflect the ability of A. oryzae to secrete proteases. Transcriptional sequencing and analysis of the two strains during the same growth processes provided further insights into the genes and pathways involved in protease secretion.

  17. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  18. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.

    PubMed Central

    Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R

    1982-01-01

    The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791

  20. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data.

    PubMed

    Li, Peipei; Piao, Yongjun; Shon, Ho Sun; Ryu, Keun Ho

    2015-10-28

    Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a widely used technique to quantify gene expression levels. Various normalization approaches have been proposed, owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed normalization methods is required to generate suitable guidelines for the selection of the most appropriate approach for future experiments. In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a 76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence, higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we found that adding a poly-A tail increased alignment numbers, but did not improve normalization results. Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably improve gene expression normalization, regardless of read length. Other normalization methods were more efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during differential gene expression analysis.

  1. 37 CFR 5.31-5.33 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from abandonment 1.135 Amino Acid Sequences. (See Nucleotide and/or Amino Acid Sequences) Appeal to... Appeals and Interference 41.47 Of rejection of an application 1.104(a) Nucleotide and/or Amino Acid...) Symbols for nucleotide and/or amino acid sequence data 1.822 T Tables in patent applications 1.58 Terminal...

  2. Nucleotide Sequences and Comparison of Two Large Conjugative Plasmids from Different Campylobacter species

    DTIC Science & Technology

    2004-01-01

    alleles have different predicted lengths, e.g. in pCC31, cpp46 starts with ATGATG whereas in pTet this gene starts with only one ATG; in ssb1 , cmgB7 and...homologues in plasmid pVT745 from Actinobacillus actinomycetemcomitans, and a single-stranded DNA-binding protein ssb1 that may coat the single-stranded

  3. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.

    PubMed

    Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O

    1987-06-01

    The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.

  4. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  5. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  6. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    PubMed

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  7. Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas.

    PubMed

    Alabi, Olufemi J; Villegas, Cecilia; Gregg, Lori; Murray, K Daniel

    2016-06-01

    Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.

  8. Identification of novel alleles of the rice blast resistance gene Pi54

    NASA Astrophysics Data System (ADS)

    Vasudevan, Kumar; Gruissem, Wilhelm; Bhullar, Navreet K.

    2015-10-01

    Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.

  9. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  10. eShadow: A tool for comparing closely related sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.

    2004-01-15

    Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less

  11. RECOVIR Software for Identifying Viruses

    NASA Technical Reports Server (NTRS)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  12. Nucleotide sequence analysis of the recA gene and discrimination of the three isolates of urease-positive thermophilic Campylobacter (UPTC) isolated from seagulls (Larus spp.) in Northern Ireland.

    PubMed

    Matsuda, M; Tai, K; Moore, J E; Millar, B C; Murayama, O

    2004-01-01

    Nucleotide sequencing after TA cloning of the amplicon of the almost-full length recA gene from three strains of UPTC (A1, A2, and A3) isolated from seagulls in Northern Ireland, the phenotypical and genotypical characteristics of which have been demonstrated to be indistinguishable, clarified nucleotide differences at three nucleotide positions among the three strains. In conclusion, the nucleotide sequences of the recA gene were found to discriminate among the three strains of UPTC, A1, A2, and A3, which are indistinguishable phenotypically and genotypically. Thus, the present study strongly suggests that nucleotide sequence data of the amplicon of a suitable gene or region could aid in discriminating among isolates of the UPTC group, which are indistinguishable phenotypically and genotypically. Copyright 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Genomic Sequencing of Bordetella pertussis for Epidemiology and Global Surveillance of Whooping Cough.

    PubMed

    Bouchez, Valérie; Guglielmini, Julien; Dazas, Mélody; Landier, Annie; Toubiana, Julie; Guillot, Sophie; Criscuolo, Alexis; Brisse, Sylvain

    2018-06-01

    Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.

  14. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  15. Comparative analysis of the 5{prime} genomic and promoter regions between the mouse (Hdh) and human Huntington disease (HD) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchman, M.; Lin, B.; Nasir, J.

    1994-09-01

    The mouse homologue of the Huntington disease gene (Hdh) has recently been cloned and mapped to a region of synteny with the human, on mouse chromosome 5. The two genes share a high degree of both coding (90% amino acid) and nucleotide (86.2%) identity. We have subsequently performed a detailed comparison of the genomic organization of the 5{prime} region of the two genes encompassing the promoter region and first five exons of both the human and mouse genes. The comparative sequence analysis of the promoter region between HD and Hdh reveals two highly conserved regions. One region (-56 to -118)more » (+1 is the ATG start codon), shared 84% nucleotide identity and another region (-130 to -206) had 81% nucleotide identity. Nine putative Sp1 sites appear in the human promoter region contrasted with only 3 in a similar region in the mouse. Furthermore, 17 and 20 base pair direct repeats present in the HD 5{prime} region are absent in the similar Hdh region. Although both the mouse and human intron/exon boundaries conform to the GT/AG rule, the intron sizes between HD and Hdh are markedly different. The first four introns in Hdh are 15, 7, 5 and 0.5 kb compared to sizes of 10, 15, 7 and 0.5 kb, respectively. Comparison between the mouse and human intronic sequences immediately adjacent to the first five exons (excluding exon 1) reveals only about 46 to 50% identity within the first 60 bp of intronic sequence. Furthermore, we have identified novel polymorphic di-, tri- and tetra-nucleotide repeats in Hdh introns of various mouse strains that are not present in the human. For example, polymorphic CT repeats are present in introns 2 and 4 of Hdh and a novel mouse 56 AAG trinucleotide repeat (interrupted by an AAGG) is also located within intron 2. This information concerning the promoter and genomic organization of both HD and Hdh is critical for designing appropriate gene targetting vectors for studying the normal function of the HD and Hdh genes in model systems.« less

  16. Nucleotide sequence of wild-type hepatitis A virus GBM in comparison with two cell culture-adapted variants.

    PubMed Central

    Graff, J; Normann, A; Feinstone, S M; Flehmig, B

    1994-01-01

    In order to study cell tropism and attenuation of hepatitis A virus (HAV), the genome of HAV wild-type GBM and two cell culture-adapted variants, GBM/FRhK and GBM/HFS, were cloned and sequenced after amplification by reverse transcriptase-PCR. During virus cultivation, the HAV variant GBM/FRhK had a strict host range for FRhK-4 cells, in contrast to GBM/HFS, which can be grown in HFS and FRhK-4 cells. The HAV variant GBM/HFS was shown to be attenuated when inoculated into chimpanzees (B. Flehmig, R. F. Mauler, G. Noll, E. Weinmann, and J. P. Gregerson, p. 87-90, in A. Zuckerman, ed., Viral Hepatitis and Liver Disease, 1988). On the basis of this biological background, the comparison of the nucleotide sequences of these three HAV GBM variants should elucidate differences which may be of importance for cell tropism and attenuation. The comparison of the genome between the GBM wild type and HAV wild types HM175 (J. I. Cohen, J. R. Ticehurst, R. H. Purcell, A. Buckler-White, and B. M. Baroudy, J. Virol. 61:50-59, 1987) and HAV-LA (R. Najarian, O. Caput, W. Gee, S. J. Potter, A. Renard, J. Merryweather, G. Van Nest, and D. Dina, Proc. Natl. Acad. Sci. USA 82:2627-2631, 1985) showed a 92 to 96.3% identity, whereas the identity was 99.3 to 99.6% between the GBM variants. Nucleotide differences between the wild-type and the cell culture-adapted variants, which were identical in both cell culture-adapted GBM variants, were localized in the 5' noncoding region; in 2B, 3B, and 3D; and in the 3' noncoding region. Our result concerning the 2B/2C region confirms a mutation at position 3889 (C-->T, alanine to valine), which had been shown to be of importance for cell culture adaptation (S. U. Emerson, C. McRill, B. Rosenblum, S. M. Feinstone, and R. H. Purcell, J. Virol. 65:4882-4886, 1991; S. U. Emerson, Y. K. Huang, C. McRill, M. Lewis, and R. H. Purcell, J. Virol. 66:650-654, 1992), whereas other mutations differ from published HAV sequence data and may be cell specific. Further comparison of the two cell culture-adapted GBM variants showed cell-specific mutations resulting in deletions of six amino acids in the VP1 region and three amino acids in the 3A region of the GBM variant GBM/FRhK. PMID:8254770

  17. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...” means those amino acids other than “Xaa” and those nucleotide bases other than “n”defined in accordance... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences...

  18. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...” means those amino acids other than “Xaa” and those nucleotide bases other than “n”defined in accordance... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences...

  19. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...” means those amino acids other than “Xaa” and those nucleotide bases other than “n”defined in accordance... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences...

  20. Construction and sequencing of an infectious clone of the goose embryo-adapted Muscovy duck parvovirus vaccine strain FZ91-30.

    PubMed

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Hardwidge, Philip R; Zhu, Guoqiang

    2016-06-21

    Muscovy duck parvovirus (MDPV) is the etiological agent of Muscovy duckling parvoviral disease, which is characterized by diarrhea, locomotive dysfunction, stunting, and death in young ducklings, and causes substantial economic losses in the Muscovy duck industry worldwide. FZ91-30 is an attenuated vaccine strain that is safe and immunogenic to ducklings, but the genomic information and molecular mechanism underlining the attenuation are not understood. The FZ91-30 strain was propagated in 11-day-old embryonated goose eggs, and viral particles were purified from the pooled allantoic fluid by differential centrifugation and ultracentrifugation. Single-stranded genomic DNA was extracted and annealed to form double-stranded DNA. The dsDNA digested with NcoI resulted two sub-genomic fragments, which were then cloned into the modified plasmid pBluescript II SK, respectively, generating plasmid pBSKNL and pBSKNR. The sub-genomic plasmid clones were sequenced and further combined to construct the plasmid pFZ that contained the entire genome of strain FZ91-30. The complete genome sequences of strain FM and YY and partial genome sequences of other strains were retrieved from GenBank for sequence comparison. The plasmid pFZ containing the entire genome of FZ91-30 was transfected in 11-day-old embryonated goose eggs via the chorioallantoic membranes route to rescue infectious virus. A genetic marker was introduced into the rescued virus to discriminate from its parental virus. The genome of FZ91-30 consists of 5,131 nucleotides and has 98.9 % similarity to the FM strain. The inverted terminal repeats (ITR) are 456 nucleotides in length, 14 nucleotides longer than that of Goose parvovirus (GPV). The exterior 415 nucleotides of the ITR form a hairpin structure, and the interior 41 nucleotides constitute the D sequence, a reverse complement of the D' sequence at the 3' ITR. Amino acid sequence alignment of the VP1 proteins between FZ91-30 and five pathogenic MDPV strains revealed that FZ91-30 had five mutations; two in the unique region of the VP1 protein (VP1u) and three in VP3. Sequence alignment of the Rep1 proteins revealed two amino acid alterations for FZ91-30, both of which were conserved for two pathogenic strains YY and P. Transfection of the plasmid pFZ in 11-day-old embryonated goose eggs resulted in generation of infectious virus with similar biological properties as compared with the parental strain. The amino acid mutations identified in the VP1 and Rep1 protein may contribute to the attenuation of FZ91-30 in Muscovy ducklings. Plasmid transfection in embryonated goose eggs was suitable for rescue of infectious MDPV.

  1. The most conserved genome segments for life detection on Earth and other planets.

    PubMed

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  2. Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5' leader derived from mitochondrial RNA.

    PubMed

    Akins, R A; Grant, D M; Stohl, L L; Bottorff, D A; Nargang, F E; Lambowitz, A M

    1988-11-05

    The Mauriceville and Varkud mitochondrial plasmids of Neurospora are closely related, closed circular DNAs (3.6 and 3.7 kb, respectively; 1 kb = 10(3) bases or base-pairs), whose characteristics suggest relationships to mitochondrial DNA introns and retrotransposons. Here, we characterized the structure of the Varkud plasmid, determined its complete nucleotide sequence and mapped its major transcripts. The Mauriceville and Varkud plasmids have more than 97% positional identity. Both plasmids contain a 710 amino acid open reading frame that encodes a reverse transcriptase-like protein. The amino acid sequence of this open reading frame is strongly conserved between the two plasmids (701/710 amino acids) as expected for a functionally important protein. Both plasmids have a 0.4 kb region that contains five PstI palindromes and a direct repeat of approximately 160 base-pairs. Comparison of sequences in this region suggests that the Varkud plasmid has diverged less from a common ancestor than has the Mauriceville plasmid. Two major transcripts of the Varkud plasmid were detected by Northern hybridization experiments: a full-length linear RNA of 3.7 kb and an additional prominent transcript of 4.9 kb, 1.2 kb longer than monomer plasmid. Remarkably, we find that the 4.9 kb transcript is a hybrid RNA consisting of the full-length 3.7 kb Varkud plasmid transcript plus a 5' leader of 1.2 kb that is derived from the 5' end of the mitochondrial small rRNA. This and other findings suggest that the Varkud plasmid, like certain RNA viruses, has a mechanism for joining heterologous RNAs to the 5' end of its major transcript, and that, under some circumstances, nucleotide sequences in mitochondria may be recombined at the RNA level.

  3. Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge

    PubMed Central

    Watanabe, Kazuya; Teramoto, Maki; Futamata, Hiroyuki; Harayama, Shigeaki

    1998-01-01

    DNA was isolated from phenol-digesting activated sludge, and partial fragments of the 16S ribosomal DNA (rDNA) and the gene encoding the largest subunit of multicomponent phenol hydroxylase (LmPH) were amplified by PCR. An analysis of the amplified fragments by temperature gradient gel electrophoresis (TGGE) demonstrated that two major 16S rDNA bands (bands R2 and R3) and two major LmPH gene bands (bands P2 and P3) appeared after the activated sludge became acclimated to phenol. The nucleotide sequences of these major bands were determined. In parallel, bacteria were isolated from the activated sludge by direct plating or by plating after enrichment either in batch cultures or in a chemostat culture. The bacteria isolated were classified into 27 distinct groups by a repetitive extragenic palindromic sequence PCR analysis. The partial nucleotide sequences of 16S rDNAs and LmPH genes of members of these 27 groups were then determined. A comparison of these nucleotide sequences with the sequences of the major TGGE bands indicated that the major bacterial populations, R2 and R3, possessed major LmPH genes P2 and P3, respectively. The dominant populations could be isolated either by direct plating or by chemostat culture enrichment but not by batch culture enrichment. One of the dominant strains (R3) which contained a novel type of LmPH (P3), was closely related to Valivorax paradoxus, and the result of a kinetic analysis of its phenol-oxygenating activity suggested that this strain was the principal phenol digester in the activated sludge. PMID:9797297

  4. Fast and accurate phylogeny reconstruction using filtered spaced-word matches

    PubMed Central

    Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-01-01

    Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754

  5. Fast and accurate phylogeny reconstruction using filtered spaced-word matches.

    PubMed

    Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard

    2017-04-01

    Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  6. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    PubMed

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  7. Molecular identification and partial sequence analysis of an aryl hydrocarbon receptor from beluga (Delphinapterus leucas)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, B.A.; Hahn, M.E.

    1995-12-31

    The aryl hydrocarbon receptor (AhR) mediates the effects of many common and potentially toxic organic hydrocarbons, including some polychlorinated biphenyls and dioxins. Since small cetaceans often inhabit industrially polluted coastal waters, comparison of the molecular structure and function of this protein in cetaeans with other marine and mammalian species is important for evaluating the sensitivity of cetaceans to these pollutants. An AhR protein has been identified in beluga liver by photoaffinity labeling. In the present study, the authors sought to clone and sequence an AhR cDNA from beluga as a prelude to studying its structure and function, using reverse-transcription polymerasemore » chain reaction (RT-PCR) and degenerate primers, a 515 base pair fragment was amplified, cloned and sequenced, revealing homology to the PAS domain (ligand binding and dimerization region) of AhRs from terrestrial mammals. This portion of the putative beluga AhR has 82% amino acid and 81% nucleotide sequence identity to the mouse AhR, and 63% amino acid and 64% nucleotide sequence identity to an AhR from the marine fish Fundulus heteroclitus. A beluga cDNA library was synthesized and is currently being screened with the PCR-generated fragment to obtain the complete coding sequence. This is the first molecular evidence of AhR presence in cetaceans.« less

  8. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing.

    PubMed

    Chimukangara, Benjamin; Varyani, Bhavini; Shamu, Tinei; Mutsvangwa, Junior; Manasa, Justen; White, Elizabeth; Chimbetete, Cleophas; Luethy, Ruedi; Katzenstein, David

    2017-05-01

    HIV genotyping is often unavailable in low and middle-income countries due to infrastructure requirements and cost. We compared genotype resistance testing in patients with virologic failure, by amplification of HIV pol gene, followed by "in-house" sequencing and commercial sequencing. Remnant plasma samples from adults and children failing second-line ART were amplified and sequenced using in-house and commercial di-deoxysequencing, and analyzed in Harare, Zimbabwe and at Stanford, U.S.A, respectively. HIV drug resistance mutations were determined using the Stanford HIV drug resistance database. Twenty-six of 28 samples were amplified and 25 were successfully genotyped. Comparison of average percent nucleotide and amino acid identities between 23 pairs sequenced in both laboratories were 99.51 (±0.56) and 99.11 (±0.95), respectively. All pairs clustered together in phylogenetic analysis. Sequencing analysis identified 6/23 pairs with mutation discordances resulting in differences in phenotype, but these did not impact future regimens. The results demonstrate our ability to produce good quality drug resistance data in-house. Despite discordant mutations in some sequence pairs, the phenotypic predictions were not clinically significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Construction of Pseudomolecule Sequences of the aus Rice Cultivar Kasalath for Comparative Genomics of Asian Cultivated Rice

    PubMed Central

    Sakai, Hiroaki; Kanamori, Hiroyuki; Arai-Kichise, Yuko; Shibata-Hatta, Mari; Ebana, Kaworu; Oono, Youko; Kurita, Kanako; Fujisawa, Hiroko; Katagiri, Satoshi; Mukai, Yoshiyuki; Hamada, Masao; Itoh, Takeshi; Matsumoto, Takashi; Katayose, Yuichi; Wakasa, Kyo; Yano, Masahiro; Wu, Jianzhong

    2014-01-01

    Having a deep genetic structure evolved during its domestication and adaptation, the Asian cultivated rice (Oryza sativa) displays considerable physiological and morphological variations. Here, we describe deep whole-genome sequencing of the aus rice cultivar Kasalath by using the advanced next-generation sequencing (NGS) technologies to gain a better understanding of the sequence and structural changes among highly differentiated cultivars. The de novo assembled Kasalath sequences represented 91.1% (330.55 Mb) of the genome and contained 35 139 expressed loci annotated by RNA-Seq analysis. We detected 2 787 250 single-nucleotide polymorphisms (SNPs) and 7393 large insertion/deletion (indel) sites (>100 bp) between Kasalath and Nipponbare, and 2 216 251 SNPs and 3780 large indels between Kasalath and 93-11. Extensive comparison of the gene contents among these cultivars revealed similar rates of gene gain and loss. We detected at least 7.39 Mb of inserted sequences and 40.75 Mb of unmapped sequences in the Kasalath genome in comparison with the Nipponbare reference genome. Mapping of the publicly available NGS short reads from 50 rice accessions proved the necessity and the value of using the Kasalath whole-genome sequence as an additional reference to capture the sequence polymorphisms that cannot be discovered by using the Nipponbare sequence alone. PMID:24578372

  10. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    PubMed

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  11. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of our knowledge, this is the first attempt to predict protein-binding nucleotides in a given DNA sequence from the sequence data alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same

    DOEpatents

    Chee, Mark; Gingeras, Thomas R.; Fodor, Stephen P. A.; Hubble, Earl A.; Morris, MacDonald S.

    1999-01-19

    The invention provides an array of oligonucleotide probes immobilized on a solid support for analysis of a target sequence from a human immunodeficiency virus. The array comprises at least four sets of oligonucleotide probes 9 to 21 nucleotides in length. A first probe set has a probe corresponding to each nucleotide in a reference sequence from a human immunodeficiency virus. A probe is related to its corresponding nucleotide by being exactly complementary to a subsequence of the reference sequence that includes the corresponding nucleotide. Thus, each probe has a position, designated an interrogation position, that is occupied by a complementary nucleotide to the corresponding nucleotide. The three additional probe sets each have a corresponding probe for each probe in the first probe set. Thus, for each nucleotide in the reference sequence, there are four corresponding probes, one from each of the probe sets. The three corresponding probes in the three additional probe sets are identical to the corresponding probe from the first probe or a subsequence thereof that includes the interrogation position, except that the interrogation position is occupied by a different nucleotide in each of the four corresponding probes.

  13. The use of sequence-based SSR mining for the development of a vast collection of microsatellites in Aquilegia Formosa

    Treesearch

    Brandon Schlautman; Vera Pfeiffer; Juan Zalapa; Johanne Brunet

    2014-01-01

    Numerous microsatellite markers were developed for Aquilegia formosafrom sequences deposited within the Expressed Sequence Tag (EST), Genomic Survey Sequence (GSS), and Nucleotide databases in NCBI. Microsatellites (SSRs) were identified and primers were designed for 9 SSR containing sequences in the Nucleotide database, 3803 sequences in the EST...

  14. Switchgrass ubiquitin promoter (PVUBI2) and uses thereof

    DOEpatents

    Stewart, C. Neal; Mann, David George James

    2013-12-10

    The subject application provides polynucleotides, compositions thereof and methods for regulating gene expression in a plant. Polynucleotides disclosed herein comprise novel sequences for a promoter isolated from Panicum virgatum (switchgrass) that initiates transcription of an operably linked nucleotide sequence. Thus, various embodiments of the invention comprise the nucleotide sequence of SEQ ID NO: 2 or fragments thereof comprising nucleotides 1 to 692 of SEQ ID NO: 2 that are capable of driving the expression of an operably linked nucleic acid sequence.

  15. Detection and Identification of the First Viruses in Chia (Salvia hispanica)

    PubMed Central

    Celli, Marcos G.; Perotto, Maria C.; Martino, Julia A.; Flores, Ceferino R.; Conci, Vilma C.; Pardina, Patricia Rodriguez

    2014-01-01

    Chia (Salvia hispanica), an herbaceous plant native to Latin America, has become important in the last 20 years due to its beneficial effects on health. Here, we present the first record and identification of two viruses in chia plants. The comparison of the complete nucleotide sequences showed the presence of two viral species with the typical genome organization of bipartite New World begomovirus, identified as Sida mosaic Bolivia virus 2 and Tomato yellow spot virus, according to the ICTV taxonomic criteria for begomovirus classification. DNA-A from Sida mosaic Bolivia virus 2 exhibited 96.1% nucleotide identity with a Bolivian isolate of Sida micrantha, and Tomato yellow spot virus showed 95.3% nucleotide identity with an Argentine bean isolate. This is the first report of begomoviruses infecting chia as well as of the occurrence of Sida mosaic Bolivia virus 2 in Argentina. PMID:25243369

  16. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  17. Extension of the COG and arCOG databases by amino acid and nucleotide sequences

    PubMed Central

    Meereis, Florian; Kaufmann, Michael

    2008-01-01

    Background The current versions of the COG and arCOG databases, both excellent frameworks for studies in comparative and functional genomics, do not contain the nucleotide sequences corresponding to their protein or protein domain entries. Results Using sequence information obtained from GenBank flat files covering the completely sequenced genomes of the COG and arCOG databases, we constructed NUCOCOG (nucleotide sequences containing COG databases) as an extended version including all nucleotide sequences and in addition the amino acid sequences originally utilized to construct the current COG and arCOG databases. We make available three comprehensive single XML files containing the complete databases including all sequence information. In addition, we provide a web interface as a utility suitable to browse the NUCOCOG database for sequence retrieval. The database is accessible at . Conclusion NUCOCOG offers the possibility to analyze any sequence related property in the context of the COG and arCOG framework simply by using script languages such as PERL applied to a large but single XML document. PMID:19014535

  18. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    PubMed Central

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  19. SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments

    PubMed Central

    Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic

    2001-01-01

    Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202

  20. The mitogenome of Onchocerca volvulus from the Brazilian Amazonia focus.

    PubMed

    Crainey, James L; Silva, Túllio R R da; Encinas, Fernando; Marín, Michel A; Vicente, Ana Carolina P; Luz, Sérgio L B

    2016-01-01

    We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.

  1. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  2. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  3. Genomic analysis of the Chinese genotype 1F rubella virus that disappeared after 2002 in China.

    PubMed

    Zhu, Zhen; Chen, Min-Hsin; Abernathy, Emily; Zhou, Shujie; Wang, Changyin; Icenogle, Joseph; Xu, Wenbo

    2014-12-01

    Genotype 1F was likely localized geographically to China as it has not been reported elsewhere. In this study, whole genome sequences of two rubella 1F virus isolates were completed. Both viruses contained 9,761 nt with a single nucleotide deletion in the intergenic region, compared to the NCBI rubella reference sequence (NC 001545). No evidence of recombination was found between 1F and other rubella viruses. The genetic distance between 1F viruses and 10 other rubella virus genotypes (1a, 1B, 1C, 1D, 1E, 1G, 1J 2A, 2B, and 2C) ranged from 3.9% to 8.6% by pairwise comparison. A region known to be hypervariable in other rubella genotypes was also the most variable region in the 1F genomes. Comparisons to all available rubella virus sequences from GenBank identified 22 nucleotide variations exclusively in 1F viruses. Among these unique variations, C9306U is located within the recommended molecular window for rubella virus genotyping assignment, could be useful to confirm 1F viruses. Using the Bayesian Markov Chain Monte Carlo (MCMC) method, the time of the most recent common ancestor for the genotype 1F was estimated between 1976 and 1995. Recent rubella molecular surveillance suggests that this indigenous strain may have circulated for less than three decades, as it has not been detected since 2002. © 2014 Wiley Periodicals, Inc.

  4. Synthesis and evaluations of an acid-cleavable, fluorescently labeled nucleotide as a reversible terminator for DNA sequencing.

    PubMed

    Tan, Lianjiang; Liu, Yazhi; Li, Xiaowei; Wu, Xin-Yan; Gong, Bing; Shen, Yu-Mei; Shao, Zhifeng

    2016-02-11

    An acid-cleavable linker based on a dimethylketal moiety was synthesized and used to connect a nucleotide with a fluorophore to produce a 3'-OH unblocked nucleotide analogue as an excellent reversible terminator for DNA sequencing by synthesis.

  5. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  6. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    USDA-ARS?s Scientific Manuscript database

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  7. Novel methodologies for spectral classification of exon and intron sequences

    NASA Astrophysics Data System (ADS)

    Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.

    2012-12-01

    Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.

  8. Complete nucleotide sequence of a novel Hibiscus-infecting Cilevirus from Florida and its relationship with closely associated Cileviruses

    USDA-ARS?s Scientific Manuscript database

    The complete nucleotide sequence of a recently discovered Florida (FL) isolate of Hibiscus infecting Cilevirus (HiCV) was determined by Sanger sequencing. The movement- and coat- protein gene sequences of the HiCV-FL isolate are more divergent than other genes of the previously sequenced HiCV-HA (Ha...

  9. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses.

    PubMed Central

    Ina, Y; Gojobori, T

    1994-01-01

    To examine whether positive selection operates on the hemagglutinin 1 (HA1) gene of human influenza A viruses (H1 subtype), 21 nucleotide sequences of the HA1 gene were statistically analyzed. The nucleotide sequences were divided into antigenic and nonantigenic sites. The nucleotide diversities for antigenic and nonantigenic sites of the HA1 gene were computed at synonymous and nonsynonymous sites separately. For nonantigenic sites, the nucleotide diversities were larger at synonymous sites than at nonsynonymous sites. This is consistent with the neutral theory of molecular evolution. For antigenic sites, however, the nucleotide diversities at nonsynonymous sites were larger than those at synonymous sites. These results suggest that positive selection operates on antigenic sites of the HA1 gene of human influenza A viruses (H1 subtype). PMID:8078892

  10. 40 CFR 174.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., flowers, and pollen. Noncoding, nonexpressed nucleotide sequences means the nucleotide sequences are not... surgical alteration of the plant pistil, bud pollination, mentor pollen, immunosuppressants, in vitro...

  11. 40 CFR 174.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., flowers, and pollen. Noncoding, nonexpressed nucleotide sequences means the nucleotide sequences are not... surgical alteration of the plant pistil, bud pollination, mentor pollen, immunosuppressants, in vitro...

  12. 40 CFR 174.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., flowers, and pollen. Noncoding, nonexpressed nucleotide sequences means the nucleotide sequences are not... surgical alteration of the plant pistil, bud pollination, mentor pollen, immunosuppressants, in vitro...

  13. 40 CFR 174.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., flowers, and pollen. Noncoding, nonexpressed nucleotide sequences means the nucleotide sequences are not... surgical alteration of the plant pistil, bud pollination, mentor pollen, immunosuppressants, in vitro...

  14. 40 CFR 174.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., flowers, and pollen. Noncoding, nonexpressed nucleotide sequences means the nucleotide sequences are not... surgical alteration of the plant pistil, bud pollination, mentor pollen, immunosuppressants, in vitro...

  15. Characterization of a potyvirus associated with yellow mosaic disease of jasmine (Jasminum sambac L.) in Andhra Pradesh, India.

    PubMed

    Sudheera, Y; Vishnu Vardhan, G P; Hema, M; Krishna Reddy, M; Sreenivasulu, P

    2014-01-01

    A virus isolate associated with yellow mosaic disease was purified from commercially cultivated jasmine (Jasminum sambac) from Andhra Pradesh, India and it contained flexuous filamentous particles of ~720 × 13 nm. The denatured purified virus had single major polypeptide of molecular weight 32 kDa. Complementary DNA representing 1678 nucleotides (nt) of the 3' terminus of viral RNA was cloned and sequenced. Comparisons of complete coat protein (CP) gene nucleotide and amino acid sequences of the present virus isolate with certain reported potyviruses revealed 86.1 and 92.7 % identity, respectively with jasmine potyvirus T (JaVT) reported from Taiwan and less than 70 % with other potyviruses. Based on the phylogenetic analysis of 3' UTR and CP gene, the present virus isolate was identified as an isolate of JaVT that belongs to the genus Potyvirus and the name Jasmine yellow mosaic virus-Andhra Pradesh (JaYMV-AP) is proposed.

  16. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder.

    PubMed

    Werling, Donna M; Brand, Harrison; An, Joon-Yong; Stone, Matthew R; Zhu, Lingxue; Glessner, Joseph T; Collins, Ryan L; Dong, Shan; Layer, Ryan M; Markenscoff-Papadimitriou, Eirene; Farrell, Andrew; Schwartz, Grace B; Wang, Harold Z; Currall, Benjamin B; Zhao, Xuefang; Dea, Jeanselle; Duhn, Clif; Erdman, Carolyn A; Gilson, Michael C; Yadav, Rachita; Handsaker, Robert E; Kashin, Seva; Klei, Lambertus; Mandell, Jeffrey D; Nowakowski, Tomasz J; Liu, Yuwen; Pochareddy, Sirisha; Smith, Louw; Walker, Michael F; Waterman, Matthew J; He, Xin; Kriegstein, Arnold R; Rubenstein, John L; Sestan, Nenad; McCarroll, Steven A; Neale, Benjamin M; Coon, Hilary; Willsey, A Jeremy; Buxbaum, Joseph D; Daly, Mark J; State, Matthew W; Quinlan, Aaron R; Marth, Gabor T; Roeder, Kathryn; Devlin, Bernie; Talkowski, Michael E; Sanders, Stephan J

    2018-05-01

    Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.

  17. Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus.

    PubMed

    Faragher, S G; Meek, A D; Rice, C M; Dalgarno, L

    1988-04-01

    The nucleotide sequence of the genomic RNA of a mouse-avirulent strain of Ross River virus, RRV NB5092 (isolated in 1969), has been determined and the corresponding sequence for the prototype mouse-virulent strain, RRV T48 (isolated in 1959), has been completed. The RRV NB5092 genome is approximately 11,674 nucleotides in length, compared with 11,853 nucleotides for RRV T48. RRV NB5092 and RRV T48 have the same genome organization. For both viruses an untranslated region of 80 nucleotides at the 5' end of the genome is followed by a 7440-nucleotide open reading frame which is interrupted after 5586 nucleotides by a single opal termination codon. By homology with other alphaviruses, the 5586-nucleotide open reading frame encodes the nonstructural proteins nsP1, nsP2, and nsP3; a fourth nonstructural protein, nsP4, is produced by read-through of the opal codon. The RRV nonstructural proteins show strong homology with the corresponding proteins of Sindbis virus and Semliki Forest virus in terms of size, net charge, and hydropathy characteristics. However, homology is not uniform between or within the proteins; nsP1, nsP2, and nsP4 contain extended domains which are highly conserved between alphaviruses, while the C-terminal region of nsP3 shows little conservation in sequence or length between alphaviruses. An untranslated "junction" region of 44 nucleotides (for RRV NB5092) or 47 nucleotides (for RRV T48) separates the nonstructural and structural protein coding regions. The structural proteins (capsid-E3-E2-6K-E1) are translated from an open reading frame of 3762 nucleotides which is followed by a 3'-untranslated region of approximately 348 nucleotides (for RRV NB5092) or 524 nucleotides (for RRV T48). Excluding deletions and insertions, the genomes of RRV NB5092 and RRV T48 differ at 284 nucleotides, representing a sequence divergence of 2.38%. Sequence deletions or insertions were found only in the noncoding regions and include a 173-nucleotide deletion in the 3'-untranslated region of RRV NB5092, compared with RRV T48. In the coding regions, most of the nucleotide differences are silent; there are 36 amino acid differences in the nonstructural proteins and 12 in the structural proteins. The distribution of amino acid differences between the two RRV strains correlates with the location of domains which are poorly conserved in sequence between alphaviruses. The possible role of amino acid differences in envelope glycoproteins E1 and E2 in determining the different antigenic and biological properties of RRV NB5092 and RRV T48 is discussed.

  18. The Nucleotide Sequence and Spliced pol mRNA Levels of the Nonprimate Spumavirus Bovine Foamy Virus

    PubMed Central

    Holzschu, Donald L.; Delaney, Mari A.; Renshaw, Randall W.; Casey, James W.

    1998-01-01

    We have determined the complete nucleotide sequence of a replication-competent clone of bovine foamy virus (BFV) and have quantitated the amount of splice pol mRNA processed early in infection. The 544-amino-acid Gag protein precursor has little sequence similarity with its primate foamy virus homologs, but the putative nucleocapsid (NC) protein, like the primate NCs, contains the three glycine-arginine-rich regions that are postulated to bind genomic RNA during virion assembly. The BFV gag and pol open reading frames overlap, with pro and pol in the same translational frame. As with the human foamy virus (HFV) and feline foamy virus, we have detected a spliced pol mRNA by PCR. Quantitatively, this mRNA approximates the level of full-length genomic RNA early in infection. The integrase (IN) domain of reverse transcriptase does not contain the canonical HH-CC zinc finger motif present in all characterized retroviral INs, but it does contain a nearby histidine residue that could conceivably participate as a member of the zinc finger. The env gene encodes a protein that is over 40% identical in sequence to the HFV Env. By comparison, the Gag precursor of BFV is predicted to be only 28% identical to the HFV protein. PMID:9499074

  19. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as proteinmore » coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.« less

  20. Simultaneous Differentiation and Typing of Entamoeba histolytica and Entamoeba dispar

    PubMed Central

    Zaki, Mehreen; Meelu, Parool; Sun, Wei; Clark, C. Graham

    2002-01-01

    Sequences corresponding to some of the polymorphic loci previously reported from Entamoeba histolytica have been detected in Entamoeba dispar. Comparison of nucleotide sequences of two loci between E. dispar strain SAW760 and E. histolytica strain HM-1:IMSS revealed significant differences in both repeat and flanking regions. The tandem repeat units varied not only in sequence but also in number and arrangement between the two species at both the loci. Using the sequences obtained, primer pairs aimed at amplifying species-specific products were designed and tested on a variety of E. histolytica and E. dispar samples. Amplification results were in complete agreement with the original species classification in all cases, and the PCR products displayed discernible size and pattern variations among the isolates. PMID:11923344

  1. An adaptive, object oriented strategy for base calling in DNA sequence analysis.

    PubMed Central

    Giddings, M C; Brumley, R L; Haker, M; Smith, L M

    1993-01-01

    An algorithm has been developed for the determination of nucleotide sequence from data produced in fluorescence-based automated DNA sequencing instruments employing the four-color strategy. This algorithm takes advantage of object oriented programming techniques for modularity and extensibility. The algorithm is adaptive in that data sets from a wide variety of instruments and sequencing conditions can be used with good results. Confidence values are provided on the base calls as an estimate of accuracy. The algorithm iteratively employs confidence determinations from several different modules, each of which examines a different feature of the data for accurate peak identification. Modules within this system can be added or removed for increased performance or for application to a different task. In comparisons with commercial software, the algorithm performed well. Images PMID:8233787

  2. Re-Assembly and Analysis of an Ancient Variola Virus Genome.

    PubMed

    Smithson, Chad; Imbery, Jacob; Upton, Chris

    2017-09-08

    We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.

  3. The complete nucleotide sequence of the glnALG operon of Escherichia coli K12.

    PubMed Central

    Miranda-Ríos, J; Sánchez-Pescador, R; Urdea, M; Covarrubias, A A

    1987-01-01

    The nucleotide sequence of the E. coli glnALG operon has been determined. The glnL (ntrB) and glnG (ntrC) genes present a high homology, at the nucleotide and aminoacid levels, with the corresponding genes of Klebsiella pneumoniae. The predicted aminoacid sequence for glutamine synthetase allowed us to locate some of the enzyme domains. The structure of this operon is discussed. PMID:2882477

  4. Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska

    USGS Publications Warehouse

    Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.

    2000-01-01

    Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This information could be used to determine the source of an IHN outbreak and to facilitate decisions in fisheries management of Alaskan salmonid stocks.

  5. The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans.

    PubMed

    Kumazaki, T; Hori, H; Osawa, S; Ishii, N; Suzuki, K

    1982-11-11

    The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%).

  6. ISRNA: an integrative online toolkit for short reads from high-throughput sequencing data.

    PubMed

    Luo, Guan-Zheng; Yang, Wei; Ma, Ying-Ke; Wang, Xiu-Jie

    2014-02-01

    Integrative Short Reads NAvigator (ISRNA) is an online toolkit for analyzing high-throughput small RNA sequencing data. Besides the high-speed genome mapping function, ISRNA provides statistics for genomic location, length distribution and nucleotide composition bias analysis of sequence reads. Number of reads mapped to known microRNAs and other classes of short non-coding RNAs, coverage of short reads on genes, expression abundance of sequence reads as well as some other analysis functions are also supported. The versatile search functions enable users to select sequence reads according to their sub-sequences, expression abundance, genomic location, relationship to genes, etc. A specialized genome browser is integrated to visualize the genomic distribution of short reads. ISRNA also supports management and comparison among multiple datasets. ISRNA is implemented in Java/C++/Perl/MySQL and can be freely accessed at http://omicslab.genetics.ac.cn/ISRNA/.

  7. Molecular variation and distribution of Anopheles fluviatilis (Diptera: Culicidae) complex in Iran.

    PubMed

    Naddaf, Saied Reza; Razavi, Mohammad Reza; Bahramali, Golnaz

    2010-09-01

    Anopheles fluviatilis James (Diptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 28S-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 28S-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.

  8. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    PubMed

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  9. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    PubMed Central

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215

  10. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  11. Selection rhizosphere-competent microbes for development of microbial products as biocontrol agents

    NASA Astrophysics Data System (ADS)

    Mashinistova, A. V.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Khudaibergenova, B. M.; Shabaev, V. P.; Jorobekova, Sh. J.

    2009-04-01

    Rhizosphere-borne microorganisms reintroduced to the soil-root interface can establish without inducing permanent disturbance in the microbial balance and effectively colonise the rhizosphere due to carbon sources of plant root exudates. A challenge for future development of microbial products for use in agriculture will be selection of rhizosphere-competent microbes that both protect the plant from pathogens and improve crop establishment and persistence. In this study screening, collection, identification and expression of stable and technological microbial strains living in soils and in the rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski were conducted. A total of 98 bacteria isolated from the rhizosphere were assessed for biocontrol activity in vitro against phytopathogenic fungi including Fusarium culmorum, Fusarium heterosporum, Fusarium oxysporum, Drechslera teres, Bipolaris sorokiniana, Piricularia oryzae, Botrytis cinerea, Colletothrichum atramentarium and Cladosporium sp., Stagonospora nodorum. Biocontrol activity were performed by the following methods: radial and parallel streaks, "host - pathogen" on the cuts of wheat leaves. A culture collection comprising 64 potential biocontrol agents (BCA) against wheat and barley root diseases has been established. Of these, the most effective were 8 isolates inhibitory to at least 4 out of 5 phytopathogenic fungi tested. The remaining isolates inhibited at least 1 of 5 fungi tested. Growth stimulating activity of proposed rhizobacteria-based preparations was estimated using seedling and vegetative pot techniques. Seeds-inoculation and the tests in laboratory and field conditions were conducted for different agricultural crops - wheat and barley. Intact cells, liquid culture filtrates and crude extracts of the four beneficial bacterial strains isolated from the rhizosphere of weed were studied to stimulate plant growth. As a result, four bacterial strains selected from rhizosphere of weed - couch-grass Elytrigia repens L. Nevski were chosen as a core of collection of 98 pure cultures with high fungicidal and plant growth-stimulating potentials. Partial determination of nucleotide sequence of 16S ribosomes of tested bacteria indicated that Pseudomonas and Bacillus species were the most dominant bacteria exhibiting biocontrol activity. Typing of bacterial strains was performed on the basis of partial determination of nucleotide sequence 16S ribosome of the studying strain. For this purpose polymerase chain reaction (PCR), using specific primers was provided with chromosomal DNA of bacterial strain under study. After determination of nucleotide sequences of the obtained PCR-fragments, the data obtained was compared with the sequences available in the bank of data (GENEBANK: http://www.ncbi.nlm.nih.gov), with the aim to determine close related strain to the organism under study. When the level of homology exceeded the level of 98%, one could conclude that the strain under study was identical to the available in the bank of data. Amplification and sequencing of gene 16S pDNA was performed using universal for the majority of prokaryotes primers. Thermopolimerase Long PCR Enzyme Mix «Fermentas», dNTP -«Fermentas» was used for amplification. While performing PCR, reagent concentrations corresponded to the protocols described in a set Long PCR Enzyme Mix «Fermentas». DNA separation from the sample was performed with DNeasy Plant Mini Kit «QIAGEN». DNA separation from gel was performed with QIAquick Gel Extraction Kit«QIAGEN». Phylogenetic affinity was determined on the basis of the comparison of nucleotide sequence - 400 nucleotides that approximately corresponded to the positions from 500 to 907 nucleotides by nomenclature of E.coli. Primary analysis of the similarity of nucleotide sequences of genes 16S рDNA of the strains under study was performed on the basis of data Genbank. Sequences were aligned according to nucleotide sequences of those bacteria, which had the highest degree of homology with the strains under study, applying the program ClustalX 1.83. Building of rootless phylogenetic trees of the studying bacteria was carried out with the help of the program Njplot. Acknowledgement. This research was supported by the grant of ISTC KR-993.2.

  12. O-ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAs(Met) of yeasts.

    PubMed Central

    Glasser, A L; Desgres, J; Heitzler, J; Gehrke, C W; Keith, G

    1991-01-01

    The unknown modified nucleotide G*, isolated from both Schizosaccharomyces pombe and Torulopsis utilis initiator tRNAs(Met), has been identified as an O-ribosyl-(1"----2')-guanosine-5"-phosphate, called Gr(p), by means of HPLC, UV-absorption, mass spectrometry and periodate oxidation procedures. By comparison with the previously published structure of Ar(p) isolated from Saccharomyces cerevisiae initiator tRNA(Met), the (1"----2')-glycosidic bond in Gr(p) has been postulated to have a beta-spatial conformation. The modified nucleotide Gr(p) is located at position 64 in the tRNA(Met) molecules, i.e. at the same position as Ar(p). Since we have also characterized Gr(p) in Candida albicans initiator tRNA(Met), the phosphoribosylation of purine 64 can be considered as a constant nucleotide modification in the cytoplasmic initiator tRNAs(Met) of all yeast species so far sequenced. Precise evidence for the presence of Gr(p) in initiator tRNAs(Met) of several plants is also reported. PMID:1656390

  13. Primary and secondary structural analyses of glutathione S-transferase pi from human placenta.

    PubMed

    Ahmad, H; Wilson, D E; Fritz, R R; Singh, S V; Medh, R D; Nagle, G T; Awasthi, Y C; Kurosky, A

    1990-05-01

    The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.

  14. The EMBL nucleotide sequence database

    PubMed Central

    Stoesser, Guenter; Baker, Wendy; van den Broek, Alexandra; Camon, Evelyn; Garcia-Pastor, Maria; Kanz, Carola; Kulikova, Tamara; Lombard, Vincent; Lopez, Rodrigo; Parkinson, Helen; Redaschi, Nicole; Sterk, Peter; Stoehr, Peter; Tuli, Mary Ann

    2001-01-01

    The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) is maintained at the European Bioinformatics Institute (EBI) in an international collaboration with the DNA Data Bank of Japan (DDBJ) and GenBank at the NCBI (USA). Data is exchanged amongst the collaborating databases on a daily basis. The major contributors to the EMBL database are individual authors and genome project groups. Webin is the preferred web-based submission system for individual submitters, whilst automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via ftp, email and World Wide Web interfaces. EBI’s Sequence Retrieval System (SRS), a network browser for databanks in molecular biology, integrates and links the main nucleotide and protein databases plus many specialized databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT. PMID:11125039

  15. Interactive computer programs for the graphic analysis of nucleotide sequence data.

    PubMed Central

    Luckow, V A; Littlewood, R K; Rownd, R H

    1984-01-01

    A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437

  16. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  17. Infectious pancreatic necrosis virus in Atlantic salmon, Salmo salar L., post-smolts in the Shetland Isles, Scotland: virus identification, histopathology, immunohistochemistry and genetic comparison with Scottish mainland isolates.

    PubMed

    Smail, D A; Bain, N; Bruno, D W; King, J A; Thompson, F; Pendrey, D J; Morrice, S; Cunningham, C O

    2006-01-01

    During mid-June 1999 peak mortalities of 11% of the total stock per week were seen at a sea cage site of Atlantic salmon, Salmo salar L., post-smolts in the Shetland Isles, Scotland. Virus was isolated on chinook salmon embryo (CHSE) cells in a standard diagnostic test and infectious pancreatic necrosis virus (IPNV) identified by enzyme-linked immunosorbent assay. IPNV was confirmed as serogroup A by a cell immunofluorescent antibody test using the cross-reactive monoclonal antibody AS-1. Four weeks after the main outbreak, virus titres in surviving moribund fish were assayed at >10(10) TCID50 g(-1) kidney. Histopathology of moribund fish was characterized by pancreatic acinar cell necrosis and a marked catarrhal enteritis of the intestinal mucosa. In the liver, necrosis, leucocytic infiltration and a generalized cell vacuolation were noted. IPNV-specific immunostaining was demonstrated in pancreas, liver, heart, gill and kidney tissue. The nucleotide sequence of the coding region of segment A was determined from the Shetland isolate. A 1180 bp fragment of the VP2 gene of this isolate was compared with a 1979 reference isolate from mainland Scottish Atlantic salmon, La/79 and another more recent mainland isolate, 432/00. Both A2 isolates were derived from carrier fish without signs of IPN and serotyped by a plaque neutralization test. The Shetland isolate shows a different nucleotide and amino acid sequence compared with the two isolates from carrier fish. These latter isolates showed identical amino acid sequences in the fragment examined, despite the 21 years separating the isolations. Sequence comparisons with other A2 (Sp) isolates on the database confirm all three Scottish isolates are A2 (Sp).

  18. Complete nucleotide sequence and genome organization of a novel allexivirus from alfalfa (Medicago sativa)

    USDA-ARS?s Scientific Manuscript database

    A new species of the family Alphaflexiviridae provisionally named Alfalfa virus S (AVS) was diagnosed in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3’ poly(A) tail was determined by Illumina NGS technology ...

  19. The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.

    PubMed

    Schnitzler, P; Handermann, M; Szépe, O; Darai, G

    1991-06-01

    The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.

  20. Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs.

    PubMed

    Howe, J G; Shu, M D

    1988-08-01

    Genes for the Epstein-Barr virus-encoded RNAs (EBERs), two low-molecular-weight RNAs encoded by the human gammaherpesvirus Epstein-Barr virus (EBV), hybridize to two small RNAs in a baboon cell line that contains a similar virus, herpesvirus papio (HVP). The genes for the HVP RNAs (HVP-1 and HVP-2) are located together in the small unique region at the left end of the viral genome and are transcribed by RNA polymerase III in a rightward direction, similar to the EBERs. There is significant similarity between EBER1 and HVP-1 RNA, except for an insert of 22 nucleotides which increases the length of HVP-1 RNA to 190 nucleotides. There is less similarity between the sequences of EBER2 and HVP-2 RNA, but both have a length of about 170 nucleotides. The predicted secondary structure of each HVP RNA is remarkably similar to that of the respective EBER, implying that the secondary structures are important for function. Upstream from the initiation sites of all four RNA genes are several highly conserved sequences which may function in the regulation of transcription. The HVP RNAs, together with the EBERs, are highly abundant in transformed cells and are efficiently bound by the cellular La protein.

  1. Isolation of Chandipura virus (Vesiculovirus: Rhabdoviridae) from Sergentomyia species of sandflies from Nagpur, Maharashtra, India.

    PubMed

    Sudeep, A B; Bondre, V P; Gurav, Y K; Gokhale, M D; Sapkal, G N; Mavale, M S; George, R P; Mishra, A C

    2014-05-01

    An outbreak of acute encephalitis syndrome was reported from Vidarbha region of Maharashtra s0 tate, India, during July 2012. Anti-IgM antibodies against Chandipura virus (CHPV) were detected in clinical samples. Sandfly collections were done to determine their role in CHPV transmission. Twenty nine pools of Sergentomyia spp. comprising 625 specimens were processed for virus isolation in Vero E6 cell line. Diagnostic RT-PCR targeting N-gene was carried out with the sample that showed cytopathic effects (CPE). The PCR product was sequenced, analysed and the sequences were deposited in Genbank database. CPE in Vero E6 cell line infected with three pools was detected at 48 h post infection. However, virus could be isolated only from one pool. RT-PCR studies demonstrated 527 nucleotide product that confirmed the agent as CHPV. Sequence analysis of the new isolate showed difference in 10-12 nucleotides in comparison to earlier isolates. This is perhaps the first isolation of CHPV from Sergentomyia spp. in India and virus isolation during transmission season suggests their probable role in CHPV transmission. Further studies need to be done to confirm the precise role of Sargentomyia spp. in CHPV transmission.

  2. Comparison of two PCR-based methods and automated DNA sequencing for prop-1 genotyping in Ames dwarf mice.

    PubMed

    Gerstner, Arpad; DeFord, James H; Papaconstantinou, John

    2003-07-25

    Ames dwarfism is caused by a homozygous single nucleotide mutation in the pituitary specific prop-1 gene, resulting in combined pituitary hormone deficiency, reduced growth and extended lifespan. Thus, these mice serve as an important model system for endocrinological, aging and longevity studies. Because the phenotype of wild type and heterozygous mice is undistinguishable, it is imperative for successful breeding to accurately genotype these animals. Here we report a novel, yet simple, approach for prop-1 genotyping using PCR-based allele-specific amplification (PCR-ASA). We also compare this method to other potential genotyping techniques, i.e. PCR-based restriction fragment length polymorphism analysis (PCR-RFLP) and fluorescence automated DNA sequencing. We demonstrate that the single-step PCR-ASA has several advantages over the classical PCR-RFLP because the procedure is simple, less expensive and rapid. To further increase the specificity and sensitivity of the PCR-ASA, we introduced a single-base mismatch at the 3' penultimate position of the mutant primer. Our results also reveal that the fluorescence automated DNA sequencing has limitations for detecting a single nucleotide polymorphism in the prop-1 gene, particularly in heterozygotes.

  3. DNA sequence analysis of simian virus 40 mutants with deletions mapping in the leader region of the late viral mRNA's: mutants with deletions similar in size and position exhibit varied phenotypes.

    PubMed

    Barkan, A; Mertz, J E

    1981-02-01

    The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.

  4. Outbreak of poliomyelitis in Finland in 1984-85 - Re-analysis of viral sequences using the current standard approach.

    PubMed

    Simonen, Marja-Leena; Roivainen, Merja; Iber, Jane; Burns, Cara; Hovi, Tapani

    2010-01-01

    In 1984, a wild type 3 poliovirus (PV3/FIN84) spread all over Finland causing nine cases of paralytic poliomyelitis and one case of aseptic meningitis. The outbreak was ended in 1985 with an intensive vaccination campaign. By limited sequence comparison with previously isolated PV3 strains, closest relatives of PV3/FIN84 were found among strains circulating in the Mediterranean region. Now we wanted to reanalyse the relationships using approaches currently exploited in poliovirus surveillance. Cell lysates of 22 strains isolated during the outbreak and stored frozen were subjected to RT-PCR amplification in three genomic regions without prior subculture. Sequences of the entire VP1 coding region, 150 nucleotides in the VP1-2A junction, most of the 5' non-coding region, partial sequences of the 3D RNA polymerase coding region and partial 3' non-coding region were compared within the outbreak and with sequences available in data banks. In addition, complete nucleotide sequences were obtained for 2 strains isolated from two different cases of disease during the outbreak. The results confirmed the previously described wide intraepidemic variation of the strains, including amino acid substitutions in antigenic sites, as well as the likely Mediterranean region origin of the strains. Simplot and bootscanning analyses of the complete genomes indicated complicated evolutionary history of the non-capsid coding regions of the genome suggesting several recombinations with different HEV-C viruses in the past.

  5. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms.

    PubMed

    Buschiazzo, Emmanuel; Ritland, Carol; Bohlmann, Jörg; Ritland, Kermit

    2012-01-20

    Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10(-9) synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations.

  6. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Ellanskaya, legal representative, Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser; Ellanskaya, deceased, Irina

    2007-12-11

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  7. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Elleskaya, Irina; Ellanskaya, legal representative; Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-08-10

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  8. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Dahlbacka, Glen [Oakland, CA; Elleskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, IA; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2011-04-12

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  9. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Granger, IA; Dahlbacka, Glen [Oakland, CA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, TX; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2012-04-03

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  10. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  11. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov.

    PubMed

    Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J

    2018-06-01

    Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.

  12. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    PubMed Central

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  13. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  14. Genetic Characterization of the Tick-Borne Orbiviruses

    PubMed Central

    Belaganahalli, Manjunatha N.; Maan, Sushila; Maan, Narender S.; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P. C.

    2015-01-01

    The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome. PMID:25928203

  15. Genetic characterization of the tick-borne orbiviruses.

    PubMed

    Belaganahalli, Manjunatha N; Maan, Sushila; Maan, Narender S; Brownlie, Joe; Tesh, Robert; Attoui, Houssam; Mertens, Peter P C

    2015-04-28

    The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome.

  16. Typing of canine parvovirus isolates using mini-sequencing based single nucleotide polymorphism analysis.

    PubMed

    Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A

    2012-05-01

    The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-10-01

    A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

  18. The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans.

    PubMed Central

    Kumazaki, T; Hori, H; Osawa, S; Ishii, N; Suzuki, K

    1982-01-01

    The nucleotide sequences of 5S rRNAs from a rotifer, Brachionus plicatilis, and two nematodes, Rhabditis tokai and Caenorhabditis elegans have been determined. The rotifer has two 5S rRNA species that are composed of 120 and 121 nucleotides, respectively. The sequences of these two 5S rRNAs are the same except that the latter has an additional base at its 3'-terminus. The 5S rRNAs from the two nematode species are both 119 nucleotides long. The sequence similarity percents are 79% (Brachionus/Rhabditis), 80% (Brachionus/Caenorhabditis), and 95% (Rhabditis/Caenorhabditis) among these three species. Brachionus revealed the highest similarity to Lingula (89%), but not to the nematodes (79%). PMID:6891053

  19. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  20. Comparison of dkgB-linked intergenic sequence ribotyping to DNA microarray hybridization for assigning serotype to Salmonella enterica

    PubMed Central

    Guard, Jean; Sanchez-Ingunza, Roxana; Morales, Cesar; Stewart, Tod; Liljebjelke, Karen; Kessel, JoAnn; Ingram, Kim; Jones, Deana; Jackson, Charlene; Fedorka-Cray, Paula; Frye, Jonathan; Gast, Richard; Hinton, Arthur

    2012-01-01

    Two DNA-based methods were compared for the ability to assign serotype to 139 isolates of Salmonella enterica ssp. I. Intergenic sequence ribotyping (ISR) evaluated single nucleotide polymorphisms occurring in a 5S ribosomal gene region and flanking sequences bordering the gene dkgB. A DNA microarray hybridization method that assessed the presence and the absence of sets of genes was the second method. Serotype was assigned for 128 (92.1%) of submissions by the two DNA methods. ISR detected mixtures of serotypes within single colonies and it cost substantially less than Kauffmann–White serotyping and DNA microarray hybridization. Decreasing the cost of serotyping S. enterica while maintaining reliability may encourage routine testing and research. PMID:22998607

  1. Cry-Bt identifier: a biological database for PCR detection of Cry genes present in transgenic plants.

    PubMed

    Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil

    2009-10-23

    We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.

  2. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and/or amino acid sequences as part of the application. 1.823 Section 1.823 Patents, Trademarks, and... Amino Acid Sequences § 1.823 Requirements for nucleotide and/or amino acid sequences as part of the... incorporation-by-reference of the Sequence Listing as required by § 1.52(e)(5). The presentation of the...

  3. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and/or amino acid sequences as part of the application. 1.823 Section 1.823 Patents, Trademarks, and... Amino Acid Sequences § 1.823 Requirements for nucleotide and/or amino acid sequences as part of the... incorporation-by-reference of the Sequence Listing as required by § 1.52(e)(5). The presentation of the...

  4. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and/or amino acid sequences as part of the application. 1.823 Section 1.823 Patents, Trademarks, and... Amino Acid Sequences § 1.823 Requirements for nucleotide and/or amino acid sequences as part of the... incorporation-by-reference of the Sequence Listing as required by § 1.52(e)(5). The presentation of the...

  5. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and/or amino acid sequences as part of the application. 1.823 Section 1.823 Patents, Trademarks, and... Amino Acid Sequences § 1.823 Requirements for nucleotide and/or amino acid sequences as part of the... incorporation-by-reference of the Sequence Listing as required by § 1.52(e)(5). The presentation of the...

  6. 37 CFR 1.823 - Requirements for nucleotide and/or amino acid sequences as part of the application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and/or amino acid sequences as part of the application. 1.823 Section 1.823 Patents, Trademarks, and... Amino Acid Sequences § 1.823 Requirements for nucleotide and/or amino acid sequences as part of the... incorporation-by-reference of the Sequence Listing as required by § 1.52(e)(5). The presentation of the...

  7. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different citrus genotypes were detected, and compared to estimate the heterozygosity of each genome. All the SNP oligo sequences were aligned with the Clementine citrus genome to determine their distribution and uniqueness and for in silico validation, in addition to SNaPshot and sequencing validation of selected SNPs. PMID:24175923

  8. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.

  9. First report of Beet western yellows virus infecting Epiphyllum spp

    USDA-ARS?s Scientific Manuscript database

    Beet western yellow virus (BWYV) was identified from an orchid cactus (Epiphyllum spp.) hybrid without obvious symptoms by high-throughput sequencing. The nearly complete genomic sequence of 5,458 nucleotides of the virus was determined. The isolate has the highest nucleotide sequence identity (93%)...

  10. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  11. Technologically important extremophile 16S rRNA sequence Shannon entropy and fractal property comparison with long term dormant microbes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2011-10-01

    Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.

  12. Determination and analysis of the complete genome sequence of Paralichthys olivaceus rhabdovirus (PORV).

    PubMed

    Zhu, Ruo-Lin; Zhang, Qi-Ya

    2014-04-01

    Paralichthys olivaceus rhabdovirus (PORV), which is associated with high mortality rates in flounder, was isolated in China in 2005. Here, we provide an annotated sequence record of PORV, the genome of which comprises 11,182 nucleotides and contains six genes in the order 3'-N-P-M-G-NV-L-5'. Phylogenetic analysis based on glycoprotein sequences of PORV and other rhabdoviruses showed that PORV clusters with viral haemorrhagic septicemia virus (VHSV), genus Novirhabdovirus, family Rhabdoviridae. Further phylogenetic analysis of the combined amino acid sequences of six proteins of PORV and VHSV strains showed that PORV clusters with Korean strains and is closely related to Asian strains, all of which were isolated from flounder. In a comparison in which the sequences of the six proteins were combined, PORV shared the highest identity (98.3 %) with VHSV strain KJ2008 from Korea.

  13. Reference genome sequence of the model plant Setaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species thatmore » demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).« less

  14. Reference genome sequence of the model plant Setaria.

    PubMed

    Bennetzen, Jeffrey L; Schmutz, Jeremy; Wang, Hao; Percifield, Ryan; Hawkins, Jennifer; Pontaroli, Ana C; Estep, Matt; Feng, Liang; Vaughn, Justin N; Grimwood, Jane; Jenkins, Jerry; Barry, Kerrie; Lindquist, Erika; Hellsten, Uffe; Deshpande, Shweta; Wang, Xuewen; Wu, Xiaomei; Mitros, Therese; Triplett, Jimmy; Yang, Xiaohan; Ye, Chu-Yu; Mauro-Herrera, Margarita; Wang, Lin; Li, Pinghua; Sharma, Manoj; Sharma, Rita; Ronald, Pamela C; Panaud, Olivier; Kellogg, Elizabeth A; Brutnell, Thomas P; Doust, Andrew N; Tuskan, Gerald A; Rokhsar, Daniel; Devos, Katrien M

    2012-05-13

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ∼400-Mb assembly covers ∼80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

  15. Sequence analysis of the internal transcribed spacer (ITS) region reveals a novel clade of Ichthyophonus sp. from rainbow trout

    USGS Publications Warehouse

    Rasmussen, C.; Purcell, M.K.; Gregg, J.L.; LaPatra, S.E.; Winton, J.R.; Hershberger, P.K.

    2010-01-01

    The mesomycetozoean parasite Ichthyophonus hoferi is most commonly associated with marine fish hosts but also occurs in some components of the freshwater rainbow trout Oncorhynchus mykiss aquaculture industry in Idaho, USA. It is not certain how the parasite was introduced into rainbow trout culture, but it might have been associated with the historical practice of feeding raw, ground common carp Cyprinus carpio that were caught by commercial fisherman. Here, we report a major genetic division between west coast freshwater and marine isolates of Ichthyophonus hoferi. Sequence differences were not detected in 2 regions of the highly conserved small subunit (18S) rDNA gene; however, nucleotide variation was seen in internal transcribed spacer loci (ITS1 and ITS2), both within and among the isolates. Intra-isolate variation ranged from 2.4 to 7.6 nucleotides over a region consisting of ~740 bp. Majority consensus sequences from marine/anadromous hosts differed in only 0 to 3 nucleotides (99.6 to 100% nucleotide identity), while those derived from freshwater rainbow trout had no nucleotide substitutions relative to each other. However, the consensus sequences between isolates from freshwater rainbow trout and those from marine/anadromous hosts differed in 13 to 16 nucleotides (97.8 to 98.2% nucleotide identity).

  16. [Study on the genetic difference of SEO type Hantaviruses].

    PubMed

    Zhang, X; Zhou, S; Wang, H; Hu, J; Guan, Z; Liu, H

    2000-10-01

    To understand the genetic type of Hantaviruses and the difference between them caused by rodents in Beijing and to furhter explore the source of the infectious factors. Hantavirus RNA, isolated from lungs of rodents captured in Beijing and positive with Hantavirus antigens with frozen sectioning and Immunofluorescent assay, were reverse-transcribed and amplified with PCR with Hantavirus-specific primers. Five of the PCR amplifications were discovered and sequenced with 300 bp sequence data of M segments (from 2003 - 2302nt according cDNA of seoul 8039 strain). Nucleotide sequence homology showed that they were sequences of SEO-type Hantavirus. Compared with SEO type Hantavirus, the nucleotide sequence homology of these samples was more than 94% while the homology of amonia acid sequence was more than 98%. When compared with HNT type Hantavirus, the homology of nucleotide sequence became less than 72% with the homology of amonia acid sequence less than 81%. Similar to other Hantavirus of SEO type, their nucleotide sequences and deduced amino acid sequences were highly preserved. Phylogenetic tree analysis showed that the five viruses could be divided into at least 4 branches. It was quite likely that there were at least two sub-type SEO viruses with 4 branches that were circulating in Beijing.

  17. The fuzzy polynucleotide space: basic properties.

    PubMed

    Torres, Angela; Nieto, Juan J

    2003-03-22

    Any triplet codon may be regarded as a 12-dimensional fuzzy code. Sufficient information about a particular sequence may not be available in certain situations. The investigator will be confronted with imprecise sequences, yet want to make comparisons of sequences. Fuzzy polynucleotides can be compared by using geometrical interpretation of fuzzy sets as points in a hypercube. We introduce the space of fuzzy polynucleotides and a means of measuring dissimilitudes between them. We establish mathematical principles to measure dissimilarities between fuzzy polynucleotides and present several examples in this metric space. We calculate the frequencies of the nucleotides at the three base sites of a codon in the coding sequences of Escherichia coli K-12 and Mycobacterium tuberculosis H37Rv, and consider them as points in that fuzzy space. We compute the distance between the genomes of E.coli and M.tuberculosis.

  18. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.

    PubMed

    Zhou, Benguo; Wang, Fang; Zhang, Xuesong; Zhang, Lina; Lin, Huafeng

    2017-07-01

    The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.

  19. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus.

    PubMed Central

    Dasgupta, R; Kaesberg, P

    1982-01-01

    The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration. PMID:6895941

  20. Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka)

    PubMed Central

    Veale, Andrew J.

    2017-01-01

    Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. PMID:29045601

  1. Comparative genomic sequence analysis of novel Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Kenya and three other previously sequenced Helicoverpa spp. NPVs.

    PubMed

    Ogembo, Javier Gordon; Caoili, Barbara L; Shikata, Masamitsu; Chaeychomsri, Sudawan; Kobayashi, Michihiro; Ikeda, Motoko

    2009-10-01

    A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.

  2. Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern, Western and Southern Africa

    PubMed Central

    Nyaga, Martin M.; Stucker, Karla M.; Esona, Mathew D.; Jere, Khuzwayo C.; Mwinyi, Bakari; Shonhai, Annie; Tsolenyanu, Enyonam; Mulindwa, Augustine; Chibumbya, Julia N.; Adolfine, Hokororo; Halpin, Rebecca A.; Roy, Sunando; Stockwell, Timothy B.; Berejena, Chipo; Seheri, Mapaseka L.; Mwenda, Jason M.; Steele, A. Duncan; Wentworth, David E.

    2018-01-01

    Group A rotaviruses (RVAs) with distinct G and P genotype combinations have been reported globally. We report the genome composition and possible origin of seven G8P[4] and five G2P[4] human RVA strains based on the genetic evolution of all 11 genome segments at the nucleotide level. Twelve RVA ELISA positive stool samples collected in the representative countries of Eastern, Southern and West Africa during the 2007–2012 surveillance seasons were subjected to sequencing using the Ion Torrent PGM and Illumina MiSeq platforms. A reference-based assembly was performed using CLC Bio’s clc_ref_assemble_long program, and full-genome consensus sequences were obtained. With the exception of the neutralising antigen, VP7, all study strains exhibited the DS-1-like genome constellation (P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and clustered phylogenetically with reference strains having a DS-1-like genetic backbone. Comparison of the nucleotide and amino acid sequences with selected global cognate genome segments revealed nucleotide and amino acid sequence identities of 81.7–100 % and 90.6–100 %, respectively, with NSP4 gene segment showing the most diversity among the strains. Bayesian analyses of all gene sequences to estimate the time of divergence of the lineage indicated that divergence times ranged from 16 to 44 years, except for the NSP4 gene where the lineage seemed to arise in the more distant past at an estimated 203 years ago. However, the long-term effects of changes found within the NSP4 genome segment should be further explored, and thus we recommend continued whole-genome analyses from larger sample sets to determine the evolutionary mechanisms of the DS-1-like strains collected in Africa. PMID:24952422

  3. Genetic variability in Melipona quinquefasciata (Hymenoptera, Apidae, Meliponini) from northeastern Brazil determined using the first internal transcribed spacer (ITS1).

    PubMed

    Pereira, J O P; Freitas, B M; Jorge, D M M; Torres, D C; Soares, C E A; Grangeiro, T B

    2009-01-01

    Melipona quinquefasciata is a ground-nesting South American stingless bee whose geographic distribution was believed to comprise only the central and southern states of Brazil. We obtained partial sequences (about 500-570 bp) of first internal transcribed spacer (ITS1) nuclear ribosomal DNA from Melipona specimens putatively identified as M. quinquefasciata collected from different localities in northeastern Brazil. To confirm the taxonomic identity of the northeastern samples, specimens from the state of Goiás (Central region of Brazil) were included for comparison. All sequences were deposited in GenBank (accession numbers EU073751-EU073759). The mean nucleotide divergence (excluding sites with insertions/deletions) in the ITS1 sequences was only 1.4%, ranging from 0 to 4.1%. When the sites with insertions/deletions were also taken into account, sequence divergences varied from 0 to 5.3%. In all pairwise comparisons, the ITS1 sequence from the specimens collected in Goiás was most divergent compared to the ITS1 sequences of the bees from the other locations. However, neighbor-joining phylogenetic analysis showed that all ITS1 sequences from northeastern specimens along with the sample of Goiás were resolved in a single clade with a bootstrap support of 100%. The ITS1 sequencing data thus support the occurrence of M. quinquefasciata in northeast Brazil.

  4. Molecular cloning and 3D model of first cytochrome P450 from CYP3A subfamily in saltwater crocodile (Crocodylus porosus).

    PubMed

    Tabassum, Rabia

    2017-10-18

    Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre 2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Predicted stem-loop structures and variation in nucleotide sequence of 3' noncoding regions among animal calicivirus genomes.

    PubMed

    Seal, B S; Neill, J D; Ridpath, J F

    1994-07-01

    Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.

  6. Terminal Duplex Stability and Nucleotide Identity Differentially Control siRNA Loading and Activity in RNA Interference

    PubMed Central

    Angart, Phillip A.; Carlson, Rebecca J.; Adu-Berchie, Kwasi

    2016-01-01

    Efficient short interfering RNA (siRNA)-mediated gene silencing requires selection of a sequence that is complementary to the intended target and possesses sequence and structural features that encourage favorable functional interactions with the RNA interference (RNAi) pathway proteins. In this study, we investigated how terminal sequence and structural characteristics of siRNAs contribute to siRNA strand loading and silencing activity and how these characteristics ultimately result in a functionally asymmetric duplex in cultured HeLa cells. Our results reiterate that the most important characteristic in determining siRNA activity is the 5′ terminal nucleotide identity. Our findings further suggest that siRNA loading is controlled principally by the hybridization stability of the 5′ terminus (Nucleotides: 1–2) of each siRNA strand, independent of the opposing terminus. Postloading, RNA-induced silencing complex (RISC)–specific activity was found to be improved by lower hybridization stability in the 5′ terminus (Nucleotides: 3–4) of the loaded siRNA strand and greater hybridization stability toward the 3′ terminus (Nucleotides: 17–18). Concomitantly, specific recognition of the 5′ terminal nucleotide sequence by human Argonaute 2 (Ago2) improves RISC half-life. These findings indicate that careful selection of siRNA sequences can maximize both the loading and the specific activity of the intended guide strand. PMID:27399870

  7. Correlation approach to identify coding regions in DNA sequences

    NASA Technical Reports Server (NTRS)

    Ossadnik, S. M.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1994-01-01

    Recently, it was observed that noncoding regions of DNA sequences possess long-range power-law correlations, whereas coding regions typically display only short-range correlations. We develop an algorithm based on this finding that enables investigators to perform a statistical analysis on long DNA sequences to locate possible coding regions. The algorithm is particularly successful in predicting the location of lengthy coding regions. For example, for the complete genome of yeast chromosome III (315,344 nucleotides), at least 82% of the predictions correspond to putative coding regions; the algorithm correctly identified all coding regions larger than 3000 nucleotides, 92% of coding regions between 2000 and 3000 nucleotides long, and 79% of coding regions between 1000 and 2000 nucleotides. The predictive ability of this new algorithm supports the claim that there is a fundamental difference in the correlation property between coding and noncoding sequences. This algorithm, which is not species-dependent, can be implemented with other techniques for rapidly and accurately locating relatively long coding regions in genomic sequences.

  8. Porcine insulin receptor substrate 4 (IRS4) gene: cloning, polymorphism and association study

    USDA-ARS?s Scientific Manuscript database

    Using PCR and IPCR techniques we obtained a 4498 bp nucleotide sequence FN424076 encompassing the complete coding sequence of the porcine IRS4 gene and its proximal promoter. The 1269-amino acid porcine protein deduced from the nucleotide sequence shares 92% identity with the human IRS4 and possesse...

  9. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus.

    PubMed Central

    Hori, H; Osawa, S; Murao, K; Ishikura, H

    1980-01-01

    The nucleotide sequence of ribosomal 5S RNA from Micrococcus lysodeikticus is pGUUACGGCGGCUAUAGCGUGGGGGAAACGCCCGGCCGUAUAUCGAACCCGGAAGCUAAGCCCCAUAGCGCCGAUGGUUACUGUAACCGGGAGGUUGUGGGAGAGUAGGUCGCCGCCGUGAOH. When compared to other 5S RNAs, the sequence homology is greatest with Thermus aquaticus, and these two 5S RNAs reveal several features intermediate between those of typical gram-positive bacteria and gram-negative bacteria. PMID:6780979

  10. Molecular Comparison and Evolutionary Analyses of VP1 Nucleotide Sequences of New African Human Enterovirus 71 Isolates Reveal a Wide Genetic Diversity

    PubMed Central

    Nougairède, Antoine; Joffret, Marie-Line; Deshpande, Jagadish M.; Dubot-Pérès, Audrey; Héraud, Jean-Michel

    2014-01-01

    Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied. PMID:24598878

  11. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement.

    PubMed

    Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis

    2017-02-01

    Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Complete sequence of Tvv1, a family of Ty 1 copia-like retrotransposons of Vitis vinifera L., reconstituted by chromosome walking.

    PubMed

    Pelsy, F.; Merdinoglu, D.

    2002-09-01

    A chromosome-walking strategy was used to sequence and characterize retrotransposons in the grapevine genome. The reconstitution of a family of retroelements, named Tvv1, was achieved by six successive steps. These elements share a single, highly conserved open reading frame 4,153 nucleotides-long, putatively encoding the gag, pro, int, rt and rh proteins. Comparison of the Tvv1 open reading frame coding potential with those of drosophila copia and tobacco Tnt1, revealed that Tvv1 is closely related to Ty 1 copia-like retrotransposons. A highly variable untranslated leader region, upstream of the open reading frame, allowed us to differentiate Tvv1 variants, which represent a family of at least 28 copies, in varying sizes. This internal region is flanked by two long terminal repeats in direct orientation, sized between 149 and 157 bp. Among elements theoretically sized from 4,970 to 5,550 bp, we describe the full-length sequence of a reference element Tvv1-1, 5,343 nucleotides-long. The full-length sequence of Tvv1-1 compared to pea PDR1 shows a 53.3% identity. In addition, both elements contain long terminal repeats of nearly the same size in which the U5 region could be entirely absent. Therefore, we assume that Tvv1 and PDR1 could constitute a particular class of short LTRs retroelements.

  13. Identification of New Single Nucleotide Polymorphism-Based Markers for Inter- and Intraspecies Discrimination of Obligate Bacterial Parasites (Pasteuria spp.) of Invertebrates ▿ †

    PubMed Central

    Mauchline, Tim H.; Knox, Rachel; Mohan, Sharad; Powers, Stephen J.; Kerry, Brian R.; Davies, Keith G.; Hirsch, Penny R.

    2011-01-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of “cryptic” SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms. PMID:21803895

  14. Identification of new single nucleotide polymorphism-based markers for inter- and intraspecies discrimination of obligate bacterial parasites (Pasteuria spp.) of invertebrates.

    PubMed

    Mauchline, Tim H; Knox, Rachel; Mohan, Sharad; Powers, Stephen J; Kerry, Brian R; Davies, Keith G; Hirsch, Penny R

    2011-09-01

    Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of "cryptic" SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms.

  15. Molecular Variability Among Isolates of Prunus Necrotic Ringspot Virus from Different Prunus spp.

    PubMed

    Aparicio, F; Myrta, A; Di Terlizzi, B; Pallás, V

    1999-11-01

    ABSTRACT Viral sequences amplified by polymerase chain reaction from 25 isolates of Prunus necrotic ringspot virus (PNRSV), varying in the symptomatology they cause in six different Prunus spp., were analyzed for restriction fragment polymorphisms. Most of the isolates could be discriminated by using a combination of three different restriction enzymes. The nucleotide sequences of the RNA 4 of 15 of these isolates were determined. Sequence comparisons and phylogenetic analyses of the RNA 4 and coat proteins (CPs) revealed that all of the isolates clustered into three different groups, represented by three previously sequenced PNRSV isolates: PV32, PE5, and PV96. The PE5-type group was characterized by a 5' untranslated region that was clearly different from that of the other two groups. The PV32-type group was characterized by an extra hexanucleotide consisting of a duplication of the six immediately preceding nucleotides. Although most of the variability was observed in the first third of the CP, the amino acid residues in this region, which were previously thought to be functionally important in the replication cycle of the virus, were strictly conserved. No clear correlation with the type of symptom or host specificity could be observed. The validity of this grouping was confirmed when other isolates recently characterized by other authors were included in these analyses.

  16. Accurate and exact CNV identification from targeted high-throughput sequence data.

    PubMed

    Nord, Alex S; Lee, Ming; King, Mary-Claire; Walsh, Tom

    2011-04-12

    Massively parallel sequencing of barcoded DNA samples significantly increases screening efficiency for clinically important genes. Short read aligners are well suited to single nucleotide and indel detection. However, methods for CNV detection from targeted enrichment are lacking. We present a method combining coverage with map information for the identification of deletions and duplications in targeted sequence data. Sequencing data is first scanned for gains and losses using a comparison of normalized coverage data between samples. CNV calls are confirmed by testing for a signature of sequences that span the CNV breakpoint. With our method, CNVs can be identified regardless of whether breakpoints are within regions targeted for sequencing. For CNVs where at least one breakpoint is within targeted sequence, exact CNV breakpoints can be identified. In a test data set of 96 subjects sequenced across ~1 Mb genomic sequence using multiplexing technology, our method detected mutations as small as 31 bp, predicted quantitative copy count, and had a low false-positive rate. Application of this method allows for identification of gains and losses in targeted sequence data, providing comprehensive mutation screening when combined with a short read aligner.

  17. Regions of conservation and divergence in the 3' untranslated sequences of genomic RNA from Ross River virus isolates.

    PubMed

    Faragher, S G; Dalgarno, L

    1986-07-20

    The 3' untranslated (UT) sequences of the genomic RNAs of five geographic variants of the alphavirus Ross River virus (RRV) were determined and compared with the 3' UT sequence of RRV T48, the prototype strain. Part of the 3' UT region of Getah virus, a close serological relative of RRV, was also sequenced. The RRV 3' UT region varies markedly in length between variants. Large deletions or insertions, sequence rearrangements and single nucleotide substitutions are observed. A sequence tract of 49 to 58 nucleotides, which is repeated as four blocks in the RRV T48 3' UT region, occurs only once in the 3' UT region of one RRV strain (NB5092), indicating that the existence of repeat sequence blocks is not essential for RRV replication. However, the precise sequence of the 3' proximal copy of the repeat block and its position relative to the poly(A) tail were identical in all RRV isolates examined, suggesting that it has an important role in RRV replication. Nucleotide substitutions between RRV variants are distributed non-randomly along the length of the 3' UT region. The sequence of 120 to 130 nucleotides adjacent to the poly(A) tail is strongly conserved. Getah virus RNA contains three repeat sequence blocks in the 3' UT region. These are similar in sequence to those in RRV RNA but differ in their arrangement. Homology between the RRV and Getah 3' UT sequences is greatest in the 3' proximal repeat sequence block that shows three differences in 49 nucleotides. The 3' proximal repeat in Getah RNA occurs at the same position, relative to the poly(A) tail, as in all RRV variants. The RRV and Getah virus 3' UT sequences show extensive homology in the region between the 3' proximal repeat and the poly(A) tail but, apart from the repeat blocks themselves, they show no significant homology elsewhere.

  18. Complete mitochondrial genome of Yangtze River wild common carp (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio).

    PubMed

    Hu, Guang Fu; Liu, Xiang Jiang; Zou, Gui Wei; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na

    2016-01-01

    We sequenced the complete mitogenomes of (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio). Comparison of these two mitogenomes revealed that the mitogenomes of these two common carp strains were remarkably similar in genome length, gene order and content, and AT content. There were only 55 bp variations in 16,581 nucleotides. About 1 bp variation was located in rRNAs, 2 bp in tRNAs, 9 bp in the control region and 43 bp in protein-coding genes. Furthermore, forty-three variable nucleotides in the protein-coding genes of the two strains led to four variable amino acids, which were located in the ND2, ATPase 6, ND5 and ND6 genes, respectively.

  19. Update on Pneumocystis carinii f. sp. hominis Typing Based on Nucleotide Sequence Variations in Internal Transcribed Spacer Regions of rRNA Genes

    PubMed Central

    Lee, Chao-Hung; Helweg-Larsen, Jannik; Tang, Xing; Jin, Shaoling; Li, Baozheng; Bartlett, Marilyn S.; Lu, Jang-Jih; Lundgren, Bettina; Lundgren, Jens D.; Olsson, Mats; Lucas, Sebastian B.; Roux, Patricia; Cargnel, Antonietta; Atzori, Chiara; Matos, Olga; Smith, James W.

    1998-01-01

    Pneumocystis carinii f. sp. hominis isolates from 207 clinical specimens from nine countries were typed based on nucleotide sequence variations in the internal transcribed spacer regions I and II (ITS1 and ITS2, respectively) of rRNA genes. The number of ITS1 nucleotides has been revised from the previously reported 157 bp to 161 bp. Likewise, the number of ITS2 nucleotides has been changed from 177 to 192 bp. The number of ITS1 sequence types has increased from 2 to 15, and that of ITS2 has increased from 3 to 14. The 15 ITS1 sequence types are designated types A through O, and the 14 ITS2 types are named types a through n. A total of 59 types of P. carinii f. sp. hominis were found in this study. PMID:9508304

  20. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica).

    PubMed

    He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  1. Detection of a divergent variant of grapevine virus F by next-generation sequencing.

    PubMed

    Molenaar, Nicholas; Burger, Johan T; Maree, Hans J

    2015-08-01

    The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).

  2. Characterization of a prototype strain of hepatitis E virus.

    PubMed

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-15

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia.

  3. Virulence and molecular polymorphism of Prunus necrotic ringspot virus isolates.

    PubMed

    Hammond, R W; Crosslin, J M

    1998-07-01

    Prunus necrotic ringspot virus (PNRSV) occurs as numerous strains or isolates that vary widely in their pathogenic, biophysical and serological properties. Prior attempts to distinguish pathotypes based upon physical properties have not been successful; our approach was to examine the molecular properties that may distinguish these isolates. The nucleic acid sequence was determined from 1.65 kbp RT-PCR products derived from RNA 3 of seven distinct isolates of PNRSV that differ serologically and in pathology on sweet cherry. Sequence comparisons of ORF 3a (putative movement protein) and ORF 3b (coat protein) revealed single nucleotide and amino acid differences with strong correlations to serology and symptom types (pathotypes). Sequence differences between serotypes and pathotypes were also reflected in the overall phylogenetic relationships between the isolates.

  4. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples.

    PubMed

    Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol

    2016-01-01

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.

  5. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE PAGES

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.; ...

    2016-11-10

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  6. Real-Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data: Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances among Tens of Thousands of Salmonella Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.

    The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less

  7. Stability of Tandem Repeats in the Drosophila Melanogaster HSR-Omega Nuclear RNA

    PubMed Central

    Hogan, N. C.; Slot, F.; Traverse, K. L.; Garbe, J. C.; Bendena, W. G.; Pardue, M. L.

    1995-01-01

    The Drosophila melanogaster Hsr-omega locus produces a nuclear RNA containing >5 kb of tandem repeat sequences. These repeats are unique to Hsr-omega and show concerted evolution similar to that seen with classical satellite DNAs. In D. melanogaster the monomer is ~280 bp. Sequences of 191/2 monomers differ by 8 +/- 5% (mean +/- SD), when all pairwise comparisons are considered. Differences are single nucleotide substitutions and 1-3 nucleotide deletions/insertions. Changes appear to be randomly distributed over the repeat unit. Outer repeats do not show the decrease in monomer homogeneity that might be expected if homogeneity is maintained by recombination. However, just outside the last complete repeat at each end, there are a few fragments of sequence similar to the monomer. The sequences in these flanking regions are not those predicted for sequences decaying in the absence of recombination. Instead, the fragmentation of the sequence homology suggests that flanking regions have undergone more severe disruptions, possibly during an insertion or amplification event. Hsr-omega alleles differing in the number of repeats are detected and appear to be stable over a few thousand generations; however, both increases and decreases in repeat numbers have been observed. The new alleles appear to be as stable as their predecessors. No alleles of less than ~5 kb nor more than ~16 kb of repeats were seen in any stocks examined. The evidence that there is a limit on the minimum number of repeats is consistent with the suggestion that these repeats are important in the function of the unusual Hsr-omega nuclear RNA. PMID:7540581

  8. Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China.

    PubMed

    Shang, Qiao-xia; Xiang, Hai-ying; Han, Cheng-gui; Li, Da-wei; Yu, Jia-lin

    2009-11-01

    Cucurbit aphid-borne yellows virus (CABYV) and Melon aphid-borne yellows virus (MABYV) have been found to be associated with cucurbit yellowing disease in China. Our report identifies for the first time a third distinct polerovirus, tentatively named Suakwa aphid-borne yellows virus (SABYV), infecting Suakwa vegetable sponge. To better understand the distribution and molecular diversity of these three poleroviruses infecting cucurbits, a total of 214 cucurbitaceous crop samples were collected from 25 provinces in China, and were investigated by RT-PCR and sequencing. Of these, 108 samples tested positive for CABYV, while 40 samples from five provinces were positive for MABYV, and SABYV was detected in only 4 samples which were collected in the southern part of China. Forty-one PCR-amplified fragments containing a portion of the RdRp gene, intergenic NCR and CP gene were cloned and sequenced. Sequence comparisons showed that CABYV isolates shared 78.0-79.2% nucleotide sequence identity with MABYV isolates, and 69.7-70.8% with SABYV. Sequence identity between MABYV and SABYV was 73.3-76.5%. In contrast, the nucleotide identities within each species were 93.2-98.7% (CABYV), 98.1-99.9% (MABYV), and 96.1-98.6% (SABYV). Phylogenetic analyses revealed that the polerovirus isolates fit into three distinct groups, corresponding to the three species. The CABYV group could be further divided into two subgroups: the Asia subgroup and the Mediterranean subgroup, based on CP gene and partial RdRp gene sequences. Recombination analysis suggested that MABYV may be a recombinant virus.

  9. [Investigation of a Patient with Pre-vaccine-derived Poliovirus in Shandong Province, China].

    PubMed

    Lin, Xiaojuan; Liu, Yao; Wang, Suting; Zhang Xiao; Song, Lizhi; Tao, Zexin; Ji, Feng; Xiong, Ping; Xu, Aiqiang

    2015-09-01

    To analyze the genetic characteristics of a polio-I highly variant vaccine recombinant virus in Shandong Province (China) in 2011 and to identify isolates from healthy contacts, two stool specimens from one patient with acute flaccid paralysis (AFP) and 40 stool specimens from his contacts were collected for virus isolation. The complete genome of poliovirus and VP1 coding region of the non-polio enterovirus were sequenced. Homologous comparison and phylogenetic analyses based on VP1 sequences were undertaken among coxsackievirus (CV) B1, CV-B3 isolates, and those in GenBank. One poliovirus (P1/11186), CV-A4 and CV-A8 were isolated from the AFP patient; one CV-A2, Echovirus 3 (E-3), E-12 and E-14, ten CV-B1, and five CV-B3 strains were isolated from his contacts. These results led us to believe that there may be a human enterovirus epidemic in this area, and that surveillance must be enhanced. P1/11186 was a type-1 vaccine-related poliovirus; it combined with type-2 and type-3 polioviruses in 2A and 3A regions, respectively. There were 25 nucleotide mutations with 9 amino-acid alterations in the entire genome. There were 8 nucleotide mutations with 5 amino-acid alterations in the VP1 region compared with the corresponding Sabin strains. Homology analyses suggested that the ten CV-B1 isolates had 97.0%-100% nucleotide and 98.9%-100% amino-acid identities with each other, as well as 92.6%-100% nucleotide and 99.2%-100% amino-acid identities among the five CV-B3 isolates. Phylogenetic analyses on the complete sequences of VP1 among CV-B1 and CV-B3 isolates showed that Shandong strains, together with strains from other provinces in China, had a close relationship and belonged to the same group.

  10. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  11. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  12. Molecular identification of enteroviruses including two new types (EV-98 and EV-107) isolated from Japanese travellers from Asian countries.

    PubMed

    Yamashita, Teruo; Ito, Miyabi; Tsuzuki, Hideaki; Sakae, Kenji; Minagawa, Hiroko

    2010-04-01

    Of 58 enterovirus strains isolated from Japanese travellers returning from Asian countries, eight were non-serotypable with existing antisera. By sequencing a part of the VP1 region, six of these strains were typed as echovirus 9, enterovirus (EV)-73, EV-79 or EV-97. The nucleotide identity of the VP1 region of isolate T92-1499 to all enterovirus prototypes was <70 %. The VP1 sequence of isolate TN94-0349 was closely related to coxsackievirus (CV)-A9 (73.3 % nucleotide identity), but the virus could not be neutralized with a serum raised against the prototype CV-A9 strain. On the basis of complete molecular comparisons, T92-1499 and TN94-0349 were identified as EV-98 and EV-107, respectively, by the ICTV Picornavirus Study Group. Serum neutralization tests of Japanese individuals revealed a seroprevalence rate of 11 % for EV-73, and even lower seroprevalence rates, 1.0-3.8 %, were found for the other new enteroviruses, suggesting that prior circulation of these viruses in Japan was unlikely.

  13. Complete nucleotide sequence and genome organization of a Chinese isolate of Tobacco vein distorting virus.

    PubMed

    Mo, Xiao-han; Chen, Zheng-bin; Chen, Jian-ping

    2010-12-01

    Tobacco bushy top disease is caused by tobacco bushy top virus (TBTV, a member of the genus Umbravirus) which is dependent on tobacco vein-distorting virus (TVDV) to act as a helper virus encapsidating TBTV and enabling its transmission by aphids. Isometric virions from diseased tobacco plants were purified and disease symptoms were reproduced after experimental aphid transmission. The complete genome of TVDV was determined from cloned RT-PCR products derived from viral RNA. It was 5,920 nucleotides (nts) long and had the six major open reading frames (ORFs) typical of a member of the genus Polerovirus. Sequence comparisons showed that it differed significantly from any of the other species in the genus and this was confirmed by phylogenetic analyses of the RdRp and coat protein. SDS-PAGE analysis of purified virions gave two protein bands of about 26 and 59 kDa both of which reacted strongly in Western blots with antiserum produced to prokaryotically expressed TVDV CP showing that the two forms of the TVDV CP were the only protein components of the capsid.

  14. Nucleotide sequence composition and method for detection of neisseria gonorrhoeae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, A.; Yang, H.L.

    1990-02-13

    This patent describes a composition of matter that is specific for {ital Neisseria gonorrhoeae}. It comprises: at least one nucleotide sequence for which the ratio of the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria gonorrhoeae} to the amount of the sequence which hybridizes to chromosomal DNA of {ital Neisseria meningitidis} is greater than about five. The ratio being obtained by a method described.

  15. Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.

    PubMed

    Sakai, Ryo; Aerts, Jan

    2014-01-01

    The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.

  16. Isolation and characterization of the genes for two small RNAs of herpesvirus papio and their comparison with Epstein-Barr virus-encoded EBER RNAs.

    PubMed Central

    Howe, J G; Shu, M D

    1988-01-01

    Genes for the Epstein-Barr virus-encoded RNAs (EBERs), two low-molecular-weight RNAs encoded by the human gammaherpesvirus Epstein-Barr virus (EBV), hybridize to two small RNAs in a baboon cell line that contains a similar virus, herpesvirus papio (HVP). The genes for the HVP RNAs (HVP-1 and HVP-2) are located together in the small unique region at the left end of the viral genome and are transcribed by RNA polymerase III in a rightward direction, similar to the EBERs. There is significant similarity between EBER1 and HVP-1 RNA, except for an insert of 22 nucleotides which increases the length of HVP-1 RNA to 190 nucleotides. There is less similarity between the sequences of EBER2 and HVP-2 RNA, but both have a length of about 170 nucleotides. The predicted secondary structure of each HVP RNA is remarkably similar to that of the respective EBER, implying that the secondary structures are important for function. Upstream from the initiation sites of all four RNA genes are several highly conserved sequences which may function in the regulation of transcription. The HVP RNAs, together with the EBERs, are highly abundant in transformed cells and are efficiently bound by the cellular La protein. Images PMID:2839701

  17. Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation

    PubMed Central

    Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.

    2016-01-01

    Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631

  18. The nucleotide sequences of 5S rRNAs from a fern Dryopteris acuminata and a horsetail Equisetum arvense.

    PubMed Central

    Hori, H; Osawa, S; Takaiwa, F; Sugiura, M

    1984-01-01

    The nucleotide sequences from two Pteridophyta species, a fern Dryopteris acuminata and a horsetail Equisetum arvense have been determined. These two sequences are more related to those of the Bryophyta species (88% identity on average) than to those of seed plants (84% identity on average). PMID:6538332

  19. Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217

  20. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  1. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  2. Information Entropy of Influenza A Segment 7

    NASA Astrophysics Data System (ADS)

    Thompson, William A.; Fan, Shaohua; Weltman, Joel K.

    2008-12-01

    Information entropy (H) is a measure of uncertainty at each position within in a sequence of nucleotides.H was used to characterize a set of influenza A segment 7 nucleotide sequences. Nucleotide locations of high entropy were identified near the 5’ start of all of the sequences and the sequences were assigned to subsets according to synonymous nucleotide variants at those positions: either uracil at position six (U6), cytosine at position six (C6), adenine (A12) at position 12, guanine at position 12 (G12), adenine at position 15 (A15) or cytosine (C15) at position 15. H values were found to be correlated/corresponding (Kendall tau) along the lengths of the nucleotide segments of the subset pairs at each position. However, the H values of each subset of sequences were statistically distinguishable from those of the other member of the pair (Kolmogorov-Smirnov test). The joint probability of uncorrelated distributions of U6 and C6 sequences to viral subtypes and to viral host species was 34 times greater than for the A12:G12 subset pair and 214 times greater than for the A15:C15 pair. This result indicates that the high entropy position six of segment 7 is either a reporter or a sentinel location. The fact that not one of the H5N1 sequences in the dataset was a member of the C6 subset, but all 125 H5N1 sequences are members of the U6 subset suggests a non-random sentinel function.

  3. A combination of PhP typing and β-d-glucuronidase gene sequence variation analysis for differentiation of Escherichia coli from humans and animals.

    PubMed

    Masters, N; Christie, M; Katouli, M; Stratton, H

    2015-06-01

    We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.

  4. [Genetic characterization of different populations of Rhopilema esculentum based on the mitochondrial COI sequence.

    PubMed

    Li, Yu Long; Dong, Jing; Wang, Bin; Li, Yi Ping; Yu, Xu Guang; Fu, Jie; Wang, Wen Bo

    2016-07-01

    To investigate the genetic characterization and population genetic structure of Rhopilema esculentum, we sequenced the mtDNA COI gene (624 bp) in 56 individuals collected from Liaodong Bay and the Ganghwado Island in the estuarine waters of the Han River. In addition, the homologous sequences of other 15 individuals which were sampled from the Bohai and Yellow seas and Sea of Japan were analyzed. A total of 28 polymorphic nucleotide sites were detected among the 71 individuals, which defined 32 haplotypes. Haplotype diversity levels were high (0.91±0.06-0.94±0.01) in R. esculentum populations, whereas those of nucleotide diversity were moderate to low [(0.60±0.34)%-(0.68±0.40)%]. Compared with several other giant jellyfish species, the variation level of R. esculentum was high. Phylogeographic analysis of the COI region revealed two lineages. The pairwise F ST comparison and hierarchical molecular variance analysis (AMOVA) showed that significant population structure existed throughout the range of R. esculentum. The results of this study indicated that the life-cycle characteristics, together with possible anthropogenic introduction such as stock enhancement and the prevailing ocean currents in this region, were proposed as the main factors that determined the genetic patterns of R. esculentum.

  5. The Complete Nucleotide Sequence of the Human Immunoglobulin Heavy Chain Variable Region Locus

    PubMed Central

    Matsuda, Fumihiko; Ishii, Kazuo; Bourvagnet, Patrice; Kuma, Kei-ichi; Hayashida, Hidenori; Miyata, Takashi; Honjo, Tasuku

    1998-01-01

    The complete nucleotide sequence of the 957-kb DNA of the human immunoglobulin heavy chain variable (VH) region locus was determined and 43 novel VH segments were identified. The region contains 123 VH segments classifiable into seven different families, of which 79 are pseudogenes. Of the 44 VH segments with an open reading frame, 39 are expressed as heavy chain proteins and 1 as mRNA, while the remaining 4 are not found in immunoglobulin cDNAs. Combinatorial diversity of VH region was calculated to be ∼6,000. Conservation of the promoter and recombination signal sequences was observed to be higher in functional VH segments than in pseudogenes. Phylogenetic analysis of 114 VH segments clearly showed clustering of the VH segments of each family. However, an independent branch in the tree contained a single VH, V4-44.1P, sharing similar levels of homology to human VH families and to those of other vertebrates. Comparison between different copies of homologous units that appear repeatedly across the locus clearly demonstrates that dynamic DNA reorganization of the locus took place at least eight times between 133 and 10 million years ago. One nonimmunoglobulin gene of unknown function was identified in the intergenic region. PMID:9841928

  6. Identification and characterization of novel mosquito-borne (Kammavanpettai virus) and tick-borne (Wad Medani) reoviruses isolated in India.

    PubMed

    Yadav, Pragya D; Shete, Anita M; Nyayanit, Dimpal A; Albarino, Cesar G; Jain, Shilpi; Guerrero, Lisa W; Kumar, Sandeep; Patil, Deepak Y; Nichol, Stuart T; Mourya, Devendra T

    2018-06-25

    In 1954, a virus named Wad Medani virus (WMV) was isolated from Hyalomma marginatum ticks from Maharashtra State, India. In 1963, another virus was isolated from Sturnia pagodarum birds in Tamil Nadu, India, and named Kammavanpettai virus (KVPTV) based on the site of its isolation. Originally these virus isolates could not be identified with conventional methods. Here we describe next-generation sequencing studies leading to the determination of their complete genome sequences, and identification of both virus isolates as orbiviruses (family Reoviridae). Sequencing data showed that KVPTV has an AT-rich genome, whereas the genome of WMV is GC-rich. The size of the KVPTV genome is 18 234 nucleotides encoding proteins ranging 238-1290 amino acids (aa) in length. Similarly, the size of the WMV genome is 16 941 nucleotides encoding proteins ranging 214-1305 amino acids in length. Phylogenetic analysis of the VP1 gene, along with the capsid genes VP5 and VP7, revealed that KVPTV is likely a novel mosquito-borne virus and WMV is a tick-borne orbivirus. This study focuses on the phylogenetic comparison of these newly identified orbiviruses with mosquito-, tick- and Culicoides-borne orbiviruses isolated in India and other countries.

  7. Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    PubMed

    Lindblad-Toh, Kerstin; Wade, Claire M; Mikkelsen, Tarjei S; Karlsson, Elinor K; Jaffe, David B; Kamal, Michael; Clamp, Michele; Chang, Jean L; Kulbokas, Edward J; Zody, Michael C; Mauceli, Evan; Xie, Xiaohui; Breen, Matthew; Wayne, Robert K; Ostrander, Elaine A; Ponting, Chris P; Galibert, Francis; Smith, Douglas R; DeJong, Pieter J; Kirkness, Ewen; Alvarez, Pablo; Biagi, Tara; Brockman, William; Butler, Jonathan; Chin, Chee-Wye; Cook, April; Cuff, James; Daly, Mark J; DeCaprio, David; Gnerre, Sante; Grabherr, Manfred; Kellis, Manolis; Kleber, Michael; Bardeleben, Carolyne; Goodstadt, Leo; Heger, Andreas; Hitte, Christophe; Kim, Lisa; Koepfli, Klaus-Peter; Parker, Heidi G; Pollinger, John P; Searle, Stephen M J; Sutter, Nathan B; Thomas, Rachael; Webber, Caleb; Baldwin, Jennifer; Abebe, Adal; Abouelleil, Amr; Aftuck, Lynne; Ait-Zahra, Mostafa; Aldredge, Tyler; Allen, Nicole; An, Peter; Anderson, Scott; Antoine, Claudel; Arachchi, Harindra; Aslam, Ali; Ayotte, Laura; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Benamara, Mostafa; Berlin, Aaron; Bessette, Daniel; Blitshteyn, Berta; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Brown, Adam; Cahill, Patrick; Calixte, Nadia; Camarata, Jody; Cheshatsang, Yama; Chu, Jeffrey; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Dawoe, Tenzin; Daza, Riza; Decktor, Karin; DeGray, Stuart; Dhargay, Norbu; Dooley, Kimberly; Dooley, Kathleen; Dorje, Passang; Dorjee, Kunsang; Dorris, Lester; Duffey, Noah; Dupes, Alan; Egbiremolen, Osebhajajeme; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Ferreira, Patricia; Fisher, Sheila; FitzGerald, Mike; Foley, Karen; Foley, Chelsea; Franke, Alicia; Friedrich, Dennis; Gage, Diane; Garber, Manuel; Gearin, Gary; Giannoukos, Georgia; Goode, Tina; Goyette, Audra; Graham, Joseph; Grandbois, Edward; Gyaltsen, Kunsang; Hafez, Nabil; Hagopian, Daniel; Hagos, Birhane; Hall, Jennifer; Healy, Claire; Hegarty, Ryan; Honan, Tracey; Horn, Andrea; Houde, Nathan; Hughes, Leanne; Hunnicutt, Leigh; Husby, M; Jester, Benjamin; Jones, Charlien; Kamat, Asha; Kanga, Ben; Kells, Cristyn; Khazanovich, Dmitry; Kieu, Alix Chinh; Kisner, Peter; Kumar, Mayank; Lance, Krista; Landers, Thomas; Lara, Marcia; Lee, William; Leger, Jean-Pierre; Lennon, Niall; Leuper, Lisa; LeVine, Sarah; Liu, Jinlei; Liu, Xiaohong; Lokyitsang, Yeshi; Lokyitsang, Tashi; Lui, Annie; Macdonald, Jan; Major, John; Marabella, Richard; Maru, Kebede; Matthews, Charles; McDonough, Susan; Mehta, Teena; Meldrim, James; Melnikov, Alexandre; Meneus, Louis; Mihalev, Atanas; Mihova, Tanya; Miller, Karen; Mittelman, Rachel; Mlenga, Valentine; Mulrain, Leonidas; Munson, Glen; Navidi, Adam; Naylor, Jerome; Nguyen, Tuyen; Nguyen, Nga; Nguyen, Cindy; Nguyen, Thu; Nicol, Robert; Norbu, Nyima; Norbu, Choe; Novod, Nathaniel; Nyima, Tenchoe; Olandt, Peter; O'Neill, Barry; O'Neill, Keith; Osman, Sahal; Oyono, Lucien; Patti, Christopher; Perrin, Danielle; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Rachupka, Anthony; Raghuraman, Sujaa; Rameau, Rayale; Ray, Verneda; Raymond, Christina; Rege, Filip; Rise, Cecil; Rogers, Julie; Rogov, Peter; Sahalie, Julie; Settipalli, Sampath; Sharpe, Theodore; Shea, Terrance; Sheehan, Mechele; Sherpa, Ngawang; Shi, Jianying; Shih, Diana; Sloan, Jessie; Smith, Cherylyn; Sparrow, Todd; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Stone, Sabrina; Sykes, Sean; Tchuinga, Pierre; Tenzing, Pema; Tesfaye, Senait; Thoulutsang, Dawa; Thoulutsang, Yama; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Venkataraman, Vijay; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Yang, Shuli; Yang, Xiaoping; Young, Geneva; Yu, Qing; Zainoun, Joanne; Zembek, Lisa; Zimmer, Andrew; Lander, Eric S

    2005-12-08

    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennetzen, Jeffrey L; Yang, Xiaohan; Ye, Chuyu

    We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The {approx}400-Mb assembly covers {approx}80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species thatmore » demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).« less

  9. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    PubMed

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  10. Noninvasive genome sampling in chimpanzees.

    PubMed

    Kohn, Michael H

    2010-12-01

    The inevitable has happened: genomic technologies have been added to our noninvasive genetic sampling repertoire. In this issue of Molecular Ecology, Perry et al. (2010) demonstrate how DNA extraction from chimpanzee faeces, followed by a series of steps to enrich for target loci, can be coupled with next-generation sequencing. These authors collected sequence and single-nucleotide polymorphism (SNP) data at more than 600 genomic loci (chromosome 21 and the X) and the complete mitochondrial DNA. By design, each locus was 'deep sequenced' to enable SNP identification. To demonstrate the reliability of their data, the work included samples from six captive chimps, which allowed for a comparison between presumably genuine SNPs obtained from blood and potentially flawed SNPs deduced from faeces. Thus, with this method, anyone with the resources, skills and ambition to do genome sequencing of wild, elusive, or protected mammals can enjoy all of the benefits of noninvasive sampling. © 2010 Blackwell Publishing Ltd.

  11. Construction of a large collection of small genome variations in French dairy and beef breeds using whole-genome sequences.

    PubMed

    Boussaha, Mekki; Michot, Pauline; Letaief, Rabia; Hozé, Chris; Fritz, Sébastien; Grohs, Cécile; Esquerré, Diane; Duchesne, Amandine; Philippe, Romain; Blanquet, Véronique; Phocas, Florence; Floriot, Sandrine; Rocha, Dominique; Klopp, Christophe; Capitan, Aurélien; Boichard, Didier

    2016-11-15

    In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.

  12. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less

  13. The sequence and de novo assembly of the giant panda genome

    PubMed Central

    Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun

    2013-01-01

    Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809

  14. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.

    PubMed

    Abernathy, Emily; Chen, Min-hsin; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen; Zheng, Qi; Bellini, William; Icenogle, Joseph

    2013-01-25

    Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.

  15. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens.

    PubMed

    Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar

    2015-01-01

    Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES

    PubMed Central

    Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.

    2008-01-01

    Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195

  17. The complete sequence of Cymbidium mosaic virus from Vanilla fragrans in Hainan, China.

    PubMed

    He, Zhen; Jiang, Dongmei; Liu, Aiqin; Sang, Liwei; Li, Wenfeng; Li, Shifang

    2011-06-01

    The complete nucleotide sequence of Cymbidium mosaic virus (CymMV) isolated from vanilla in Hainan province, China was determined for the first time. It comprised 6,224 nucleotides; sequence analysis suggested that the isolate we obtained was a member of the genus Potexvirus, and its sequence shared 86.67-96.61% identities with previously reported sequences. Phylogenetic analysis suggested that CymMV from vanilla fragrans was clustered into subgroup A and the isolates in this subgroup displayed little regional difference.

  18. Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Dizney, Laurie; Sumibcay, Laarni; Arai, Satoru; Ruedas, Luis A.; Song, Jin-Won; Yanagihara, Richard

    2009-01-01

    A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission. PMID:19394994

  19. Human papillomavirus type 18 variant lineages in United States populations characterized by sequence analysis of LCR-E6, E2, and L1 regions.

    PubMed

    Arias-Pulido, Hugo; Peyton, Cheri L; Torrez-Martínez, Norah; Anderson, D Nelson; Wheeler, Cosette M

    2005-07-20

    While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.

  20. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  1. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    PubMed

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  2. Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus.

    PubMed

    Livingston, B T; Shaw, R; Bailey, A; Wilt, F

    1991-12-01

    In order to investigate the role of proteins in the formation of mineralized tissues during development, we have isolated a cDNA that encodes a protein that is a component of the organic matrix of the skeletal spicule of the sea urchin, Lytechinus pictus. The expression of the RNA encoding this protein is regulated over development and is localized to the descendents of the micromere lineage. Comparison of the sequence of this cDNA to homologous cDNAs from other species of urchin reveal that the protein is basic and contains three conserved structural motifs: a signal peptide, a proline-rich region, and an unusual region composed of a series of direct repeats. Studies on the protein encoded by this cDNA confirm the predicted reading frame deduced from the nucleotide sequence and show that the protein is secreted and not glycosylated. Comparison of the amino acid sequence to databases reveal that the repeat domain is similar to proteins that form a unique beta-spiral supersecondary structure.

  3. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Form and format for... And/or Amino Acid Sequences § 1.824 Form and format for nucleotide and/or amino acid sequence... Code for Information Interchange (ASCII) text. No other formats shall be allowed. (3) The computer...

  4. The nucleotide sequence of 5S rRNA from a cellular slime mold Dictyostelium discoideum.

    PubMed Central

    Hori, H; Osawa, S; Iwabuchi, M

    1980-01-01

    The nucleotide sequence of ribosomal 5S rRNA from a cellular slime mold Dictyostelium discoideum is GUAUACGGCCAUACUAGGUUGGAAACACAUCAUCCCGUUCGAUCUGAUA AGUAAAUCGACCUCAGGCCUUCCAAGUACUCUGGUUGGAGACAACAGGGGAACAUAGGGUGCUGUAUACU. A model for the secondary structure of this 5S rRNA is proposed. The sequence is more similar to those of animals (62% similarity on the average) rather than those of yeasts (56%). Images PMID:7465421

  5. The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus.

    PubMed Central

    Gustafson, G; Armour, S L

    1986-01-01

    The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs. Images PMID:3754962

  6. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.

    PubMed

    Van der Borght, Koen; Thys, Kim; Wetzels, Yves; Clement, Lieven; Verbist, Bie; Reumers, Joke; van Vlijmen, Herman; Aerssens, Jeroen

    2015-11-10

    Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNV(D)). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNV(HS)). To also increase specificity, SNVs called were overruled when their frequency was below the 80(th) percentile calculated on the distribution of error frequencies (QQ-SNV(HS-P80)). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNV(D) performed similarly to the existing approaches. QQ-SNV(HS) was more sensitive on all test sets but with more false positives. QQ-SNV(HS-P80) was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5%, QQ-SNV(HS-P80) revealed a sensitivity of 100% (vs. 40-60% for the existing methods) and a specificity of 100% (vs. 98.0-99.7% for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5% were consistently detected by QQ-SNV(HS-P80) from different generations of Illumina sequencers. We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data.

  7. Genomic changes in an attenuated genotype I Japanese encephalitis virus and comparison with virulent parental strain.

    PubMed

    Zhou, Yuyong; Wu, Rui; Feng, Yao; Zhao, Qin; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Han, Xinfeng; Cao, Sanjie

    2018-06-01

    Genotype I Japanese encephalitis virus (JEV) strain SCYA201201 was previously isolated from brain tissues of aborted piglets. In this study, we obtained an attenuated SCYA201201-0901 strain by serial passage of strain SCYA201201-1 in Syrian baby hamster kidney cells, combined with multiple plaque purifications and selection for virulence in mice. We investigated the genetic changes associated with attenuation by comparing the entire genomes of SCYA201201-0901 and SCYA201201-1. Sequence comparisons identified 14 common amino acid substitutions in the coding region, with two nucleotide point mutations in the 5'-untranslated region (UTR) and another three in the 3'-UTR, which differed between the attenuated and virulent strains. In addition, a total of 13 silent nucleotide mutations were found after attenuation. These substitutions, alone or in combination, may be responsible for the attenuated phenotype of the SCYA201201-0901 strain in mice. This information will contribute to our understanding of attenuation and of the molecular basis of virulence in genotype I strains such as SCYA201201-0901, as well as aiding the development of safer JEV vaccines.

  8. Control of total GFP expression by alterations to the 3′ region nucleotide sequence

    PubMed Central

    2013-01-01

    Background Previously, we distinguished the Escherichia coli type II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for unfolded and folded soluble target proteins. The translocation of folded protein to the periplasm for soluble expression via the Tat pathway was controlled by an N-terminal hydrophilic leader sequence. In this study, we investigated the effect of the hydrophilic C-terminal end and its nucleotide sequence on total and soluble protein expression. Results The native hydrophilic C-terminal end of GFP was obtained by deleting the C-terminal peptide LeuGlu-6×His, derived from pET22b(+). The corresponding clones induced total and soluble GFP expression that was either slightly increased or dramatically reduced, apparently through reconstruction of the nucleotide sequence around the stop codon in the 3′ region. In the expression-induced clones, the hydrophilic C-terminus showed increased Tat pathway specificity for soluble expression. However, in the expression-reduced clone, after analyzing the role of the 5′ poly(A) coding sequence with a substituted synonymous codon, we proved that the longer 5′ poly(A) coding sequence interacted with the reconstructed 3′ region nucleotide sequence to create a new mRNA tertiary structure between the 5′ and 3′ regions, which resulted in reduced total GFP expression. Further, to recover the reduced expression by changing the 3′ nucleotide sequence, after replacing selected C-terminal 5′ codons and the stop codon in the ORF with synonymous codons, total GFP expression in most of the clones was recovered to the undeleted control level. The insertion of trinucleotides after the stop codon in the 3′-UTR recovered or reduced total GFP expression. RT-PCR revealed that the level of total protein expression was controlled by changes in translational or transcriptional regulation, which were induced or reduced by the substitution or insertion of 3′ region nucleotides. Conclusions We found that the hydrophilic C-terminal end of GFP increased Tat pathway specificity and that the 3′ nucleotide sequence played an important role in total protein expression through translational and transcriptional regulation. These findings may be useful for efficiently producing recombinant proteins as well as for potentially controlling the expression level of specific genes in the body for therapeutic purposes. PMID:23834827

  9. Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.

    PubMed

    Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A

    2018-06-01

    Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The CD8α gene in duck (Anatidae): cloning, characterization, and expression during viral infection.

    PubMed

    Xu, Qi; Chen, Yang; Zhao, Wen Ming; Huang, Zheng Yang; Duan, Xiu Jun; Tong, Yi Yu; Zhang, Yang; Li, Xiu; Chang, Guo Bin; Chen, Guo Hong

    2015-02-01

    Cluster of differentiation 8 alpha (CD8α) is critical for cell-mediated immune defense and T-cell development. Although CD8α sequences have been reported for several species, very little is known about CD8α in ducks. To elucidate the mechanisms involved in the innate and adaptive immune responses of ducks, we cloned CD8α coding sequences from domestic, Muscovy, Mallard, and Spotbill ducks using reverse transcription polymerase chain reaction (RT-PCR). Each sequence consisted of 714 nucleotides and encoded a signal peptide, an IgV-like domain, a stalk region, a transmembrane region, and a cytoplasmic tail. We identified 58 nucleotide differences and 37 amino acid differences among the four types of duck; of these, 53 nucleotide and 33 amino acid differences were between Muscovy ducks and the other duck species. The CD8α cDNA sequence from domestic duck consisted of a 61-nucleotide 5' untranslated region (UTR), a 714-nucleotide open reading frame, and an 849-nucleotide 3' UTR. Multiple sequence alignments showed that the amino acid sequence of CD8α is conserved in vertebrates. RT-PCR revealed that expression of CD8α mRNA of domestic ducks was highest in the thymus and very low in the kidney, cerebrum, cerebellum, and muscle. Immunohistochemical analyses detected CD8α on the splenic corpuscle and periarterial lymphatic sheath of the spleen. CD8α mRNA in domestic ducklings was initially up-regulated, and then down-regulated, in the thymus, spleen, and liver after treatment with duck hepatitis virus type I (DHV-1) or the immunostimulant polyriboinosinic polyribocytidylic acid (poly I:C).

  11. Whole exome sequencing to estimate alloreactivity potential between donors and recipients in stem cell transplantation.

    PubMed

    Sampson, Juliana K; Sheth, Nihar U; Koparde, Vishal N; Scalora, Allison F; Serrano, Myrna G; Lee, Vladimir; Roberts, Catherine H; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A

    2014-08-01

    Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. © 2014 John Wiley & Sons Ltd.

  12. Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy.

    PubMed Central

    Ohno, T; Takamatsu, N; Meshi, T; Okada, Y

    1983-01-01

    The complete cDNA of hop stunt viroid (HSV) has been cloned by the method of Okayama and Berg (Mol.Cell.Biol.2,161-170. (1982] and the complete nucleotide sequence has been established. The covalently closed circular single-stranded HSV RNA consists of 297 nucleotides. The secondary structure predicted for HSV contains 67% of its residues base-paired. The native HSV can possess an extended rod-like structure characteristic of viroids previously established. The central region of the native HSV has a similar structure to the conserved region found in all viroids sequenced so far except for avocado sunblotch viroid. The sequence homologous to the 5'-end of U1a RNA is also found in the sequence of HSV but not in the central conserved region. Images PMID:6312412

  13. Detecting and Analyzing Genetic Recombination Using RDP4.

    PubMed

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  14. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  15. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity.

    PubMed

    Nakayama, Michie; Kato, Takako; Susa, Takao; Sano, Akiko; Kitahara, Kousuke; Kato, Yukio

    2009-08-13

    Mutations in the Prop1 gene are responsible for murine Ames dwarfism and human combined pituitary hormone deficiency with hypogonadism. Recently, we reported that PROP1 is a possible transcription factor for gonadotropin subunit genes through plural cis-acting sites composed of AT-rich sequences containing a TAAT motif which differs from its consensus binding sequence known as PRDQ9 (TAATTGAATTA). This study aimed to verify the binding specificity and sequence of PROP1 by applying the method of SELEX (Systematic Evolution of Ligands by EXponential enrichment), EMSA (electrophoretic mobility shift assay) and transient transfection assay. SELEX, after 5, 7 and 9 generations of selection using a random sequence library, showed that nucleotides containing one or two TAAT motifs were accumulated and accounted for 98.5% at the 9th generation. Aligned sequences and EMSA demonstrated that PROP1 binds preferentially to 11 nucleotides composed of an inverted TAAT motif separated by 3 nucleotides with variation in the half site of palindromic TAAT motifs and with preferential requirement of T at the nucleotide number 5 immediately 3' to a TAAT motif. Transient transfection assay demonstrated first that dimeric binding of PROP1 to an inverted TAAT motif and its cognates resulted in transcriptional activation, whereas monomeric binding of PROP1 to a single TAAT motif and an inverted ATTA motif did not mediate activation. Thus, this study demonstrated that dimeric binding of PROP1 is able to recognize diverse palindromic TAAT sequences separated by 3 nucleotides and to exhibit its transcriptional activity.

  16. Nucleotide sequence of a resistance breaking mutant of southern bean mosaic virus.

    PubMed

    Lee, L; Anderson, E J

    1998-01-01

    SBMV-S is a resistance-breaking mutant of an Arkansas isolate of the bean strain of southern bean mosaic virus (SBMV-BARK) that is able to move systemically in Phaseolus vulgaris cvs. Pinto and Great Northern, whereas the wild-type SBMV-BARK causes local necrotic lesions and is restricted to the inoculated leaves of these hosts. Sequence analysis of the 4136 nucleotide genomes of SBMV-BARK and SBMV-S revealed seven nucleotide differences, but only four deduced amino acid changes. A single amino acid change occurred in the C-terminal region of the putative RNA-dependent RNA polymerase and three differences were identified in the N-terminal portion of the virus coat protein. SBMV-BARK and SBMV-S were compared with other sobemoviruses and were found to contain a high level of nucleotide sequence identity (91.3%) to SBMV-B. Unlike SBMV-B however, SBMV-BARK and SBMV-S contained four putative overlapping open reading frames, making them more similar in genome organization to the cowpea strain, SBMV-C. The possibility exists that mutations or even errors, that resulted in mis-identification of open reading frames, occurred in previously published information on nucleotide sequence and genomic organization for SBMV-B.

  17. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  18. Detection of a new bat gammaherpesvirus in the Philippines.

    PubMed

    Watanabe, Shumpei; Ueda, Naoya; Iha, Koichiro; Masangkay, Joseph S; Fujii, Hikaru; Alviola, Phillip; Mizutani, Tetsuya; Maeda, Ken; Yamane, Daisuke; Walid, Azab; Kato, Kentaro; Kyuwa, Shigeru; Tohya, Yukinobu; Yoshikawa, Yasuhiro; Akashi, Hiroomi

    2009-08-01

    A new bat herpesvirus was detected in the spleen of an insectivorous bat (Hipposideros diadema, family Hipposideridae) collected on Panay Island, the Philippines. PCR analyses were performed using COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) targeting the herpesvirus DNA polymerase (DPOL) gene. Although we obtained PCR products with CODEHOPs, direct sequencing using the primers was not possible because of high degree of degeneracy. Direct sequencing technology developed in our rapid determination system of viral RNA sequences (RDV) was applied in this study, and a partial DPOL nucleotide sequence was determined. In addition, a partial gB gene nucleotide sequence was also determined using the same strategy. We connected the partial gB and DPOL sequences with long-distance PCR, and a 3741-bp nucleotide fragment, including the 3' part of the gB gene and the 5' part of the DPOL gene, was finally determined. Phylogenetic analysis showed that the sequence was novel and most similar to those of the subfamily Gammaherpesvirinae.

  19. Plant nitrogen regulatory P-PII polypeptides

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2004-11-23

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the invention may be used to engineer organisms to overexpress wild-type or mutant P-PII regulatory protein. Engineered plants that overexpress or underexpress P-PII regulatory protein may have increased nitrogen assimilation capacity. Engineered organisms may be used to produce P-PII proteins which, in turn, can be used for a variety of purposes including in vitro screening of herbicides. P-PII nucleotide sequences have additional uses as probes for isolating additional genomic clones having the promoters of P-PII gene. P-PII promoters are light- and/or sucrose-inducible and may be advantageously used in genetic engineering of plants.

  20. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  1. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    PubMed

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are used.

  2. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases.

    PubMed Central

    Meyers, B C; Chin, D B; Shen, K A; Sivaramakrishnan, S; Lavelle, D O; Zhang, Z; Michelmore, R W

    1998-01-01

    At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over. PMID:9811791

  3. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.

  4. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle.

    PubMed

    Neill, John D; Newcomer, Benjamin W; Marley, Shonda D; Ridpath, Julia F; Givens, M Daniel

    2012-08-06

    Bovine viral diarrhea virus (BVDV) strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. The sequence of the open reading frame (ORF) from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI) calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a) co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were identified in the PI virus of a calf born to a PI dam. These results demonstrate that nucleotide changes are introduced into the BVDV infecting pregnant cattle at rates of 2.3 to 8 fold higher then during the acute infection of non-pregnant animals.

  5. Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.).

    PubMed

    Yuan, Kejun; Wang, Changjun; Xin, Li; Zhang, Anning; Ai, Chengxiang

    2013-07-25

    A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar "White Winter Pearmain". When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4°C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Conserved intergenic sequences revealed by CTAG-profiling in Salmonella: thermodynamic modeling for function prediction

    NASA Astrophysics Data System (ADS)

    Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin

    2017-03-01

    Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.

  7. Identification of a sequence element on the 3' side of AAUAAA which is necessary for simian virus 40 late mRNA 3'-end processing.

    PubMed Central

    Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C

    1985-01-01

    Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512

  8. Genetic diversity of the captive Asian tapir population in Thailand, based on mitochondrial control region sequence data and the comparison of its nucleotide structure with Brazilian tapir.

    PubMed

    Muangkram, Yuttamol; Amano, Akira; Wajjwalku, Worawidh; Pinyopummintr, Tanu; Thongtip, Nikorn; Kaolim, Nongnid; Sukmak, Manakorn; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Maikaew, Umaporn; Thomas, Warisara; Polsrila, Kanda; Dongsaard, Kwanreaun; Sanannu, Saowaphang; Wattananorrasate, Anuwat

    2017-07-01

    The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.

  9. Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka).

    PubMed

    Veale, Andrew J; Russello, Michael A

    2017-10-01

    Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches withmore » the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.« less

  11. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms

    PubMed Central

    2012-01-01

    Background Comparative genomics can inform us about the processes of mutation and selection across diverse taxa. Among seed plants, gymnosperms have been lacking in genomic comparisons. Recent EST and full-length cDNA collections for two conifers, Sitka spruce (Picea sitchensis) and loblolly pine (Pinus taeda), together with full genome sequences for two angiosperms, Arabidopsis thaliana and poplar (Populus trichocarpa), offer an opportunity to infer the evolutionary processes underlying thousands of orthologous protein-coding genes in gymnosperms compared with an angiosperm orthologue set. Results Based upon pairwise comparisons of 3,723 spruce and pine orthologues, we found an average synonymous genetic distance (dS) of 0.191, and an average dN/dS ratio of 0.314. Using a fossil-established divergence time of 140 million years between spruce and pine, we extrapolated a nucleotide substitution rate of 0.68 × 10-9 synonymous substitutions per site per year. When compared to angiosperms, this indicates a dramatically slower rate of nucleotide substitution rates in conifers: on average 15-fold. Coincidentally, we found a three-fold higher dN/dS for the spruce-pine lineage compared to the poplar-Arabidopsis lineage. This joint occurrence of a slower evolutionary rate in conifers with higher dN/dS, and possibly positive selection, showcases the uniqueness of conifer genome evolution. Conclusions Our results are in line with documented reduced nucleotide diversity, conservative genome evolution and low rates of diversification in conifers on the one hand and numerous examples of local adaptation in conifers on the other hand. We propose that reduced levels of nucleotide mutation in large and long-lived conifer trees, coupled with large effective population size, were the main factors leading to slow substitution rates but retention of beneficial mutations. PMID:22264329

  12. Characterization of a prototype strain of hepatitis E virus.

    PubMed Central

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-01

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia. Images PMID:1731327

  13. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data.

    PubMed

    Hu, Bo; Ji, Yuan; Xu, Yaomin; Ting, Angela H

    2013-05-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach.

  14. Stereochemical analysis of the functional significance of the conserved inverted CCAAT and TATA elements in the rat bone sialoprotein gene promoter.

    PubMed

    Su, Ming; Lee, Daniel; Ganss, Bernhard; Sodek, Jaro

    2006-04-14

    Basal transcription of the bone sialoprotein gene is mediated by highly conserved inverted CCAAT (ICE; ATTGG) and TATA elements (TTTATA) separated by precisely 21 nucleotides. Here we studied the importance of the relative position and orientation of the CCAAT and TATA elements in the proximal promoter by measuring the transcriptional activity of a series of mutated reporter constructs in transient transfection assays. Whereas inverting the TTTATA (wild type) to a TATAAA (consensus TATA) sequence increased transcription slightly, transcription was reduced when the flanking dinucleotides were also inverted. In contrast, reversing the ATTGG (wild type; ICE) to a CCAAT (RICE) sequence caused a marked reduction in transcription, whereas both transcription and NF-Y binding were progressively increased with the simultaneous inversion of flanking nucleotides (f-RICE-f). Reducing the distance between the ICE and TATA elements produced cyclical changes in transcriptional activity that correlated with progressive alterations in the relative positions of the CCAAT and TATA elements on the face of the DNA helix. Minimal transcription was observed after 5 nucleotides were deleted (equivalent to approximately one half turn of the helix), whereas transcription was fully restored after deleting 10 nucleotides (approximately one full turn of the DNA helix), transcriptional activity being progressively lost with deletions beyond 10 nucleotides. In comparison, when deletions were made with the ICE in the reversed (f-RICE-f) orientation transcriptional activity was progressively lost with no recovery. These results show that, although transcription can still occur when the CCAAT box is reversed and/or displaced relative to the TATA box, the activity is dependent upon the flexibility of the intervening DNA helix needed to align the NF-Y complex on the CCAAT box with preinitiation complex proteins that bind to the TATA box. Thus, the precise location and orientation of the CCAAT element is necessary for optimizing basal transcription of the bone sialoprotein gene.

  15. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    PubMed

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.

  16. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.

    PubMed

    Tabor, C W; Tabor, H

    1987-11-25

    We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).

  17. Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe.

    PubMed

    Shien, J-H; Wang, Y-S; Chen, C-H; Shieh, H K; Hu, C-C; Chang, P-C

    2008-10-01

    Live attenuated vaccines have been used for control of the disease caused by goose parvovirus (GPV), but the mechanism involved in attenuation of GPV remains elusive. This report presents the complete nucleotide sequences of two live attenuated strains of GPV (82-0321V and VG32/1) that were independently developed in Taiwan and Europe, together with the parental strain of 82-0321V and a field strain isolated in Taiwan in 2006. Sequence comparisons showed that 82-0321V and VG32/1 had multiple deletions and substitutions in the inverted terminal repeats region when compared with their parental strain or the field virus, but these changes did not affect the formation of the hairpin structure essential for viral replication. Moreover, 82-0321V and VG32/1 had five amino acid changes in the non-structural protein, but these changes were located at positions distant from known functional motifs in the non-structural protein. In contrast, 82-0321V had nine changes and VG32/1 had 11 changes in their capsid proteins (VP1), and the majority of these changes occurred at positions close to the putative receptor binding sites of VP1, as predicted using the structure of adeno-associated virus 2 as the model system. Taken together, the results suggest that changes in sequence near the receptor binding sites of VP1 might be responsible for attenuation of GPV. This is the first report of complete nucleotide sequences of GPV other than the virulent B strain, and suggests a possible mechanism for attenuation of GPV.

  18. Prunus necrotic ringspot ilarvirus: nucleotide sequence of RNA3 and the relationship to other ilarviruses based on coat protein comparison.

    PubMed

    Guo, D; Maiss, E; Adam, G; Casper, R

    1995-05-01

    The RNA3 of prunus necrotic ringspot ilarvirus (PNRSV) has been cloned and its entire sequence determined. The RNA3 consists of 1943 nucleotides (nt) and possesses two large open reading frames (ORFs) separated by an intergenic region of 74 nt. The 5' proximal ORF is 855 nt in length and codes for a protein of molecular mass 31.4 kDa which has homologies with the putative movement protein of other members of the Bromoviridae. The 3' proximal ORF of 675 nt is the cistron for the coat protein (CP) and has a predicted molecular mass of 24.9 kDa. The sequence of the 3' non-coding region (NCR) of PNRSV RNA3 showed a high degree of similarity with those of tobacco streak virus (TSV), prune dwarf virus (PDV), apple mosaic virus (ApMV) and also alfalfa mosaic virus (AIMV). In addition it contained potential stem-loop structures with interspersed AUGC motifs characteristic for ilar- and alfamoviruses. This conserved primary and secondary structure in all 3' NCRs may be responsible for the interaction with homologous and heterologous CPs and subsequent activation of genome replication. The CP gene of an ApMV isolate (ApMV-G) of 657 nt has also been cloned and sequenced. Although ApMV and PNRSV have a distant serological relationship, the deduced amino acid sequences of their CPs have an identity of only 51.8%. The N termini of PNRSV and ApMV CPs have in common a zinc-finger motif and the potential to form an amphipathic helix.

  19. Intramolecular interactions in aminoacyl nucleotides: Implications regarding the origin of genetic coding and protein synthesis

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Mullins, D. W., Jr.; Watkins, C. L.; Hall, L. M.

    1986-01-01

    Cellular organisms store information as sequences of nucleotides in double stranded DNA. This information is useless unless it can be converted into the active molecular species, protein. This is done in contemporary creatures first by transcription of one strand to give a complementary strand of mRNA. The sequence of nucleotides is then translated into a specific sequence of amino acids in a protein. Translation is made possible by a genetic coding system in which a sequence of three nucleotides codes for a specific amino acid. The origin and evolution of any chemical system can be understood through elucidation of the properties of the chemical entities which make up the system. There is an underlying logic to the coding system revealed by a correlation of the hydrophobicities of amino acids and their anticodonic nucleotides (i.e., the complement of the codon). Its importance lies in the fact that every amino acid going into protein synthesis must first be activated. This is universally accomplished with ATP. Past studies have concentrated on the chemistry of the adenylates, but more recently we have found, through the use of NMR, that we can observe intramolecular interactions even at low concentrations, between amino acid side chains and nucleotide base rings in these adenylates. The use of this type of compound thus affords a novel way of elucidating the manner in which amino acids and nucleotides interact with each other. In aqueous solution, when a hydrophobic amino acid is attached to the most hydrophobic nucleotide, AMP, a hydrophobic interaction takes place between the amino acid side chain and the adenine ring. The studies to be reported concern these hydrophobic interactions.

  20. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  1. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.

    PubMed

    Haygood, M G

    1990-01-01

    Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.

  2. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Enriching public descriptions of marine phages using the Genomic Standards Consortium MIGS standard

    PubMed Central

    Duhaime, Melissa Beth; Kottmann, Renzo; Field, Dawn; Glöckner, Frank Oliver

    2011-01-01

    In any sequencing project, the possible depth of comparative analysis is determined largely by the amount and quality of the accompanying contextual data. The structure, content, and storage of this contextual data should be standardized to ensure consistent coverage of all sequenced entities and facilitate comparisons. The Genomic Standards Consortium (GSC) has developed the “Minimum Information about Genome/Metagenome Sequences (MIGS/MIMS)” checklist for the description of genomes and here we annotate all 30 publicly available marine bacteriophage sequences to the MIGS standard. These annotations build on existing International Nucleotide Sequence Database Collaboration (INSDC) records, and confirm, as expected that current submissions lack most MIGS fields. MIGS fields were manually curated from the literature and placed in XML format as specified by the Genomic Contextual Data Markup Language (GCDML). These “machine-readable” reports were then analyzed to highlight patterns describing this collection of genomes. Completed reports are provided in GCDML. This work represents one step towards the annotation of our complete collection of genome sequences and shows the utility of capturing richer metadata along with raw sequences. PMID:21677864

  4. Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.

    The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).

  5. Complete genome sequence and phylogenetic analyses of an aquabirnavirus isolated from a diseased marbled eel culture in Taiwan.

    PubMed

    Wen, Chiu-Ming

    2017-08-01

    An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.

  6. Unlinking the methylome pattern from nucleotide sequence, revealed by large-scale in vivo genome engineering and methylome editing in medaka fish

    PubMed Central

    Nakamura, Ryohei; Uno, Ayako; Kumagai, Masahiko; Fukushima, Hiroto S.; Morishita, Shinichi; Takeda, Hiroyuki

    2017-01-01

    The heavily methylated vertebrate genomes are punctuated by stretches of poorly methylated DNA sequences that usually mark gene regulatory regions. It is known that the methylation state of these regions confers transcriptional control over their associated genes. Given its governance on the transcriptome, cellular functions and identity, genome-wide DNA methylation pattern is tightly regulated and evidently predefined. However, how is the methylation pattern determined in vivo remains enigmatic. Based on in silico and in vitro evidence, recent studies proposed that the regional hypomethylated state is primarily determined by local DNA sequence, e.g., high CpG density and presence of specific transcription factor binding sites. Nonetheless, the dependency of DNA methylation on nucleotide sequence has not been carefully validated in vertebrates in vivo. Herein, with the use of medaka (Oryzias latipes) as a model, the sequence dependency of DNA methylation was intensively tested in vivo. Our statistical modeling confirmed the strong statistical association between nucleotide sequence pattern and methylation state in the medaka genome. However, by manipulating the methylation state of a number of genomic sequences and reintegrating them into medaka embryos, we demonstrated that artificially conferred DNA methylation states were predominantly and robustly maintained in vivo, regardless of their sequences and endogenous states. This feature was also observed in the medaka transgene that had passed across generations. Thus, despite the observed statistical association, nucleotide sequence was unable to autonomously determine its own methylation state in medaka in vivo. Our results apparently argue against the notion of the governance on the DNA methylation by nucleotide sequence, but instead suggest the involvement of other epigenetic factors in defining and maintaining the DNA methylation landscape. Further investigation in other vertebrate models in vivo will be needed for the generalization of our observations made in medaka. PMID:29267279

  7. Characterization of a Novel Polerovirus Infecting Maize in China

    PubMed Central

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-01-01

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved. PMID:27136578

  8. Characterization of a Novel Polerovirus Infecting Maize in China.

    PubMed

    Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping

    2016-04-28

    A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.

  9. Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti).

    PubMed

    Baker, C S; Vant, M D; Dalebout, M L; Lento, G M; O'Brien, S J; Yuhki, N

    2006-05-01

    The molecular diversity and phylogenetic relationships of two class II genes of the baleen whale major histocompatibility complex were investigated and compared to toothed whales and out-groups. Amplification of the DQB exon 2 provided sequences showing high within-species and between-species nucleotide diversity and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g., ruminants). Cloning of amplified products indicated gene duplication in the humpback whale and triplication in the southern right whale, with average nucleotide diversity of 5.9 and 6.3%, respectively, for alleles of each species. Significantly higher nonsynonymous divergence at sites coding for peptide binding (32% for humpback and 40% for southern right) suggested that these loci were subject to positive (overdominant) selection. A population survey of humpback whales detected 23 alleles, differing by up to 21% of their inferred amino acid sequences. Amplification of the DRB exon 2 resulted in two groups of sequences. One was most similar to the DRB3 of the cow and present in all whales screened to date, including toothed whales. The second was most similar to the DRB2 of the cow and was found only in the bowhead and right whales. Both loci showed low diversity among species and apparent loss of function or altered function including interruption of reading frames. Finally, comparison of inferred protein sequence of the DRB3-like locus suggested convergence with the DQB, perhaps resulting from intergenic conversion or recombination.

  10. Using expected sequence features to improve basecalling accuracy of amplicon pyrosequencing data.

    PubMed

    Rask, Thomas S; Petersen, Bent; Chen, Donald S; Day, Karen P; Pedersen, Anders Gorm

    2016-04-22

    Amplicon pyrosequencing targets a known genetic region and thus inherently produces reads highly anticipated to have certain features, such as conserved nucleotide sequence, and in the case of protein coding DNA, an open reading frame. Pyrosequencing errors, consisting mainly of nucleotide insertions and deletions, are on the other hand likely to disrupt open reading frames. Such an inverse relationship between errors and expectation based on prior knowledge can be used advantageously to guide the process known as basecalling, i.e. the inference of nucleotide sequence from raw sequencing data. The new basecalling method described here, named Multipass, implements a probabilistic framework for working with the raw flowgrams obtained by pyrosequencing. For each sequence variant Multipass calculates the likelihood and nucleotide sequence of several most likely sequences given the flowgram data. This probabilistic approach enables integration of basecalling into a larger model where other parameters can be incorporated, such as the likelihood for observing a full-length open reading frame at the targeted region. We apply the method to 454 amplicon pyrosequencing data obtained from a malaria virulence gene family, where Multipass generates 20 % more error-free sequences than current state of the art methods, and provides sequence characteristics that allow generation of a set of high confidence error-free sequences. This novel method can be used to increase accuracy of existing and future amplicon sequencing data, particularly where extensive prior knowledge is available about the obtained sequences, for example in analysis of the immunoglobulin VDJ region where Multipass can be combined with a model for the known recombining germline genes. Multipass is available for Roche 454 data at http://www.cbs.dtu.dk/services/MultiPass-1.0 , and the concept can potentially be implemented for other sequencing technologies as well.

  11. The nucleotide sequence and genome organization of Plasmopara halstedii virus.

    PubMed

    Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar

    2011-03-17

    Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.

  12. Molecular diagnosis of lyssaviruses and sequence comparison of Australian bat lyssavirus samples.

    PubMed

    Foord, A J; Heine, H G; Pritchard, L I; Lunt, R A; Newberry, K M; Rootes, C L; Boyle, D B

    2006-07-01

    To evaluate and implement molecular diagnostic tests for the detection of lyssaviruses in Australia. A published hemi-nested reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of all lyssavirus genotypes was modified to a fully nested RT-PCR format and compared with the original assay. TaqMan assays for the detection of Australian bat lyssavirus (ABLV) were compared with both the nested and hemi-nested RT-PCR assays. The sequences of RT-PCR products were determined to assess sequence variations of the target region (nucleocapsid gene) in samples of ABLV originating from different regions. The nested RT-PCR assay was highly analytically specific, and at least as analytically sensitive as the hemi-nested assay. The TaqMan assays were highly analytically specific and more analytically sensitive than either RT-PCR assay, with a detection level of approximately 10 genome equivalents per microl. Sequence of the first 544 nucleotides of the nucleocapsid protein coding sequence was obtained from all samples of ABLV received at Australian Animal Health Laboratory during the study period. The nested RT-PCR provided a means for molecular diagnosis of all tested genotypes of lyssavirus including classical rabies virus and Australian bat lyssavirus. The published TaqMan assay proved to be superior to the RT-PCR assays for the detection of ABLV in terms of analytical sensitivity. The TaqMan assay would also be faster and cross contamination is less likely. Nucleotide sequence analyses of samples of ABLV from a wide geographical range in Australia demonstrated the conserved nature of this region of the genome and therefore the suitability of this region for molecular diagnosis.

  13. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    USGS Publications Warehouse

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  14. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    USGS Publications Warehouse

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2-33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  15. Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3.

    PubMed

    Sánchez-Navarro, J A; Pallás, V

    1997-01-01

    The complete nucleotide sequence of an isolate of prunus necrotic ringspot virus (PNRSV) RNA 3 has been determined. Elucidation of the amino acid sequence of the proteins encoded by the two large open reading frames (ORFs) allowed us to carry out comparative and phylogenetic studies on the movement (MP) and coat (CP) proteins in the ilarvirus group. Amino acid sequence comparison of the MP revealed a highly conserved basic sequence motif with an amphipathic alpha-helical structure preceding the conserved motif of the '30K superfamily' proposed by Mushegian and Koonin [26] for MP's. Within this '30K' motif a strictly conserved transmembrane domain is present in all ilarviruses sequenced so far. At the amino-terminal end, prune dwarf virus (PDV) has an extension not present in other ilarviruses but which is observed in all bromo- and cucumoviruses, suggesting a common ancestor or a recombinational event in the Bromoviridae family. Examination of the N-terminus of the CP's of all ilarviruses revealed a highly basic region, part of which resembles the Arg-rich motif that has been characterized in the RNA-binding protein family. This motif has also been found in the other members of the Bromoviridae family, suggesting its involvement in a structural function. Furthermore this region is required for infectivity in ilarviruses. The similarities found in this Arg-rich motif are discussed in terms of this process known as genome activation. Finally, phylogenetic analysis of both the MP and CP proteins revealed a higher relationship of A1MV to PNRSV, apple mosaic virus (ApMV) and PDV than any other member of the ilarvirus group. In that sense, A1MV should be considered as a true ilarvirus instead of forming a distinct group of viruses.

  16. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

    PubMed Central

    Kim, Younghyun; Lee, Goeun; Jeon, Eunhyun; Sohn, Eun ju; Lee, Yongjik; Kang, Hyangju; Lee, Dong wook; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes. PMID:24084084

  17. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  18. Nucleotide Sequence and Genetic Structure of a Novel Carbaryl Hydrolase Gene (cehA) from Rhizobium sp. Strain AC100

    PubMed Central

    Hashimoto, Masayuki; Fukui, Mitsuru; Hayano, Kouichi; Hayatsu, Masahito

    2002-01-01

    Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon. PMID:11872471

  19. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  20. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    PubMed Central

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  1. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    PubMed

    Osmundson, Todd W; Robert, Vincent A; Schoch, Conrad L; Baker, Lydia J; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  2. The complete nucleotide sequence and genome organization of a novel betaflexivirus infecting Citrullus lanatus.

    PubMed

    Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng

    2017-10-01

    The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.

  3. Manipulation of lignin composition in plants using a tissue-specific promoter

    DOEpatents

    Chapple, Clinton C. S.

    2003-08-26

    The present invention relates to methods and materials in the field of molecular biology, the manipulation of the phenylpropanoid pathway and the regulation of proteins synthesis through plant genetic engineering. More particularly, the invention relates to the introduction of a foreign nucleotide sequence into a plant genome, wherein the introduction of the nucleotide sequence effects an increase in the syringyl content of the plant's lignin. In one specific aspect, the invention relates to methods for modifying the plant lignin composition in a plant cell by the introduction there into of a foreign nucleotide sequence comprising at issue specific plant promoter sequence and a sequence encoding an active ferulate-5-hydroxylase (F5H) enzyme. Plant transformants harboring an inventive promoter-F5H construct demonstrate increased levels of syringyl monomer residues in their lignin, rendering the polymer more readily delignified and, thereby, rendering the plant more readily pulped or digested.

  4. Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.

    PubMed

    Seward, Emily A; Kelly, Steven

    2016-11-15

    Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.

  5. Alfalfa virus S, a new species in the family Alphaflexiviridae

    USDA-ARS?s Scientific Manuscript database

    A new species of the family Alphaflexiviridae provisionally named alfalfa virus S (AVS) was discovered in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3’ poly(A) tail was determined by high throughput sequenc...

  6. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  7. Molecular Characterization of an Avian Astrovirus

    PubMed Central

    Koci, Matthew D.; Seal, Bruce S.; Schultz-Cherry, Stacey

    2000-01-01

    Astroviruses are known to cause enteric disease in several animal species, including turkeys. However, only human astroviruses have been well characterized at the nucleotide level. Herein we report the nucleotide sequence, genomic organization, and predicted amino acid sequence of a turkey astrovirus isolated from poults with an emerging enteric disease. PMID:10846102

  8. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  9. Nucleotide sequencing and identification of some wild mushrooms.

    PubMed

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.

  10. Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.

    PubMed

    Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P

    1997-11-01

    A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.

  11. Ariadne: a database search engine for identification and chemical analysis of RNA using tandem mass spectrometry data.

    PubMed

    Nakayama, Hiroshi; Akiyama, Misaki; Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-04-01

    We present here a method to correlate tandem mass spectra of sample RNA nucleolytic fragments with an RNA nucleotide sequence in a DNA/RNA sequence database, thereby allowing tandem mass spectrometry (MS/MS)-based identification of RNA in biological samples. Ariadne, a unique web-based database search engine, identifies RNA by two probability-based evaluation steps of MS/MS data. In the first step, the software evaluates the matches between the masses of product ions generated by MS/MS of an RNase digest of sample RNA and those calculated from a candidate nucleotide sequence in a DNA/RNA sequence database, which then predicts the nucleotide sequences of these RNase fragments. In the second step, the candidate sequences are mapped for all RNA entries in the database, and each entry is scored for a function of occurrences of the candidate sequences to identify a particular RNA. Ariadne can also predict post-transcriptional modifications of RNA, such as methylation of nucleotide bases and/or ribose, by estimating mass shifts from the theoretical mass values. The method was validated with MS/MS data of RNase T1 digests of in vitro transcripts. It was applied successfully to identify an unknown RNA component in a tRNA mixture and to analyze post-transcriptional modification in yeast tRNA(Phe-1).

  12. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns.

    PubMed Central

    Wolff, G; Burger, G; Lang, B F; Kück, U

    1993-01-01

    The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126

  13. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  14. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  15. DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†

    PubMed Central

    Comer, Jeffrey

    2016-01-01

    Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233

  16. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  17. N7-platinated ribonucleotides are not incorporated by RNA polymerases. New perspectives for a rational design of platinum antitumor drugs.

    PubMed

    Benedetti, Michele; Romano, Alessandro; De Castro, Federica; Girelli, Chiara R; Antonucci, Daniela; Migoni, Danilo; Verri, Tiziano; Fanizzi, Francesco P

    2016-10-01

    In this work, we assessed the capacity of RNA polymerases to use platinated ribonucleotides as substrates for RNA synthesis by testing the incorporation of the model compound [Pt(dien)(N7-5'-GTP)] (dien=diethylenetriamine; GTP=5'-guanosine triphosphate) into a natural RNA sequence. The yield of in vitro transcription operated by T7 RNA polymerase, on the LacZ (Escherichia coli gene encoding for β-galactosidase) sequence, decreases progressively with decreasing the concentration of natural GTP, in favor of the platinated nucleotide, [Pt(dien)(N7-5'-GTP)]. Comparison of the T7 RNA polymerase transcription activities for [Pt(dien)(N7-5'-GTP)] compound incorporation reaction test, with respect to the effect of a decreasing concentration of natural GTP, showed no major differences. A specific inhibitory effect of compound [Pt(dien)(N7-5'-GTP)] (which may pair the complementary base on the DNA strand, without being incorporated in the RNA by the T7 RNA polymerase) was evidenced. Our findings therefore suggest that RNA polymerases, unlike DNA polymerases, are unable to incorporate N7-platinated nucleotides into newly synthesized nucleic acids. In this respect, specifically designed N7-platinated nucleotides based compounds could be used in alternative to the classical platinum based drugs. This approach may offer a possible strategy to target specifically DNA, without affecting RNA, and is potentially able to better modulate pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Complete mitochondrial genomes of the yellow-bellied slider turtle Trachemys scripta scripta and anoxia tolerant red-eared slider Trachemys scripta elegans.

    PubMed

    Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong

    2016-05-01

    The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.

  19. The three-dimensional structure of "Lonely Guy" from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins.

    PubMed

    Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo

    2015-08-01

    The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.

  20. Pathogenicity, sequence and phylogenetic analysis of Malaysian Chicken anaemia virus obtained after low and high passages in MSB-1 cells.

    PubMed

    Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y

    2003-12-01

    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.

  1. [Replication of Streptomyces plasmids: the DNA nucleotide sequence of plasmid pSB 24.2].

    PubMed

    Bolotin, A P; Sorokin, A V; Aleksandrov, N N; Danilenko, V N; Kozlov, Iu I

    1985-11-01

    The nucleotide sequence of DNA in plasmid pSB 24.2, a natural deletion derivative of plasmid pSB 24.1 isolated from S. cyanogenus was studied. The plasmid amounted by its size to 3706 nucleotide pairs. The G-C composition was equal to 73 per cent. The analysis of the DNA structure in plasmid pSB 24.2 revealed the protein-encoding sequence of DNA, the continuity of which was significant for replication of the plasmid containing more than 1300 nucleotide pairs. The analysis also revealed two A-T-rich areas of DNA, the G-C composition of which was less than 55 per cent and a DNA area with a branched pin structure. The results may be of value in investigation of plasmid replication in actinomycetes and experimental cloning of DNA with this plasmid as a vector.

  2. Sequence-specific bias correction for RNA-seq data using recurrent neural networks.

    PubMed

    Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2017-01-25

    The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.

  3. Molecular characterization of domestic and exotic potato virus S isolates and a global analysis of genomic sequences.

    PubMed

    Lin, Y-H; Abad, J A; Maroon-Lango, C J; Perry, K L; Pappu, H R

    2014-08-01

    Five potato virus S (PVS) isolates from the USA and three isolates from Chile were characterized based on biological and molecular properties to delineate these PVS isolates into either ordinary (PVS(O)) or Andean (PVS(A)) strains. Five isolates - 41956, Cosimar, Galaxy, ND2492-2R, and Q1 - were considered ordinary strains, as they induced local lesions on the inoculated leaves of Chenopodium quinoa, whereas the remaining three (FL206-1D, Q3, and Q5) failed to induce symptoms. Considerable variability of symptom expression and severity was observed among these isolates when tested on additional indicator plants and potato cv. Defender. Additionally, all eight isolates were characterized by determining the nucleotide sequences of their coat protein (CP) genes. Based on their biological and genetic properties, the 41956, Cosimar, Galaxy, ND2492-2R, and Q1 isolates were identified as PVS(O). PVS-FL206-1D and the two Chilean isolates (PVS-Q3 and PVS-Q5) could not be identified based on phenotype alone; however, based on sequence comparisons, PVS-FL206-1D was identified as PVS(O), while Q3 and Q5 clustered with known PVS(A) strains. C. quinoa may not be a reliable indicator for distinguishing PVS strains. Sequences of the CP gene should be used as an additional criterion for delineating PVS strains. A global genetic analysis of known PVS sequences from GenBank was carried out to investigate nucleotide substitution, population selection, and genetic recombination and to assess the genetic diversity and evolution of PVS. A higher degree of nucleotide diversity (π value) of the CP gene compared to that of the 11K gene suggested greater variation in the CP gene. When comparing PVS(A) and PVS(O) strains, a higher π value was found for PVS(A). Statistical tests of the neutrality hypothesis indicated a negative selection pressure on both the CP and 11K proteins of PVS(O), whereas a balancing selection pressure was found on PVS(A).

  4. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    PubMed

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they generate. We believe that efforts to maximize the amount of information obtained from automated annotation can help address the functional annotation deficit that most evolutionary biologists now face, and here demonstrate the value of such an approach.

  5. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.

    PubMed

    Levis, R; Schlesinger, S; Huang, H V

    1990-04-01

    Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA.

  6. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array

    PubMed Central

    Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.

    2016-01-01

    Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524

  7. T box transcription antitermination riboswitch: Influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element

    PubMed Central

    Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.

    2008-01-01

    Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843

  8. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper.

    PubMed

    Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun

    2018-01-01

    Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  9. [Genetic characterization of echovirus 6 isolated from meningitis and encephalitis cases in Shandong Province, China].

    PubMed

    Lin, Xiao-Juan; Tao, Ze-Xin; Liu, Gui-Fang; Wang, Min; Song, Li-Zhi; Wang, Su-Ting; Ji, Feng; Wang, Hai-Yan; Xu, Ai-Qiang

    2014-03-01

    To analyze the genetic characteristics of echovirus 6 (E6) isolated from meningitis and encephalitis cases in Shandong Province, China, we collected cerebrospinal fluid samples from meningitis and encephalitis cases in Shandong Province from 2007 to 2012 for virus isolation. Viral RNAs were extracted from positive isolates, and complete VP1 coding regions were amplified by RT-PCR and sequenced. Homology comparison and phylogenetic analysis were performed. Six isolates were identified as E6 by microneutralization assay and molecular typing. The homology analysis showed that the six isolates had 78. 6%-99. 8% nucleotide and 95. 5%-100. 0% amino acid identities with each other, as well as 76. 9%-78. 4% nucleotide and 92. 3%-95. 1% amino acid identities with the prototype strain (D' Amori). The phylogenetic analysis based on the integrated VP1 sequences indicated that all Shandong E6 isolates could be separated into four clusters, designated as A, B, C, and D. The six E6 isolates belonged to clusters A, B, and D. Our study reveals high genetic differences between Shandong E6 isolates and suggests different transmission lineages of E6 co-circulated in Shandong Province.

  10. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures

    PubMed Central

    2014-01-01

    Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of building blocks and the available biological machinery to assemble and decode polymers with a defined sequence. Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides. Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong incentive for further development in this direction. PMID:24491139

  11. A new mathematical modeling for pure parsimony haplotyping problem.

    PubMed

    Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M

    2016-11-01

    Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evolution of the herpes thymidine kinase: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell-encoded thymidylate kinase.

    PubMed Central

    Robertson, G R; Whalley, J M

    1988-01-01

    We have identified the equine herpesvirus 1 (EHV-1) thymidine kinase gene (TK) by DNA-mediated transformation and by DNA sequencing. Alignment of the amino acid sequence of the EHV-1 TK with the TKs from 3 other herpesviruses revealed regions of homology, some of which correspond to the previously identified substrate binding sites, while others have as yet, no assigned function. In particular, the strict conservation of an aspartate within the proposed nucleoside binding site suggests a role in ATP binding for this residue. Comparison of 5 herpes TKs with the thymidylate kinase of yeast revealed significant similarity which was strongest in those regions important to catalytic activity of the herpes TKs, and, therefore we propose that the herpes TK may be derived from a cellular thymidylate kinase. The implications for the evolution of enzyme activities within a pathway of nucleotide metabolism are discussed. PMID:2849761

  13. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids

    PubMed Central

    Sample, Paul J.; Gaston, Kirk W.; Alfonzo, Juan D.; Limbach, Patrick A.

    2015-01-01

    Ribosomal ribonucleic acid (RNA), transfer RNA and other biological or synthetic RNA polymers can contain nucleotides that have been modified by the addition of chemical groups. Traditional Sanger sequencing methods cannot establish the chemical nature and sequence of these modified-nucleotide containing oligomers. Mass spectrometry (MS) has become the conventional approach for determining the nucleotide composition, modification status and sequence of modified RNAs. Modified RNAs are analyzed by MS using collision-induced dissociation tandem mass spectrometry (CID MS/MS), which produces a complex dataset of oligomeric fragments that must be interpreted to identify and place modified nucleosides within the RNA sequence. Here we report the development of RoboOligo, an interactive software program for the robust analysis of data generated by CID MS/MS of RNA oligomers. There are three main functions of RoboOligo: (i) automated de novo sequencing via the local search paradigm. (ii) Manual sequencing with real-time spectrum labeling and cumulative intensity scoring. (iii) A hybrid approach, coined ‘variable sequencing’, which combines the user intuition of manual sequencing with the high-throughput sampling of automated de novo sequencing. PMID:25820423

  14. Diversity and three-dimensional structures of the alpha Mcr of the methanogenic Archaea from the anoxic region of Tucuruí Lake, in Eastern Brazilian Amazonia

    PubMed Central

    Santana, Priscila Bessa; Junior, Rubens Ghilardi; Alves, Claudio Nahum; Silva, Jeronimo Lameira; McCulloch, John Anthony; Schneider, Maria Paula Cruz; da Costa da Silva, Artur

    2012-01-01

    Methanogenic archaeans are organisms of considerable ecological and biotechnological interest that produce methane through a restricted metabolic pathway, which culminates in the reaction catalyzed by the Methyl-coenzyme M reductase (Mcr) enzyme, and results in the release of methane. Using a metagenomic approach, the gene of the α subunit of mcr (mcrα) was isolated from sediment sample from an anoxic zone, rich in decomposing organic material, obtained from the Tucuruí hydroelectric dam reservoir in eastern Brazilian Amazonia. The partial nucleotide sequences obtained were 83 to 95% similar to those available in databases, indicating a low diversity of archaeans in the reservoir. Two orders were identified - the Methanomicrobiales, and a unique Operational Taxonomic Unit (OTU) forming a clade with the Methanosarcinales according to low bootstrap values. Homology modeling was used to determine the three-dimensional (3D) structures, for this the partial nucleotide sequence of the mcrα were isolated and translated on their partial amino acid sequences. The 3D structures of the archaean Mcrα observed in the present study varied little, and presented approximately 70% identity in comparison with the Mcrα of Methanopyrus klanderi. The results demonstrated that the community of methanogenic archaeans of the anoxic C1 region of the Tucurui reservoir is relatively homogeneous. PMID:22481885

  15. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects.

    PubMed

    Liu, Qiu-Ning; Chai, Xin-Yue; Bian, Dan-Dan; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-01-01

    The mitochondrial (mt) genome can provide important information for the understanding of phylogenetic relationships. The complete mt genome of Plodia interpunctella (Lepidoptera: Pyralidae) has been sequenced. The circular genome is 15 287 bp in size, encoding 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The AT skew of this mt genome is slightly negative, and the nucleotide composition is biased toward A+T nucleotides (80.15%). All PCGs start with the typical ATN (ATA, ATC, ATG, and ATT) codons, except for the cox1 gene which may start with the CGA codon. Four of the 13 PCGs harbor the incomplete termination codon T or TA. All the tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN) in which the DHU arm fails to form a stable stem-loop structure. The overlapping sequences are 35 bp in total and are found in seven different locations. A total of 240 bp of intergenic spacers are scattered in 16 regions. The control region of the mt genome is 327 bp in length and consisted of several features common to the sequenced lepidopteran insects. Phylogenetic analysis based on 13 PCGs using the Maximum Likelihood method shows that the placement of P. interpunctella was within the Pyralidae.

  16. Isolation of a complementary DNA clone for thyroid microsomal antigen. Homology with the gene for thyroid peroxidase.

    PubMed Central

    Seto, P; Hirayu, H; Magnusson, R P; Gestautas, J; Portmann, L; DeGroot, L J; Rapoport, B

    1987-01-01

    The thyroid microsomal antigen (MSA) in autoimmune thyroid disease is a protein of approximately 107 kD. We screened a human thyroid cDNA library constructed in the expression vector lambda gt11 with anti-107-kD monoclonal antibodies. Of five clones obtained, the recombinant beta-galactosidase fusion protein from one clone (PM-5) was confirmed to react with the monoclonal antiserum. The complementary DNA (cDNA) insert from PM-5 (0.8 kb) was used as a probe on Northern blot analysis to estimate the size of the mRNA coding for the MSA. The 2.9-kb messenger RNA (mRNA) species observed was the same size as that coding for human thyroid peroxidase (TPO). The probe did not bind to human liver mRNA, indicating the thyroid-specific nature of the PM-5-related mRNA. The nucleotide sequence of PM-5 (842 bp) was determined and consisted of a single open reading frame. Comparison of the nucleotide sequence of PM-5 with that presently available for pig TPO indicates 84% homology. In conclusion, a cDNA clone representing part of the microsomal antigen has been isolated. Sequence homology with porcine TPO, as well as identity in the size of the mRNA species for both the microsomal antigen and TPO, indicate that the microsomal antigen is, at least in part, TPO. Images PMID:3654979

  17. Identification of Group B Streptococcal Sip Protein, Which Elicits Cross-Protective Immunity

    PubMed Central

    Brodeur, Bernard R.; Boyer, Martine; Charlebois, Isabelle; Hamel, Josée; Couture, France; Rioux, Clément R.; Martin, Denis

    2000-01-01

    A protein of group B streptococci (GBS), named Sip for surface immunogenic protein, which is distinct from previously described surface proteins, was identified after immunological screening of a genomic library. Immunoblots using a Sip-specific monoclonal antibody indicated that a protein band with an approximate molecular mass of 53 kDa which did not vary in size was present in every GBS strain tested. Representatives of all nine GBS serotypes were included in the panel of strains. Cloning and sequencing of the sip gene revealed an open reading frame of 1,305 nucleotides coding for a polypeptide of 434 amino acid residues, with a calculated pI of 6.84 and molecular mass of 45.5 kDa. Comparison of the nucleotide sequences from six different strains confirmed with 98% identity that the sip gene is highly conserved among GBS isolates. N-terminal amino acid sequencing also indicated the presence of a 25-amino-acid signal peptide which is cleaved in the mature protein. More importantly, immunization with the recombinant Sip protein efficiently protected CD-1 mice against deadly challenges with six GBS strains of serotypes Ia/c, Ib, II/R, III, V, and VI. The data presented in this study suggest that this highly conserved protein induces cross-protective immunity against GBS infections and emphasize its potential as a universal vaccine candidate. PMID:10992461

  18. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  19. Comparison of simple sequence repeats in 19 Archaea.

    PubMed

    Trivedi, S

    2006-12-05

    All organisms that have been studied until now have been found to have differential distribution of simple sequence repeats (SSRs), with more SSRs in intergenic than in coding sequences. SSR distribution was investigated in Archaea genomes where complete chromosome sequences of 19 Archaea were analyzed with the program SPUTNIK to find di- to penta-nucleotide repeats. The number of repeats was determined for the complete chromosome sequences and for the coding and non-coding sequences. Different from what has been found for other groups of organisms, there is an abundance of SSRs in coding regions of the genome of some Archaea. Dinucleotide repeats were rare and CG repeats were found in only two Archaea. In general, trinucleotide repeats are the most abundant SSR motifs; however, pentanucleotide repeats are abundant in some Archaea. Some of the tetranucleotide and pentanucleotide repeat motifs are organism specific. In general, repeats are short and CG-rich repeats are present in Archaea having a CG-rich genome. Among the 19 Archaea, SSR density was not correlated with genome size or with optimum growth temperature. Pentanucleotide density had an inverse correlation with the CG content of the genome.

  20. Complete sequence of the genome of avian paramyxovirus type 2 (strain Yucaipa) and comparison with other paramyxoviruses

    PubMed Central

    Subbiah, Madhuri; Xiao, Sa; Collins, Peter L.; Samal, Siba K

    2009-01-01

    The complete RNA genome sequence of avian paramyxovirus (APMV) serotype 2, strain Yucaipa isolated from chicken has been determined. With genome size of 14,904 nucleotides (nt), strain Yucaipa is consistent with the “rule of six” and is the smallest virus reported to date among the members of subfamily Paramyxovirinae. The genome contains six non-overlapping genes in the order 3′-N-P/V-M-F-HN-L-5′. The genes are flanked on either side by highly-conserved transcription start and stop signals and have intergenic sequences varying in length from 3 to 23 nt. The genome contains a 55 nt leader sequence at 3′ end and a 154 nt trailer sequence at 5′ end. Alignment and phylogenetic analysis of the predicted amino acid sequences of strain Yucaipa proteins with the cognate proteins of viruses of all of the five genera of family Paramyxoviridae showed that APMV-2 strain Yucaipa is more closely related to APMV-6 than APMV-1. PMID:18603323

  1. Molecular characterization of a novel rhabdovirus infecting blackcurrant identified by high-throughput sequencing.

    PubMed

    Wu, L-P; Yang, T; Liu, H-W; Postman, J; Li, R

    2018-05-01

    A large contig with sequence similarities to several nucleorhabdoviruses was identified by high-throughput sequencing analysis from a black currant (Ribes nigrum L.) cultivar. The complete genome sequence of this new nucleorhabdovirus is 14,432 nucleotides long. Its genomic organization is very similar to those of unsegmented plant rhabdoviruses, containing six open reading frames in the order 3'-N-P-P3-M-G-L-5. The virus, which is provisionally named "black currant-associated rhabdovirus", is 41-52% identical in its genome nucleotide sequence to other nucleorhabdoviruses and may represent a new species in the genus Nucleorhabdovirus.

  2. Characterization and Construction of Functional cDNA Clones of Pariacoto Virus, the First Alphanodavirus Isolated outside Australasia

    PubMed Central

    Johnson, Karyn N.; Zeddam, Jean-Louis; Ball, L. Andrew

    2000-01-01

    Pariacoto virus (PaV) was recently isolated in Peru from the Southern armyworm (Spodoptera eridania). PaV particles are isometric, nonenveloped, and about 30 nm in diameter. The virus has a bipartite RNA genome and a single major capsid protein with a molecular mass of 39.0 kDa, features that support its classification as a Nodavirus. As such, PaV is the first Alphanodavirus to have been isolated from outside Australasia. Here we report that PaV replicates in wax moth larvae and that PaV genomic RNAs replicate when transfected into cultured baby hamster kidney cells. The complete nucleotide sequences of both segments of the bipartite RNA genome were determined. The larger genome segment, RNA1, is 3,011 nucleotides long and contains a 973-amino-acid open reading frame (ORF) encoding protein A, the viral contribution to the RNA replicase. During replication, a 414-nucleotide long subgenomic RNA (RNA3) is synthesized which is coterminal with the 3′ end of RNA1. RNA3 contains a small ORF which could encode a protein of 90 amino acids similar to the B2 protein of other alphanodaviruses. RNA2 contains 1,311 nucleotides and encodes the 401 amino acids of the capsid protein precursor α. The amino acid sequences of the PaV capsid protein and the replicase subunit share 41 and 26% identity with homologous proteins of Flock house virus, the best characterized of the alphanodaviruses. These and other sequence comparisons indicate that PaV is evolutionarily the most distant of the alphanodaviruses described to date, consistent with its novel geographic origin. Although the PaV capsid precursor is cleaved into the two mature capsid proteins β and γ, the amino acid sequence at the cleavage site, which is Asn/Ala in all other alphanodaviruses, is Asn/Ser in PaV. To facilitate the investigation of PaV replication in cultured cells, we constructed plasmids that transcribed full-length PaV RNAs with authentic 5′ and 3′ termini. Transcription of these plasmids in cells recreated the replication of PaV RNA1 and RNA2, synthesis of subgenomic RNA3, and translation of viral proteins A and α. PMID:10799587

  3. Characterization and construction of functional cDNA clones of Pariacoto virus, the first Alphanodavirus isolated outside Australasia.

    PubMed

    Johnson, K N; Zeddam, J L; Ball, L A

    2000-06-01

    Pariacoto virus (PaV) was recently isolated in Peru from the Southern armyworm (Spodoptera eridania). PaV particles are isometric, nonenveloped, and about 30 nm in diameter. The virus has a bipartite RNA genome and a single major capsid protein with a molecular mass of 39.0 kDa, features that support its classification as a Nodavirus. As such, PaV is the first Alphanodavirus to have been isolated from outside Australasia. Here we report that PaV replicates in wax moth larvae and that PaV genomic RNAs replicate when transfected into cultured baby hamster kidney cells. The complete nucleotide sequences of both segments of the bipartite RNA genome were determined. The larger genome segment, RNA1, is 3,011 nucleotides long and contains a 973-amino-acid open reading frame (ORF) encoding protein A, the viral contribution to the RNA replicase. During replication, a 414-nucleotide long subgenomic RNA (RNA3) is synthesized which is coterminal with the 3' end of RNA1. RNA3 contains a small ORF which could encode a protein of 90 amino acids similar to the B2 protein of other alphanodaviruses. RNA2 contains 1,311 nucleotides and encodes the 401 amino acids of the capsid protein precursor alpha. The amino acid sequences of the PaV capsid protein and the replicase subunit share 41 and 26% identity with homologous proteins of Flock house virus, the best characterized of the alphanodaviruses. These and other sequence comparisons indicate that PaV is evolutionarily the most distant of the alphanodaviruses described to date, consistent with its novel geographic origin. Although the PaV capsid precursor is cleaved into the two mature capsid proteins beta and gamma, the amino acid sequence at the cleavage site, which is Asn/Ala in all other alphanodaviruses, is Asn/Ser in PaV. To facilitate the investigation of PaV replication in cultured cells, we constructed plasmids that transcribed full-length PaV RNAs with authentic 5' and 3' termini. Transcription of these plasmids in cells recreated the replication of PaV RNA1 and RNA2, synthesis of subgenomic RNA3, and translation of viral proteins A and alpha.

  4. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    PubMed Central

    2012-01-01

    Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites. Conclusion The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures. PMID:22409411

  5. Differential sequence diversity at merozoite surface protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand.

    PubMed

    Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai

    2013-08-01

    To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. First Complete Genome Sequence of an Isolate of Tomato Mottle Mosaic Virus Infecting Plants of Solanum lycopersicum in South America.

    PubMed

    Nagai, Alice; Duarte, Lígia M L; Chaves, Alexandre L R; Alexandre, Maria A V; Ramos-González, Pedro L; Chabi-Jesus, Camila; Harakava, Ricardo; Dos Santos, Déborah Y A C

    2018-05-10

    The complete nucleotide sequence of an isolate of tomato mottle mosaic virus (ToMMV) was determined. The virus, originally isolated from symptomatic tomato plants found in a county near the city of São Paulo, Brazil, has a genome with 99% nucleotide sequence identity with ToMMV from Mexico, China, Spain, and the United States. Copyright © 2018 Nagai et al.

  7. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    USDA-ARS?s Scientific Manuscript database

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  8. Nucleotide sequencing and serological evidence that the recently recognized deer tick virus is a genotype of Powassan virus.

    PubMed

    Beasley, D W; Suderman, M T; Holbrook, M R; Barrett, A D

    2001-11-05

    Deer tick virus (DTV) is a recently recognized North American virus isolated from Ixodes dammini ticks. Nucleotide sequencing of fragments of structural and non-structural protein genes suggested that this virus was most closely related to the tick-borne flavivirus Powassan (POW), which causes potentially fatal encephalitis in humans. To determine whether DTV represents a new and distinct member of the Flavivirus genus of the family Flaviviridae, we sequenced the structural protein genes and 5' and 3' non-coding regions of this virus. In addition, we compared the reactivity of DTV and POW in hemagglutination inhibition tests with a panel of polyclonal and monoclonal antisera, and performed cross-neutralization experiments using anti-DTV antisera. Nucleotide sequencing revealed a high degree of homology between DTV and POW at both nucleotide (>80% homology) and amino acid (>90% homology) levels, and the two viruses were indistinguishable in serological assays and mouse neuroinvasiveness. On the basis of these results, we suggest that DTV should be classified as a genotype of POW virus.

  9. The bioinformatics of nucleotide sequence coding for proteins requiring metal coenzymes and proteins embedded with metals

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.

    2015-09-01

    All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R-sq outcome in the bioinformatics simulation.

  10. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus

    PubMed Central

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244

  11. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  12. Molecular typing and characterization of a new serotype of human enterovirus (EV-B111) identified in China.

    PubMed

    Zhang, Yong; Hong, Mei; Sun, Qiang; Zhu, Shuangli; Tsewang; Li, Xiaolei; Yan, Dongmei; Wang, Dongyan; Xu, Wenbo

    2014-04-01

    Molecular methods, based on sequencing the region encoding the complete VP1 or P1 protein, have enabled the rapid identification of new enterovirus serotypes. In the present study, the complete genome of a newly discovered enterovirus serotype, strain Q0011/XZ/CHN/2000 (hereafter referred to as Q0011), was sequenced and analyzed. The virus, isolated from a stool sample from a patient with acute flaccid paralysis in the Tibet region of China in 2000, was characterized by amplicon sequencing and comparison to a GenBank database of enterovirus nucleotide sequences. The nucleotide sequence encoding the complete VP1 capsid protein is most closely related to the sequences of viruses within the species enterovirus B (EV-B), but is less than 72.1% identical to the homologous sequences of the recognized human enterovirus serotypes, with the greatest homology to EV-B101 and echovirus 32. Moreover, the deduced amino acid sequence of the complete VP1 region is less than 84.7% identical to those of the recognized serotypes, suggesting that the strain is a new serotype of enterovirus within EV-B. The virus was characterized as a new enterovirus type, named EV-B111, by the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses. Low positive rate and titer of neutralizing antibody against EV-B111 were found in the Tibet region of China. Nearly 50% of children ≤5 years had no neutralizing antibody against EV-B111. So the extent of transmission and the exposure of the population to this new EV are very limited. This is the first identification of a new serotype of human enterovirus in China, and strain Q0011 was designated the prototype strain of EV-B111. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Phylogenetic Analysis of Pasteuria penetrans by 16S rRNA Gene Cloning and Sequencing.

    PubMed

    Anderson, J M; Preston, J F; Dickson, D W; Hewlett, T E; Williams, N H; Maruniak, J E

    1999-09-01

    Pasteuria penetrans is an endospore-forming bacterial parasite of Meloidogyne spp. This organism is among the most promising agents for the biological control of root-knot nematodes. In order to establish the phylogenetic position of this species relative to other endospore-forming bacteria, the 16S ribosomal genes from two isolates of P. penetrans, P-20, which preferentially infects M. arenaria race 1, and P-100, which preferentially infects M. incognita and M. javanica, were PCR-amplified from a purified endospore extraction. Universal primers for the 16S rRNA gene were used to amplify DNA which was cloned, and a nucleotide sequence was obtained for 92% of the gene (1,390 base pairs) encoding the 16S rDNA from each isolate. Comparison of both isolates showed identical sequences that were compared to 16S rDNA sequences of 30 other endospore-forming bacteria obtained from GenBank. Parsimony analyses indicated that P. penetrans is a species within a clade that includes Alicyclobacillus acidocaldarius, A. cycloheptanicus, Sulfobacillus sp., Bacillus tusciae, B. schlegelii, and P. ramosa. Its closest neighbor is P. ramosa, a parasite of Daphnia spp. (water fleas). This study provided a genomic basis for the relationship of species assigned to the genus Pasteuria, and for comparison of species that are parasites of different phytopathogenic nematodes.

  14. Partial Shotgun Sequencing of the Boechera stricta Genome Reveals Extensive Microsynteny and Promoter Conservation with Arabidopsis1[W

    PubMed Central

    Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas

    2006-01-01

    Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030

  15. Neutral changes during divergent evolution of hemoglobins

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1978-01-01

    A comparison of the mRNAs for rabbit and human beta-hemoglobins shows that synonymous changes in codons have accumulated three times as rapidly as nucleotide replacements that produced changes in amino acids. This agrees with predictions based on the so-called neutral theory. In addition, seven codon changes that appear to be single-base changes (according to maximum parsimony) are actually two-base changes. This indicates that the construction of primordial sequences is of limited significance when based on inferences that assume minimum base changes for amino acid replacements.

  16. Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi

    PubMed Central

    Tedersoo, Leho; Abarenkov, Kessy; Nilsson, R. Henrik; Schüssler, Arthur; Grelet, Gwen-Aëlle; Kohout, Petr; Oja, Jane; Bonito, Gregory M.; Veldre, Vilmar; Jairus, Teele; Ryberg, Martin; Larsson, Karl-Henrik; Kõljalg, Urmas

    2011-01-01

    Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi. PMID:21949797

  17. Gause's Principle and the Effect of Resource Partitioning on the Dynamical Coexistence of Replicating Templates

    PubMed Central

    Szilágyi, András; Zachar, István; Szathmáry, Eörs

    2013-01-01

    Models of competitive template replication, although basic for replicator dynamics and primordial evolution, have not yet taken different sequences explicitly into account, neither have they analyzed the effect of resource partitioning (feeding on different resources) on coexistence. Here we show by analytical and numerical calculations that Gause's principle of competitive exclusion holds for template replicators if resources (nucleotides) affect growth linearly and coexistence is at fixed point attractors. Cases of complementary or homologous pairing between building blocks with parallel or antiparallel strands show no deviation from the rule that the nucleotide compositions of stably coexisting species must be different and there cannot be more coexisting replicator species than nucleotide types. Besides this overlooked mechanism of template coexistence we show also that interesting sequence effects prevail as parts of sequences that are copied earlier affect coexistence more strongly due to the higher concentration of the corresponding replication intermediates. Template and copy always count as one species due their constraint of strict stoichiometric coupling. Stability of fixed-point coexistence tends to decrease with the length of sequences, although this effect is unlikely to be detrimental for sequences below 100 nucleotides. In sum, resource partitioning (niche differentiation) is the default form of competitive coexistence for replicating templates feeding on a cocktail of different nucleotides, as it may have been the case in the RNA world. Our analysis of different pairing and strand orientation schemes is relevant for artificial and potentially astrobiological genetics. PMID:23990769

  18. Genome Survey Sequencing of Luffa Cylindrica L. and Microsatellite High Resolution Melting (SSR-HRM) Analysis for Genetic Relationship of Luffa Genotypes.

    PubMed

    An, Jianyu; Yin, Mengqi; Zhang, Qin; Gong, Dongting; Jia, Xiaowen; Guan, Yajing; Hu, Jin

    2017-09-11

    Luffa cylindrica (L.) Roem. is an economically important vegetable crop in China. However, the genomic information on this species is currently unknown. In this study, for the first time, a genome survey of L. cylindrica was carried out using next-generation sequencing (NGS) technology. In total, 43.40 Gb sequence data of L. cylindrica , about 54.94× coverage of the estimated genome size of 789.97 Mb, were obtained from HiSeq 2500 sequencing, in which the guanine plus cytosine (GC) content was calculated to be 37.90%. The heterozygosity of genome sequences was only 0.24%. In total, 1,913,731 contigs (>200 bp) with 525 bp N 50 length and 1,410,117 scaffolds (>200 bp) with 885.01 Mb total length were obtained. From the initial assembled L. cylindrica genome, 431,234 microsatellites (SSRs) (≥5 repeats) were identified. The motif types of SSR repeats included 62.88% di-nucleotide, 31.03% tri-nucleotide, 4.59% tetra-nucleotide, 0.96% penta-nucleotide and 0.54% hexa-nucleotide. Eighty genomic SSR markers were developed, and 51/80 primers could be used in both "Zheda 23" and "Zheda 83". Nineteen SSRs were used to investigate the genetic diversity among 32 accessions through SSR-HRM analysis. The unweighted pair group method analysis (UPGMA) dendrogram tree was built by calculating the SSR-HRM raw data. SSR-HRM could be effectively used for genotype relationship analysis of Luffa species.

  19. A nucleotide substitution in one of the beta-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate.

    PubMed

    Goldman, G H; Temmerman, W; Jacobs, D; Contreras, R; Van Montagu, M; Herrera-Estrella, A

    1993-07-01

    We characterized a Trichoderma viride strain that is resistant to the antimitotic drug methyl benzimidazole-2-yl-carbamate (MBC). This species has two beta-tubulin genes (tub1 and tub2) and by reverse genetics we showed that a mutation in the tub2 gene confers MBC resistance in this strain. Comparison of the tub2 sequence of the mutant strain with that of the wild type revealed that a single amino acid substitution of tyrosine for histidine at a position 6 is responsible for the MBC tolerance. Furthermore, we showed that this gene can be used as a homologous dominant selectable marker in T. viride transformation. Both tubulin genes were completely sequenced. They differ by 48 residues and the degree of identity between their deduced amino acid sequences is 86.3%.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea; Slezak, Tom

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. Themore » SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.« less

  1. Screening for SNPs with Allele-Specific Methylation based on Next-Generation Sequencing Data

    PubMed Central

    Hu, Bo; Xu, Yaomin

    2013-01-01

    Allele-specific methylation (ASM) has long been studied but mainly documented in the context of genomic imprinting and X chromosome inactivation. Taking advantage of the next-generation sequencing technology, we conduct a high-throughput sequencing experiment with four prostate cell lines to survey the whole genome and identify single nucleotide polymorphisms (SNPs) with ASM. A Bayesian approach is proposed to model the counts of short reads for each SNP conditional on its genotypes of multiple subjects, leading to a posterior probability of ASM. We flag SNPs with high posterior probabilities of ASM by accounting for multiple comparisons based on posterior false discovery rates. Applying the Bayesian approach to the in-house prostate cell line data, we identify 269 SNPs as candidates of ASM. A simulation study is carried out to demonstrate the quantitative performance of the proposed approach. PMID:23710259

  2. DNA sequence-based comparative studies between non-extremophile and extremophile organisms with implications in exobiology

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Marchese, P.; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Lieberman, D.; Cheung, T.

    2008-08-01

    We have characterized function related DNA sequences of various organisms using informatics techniques, including fractal dimension calculation, nucleotide and multi-nucleotide statistics, and sequence fluctuation analysis. Our analysis shows trends which differentiate extremophile from non-extremophile organisms, which could be reproduced in extraterrestrial life. Among the systems studied are radiation repair genes, genes involved in thermal shocks, and genes involved in drug resistance. We also evaluate sequence level changes that have occurred during short term evolution (several thousand generations) under extreme conditions.

  3. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    PubMed

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  4. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  5. Characterization of avian paramyxovirus serotype 14, a novel serotype, isolated from a duck fecal sample in Japan.

    PubMed

    Thampaisarn, Rapeewan; Bui, Vuong N; Trinh, Dai Q; Nagai, Makoto; Mizutani, Tetsuya; Omatsu, Tsutomu; Katayama, Yukie; Gronsang, Dulyatad; Le, Duong H T; Ogawa, Haruko; Imai, Kunitoshi

    2017-01-15

    A hemagglutinating virus isolate designated 11OG0352, was obtained from a duck fecal sample. Genetic and virological analyses indicated that it might represent a novel serotype of avian paramyxovirus (APMV). Electron micrographs showed that the morphology of the virus particle was similar to that of APMV. The complete genome of this virus comprised 15,444 nucleotides complying with the paramyxovirus "rule of six" and contains six open reading frames (3'-N-P-M-F-HN-L-5'). The phylogenetic analysis of the whole genome revealed that the virus was a member of the genus Avulavirus, but that it was distinct from APMV-1 to APMV-13. Although the F-protein cleavage site was TREGK↓L, which resembles a lentogenic strain of APMV-1, the K residue at position -1 of the cleavage site was first discovered in APMV members. The phosphoprotein gene of isolate 11OG0352 contains a putative RNA editing site, 3'-AUUUUCCC-5' (negative sense) which sequence differs from that of other APMVs. The intracerebral pathogenicity index test did not detect virulence in infected chicks. In hemagglutination inhibition (HI) tests, an antiserum against this virus did not detectably react with other APMVs (serotypes 1-4, 6-9) except for low reciprocal cross-reactivity with APMV-6. We designated this isolate, as APMV-14/duck/Japan/11OG0352/2011 and propose that it is a novel APMV serotype. The HI test may not be widely applicable for the classification of a new serotype because of the limited availability of reference antisera against all serotypes and cross-reactivity data. The nucleotide sequence identities of the whole genome of 11OG0352 and other APMVs ranged from 46.3% to 56.1%. Such comparison may provide a useful tool for classifying new APMV isolates. However, the nucleotide sequence identity between APMV-12 and APMV-13 was higher (64%), which was nearly identical to the lowest nucleotide identity (67%) reported in subgroups within the serotype. Therefore, consensus criteria for using whole genome analysis should be established. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cleavage sites within the poliovirus capsid protein precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occurmore » between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.« less

  7. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    PubMed

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  8. Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation.

    PubMed Central

    Chang, D D; Clayton, D A

    1986-01-01

    Transcription of the heavy strand of mouse mitochondrial DNA starts from two closely spaced, distinct sites located in the displacement loop region of the genome. We report here an analysis of regulatory sequences required for faithful transcription from these two sites. Data obtained from in vitro assays demonstrated that a 51-base-pair region, encompassing nucleotides -40 to +11 of the downstream start site, contains sufficient information for accurate transcription from both start sites. Deletion of the 3' flanking sequences, including one or both start sites to -17, resulted in the initiation of transcription by the mitochondrial RNA polymerase from alternative sites within vector DNA sequences. This feature places the mouse heavy-strand promoter uniquely among other known mitochondrial promoters, all of which absolutely require cognate start sites for transcription. Comparison of the heavy-strand promoter with those of other vertebrate mitochondrial DNAs revealed a remarkably high rate of sequence divergence among species. Images PMID:3785226

  9. Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element.

    PubMed Central

    Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H

    1997-01-01

    RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394

  10. Masking as an effective quality control method for next-generation sequencing data analysis.

    PubMed

    Yun, Sajung; Yun, Sijung

    2014-12-13

    Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).

  11. Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease viruses.

    PubMed

    Schnitzler, P; Darai, G

    1989-09-01

    The complete DNA nucleotide sequence of the repetitive DNA elements in the genome of fish lymphocystis disease virus (FLDV) isolated from two different species (flounder and dab) was determined. The size of these repetitive DNA elements was found to be 1413 bp which corresponds to the DNA sequences of the 5' terminus of the EcoRI DNA fragment B (0.034 to 0.052 m.u.) and to the EcoRI DNA fragment M (0.718 to 0.736 m.u.) of the FLDV genome causing lymphocystis disease in flounder and plaice. The degree of DNA nucleotide homology between both regions was found to be 99%. The repetitive DNA element in the genome of FLDV isolated from other fish species (dab) was identified and is located within the EcoRI DNA fragment B and J of the viral genome. The DNA nucleotide sequence of one duplicate of this repetition (EcoRI DNA fragment J) was determined (1410 bp) and compared to the DNA nucleotide sequences of the repetitive DNA elements of the genome of FLDV isolated from flounder. It was found that the repetitive DNA elements of the genome of FLDV derived from two different fish species are highly conserved and possess a degree of DNA sequence homology of 94%. The DNA sequences of each strand of the individual repetitive element possess one open reading frame.

  12. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  13. VirVarSeq: a low-frequency virus variant detection pipeline for Illumina sequencing using adaptive base-calling accuracy filtering.

    PubMed

    Verbist, Bie M P; Thys, Kim; Reumers, Joke; Wetzels, Yves; Van der Borght, Koen; Talloen, Willem; Aerssens, Jeroen; Clement, Lieven; Thas, Olivier

    2015-01-01

    In virology, massively parallel sequencing (MPS) opens many opportunities for studying viral quasi-species, e.g. in HIV-1- and HCV-infected patients. This is essential for understanding pathways to resistance, which can substantially improve treatment. Although MPS platforms allow in-depth characterization of sequence variation, their measurements still involve substantial technical noise. For Illumina sequencing, single base substitutions are the main error source and impede powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores (Qs) that are useful for differentiating errors from the real low-frequency mutations. A variant calling tool, Q-cpileup, is proposed, which exploits the Qs of nucleotides in a filtering strategy to increase specificity. The tool is imbedded in an open-source pipeline, VirVarSeq, which allows variant calling starting from fastq files. Using both plasmid mixtures and clinical samples, we show that Q-cpileup is able to reduce the number of false-positive findings. The filtering strategy is adaptive and provides an optimized threshold for individual samples in each sequencing run. Additionally, linkage information is kept between single-nucleotide polymorphisms as variants are called at the codon level. This enables virologists to have an immediate biological interpretation of the reported variants with respect to their antiviral drug responses. A comparison with existing SNP caller tools reveals that calling variants at the codon level with Q-cpileup results in an outstanding sensitivity while maintaining a good specificity for variants with frequencies down to 0.5%. The VirVarSeq is available, together with a user's guide and test data, at sourceforge: http://sourceforge.net/projects/virtools/?source=directory. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Complete genome sequences of avian paramyxovirus type 8 strains goose/Delaware/1053/76 and pintail/Wakuya/20/78

    PubMed Central

    Paldurai, Anandan; Subbiah, Madhuri; Kumar, Sachin; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Complete consensus genome sequences were determined for avian paramyxovirus type 8 (APMV-8) strains goose/Delaware/1053/76 (prototype strain) and pintail/Wakuya/20/78. The genome of each strain is 15,342 nucleotides (nt) long, which follows the “rule of six”. The genome consists of six genes in the order of 3′-N-P/V/W-M-F-HN-L-5′. The genes are flanked on either side by conserved transcription start and stop signals, and have intergenic regions ranging from 1 to 30 nt. The genome contains a 55 nt leader region at the 3′-end and a 171 nt trailer region at the 5′-end. Comparison of sequences of strains Delaware and Wakuya showed nucleotide identity of 96.8% at the genome level and amino acid identities of 99.3%, 96.5%, 98.6%, 99.4%, 98.6% and 99.1% for the predicted N, P, M, F, HN and L proteins, respectively. Both strains grew in embryonated chicken eggs and in primary chicken embryo kidney cells, and 293T cells. Both strains contained only a single basic residue at the cleavage activation site of the F protein and their efficiency of replication in vitro depended on and was augmented by, the presence of exogenous protease in most cell lines. Sequence alignment and phylogenic analysis of the predicted amino acid sequence of APMV-8 strain Delaware proteins with the cognate proteins of other available APMV serotypes showed that APMV-8 is more closely related to APMV-2 and -6 than to APMV-1, -3 and -4. PMID:19341613

  15. ANCAC: amino acid, nucleotide, and codon analysis of COGs--a tool for sequence bias analysis in microbial orthologs.

    PubMed

    Meiler, Arno; Klinger, Claudia; Kaufmann, Michael

    2012-09-08

    The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC's NUCOCOG dataset as the largest one available for that purpose thus far. Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills.

  16. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs

    PubMed Central

    2012-01-01

    Background The COG database is the most popular collection of orthologous proteins from many different completely sequenced microbial genomes. Per definition, a cluster of orthologous groups (COG) within this database exclusively contains proteins that most likely achieve the same cellular function. Recently, the COG database was extended by assigning to every protein both the corresponding amino acid and its encoding nucleotide sequence resulting in the NUCOCOG database. This extended version of the COG database is a valuable resource connecting sequence features with the functionality of the respective proteins. Results Here we present ANCAC, a web tool and MySQL database for the analysis of amino acid, nucleotide, and codon frequencies in COGs on the basis of freely definable phylogenetic patterns. We demonstrate the usefulness of ANCAC by analyzing amino acid frequencies, codon usage, and GC-content in a species- or function-specific context. With respect to amino acids we, at least in part, confirm the cognate bias hypothesis by using ANCAC’s NUCOCOG dataset as the largest one available for that purpose thus far. Conclusions Using the NUCOCOG datasets, ANCAC connects taxonomic, amino acid, and nucleotide sequence information with the functional classification via COGs and provides a GUI for flexible mining for sequence-bias. Thereby, to our knowledge, it is the only tool for the analysis of sequence composition in the light of physiological roles and phylogenetic context without requirement of substantial programming-skills. PMID:22958836

  17. On the normalization of the minimum free energy of RNAs by sequence length.

    PubMed

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.

  18. On the Normalization of the Minimum Free Energy of RNAs by Sequence Length

    PubMed Central

    Trotta, Edoardo

    2014-01-01

    The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size. PMID:25405875

  19. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    PubMed Central

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  20. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  1. An integrated genetic linkage map of watermelon and genetic diversity based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...

  2. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.

    PubMed Central

    Levis, R; Schlesinger, S; Huang, H V

    1990-01-01

    Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA. Images PMID:2319651

  3. Molecular identification of Trichuris vulpis and Trichuris suis isolated from different hosts.

    PubMed

    Cutillas, Cristina; de Rojas, Manuel; Ariza, Concepción; Ubeda, José Manuel; Guevara, Diego

    2007-01-01

    Trichuris suis was isolated from the cecum of two different hosts (Sus scrofa domestica -- swine and Sus scrofa scrofa -- wild boar) and Trichuris vulpis from dogs in Sevilla, Spain. Genomic DNA was isolated and internal transcribed spacers (ITS)1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced using polymerase chain reaction techniques. The sequence of T. suis from both hosts was 1,396 bp in length while that of T. vulpis was 1,044 bp. ITS1 of both populations isolated of T. suis was 661 nucleotides in length, while the ITS2 was 534 nucleotides in length. Furthermore, the ITS1 of T. vulpis was 410 nucleotides in length, while the ITS2 was 433 nucleotides in length. One hundred fifty-four nucleotides were observed along the 5.8S gene of T. suis and T. vulpis. Intraindividual and intraspecific variations were detected in the rDNA of both species. The presence of microsatellites was observed in all the individuals assayed. Sequence analysis of the ITSs and the 5.8S gene has demonstrated no sequence differences between T. suis isolated from both hosts (S. scrofa domestica -- swine and S. scrofa scrofa -- wild boar). Nevertheless, clear differences were detected between the ITS1 and ITS2 of T. suis and T. vulpis. Furthermore, a comparative molecular analysis between both species and the previously published ITS1-5.8S-ITS2 sequence data of Trichuris ovis, Trichuris leporis, Trichuris muris, Trichuris arvicolae, and Trichuris skrjabini was carried out. A common homology zone was detected in the ITS1 sequence of all species of trichurids.

  4. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin.

    PubMed

    Radunovic, Matej; Klotz, Christian; Saghaug, Christina Skår; Brattbakk, Hans-Richard; Aebischer, Toni; Langeland, Nina; Hanevik, Kurt

    2017-08-01

    Giardia is a prevalent intestinal parasitic infection. The trophozoite structural protein a1-giardin (a1-g) and the cyst protein cyst wall protein 2 (CWP2) have shown promise as Giardia vaccine antigen candidates in murine models. The present study assesses the genetic diversity of a1-g and CWP2 between and within assemblages A and B in human clinical isolates. a1-g and CWP2 sequences were acquired from 15 Norwegian isolates by PCR amplification and 20 sequences from German cultured isolates by whole genome sequencing. Sequences were aligned to reference genomes from assemblage A2 and B to identify genetic variance. Genetic diversity was found between assemblage A and B reference sequences for both a1-g (90.8% nucleotide identity) and CWP2 (82.5% nucleotide identity). However, for a1-g, this translated into only 3 amino acid (aa) substitutions, while for CWP2 there were 41 aa substitutions, and also one aa deletion. Genetic diversity within assemblage B was larger; nucleotide identity 92.0% for a1-g and 94.3% for CWP2, than within assemblage A (nucleotide identity 99.0% for a1-g and 99.7% for CWP2). For CWP2, the diversity on both nucleotide and protein level was higher in the C-terminal end. Predicted antigenic epitopes were not affected for a1-g, but partially for CWP2. Despite genetic diversity in a1-g, we found aa sequence, characteristics, and antigenicity to be well preserved. CWP2 showed more aa variance and potential antigenic differences. Several CWP2 antigens might be necessary in a future Giardia vaccine to provide cross protection against both Giardia assemblages infecting humans.

  5. Complete nucleotide sequence and genome structure of a Japanese isolate of hibiscus latent Fort Pierce virus, a unique tobamovirus that contains an internal poly(A) region in its 3' end.

    PubMed

    Yoshida, Tetsuya; Kitazawa, Yugo; Komatsu, Ken; Neriya, Yutaro; Ishikawa, Kazuya; Fujita, Naoko; Hashimoto, Masayoshi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou

    2014-11-01

    In this study, we detected a Japanese isolate of hibiscus latent Fort Pierce virus (HLFPV-J), a member of the genus Tobamovirus, in a hibiscus plant in Japan and determined the complete sequence and organization of its genome. HLFPV-J has four open reading frames (ORFs), each of which shares more than 98 % nucleotide sequence identity with those of other HLFPV isolates. Moreover, HLFPV-J contains a unique internal poly(A) region of variable length, ranging from 44 to 78 nucleotides, in its 3'-untranslated region (UTR), as is the case with hibiscus latent Singapore virus (HLSV), another hibiscus-infecting tobamovirus. The length of the HLFPV-J genome was 6431 nucleotides, including the shortest internal poly(A) region. The sequence identities of ORFs 1, 2, 3 and 4 of HLFPV-J to other tobamoviruses were 46.6-68.7, 49.9-70.8, 31.0-70.8 and 39.4-70.1 %, respectively, at the nucleotide level and 39.8-75.0, 43.6-77.8, 19.2-70.4 and 31.2-74.2 %, respectively, at the amino acid level. The 5'- and 3'-UTRs of HLFPV-J showed 24.3-58.6 and 13.0-79.8 % identity, respectively, to other tobamoviruses. In particular, when compared to other tobamoviruses, each ORF and UTR of HLFPV-J showed the highest sequence identity to those of HLSV. Phylogenetic analysis showed that HLFPV-J, other HLFPV isolates and HLSV constitute a malvaceous-plant-infecting tobamovirus cluster. These results indicate that the genomic structure of HLFPV-J has unique features similar to those of HLSV. To our knowledge, this is the first report of the complete genome sequence of HLFPV.

  6. DNA barcode and identification of the varieties and provenances of Taiwan's domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences.

    PubMed

    Lee, Shih-Chieh; Wang, Chia-Hsiang; Yen, Cheng-En; Chang, Chieh

    2017-04-01

    The major aim of made tea identification is to identify the variety and provenance of the tea plant. The present experiment used 113 tea plants [Camellia sinensis (L.) O. Kuntze] housed at the Tea Research and Extension Substation, from which 113 internal transcribed spacer 2 (ITS2) fragments, 104 trnL intron, and 98 trnL-trnF intergenic sequence region DNA sequences were successfully sequenced. The similarity of the ITS2 nucleotide sequences between tea plants housed at the Tea Research and Extension Substation was 0.379-0.994. In this polymerase chain reaction-amplified noncoding region, no varieties possessed identical sequences. Compared with the trnL intron and trnL-trnF intergenic sequence fragments of chloroplast cpDNA, the proportion of ITS2 nucleotide sequence variation was large and is more suitable for establishing a DNA barcode database to identify tea plant varieties. After establishing the database, 30 imported teas and 35 domestic made teas were used in this model system to explore the feasibility of using ITS2 sequences to identify the varieties and provenances of made teas. A phylogenetic tree was constructed using ITS2 sequences with the unweighted pair group method with arithmetic mean, which indicated that the same variety of tea plant is likely to be successfully categorized into one cluster, but contamination from other tea plants was also detected. This result provides molecular evidence that the similarity between important tea varieties in Taiwan remains high. We suggest a direct, wide collection of made tea and original samples of tea plants to establish an ITS2 sequence molecular barcode identification database to identify the varieties and provenances of tea plants. The DNA barcode comparison method can satisfy the need for a rapid, low-cost, frontline differentiation of the large amount of made teas from Taiwan and abroad, and can provide molecular evidence of their varieties and provenances. Copyright © 2016. Published by Elsevier B.V.

  7. Detection of a novel herpesvirus from bats in the Philippines.

    PubMed

    Sano, Kaori; Okazaki, Sachiko; Taniguchi, Satoshi; Masangkay, Joseph S; Puentespina, Roberto; Eres, Eduardo; Cosico, Edison; Quibod, Niña; Kondo, Taisuke; Shimoda, Hiroshi; Hatta, Yuuki; Mitomo, Shumpei; Oba, Mami; Katayama, Yukie; Sassa, Yukiko; Furuya, Tetsuya; Nagai, Makoto; Une, Yumi; Maeda, Ken; Kyuwa, Shigeru; Yoshikawa, Yasuhiro; Akashi, Hiroomi; Omatsu, Tsutomu; Mizutani, Tetsuya

    2015-08-01

    Bats are natural hosts of many zoonotic viruses. Monitoring bat viruses is important to detect novel bat-borne infectious diseases. In this study, next generation sequencing techniques and conventional PCR were used to analyze intestine, lung, and blood clot samples collected from wild bats captured at three locations in Davao region, in the Philippines in 2012. Different viral genes belonging to the Retroviridae and Herpesviridae families were identified using next generation sequencing. The existence of herpesvirus in the samples was confirmed by PCR using herpesvirus consensus primers. The nucleotide sequences of the resulting PCR amplicons were 166-bp. Further phylogenetic analysis identified that the virus from which this nucleotide sequence was obtained belonged to the Gammaherpesvirinae subfamily. PCR using primers specific to the nucleotide sequence obtained revealed that the infection rate among the captured bats was 30 %. In this study, we present the partial genome of a novel gammaherpesvirus detected from wild bats. Our observations also indicate that this herpesvirus may be widely distributed in bat populations in Davao region.

  8. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda

    PubMed Central

    2014-01-01

    Background Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consuming, costly, and often need guidance from computational methods to narrow down candidate genes anyway. However, most CMTI methods are computationally demanding, since they need to handle not only several million query microRNA and reference RNA pairs, but also several million nucleotide comparisons within each given pair. Thus, the need to perform microRNA identification at such large scale has increased the demand for parallel computing. Methods Although most CMTI programs (e.g., the miRanda algorithm) are based on a modified Smith-Waterman (SW) algorithm, the existing parallel SW implementations (e.g., CUDASW++ 2.0/3.0, SWIPE) are unable to meet this demand in CMTI tasks. We present CUDA-miRanda, a fast microRNA target identification algorithm that takes advantage of massively parallel computing on Graphics Processing Units (GPU) using NVIDIA's Compute Unified Device Architecture (CUDA). CUDA-miRanda specifically focuses on the local alignment of short (i.e., ≤ 32 nucleotides) sequences against longer reference sequences (e.g., 20K nucleotides). Moreover, the proposed algorithm is able to report multiple alignments (up to 191 top scores) and the corresponding traceback sequences for any given (query sequence, reference sequence) pair. Results Speeds over 5.36 Giga Cell Updates Per Second (GCUPs) are achieved on a server with 4 NVIDIA Tesla M2090 GPUs. Compared to the original miRanda algorithm, which is evaluated on an Intel Xeon E5620@2.4 GHz CPU, the experimental results show up to 166 times performance gains in terms of execution time. In addition, we have verified that the exact same targets were predicted in both CUDA-miRanda and the original miRanda implementations through multiple test datasets. Conclusions We offer a GPU-based alternative to high performance compute (HPC) that can be developed locally at a relatively small cost. The community of GPU developers in the biomedical research community, particularly for genome analysis, is still growing. With increasing shared resources, this community will be able to advance CMTI in a very significant manner. Our source code is available at https://sourceforge.net/projects/cudamiranda/. PMID:25077821

  9. De-MetaST-BLAST: A Tool for the Validation of Degenerate Primer Sets and Data Mining of Publicly Available Metagenomes

    PubMed Central

    Gulvik, Christopher A.; Effler, T. Chad; Wilhelm, Steven W.; Buchan, Alison

    2012-01-01

    Development and use of primer sets to amplify nucleic acid sequences of interest is fundamental to studies spanning many life science disciplines. As such, the validation of primer sets is essential. Several computer programs have been created to aid in the initial selection of primer sequences that may or may not require multiple nucleotide combinations (i.e., degeneracies). Conversely, validation of primer specificity has remained largely unchanged for several decades, and there are currently few available programs that allows for an evaluation of primers containing degenerate nucleotide bases. To alleviate this gap, we developed the program De-MetaST that performs an in silico amplification using user defined nucleotide sequence dataset(s) and primer sequences that may contain degenerate bases. The program returns an output file that contains the in silico amplicons. When De-MetaST is paired with NCBI’s BLAST (De-MetaST-BLAST), the program also returns the top 10 nr NCBI database hits for each recovered in silico amplicon. While the original motivation for development of this search tool was degenerate primer validation using the wealth of nucleotide sequences available in environmental metagenome and metatranscriptome databases, this search tool has potential utility in many data mining applications. PMID:23189198

  10. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.

    PubMed

    Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris

    2010-07-15

    The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net

  11. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  12. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences.

    PubMed Central

    Hammond, R; Smith, D R; Diener, T O

    1989-01-01

    The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant. Images PMID:2602114

  13. Molecular characterization of echovirus 30-associated outbreak of aseptic meningitis in Korea in 2008.

    PubMed

    Choi, Young Jin; Park, Kwi Sung; Baek, Kyoung Ah; Jung, Eun Hye; Nam, Hae Seon; Kim, Yong Bae; Park, Joon Soo

    2010-03-01

    Evaluation of the primary etiologic agents that cause aseptic meningitis outbreaks may provide valuable information regarding the prevention and management of aseptic meningitis. In Korea, an outbreak of aseptic meningitis caused by echovirus type 30 (E30) occurred from May to October in 2008. In order to determine the etiologic agent, CSF and/or stool specimens from 140 children hospitalized for aseptic meningitis at Soonchunhyang University Cheonan Hospital between June and October of 2008 were tested for virus isolation and identification. E30 accounted for 61.7% (37 cases) and echovirus 6 accounted for 21.7% (13 cases) of all the human enteroviruses (HEVs) isolates (60 cases in total). For the molecular characterization of the isolates, the VP1 gene sequence of 18 Korean E30 isolates was compared pairwise using the MegAlign with 34 reference strains from the GenBank database. The pairwise comparison of the nucleotide sequences of the VP1 genes demonstrated that the sequences of the Korean strains differed from those of lineage groups A, B, C, D, E, F and G. Reconstruction of the phylogenetic tree based on the complete VP1 nucleotide sequences resulted in a monophyletic tree, with eight clustered lineage groups. All Korean isolates were segregated from other lineage groups, thus suggesting that the Korean strains were a distinct lineage of E30, and a probable cause of this outbreak. This manuscript is the first report, to the best of our knowledge, of the molecular characteristics of E30 strains associated with an aseptic meningitis outbreak in Korea, and their respective phylogenetic relationships.

  14. Genotypes and phylogeographical relationships of infectious hematopoietic necrosis virus in California, USA

    USGS Publications Warehouse

    Kelley, G.O.; Bendorf, C.M.; Yun, S.C.; Kurath, G.; Hedrick, R.P.

    2007-01-01

    Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 ?? ICT5 mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 ?? 10 3 mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup. ?? Inter-Research 2007.

  15. Structural analysis of the RH-like blood group gene products in nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvignol, I.; Calvas, P.; Blancher, A.

    1995-03-01

    Rh-related transcripts present in bone marrow samples from several species of nonhuman primates (chimpanzee, gorilla, gibbon, crab-eating macaque) have been amplified by RT-polymerase chain reaction using primers deduced from the sequence of human RH genes. Nucleotide sequence analysis of the nonhuman transcripts revealed a high degree of similarity to human blood group Rh sequences, suggesting a great conservation of the RH genes throughout evolution. Full-length transcripts, potentially encoding 417 amino acid long proteins homologous to Rh polypeptides, were characterized, as well as mRNA isoforms which harbored nucleotide deletions or insertions and potentially encode truncated proteins. Proteins of 30-40,000 M{sub r},more » immunologically related to human Rh proteins, were detected by western blot analysis with antipeptide antibodies, indicating that Rh-like transcripts are translated into membrane proteins. Comparison of human and nonhuman protein sequences was pivotal in clarifying the molecular basis of the blood group C/c polymorphism, showing that only the Pro103Ser substitution was correlated with C/c polymorphism. In addition, it was shown that a proline residue at position 102 was critical in the expression of C and c epitopes, most likely by providing an appropriate conformation of Rh polypeptides. From these data a phylogenetic reconstruction of the RH locus evolution has been calculated from which an unrooted phylogenetic tree could be proposed, indicating that African ape Rh-like genes would be closer to the human RhD gene than to the human RhCE gene. 55 refs., 4 figs., 1 tab.« less

  16. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts

    PubMed Central

    Naito, Yuki; Bono, Hidemasa

    2012-01-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users. PMID:22641850

  17. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts.

    PubMed

    Naito, Yuki; Bono, Hidemasa

    2012-07-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users.

  18. Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata.

    PubMed Central

    Schnare, M N; Gray, M W

    1982-01-01

    In Crithidia fasciculata, a trypanosomatid protozoan, the large ribosomal subunit contains five small RNA species (e, f, g, i, j) in addition to 5S rRNA [Gray, M.W. (1981) Mol. Cell. Biol. 1, 347-357]. The complete primary sequence of species i is shown here to be pAACGUGUmCGCGAUGGAUGACUUGGCUUCCUAUCUCGUUGA ... AGAmACGCAGUAAAGUGCGAUAAGUGGUApsiCAAUUGmCAGAAUCAUUCAAUUACCGAAUCUUUGAACGAAACGG ... CGCAUGGGAGAAGCUCUUUUGAGUCAUCCCCGUGCAUGCCAUAUUCUCCAmGUGUCGAA(C)OH. This sequence establishes that species i is a 5.8S rRNA, despite its exceptional length (171-172 nucleotides). The extra nucleotides in C. fasciculata 5.8S rRNA are located in a region whose primary sequence and length are highly variable among 5.8S rRNAs, but which is capable of forming a stable hairpin loop structure (the "G+C-rich hairpin"). The sequence of C. fasciculata 5.8S rRNA is no more closely related to that of another protozoan, Acanthamoeba castellanii, than it is to representative 5.8S rRNA sequences from the other eukaryotic kingdoms, emphasizing the deep phylogenetic divisions that seem to exist within the Kingdom Protista. Images PMID:7079176

  19. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange.

    PubMed

    De Laurentiis, Evelina Ines; Mercier, Evan; Wieden, Hans-Joachim

    2016-10-28

    Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Simian virus 40 major late promoter: an upstream DNA sequence required for efficient in vitro transcription.

    PubMed Central

    Brady, J; Radonovich, M; Thoren, M; Das, G; Salzman, N P

    1984-01-01

    We have previously identified an 11-base DNA sequence, 5'-G-G-T-A-C-C-T-A-A-C-C-3' (simian virus 40 [SV40] map position 294 to 304), which is important in the control of SV40 late RNA expression in vitro and in vivo (Brady et al., Cell 31:625-633, 1982). We report here the identification of another domain of the SV40 late promoter. A series of mutants with deletions extending from SV40 map position 0 to 300 was prepared by nuclease BAL 31 treatment. The cloned templates were then analyzed for efficiency and accuracy of late SV40 RNA expression in the Manley in vitro transcription system. Our studies showed that, in addition to the promoter domain near map position 300, there are essential DNA sequences between nucleotide positions 74 and 95 that are required for efficient expression of late SV40 RNA. Included in this SV40 DNA sequence were two of the six GGGCGG SV40 repeat sequences and an 11-nucleotide segment which showed strong homology with the upstream sequences required for the efficient in vitro and in vivo expression of the histone H2A gene. This upstream promoter sequence supported transcription with the same efficiency even when it was moved 72 nucleotides closer to the major late cap site. In vitro promoter competition analysis demonstrated that the upstream promoter sequence, independent of the 294 to 304 promoter element, is capable of binding polymerase-transcription factors required for SV40 late gene transcription. Finally, we show that DNA sequences which control the specificity of RNA initiation at nucleotide 325 lie downstream of map position 294. Images PMID:6321950

Top