Science.gov

Sample records for nucleotide substitution pattern

  1. Plastid sequence evolution: a new pattern of nucleotide substitutions in the Cucurbitaceae.

    PubMed

    Decker-Walters, Deena S; Chung, Sang-Min; Staub, Jack E

    2004-05-01

    Nucleotide substitutions (i.e., point mutations) are the primary driving force in generating DNA variation upon which selection can act. Substitutions called transitions, which entail exchanges between purines (A = adenine, G = guanine) or pyrimidines (C = cytosine, T = thymine), typically outnumber transversions (e.g., exchanges between a purine and a pyrimidine) in a DNA strand. With an increasing number of plant studies revealing a transversion rather than transition bias, we chose to perform a detailed substitution analysis for the plant family Cucurbitaceae using data from several short plastid DNA sequences. We generated a phylogenetic tree for 19 taxa of the tribe Benincaseae and related genera and then scored conservative substitution changes (e.g., those not exhibiting homoplasy or reversals) from the unambiguous branches of the tree. Neither the transition nor (A+T)/(G+C) biases found in previous studies were supported by our overall data. More importantly, we found a novel and symmetrical substitution bias in which Gs had been preferentially replaced by A, As by C, Cs by T, and Ts by G, resulting in the G-->A-->C-->T-->G substitution series. Understanding this pattern will lead to new hypotheses concerning plastid evolution, which in turn will affect the choices of substitution models and other tree-building algorithms for phylogenetic analyses based on nucleotide data.

  2. [The patterns and influences of insertions, deletions and nucleotide substitutions in Solanaceae chloroplast genome].

    PubMed

    Tang, Ping; Wang, Qiang; Chen, Jian-Qun

    2008-11-01

    Nucleotide substitution and indels (insertions and deletions) events are the major evolutionary driving forces. Comparisons of the indels and nucleotide substitution patterns were made in the chloroplast genomes between Solanum lycopersicum L. and Solanum bulbocastanum L., Nicotiana tomentosiformis L. and Nicotiana tabacum L. in Solanaceae. The influence of mutation on genome composition was analyzed. The indels and substitutions were not randomly distributed throughout the chloroplast genomes. The indels were in AT-rich regions. One base pair indels accounted for above 30% of the total indels. Most of the indels were short of 10 bp. The nucleotide substitutions showed Ts/Tv bias, but transversion frequency of T-->G and A-->C was increased significantly. Ts/Tv rates were lineage-specific. The Ts/Tv rate between S. lycopersicum and S. bulbocastanum was lower than that between N. tomentosiformis and N. tabacum. (A+T)/(G+C) rates varied in different lineages, which had an influence on (G+C)% of genomes. The changes in the (A+T)/(G+C) rates might correlate with the life histories of different species.

  3. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.

    PubMed

    Matsumoto, Tomotaka; Akashi, Hiroshi; Yang, Ziheng

    2015-07-01

    Inference of gene sequences in ancestral species has been widely used to test hypotheses concerning the process of molecular sequence evolution. However, the approach may produce spurious results, mainly because using the single best reconstruction while ignoring the suboptimal ones creates systematic biases. Here we implement methods to correct for such biases and use computer simulation to evaluate their performance when the substitution process is nonstationary. The methods we evaluated include parsimony and likelihood using the single best reconstruction (SBR), averaging over reconstructions weighted by the posterior probabilities (AWP), and a new method called expected Markov counting (EMC) that produces maximum-likelihood estimates of substitution counts for any branch under a nonstationary Markov model. We simulated base composition evolution on a phylogeny for six species, with different selective pressures on G+C content among lineages, and compared the counts of nucleotide substitutions recorded during simulation with the inference by different methods. We found that large systematic biases resulted from (i) the use of parsimony or likelihood with SBR, (ii) the use of a stationary model when the substitution process is nonstationary, and (iii) the use of the Hasegawa-Kishino-Yano (HKY) model, which is too simple to adequately describe the substitution process. The nonstationary general time reversible (GTR) model, used with AWP or EMC, accurately recovered the substitution counts, even in cases of complex parameter fluctuations. We discuss model complexity and the compromise between bias and variance and suggest that the new methods may be useful for studying complex patterns of nucleotide substitution in large genomic data sets.

  4. Patterns of Nucleotide Substitution in Mitochondrial Protein Coding Genes of Vertebrates

    PubMed Central

    Kumar, S.

    1996-01-01

    Maximum likelihood methods were used to study the differences in substitution rates among the four nucleotides and among different nucleotide sites in mitochondrial protein-coding genes of vertebrates. In the 1st+2nd codon position data, the frequency of nucleotide G is negatively correlated with evolutionary rates of genes, substitution rates vary substantially among sites, and the transition/transversion rate bias (R) is two to five times larger than that expected at random. Generally, largest transition biases and greatest differences in substitution rates among sites are found in the highly conserved genes. The 3rd positions in placental mammal genes exhibit strong nucleotide composition biases and the transitional rates exceed transversional rates by one to two orders of magnitude. Tamura-Nei and Hasegawa-Kishino-Yano models with gamma distributed variable rates among sites (gamma parameter, α) adequately describe the nucleotide substitution process in 1st+2nd position data. In these data, ignoring differences in substitution rates among sites leads to largest biases while estimating substitution rates. Kimura's two-parameter model with variable-rates among sites performs satisfactorily in likelihood estimation of R, α, and overall amount of evolution for 1st+2nd position data. It can also be used to estimate pairwise distances with appropriate values of α for a majority of genes. PMID:8722802

  5. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes.

    PubMed

    Liu, Lin; De, Subhajyoti; Michor, Franziska

    2013-01-01

    Single-nucleotide substitutions are a defining characteristic of cancer genomes. Many single-nucleotide substitutions in cancer genomes arise because of errors in DNA replication, which is spatio-temporally stratified. Here we propose that DNA replication patterns help shape the mutational landscapes of normal and cancer genomes. Using data on five fully sequenced cancer types and two personal genomes, we determined that the frequency of intergenic single-nucleotide substitution is significantly higher in late DNA replication timing regions, even after controlling for a number of genomic features. Furthermore, some substitution signatures are more frequent in certain DNA replication timing zones. Finally, integrating data on higher-order nuclear organization, we found that genomic regions in close spatial proximity to late-replicating domains display similar mutation spectra as the late-replicating regions themselves. These data suggest that DNA replication timing together with higher-order genomic organization contribute to the patterns of single-nucleotide substitution in normal and cancer genomes.

  6. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea).

    PubMed

    Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J

    2012-02-01

    Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.

  7. Variance estimation for nucleotide substitution models.

    PubMed

    Chen, Weishan; Wang, Hsiuying

    2015-09-01

    The current variance estimators for most evolutionary models were derived when a nucleotide substitution number estimator was approximated with a simple first order Taylor expansion. In this study, we derive three variance estimators for the F81, F84, HKY85 and TN93 nucleotide substitution models, respectively. They are obtained using the second order Taylor expansion of the substitution number estimator, the first order Taylor expansion of a squared deviation and the second order Taylor expansion of a squared deviation, respectively. These variance estimators are compared with the existing variance estimator in terms of a simulation study. It shows that the variance estimator, which is derived using the second order Taylor expansion of a squared deviation, is more accurate than the other three estimators. In addition, we also compare these estimators with an estimator derived by the bootstrap method. The simulation shows that the performance of this bootstrap estimator is similar to the estimator derived by the second order Taylor expansion of a squared deviation. Since the latter one has an explicit form, it is more efficient than the bootstrap estimator.

  8. Detecting Single-Nucleotide Substitutions Induced by Genome Editing.

    PubMed

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-08-01

    The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells.

  9. Nucleotide substitutions in vanC-2 gene of Enterococcus casseliflavus isolates obtained from chickens.

    PubMed Central

    Murase, T.; Mito, Y.; Otsuki, K.; Suzuki, R.; Yamai, S.

    2002-01-01

    DNA sequencing of the vanC-2 gene was partially carried out on 10 isolates of Enterococcus casseliflavus obtained from 8 samples of imported chickens in Japan between July 1999 and June 2001 to evaluate the variation in the gene. Forty nucleotide substitutions in 36 codons were identified within 345 base pairs when compared with the vanC-2 sequence of the reference strain E. casseliflavus ATCC25788. Identical nucleotide substitutions were commonly found in the isolates recovered from chickens imported from both Brazil and China. Pulsed-field gel electrophoresis (PFGE) patterns of NotI-digested chromosomal DNA of these strains were distinguished by two, or more than six, band differences. These observations suggest that sequencing of the vanC-2 gene may be helpful for epidemiological investigation in combination with the PFGE analyses of the isolates, although particular genotypes are unlikely to be restricted to each of the countries that exported chickens. PMID:12403118

  10. Genome-Wide Heterogeneity of Nucleotide Substitution Model Fit

    PubMed Central

    Arbiza, Leonardo; Patricio, Mateus; Dopazo, Hernán; Posada, David

    2011-01-01

    At a genomic scale, the patterns that have shaped molecular evolution are believed to be largely heterogeneous. Consequently, comparative analyses should use appropriate probabilistic substitution models that capture the main features under which different genomic regions have evolved. While efforts have concentrated in the development and understanding of model selection techniques, no descriptions of overall relative substitution model fit at the genome level have been reported. Here, we provide a characterization of best-fit substitution models across three genomic data sets including coding regions from mammals, vertebrates, and Drosophila (24,000 alignments). According to the Akaike Information Criterion (AIC), 82 of 88 models considered were selected as best-fit models at least in one occasion, although with very different frequencies. Most parameter estimates also varied broadly among genes. Patterns found for vertebrates and Drosophila were quite similar and often more complex than those found in mammals. Phylogenetic trees derived from models in the 95% confidence interval set showed much less variance and were significantly closer to the tree estimated under the best-fit model than trees derived from models outside this interval. Although alternative criteria selected simpler models than the AIC, they suggested similar patterns. All together our results show that at a genomic scale, different gene alignments for the same set of taxa are best explained by a large variety of different substitution models and that model choice has implications on different parameter estimates including the inferred phylogenetic trees. After taking into account the differences related to sample size, our results suggest a noticeable diversity in the underlying evolutionary process. All together, we conclude that the use of model selection techniques is important to obtain consistent phylogenetic estimates from real data at a genomic scale. PMID:21824869

  11. Clusters of nucleotide substitutions and insertion/deletion mutations are associated with repeat sequences.

    PubMed

    McDonald, Michael J; Wang, Wei-Chi; Huang, Hsien-Da; Leu, Jun-Yi

    2011-06-01

    The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.

  12. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates

    PubMed Central

    Garamszegi, László Z; de Groot, Natasja G; Bontrop, Ronald E

    2009-01-01

    Background The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. Results First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic

  13. Evaluation of the flanking nucleotide sequences of sarcomeric hypertrophic cardiomyopathy substitution mutations.

    PubMed

    Meurs, Kathryn M; Mealey, Katrina L

    2008-07-03

    Hypertrophic cardiomyopathy (HCM) is a familial myocardial disease with a prevalence of 1 in 500. More than 400 causative mutations have been identified in 13 sarcomeric and myofilament related genes, 350 of these are substitution mutations within eight sarcomeric genes. Within a population, examples of recurring identical disease causing mutations that appear to have arisen independently have been noted as well as those that appear to have been inherited from a common ancestor. The large number of novel HCM mutations could suggest a mechanism of increased mutability within the sarcomeric genes. The objective of this study was to evaluate the most commonly reported HCM genes, beta myosin heavy chain (MYH7), myosin binding protein C, troponin I, troponin T, cardiac regulatory myosin light chain, cardiac essential myosin light chain, alpha tropomyosin and cardiac alpha-actin for sequence patterns surrounding the substitution mutations that may suggest a mechanism of increased mutability. The mutations as well as the 10 flanking nucleotides were evaluated for frequency of di-, tri- and tetranucleotides containing the mutation as well as for the presence of certain tri- and tetranculeotide motifs. The most common substitutions were guanine (G) to adenine (A) and cytosine (C) to thymidine (T). The CG dinucleotide had a significantly higher relative mutability than any other dinucleotide (p<0.05). The relative mutability of each possible trinucleotide and tetranucleotide sequence containing the mutation was calculated; none were at a statistically higher frequency than the others. The large number of G to A and C to T mutations as well as the relative mutability of CG may suggest that deamination of methylated CpG is an important mechanism for mutation development in at least some of these cardiac genes.

  14. Genome Hotspots for Nucleotide Substitutions and the Evolution of Influenza A (H1N1) Human Strains

    PubMed Central

    Civetta, Alberto; Ostapchuk, David Cecil Murphy; Nwali, Basil

    2016-01-01

    In recent years a number of studies have brought attention to the role of positive selection during the evolution of antigenic escape by influenza strains. Particularly, the identification of positively selected sites within antigenic domains of viral surface proteins has been used to suggest that the evolution of viral–host receptor binding specificity is driven by selection. Here we show that, following the 1918 outbreak, the antigenic sites of the hemagglutinin (HA) viral surface protein and the stalk region of neuraminidase became substitution hotspots. The hotspots show similar patterns of nucleotide substitution bias at synonymous and nonsynonymous sites. Such bias imposes directionality in amino acid replacements that can influence signals of selection at antigenic sites. Our results suggest that the high accumulation of substitutions within the antigenic sites of HA can explain not only cases of antigenic escape by antigenic drift but also lead to occasional episodes of viral extinction. PMID:26988249

  15. Evolutionary constraints and the neutral theory. [mutation-caused nucleotide substitutions in DNA

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.; Kimura, M.

    1984-01-01

    The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 x 10 to the -9th substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.

  16. Characterization of Nucleotide Misincorporation Patterns in the Iceman's Mitochondrial DNA

    PubMed Central

    Olivieri, Cristina; Ermini, Luca; Rizzi, Ermanno; Corti, Giorgio; Bonnal, Raoul; Luciani, Stefania; Marota, Isolina; De Bellis, Gianluca; Rollo, Franco

    2010-01-01

    Background The degradation of DNA represents one of the main issues in the genetic analysis of archeological specimens. In the recent years, a particular kind of post-mortem DNA modification giving rise to nucleotide misincorporation (“miscoding lesions”) has been the object of extensive investigations. Methodology/Principal Findings To improve our knowledge regarding the nature and incidence of ancient DNA nucleotide misincorporations, we have utilized 6,859 (629,975 bp) mitochondrial (mt) DNA sequences obtained from the 5,350–5,100-years-old, freeze-desiccated human mummy popularly known as the Tyrolean Iceman or Ötzi. To generate the sequences, we have applied a mixed PCR/pyrosequencing procedure allowing one to obtain a particularly high sequence coverage. As a control, we have produced further 8,982 (805,155 bp) mtDNA sequences from a contemporary specimen using the same system and starting from the same template copy number of the ancient sample. From the analysis of the nucleotide misincorporation rate in ancient, modern, and putative contaminant sequences, we observed that the rate of misincorporation is significantly lower in modern and putative contaminant sequence datasets than in ancient sequences. In contrast, type 2 transitions represent the vast majority (85%) of the observed nucleotide misincorporations in ancient sequences. Conclusions/Significance This study provides a further contribution to the knowledge of nucleotide misincorporation patterns in DNA sequences obtained from freeze-preserved archeological specimens. In the Iceman system, ancient sequences can be clearly distinguished from contaminants on the basis of nucleotide misincorporation rates. This observation confirms a previous identification of the ancient mummy sequences made on a purely phylogenetical basis. The present investigation provides further indication that the majority of ancient DNA damage is reflected by type 2 (cytosine→thymine/guanine→adenine) transitions and

  17. A new approach for estimating the efficiencies of the nucleotide substitution models.

    PubMed

    Som, Anup

    2007-04-01

    In this article, a new approach is presented for estimating the efficiencies of the nucleotide substitution models in a four-taxon case and then this approach is used to estimate the relative efficiencies of six substitution models under a wide variety of conditions. In this approach, efficiencies of the models are estimated by using a simple probability distribution theory. To assess the accuracy of the new approach, efficiencies of the models are also estimated by using the direct estimation method. Simulation results from the direct estimation method confirmed that the new approach is highly accurate. The success of the new approach opens a unique opportunity to develop analytical methods for estimating the relative efficiencies of the substitution models in a straightforward way.

  18. Molecular Evolution of the Small Subunit of Ribulose Bisphosphate Carboxylase: Nucleotide Substitution and Gene Conversion

    PubMed Central

    Meagher, R. B.; Berry-Lowe, S.; Rice, K.

    1989-01-01

    The nucleotide sequences encoding the mature portion of 31 ribulose 1,5-bisphosphate carboxylase small subunit (SSU) genes from 17 genera of plants, green algae and cyanobacteria were examined. Among the 465 pairwise sequence comparisons, SSU multigene family members within the same species were more similar to each other in nonsynonymous or replacement nucleotide substitutions (RNS) than they were to SSU sequences in any other organism. The concerted evolution of independent SSU gene lineages within closely related plant species suggests that homogenization of RNS positions has occurred at least once in the life of each genus. The rate of expected RNS among mature SSU sequences was calculated to be 1.25 X 10(-9)/site/yr for the first 70 million years (MY) of divergence with a significant slowing to 0.13 X 10(-9)/site/yr for the next 1,400 MY. The data suggest that mature SSU sequences do not accumulate more than 20% differences in the RNS positions without compensatory changes in other components of this enzyme system. During the first 70 MY of divergence between species, the rate of expected synonymous or silent nucleotide substitutions (SNS) is ~6.6 X 10(-9)/site/yr. This is five times the RNS rate and is similar to the silent rate observed in animals. In striking contrast, SNS and RNS do not show this correlation among SSU gene family members within a species. A mechanism involving gene conversion within the exons followed by selection for biased gene conversion products with conservation of RNS positions and divergence of SNS positions is discussed. A SSU gene tree based on corrected RNS for 31 SSU sequences is presented and agrees well with a species tree based on morphological and cytogenetic traits for the 17 genera examined. SSU gene comparisons may be useful in predicting phylogenetic relationships and in some cases divergence times of various plant, algal and cyanobacterial species. PMID:2515110

  19. Probing the function of nucleotides in the catalytic cores of the 8-17 and 10-23 DNAzymes by abasic nucleotide and C3 spacer substitutions.

    PubMed

    Wang, Bin; Cao, Liqiang; Chiuman, William; Li, Yingfu; Xi, Zhen

    2010-09-07

    8-17 and 10-23 are the two most comprehensively studied RNA-cleaving DNAzymes to date and have the ability to carry out sequence-specific cleavage of both all-RNA or chimeric RNA/DNA substrates. Mutagenesis studies of 8-17 and 10-23 DNAzymes using alternative natural nucleotides to substitute a given nucleotide in the DNAzyme sequence have found that both DNAzymes are able to tolerate a variety of alterations at many sequence locations. Chemical modification studies employing nucleotides containing nonnatural nucleobases have led to findings that some specific entities of selected nucleobases are irreplaceable by other functional groups. In this work, we set out to carry out a mutagenesis study on both 8-17 and 10-23 by substituting individual nucleotides in their catalytic cores with a baseless (abasic) nucleotide or a baseless/sugarless nucleotide containing only acyclic C3 spacer. We observed that the substitution with an abasic nucleotide or C3 spacer at many locations within the catalytic core of both 8-17 and 10-23 was still able to support a significant level of catalytic activity of each DNAzyme, suggesting that both DNAzymes have considerable structural plasticity to maintain their catalytic functions. We also observed that almost all nucleobases in the catalytic core of each DNAzyme appeared to make either an absolutely essential contribution to the function of each DNAzyme or exhibit a "chaperone-like" activity that is important for the optimal function of each DNAzyme; in contrast, only one sugar ring in 8-17 and four in 10-23 were inferred to make some contribution to the optimal function of the relevant DNAzyme. Finally, our study also raised a possibility that the 10-23 DNAzyme might be a special structural variant of the larger 8-17 DNAzyme family.

  20. Numerical taxonomy of the genus Pestivirus based on palindromic nucleotide substitutions in the 5' untranslated region.

    PubMed

    Giangaspero, Massimo; Harasawa, Ryô

    2007-12-01

    The palindromic nucleotide substitutions (PNS) at the three variable loci (V1, V2 and V3) in the 5' untranslated region (UTR) of Pestivirus RNA have been considered for taxonomical segregation of species, through the evaluation of 430 genomic sequences. On the basis of qualitative and quantitative secondary structure characteristics, six species have been identified: Bovine viral diarrhea virus 1 (BVDV-1), Bovine viral diarrhea virus 2 (BVDV-2), Classical swine fever virus (CSFV), Border disease virus (BDV), the tentative species Giraffe and a new proposed taxon named Pronghorn. The first step was qualitative and consisted in the characterization of the different positions of the three stems and loops in the 5' UTR sequences of all the strains under consideration belonging to the genus. Secondary structure sequences showing divergent base-pair combinations have been aligned for comparison. Palindromic positions have been characterized according to changes in nucleotide base-pairs identifying low-variable positions (LVP) including base-pairs present in less than 80% of the genus. The second step was quantitative, allowing the identification of genomic groups by clustering the base-pair combinations according to LVP. Relatedness among types was evaluated to identify homogeneous groups. Cross comparisons between types within the genus have been evaluated by computing the divergence percentage thus clarifying borderline and multirelated sequences.

  1. Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley.

    PubMed

    Sato, Kazuhiro; Close, Timothy J; Bhat, Prasanna; Muñoz-Amatriaín, María; Muehlbauer, Gary J

    2011-05-01

    Single nucleotide polymorphism (SNP) genotyping is useful for assessing genetic variation in germplasm collections, genetic map development and detection of alien chromosome substitutions. In this study, a diversity analysis using 1,301 SNPs on a set of 37 barley accessions was conducted. This analysis showed a high polymorphism rate between the malting barley cultivar 'Haruna Nijo' and the food barley cultivar 'Akashinriki'. Haruna Nijo and Akashinriki are donors of the barley expressed sequence tag (EST) collections. A doubled haploid (DH) population derived from the cross between Haruna Nijo and Akashinriki was genotyped with 1,448 SNPs. Of these 1,448 SNPs, 734 were polymorphic and distributed on barley linkage groups (chromosomes) as follows: 1H (86), 2H (125), 3H (120), 4H (100), 5H (127), 6H (88) and 7H (88). By using cMAP, we integrated the SNP markers across high-density maps. The SNPs were also used to genotype 98 BC(3)F(4) recombinant chromosome substitution lines (RCSLs) developed from the same cross (Haruna Nijo/Akashinriki). These data were used to create graphical genotypes for each line and thus estimate the location, extent and total number of introgressions from Akashinriki in the Haruna Nijo background. The 35 selected RCSLs sample most of the Akashinriki food barley genome, with only a few missing segments. These resources bring new alleles into the malting barley gene pool from food barley.

  2. An Aberrant Splice Acceptor Site Due to a Novel Intronic Nucleotide Substitution in MSX1 Gene Is the Cause of Congenital Tooth Agenesis in a Japanese Family

    PubMed Central

    Tatematsu, Tadashi; Kimura, Masashi; Nakashima, Mitsuko; Machida, Junichiro; Yamaguchi, Seishi; Shibata, Akio; Goto, Hiroki; Nakayama, Atsuo; Higashi, Yujiro; Miyachi, Hitoshi; Shimozato, Kazuo; Matsumoto, Naomichi; Tokita, Yoshihito

    2015-01-01

    Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency. PMID:26030286

  3. Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis-regulatory element.

    PubMed

    Ochi, Haruki; Suzuki, Nanoka; Kawaguchi, Akane; Ogino, Hajime

    2017-03-28

    During vertebrate evolution, whole genome duplications resulted in a number of duplicated genes, some of which eventually changed their expression patterns and/or levels via alteration of cis-regulatory sequences. However, the initial process involved in such cis-regulatory changes remains unclear. Therefore, we investigated this process by analyzing the duplicated hand1 genes of Xenopus laevis (hand1.L and hand1.S), which were generated by allotetraploidization 17-18 million years ago, and compared these with their single ortholog in the ancestral-type diploid species X. tropicalis. A dN/dS analysis indicated that hand1.L and hand1.S are still under purifying selection, and thus, their products appear to retain ancestral functional properties. RNA-seq and in situ hybridization analyses revealed that hand1.L and hand1.S have similar expression patterns to each other and to X. tropicalis hand1, but the hand1.S expression level was much lower than the hand1.L expression level in the primordial heart. A comparative sequence analysis, luciferase reporter analysis, ChIP-PCR analysis, and transgenic reporter analysis showed that a single nucleotide substitution in the hand1.S promoter was responsible for the reduced expression in the heart. These findings demonstrated that a small change in the promoter sequence can trigger diversification of duplicated gene expression prior to diversification of their encoded protein functions in a young duplicated genome.

  4. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns

    PubMed Central

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Kopylova, Evguenia; Morton, James T.; Zech Xu, Zhenjiang; Kightley, Eric P.; Thompson, Luke R.; Hyde, Embriette R.; Gonzalez, Antonio

    2017-01-01

    ABSTRACT High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur’s ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur. IMPORTANCE Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time. PMID:28289731

  5. From single nucleotide substitutions up to chromosomal deletions: genetic pause of leucism-associated disorders in animals.

    PubMed

    Fleck, Katharina; Erhardt, Georg; Lühken, Gesine

    2016-01-01

    Leucism is characterized by a complete or partial white skin and hair in combination with pigmented irides, which can be vivid blue or heterochromatic. This is due to a complete or partial lack of melanocytes. The underlying pathogenesis is a disturbed emigration or differentiation of neural crest-derived cells. Therefore, leucistic phenotypes can be associated with defects, which mainly impair sensory organs and nerves. In humans, a well-known example is the Waardenburg syndrome. Leucism-associated disorders were also described in mouse, rat, hamster, rabbit, mink, cat, dog, pig, sheep, llama, alpaca, cattle and horse. In some of these species already identified causal mutations affect the genes EDN3, EDNRB, KIT, MITF, PAX3, SILV and SOX10. Defect alleles represent different types of genetic variation, ranging from single nucleotide substitutions up to larger chromosomal deletions. Some of the defect alleles produce desired coat color patterns. In some but not all cases, available genetic tests enable breeders to avoid production of animals affected by a leucism-associated disorder.

  6. Species characterization in the genus Pestivirus according to palindromic nucleotide substitutions in the 5'-untranslated region.

    PubMed

    Giangaspero, Massimo; Harasawa, Ryô

    2011-06-01

    The palindromic nucleotide substitutions (PNS) at the three variable loci (V1, V2 and V3) in the 5'-untranslated region (UTR) of the Pestivirus genome have been considered for taxonomical segregation of the species, through the evaluation of 534 strains. On the basis of qualitative and quantitative secondary structure characteristics, species have been identified within the genus, determining genetic distances between species isolates, clarifying borderline and multirelated sequences, and characterizing and clustering the Pestivirus strains showing unexpected genomic sequences. Nine genomic groups have been identified: the species Bovine viral diarrhea virus 1 (BVDV-1), Bovine viral diarrhea virus 2 (BVDV-2), Border disease virus (BDV) and Classical swine fever virus (CSFV) and the tentative species Pronghorn, Giraffe, Bovine viral diarrhea virus 3 (BVDV-3) (HoBi group), Border disease virus 2 (BDV-2) (Italian small ruminant isolates) and Bungowannah. Palindromic positions have been characterized according to changes in nucleotide base-pairs identifying low variable positions (LVP) including base-pairs present in less than 80% of the genus. The determination of divergence between single strain sequences or genetic groups was obtained easily by comparing base-pairing combinations from aligned secondary structures. This provided clear information such as the level of heterogeneity within a species, the relatedness between species, or facilitating the characterization and clustering of specific strains. The BVDV-1 and BDV species resulted heterogeneous, showing isolates located on a borderline in the species. Within the BVDV-2 species, two main genogroups were identified, with strains showing common sequence characteristics to both groups (multirelated strains). They could be allocated correctly by quantitative analysis. Similarly, the relation between CSFV and BDV species appeared very clearly. Also in this case, ambiguous strain sequences could be clustered in the

  7. Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides.

    PubMed

    Dekker, Marleen; de Vries, Sandra; Aarts, Marieke; Dekker, Robert; Brouwers, Conny; Wiebenga, Oliver; de Wind, Niels; Cantelli, Erika; Tonelli, Roberto; Te Riele, Hein

    2011-10-01

    Short synthetic single-stranded oligodeoxyribonucleotides (ssODNs) can be used to introduce subtle modifications into the genome of mouse embryonic stem cells (ESCs). We have previously shown that effective application of ssODN-mediated gene targeting in ESC requires (transient) suppression of DNA mismatch repair (MMR). However, whereas transient down-regulation of the mismatch recognition protein MSH2 allowed substitution of 3 or 4 nucleotides, 1 or 2 nucleotide substitutions were still suppressed. We now demonstrate that single- or dinucleotide substitution can effectively be achieved by transient down-regulation of the downstream MMR protein MLH1. By exploiting highly specific real-time PCR, we demonstrate the feasibility of substituting a single basepair in a non-selectable gene. However, disabling the MMR machinery may lead to inadvertent mutations. To obtain insight into the mutation rate associated with transient MMR suppression, we have compared the impact of transient and constitutive MMR deficiency on the repair of frameshift intermediates at mono- and dinucleotide repeats. Repair at these repeats relied on the substrate specificity and functional redundancy of the MSH2/MSH6 and MSH2/MSH3 MMR complexes. MLH1 knockdown increased the level of spontaneous mutagenesis, but modified ESCs remained germ line competent. Thus, transient MLH1 suppression provides a valuable extension of the MSH2 knockdown strategy, allowing rapid generation of mice carrying single basepair alterations in their genome.

  8. Taxonomy of genus Hepacivirus. Application of palindromic nucleotide substitutions for the determination of genotypes of human hepatitis C virus species.

    PubMed

    Giangaspero, M; Harasawa, R; Zanetti, A

    2008-11-01

    The palindromic nucleotide substitutions (PNS) in the 5'-untranslated region (UTR) of Pestivirus RNA have been described as a new, simple and practical method for genotyping. Given the genetic relatedness between Pestivirus and hepatitis C virus species, the application of the method was investigated preliminarily on 180 isolates, including reference strains. The keys for hepatitis C virus identification have been determined at the genus, species, genotype and subtype levels. Secondary structure nucleotide substitutions were characteristics to the genus included in a complex stem-loop structure composed of 112-115 nucleotides. Due to the worldwide importance of hepatitis C virus, and the difficulties encountered in the control of the disease, it is, therefore, important to understand the genetic aspects of the virus. The application of the PNS method might represent an additional useful tool for determining the genetic variations among hepatitis C virus strains. The identification of viral types or subtypes based on genetic changes should improve our understanding of hepatitis C virus and might provide markers for biological differences, such as virulence, and improve understanding of the evolution of the virus.

  9. Substitution patterns are GC-biased in divergent sequences across the metazoans.

    PubMed

    Capra, John A; Pollard, Katherine S

    2011-01-01

    The fastest-evolving regions in the human and chimpanzee genomes show a remarkable excess of weak (A,T) to strong (G,C) nucleotide substitutions since divergence from their common ancestor. We investigated the phylogenetic extent and possible causes of this weak to strong (W → S) bias in divergent sequences (BDS) using recently sequenced genomes and recombination maps from eight trios of eukaryotic species. To quantify evidence for BDS, we inferred substitution histories using an efficient maximum likelihood approach with a context-dependent evolutionary model. We then annotated all lineage-specific substitutions in terms of W → S bias and density on the chromosomes. Finally, we used the inferred substitutions to calculate a BDS score-a log odds ratio between substitution type and density-and assessed its statistical significance with Fisher's exact test. Applying this approach, we found significant BDS in the coding and noncoding sequence of human, mouse, dog, stickleback, fruit fly, and worm. We also observed a significant lack of W → S BDS in chicken and yeast. The BDS score varies between species and across the chromosomes within each species. It is most strongly correlated with different genomic features in different species, but a strong correlation with recombination rates is found in several species. Our results demonstrate that a W → S substitution bias in fast-evolving sequences is a widespread phenomenon. The patterns of BDS observed suggest that a recombination-associated process, such as GC-biased gene conversion, is involved in the production of the bias in many species, but the strength of the BDS likely depends on many factors, including genome stability, variability in recombination rate over time and across the genome, the frequency of meiosis, and the amount of outcrossing in each species.

  10. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online.

    PubMed

    Posada, David

    2006-07-01

    ModelTest server is a web-based application for the selection of models of nucleotide substitution using the program ModelTest. The server takes as input a text file with likelihood scores for the set of candidate models. Models can be selected with hierarchical likelihood ratio tests, or with the Akaike or Bayesian information criteria. The output includes several statistics for the assessment of model selection uncertainty, for model averaging or to estimate the relative importance of model parameters. The server can be accessed at http://darwin.uvigo.es/software/modeltest_server.html.

  11. ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online

    PubMed Central

    Posada, David

    2006-01-01

    ModelTest server is a web-based application for the selection of models of nucleotide substitution using the program ModelTest. The server takes as input a text file with likelihood scores for the set of candidate models. Models can be selected with hierarchical likelihood ratio tests, or with the Akaike or Bayesian information criteria. The output includes several statistics for the assessment of model selection uncertainty, for model averaging or to estimate the relative importance of model parameters. The server can be accessed at . PMID:16845102

  12. Numerical taxonomy of the genus Pestivirus: new software for genotyping based on the palindromic nucleotide substitutions method.

    PubMed

    Giangaspero, Massimo; Apicella, Claudio; Harasawa, Ryô

    2013-09-01

    The genus Pestivirus from the family Flaviviridae is represented by four established species; Bovine viral diarrhea virus 1 (BVDV-1); Bovine viral diarrhea virus 2 (BVDV-2); Border disease virus (BDV); and Classical swine fever virus (CSFV); as well a tentative species from a Giraffe. The palindromic nucleotide substitutions (PNS) in the 5' untranslated region (UTR) of Pestivirus RNA has been described as a new, simple and practical method for genotyping. New software is described, also named PNS, that was prepared specifically for this PNS genotyping procedure. Pestivirus identification using PNS was evaluated on five hundred and forty-three sequences at genus, species and genotype level using this software. The software is freely available at www.pns-software.com.

  13. Nucleotide substitution type dependence of generation time effect of molecular evolution.

    PubMed

    Kisakibaru, Y; Matsuda, H

    1995-06-01

    Using DNA sequence data of 18 genes from 14 mammals, we analyzed how the average molecular evolution rate per year per site (Vy) depends on the generation time (g). (I) Assuming the relation Vy varies; is directly proportional to g(-alpha), the index of generation time effect, (alpha) was estimated to be about 0.14 for amino acid replacement substitutions (A), and about 0.32 for synonymous substitutions (S). (II) Assuming the relation Vy = V(m)g g-1 + V(e)y, where V(m)g and V(e)y are constant independent of g, the fraction, r(e) = V(e)y/Vy, of the mutation rate independent part (V(e)y) in the total evolution rate (Vy) was estimated under the assumptions of the star phylogeny and the constancy of the mutation rate per generation. r(e) was smallest for mouse with the shortest generation time among our analyzed species, and it was estimated to be about 0.57 for A and 0.31 for S. Both results do not support the view that Vy is equal to the neutral mutation rate per site both for A and for S. They are in line with the thesis that, at least for A and probably even for S, the molecular evolution rate is influenced by some causes other than the mutation rate, such as changing environment.

  14. Deficient nucleotide excision repair increases base-pair substitutions but decreases TGGC frameshifts induced by methylglyoxal in Escherichia coli.

    PubMed

    Murata-Kamiya, N; Kaji, H; Kasai, H

    1999-06-07

    To investigate the mutation spectrum of a well-known mutagen, methylglyoxal, and the influence of nucleotide excision repair (NER) on methylglyoxal-induced mutations, we treated wild-type and NER-deficient (uvrA or uvrC) Escherichia coli strains with methylglyoxal, and analyzed mutations in the chromosomal lacI gene. In the three strains, the cell death and the mutation frequency increased according to the dose of methylglyoxal added to the culture medium. The frequencies of methylglyoxal-induced base-pair substitutions were higher in the NER-deficient strains than in the wild-type strain, in the presence and absence of mucAB gene. Paradoxically, the frequency of methylglyoxal-induced TGGC frameshifts was higher in the wild-type strain than in the NER-deficient strains. When the methylglyoxal-induced mutation spectra in the presence and absence of mucAB gene are compared, the ratios of base-pair substitutions to frameshifts were increased by the effects of mucAB gene. In the three strains, more than 75% of the base-pair substitutions occurred at G:C sites, independent of the mucAB gene. When the mucAB gene was present, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. When the mucAB gene was absent, the predominant mutations differed in the three strains: in the wild-type and uvrC strains, G:C-->A:T transitions were predominant, followed by G:C-->T:A transversions, while in the uvrA strains, G:C-->T:A transversions were predominant, followed by G:C-->A:T transitions. These results suggest that NER may be involved in both the repair and the fixation of methylglyoxal-induced mutations.

  15. Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes.

    PubMed

    Xia, Hui; Camus-Kulandaivelu, Létizia; Stephan, Wolfgang; Tellier, Aurélien; Zhang, Zhenwen

    2010-10-01

    We surveyed nucleotide diversity at two candidate genes LeNCED1 and pLC30-15, involved in an ABA (abscisic acid) signalling pathway, in two closely related tomato species Solanum peruvianum and Solanum chilense. Our six population samples (three for each species) cover a range of mesic to very dry habitats. The ABA pathway plays an important role in the plants' response to drought stress. LeNCED1 is an upstream gene involved in ABA biosynthesis, and pLC30-15 is a dehydrin gene positioned downstream in the pathway. The two genes show very different patterns of nucleotide variation. LeNCED1 exhibits very low nucleotide diversity relative to the eight neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, pLC30-15 exhibits higher levels of nucleotide diversity and, in particular in S. chilense, higher genetic differentiation between populations than the reference loci, which is indicative of local adaptation. In the more drought-tolerant species S. chilense, one population (from Quicacha) shows a significant haplotype structure, which appears to be the result of positive (diversifying) selection.

  16. PatMatch: a program for finding patterns in peptide and nucleotide sequences

    PubMed Central

    Yan, Thomas; Yoo, Danny; Berardini, Tanya Z.; Mueller, Lukas A.; Weems, Dan C.; Weng, Shuai; Cherry, J. Michael; Rhee, Seung Y.

    2005-01-01

    Here, we present PatMatch, an efficient, web-based pattern-matching program that enables searches for short nucleotide or peptide sequences such as cis-elements in nucleotide sequences or small domains and motifs in protein sequences. The program can be used to find matches to a user-specified sequence pattern that can be described using ambiguous sequence codes and a powerful and flexible pattern syntax based on regular expressions. A recent upgrade has improved performance and now supports both mismatches and wildcards in a single pattern. This enhancement has been achieved by replacing the previous searching algorithm, scan_for_matches [D'Souza et al. (1997), Trends in Genetics, 13, 497–498], with nondeterministic-reverse grep (NR-grep), a general pattern matching tool that allows for approximate string matching [Navarro (2001), Software Practice and Experience, 31, 1265–1312]. We have tailored NR-grep to be used for DNA and protein searches with PatMatch. The stand-alone version of the software can be adapted for use with any sequence dataset and is available for download at The Arabidopsis Information Resource (TAIR) at . The PatMatch server is available on the web at for searching Arabidopsis thaliana sequences. PMID:15980466

  17. Visible Light-Responsive Platinum-Containing Titania Nanoparticle-Mediated Photocatalysis Induces Nucleotide Insertion, Deletion and Substitution Mutations

    PubMed Central

    Sun, Der-Shan; Tseng, Yao-Hsuan; Wu, Wen-Shiang; Wong, Ming-Show; Chang, Hsin-Hou

    2016-01-01

    Conventional photocatalysts are primarily stimulated using ultraviolet (UV) light to elicit reactive oxygen species and have wide applications in environmental and energy fields, including self-cleaning surfaces and sterilization. Because UV illumination is hazardous to humans, visible light-responsive photocatalysts (VLRPs) were discovered and are now applied to increase photocatalysis. However, fundamental questions regarding the ability of VLRPs to trigger DNA mutations and the mutation types it elicits remain elusive. Here, through plasmid transformation and β-galactosidase α-complementation analyses, we observed that visible light-responsive platinum-containing titania (TiO2) nanoparticle (NP)-mediated photocatalysis considerably reduces the number of Escherichia coli transformants. This suggests that such photocatalytic reactions cause DNA damage. DNA sequencing results demonstrated that the DNA damage comprises three mutation types, namely nucleotide insertion, deletion and substitution; this is the first study to report the types of mutations occurring after photocatalysis by TiO2-VLRPs. Our results may facilitate the development and appropriate use of new-generation TiO2 NPs for biomedical applications. PMID:28336836

  18. Visible Light-Responsive Platinum-Containing Titania Nanoparticle-Mediated Photocatalysis Induces Nucleotide Insertion, Deletion and Substitution Mutations.

    PubMed

    Sun, Der-Shan; Tseng, Yao-Hsuan; Wu, Wen-Shiang; Wong, Ming-Show; Chang, Hsin-Hou

    2016-12-28

    Conventional photocatalysts are primarily stimulated using ultraviolet (UV) light to elicit reactive oxygen species and have wide applications in environmental and energy fields, including self-cleaning surfaces and sterilization. Because UV illumination is hazardous to humans, visible light-responsive photocatalysts (VLRPs) were discovered and are now applied to increase photocatalysis. However, fundamental questions regarding the ability of VLRPs to trigger DNA mutations and the mutation types it elicits remain elusive. Here, through plasmid transformation and β-galactosidase α-complementation analyses, we observed that visible light-responsive platinum-containing titania (TiO₂) nanoparticle (NP)-mediated photocatalysis considerably reduces the number of Escherichia coli transformants. This suggests that such photocatalytic reactions cause DNA damage. DNA sequencing results demonstrated that the DNA damage comprises three mutation types, namely nucleotide insertion, deletion and substitution; this is the first study to report the types of mutations occurring after photocatalysis by TiO₂-VLRPs. Our results may facilitate the development and appropriate use of new-generation TiO₂ NPs for biomedical applications.

  19. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, Junko; Zidong, Li; Kado, Tomoyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori

    2010-01-01

    Conclusions: Taxodium distichum had significantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  20. Temporal Patterns of Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA

    PubMed Central

    Sawyer, Susanna; Krause, Johannes; Guschanski, Katerina; Savolainen, Vincent; Pääbo, Svante

    2012-01-01

    DNA that survives in museum specimens, bones and other tissues recovered by archaeologists is invariably fragmented and chemically modified. The extent to which such modifications accumulate over time is largely unknown but could potentially be used to differentiate between endogenous old DNA and present-day DNA contaminating specimens and experiments. Here we examine mitochondrial DNA sequences from tissue remains that vary in age between 18 and 60,000 years with respect to three molecular features: fragment length, base composition at strand breaks, and apparent C to T substitutions. We find that fragment length does not decrease consistently over time and that strand breaks occur preferentially before purine residues by what may be at least two different molecular mechanisms that are not yet understood. In contrast, the frequency of apparent C to T substitutions towards the 5′-ends of molecules tends to increase over time. These nucleotide misincorporations are thus a useful tool to distinguish recent from ancient DNA sources in specimens that have not been subjected to unusual or harsh treatments. PMID:22479540

  1. ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models.

    PubMed

    Whelan, Simon; Allen, James E; Blackburne, Benjamin P; Talavera, David

    2015-01-01

    Molecular phylogenetics is a powerful tool for inferring both the process and pattern of evolution from genomic sequence data. Statistical approaches, such as maximum likelihood and Bayesian inference, are now established as the preferred methods of inference. The choice of models that a researcher uses for inference is of critical importance, and there are established methods for model selection conditioned on a particular type of data, such as nucleotides, amino acids, or codons. A major limitation of existing model selection approaches is that they can only compare models acting upon a single type of data. Here, we extend model selection to allow comparisons between models describing different types of data by introducing the idea of adapter functions, which project aggregated models onto the originally observed sequence data. These projections are implemented in the program ModelOMatic and used to perform model selection on 3722 families from the PANDIT database, 68 genes from an arthropod phylogenomic data set, and 248 genes from a vertebrate phylogenomic data set. For the PANDIT and arthropod data, we find that amino acid models are selected for the overwhelming majority of alignments; with progressively smaller numbers of alignments selecting codon and nucleotide models, and no families selecting RY-based models. In contrast, nearly all alignments from the vertebrate data set select codon-based models. The sequence divergence, the number of sequences, and the degree of selection acting upon the protein sequences may contribute to explaining this variation in model selection. Our ModelOMatic program is fast, with most families from PANDIT taking fewer than 150 s to complete, and should therefore be easily incorporated into existing phylogenetic pipelines. ModelOMatic is available at https://code.google.com/p/modelomatic/.

  2. Spatial pattern of nucleotide polymorphism indicates molecular adaptation in the bryophyte Sphagnum fimbriatum.

    PubMed

    Szövényi, P; Hock, Zs; Korpelainen, H; Shaw, A Jonathan

    2009-10-01

    In organisms with haploid-dominant life cycles, natural selection is expected to be especially effective because genetic variation is exposed directly to selection. However, in spore-producing plants with high dispersal abilities, among-population migration may counteract local adaptation by continuously redistributing genetic variability. In this study, we tested for adaptation at the molecular level by comparing nucleotide polymorphism in two genes (GapC and Rpb2) in 10 European populations of the peatmoss species, Sphagnum fimbriatum with variability at nine microsatellite loci assumed to be selectively neutral. In line with previous results, the GapC and Rpb2 genes showed strikingly different patterns of nucleotide polymorphism. Neutrality tests and comparison of population differentiation based on the GapC and Rpb2 genes with neutrally evolving microsatellites using coalescent simulations supported non-neutral evolution in GapC, but neutral evolution in the Rpb2 gene. These observations and the positions of the replacement mutations in the GAPDH enzyme (coded by GapC) indicate a significant impact of replacement mutations on enzyme function. Furthermore, the geographic distribution of alternate GapC alleles and/or linked genomic regions suggests that they have had differential success in the recolonization of Europe following the Last Glacial Maximum.

  3. A nonsense nucleotide substitution in the oculocutaneous albinism II gene underlies the original pink-eyed dilution allele (Oca2(p)) in mice.

    PubMed

    Shoji, Haruka; Kiniwa, Yukiko; Okuyama, Ryuhei; Yang, Mu; Higuchi, Keiichi; Mori, Masayuki

    2015-01-01

    The original pink-eyed dilution (p) on chromosome 7 is a very old spontaneous mutation in mice. The oculocutaneous albinism II (Oca2) gene has previously been identified as the p gene. Oca2 transcripts have been shown to be absent in the skin of SJL/J mice with the original p mutant allele (Oca2(p)); however, the molecular genetic lesion underlying the original Oca2(p) allele has never been reported. The NCT mouse (commonly known as Nakano cataract mouse) has a pink-eyed dilution phenotype, which prompted us to undertake a molecular genetic analysis of the Oca2 gene of this strain. Our genetic linkage analysis suggests that the locus for the pink-eyed dilution phenotype of NCT is tightly linked to the Oca2 locus. PCR cloning and nucleotide sequence analysis indicates that the NCT mouse has a nonsense nucleotide substitution at exon 7 of the Oca2 gene. Examination of three mouse strains (NZW/NSlc, SJL/J, and 129X1/SvJJmsSlc) with the original Oca2(p) allele revealed the presence of a nonsense nucleotide substitution identical to that in the NCT strain. RT-PCR analysis revealed that the Oca2 transcripts were absent in the skin of NCT mice, suggesting intervention of the nonsense-mediated mRNA decay pathway. Collectively, the data in this study indicate that the nonsense nucleotide substitution in the Oca2 gene underlies the Oca2(p) allele. Our data also indicate that the NCT mouse can be used not only as a cataract model, but also as a model for human type II oculocutaneous albinism.

  4. Revisiting a Complex Rearrangement Involving a 619 Base Pairs Deletion, 6 Nucleotide Insertion Followed by a A > G Substitution Causing β°-Thalassemia.

    PubMed

    DabbaghBagheri, Samira; Ghadami, Shirin; Mollazadeh, Faeze; Saadat, Ameneh; Zeinali, Sirous

    2016-12-01

    One of the prevalent inherited blood disorders is thalassemia syndrome that characterized by reduction (β+) or absence (β0) of β globin chain synthesis. The β globin (HBB) gene map in the short arm of chromosome 11 and most of the mutations in this gene are single nucleotide substitutions, insertions or deletions of nucleotides. Nucleotide sequence analysis of a partially deleted β-globin gene from an Iranian carrier of β-thalassemia displayed a complex rearrangement involving a 619 base pairs (bp) deletion. This rearrangement had originally been named as the 619 bp deletion and later on as the 619 bp deletion with a 7 bp insertion. In our study, using by single chain sequencing, we have shown that the actual rearrangement involves a 619 bp deletion, a 6 bp insertion followed by a G > A substitution deleting the exon 3 of the β-globin gene. This clarification has to be inserted into the relevant databases as some of them still site the original 619 bp deletion with wrong breakpoints.

  5. Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.

    PubMed

    Köhnke, Tobias; Ostlund, Asa; Brelid, Harald

    2011-07-11

    This study presents results that show that the fine structure of arabinoxylan affects its interaction with cellulosic surfaces, an important understanding when designing and evaluating properties of xylan-cellulose-based materials. Arabinoxylan samples, with well-defined structures, were prepared from a wheat flour arabinoxylan with targeted enzymatic hydrolysis. Turbidity measurements and analyses using NMR diffusometry showed that the solubility and the hydrodynamic properties of arabinoxylan are determined not only by the degree of substitution but also by the substitution pattern. On the basis of results obtained from adsorption experiments on microcrystalline cellulose particles and on cellulosic model surfaces investigated with quartz crystal microbalance with dissipation monitoring, it was also found that arabinoxylan adsorbs irreversibly on cellulosic surfaces and that the adsorption characteristics, as well as the properties of the adsorbed layer, are controlled by the fine structure of the xylan molecule.

  6. The Slow:Fast substitution ratio reveals changing patterns of natural selection in gamma-proteobacterial genomes

    SciTech Connect

    Alm, Eric; Shapiro, B. Jesse

    2009-04-15

    Different microbial species are thought to occupy distinct ecological niches, subjecting each species to unique selective constraints, which may leave a recognizable signal in their genomes. Thus, it may be possible to extract insight into the genetic basis of ecological differences among lineages by identifying unusual patterns of substitutions in orthologous gene or protein sequences. We use the ratio of substitutions in slow versus fast-evolving sites (nucleotides in DNA, or amino acids in protein sequence) to quantify deviations from the typical pattern of selective constraint observed across bacterial lineages. We propose that elevated S:F in one branch (an excess of slow-site substitutions) can indicate a functionally-relevant change, due to either positive selection or relaxed evolutionary constraint. In a genome-wide comparative study of gamma-proteobacterial proteins, we find that cell-surface proteins involved with motility and secretion functions often have high S:F ratios, while information-processing genes do not. Change in evolutionary constraints in some species is evidenced by increased S:F ratios within functionally-related sets of genes (e.g., energy production in Pseudomonas fluorescens), while other species apparently evolve mostly by drift (e.g., uniformly elevated S:F across most genes in Buchnera spp.). Overall, S:F reveals several species-specific, protein-level changes with potential functional/ecological importance. As microbial genome projects yield more species-rich gene-trees, the S:F ratio will become an increasingly powerful tool for uncovering functional genetic differences among species.

  7. Comparative study of codon substitution patterns in foot-and-mouth disease virus (serotype O)

    PubMed Central

    Ahn, Insung; Bae, Se-Eun

    2011-01-01

    We compared genetic variations in the VP1 gene of foot-and-mouth disease viruses (FMDVs) isolated since 2000 from various region of the world. We analyzed relative synonymous codon usage (RSCU) and phylogenetic relationship between geographical regions, and calculated the genetic substitution patterns between Korean isolate and those from other countries. We calculated the ratios of synonymously substituted codons (SSC) to all observed substitutions and developed a new analytical parameter, EMC (the ratio of exact matching codons within each synonymous substitution group) to investigate more detailed substitution patterns within each synonymous codon group. We observed that FMDVs showed distinct RSCU patterns according to phylogenetic relationships in the same serotype (serotype O). Moreover, while the SSC and EMC values of FMDVs decreased according to phylogenetic distance, G + C composition at the third codon position was strictly conserved. Although there was little variation among the SSC values of 18 amino acids, more dynamic differences were observed in EMC values. The EMC values of 4- and 6-fold degenerate amino acids showed significantly lower values while most 2-fold degenerate amino acids showed no significant difference. Our findings suggest that different EMC patterns among the 18 amino acids might be an important factor in determining the direction of evolution in FMDV. PMID:21825834

  8. Virus-Host Coevolution: Common Patterns of Nucleotide Motif Usage in Flaviviridae and Their Hosts

    PubMed Central

    Lobo, Francisco P.; Mota, Bruno E. F.; Pena, Sérgio D. J.; Azevedo, Vasco; Macedo, Andréa M.; Tauch, Andreas; Machado, Carlos R.; Franco, Glória R.

    2009-01-01

    Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be

  9. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition.

    PubMed Central

    Tuddenham, E G; Schwaab, R; Seehafer, J; Millar, D S; Gitschier, J; Higuchi, M; Bidichandani, S; Connor, J M; Hoyer, L W; Yoshioka, A

    1994-01-01

    A large number of different mutations in the factor VIII (F8) gene have been identified as a cause of haemophilia A. This compilation lists known single base-pair substitutions, deletions and insertions in the F8 gene and reviews the status of the inversional events which account for a substantial proportion of mutations causing severe haemophilia A. PMID:7984443

  10. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition.

    PubMed Central

    Tuddenham, E G; Schwaab, R; Seehafer, J; Millar, D S; Gitschier, J; Higuchi, M; Bidichandani, S; Connor, J M; Hoyer, L W; Yoshioka, A

    1994-01-01

    A large number of different mutations in the factor VIII (F8) gene have been identified as a cause of haemophilia A. This compilation lists known single base-pair substitutions, deletions and insertions in the F8 gene and reviews the status of the inversional events which account for a substantial proportion of mutations causing severe haemophilia A. PMID:7937051

  11. Signatures of Reproductive Isolation in Patterns of Single Nucleotide Diversity Across Inbred Strains of Mice

    PubMed Central

    Payseur, Bret A.; Hoekstra, Hopi E.

    2005-01-01

    Reproductive isolation is often caused by the disruption of genic interactions that evolve in geographically separate populations. Identifying the genomic regions and genes involved in these interactions, known as “Dobzhansky-Muller incompatibilities,” can be challenging but is facilitated by the wealth of genetic markers now available in model systems. In recent years, the complete genome sequence and thousands of single nucleotide polymorphisms (SNPs) from laboratory mice, which are largely genetic hybrids between Mus musculus and M. domesticus, have become available. Here, we use these resources to locate genomic regions that may underlie reproductive isolation between these two species. Using genotypes from 332 SNPs that differ between wild-derived strains of M. musculus and M. domesticus, we identified several physically unlinked SNP pairs that show exceptional gametic disequilibrium across the lab strains. Conspecific alleles were associated in a disproportionate number of these cases, consistent with the action of natural selection against hybrid gene combinations. As predicted by the Dobzhansky-Muller model, this bias was differentially attributable to locus pairs for which one hybrid genotype was missing. We assembled a list of potential Dobzhansky-Muller incompatibilities from locus pairs that showed extreme associations (only three gametic types) among conspecific alleles. Two SNPs in this list map near known hybrid sterility loci on chromosome 17 and the X chromosome, allowing us to nominate partners for disrupted interactions involving these genomic regions for the first time. Together, these results indicate that patterns produced by speciation between M. musculus and M. domesticus are visible in the genomes of lab strains of mice, underscoring the potential of these genetic model organisms for addressing general questions in evolutionary biology. PMID:16143616

  12. Development of a Physical Model-Based Algorithm for the Detection of Single-Nucleotide Substitutions by Using Tiling Microarrays

    PubMed Central

    Ono, Naoaki; Suzuki, Shingo; Furusawa, Chikara; Shimizu, Hiroshi; Yomo, Tetsuya

    2013-01-01

    High-density DNA microarrays are useful tools for analyzing sequence changes in DNA samples. Although microarray analysis provides informative signals from a large number of probes, the analysis and interpretation of these signals have certain inherent limitations, namely, complex dependency of signals on the probe sequences and the existence of false signals arising from non-specific binding between probe and target. In this study, we have developed a novel algorithm to detect the single-base substitutions by using microarray data based on a thermodynamic model of hybridization. We modified the thermodynamic model by introducing a penalty for mismatches that represent the effects of substitutions on hybridization affinity. This penalty results in significantly higher detection accuracy than other methods, indicating that the incorporation of hybridization free energy can improve the analysis of sequence variants by using microarray data. PMID:23382915

  13. Seafood substitutions obscure patterns of mercury contamination in Patagonian toothfish (Dissostichus eleginoides) or "Chilean sea bass".

    PubMed

    Marko, Peter B; Nance, Holly A; van den Hurk, Peter

    2014-01-01

    Seafood mislabeling distorts the true abundance of fish in the sea, defrauds consumers, and can also cause unwanted exposure to harmful pollutants. By combining genetic data with analyses of total mercury content, we have investigated how species substitutions and fishery-stock substitutions obscure mercury contamination in Patagonian toothfish (Dissostichus eleginoides), also known as "Chilean sea bass". Patagonian toothfish show wide variation in mercury concentrations such that consumers may be exposed to either acceptable or unacceptable levels of mercury depending on the geographic origins of the fish and the allowable limits of different countries. Most notably, stocks of Patagonian toothfish in Chile accumulate significantly more mercury than stocks closer to the South Pole, including the South Georgia/Shag Rocks stock, a fishery certified by the Marine Stewardship Council (MSC) as sustainably fished. Consistent with the documented geography of mercury contamination, our analysis showed that, on average, retail fish labeled as MSC-certified Patagonian toothfish had only half the mercury of uncertified fish. However, consideration of genetic data that were informative about seafood substitutions revealed a complex pattern of contamination hidden from consumers: species substitutions artificially inflated the expected difference in mercury levels between MSC-certified and uncertified fish whereas fishery stock substitutions artificially reduced the expected difference in mercury content between MSC-certified and uncertified fish that were actually D. eleginoides. Among MSC-certified fish that were actually D. eleginoides, several with exogenous mtDNA haplotypes (i.e., not known from the certified fishery) had mercury concentrations on par with uncertified fish from Chile. Overall, our analysis of mercury was consistent with inferences from the genetic data about the geographic origins of the fish, demonstrated the potential negative impact of seafood

  14. Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 'Spanish' influenza pandemic virus.

    PubMed

    dos Reis, Mario; Hay, Alan J; Goldstein, Richard A

    2009-10-01

    Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 'Spanish' influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882-1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913-1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918.

  15. The intraspecific variability of mitochondrial genes of Agaricus bisporus reveals an extensive group I intron mobility combined with low nucleotide substitution rates.

    PubMed

    Jalalzadeh, Banafsheh; Saré, Idy Carras; Férandon, Cyril; Callac, Philippe; Farsi, Mohammad; Savoie, Jean-Michel; Barroso, Gérard

    2015-02-01

    Intraspecific mitochondrial variability was studied in ten strains of A. bisporus var. bisporus, in a strain representative of A. bisporus var. eurotetrasporus and in a strain of the closely related species Agaricus devoniensis. In A. bisporus, the cox1 gene is the richest in group I introns harboring homing endonuclease genes (heg). This study led to identify group I introns as the main source of cox1 gene polymorphism. Among the studied introns, two groups were distinguished according to the heg they contained. One group harbored heg maintained putatively functional. The other group was composed of eroded heg sequences that appeared to evolve toward their elimination. Low nucleotide substitution rates were found in both types of intronic sequences. This feature was also shared by all types of studied mitochondrial sequences, not only intronic but also genic and intergenic ones, when compared with nuclear sequences. Hence, the intraspecific evolution of A. bisporus mitochondrial genome appears characterized by both an important mobility (presence/absence) of large group I introns and by low nt substitution rates. This stringent conservation of mitochondrial sequences, when compared with their nuclear counterparts, appears irrespective of their apparent functionality and contrasts to what is widely accepted in fungal sequence evolution. This strengthens the usefulness of mtDNA sequences to get clues on intraspecific evolution.

  16. Determination of Substitution Patterns of Galactans from Green Seaweeds of the Bryopsidales.

    PubMed

    Arata, Paula Ximena; Fernández, Paula Virginia; Ciancia, Marina

    2015-01-01

    Sulfated and pyruvylated galactans are the major soluble polysaccharides produced by seaweeds of the Bryopsidales. Their backbones have a complex and variable pattern of substitution which, until now, has only been elucidated for a few species. Methods for determination of sulfate and pyruvic acid content, and chemical strategies to determine their position in the galactan chain are outlined here. These methods can also be applied to other sulfated and/or pyruvylated polysaccharides.

  17. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.

    1991-01-01

    Phosphoimidazolide-activated derivatives of guanosine and cytidine 5'-monophosphates, henceforth called ImpN's, exhibit enhanced rates of degradation in the presence of aqueous inorganic phosphate in the range 4.0 < or = pH < or = 8.6. This degradation is been attributed to (i) nucleophilic substitution of the imidazolide and (ii) catalysis of the P-N bond hydrolysis by phosphate. The first reaction results in the formation of nucleoside 5'-diphosphate and the second in nucleoside 5'-monophosphate. Analysis of the observed rates as well as the product ratios as a function of pH and phosphate concentration allow distinction between various mechanistic possibilities. The results show that both H2PO4- and HPO4(2-) participate in both hydrolysis and nucleophilic substitution. Statistically corrected biomolecular rate constants indicate that the dianion is 4 times more effective as a general base than the monoanion, and 8 times more effective as nucleophile. The low Bronsted value beta = 0.15 calculated for these phosphate species, presumed to act as general bases in facilitating water attack, is consistent with the fact that catalysis of the hydrolysis of the P-N bond in ImpN's has not been detected before. The beta nuc = 0.35 calculated for water, H2PO4-, HPO4(2-), and hydroxide acting as nucleophiles indicates a more associative transition state for nucleotidyl (O2POR- with R = nucleoside) transfers than that observed for phosphoryl (PO3(2-)) transfers (beta nuc = 0.25). With respect to the stability/reactivity of ImpN's under prebiotic conditions, our study shows that these materials would not suffer additional degradation due to inorganic phosphate, assuming the concentrations of phosphate, Pi, on prebiotic Earth were similar to those in the present oceans ([Pi] approximately 2.25 micromoles).

  18. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, J.; Zidong, L.; Kado, T.; Tsumura, Y.; Middleton, B.A.; Tachida, H.

    2010-01-01

    Premise of the Study: Studies of the geographic patterns of genetic variation can give important insights into the past population structure of species. Our study species, Taxodium distichum L. (bald-cypress), prefers riparian and wetland habitats and is widely distributed in southeastern North America and Mexico. We compared the genetic variation of T. distichum with that of its close relative, Cryptomeria japonica, which is endemic to Japan. Methods: Nucleotide polymorphisms of T. distichum in the lower Mississippi River alluvial valley, USA, were examined at 10 nuclear loci. Key Results: The average nucleotide diversity at silent sites, 7sil, across the 10 loci in T. distichum was higher than that of C. japonica (7sil = 0.00732 and 0.00322, respectively). In T. distichum, Tajima's D values were each negative at 9 out of 10 loci, which suggests a recent population expansion. Maximum-likelihood and Bayesian estimations of the exponential population growth rate (g) of T. distichum populations indicated that this species had expanded approximately at the rate of 1.7 - 1.0 10 -6 per year in the past. Conclusions: Taxodium distichum had signifi cantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  19. Substitution pattern elucidation of hydroxypropyl Pinus pinaster (Ait.) bark polyflavonoid derivatives by ESI(-)-MS/MS.

    PubMed

    García Marrero, Danny E; Glasser, Wolfgang G; Pizzi, Antonio; Paczkowski, Sebastian; Laborie, Marie-Pierre G

    2014-10-01

    The structure of condensed tannins (CTs) from Pinus pinaster bark extract and their hydroxypropylated derivatives with four degrees of substitution (DS 1, 2, 3 and 4) has been characterized for the first time using negative-ion mode electrospray ionization tandem mass spectrometry (ESI(-)-MS/MS). The results showed that P. pinaster bark CTs possess structural homogeneity in terms of monomeric units (C(15), catechin). The oligomer sizes were detected to be dimers to heptamers. The derivatives showed typical phenyl-propyl ether mass fragmentation by substituent elimination (58 amu) and inherent C(15) flavonoid fissions. The relative abundance of the product ions revealed a preferential triple, tetra-/penta- and octa- hydroxypropylation substitution pattern in the monomer, dimer and trimer derivatives, respectively. A defined order of -OH reactivity towards propylene oxide was established by means of multistage experiments (A-ring ≥ B-ring > C-ring). A high structural heterogeneity of the modified oligomers was detected.

  20. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.

    PubMed

    Laos, Roberto; Shaw, Ryan; Leal, Nicole A; Gaucher, Eric; Benner, Steven

    2013-08-06

    Artificial genetic systems have been developed by synthetic biologists over the past two decades to include additional nucleotides that form additional nucleobase pairs independent of the standard T:A and C:G pairs. Their use in various tools to detect and analyze DNA and RNA requires polymerases that synthesize duplex DNA containing unnatural base pairs. This is especially true for nested polymerase chain reaction (PCR), which has been shown to dramatically lower noise in multiplexed nested PCR if nonstandard nucleotides are used in their external primers. We report here the results of a directed evolution experiment seeking variants of Taq DNA polymerase that can support the nested PCR amplification with external primers containing two particular nonstandard nucleotides, 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (trivially called P) that pairs with 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (trivially called Z). Variants emerging from the directed evolution experiments were shown to pause less when challenged in vitro to incorporate dZTP opposite P in a template. Interestingly, several sites involved in the adaptation of Taq polymerases in the laboratory were also found to have displayed "heterotachy" (different rates of change) in their natural history, suggesting that these sites were involved in an adaptive change in natural polymerase evolution. Also remarkably, the polymerases evolved to be less able to incorporate dPTP opposite Z in the template, something that was not selected. In addition to being useful in certain assay architectures, this result underscores the general rule in directed evolution that "you get what you select for".

  1. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    PubMed

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  2. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests

    PubMed Central

    Mosca, Elena; Eckert, Andrew J; Liechty, John D; Wegrzyn, Jill L; La Porta, Nicola; Vendramin, Giovanni G; Neale, David B

    2012-01-01

    A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004–0.1295) and among species (range: 0.0024–0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries. PMID:23144662

  3. Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests.

    PubMed

    Mosca, Elena; Eckert, Andrew J; Liechty, John D; Wegrzyn, Jill L; La Porta, Nicola; Vendramin, Giovanni G; Neale, David B

    2012-11-01

    A candidate gene approach was used to identify levels of nucleotide diversity and to identify genes departing from neutral expectations in coniferous species of the Alpine European forest. Twelve samples were collected from four species that dominate montane and subalpine forests throughout Europe: Abies alba Mill, Larix decidua Mill, Pinus cembra L., and Pinus mugo Turra. A total of 800 genes, originally resequenced in Pinus taeda L., were resequenced across 12 independent trees for each of the four species. Genes were assigned to two categories, candidate and control, defined through homology-based searches to Arabidopsis. Estimates of nucleotide diversity per site varied greatly between polymorphic candidate genes (range: 0.0004-0.1295) and among species (range: 0.0024-0.0082), but were within the previously established ranges for conifers. Tests of neutrality using stringent significance thresholds, performed under the standard neutral model, revealed one to seven outlier loci for each species. Some of these outliers encode proteins that are involved with plant stress responses and form the basis for further evolutionary enquiries.

  4. Post-transcriptional modification of the wobble nucleotide in anticodon-substituted yeast tRNAArgII after microinjection into Xenopus laevis oocytes.

    PubMed Central

    Fournier, M; Haumont, E; de Henau, S; Gangloff, J; Grosjean, H

    1983-01-01

    An enzymatic procedure for the replacement of the ICG anticodon of yeast tRNAArgII by NCG trinucleotide (N = A, C, G or U) is described. Partial digestion with S1-nuclease and T1-RNAase provides fragments which, when annealed together, form an "anticodon-deprived" yeast tRNAArgII. A novel anticodon, phosphorylated with (32P) label on its 5' terminal residue, is then inserted using T4-RNA ligase. Such "anticodon-substituted" yeast tRNAArgII are microinjected into the cytoplasm of Xenopus laevis oocytes and shown to be able to interact with the anticodon maturation enzymes under in vivo conditions. Our results indicate that when adenosine occurs in the wobble position (A34) in yeast tRNAArgII it is efficiently modified into inosine (I34) while uridine (U34) is transformed into two uridine derivatives, one of which is probably mcm5U. In contrast, when a cytosine (C34) or guanosine (G34) occurs, they are not modified. These results are at variance with those obtained previously under similar conditions with anticodon derivatives of yeast tRNAAsp harbouring A, C, G or U as the first anticodon nucleotide. In this case, guanosine and uridine were modified while adenosine and cytosine were not. Images PMID:6300762

  5. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern.

    PubMed Central

    Elima, K; Eerola, I; Rosati, R; Metsäranta, M; Garofalo, S; Perälä, M; De Crombrugghe, B; Vuorio, E

    1993-01-01

    Overlapping genomic clones covering the 7.2 kb mouse alpha 1(X) collagen gene, 0.86 kb of promoter and 1.25 kb of 3'-flanking sequences were isolated from two genomic libraries and characterized by nucleotide sequencing. Typical features of the gene include a unique three-exon structure, similar to that in the chick gene, with the entire triple-helical domain of 463 amino acids coded by a single large exon. The highest degree of amino acid and nucleotide sequence conservation was seen in the coding region for the collagenous and C-terminal non-collagenous domains between the mouse and known chick, bovine and human collagen type X sequences. More divergence between the sequences occurred in the N-terminal non-collagenous domain. Similarity between the mammalian collagen X sequences extended into the 3'-untranslated sequence, particularly near the polyadenylation site. The promoter of the mouse collagen X gene was found to contain two TATAA boxes 159 bp apart; primer extension analyses of the transcription start site revealed that both were functional. The promoter has an unusual structure with a very low G + C content of 28% between positions -220 and -1 of the upstream transcription start site. Northern and in situ hybridization analyses confirmed that the expression of the alpha 1(X) collagen gene is restricted to hypertrophic chondrocytes in tissues undergoing endochondral calcification. The detailed sequence information of the gene is useful for studies on the promoter activity of the gene and for generation of transgenic mice. Images Figure 3 Figure 5 Figure 6 PMID:8424763

  6. Molecular population genetics of the OBP83 genomic region in Drosophila subobscura and D. guanche: contrasting the effects of natural selection and gene arrangement expansion in the patterns of nucleotide variation

    PubMed Central

    Sánchez-Gracia, A; Rozas, J

    2011-01-01

    Chromosomal inversion polymorphism play a major role in the evolutionary dynamics of populations and species because of their effects on the patterns of genetic variability in the genomic regions within inversions. Though there is compelling evidence for the adaptive character of chromosomal polymorphisms, the mechanisms responsible for their maintenance in natural populations is not fully understood. For this type of analysis, Drosophila subobscura is a good model species as it has a rich and extensively studied chromosomal inversion polymorphism system. Here, we examine the patterns of DNA variation in two natural populations segregating for chromosomal arrangements that differentially affect the surveyed genomic region; in particular, we analyse both nucleotide substitutions and insertion/deletion variations in the genomic region encompassing the odorant-binding protein genes Obp83a and Obp83b (Obp83 region). We show that the two main gene arrangements are genetically differentiated, but are consistent with a monophyletic origin of inversions. Nevertheless, these arrangements interchange some genetic information, likely by gene conversion. We also find that the frequency spectrum-based tests indicate that the pattern of nucleotide variation is not at equilibrium; this feature probably reflects the rapid increase in the frequency of the new gene arrangement promoted by positive selection (that is an adaptive change). Furthermore, a comparative analysis of polymorphism and divergence patterns reveals a relaxation of the functional constraints at the Obp83b gene, which might be associated with particular ecological or demographic features of the Canary island endemic species D. guanche PMID:20332808

  7. Functionalized Celluloses with Regular Substitution Pattern by Glycosynthase-Catalyzed Polymerization.

    PubMed

    Codera, Victoria; Edgar, Kevin J; Faijes, Magda; Planas, Antoni

    2016-04-11

    Control of the monomer sequence in polymers is extraordinarily difficult by chemical synthesis, though Nature routinely exerts such control, including in the biosynthesis of polysaccharides. This inability has prevented us from being able to match the exquisite structure-activity control exhibited in biosynthesis of bioactive natural polysaccharides. We here address a powerful approach, whereby enzyme-catalyzed polymerization of properly modified building blocks is introduced as a simple route affording polysaccharides with controlled sequence and functionalization pattern. Targeting cellulose as a versatile scaffold for novel biomaterials, we describe the preparation of a perfectly alternating polysaccharide with repeat unit 6'-azido-6'-deoxycellobiose by a glycosynthase-catalyzed polymerization using the Humicola insolens cellulase Cel7B E197A mutant, and its further functionalization to give novel modified cellulose derivatives with a regular substitution pattern.

  8. Unique genes in giant viruses: regular substitution pattern and anomalously short size.

    PubMed

    Ogata, Hiroyuki; Claverie, Jean-Michel

    2007-09-01

    Large DNA viruses, including giant mimivirus with a 1.2-Mb genome, exhibit numerous orphan genes possessing no database homologs or genes with homologs solely in close members of the same viral family. Due to their solitary nature, the functions and evolutionary origins of those genes remain obscure. We examined sequence features and evolutionary rates of viral family-specific genes in three nucleo-cytoplasmic large DNA virus (NCLDV) lineages. First, we showed that the proportion of family-specific genes does not correlate with sequence divergence rate. Second, position-dependent nucleotide statistics were similar between family-specific genes and the remaining genes in the genome. Third, we showed that the synonymous-to-nonsynonymous substitution ratios in those viruses are at levels comparable to those estimated for vertebrate proteomes. Thus, the vast majority of family-specific genes do not exhibit an accelerated evolutionary rate, and are thus likely to specify functional polypeptides. On the other hand, these family-specific proteins exhibit several distinct properties: (1) they are shorter, (2) they include a larger fraction of predicted transmembrane proteins, and (3) they are enriched in low-complexity sequences. These results suggest that family-specific genes do not correspond to recent horizontal gene transfer. We propose that their characteristic features are the consequences of the specific evolutionary forces shaping the viral gene repertoires in the context of their parasitic lifestyles.

  9. Interrelationships between hydrogen-supplying reactions, respiration rate and extramitochondrial adenine nucleotide pattern.

    PubMed

    Böhme, G; Schönfeld, P; Bohnensack, R; Küster, U; Kunz, W

    1982-01-01

    1. The influence of a diminished hydrogen supply on the regulation of oxidative phosphorylation of isolated rat liver mitochondria in dependence on the extramitochondrial (ATP)/(ADP) ratio was investigated. 2. The hydrogen supply was diminished by using various (beta-hydroxybutyrate)/(acetoacetate) ratios as a redox buffer and the results were compared with those of experiments using perifusion of immobilized mitochondria with non-saturating substrate concentrations. 3. In both experimental approaches the influence of a diminished hydrogen pressure on the maximum (ATP)/(ADP) ratio at minimum flux was low. An extreme decrease in the (beta-hydroxybutyrate)/(acetoacetate) ratio by more than two orders of magnetitude causes the (APT)/(ADP) ratio to decrease by about 50%. 4. The load capacity of oxidative phosphorylation (maximum flux) is considerably decreased by diminished hydrogen pressure. 5. The borderline cases of purely kinetic and thermodynamic limitations of hydrogen supply were calculated by computer simulation with respect to the regulating behaviour of oxidative phosphorylation and changes in the control strength of adenine nucleotide translocator and hydrogen supply in the overall reaction. 6. A prevalent thermodynamic influence of hydrogen supply on oxidative energy transformation in the cell is discussed in the light of experimental data.

  10. Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst].

    PubMed

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.

  11. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes

    PubMed Central

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-01-01

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5′–3′ gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5′–3′ decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5′–3′ gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species. PMID:26450849

  12. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes.

    PubMed

    Ressayre, Adrienne; Glémin, Sylvain; Montalent, Pierre; Serre-Giardi, Laurana; Dillmann, Christine; Joets, Johann

    2015-10-07

    Plant genomes present a continuous range of variation in nucleotide composition (G + C content). In coding regions, G + C-poor species tend to have unimodal distributions of G + C content among genes within genomes and slight 5'-3' gradients along genes. In contrast, G + C-rich species display bimodal distributions of G + C content among genes and steep 5'-3' decreasing gradients along genes. The causes of these peculiar patterns are still poorly understood. Within two species (Arabidopsis thaliana and rice), each representative of one side of the continuum, we studied the consequences of intron presence on coding region and intron G + C content at different scales. By properly taking intron structure into account, we showed that, in both species, intron presence is associated with step changes in nucleotide, codon, and amino acid composition. This suggests that introns have a barrier effect structuring G + C content along genes and that previous continuous characterizations of the 5'-3' gradients were artifactual. In external gene regions (located upstream first or downstream last introns), species-specific factors, such as GC-biased gene conversion, are shaping G + C content whereas in internal gene regions (surrounded by introns), G + C content is likely constrained to remain within a range common to both species.

  13. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    PubMed Central

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. PMID:24424165

  14. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms.

    PubMed

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-06-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.

  15. Predicting gas chromatography relative retention times for polychlorinated biphenyls using chlorine substitution pattern contribution method.

    PubMed

    Li, An; Gao, Jie; Freels, Sally; Huang, Jun; Yu, Gang

    2016-01-04

    Various quantitative structure retention relationships have been published in an effort to understand and predict chromatographic retention times. This work presents a chlorine substitution pattern contribution (Cl-SPC) model for relative retention times (RRT) of polychlorinated biphenyls (PCBs), using 27 sets of previously published gas chromatography RRT data. The Cl-SPC model calculates the contribution factors (βk) for each of 19 chlorine substitution "patterns" (such as 2-, 2,4-, 2,3,6-, 2,3,4,5,6-, etc.) using multiple linear regression (MLR). The 27 separate MLRs had R(2) values ranging from 0.961 to 1.000; the average absolute errors were 0.55% for the training sets and 0.95% for the test sets. Cross-validation of the model was carried out by splitting each data set into training and test sets for groupings based on nine PCB congener mixes commercialized by AccuStandard. No weakening of the model performance was observed when the size of data set used to develop the model was decreased from 209 to 39 congeners. In addition to the separate models, a single mixed model was fit combining all 27 data sets. The estimated random effects, which reflect the impact of GC configuration and operational conditions on RRTs, are minor compared with the fixed effects estimated for the βk values. The major advantages of the Cl-SPC model are its unmatched simplicity and equally excellent robustness when compared with other quantitative structure retention relationship models.

  16. Characterisation of genotypes among bovine viral diarrhoea virus 2 strains according to palindromic nucleotide substitutions in the 5 untranslated genomic region.

    PubMed

    Giangaspero, M; Harasawa, R

    2004-01-01

    Pestivirus bovine viral diarrhea virus 2 (BVDV-2) strains from 61 isolates from cattle and sheep, and from some adventitious contaminants of biologicals, have been assessed using the palindromic nucleotide substitutions (PNS) method at three variable loci (V1, V2 and V3) located delin the 5' untranslated region (UTR) of genomic RNA. This genotyping procedure is new, simple and practical. Two characteristics of the base pairings common to BVDV-2 species, a C-G or U-A pairing at the V1 locus, and a G*U pairing at the V2 locus, were observed in isolates tested. The PNS method showed six genotypes: BVDV-2a, BVDV-2b, BVDV-2c, BVDV- 2d, BVDV-2e and BVDV-2f. Twenty-five strains showed the BVDV-2a genotype specific combination of three base pairings (A-U in position 1 and C-G or U*G in position 18 in V1 and U-A or U*G in position 4 in V2). Ten strains were identified by a single C-G pairing in position 4 from the bottom of the V2 stem region, characteristic to genotype BVDV-2b. Three strains were assigned to genotype BVDV-2c, due to their recognition by a G*U pairing at the bottom of the V1 stem region. A U-A pairing, characteristic of the BVDV-2d genotype when found in position 18 of the V1 stem region, was observed in fourteen strains. Genotype BVDV- 2e, present in only six South American cattle isolates, was characterized by G-C pairing in position 12, by U-A pairing in position 16 and G_G or G-_A bulges in position 18 in the V1 region. One strain from Argentina was classified as genotype BVDV-2f, showing: A-U pairing in position 9 and 12, U-A in position 16 and G_A bulge in position 18 in V1 region. Two strains were not characterized due to incomplete sequence of V1 locus.

  17. Influence of bromine substitution pattern on the singlet oxygen generation efficiency of two-photon absorbing chromophores.

    PubMed

    Lanoë, Pierre-Henri; Gallavardin, Thibault; Dupin, Aurore; Maury, Olivier; Baldeck, Patrice L; Lindgren, Mikael; Monnereau, Cyrille; Andraud, Chantal

    2012-08-21

    A molecular engineering strategy based on rational variations of the bromine substitution pattern in two-photon absorbing singlet oxygen sensitizers allows studying the relations that exist between the positioning of an inter-system crossing promoter on the charge-transfer chromophore and its ability to generate singlet oxygen.

  18. Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern

    PubMed Central

    2015-01-01

    Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp3 carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications. PMID:24601599

  19. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern.

    PubMed

    Liu, Runhui; Chen, Xinyu; Chakraborty, Saswata; Lemke, Justin J; Hayouka, Zvi; Chow, Clara; Welch, Rodney A; Weisblum, Bernard; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Binary nylon-3 copolymers containing cationic and hydrophobic subunits can mimic the biological properties of host-defense peptides, but relationships between composition and activity are not yet well understood for these materials. Hydrophobic subunits in previously studied examples have been limited mostly to cycloalkane-derived structures, with cyclohexyl proving to be particularly promising. The present study evaluates alternative hydrophobic subunits that are isomeric or nearly isomeric with the cyclohexyl example; each has four sp(3) carbons in the side chains. The results show that varying the substitution pattern of the hydrophobic subunit leads to relatively small changes in antibacterial activity but causes significant changes in hemolytic activity. We hypothesize that these differences in biological activity profile arise, at least in part, from variations among the conformational propensities of the hydrophobic subunits. The α,α,β,β-tetramethyl unit is optimal among the subunits we have examined, providing copolymers with potent antibacterial activity and excellent prokaryote vs eukaryote selectivity. Bacteria do not readily develop resistance to the new antibacterial nylon-3 copolymers. These findings suggest that variation in subunit conformational properties could be generally valuable in the development of synthetic polymers for biological applications.

  20. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose1[OPEN

    PubMed Central

    Li, An; Gomes, Thiago C.F.

    2016-01-01

    The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls. PMID:27325663

  1. Selectivity in the Addition Reactions of Organometallic Reagents to Aziridine-2-carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns

    PubMed Central

    Kulshrestha, Aman; Schomaker, Jennifer M.; Holmes, Daniel; Staples, Richard J.; Jackson, James E.; Borhan, Babak

    2014-01-01

    Good to excellent stereo-selectivity has been found in the addition reactions of Grignard and organo-zinc reagents to N-protected aziridine-2-carboxaldehydes. Specifically, high syn selectivity was obtained with benzyl-protected cis, tert-butyloxycar-bonyl-protected trans, and tosyl-pro-tected 2,3-disubstituted aziridine-2-car-boxaldehydes. Furthermore, rate and selectivity effects of ring substituents, temperature, solvent, and Lewis acid and base modifiers were studied. The diastereomeric preference of addition is dominated by the substrate aziri-dines’ substitution pattern and especially the electronic character and conformational preferences of the nitrogen protecting groups. To help rationalize the observed stereochemical outcomes, conformational and electronic structural analyses of a series of model systems representing the various substitution patterns have been explored by density functional calculations at the B3LYP/6–31G* level of theory with the SM8 solvation model to account for solvent effects. PMID:21928447

  2. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.

  3. Ice crystal patterns in artificial gels of extracellular matrix macromolecules after quick-freezing and freeze-substitution.

    PubMed

    Allenspach, A L; Kraemer, T G

    1989-04-01

    Artificial gels, composed of collagen with or without hyaluronate (HA), a glycosaminoglycan (GAG), and chondroitin sulfate (CS), were prepared and quick-frozen for the purpose of studying the influence of composition and concentration on ice patterns. Dilute gels were spread on coverslips, plunged into a slush of 30% isopentane/70% propane (-185 degrees C), freeze-substituted, and examined by phase-contrast microscopy. Ice patterns were revealed as "ice cavities" in the gel after freeze-substitution. Ice morphology in the gels was gel-type-specific, suggesting that composition in dilute gels can influence ice pattern formation. Crystallization patterns reflecting high, intermediate, and low rates of freezing were observed in all gel types. Intermediate freezing in differentiating gel-type-specific ice patterns. Gels which included hyaluronate (HA) and chondroitin sulfate (CS) altered the ice crystal pattern commonly observed in collagen gels. Ice structure in collagen gels consisted predominantly of long, parallel crystals in the herringbone pattern. Ice crystals separated gel into thin, unbranched fibers with a primary spacing of approximately 2 microns. Ice morphology in HA gels formed a mosaic consisting of packets of ice crystals. Contiguous packets were often oriented at right angles to each other. Periodic crossbridges interconnect primary gel fibers of HA gels and interrupt the lengthwise growth of ice crystals. Smooth beads were visible on primary strands in HA gels frozen at intermediate velocities. The addition of CS to collagen gels resulted in formation of randomly oriented ice crystals in gels frozen at intermediate rates. CS has little influence on ice morphology at low freezing velocities. Primary strands in CS gels were decorated with rough-surfaced, osmiophilic aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, Eumetopias jubatus.

    PubMed

    Phillips, C D; Trujillo, R G; Gelatt, T S; Smolen, M J; Matson, C W; Honeycutt, R L; Patton, J C; Bickham, J W

    2009-08-01

    Despite the widely recognized incidence of homoplasy characterizing this region, the hypervariable region I (HVRI) of the mitochondrial control region is one of the most frequently used genetic markers for population genetic and phylogeographic studies. We present an evolutionary analysis of HVRI and cytochrome b sequences from a range-wide survey of 1031 Steller sea lions, Eumetopias jubatus, to quantify homoplasy and substitution rate at HVRI. Variation in HVRI was distributed across 41 variable sites in the 238-bp segment examined. All variants at HVR1 were found to be transitions. However, our analyses suggest that a minimum of 101 changes have actually occurred within HVRI with as many as 18 substitutions occurring at a single site. By including this hidden variation into our analyses, several instances of apparent long-range dispersal were resolved to be homoplasies and 8.5-12% of observed HVRI haplotypes were found to have geographic distributions descriptive of convergent molecular evolution rather than identity by descent. We estimate the rate of substitution at HVRI in Steller sea lions to be approximately 24 times that of cytochrome b with an absolute rate of HVRI substitution estimated at 27.45% per million years. These findings have direct implications regarding the utility of HVRI data to generate a variety of evolutionary genetic hypotheses.

  5. Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean[W][OPEN

    PubMed Central

    Bellucci, Elisa; Bitocchi, Elena; Ferrarini, Alberto; Benazzo, Andrea; Biagetti, Eleonora; Klie, Sebastian; Minio, Andrea; Rau, Domenico; Rodriguez, Monica; Panziera, Alex; Venturini, Luca; Attene, Giovanna; Albertini, Emidio; Jackson, Scott A.; Nanni, Laura; Fernie, Alisdair R.; Nikoloski, Zoran; Bertorelle, Giorgio; Delledonne, Massimo; Papa, Roberto

    2014-01-01

    Using RNA sequencing technology and de novo transcriptome assembly, we compared representative sets of wild and domesticated accessions of common bean (Phaseolus vulgaris) from Mesoamerica. RNA was extracted at the first true-leaf stage, and de novo assembly was used to develop a reference transcriptome; the final data set consists of ∼190,000 single nucleotide polymorphisms from 27,243 contigs in expressed genomic regions. A drastic reduction in nucleotide diversity (∼60%) is evident for the domesticated form, compared with the wild form, and almost 50% of the contigs that are polymorphic were brought to fixation by domestication. In parallel, the effects of domestication decreased the diversity of gene expression (18%). While the coexpression networks for the wild and domesticated accessions demonstrate similar seminal network properties, they show distinct community structures that are enriched for different molecular functions. After simulating the demographic dynamics during domestication, we found that 9% of the genes were actively selected during domestication. We also show that selection induced a further reduction in the diversity of gene expression (26%) and was associated with 5-fold enrichment of differentially expressed genes. While there is substantial evidence of positive selection associated with domestication, in a few cases, this selection has increased the nucleotide diversity in the domesticated pool at target loci associated with abiotic stress responses, flowering time, and morphology. PMID:24850850

  6. Route of administration influences substitution patterns in rats trained to discriminate methadone vs. vehicle.

    PubMed

    Vann, Robert E; Wise, Laura E; Varvel, Stephen A; Philibin, Scott D; Walentiny, D Matthew; Porter, Joseph H

    2009-08-01

    Replacement therapy with the synthetic mu-opioid agonist methadone is an efficacious treatment for opioid abuse. While much is known about methadone's pharmacology, its discriminative stimulus properties remain largely unexplored. The present study sought to establish methadone discrimination in rats. Moreover, some research suggests that route of administration alters the discriminative stimulus of methadone. Thus, the present study also compared intraperitoneal (i.p.) and subcutaneous (s.c.) routes of administration. Male Sprague-Dawley rats were trained to discriminate 3.0mg/kg methadone (i.p.) from vehicle in a two-lever discrimination procedure. Generalization tests were conducted with a variety of compounds administered i.p. and s.c. Methadone fully substituted for itself, yielding ED(50)s of 1.5mg/kg (i.p.) and 0.2mg/kg (s.c.). Naltrexone (i.p.), an opioid antagonist produced a dose-dependent reduction in methadone-appropriate responding. The methadone stereoisomers fully substituted for methadone when given s.c.; however, when administered i.p., (+) and (-) methadone produced partial and no substitution, respectively. Heroin fully generalized to methadone regardless of administration route, while morphine fully substituted when given s.c., but not i.p. The kappa-agonist U50-488 failed to generalize to methadone with either route of administration. These results demonstrated that methadone's discriminative stimulus is mediated through mu-opioid receptor activity and is similar to that of commonly abused opioids (heroin, morphine). Additionally, route of administration produced differential results for many of the drugs tested, suggesting decreased drug bioavailability following i.p. administration due to hepatic first pass metabolism. Taken together, these results suggest that methadone's shared subjective effects with abused opioids, as well as its unique metabolic properties contribute to its efficacy in opioid maintenance therapy.

  7. Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3-d] Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis.

    PubMed

    Golani, Lalit K; Wallace-Povirk, Adrianne; Deis, Siobhan M; Wong, Jennifer; Ke, Jiyuan; Gu, Xin; Raghavan, Sudhir; Wilson, Mike R; Li, Xinxin; Polin, Lisa; de Waal, Parker W; White, Kathryn; Kushner, Juiwanna; O'Connor, Carrie; Hou, Zhanjun; Xu, H Eric; Melcher, Karsten; Dann, Charles E; Matherly, Larry H; Gangjee, Aleem

    2016-09-08

    Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and β or the proton-coupled folate transporter. Results show increased in vitro antiproliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4-9 over the CH2 analogue 1. Compounds 4-9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.

  8. Collision induced dissociation-based characterization of nucleotide peptides: fragmentation patterns of microcin C7-C51, an antimicrobial peptide produced by Escherichia coli.

    PubMed

    Petit, Vanessa W; Zirah, Séverine; Rebuffat, Sylvie; Tabet, Jean-Claude

    2008-08-01

    Covalent protein-nucleic acid conjugates form an original class of compounds that occur in nature or can be generated in vitro through cross-linking to investigate domains involved in protein/nucleic acid interactions. Their mass spectrometry fragmentation patterns are poorly characterized. We have used electrospray-ionization mass spectrometry (ESI-MS) combined with collision-induced dissociation (CID) to characterize microcin C7-C51, an antimicrobial nucleotide peptide that targets aspartyl-tRNA synthetase and inhibits translation. The fragments of microcin C7-C51 were analyzed in positive- and negative-ion modes and compared with those of the corresponding unmodified heptapeptide and to the derived aspartyl-adenylate. The positive- and negative-ion mode fragments of microcin C7-C51 provided information on both the nucleotide and peptide moieties. Accurate mass measurement obtained using an LTQ Orbitrap instrument was a key factor for a comprehensive interpretation of the fragments. The experimental results obtained permitted the proposal of stepwise fragmentation pathways involving ion-dipole complexes. The data provide a better understanding of nucleotide peptide fragmentation in the gas phase.

  9. Dependence of mass spectrometric fragmentation on the bromine substitution pattern of polybrominated diphenyl ethers.

    PubMed

    Wei, Hua; Zhang, Siyu; Wang, Yawei; Wang, Ying; Li, An; Negrusz, Adam; Yu, Gang

    2014-06-01

    This study investigates the link between the bromine substitution and the mass spectrometric fragmentation of polybrominated diphenyl ethers (PBDEs). The mass spectra of 180 PBDEs were obtained in both electron impact (EI) and electron capture negative ionization (ECNI) modes using a single quadrupole mass spectrometer (MS) as well as EI using a tandem MS (MS/MS). The major ions are M(+), [M-2Br](+), [M-2Br](2+) and [M-nBr-28](+) in EI, and Br(-), [HBr2](-) and [C6BrnO](-) in ECNI. In EI-MS, congeners without ortho bromine or having 2,3 substitution on one ring and no ortho bromines on the other were more robust than the others in each homolog. These congeners generated low [M-2Br](+) but relatively high [M-2Br](2+) in EI-MS and negligible [HBr2](-) in ECNI-MS. In EI-MS/MS, the molecular ions of these congeners required higher collision energy to debrominate, and produced additional ions of [M-nBr](+) and [M-nBr-28](+). Full ortho substitution promotes C-O cleavage forming [C6BrnO](-) in ECNI for congeners with >5 bromines. The relationship between the abundance of M(+) and collision energy of the EI-MS/MS was well characterized with a logistic regression model. Principle component analysis found associations between the inflection point collision energy and a few molecular descriptors. Quantum chemistry simulations revealed different EI-induced fragmentation mechanisms among four dibrominated congeners, supporting the hypothesized formation of a stable dibenzofuran-like intermediate during the fragmentation of some congeners but not of others.

  10. Calibration of a molecular clock in tits (Paridae)--do nucleotide substitution rates of mitochondrial genes deviate from the 2% rule?

    PubMed

    Päckert, Martin; Martens, Jochen; Tietze, Dieter Thomas; Dietzen, Christian; Wink, Michael; Kvist, Laura

    2007-07-01

    The ongoing debate on the reliability of avian molecular clocks is actually based on only a small number of calibrations carried out under different assumptions with respect to the choice and constraints of calibration points or to the use of substitution models. In this study, we provide substitution rate estimates for two mitochondrial genes, cytochrome b and the control region, and age estimates for lineage splits within four subgenera of tits (Paridae: Parus, Cyanistes, Poecile and Periparus). Overall sequence divergence between cytochrome b lineages covers a range of 0.4-1.8% per million years and is thus consistent with the frequently adopted approximation for a sequence divergence between avian lineages of 1.6-2% per my. Overall rate variation is high and encompasses the 2% value in a 95% CI for model corrected data. Mean rate estimates for cytochrome b range between 1.9 and 8.9 x 10(-3) substitutions per site per lineage. Local rates differ significantly between taxonomic levels with lowest estimates for haplotype lineages. At the population/subspecies level mean sequence divergence between lineages matches the 2% rule best for most cytochrome b datasets (1.5-1.9% per my) with maximum estimates for small isolated populations like those of the Canarian P. teneriffae complex (up to 3.9% per my). Overall rate estimates for the control region range at similar values like those for cytochrome b (2.7-8.8 x 10(-3), 0.5-1.8% per my), however, within some subgenera mean rates are higher than those for cytochrome b for uncorrected sequence data. The lowest rates for both genes were calculated for coal tits of subgenus Periparus (0.04-0.6% per my). Model-corrected sequence data tend to result in higher rate estimates than uncorrected data. Increase of the gamma shape parameter goes along with a significant decrease of rate and partly age estimates, too. Divergence times for earliest deep splits within tit subgenera Periparus and Parus were dated to the mid Miocene at

  11. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake.

    PubMed Central

    Miranda, M; Ramírez, J; Peña, A; Coria, R

    1995-01-01

    A Kluyveromyces lactis strain resistant to ethidium bromide and deficient in potassium uptake was isolated. Studies on the proton-pumping activity of the mutant strain showed that a decreased H(+)-ATPase specific activity was responsible for the observed phenotypes. The putative K. lactis PMA1 gene encoding the plasma membrane H(+)-ATPase was cloned by its ability to relieve the potassium transport defect of this mutant and by reversing its resistance to ethidium bromide. Its deduced amino acid sequence predicts a protein 899 residues long that is structurally colinear in its full length to H(+)-ATPases cloned from different yeasts, except for the presence of a variable N-terminal domain. By PCR-mediated amplification, we identified a transition from G to A that rendered the substitution of the fully conserved methionine at position 699 by isoleucine. We attribute to this amino acid change the low capacity of the mutant H(+)-ATPase to pump out protons. PMID:7730265

  12. Substitution Pattern Reverses the Fluorescence Response of Coumarin Glycoligands upon Coordination with Silver (I)

    NASA Astrophysics Data System (ADS)

    Shi, De-Tai; Wei, Xiao-Li; Sheng, Yayun; Zang, Yi; He, Xiao-Peng; Xie, Juan; Liu, Guixia; Tang, Yun; Li, Jia; Chen, Guo-Rong

    2014-03-01

    Development of sugar-based fluorescence (FL) chemo-probes is of much interest since sugars are biocompatible, water-soluble and structurally rigid natural starting materials. We report here that fluorescent glycoligands with two triazolyl coumarin moieties installed onto the different positions of an identical glucosyl nucleus exert completely reversed optical response to a metal ion. C3,4-, C2,3- and C4,6-di-substituted coumarin glucosides synthesized by a click reaction similarly showed a selective FL variation in the presence of silver (I) among a range of metal cations in an aqueous solution. However, the variation was determined to be converse: the FL of the C3,4-ligand was quenched whereas that of the C2,3/C4,6-ligand tangibly enhanced. FL and NMR titrations suggested that this divergence was due to the distinct complexation modes of the conformationally constrained ligands with the ion. The optimal motifs of the ligand-ion complexation were predicted by a computational simulation. Finally, the C2,3-ligand was determined to be of low cytotoxicity and applicable in the FL imaging of silver ions internalized by live cells.

  13. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.

    PubMed

    Vitaku, Edon; Smith, David T; Njardarson, Jon T

    2014-12-26

    Nitrogen heterocycles are among the most significant structural components of pharmaceuticals. Analysis of our database of U.S. FDA approved drugs reveals that 59% of unique small-molecule drugs contain a nitrogen heterocycle. In this review we report on the top 25 most commonly utilized nitrogen heterocycles found in pharmaceuticals. The main part of our analysis is divided into seven sections: (1) three- and four-membered heterocycles, (2) five-, (3) six-, and (4) seven- and eight-membered heterocycles, as well as (5) fused, (6) bridged bicyclic, and (7) macrocyclic nitrogen heterocycles. Each section reveals the top nitrogen heterocyclic structures and their relative impact for that ring type. For the most commonly used nitrogen heterocycles, we report detailed substitution patterns, highlight common architectural cores, and discuss unusual or rare structures.

  14. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato.

    PubMed

    Plant, A L; Cohen, A; Moses, M S; Bray, E A

    1991-11-01

    The nucleotide sequence of le16, a tomato (Lycopersicon esculentum Mill.) gene induced by drought stress and regulated by abscisic acid specifically in aerial vegetative tissue, is presented. The single open reading frame contained within the gene has the capacity to encode a polypeptide of 12.7 kilodaltons and is interrupted by a small intron. The predicted polypeptide is rich in leucine, glycine, and alanine and has an isoelectric point of 8.7. The amino terminus is hydrophobic and characteristic of signal sequences that target polypeptides for export from the cytoplasm. There is homology (47.2% identity) between the amino terminus of the LE 16 polypeptide and the corresponding amino terminal domain of the maize phospholipid transfer protein. le16 was expressed in drought-stressed leaf, petiole, and stem tissue and to a much lower extent in the pericarp of mature green tomato fruit and developing seeds. No expression was detected in the pericarp of red fruit or in drought-stressed roots. Expression of le16 was also induced in leaf tissue by a variety of other abiotic stresses including polyethylene glycol-mediated water deficit, salinity, cold stress, and heat stress. None of these stresses or direct applications of abscisic acid induced the expression of le16 in the roots of the same plants. The unique expression characteristics of this gene indicates that novel regulatory mechanisms, in addition to endogenous abscisic acid, are involved in controlling gene expression.

  15. Abnormal N-glycosylation pattern for brain nucleotide pyrophosphatase-5 (NPP-5) in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    Cortelazzo, Alessio; De Felice, Claudio; Guerranti, Roberto; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Scalabrì, Francesco; Madonna, Michele; Filosa, Stefania; Della Giovampaola, Cinzia; Capone, Antonietta; Durand, Thierry; Mirasole, Cristiana; Zolla, Lello; Valacchi, Giuseppe; Ciccoli, Lucia; Guy, Jacky; D'Esposito, Maurizio; Hayek, Joussef

    2016-04-01

    Neurological disorders can be associated with protein glycosylation abnormalities. Rett syndrome is a devastating genetic brain disorder, mainly caused by de novo loss-of-function mutations in the methyl-CpG binding protein 2 (MECP2) gene. Although its pathogenesis appears to be closely associated with a redox imbalance, no information on glycosylation is available. Glycoprotein detection strategies (i.e., lectin-blotting) were applied to identify target glycosylation changes in the whole brain of Mecp2 mutant murine models of the disease. Remarkable glycosylation pattern changes for a peculiar 50kDa protein, i.e., the N-linked brain nucleotide pyrophosphatase-5 were evidenced, with decreased N-glycosylation in the presymptomatic and symptomatic mutant mice. Glycosylation changes were rescued by selected brain Mecp2 reactivation. Our findings indicate that there is a causal link between the amount of Mecp2 and the N-glycosylation of NPP-5.

  16. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana

    PubMed Central

    Guo, Changjiang; Du, Jianchang; Wang, Long; Yang, Sihai; Mauricio, Rodney; Tian, Dacheng; Gu, Tingting

    2016-01-01

    Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome. PMID:27965694

  17. Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress.

    PubMed

    Cohen, Sarah

    2002-11-01

    Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and the power to detect disease association is low. A novel use of Mhc population surveys involves mapping allelic substitutions onto the inferred structural molecular model to show functional differentiation related to local selective pressures. In the estuarine fish Fundulus heteroclitus, populations experiencing strong differences in antigenic challenges show significant differences in amino acid substitution patterns that are reflected as variation in the structural location of changes between populations. Fish from a population genetically adapted to severe chemical pollution also show novel patterns of DNA substitution at a highly variable Mhc class II B locus including strong signals of positive selection at inferred antigen-binding sites and population-specific signatures of amino acid substitution. Heavily parasitized fish from an extreme PCB-contaminated (U.S. Environmental Protection Agency Superfund) site show enhanced population-specific substitutions in the a-helix portion of the inferred antigen-binding region. In contrast, fish from an unpolluted site show a significantly different pattern focused on the first strand of the B-pleated sheet. Whether Mhc population profile differences represent the direct effects of chemical toxicants or indirect parasite-mediated selection, the result is a composite habitat-specific signature of strong selection and evolution affecting the genetic repertoire of the major histocompatibility complex.

  18. Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution.

    PubMed

    Hassanin, Alexandre

    2006-01-01

    In this study, mitochondrial sequences were used to investigate the relationships among the major lineages of Arthropoda. The data matrix used for the analyses includes 84 taxa and 3918 nucleotides representing six mitochondrial protein-coding genes (atp6 and 8, cox1-3, and nad2). The analyses of nucleotide composition show that a reverse strand-bias, i.e., characterized by an excess of T relative to A nucleotides and of G relative to C nucleotides, was independently acquired in six different lineages of Arthropoda: (1) the honeybee mite (Varroa), (2) Opisthothelae spiders (Argiope, Habronattus, and Ornithoctonus), (3) scorpions (Euscorpius and Mesobuthus), (4) Hutchinsoniella (Cephalocarid), (5) Tigriopus (Copepod), and (6) whiteflies (Aleurodicus and Trialeurodes). Phylogenetic analyses confirm that these convergences in nucleotide composition can be particularly misleading for tree reconstruction, as unrelated taxa with reverse strand-bias tend to group together in MP, ML, and Bayesian analyses. However, the use of a specific model for minimizing effects of the bias, the "Neutral Transition Exclusion" (NTE) model, allows Bayesian analyses to rediscover most of the higher taxa of Arthropoda. Furthermore, the analyses of branch lengths suggest that three main factors explain accelerated rates of substitution: (1) genomic rearrangements, including duplication of the control region and gene translocation, (2) parasitic lifestyle, and (3) small body size. The comparisons of Bayesian Bootstrap percentages show that the support for many nodes increases when taxa with long branches are excluded from the analyses. It is therefore recommended to select taxa and genes of the mitochondrial genome for inferring phylogenetic relationships among arthropod lineages. The phylogenetic analyses support the existence of a major dichotomy within Arthropoda, separating Pancrustacea and Paradoxopoda. Basal relationships between Pancrustacean lineages are not robust, and the question

  19. Peculiar patterns of amino acid substitution and conservation in the fast evolving tunicate Oikopleura dioica.

    PubMed

    Berná, Luisa; D'Onofrio, Giuseppe; Alvarez-Valin, Fernando

    2012-02-01

    We analyze the patterns and rates of amino acid evolution in tunicates with special interest on the extremely fast evolving Oikopleura dioica. We show that this species, on average, is twice as fast as the already fast evolving Ciona intestinalis. The acceleration in both species seems to be affected by similar evolutionary forces yet to different extent, since a substantial proportion of the most and less accelerated genes are orthologous between the two species. Among the possible causes that underlie the genome wide acceleration in Oikopleura, relaxation of functional constraints appears to be an important one, since all amino acids exhibit surprisingly homogenous levels of divergence. Such homogeneity, however, is not observed in Ciona. Apart from the genome wide acceleration, detailed analysis of functional groups of genes revealed that genes associated with regulatory functions (transcription regulators, chromatin remodeling proteins and metabolic regulators), have been subjected to an even more extreme process of acceleration, suggesting that adaptive evolution is the most probable cause of their unusual exacerbated rates. Another remarkable observation is that cysteine is among the less conserved amino acids, contrary to what is commonly observed in other species. The possible causes of this particular behavior are discussed.

  20. Laminin and type IV collagen isoform substitutions occur in temporally and spatially distinct patterns in developing kidney glomerular basement membranes.

    PubMed

    Abrahamson, Dale R; St John, Patricia L; Stroganova, Larysa; Zelenchuk, Adrian; Steenhard, Brooke M

    2013-10-01

    Kidney glomerular basement membranes (GBMs) undergo laminin and type IV collagen isoform substitutions during glomerular development, which are believed to be required for maturation of the filtration barrier. Specifically, GBMs of earliest glomeruli contain laminin α1β1γ1 and collagen α1α2α1(IV), whereas mature glomeruli contain laminin α5β2γ1 and collagen α3α4α5(IV). Here, we used confocal microscopy to simultaneously evaluate expression of different laminin and collagen IV isoforms in newborn mouse GBMs. Our results show loss of laminin α1 from GBMs in early capillary loop stages and continuous linear deposition of laminin bearing the α5 chain thereafter. In contrast, collagen α1α2α1(IV) persisted in linear patterns into late capillary loop stages, when collagen α3α4α5(IV) first appeared in discontinuous, non-linear patterns. This patchy pattern for collagen α3α4α5(IV) continued into maturing glomeruli where there were lengths of linear, laminin α5-positive GBM entirely lacking either isoform of collagen IV. Relative abundance of laminin and collagen IV mRNAs in newborn and 5-week-old mouse kidneys also differed, with those encoding laminin α1, α5, β1, β2, and γ1, and collagen α1(IV) and α2(IV) chains all significantly declining at 5 weeks, but α3(IV) and α4(IV) were significantly upregulated. We conclude that different biosynthetic mechanisms control laminin and type IV collagen expression in developing glomeruli.

  1. Effects of disruption of the nucleotide pattern in CRID element and Kozak sequence of interferon β on mRNA stability and protein production.

    PubMed

    Kay, Maryam; Hojati, Zohreh; Heidari, Maryam; Bazi, Zahra; Korbekandi, Hassan

    2015-01-01

    Interferon β (IFNβ) is the most important drug that has been used frequently for multiple sclerosis treatment. This study has tried to improve the IFNβ production by introducing mutations in the coding region of IFNβ, while its amino acid sequence is intact. Two recombinant vectors IFNβ(K) and IFNβ(K+CRID )were designed by site-directed mutagenesis. The IFNβ(K) and IFNβ(K+CRID) have two substitutions in Kozak sequence and four substitutions in CRID sequence, respectively. The Chinese hamster ovary (CHO) cell codon usage optimization was also performed for both of them. They were transiently transfected to CHO-dhfr(-) cell line using Lipofectamine kit (Invitrogen, Grand Island, NY). The amount of mRNA and protein was determined by real time PCR and ELISA. The results of this study indicate that the amount of IFNβ protein produced by CHO cells containing IFNβ(K) has been elevated up to 3.5-fold. On the other hand, enormous amounts of IFNβ mRNA and protein were produced by cells containing IFNβ(K+CRID) construct; more than 4.6-fold and 6-fold, respectively. It could be concluded that disruption of AT pattern in CRID element increase RNA and protein production, improve IFNβ mRNA stability and, may also enhance mRNA half-life. In a similar way, more proteins are produced by modification of Kozak sequence.

  2. 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists.

    PubMed

    Kim, Hak Sung; Ohno, Michihiro; Xu, Bin; Kim, Hea Ok; Choi, Yongseok; Ji, Xiao D; Maddileti, Savitri; Marquez, Victor E; Harden, T Kendall; Jacobson, Kenneth A

    2003-11-06

    Preference for the northern (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of P2Y(1) receptors was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute (Nandanan et al. J. Med. Chem. 2000, 43, 829-842). We have now combined the ring-constrained (N)-methanocarba modification with other functionalities at the 2-position of the adenine moiety. A new synthetic route to this series of bisphosphate derivatives was introduced, consisting of phosphorylation of the pseudoribose moiety prior to coupling with the adenine base. The activity of the newly synthesized analogues was determined by measuring antagonism of 2-methylthio-ADP-stimulated phospholipase C (PLC) activity in 1321N1 human astrocytoma cells expressing the recombinant human P2Y(1) receptor and by using the radiolabeled antagonist [(3)H]2-chloro-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate 5 in a newly developed binding assay in Sf9 cell membranes. Within the series of 2-halo analogues, the most potent molecule at the hP2Y(1) receptor was an (N)-methanocarba N(6)-methyl-2-iodo analogue 12, which displayed a K(i) value in competition for binding of [(3)H]5 of 0.79 nM and a K(B) value of 1.74 nM for inhibition of PLC. Thus, 12 is the most potent antagonist selective for the P2Y(1) receptor yet reported. The 2-iodo group was substituted with trimethyltin, thus providing a parallel synthetic route for the introduction of an iodo group in this high-affinity antagonist. The (N)-methanocarba-2-methylthio, 2-methylseleno, 2-hexyl, 2-(1-hexenyl), and 2-(1-hexynyl) analogues bound less well, exhibiting micromolar affinity at P2Y(1) receptors. An enzymatic method of synthesis of the 3',5'-bisphosphate from the corresponding 3'-monophosphate, suitable for the preparation of a radiophosphorylated analogue, was explored.

  3. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis.

    PubMed

    Yemelyanova, Anna; Vang, Russell; Kshirsagar, Malti; Lu, Dan; Marks, Morgan A; Shih, Ie Ming; Kurman, Robert J

    2011-09-01

    Immunohistochemical staining for p53 is used as a surrogate for mutational analysis in the diagnostic workup of carcinomas of multiple sites including ovarian cancers. Strong and diffuse immunoexpression of p53 is generally interpreted as likely indicating a TP53 gene mutation. The immunoprofile that correlates with wild-type TP53, however, is not as clear. In particular, the significance of completely negative immunostaining is controversial. The aim of this study was to clarify the relationship of the immunohistochemical expression of p53 with the mutational status of the TP53 gene in ovarian cancer. A total of 57 ovarian carcinomas (43 high-grade serous ovarian/peritoneal carcinomas, 2 malignant mesodermal mixed tumors (carcinosarcomas), 2 low-grade serous carcinomas, 4 clear cell carcinomas, 1 well-differentiated endometrioid carcinoma, and 5 carcinomas with mixed epithelial differentiation) were analyzed for TP53 mutations by nucleotide sequencing (exons 4-9), and subjected to immunohistochemical analysis of p53 expression. Thirty six tumors contained functional mutations and 13 had wild type TP53. Five tumors were found to harbor known TP53 polymorphism and changes in the intron region were detected in three. Tumors with wild-type TP53 displayed a wide range of immunolabeling patterns, with the most common pattern showing ≤10% of positive cells in 6 cases (46%). Mutant TP53 was associated with 60-100% positive cells in 23 cases (64% of cases). This pattern of staining was also seen in three cases with wild-type TP53. Tumors that were completely negative (0% cells staining) had a mutation of TP53 in 65% of cases and wild-type TP53 in 11%. Combining two immunohistochemical labeling patterns associated with TP53 mutations (0% and 60-100% positive cells), correctly identified a mutation in 94% of cases (P<0.001). Immunohistochemical analysis can be used as a robust method for inferring the presence of a TP53 mutation in ovarian carcinomas. In addition to a

  4. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  5. Effects of Cdh23 single nucleotide substitutions on age-related hearing loss in C57BL/6 and 129S1/Sv mice and comparisons with congenic strains

    PubMed Central

    Johnson, Kenneth R.; Tian, Cong; Gagnon, Leona H.; Jiang, Haiyan; Ding, Dalian; Salvi, Richard

    2017-01-01

    A single nucleotide variant (SNV) of the cadherin 23 gene (Cdh23c.753A), common to many inbred mouse strains, accelerates age-related hearing loss (AHL) and can worsen auditory phenotypes of other mutations. We used homologous recombination in C57BL/6 NJ (B6N) and 129S1/SvImJ (129S1) embryonic stem cells to engineer mouse strains with reciprocal single base pair substitutions (B6-Cdh23c.753A>G and 129S1-Cdh23c.753G>A). We compared ABR thresholds and cochlear pathologies of these SNV mice with those of congenic (B6.129S1-Cdh23Ahl+ and 129S1.B6-Cdh23ahl) and parental (B6N and 129S1) strain mice. Results verified the protective effect of the Cdh23c.753G allele, which prevented high frequency hearing loss in B6 mice to at least 18 months of age, and the AHL-inducing effect of the Cdh23c.753A allele, which worsened hearing loss in 129S1 mice. ABR thresholds differed between 129S-Cdh23c.753A SNV and 129S1.B6-Cdh23ahl congenic mice, and a linkage backcross involving these strains localized a Chr 10 QTL contributing to the difference. These results illustrate the large effects that strain background and congenic regions have on the hearing loss associated with Cdh23c.753alleles. Importantly, the B6-Cdh23c.753Gstrain can be used to eliminate the confounding influence of the Cdh23c.753Avariant in hearing studies of B6 mice and mutant mice on the B6 background. PMID:28287619

  6. Distinct molecular structures and hydrogen bond patterns of α,α-diethyl-substituted cyclic imide, lactam, and acetamide derivatives in the crystalline phase

    NASA Astrophysics Data System (ADS)

    Krivoshein, Arcadius V.; Ordonez, Carlos; Khrustalev, Victor N.; Timofeeva, Tatiana V.

    2016-10-01

    α,α-Dialkyl- and α-alkyl-α-aryl-substituted cyclic imides, lactams, and acetamides show promising anticonvulsant, anxiolytic, and anesthetic activities. While a number of crystal structures of various α-substituted cyclic imides, lactams, and acetamides were reported, no in-depth comparison of crystal structures and solid-state properties of structurally matched compounds have been carried out so far. In this paper, we report molecular structure and intermolecular interactions of three α,α-diethyl-substituted compounds - 3,3-diethylpyrrolidine-2,5-dione, 3,3-diethylpyrrolidin-2-one, and 2,2-diethylacetamide - in the crystalline phase, as studied using single-crystal X-ray diffraction and IR spectroscopy. We found considerable differences in the patterns of H-bonding and packing of the molecules in crystals. These differences correlate with the compounds' melting points and are of significance to physical pharmacy and formulation development of neuroactive drugs.

  7. Complex Pattern of Resistance-Associated Substitutions of Hepatitis C Virus after Daclatasvir/Asunaprevir Treatment Failure

    PubMed Central

    Hasebe, Chitomi; Osaki, Yukio; Joko, Kouji; Yagisawa, Hitoshi; Sakita, Shinya; Okushin, Hiroaki; Satou, Takashi; Hisai, Hiroyuki; Abe, Takehiko; Tsuji, Keiji; Tamada, Takashi; Kobashi, Haruhiko; Mitsuda, Akeri; Ide, Yasushi; Ogawa, Chikara; Tsuruta, Syotaro; Takaguchi, Kouichi; Murakawa, Miyako; Asahina, Yasuhiro; Enomoto, Nobuyuki; Izumi, Namiki

    2016-01-01

    Backgrounds & Aims We aimed to clarify the characteristics of resistance-associated substitutions (RASs) after treatment failure with NS5A inhibitor, daclatasvir (DCV) in combination with NS3/4A inhibitor, asunaprevir (ASV), in patients with chronic hepatitis C virus genotype 1b infection. Methods This is a nationwide multicenter study conducted by the Japanese Red Cross Liver Study Group. The sera were obtained from 68 patients with virological failure after 24 weeks of DCV/ASV treatment. RASs in NS5A and NS3 were determined by population sequencing. Results The frequency of signature RASs at position D168 of NS3 was 68%, and at positions L31 and Y93 of NS5A was 79 and 76%, respectively. The frequency of dual signature RASs in NS5A (L31-RAS and Y93-RAS) was 63%. RASs at L28, R30, P32, Q54, P58, and A92 in addition to dual signature RAS were detected in 5, 5, 1, 22, 2, and 0 patients, respectively. In total, triple, quadruple, and quintuple RASs in combination with dual signature RAS were detected in 35, 10, and 1.5% patients, respectively. These RASs were detected in patients without baseline RASs or who prematurely discontinued therapy. Co-existence of D168 RAS in NS3 and L31 and/or Y93 RAS in NS5A was observed in 62% of patients. Conclusion Treatment-emergent RASs after failure with DCV/ASV combination therapy are highly complex in more than 50% of the patients. The identification of complex RAS patterns, which may indicate high levels of resistance to NS5A inhibitors, highlights the need for RAS sequencing when considering re-treatment with regimens including NS5A inhibitors. PMID:27776192

  8. Site-specific excision repair of 1-nitrosopyrene-induced DNA adducts at the nucleotide level in the HPRT gene of human fibroblasts: effect of adduct conformation on the pattern of site-specific repair.

    PubMed Central

    Wei, D; Maher, V M; McCormick, J J

    1996-01-01

    Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide

  9. Large-Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal Three Anciently Diverged Classes with Distinct Evolutionary Patterns.

    PubMed

    Shao, Zhu-Qing; Xue, Jia-Yu; Wu, Ping; Zhang, Yan-Mei; Wu, Yue; Hang, Yue-Yu; Wang, Bin; Chen, Jian-Qun

    2016-04-01

    Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes.

  10. Differentiation of Erysipelothrix rhusiopathiae strains by nucleotide sequence analysis of a hypervariable region in the spaA gene: discrimination of a live vaccine strain from field isolates.

    PubMed

    Nagai, Shinya; To, Ho; Kanda, Akira

    2008-05-01

    Erysipelothrix rhusiopathiae causes erysipelas in swine and is considered a reemerging disease contributing substantially to economic losses in the swine industry. Since an attenuated live vaccine was commercialized in 1974 in Japan, outbreaks of acute septicemia or subacute urticaria of erysipelas have decreased dramatically. In contrast, a chronic form of erysipelas found during meat inspections in slaughterhouses has been increasing. In this study, a new strain-typing method was developed based on nucleotide sequencing of a hypervariable region in the surface protective antigen (spaA) gene for discrimination of the live vaccine strain from field isolates. Sixteen strains isolated from arthritic lesions found in slaughtered pigs were segregated into 4 major patterns: 1) identical nucleotide sequence with the vaccine strain: 3 isolates; 2) 1 nucleotide substitution (C to A) at position 555: 5 isolates; 3) 1 nucleotide substitution at various positions: 5 isolates; and 4) 2 nucleotide substitutions: 3 isolates. Isolates with the same nucleotide sequence as the vaccine strain were further characterized by other properties, including the mouse pathogenicity test. One strain isolated from pigs on a farm where the live vaccine had been used was found to be closely related to the vaccine strain. The phylogenetic tree constructed based on the spaA sequence suggests that the evolutionary distance of the isolates is related to the pathogenicity in mice. The new strain-typing system based on nucleotide sequencing of the spaA region is useful to discriminate the vaccine strain from field isolates.

  11. The influence of the substitution pattern on the molecular conformation of ureido-1,2,5-oxadiazoles, related to STAT3 inhibitors: chemical behavior and structural investigation.

    PubMed

    Villa, Stefania; Masciocchi, Daniela; Gelain, Arianna; Meneghetti, Fiorella

    2012-07-01

    Signal transducer and activator of transcription 3 (STAT3) is a protein constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of human solid and blood tumors. Therefore, the availability of drugs affecting STAT3 may have important therapeutic potential for the treatment of cancer. Pursuing our efforts in exploring the influence of the substitution pattern of the ureido 1,2,5-oxadiazole moiety on the molecular conformation, new compounds substituted at positions 3 and 4 on the furazane ring were synthesized. The inhibition properties vs. STAT3 of the novel compounds were evaluated in a dual-luciferase assay, using HCT-116 cells, and the results evidenced a moderate activity only for the compounds endowed with a planar arrangement. Crystallographic studies of the new derivatives were performed in order to evidence the peculiar chemical behavior and to evaluate how structural modulations affected the biological properties.

  12. Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.

  13. Cyanoethylation of the glucans dextran and pullulan: Substitution pattern and formation of nanostructures and entrapment of magnetic nanoparticles

    PubMed Central

    Fiege, Kathrin; Lünsdorf, Heinrich; Atarijabarzadeh, Sevil

    2012-01-01

    Summary Cyanoethylglucans with a degree of substitution in the range of 0.74 to 2.40 for dextran and 0.84 to 2.42 for pullulan were obtained by Michael addition of acrylonitrile to the glucans under various conditions. Products were thoroughly characterized, comprising elementary analysis, NMR and ATR–IR spectroscopy, and analysis of the substituent distribution in the glucosyl units by GC–FID and GC–MS of the constituting monosaccharide derivatives. Nanostructuring of the highly substituted cyanoethylpolysaccharides was performed by dialysis against a non-solvent. In the presence of ferromagnetic iron-oxide nanoparticles, multicore cyanoethylglucan-coated ferromagnetic nanoparticles were formed by selective entrapment. The specific interaction between cyano groups and iron could be proven. The size distribution and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-filtered transmission electron microscopy (EF–TEM) with parallel electron energy loss spectroscopy (PEELS). PMID:22563354

  14. Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials.

    PubMed

    Carriel, Víctor; Garzón, Ingrid; Jiménez, Jose-María; Oliveira, Ana-Celeste-Ximenes; Arias-Santiago, Salvador; Campos, Antonio; Sánchez-Quevedo, Maria-Carmen; Alaminos, Miguel

    2012-01-01

    Development of human skin substitutes by tissue engineering may offer new therapeutic alternatives to the use of autologous tissue grafts. For that reason, it is necessary to investigate and develop new biocompatible biomaterials that support the generation of a proper human skin construct. In this study, we generated a novel model of bioengineered human skin substitute using human cells obtained from skin biopsies and fibrin-agarose biomaterials and we evaluated this model both at the ex vivo and the in vivo levels. Once the dermal fibroblasts and the epithelial keratinocytes were isolated and expanded in culture, we used fibrin-agarose scaffolds for the development of a full-thickness human skin construct, which was evaluated after 1, 2, 3 and 4 weeks of development ex vivo. The skin substitutes were then grafted onto immune-deficient nude mice and analyzed at days 10, 20, 30 and 40 postimplantation using transmission electron microscopy, histochemistry and immunofluorescence. The results demonstrated that the fibrin-agarose artificial skin had adequate biocompatibility and proper biomechanical properties. A proper development of both the bioengineered dermis and epidermis was found after 30 days in vivo, although the tissues kept ex vivo and those implanted in the animal model for 10 or 20 days showed lower levels of differentiation. In summary, our model of fibrin-agarose skin equivalent was able to reproduce the structure and histological architecture of the native human skin, especially after long-term in vivo implantation, suggesting that these tissues could reproduce the native skin.

  15. Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors.

    PubMed

    Morlais, Isabelle; Ponçon, Nicolas; Simard, Frédéric; Cohuet, Anna; Fontenille, Didier

    2004-12-01

    The Anopheles gambiae genome sequence, together with the recent development of molecular tools for genome-wide analysis, promises new insights into the biology of the malaria vector. These insights should help define the best possible breakdown point for interrupting transmission in the mosquito vector. A survey of the intraspecific nucleotide diversity in coding regions of three different mosquito strains showed an average of one single nucleotide polymorphism (SNP) every 125 coding base pairs. High levels of nucleotide polymorphism were observed in mosquito immune-related genes and pathogen recognition receptors harbored higher replacement substitutions. Genotyping at SNP loci in natural populations of An. gambiae from three malaria foci showed contrasting patterns. The distribution of mutation Y443H in the thioester-containing protein 3 (TEP3) gene suggested this mutational event has occurred under selective constraints. Our results show that SNP-based studies will be valuable in identifying the sequence variation associated with phenotypic traits shaping vector competence.

  16. Pyrazole complexes as anion receptors: effects of changing the metal, the pyrazole substitution pattern, and the number of pyrazole ligands.

    PubMed

    Nieto, Sonia; Pérez, Julio; Riera, Lucía; Riera, Víctor; Miguel, Daniel; Golen, James A; Rheingold, Arnold L

    2007-04-16

    Compound cis,fac-[Mo(eta3-allyl)(CO)2(Hdmpz)3]BAr'4 (1) (Hdmpz = 3,5-dimethylpyrazole, Ar' = 3,5-bis(trifluoromethyl)phenyl) undergoes rapid substitution of one of the pyrazole ligands by anions, including the low nucleophilic ReO4-, a reaction that afforded [Mo(OReO3)(eta3-allyl)(CO)2(Hdmpz)2] (2), structurally characterized by X-ray diffraction. The new compounds fac-[Mn(CO)3(Hdmpz)3]BAr'4 (4a) and fac-[Mn(CO)3(HtBupz)3]BAr'4 (4b) (HtBupz = 3(5)-tert-butylpyrazole) also undergo pyrazole substitution with most anions, and the product from the reaction with nitrate was crystallographically characterized. Compounds 4a,b were found to be substitutionally stable toward perrhenate, and the adducts [Mn(CO)3(Hdmpz)3].[ReO4] (7a) and [Mn(CO)3(HtBupz)3].[ReO4].[Bu4N].[BAr'4] (7b), crystallographically characterized, display hydrogen bonds between one of the perrhenate oxygens and the N-H groups of two of the pyrazole ligands. The structurally similar adduct [Re(CO)3(Hdmpz)3].[ReO4] (8) was found to result from the interaction of [Re(CO)3(Hdmpz)3]BAr'4 with perrhenate. The reaction of [Re(OTf)(CO)5] with 3,5-dimethylpyrazole (Hdmpz) afforded [Re(CO)5(Hdmpz)]OTf (9). The reaction of 9 with Hdmpz and NaBAr'4 yielded [Re(CO)4(Hdmpz)2]BAr'4 (10), which was found to be unstable toward chloride anion. In contrast, the new compound fac,cis-[Re(CO)3(CNtBu)(Hdmpz)2]BAr'4 (11) is stable in solution in the presence of different anions. Binding constants for 11 with chloride, bromide, and nitrate are 1-2 orders of magnitude lower than those found for these anions and rhenium tris(pyrazole) hosts, indicating that the presence of the third pyrazole ligand is crucial. Compounds fac-[Re(CO)3(HPhpz)3]BAr'4 (14) (HPhpz = 3(5)-phenylpyrazole) and fac-[Re(CO)3(HIndz)3]BAr'4 (15) (HIndz = indazole) are, in terms of anion binding strength and selectivity, inferior to those with dimethylpyrazole or tert-butylpyrazole ligands.

  17. Contrasting substitution patterns between HA proteins of avian and human influenza viruses: Implication for monitoring human influenza epidemics.

    PubMed

    Liao, Yu-Chieh; Chen, Feng-Chi; Hsiung, Chao A

    2010-11-23

    The HA1 domain of influenza A viruses is critical for immune escape and host receptor recognition. However, the association between HA1 evolution and host species-specific adaptations remains unclear. We have identified the amino acid sites that are related to the host species-specific adaptations by systematically comparing the evolutionary dynamics of HA1 between human and avian hosts for both H1N1 and H3N2 viruses. We can thus refine the "positively selected sites" in the HA1 domain of these two virus subtypes to those that occur only in humans. We further demonstrate that the refined sets can accurately reflect influenza epidemics. Our retrospective study shows that when substitutions occur at more than three out of these identified sites in the same year, an epidemic is very likely to occur. Therefore, our approach could potentially be used in determining whether new influenza vaccines are needed.

  18. Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae.

    PubMed

    Gisch, Nicolas; Schwudke, Dominik; Thomsen, Simone; Heß, Nathalie; Hakenbeck, Regine; Denapaite, Dalia

    2015-11-18

    Members of the Mitis group of streptococci possess teichoic acids (TAs) as integral components of their cell wall that are unique among Gram-positive bacteria. Both, lipoteichoic (LTA) and wall teichoic acid, are formed by the same biosynthetic pathway, are of high complexity and contain phosphorylcholine (P-Cho) residues. These residues serve as anchors for choline-binding proteins (CBPs), some of which have been identified as virulence factors of the human pathogen Streptococcus pneumoniae. We investigated the LTA structure of its close relative Streptococcus oralis. Our analysis revealed that S. oralis Uo5 LTA has an overall architecture similar to pneumococcal LTA (pnLTA) and can be considered as a subtype of type IV LTA. Its structural complexity is even higher than that of pnLTA and its composition differs in number and type of carbohydrate moieties, inter-residue connectivities and especially the P-Cho substitution pattern. Here, we report the occurrence of a saccharide moiety substituted with two P-Cho residues, which is unique as yet in bacterial derived surface carbohydrates. Finally, we could link the observed important structural variations between S. oralis and S. pneumoniae LTA to the divergent enzymatic repertoire for their TA biosynthesis.

  19. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low lying excited states and radiationless deactivation. Part II: influence of substitution on luminescence patterns.

    PubMed

    Segado, Mireia; Mercier, Yannick; Gómez, Isabel; Reguero, Mar

    2016-03-07

    In this paper, we study the mechanisms of charge transfer, luminescence and radiationless decay of three derivatives of 4-aminobenzonitrile (ABN): dimethyl-ABN (DMABN) and the tetrafluorinated derivatives, ABN-4F and DMABN-4F. Our CASSCF/CASPT2 computations explain the different luminescence patterns observed in these three compounds and in comparison with the parent system, ABN, in spite of their similar architecture. We have found that the modifications made by the different substitutions in ABN tune the relative energies of the locally excited (LE) and charge transfer (CT) excited states due to electronic and structural factors. In all cases, the only potentially emitting species of CT character is the twisted-ICT. The increasing stabilization of this later species in the series formed by ABN-4F, DMABN and DMABN-4F explains the increasing intensity of the anomalous emission band in these compounds. Nevertheless, other factors like probability of emission vs. nonradiative decay must have also been taken into account. In fact fluoro-substitution increases the accessibility to conical intersections of the excited states with the ground state, opening an internal conversion channel that decreases the fluorescence quantum yield in the fluorinated derivatives. Our results also show that the involvement of the π-σ* state in the CT process is only possible in ABN-4F, but even in this case it is not probable.

  20. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the

  1. Unravelling evolution of Nanog, the key transcription factor involved in self-renewal of undifferentiated embryonic stem cells, by pattern recognition in nucleotide and tandem repeats characteristics.

    PubMed

    Pashaiasl, Maryam; Khodadadi, Khodadad; Kayvanjoo, Amir Hossein; Pashaei-Asl, Roghiyeh; Ebrahimie, Esmaeil; Ebrahimi, Mansour

    2016-03-10

    Nanog, an important transcription factor in embryonic stem cells (ESC), is the key factor in maintaining pluripotency to establish ESC identity and has the ability to induce embryonic germ layers. Nanog is responsible for self-renewal and pluripotency of stem cells as well as cancer invasiveness, tumor cell proliferation, motility and drug-resistance. Understanding the underlying mechanisms of Nanog evolution and regulation can lead to future advances in treatment of cancers. Recent integration of machine learning models with genetics has provided a powerful tool for knowledge discovery and uncovering evolutionary pathways. Herein, sequences of 47 Nanog genes from various species were extracted and two datasets of features were computationally extracted from these sequences. At the first dataset, 76 nucleotide acid attributes were calculated for each Nanog sequence. The second dataset was prepared based on the 10,480 repeated nucleotide sequences (from 5 to 50bp lengths). Then, various data mining algorithms such as decision tree models were applied on these datasets to find the evolutionary pathways of Nanog diversion. Attribute weighting models were highlighted features such as the frequencies of AA and GC as the most important genomic features in Nanog gene classification and differentiation. Similar findings were obtained by tree induction algorithms. Results from the second database showed that some short sequence strings, such as ACTACT, TCCTGA, CCTGA, GAAGAC, and TATCCC can be effectively used to identify Nanog genes in various species. The outcomes of this study, for the first time, unravels the importance of particular genomic features in Nanog gene evolution paving roads toward better understanding of stem cell development and human targeted disorder therapy.

  2. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Pryer, Kathleen M.; Rothfels, Carl J.

    2016-01-01

    Plant chloroplast genomes (plastomes) are characterized by an inverted repeat (IR) region and two larger single copy (SC) regions. Patterns of molecular evolution in the IR and SC regions differ, most notably by a reduced rate of nucleotide substitution in the IR compared to the SC region. In addition, the organization and structure of plastomes is fluid, and rearrangements through time have repeatedly shuffled genes into and out of the IR, providing recurrent natural experiments on how chloroplast genome structure can impact rates and patterns of molecular evolution. Here we examine four loci (psbA, ycf2, rps7, and rps12 exon 2–3) that were translocated from the SC into the IR during fern evolution. We use a model-based method, within a phylogenetic context, to test for substitution rate shifts. All four loci show a significant, 2- to 3-fold deceleration in their substitution rate following translocation into the IR, a phenomenon not observed in any other, nontranslocated plastid genes. Also, we show that after translocation, the GC content of the third codon position and of the noncoding regions is significantly increased, implying that gene conversion within the IR is GC-biased. Taken together, our results suggest that the IR region not only reduces substitution rates, but also impacts nucleotide composition. This finding highlights a potential vulnerability of correlating substitution rate heterogeneity with organismal life history traits without knowledge of the underlying genome structure. PMID:27401175

  3. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance

    PubMed Central

    Zimic, Mirko; Sheen, Patricia; Quiliano, Miguel; Gutierrez, Andrés; Gilman, Robert H.

    2010-01-01

    Resistance to pyrazinamide in Mycobacterium tuberculosis is usually associated with a reduction of pyrazinamidase activity caused by mutations in pncA, the pyrazinamidase coding gene. Pyrazinamidase is a hydrolase that converts pyrazinamide, the antituberculous drug against the latent stage, to the active compound, pyrazinoic acid. To better understand the relationship between pncA mutations and pyrazinamide-resistance, it is necessary to analyze the distribution of pncA mutations from pyrazinamide resistant strains. We determined the distribution of Peruvian and globally reported pncA missense mutations from M. tuberculosis clinical isolates resistant to pyrazinamide. The distributions of the single amino acid substitutions were compared at the secondary-structure-domains level. The distribution of the Peruvian mutations followed a similar pattern as the mutations reported globally. A consensus clustering of mutations was observed in hot-spot regions located in the metal coordination site and to a lesser extent in the active site of the enzyme. The data was not able to reject the null hypothesis that both distributions are similar, suggesting that pncA mutations associated to pyrazinamide resistance in M. tuberculosis, follow a conserved pattern responsible to impair the pyrazinamidase activity. PMID:19963078

  4. A novel HLA-B*51 allele (B*5116) identified by nucleotide sequencing.

    PubMed

    Tamouza, R; Carbonnelle, E; Schaeffer, V; Sadki, K; Abed, Y; Marzais, F; Poirier, J C; Fortier, C; Toubert, A; Raffoux, C; Charron, D

    2000-02-01

    We report here an additional HLA-B*51 variant designated HLA-B*5116. Detected by an abnormal serological reactivity pattern, this variant was identified as a B*51 allele by polymerase chain reaction using sequence-specific primers (PCR-SSP) and characterized by nucleotide sequencing. The new variant sequence match closely with the classical HLA-B*5101 excepted two adjacent nucleotide substitutions at positions 216 and 217 of the third exon and the subsequent Leucine to Glutamic acid change at codon 163 of the alpha2 domain (CTG-->GAG). This new variant was not detected in three different ethnic groups (French, Algerian and Lebanese) suggesting a very rare frequency.

  5. Substitution of Feline Leukemia Virus Long Terminal Repeat Sequences into Murine Leukemia Virus Alters the Pattern of Insertional Activation and Identifies New Common Insertion Sites

    PubMed Central

    Johnson, Chassidy; Lobelle-Rich, Patricia A.; Puetter, Adriane; Levy, Laura S.

    2005-01-01

    The recombinant retrovirus, MoFe2-MuLV (MoFe2), was constructed by replacing the U3 region of Moloney murine leukemia virus (M-MuLV) with homologous sequences from the FeLV-945 LTR. NIH/Swiss mice neonatally inoculated with MoFe2 developed T-cell lymphomas of immature thymocyte surface phenotype. MoFe2 integrated infrequently (0 to 9%) near common insertion sites (CISs) previously identified for either parent virus. Using three different strategies, CISs in MoFe2-induced tumors were identified at six loci, none of which had been previously reported as CISs in tumors induced by either parent virus in wild-type animals. Two of the newly identified CISs had not previously been implicated in lymphoma in any retrovirus model. One of these, designated 3-19, encodes the p101 regulatory subunit of phosphoinositide-3-kinase-gamma. The other, designated Rw1, is predicted to encode a protein that functions in the immune response to virus infection. Thus, substitution of FeLV-945 U3 sequences into the M-MuLV long terminal repeat (LTR) did not alter the target tissue for M-MuLV transformation but significantly altered the pattern of CIS utilization in the induction of T-cell lymphoma. These observations support a growing body of evidence that the distinctive sequence and/or structure of the retroviral LTR determines its pattern of insertional activation. The findings also demonstrate the oligoclonal nature of retrovirus-induced lymphomas by demonstrating proviral insertions at CISs in subdominant populations in the tumor mass. Finally, the findings demonstrate the utility of novel recombinant retroviruses such as MoFe2 to contribute new genes potentially relevant to the induction of lymphoid malignancy. PMID:15596801

  6. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  7. Nonrandom spatial distribution of synonymous substitutions in the GP63 gene from Leishmania.

    PubMed Central

    Alvarez-Valin, F; Tort, J F; Bernardi, G

    2000-01-01

    In this work we analyze the variability in substitution rates in the GP63 gene from Leishmania. By using a sliding window to estimate substitution rates along the gene, we found that the rate of synonymous substitutions along the GP63 gene is highly correlated with both the rate of amino acid substitution and codon bias. Furthermore, we show that comparisons involving genes that represent independent phylogenetic lines yield very similar divergence/conservation patterns, thus suggesting that deterministic forces (i.e., nonstochastic forces such as selection) generated these patterns. We present evidence indicating that the variability in substitution rates is unambiguously related to functionally relevant features. In particular, there is a clear relationship between rates and the tertiary structure of the encoded protein since all divergent segments are located on the surface of the molecule and facing one side (almost parallel to the cell membrane) on the exposed surface of the organism. Remarkably, the protein segments encoded by these variable regions encircle the active site in a funnel-like distribution. These results strongly suggest that the pattern of nucleotide divergence and, notably, of synonymous divergence is affected by functional constraints. PMID:10924466

  8. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus.

    PubMed Central

    Chang, G J; Cropp, B C; Kinney, R M; Trent, D W; Gubler, D J

    1995-01-01

    The evolution of yellow fever virus over 67 years was investigated by comparing the nucleotide sequences of the envelope (E) protein genes of 20 viruses isolated in Africa, the Caribbean, and South America. Uniformly weighted parsimony algorithm analysis defined two major evolutionary yellow fever virus lineages designated E genotypes I and II. E genotype I contained viruses isolated from East and Central Africa. E genotype II viruses were divided into two sublineages: IIA viruses from West Africa and IIB viruses from America, except for a 1979 virus isolated from Trinidad (TRINID79A). Unique signature patterns were identified at 111 nucleotide and 12 amino acid positions within the yellow fever virus E gene by signature pattern analysis. Yellow fever viruses from East and Central Africa contained unique signatures at 60 nucleotide and five amino acid positions, those from West Africa contained unique signatures at 25 nucleotide and two amino acid positions, and viruses from America contained such signatures at 30 nucleotide and five amino acid positions in the E gene. The dissemination of yellow fever viruses from Africa to the Americas is supported by the close genetic relatedness of genotype IIA and IIB viruses and genetic evidence of a possible second introduction of yellow fever virus from West Africa, as illustrated by the TRINID79A virus isolate. The E protein genes of American IIB yellow fever viruses had higher frequencies of amino acid substitutions than did genes of yellow fever viruses of genotypes I and IIA on the basis of comparisons with a consensus amino acid sequence for the yellow fever E gene. The great variation in the E proteins of American yellow fever virus probably results from positive selection imposed by virus interaction with different species of mosquitoes or nonhuman primates in the Americas. PMID:7637022

  9. Structure-function relationship of substituted bromomethylcoumarins in nucleoside specificity of RNA alkylation.

    PubMed

    Kellner, Stefanie; Kollar, Laura Bettina; Ochel, Antonia; Ghate, Manjunath; Helm, Mark

    2013-01-01

    Selective alkylation of RNA nucleotides is an important field of RNA biochemistry, e.g. in applications of fluorescent labeling or in structural probing experiments, yet detailed structure-function studies of labeling agents are rare. Here, bromomethylcoumarins as reactive compounds for fluorescent labeling of RNA are developed as an attractive scaffold on which electronic properties can be modulated by varying the substituents. Six different 4-bromomethyl-coumarins of various substitution patterns were tested for nucleotide specificity of RNA alkylation using tRNA from Escherichia coli as substrate. Using semi-quantitative LC-MS/MS analysis, reactions at mildly acidic and slightly alkaline pH were compared. For all tested compounds, coumarin conjugates with 4-thiouridine, pseudouridine, guanosine, and uridine were identified, with the latter largely dominating. This data set shows that selectivity of ribonucleotide alkylation depends on the substitution pattern of the reactive dye, and even more strongly on the modulation of the reaction conditions. The latter should be therefore carefully optimized when striving to achieve selectivity. Interestingly, the highest selectivity for labeling of a modified nucleoside, namely of 4-thiouridine, was achieved with a compound whose selectivity was somewhat less dependent on reaction conditions than the other compounds. In summary, bromomethylcoumarin derivatives are a highly interesting class of compounds, since their selectivity for 4-thiouridine can be efficiently tuned by variation of substitution pattern and reaction conditions.

  10. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  11. Aryl substitution of pentacenes

    PubMed Central

    Waterloo, Andreas R; Sale, Anna-Chiara; Lehnherr, Dan; Hampel, Frank

    2014-01-01

    Summary A series of 11 new pentacene derivatives has been synthesized, with unsymmetrical substitution based on a trialkylsilylethynyl group at the 6-position and various aryl groups appended to the 13-position. The electronic and physical properties of the new pentacene chromophores have been analyzed by UV–vis spectroscopy (solution and thin films), thermoanalytical methods (DSC and TGA), cyclic voltammetry, as well as X-ray crystallography (for 8 derivatives). X-ray crystallography has been specifically used to study the influence of unsymmetrical substitution on the solid-state packing of the pentacene derivatives. The obtained results add to our ability to better predict substitution patterns that might be helpful for designing new semiconductors for use in solid-state devices. PMID:25161729

  12. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals

    PubMed Central

    Denisov, Stepan; Bazykin, Georgii; Favorov, Alexander; Mironov, Andrey; Gelfand, Mikhail

    2015-01-01

    Splice sites (SSs)—short nucleotide sequences flanking introns—are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints. PMID:26642327

  13. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals.

    PubMed

    Denisov, Stepan; Bazykin, Georgii; Favorov, Alexander; Mironov, Andrey; Gelfand, Mikhail

    2015-01-01

    Splice sites (SSs)--short nucleotide sequences flanking introns--are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints.

  14. Substitution rates in hepatitis delta virus.

    PubMed

    Krushkal, J; Li, W H

    1995-12-01

    Substitution rates were estimated for the coding and noncoding regions of the hepatitis delta virus (HDV). The estimated rates of synonymous substitution in HDV were lower than the rates of substitution at non-synonymous sites and in the noncoding region. HDV has lower synonymous substitution rates than the hepatitis C virus, though both are RNA viruses. The relatively low rate of synonymous substitution in HDV may be due to a strong preference of G and C nucleotides at third codon positions. Variation in substitution rate among HDV lineages may be correlated with the clinical development of the HDV-induced hepatitis. The phylogenetic tree inferred for 24 HDV strains reveals similarities between lineages isolated from the same geographic region.

  15. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  16. Nucleotide signalling during inflammation

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Eltzschig, Holger K.

    2014-01-01

    Inflammatory conditions are associated with the extracellular release of nucleotides, particularly ATP. In the extracellular compartment, ATP predominantly functions as a signalling molecule through the activation of purinergic P2 receptors. Metabotropic P2Y receptors are G-protein-coupled, whereas ionotropic P2X receptors are ATP-gated ion channels. Here we discuss how signalling events through P2 receptors alter the outcomes of inflammatory or infectious diseases. Recent studies implicate a role for P2X/P2Ysignalling in mounting appropriate inflammatory responses critical for host defence against invading pathogens or tumours. Conversely, P2X/P2Y signalling can promote chronic inflammation during ischaemia and reperfusion injury, inflammatory bowel disease or acute and chronic diseases of the lungs. Although nucleotide signalling has been used clinically in patients before, research indicates an expanding field of opportunities for specifically targeting individual P2 receptors for the treatment of inflammatory or infectious diseases. PMID:24828189

  17. Different patterns of sexual dysfunctions associated with psychiatric disorders and psychopharmacological treatment. Results of an investigation by semistructured interview of schizophrenic and neurotic patients and methadone-substituted opiate addicts.

    PubMed

    Teusch, L; Scherbaum, N; Böhme, H; Bender, S; Eschmann-Mehl, G; Gastpar, M

    1995-05-01

    Little is known about sexual dysfunctions associated with psychiatric disorders and psychopharmacological treatment. In the present study schizophrenic patients (n = 45, mostly under neuroleptic treatment), neurotic patients (n = 50, mostly treated without medication), methadone-substituted opiate addicts (n = 37), and normal controls (n = 41) were included. They were interviewed with the aid of a sex-differentiated semistructured questionnaire on sexual function. All the methadone-substituted opiate addicts and nearly all the schizophrenic patients suffered from dysfunctions in at least one criterion. The three clinical groups differed significantly from the controls in sexual interest, emotional arousal, physiological arousal (erectile function/vaginal lubrication), performance (ejaculatory function/vaginism, dyspareunia), and orgasm satisfaction. Characteristic patterns of dysfunction were found in the male patients. The schizophrenic patients had significantly more dysfunctions of interest, physiological arousal, performance, and orgasm than the controls. Emotional arousal, erectile and ejaculatory functions, and orgasm satisfaction were impaired more frequently in the male schizophrenics than in the neurotic patients. Reduced sexual interest, emotional arousal, and orgasm satisfaction were reported more frequently by the methadone-substituted opiate addicts than by the neurotic men. Emotional arousal was even more frequently reduced than in the schizophrenic men. There was no correlation between sexual dysfunction and particular neuroleptics or neuroleptic or methadone dosage. The results are compared with the literature and suggestions made for further investigations.

  18. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  19. Regulation of innate immunity by extracellular nucleotides

    PubMed Central

    Gorini, Stefania; Gatta, Lucia; Pontecorvo, Laura; Vitiello, Laura; la Sala, Andrea

    2013-01-01

    Extracellular ATP (eATP) is the most abundant among extracellular nucleotides and is commonly considered as a classical danger signal, which stimulates immune responses in the presence of tissue injury. In fact, increased nucleotide concentration in the extracellular space is generally closely associated with tissue stress or damage. However non-lytic nucleotide release may also occur in many cell types under a variety of conditions. Extracellular nucleotides are sensed by a class of plasma membrane receptors called P2 purinergic receptors (P2Rs). P2 receptors are expressed by all immunological cells and their activation elicits different responses. Extracellular ATP can act as an initiator or terminator of immune responses being able to induce different effects on immune cells depending on the pattern of P2 receptors engaged, the duration of the stimulus and its concentration in the extracellular milieu. Millimolar (high) concentrations of extracellular ATP, induce predominantly proinflammatory effects, while micromolar (low) doses exert mainly tolerogenic/immunosuppressive action. Moreover small, but significant differences in the pattern of P2 receptor expression in mice and humans confer diverse capacities of ATP in regulating the immune response. PMID:23358447

  20. Simple, heart-smart substitutions

    MedlinePlus

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart smart substitutions; Wellness - heart smart substitutions

  1. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  2. Mutating three residues in the bovine rod cyclic nucleotide-activated channel can switch a nucleotide from inactive to active.

    PubMed Central

    Scott, S P; Cummings, J; Joe, J C; Tanaka, J C

    2000-01-01

    Cyclic nucleotide-gated (CNG) channels, which were initially studied in retina and olfactory neurons, are activated by cytoplasmic cGMP or cAMP. Detailed comparisons of nucleotide-activated currents using nucleotide analogs and mutagenesis revealed channel-specific residues in the nucleotide-binding domain that regulate the binding and channel-activation properties. Of particular interest are N(1)-oxide cAMP, which does not activate bovine rod channels, and Rp-cGMPS, which activates bovine rod, but not catfish, olfactory channels. Previously, we showed that four residues coordinate the purine interactions in the binding domain and that three of these residues vary in the alpha subunits of the bovine rod, catfish, and rat olfactory channels. Here we show that both N(1)-oxide cAMP and Rp-cGMPS activate rat olfactory channels. A mutant of the bovine rod alpha subunit, substituted with residues from the rat olfactory channel at the three variable positions, was weakly activated by N(1)-oxide cAMP, and a catfish olfactory-like bovine rod mutant lost activation by Rp-cGMPS. These experiments underscore the functional importance of purine contacts with three residues in the cyclic nucleotide-binding domain. Molecular models of nucleotide analogs in the binding domains, constructed with AMMP, showed differences in the purine contacts among the channels that might account for activation differences. PMID:10777730

  3. Nucleotide sequence of SHV-2 beta-lactamase gene

    SciTech Connect

    Garbarg-Chenon, A.; Godard, V.; Labia, R.; Nicolas, J.C. )

    1990-07-01

    The nucleotide sequence of plasmid-mediated beta-lactamase SHV-2 from Salmonella typhimurium (SHV-2pHT1) was determined. The gene was very similar to chromosomally encoded beta-lactamase LEN-1 of Klebsiella pneumoniae. Compared with the sequence of the Escherichia coli SHV-2 enzyme (SHV-2E.coli) obtained by protein sequencing, the deduced amino acid sequence of SHV-2pHT1 differed by three amino acid substitutions.

  4. Estimation of evolutionary distances between nucleotide sequences.

    PubMed

    Zharkikh, A

    1994-09-01

    A formal mathematical analysis of the substitution process in nucleotide sequence evolution was done in terms of the Markov process. By using matrix algebra theory, the theoretical foundation of Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) and Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984) methods was provided. Extensive computer simulation was used to compare the accuracy and effectiveness of various methods for estimating the evolutionary distance between two nucleotide sequences. It was shown that the multiparameter methods of Lanave et al.'s (J. Mol. Evol. 20:86-93, 1984), Gojobori et al.'s (J. Mol. Evol. 18:414-422, 1982), and Barry and Hartigan's (Stat. Sci. 2:191-210, 1987) are preferable to others for the purpose of phylogenetic analysis when the sequences are long. However, when sequences are short and the evolutionary distance is large, Tajima and Nei's (Mol. Biol. Evol. 1:269-285, 1984) method is superior to others.

  5. Natural History of Human Respiratory Syncytial Virus Inferred from Phylogenetic Analysis of the Attachment (G) Glycoprotein with a 60-Nucleotide Duplication

    PubMed Central

    Trento, Alfonsina; Viegas, Mariana; Galiano, Mónica; Videla, Cristina; Carballal, Guadalupe; Mistchenko, Alicia S.; Melero, José A.

    2006-01-01

    A total of 47 clinical samples were identified during an active surveillance program of respiratory infections in Buenos Aires (BA) (1999 to 2004) that contained sequences of human respiratory syncytial virus (HRSV) with a 60-nucleotide duplication in the attachment (G) protein gene. This duplication was analogous to that previously described for other three viruses also isolated in Buenos Aires in 1999 (A. Trento et al., J. Gen. Virol. 84:3115-3120, 2003). Phylogenetic analysis indicated that BA sequences with that duplication shared a common ancestor (dated about 1998) with other HRSV G sequences reported worldwide after 1999. The duplicated nucleotide sequence was an exact copy of the preceding 60 nucleotides in early viruses, but both copies of the duplicated segment accumulated nucleotide substitutions in more recent viruses at a rate apparently higher than in other regions of the G protein gene. The evolution of the viruses with the duplicated G segment apparently followed the overall evolutionary pattern previously described for HRSV, and this genotype has replaced other prevailing antigenic group B genotypes in Buenos Aires and other places. Thus, the duplicated segment represents a natural tag that can be used to track the dissemination and evolution of HRSV in an unprecedented setting. We have taken advantage of this situation to reexamine the molecular epidemiology of HRSV and to explore the natural history of this important human pathogen. PMID:16378999

  6. Computational study of cation substitutions in apatites

    SciTech Connect

    Tamm, Toomas . E-mail: tamm@yki.ttu.ee; Peld, Merike

    2006-05-15

    Density-functional theory plane-wave modeling of fluor- and hydroxyapatites has been performed, where one or two calcium ions per unit cell were replaced with cadmium or zinc cations. It was found that cadmium ions favor Ca(1) positions in fluorapatites and Ca(2) positions in hydroxyapatites, in agreement with experiment. A similar pattern is predicted for zinc substitutions. In the doubly substituted cases, where only hydroxyapatites were modeled, a preference for the substituting ions to be located in Ca(2) position was also observed. Displacement of the hydroxide ions from their symmetrical positions on the hexagonal axis can be used to explain the preferred configurations of substituting ions around the axis. -- Deformation of the hydroxide ion chain due to substitutions around the ion channel in substituted hydroxyapatites.

  7. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  8. Multiple Base Substitution Corrections in DNA Sequence Evolution

    NASA Astrophysics Data System (ADS)

    Kowalczuk, M.; Mackiewicz, P.; Szczepanik, D.; Nowicka, A.; Dudkiewicz, M.; Dudek, M. R.; Cebrat, S.

    We discuss the Jukes and Cantor's one-parameter model and Kimura's two-parameter model unability to describe evolution of asymmetric DNA molecules. The standard distance measure between two DNA sequences, which is the number of substitutions per site, should include the effect of multiple base substitutions separately for each type of the base. Otherwise, the respective tables of substitutions cannot reconstruct the asymmetric DNA molecule with respect to the composition. Basing on Kimura's neutral theory, we have derived a linear law for the correlation of the mean survival time of nucleotides under constant mutation pressure and their fraction in the genome. According to the law, the corrections to Kimura's theory have been discussed to describe evolution of genomes with asymmetric nucleotide composition. We consider the particular case of the strongly asymmetric Borrelia burgdorferi genome and we discuss in detail the corrections, which should be introduced into the distance measure between two DNA sequences to include multiple base substitutions.

  9. Nucleotide exchange and excision technology DNA shuffling and directed evolution.

    PubMed

    Speck, Janina; Stebel, Sabine C; Arndt, Katja M; Müller, Kristian M

    2011-01-01

    Remarkable success in optimizing complex properties within DNA and proteins has been achieved by directed evolution. In contrast to various random mutagenesis methods and high-throughput selection methods, the number of available DNA shuffling procedures is limited, and protocols are often difficult to adjust. The strength of the nucleotide exchange and excision technology (NExT) DNA shuffling described here is the robust, efficient, and easily controllable DNA fragmentation step based on random incorporation of the so-called 'exchange nucleotides' by PCR. The exchange nucleotides are removed enzymatically, followed by chemical cleavage of the DNA backbone. The oligonucleotide pool is reassembled into full-length genes by internal primer extension, and the recombined gene library is amplified by standard PCR. The technique has been demonstrated by shuffling a defined gene library of chloramphenicol acetyltransferase variants using uridine as fragmentation defining exchange nucleotide. Substituting 33% of the dTTP with dUTP in the incorporation PCR resulted in shuffled clones with an average parental fragment size of 86 bases and revealed a mutation rate of only 0.1%. Additionally, a computer program (NExTProg) has been developed that predicts the fragment size distribution depending on the relative amount of the exchange nucleotide.

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  11. Nucleotide diversity analysis highlights functionally important genomic regions.

    PubMed

    Tatarinova, Tatiana V; Chekalin, Evgeny; Nikolsky, Yuri; Bruskin, Sergey; Chebotarov, Dmitry; McNally, Kenneth L; Alexandrov, Nickolai

    2016-10-24

    We analyzed functionality and relative distribution of genetic variants across the complete Oryza sativa genome, using the 40 million single nucleotide polymorphisms (SNPs) dataset from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and highest density SNP collection for any higher plant. We have shown that the DNA-binding transcription factors (TFs) are the most conserved group of genes, whereas kinases and membrane-localized transporters are the most variable ones. TFs may be conserved because they belong to some of the most connected regulatory hubs that modulate transcription of vast downstream gene networks, whereas signaling kinases and transporters need to adapt rapidly to changing environmental conditions. In general, the observed profound patterns of nucleotide variability reveal functionally important genomic regions. As expected, nucleotide diversity is much higher in intergenic regions than within gene bodies (regions spanning gene models), and protein-coding sequences are more conserved than untranslated gene regions. We have observed a sharp decline in nucleotide diversity that begins at about 250 nucleotides upstream of the transcription start and reaches minimal diversity exactly at the transcription start. We found the transcription termination sites to have remarkably symmetrical patterns of SNP density, implying presence of functional sites near transcription termination. Also, nucleotide diversity was significantly lower near 3' UTRs, the area rich with regulatory regions.

  12. Nucleotide diversity analysis highlights functionally important genomic regions

    PubMed Central

    Tatarinova, Tatiana V.; Chekalin, Evgeny; Nikolsky, Yuri; Bruskin, Sergey; Chebotarov, Dmitry; McNally, Kenneth L.; Alexandrov, Nickolai

    2016-01-01

    We analyzed functionality and relative distribution of genetic variants across the complete Oryza sativa genome, using the 40 million single nucleotide polymorphisms (SNPs) dataset from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and highest density SNP collection for any higher plant. We have shown that the DNA-binding transcription factors (TFs) are the most conserved group of genes, whereas kinases and membrane-localized transporters are the most variable ones. TFs may be conserved because they belong to some of the most connected regulatory hubs that modulate transcription of vast downstream gene networks, whereas signaling kinases and transporters need to adapt rapidly to changing environmental conditions. In general, the observed profound patterns of nucleotide variability reveal functionally important genomic regions. As expected, nucleotide diversity is much higher in intergenic regions than within gene bodies (regions spanning gene models), and protein-coding sequences are more conserved than untranslated gene regions. We have observed a sharp decline in nucleotide diversity that begins at about 250 nucleotides upstream of the transcription start and reaches minimal diversity exactly at the transcription start. We found the transcription termination sites to have remarkably symmetrical patterns of SNP density, implying presence of functional sites near transcription termination. Also, nucleotide diversity was significantly lower near 3′ UTRs, the area rich with regulatory regions. PMID:27774999

  13. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae.

    PubMed

    Wicke, Susann; Schäferhoff, Bastian; dePamphilis, Claude W; Müller, Kai F

    2014-03-01

    Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds. We observe a size reduction by up to 9% mostly due to the independent loss of genes for the plastid NAD(P)H dehydrogenase and altered proportions of plastid repeat DNA, as well as a significant plastome-wide increase of substitution rates and microstructural changes. Protein-coding genes across all gene classes show a disproportional elevation of nonsynonymous substitutions, particularly in Utricularia and Genlisea. Significant relaxation of purifying selection relative to noncarnivores occurs in the plastid-encoded fraction of the photosynthesis ATP synthase complex, the photosystem I, and in several other photosynthesis and metabolic genes. Shifts in selective regimes also affect housekeeping genes including the plastid-encoded polymerase, for which evidence for relaxed purifying selection was found once during the transition to carnivory, and a second time during the diversification of the family. Lentibulariaceae significantly exhibit enhanced rates of nucleotide substitution in most of the 130 noncoding regions. Various factors may underlie the observed patterns of relaxation of purifying selection and substitution rate increases, such as reduced net photosynthesis rates, alternative paths of nutrient uptake (including organic carbon), and impaired DNA repair mechanisms.

  14. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  15. Cyclic Nucleotide-Gated Channel Block by Hydrolysis-Resistant Tetracaine Derivatives

    PubMed Central

    Andrade, Adriana L.; Melich, Kenneth; Whatley, G. Gregory; Kirk, Sarah R.; Karpen, Jeffrey W.

    2011-01-01

    To meet a pressing need for better cyclic nucleotide-gated (CNG) channel antagonists, we have increased the biological stability of tetracaine-based blockers by synthesizing amide and thioamide linkage substitutions of tetracaine (1) and a higher affinity octyl tail derivative (5). We report the apparent KD values, the mechanism of block, and the in vitro hydrolysis rates for these compounds. The ester linkage substitutions did not adversely affect CNG channel block; unexpectedly, thioamide substitution in 1 (compound 8) improved block significantly. Furthermore, the ester linkage substitutions did not appear to affect the mechanism of block in terms of the strong state preference for closed channels. All ester substituted compounds, especially the thioamide substitutions, were more resistant to hydrolysis by serum cholinesterase than their ester counterparts. These findings have implications for dissecting the physiological roles of CNG channels, treating certain forms of retinal degeneration, and possibly the current clinical uses of compound 1. PMID:21634421

  16. The A-nucleotide preference of HIV-1 in the context of its structured RNA genome

    PubMed Central

    van Hemert, Formijn J.; van der Kuyl, Antoinette C.; Berkhout, Ben

    2013-01-01

    A bipartition of HIV-1 RNA genome sequences into single- and double-stranded nucleotides is possible based on the secondary structure model of a complete 9 kb genome. Subsequent analysis revealed that the well-known lentiviral property of A-accumulation is profoundly present in single-stranded domains, yet absent in double-stranded domains. Mutational rate analysis by means of an unrestricted model of nucleotide substitution suggests the presence of an evolutionary equilibrium to preserve this biased nucleotide distribution. PMID:23235488

  17. Nucleophilic Aromatic Substitution.

    ERIC Educational Resources Information Center

    Avila, Walter B.; And Others

    1990-01-01

    Described is a microscale organic chemistry experiment which demonstrates one feasible route in preparing ortho-substituted benzoic acids and provides an example of nucleophilic aromatic substitution chemistry. Experimental procedures and instructor notes for this activity are provided. (CW)

  18. Metalated nucleotide chemisorption on hydroxyapatite.

    PubMed

    Benedetti, Michele; Antonucci, Daniela; De Castro, Federica; Girelli, Chiara R; Lelli, Marco; Roveri, Norberto; Fanizzi, Francesco P

    2015-12-01

    The experiments here reported evidence on the importance of the residual charge of a nucleotide derivative, for the adsorption on nHAP (hydroxyapatite nanocrystals), in water solution. We found that the simple presence of phosphates on the nucleotide derivative does not guarantee adsorption on nHAP. On the other hand, we demonstrated that a cationic or neutral charge on a nucleotide derivative produces a strongly reduced chemical adsorption (chemisorption) whereas, in the presence of a net negative charge, relevant adsorption on nHAP is observed. The number of phosphates can only modulate the adsorption efficiency of a molecule provided that this latter bears an overall negative charge. The neutral zwitterionic nucleotide Pt(II) complexes, bearing negatively charged phosphates, are unable to give stable chemisorption. Previous considerations are important to model the binding ability of phosphate bearing nucleotide derivatives or molecules on hydroxyapatite. The findings reported in the present paper could be relevant in bone tissue targeting or nHAP mediated drug delivery.

  19. Nucleotide sequences important for translation initiation of enterovirus RNA.

    PubMed Central

    Iizuka, N; Yonekawa, H; Nomoto, A

    1991-01-01

    An infectious cDNA clone was constructed from the genome of coxsackievirus B1 strain. A number of RNA transcripts that have mutations in the 5' noncoding region were synthesized in vitro from the modified cDNA clones and examined for their abilities to act as mRNAs in a cell-free translation system prepared from HeLa S3 cells. RNAs that lack nucleotide sequences at positions 568 to 726 and 565 to 726 were found to be less efficient and inactive mRNAs, respectively. To understand the biological significance of this region of RNA, small deletions and point mutations were introduced in the nucleotide sequence between positions 538 and 601. Except for a nucleotide substitution at 592 (U----C) within the 7-base conserved sequence, mutations introduced in the sequence downstream of position 568 did not affect much, if any, of the ability of RNA to act as mRNA. Except for a point mutation at 558 (C----U), mutations upstream of position 567 appeared to inactivate the mRNA. In the upstream region, a sequence consisting of 21 nucleotides at positions 546 to 566 is perfectly conserved in the 5' noncoding regions of enterovirus and rhinovirus genomes. These results suggest that the 7-base conserved sequence functions to maintain the efficiency of translation initiation and that the nucleotide sequence upstream of position 567, including the 21-base conserved sequence, plays essential roles in translation initiation. A deletion mutant whose genome lacks the nucleotide sequence at positions 568 to 726 showed a small-plaque phenotype and less virulence against suckling mice than the wild-type virus. Thus, reduction of the efficiency of translation initiation may result in the construction of enteroviruses with the lower-virulence phenotype. Images PMID:1651409

  20. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida

    PubMed Central

    Young, Monica R; Hebert, Paul D. N.

    2015-01-01

    Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa. PMID:26308206

  1. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera).

    PubMed

    Olson, Matthew S; Robertson, Amanda L; Takebayashi, Naoki; Silim, Salim; Schroeder, William R; Tiffin, Peter

    2010-04-01

    *Current perceptions that poplars have high levels of nucleotide variation, large effective population sizes, and rapid decay of linkage disequilibrium are based primarily on studies from one poplar species, Populus tremula. *We analysed 590 gene fragments (average length 565 bp) from each of 15 individuals from different populations from throughout the range of Populus balsamifera. *Nucleotide diversity (theta(total) = 0.0028, pi = 0.0027) was low compared with other trees and model agricultural systems. Patterns of nucleotide diversity and site frequency spectra were consistent with purifying selection on replacement and intron sites. When averaged across all loci we found no evidence for decay of linkage disequilibrium across 750 bp, consistent with the low estimates of the scaled recombination parameter, rho = 0.0092. *Compared with P. tremula, a well studied congener with a similar distribution, P. balsamifera has low diversity and low effective recombination, both of which indicate a lower effective population size in P. balsamifera. Patterns of diversity and linkage indicate that there is considerable variation in population genomic patterns among poplar species and unlike P. tremula, association mapping techniques in balsam poplar should consider sampling single nucleotide polymorphisms (SNPs) at well-spaced intervals.

  2. Effect on platelet functions of derivatives of cyclic nucleotides.

    PubMed

    Pareti, F I; Carrera, D; Mannucci, L; Mannucci, P M

    1978-04-30

    Derivatives of cyclic nucleotides were evaluated for their ability to inhibit platelet aggregation and the release reaction. Derivatives substituted in position 8 (mainly 8-Br-cyclic GMP) were more active than 3'-5' cyclic AMP, and their relative potency in inhibiting platelet aggregation and 14C-serotonin release was comparable to that of N62-0'-dibutyryl-cyclic AMP. Compounds substituted in position 6 or 2'-0 were not effective. The active compounds, which were also tested for their ability to stimulate platelet adenylate cyclase or to inhibit cyclic AMP phosphodiesterase, did not modify the intracellular levels of cyclic AMP. Since previous animal experiments have shown that these derivatives cause less side effects than cyclic AMP and its dibutyryl derivative in animals, it is suggested that modification of the cyclophosphate molecule might make it possible to find compounds active only on platelet function without interfering with other biological systems.

  3. Differential Mutation Patterns in Thymidine Kinase and DNA Polymerase Genes of Herpes Simplex Virus Type 1 Clones Passaged in the Presence of Acyclovir or Penciclovir

    PubMed Central

    Suzutani, Tatsuo; Ishioka, Ken; De Clercq, Erik; Ishibashi, Kei; Kaneko, Hisatoshi; Kira, Toshihiko; Hashimoto, Koh-ichi; Ogasawara, Masahiro; Ohtani, Katsuki; Wakamiya, Nobutaka; Saijo, Masayuki

    2003-01-01

    A total of 21 clones of acyclovir (ACV)-resistant (ACVr) herpes simplex virus type 1 (HSV-1) and 23 clones of penciclovir (PCV)-resistant (PCVr) HSV-1, emerging during serial passages in the presence of ACV or PCV, were isolated under conditions excluding contamination of resistant mutants in the starting virus culture, and their mutations in the thymidine kinase (TK) and DNA polymerase (DNA Pol) genes were analyzed comparatively. Mutations in the TK genes from ACVr mutants consisted of 50% single nucleotide substitutions and 50% frameshift mutations, while the corresponding figures for the PCVr mutants were 4 and 96%, respectively (P < 0.001). Eight of the 21 ACVr clones, but none of the 23 PCVr clones, had mutations in DNA Pol. Only nucleotide substitution(s) could be detected in the DNA Pol gene, as the gene is essential for virus replication. Therefore, the results for the DNA Pol mutants are concordant with those for the TK mutants in that a single nucleotide substitution was commonly observed in the ACVr, but not in the PCVr, mutants. These results clearly point to differential mutation patterns between ACVr and PCVr HSV-1 clones. PMID:12709344

  4. Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli.

    PubMed

    Frech, M; Schlichting, I; Wittinghofer, A; Chardin, P

    1990-04-15

    The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.

  5. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  6. Applications of adenine nucleotide measurements in oceanography

    NASA Technical Reports Server (NTRS)

    Holm-Hansen, O.; Hodson, R.; Azam, F.

    1975-01-01

    The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied.

  7. ADP-2Ho as a Phasing Tool for Nucleotide-Containing Proteins

    SciTech Connect

    Ku,S.; Smith, G.; Howell, P.

    2007-01-01

    Trivalent holmium ions were shown to isomorphously replace magnesium ions to form an ADP-2Ho complex in the nucleotide-binding domain of Bacillus subtilis 5-methylthioribose (MTR) kinase. This nucleotide-holmium complex provided sufficient phasing power to allow SAD and SIRAS phasing of this previously unknown structure using the L{sub III} absorption edge of holmium. The structure of ADP-2Ho reveals that the two Ho ions are approximately 4 {angstrom} apart and are likely to share their ligands: the phosphoryl O atoms of ADP and a water molecule. The structure determination of MTR kinase using data collected using Cu K X-radiation was also attempted. Although the heavy-atom substructure determination was successful, interpretation of the map was more challenging. The isomorphous substitution of holmium for magnesium in the MTR kinase-nucleotide complex suggests that this could be a useful phasing tool for other metal-dependent nucleotide-containing proteins.

  8. Substitution rate and natural selection in parvovirus B19

    PubMed Central

    Stamenković, Gorana G.; Ćirković, Valentina S.; Šiljić, Marina M.; Blagojević, Jelena V.; Knežević, Aleksandra M.; Joksić, Ivana D.; Stanojević, Maja P.

    2016-01-01

    The aim of this study was to estimate substitution rate and imprints of natural selection on parvovirus B19 genotype 1. Studied datasets included 137 near complete coding B19 genomes (positions 665 to 4851) for phylogenetic and substitution rate analysis and 146 and 214 partial genomes for selection analyses in open reading frames ORF1 and ORF2, respectively, collected 1973–2012 and including 9 newly sequenced isolates from Serbia. Phylogenetic clustering assigned majority of studied isolates to G1A. Nucleotide substitution rate for total coding DNA was 1.03 (0.6–1.27) x 10−4 substitutions/site/year, with higher values for analyzed genome partitions. In spite of the highest evolutionary rate, VP2 codons were found to be under purifying selection with rare episodic positive selection, whereas codons under diversifying selection were found in the unique part of VP1, known to contain B19 immune epitopes important in persistent infection. Analyses of overlapping gene regions identified nucleotide positions under opposite selective pressure in different ORFs, suggesting complex evolutionary mechanisms of nucleotide changes in B19 viral genomes. PMID:27775080

  9. Sustainability and substitutability.

    PubMed

    Fenichel, Eli P; Zhao, Jinhua

    2015-02-01

    Developing a quantitative science of sustainability requires bridging mathematical concepts from fields contributing to sustainability science. The concept of substitutability is central to sustainability but is defined differently by different fields. Specifically, economics tends to define substitutability as a marginal concept while fields such as ecology tend to focus on limiting behaviors. We explain how to reconcile these different views. We develop a model where investments can be made in knowledge to increase the elasticity of substitution. We explore the set of sustainable and optimal trajectories for natural capital extraction and built and knowledge capital accumulation. Investments in substitutability through knowledge stock accumulation affect the value of natural capital. Results suggest that investing in the knowledge stock, which can enhance substitutability, is critical to desirable sustainable outcomes. This result is robust even when natural capital is not managed optimally. This leads us to conclude that investments in the knowledge stock are of first order importance for sustainability.

  10. European Nucleotide Archive in 2016

    PubMed Central

    Toribio, Ana Luisa; Alako, Blaise; Amid, Clara; Cerdeño-Tarrága, Ana; Clarke, Laura; Cleland, Iain; Fairley, Susan; Gibson, Richard; Goodgame, Neil; ten Hoopen, Petra; Jayathilaka, Suran; Kay, Simon; Leinonen, Rasko; Liu, Xin; Martínez-Villacorta, Josué; Pakseresht, Nima; Rajan, Jeena; Reddy, Kethi; Rosello, Marc; Silvester, Nicole; Smirnov, Dmitriy; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2017-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) offers a rich platform for data sharing, publishing and archiving and a globally comprehensive data set for onward use by the scientific community. With a broad scope spanning raw sequencing reads, genome assemblies and functional annotation, the resource provides extensive data submission, search and download facilities across web and programmatic interfaces. Here, we outline ENA content and major access modalities, highlight major developments in 2016 and outline a number of examples of data reuse from ENA. PMID:27899630

  11. New nucleotide analogues with enhanced signal properties.

    PubMed

    Cherkasov, Dmitry; Biet, Thorsten; Bäuml, Englbert; Traut, Walther; Lohoff, Michael

    2010-01-01

    We describe synthesis and testing of a novel type of dye-modified nucleotides which we call macromolecular nucleotides (m-Nucs). Macromolecular nucleotides comprise a nucleotide moiety, a macromolecular linear linker, and a large macromolecular ligand carrying multiple fluorescent dyes. With incorporation of the nucleotide moiety into the growing nucleic acid strand during enzymatic synthesis, the macromolecular ligand together with the coupled dyes is bound to the nucleic acid. By the use of this new class of modified nucleotides, signals from multiple dye molecules can be obtained after a single enzymatic incorporation event. The modified nucleotides are considered especially useful in the fields of nanobiotechnology, where signal stability and intensity is a limiting factor.

  12. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  13. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  14. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  15. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  16. 40 CFR 721.981 - Substituted naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... naphthalenyl-substituted azonaphthol chromium complex. 721.981 Section 721.981 Protection of Environment...-substituted naphthalenyl-substituted azonaphthol chromium complex. (a) Chemical substance and significant new... naphtholoazo-substituted naphthalenyl-substituted azonaphthol chromium complex (PMN P-93-1631) is subject...

  17. Sugar substitutes during pregnancy

    PubMed Central

    Pope, Eliza; Koren, Gideon; Bozzo, Pina

    2014-01-01

    Abstract Question I have a pregnant patient who regularly consumes sugar substitutes and she asked me if continuing their use would affect her pregnancy or child. What should I tell her, and are there certain options that are better for use during pregnancy? Answer Although more research is required to fully determine the effects of in utero exposure to sugar substitutes, the available data do not suggest adverse effects in pregnancy. However, it is recommended that sugar substitutes be consumed in moderate amounts, adhering to the acceptable daily intake standards set by regulatory agencies. PMID:25392440

  18. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed

    Cheng, K; Koland, J G

    1998-02-15

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.

  19. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed Central

    Cheng, K; Koland, J G

    1998-01-01

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate.Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction. PMID:9461530

  20. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.

    PubMed

    Arabi, Juliette; Judson, Mark L I; Deharveng, Louis; Lourenço, Wilson R; Cruaud, Corinne; Hassanin, Alexandre

    2012-02-01

    Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218 nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements.

  1. Acid-Soluble Nucleotides of Pinto Bean Leaves at Different Stages of Development 1

    PubMed Central

    Weinstein, L. H.; McCune, D. C.; Mancini, Jill F.; van Leuken, P.

    1969-01-01

    Acid-soluble nucleotides of unifoliate leaves of Pinto bean plants (Phaseolus vulgaris L.) were determined at young, mature, and senescent stages of development. At least 25 components could be distinguished on the basis of inorganic phosphorus determinations and 37 or more fractions on the basis of 32P labeling, with adenosine di- and triphosphates accounting for 60% of the total moles of nucleotide. The total nucleotide P and inorganic P, on a fresh weight basis, decreased about 44% between each stage of leaf development, but decrements in the levels of individual nucleotides varied from this over-all pattern. Minor changes in the relative abundance of the individual nucleotides accompanied aging although the percentage of purine-containing nucleotides decreased with age. Total 32P activity per leaf in the nucleotide pool increased about 3-fold between the young and mature leaves and decreased slightly as leaves became senescent. In general, the specific activities of the nucleotides increased with increased age and adenosine-, guanosine-, uridine-, and cytidine triphosphates and adenosine diphosphate accounted for approximately 90% of the total activity. The changes in the relative sizes and energy status of the nucleotide pools were not so obvious as the changes in other metabolites that have been reported to accompany aging in leaf tissue. PMID:16657232

  2. Nucleotide Metabolism and DNA Replication.

    PubMed

    Warner, Digby F; Evans, Joanna C; Mizrahi, Valerie

    2014-10-01

    The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.

  3. [Sugar substitutes in the diabetic diet].

    PubMed

    Mehnert, H

    1976-01-01

    considerable increase after glucose administration. Investigations in adult-type diabetics revealed a better utilization of fructose than glucose. With correct dosage, sugar substitutes are able to increase the carbohydrate tolerance and, under certain conditions, to achieve a relative stabilization of the metabolism of unstable diabetics. The antiketogenic activity of sugar substitutes is particularly pronounced. Side-effects such as high blood levels of urea, lactate, triglycerides and bilirubin or a decrease in hepatic adenin nucleotides do not occur after oral administration, nor are they of importance after intravenous administration with correct dosage. The osmotic diarrhoea occurring after intake of sorbitol or xylitol is caused by their slow absorption and limits the consumption of these sugar substitutes. In the often obese adult-type diabetics, the calorie intake inherent in the consumption of diabetic sugars may have an unfavourable influence on their weight...

  4. Synthesis of substituted pyrazines

    SciTech Connect

    Pagoria, Philip F.; Zhang, Mao Xi

    2016-10-04

    A method for synthesizing a pyrazine-containing material according to one embodiment includes contacting an iminodiacetonitrile derivative with a base and a reagent selected from a group consisting of hydroxylamine, a hydroxylamine salt, an aliphatic primary amine, a secondary amine, an aryl-substituted alkylamine a heteroaryl-substituted alkyl amine, an alcohol, an alkanolamine and an aryl alcoholamine. Additional methods and several reaction products are presented. ##STR00001##

  5. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  6. Nucleotide excision repair in humans.

    PubMed

    Spivak, Graciela

    2015-12-01

    The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process.

  7. Nucleotide excision repair in humans

    PubMed Central

    Spivak, Graciela

    2015-01-01

    The demonstration of DNA damage excision and repair replication by Setlow, Howard-Flanders, Hanawalt and their colleagues in the early 1960s, constituted the discovery of the ubiquitous pathway of nucleotide excision repair (NER). The serial steps in NER are similar in organisms from unicellular bacteria to complex mammals and plants, and involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. The transcription-coupled repair (TCR) subpathway of NER, discovered nearly two decades later, is dedicated to the removal of lesions from the template DNA strands of actively transcribed genes. In this review I will outline the essential factors and complexes involved in NER in humans, and will comment on additional factors and metabolic processes that affect the efficiency of this important process. PMID:26388429

  8. The influence of genomic context on mutation patterns in the human genome inferred from rare variants.

    PubMed

    Schaibley, Valerie M; Zawistowski, Matthew; Wegmann, Daniel; Ehm, Margaret G; Nelson, Matthew R; St Jean, Pamela L; Abecasis, Gonçalo R; Novembre, John; Zöllner, Sebastian; Li, Jun Z

    2013-12-01

    Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.

  9. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  10. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  11. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  12. RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling

    PubMed Central

    Durbin, Ann Fiegen; Wang, Chen; Marcotrigiano, Joseph

    2016-01-01

    ABSTRACT Invading pathogen nucleic acids are recognized and bound by cytoplasmic (retinoic acid-inducible gene I [RIG-I]-like) and membrane-bound (Toll-like) pattern recognition receptors to activate innate immune signaling. Modified nucleotides, when present in RNA molecules, diminish the magnitude of these signaling responses. However, mechanisms explaining the blunted signaling have not been elucidated. In this study, we used several independent biological assays, including inhibition of virus replication, RIG-I:RNA binding assays, and limited trypsin digestion of RIG-I:RNA complexes, to begin to understand how RNAs containing modified nucleotides avoid or suppress innate immune signaling. The experiments were based on a model innate immune activating RNA molecule, the polyU/UC RNA domain of hepatitis C virus, which was transcribed in vitro with canonical nucleotides or with one of eight modified nucleotides. The approach revealed signature assay responses associated with individual modified nucleotides or classes of modified nucleotides. For example, while both N-6-methyladenosine (m6A) and pseudouridine nucleotides correlate with diminished signaling, RNA containing m6A modifications bound RIG-I poorly, while RNA containing pseudouridine bound RIG-I with high affinity but failed to trigger the canonical RIG-I conformational changes associated with robust signaling. These data advance understanding of RNA-mediated innate immune signaling, with additional relevance for applying nucleotide modifications to RNA therapeutics. PMID:27651356

  13. Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets

    PubMed Central

    Hiasa, Miki; Togawa, Natsuko; Miyaji, Takaaki; Omote, Hiroshi; Yamamoto, Akitsugu; Moriyama, Yoshinori

    2014-01-01

    Abstract Nucleotides are stored in the dense granules of platelets. The release of nucleotides triggers one of the first steps in a series of cascades responsible for blood coagulation. However, the mechanism of how the nucleotides are accumulated in the granules is still far less understood. The transporter protein responsible for storage of nucleotides in the neuroendocrine cells has been identified and characterized. We hypothesized that the vesicular nucleotide transporter (VNUT) is also involved in the vesicular storage of nucleotides in platelets. In this article, we present three lines of evidence that VNUT is responsible for the vesicular storage of nucleotides in platelets and that vesicular ATP transport is crucial for platelet function, detection and characterization of VNUT activity in platelets isolated from healthy humans and MEG‐01 cells, RNA interference experiments on MEG‐01 cells, and studies on nucleotide transport and release with a selective inhibitor. PMID:24907298

  14. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-02-03

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  15. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-02-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  16. Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Serovars of the human pathogen Chlamydia trachomatis occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. The ompA gene, h...

  17. Patterns of population genetic structure for springtails and mites in southern Victoria Land, Antarctica.

    PubMed

    McGaughran, Angela; Hogg, Ian D; Stevens, Mark I

    2008-02-01

    We sequenced the mitochondrial (mt) DNA cytochrome c oxidase subunit I gene to examine comparative phylogeographic patterns for the springtail Gomphiocephalus hodgsoni and the mite Stereotydeus mollis throughout their ranges in southern Victoria Land, Antarctica. Our aim was to extend previous genetic work to encompass a large ice-free area in the Dry Valleys. In particular, we sought to determine if this new region harboured high levels of genetic diversity and if patterns of genetic structure were congruent across taxa. Phylogenetic and nested clade analyses for G. hodgsoni and S. mollis showed similar patterns of population sub-structuring among locations and highlighted several potential refugia that may have existed during glacial maxima. We identified greater levels of genetic divergence in S. mollis and suggest that there is a nucleotide substitution (mutation) rate difference between S. mollis and G. hodgsoni, and/or that S. mollis has had a longer association with the Antarctic landscape.

  18. Bone graft substitutes.

    PubMed

    Bhatt, Reena A; Rozental, Tamara D

    2012-11-01

    Replacement of missing bone stock is a reconstructive challenge to upper extremity surgeons and decision-making with regards to available choices remains difficult. Preference is often given to autograft in the form of cancellous, cortical, or corticocancellous grafts from donor sites. However, the available volume from such donor sites is limited and fraught with potential complications. Advances in surgical management and medical research have produced a wide array of potential substances that can be used for bone graft substitute. Considerations in selecting bone grafts and substitutes include characteristic capabilities, availability, patient morbidity, immunogenicity, potential disease transmission, and cost variability.

  19. A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Sato, M; Sakabe, M; Naito, E; Yamanouchi, H; Suzuki, T

    2001-02-01

    We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.

  20. IRE1α nucleotide sequence cleavage specificity in the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2017-01-01

    Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.

  1. Automated Identification of Nucleotide Sequences

    NASA Technical Reports Server (NTRS)

    Osman, Shariff; Venkateswaran, Kasthuri; Fox, George; Zhu, Dian-Hui

    2007-01-01

    STITCH is a computer program that processes raw nucleotide-sequence data to automatically remove unwanted vector information, perform reverse-complement comparison, stitch shorter sequences together to make longer ones to which the shorter ones presumably belong, and search against the user s choice of private and Internet-accessible public 16S rRNA databases. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] In STITCH, a template 16S rRNA sequence is used to position forward and reverse reads. STITCH then automatically searches known 16S rRNA sequences in the user s chosen database(s) to find the sequence most similar to (the sequence that lies at the smallest edit distance from) each spliced sequence. The result of processing by STITCH is the identification of the most similar well-described bacterium. Whereas previously commercially available software for analyzing genetic sequences operates on one sequence at a time, STITCH can manipulate multiple sequences simultaneously to perform the aforementioned operations. A typical analysis of several dozen sequences (length of the order of 103 base pairs) by use of STITCH is completed in a few minutes, whereas such an analysis performed by use of prior software takes hours or days.

  2. Nucleotide Selectivity of Antibiotic Kinases▿

    PubMed Central

    Shakya, Tushar; Wright, Gerard D.

    2010-01-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3′)-IIIa, APH(2″)-Ib, and MPH(2′)-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3′)-IIIa exclusively uses ATP, MPH(2′)-I exclusively uses GTP, and APH(2″)-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance. PMID:20231391

  3. Nucleotide selectivity of antibiotic kinases.

    PubMed

    Shakya, Tushar; Wright, Gerard D

    2010-05-01

    Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.

  4. Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA.

    PubMed Central

    Horai, S; Hayasaka, K

    1990-01-01

    Nucleotide sequences of the major noncoding region of human mitochondrial DNA (mtDNA) from 95 human placentas have been determined. These sequences include at least a 482-bp-long region encompassing most of the D-loop-forming region. Comparisons of these sequences with those previously determined have revealed remarkable features of nucleotide substitutions and insertion/deletion events. The nucleotide diversity among the sequences is estimated as 1.45%, which is three- to fourfold higher than the corresponding value estimated from restriction-enzyme analysis of whole mtDNA genome. A hypervariable region has also been defined. In this 14-bp region, 17 different sequences were detected. More than 97% of the base changes are transitions. A significantly nonrandom distribution of nucleotide substitutions and sequence length variations were also noted. The phylogenetic analysis indicates that diversity among the negroids is much larger than that among the caucasoids or the mongoloids. In fact, part of the negroids first diverged from other humans in the phylogenetic tree. A striking finding in the phylogenetic analysis is that the mongoloids can be separated into two distinct groups. Divergence of part of the mongoloids follows the earliest divergence of part of the negroids. The remainder of the mongoloids subsequently diverged together with the caucasoids. This observation confirmed our earlier study, which clearly demonstrated, by the restriction-enzyme analysis, existence of two distinct groups in the Japanese. Images Figure 3 PMID:2316527

  5. Long-range correlations in nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-01-01

    DNA sequences have been analysed using models, such as an n-step Markov chain, that incorporate the possibility of short-range nucleotide correlations. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  6. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  7. Preliminary analysis of the mitochondrial genome evolutionary pattern in primates.

    PubMed

    Zhao, Liang; Zhang, Xingtao; Tao, Xingkui; Wang, Weiwei; Li, Ming

    2012-08-01

    Since the birth of molecular evolutionary analysis, primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features. Surprisingly, to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates. Here, we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank. The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons. Likewise, an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes. Within 13 protein-coding genes, the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence, while synonymous changes differed only for individual genes, indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites. Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes, and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias. Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene, consistent with near neutrality. Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species. Thus, with the exception of rate heterogeneity among mitochondrial genes, evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.

  8. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens

    PubMed Central

    Weiß, Clemens L.; Schuenemann, Verena J.; Devos, Jane; Shirsekar, Gautam; Reiter, Ella; Gould, Billie A.; Stinchcombe, John R.; Krause, Johannes

    2016-01-01

    Herbaria archive a record of changes of worldwide plant biodiversity harbouring millions of specimens that contain DNA suitable for genome sequencing. To profit from this resource, it is fundamental to understand in detail the process of DNA degradation in herbarium specimens. We investigated patterns of DNA fragmentation and nucleotide misincorporation by analysing 86 herbarium samples spanning the last 300 years using Illumina shotgun sequencing. We found an exponential decay relationship between DNA fragmentation and time, and estimated a per nucleotide fragmentation rate of 1.66 × 10−4 per year, which is six times faster than the rate estimated for ancient bones. Additionally, we found that strand breaks occur specially before purines, and that depurination-driven DNA breakage occurs constantly through time and can to a great extent explain decreasing fragment length over time. Similar to what has been found analysing ancient DNA from bones, we found a strong correlation between the deamination-driven accumulation of cytosine to thymine substitutions and time, which reinforces the importance of substitution patterns to authenticate the ancient/historical nature of DNA fragments. Accurate estimations of DNA degradation through time will allow informed decisions about laboratory and computational procedures to take advantage of the vast collection of worldwide herbarium specimens. PMID:27429780

  9. No cheap substitutes.

    PubMed

    Griffiths, Peter

    2016-06-15

    The Nuffield Trust report on reshaping the healthcare workforce was published last month. Its conclusions were widely reported as a recommendation to 'train up' nurses as a solution to junior doctor shortages, with support workers, in turn, substituting for registered nurses.

  10. The Age of Substitutability

    ERIC Educational Resources Information Center

    Goeller, H. E.; Weinberg, Alvin M.

    1976-01-01

    Dwindling mineral resources might cause a shift from nonrenewable resources to renewable resources and inexhaustible elements such as iron and aluminum. Alternative energy sources such as breeder, fusion, solar, and geothermal power must be developed for production and recycling of materials. Substitution and, hence, living standards ultimately…

  11. Performing Substitute Teaching

    ERIC Educational Resources Information Center

    Bletzer, Keith V.

    2010-01-01

    Formal education is both a right and an obligation bestowed on young people in most all nations of the world. Teachers (adults) and students (youth) form a co-present dyadic contract that must be maintained within the classroom. Substitute teachers fill a role in sustaining the integrity of this teacher-student link, whenever teachers are absent.…

  12. Nucleotide specificity of the RNA editing reaction in pea chloroplasts.

    PubMed

    Nakajima, Yuki; Mulligan, R Michael

    2005-12-01

    A sensitive in vitro editing assay for the pea chloroplast petB editing site has been developed and utilized to study the mechanism of C-to-U editing in chloroplast extracts. The in vitro editing assay was characterized by several criteria including: linearity with extract amount; linearity over time; dependence on assay components; and specificity of editing site conversion. The increase in the extent C-to-U conversion of the petB editing site was nearly linear with the amount chloroplast protein extract added, although the reaction appeared to decline in rate after approximately 30 min. The assay was tested for the importance of various assay components, and the omission of protease inhibitor and ATP was shown to dramatically reduce the extent of the editing reaction. Sequence analysis of cDNA clones obtained after an in vitro editing reaction demonstrated that 12 of 17 (71%) clones were edited, and that no other nucleotide changes in these cDNAs were detected. Thus, the fidelity and specificity of the in vitro editing system appears to be excellent, and this system should be suitable to study both mechanism of the editing reaction and editing site selection. The in vitro editing reaction was strongly stimulated by the addition of ATP, and all four NTPs and dNTPs stimulated the editing reaction except for rGTP, which had no effect. Thus, the nucleotide specificity of the editing reaction is broad, and is similar in this respect to the mitochondrial editing system. Most enzyme or processes specifically utilize ATP or GTP for phosphorylation and the ability to substitute other NTPs and dNTPs is unusual. RNA helicases have a similar broad nucleotide specificity and this may reflect the involvement of an RNA helicase in plant organelle editing.

  13. Nucleotides as nucleophiles: reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.; Hurley, T. B.

    1991-01-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  14. Nonenzymatic oligomerization reactions on templates containing inosinic acid or diaminopurine nucleotide residues

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The template-directed oligomerization of nucleoside-5'-phosphoro-2-methyl imidazolides on standard oligonucleotide templates has been studied extensively. Here, we describe experiments with templates in which inosinic acid (I) is substituted for guanylic acid, or 2,6-diaminopurine nucleotide (D) for adenylic acid. We find that the substitution of I for G in a template is strongly inhibitory and prevents any incorporation of C into internal positions in the oligomeric products of the reaction. The substitution of D for A, on the contrary, leads to increased incorporation of U into the products. We found no evidence for the template-directed facilitation of oligomerization of A or I through A-I base pairing. The significance of these results for prebiotic chemistry is discussed.

  15. Nucleotide capacitance calculation for DNA sequencing

    SciTech Connect

    Lu, Jun-Qiang; Zhang, Xiaoguang

    2008-01-01

    Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.

  16. Plant cyclic nucleotide signalling: facts and fiction.

    PubMed

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc; Maathuis, Frans Jm

    2007-11-01

    The presence of the cyclic nucleotides 3',5'-cyclic adenyl monophosphate (cAMP) and 3',5'-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed.

  17. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  18. EspM2 is a RhoA guanine nucleotide exchange factor

    PubMed Central

    Arbeloa, Ana; Garnett, James; Lillington, James; Bulgin, Richard R; Berger, Cedric N; Lea, Susan M; Matthews, Steve; Frankel, Gad

    2010-01-01

    We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide-free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H-Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF. PMID:20039879

  19. Sensory Substitution for Wounded Servicemembers

    DTIC Science & Technology

    2009-10-28

    traumatic brain injury (TBI) and two civilians, all with partial visual impairment , evaluated the vision sensory substitution systems. The servicemember...Mobility Augmentation; Wounded Service Members; Human-Centered Computing; Vision Augmentation, Vision , Balance and Hearing; Sensory Substitution-enabled...mitigation of vision sensory and mobility losses. 2) Improved the usefulness of available sensory substitution technologies for injured military

  20. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  1. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  2. Antagonistic regulation of native Ca2+- and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate.

    PubMed

    Csanády, László; Adam-Vizi, Vera

    2004-06-01

    Regulation by cytosolic nucleotides of Ca2+- and ATP-sensitive nonselective cation channels (CA-NSCs) in rat brain capillary endothelial cells was studied in excised inside-out patches. Open probability (Po) was suppressed by cytosolic nucleotides with apparent KI values of 17, 9, and 2 microM for ATP, ADP, and AMP, as a consequence of high-affinity inhibition of channel opening rate and low-affinity stimulation of closing rate. Cytosolic [Ca2+] and voltage affected inhibition of Po, but not of opening rate, by ATP, suggesting that the conformation of the nucleotide binding site is influenced only by the state of the channel gate, not by that of the Ca2+ and voltage sensors. ATP inhibition was unaltered by channel rundown. Nucleotide structure affected inhibitory potency that was little sensitive to base substitutions, but was greatly diminished by 3'-5' cyclization, removal of all phosphates, or complete omission of the base. In contrast, decavanadate potently (K1/2 = 90 nM) and robustly stimulated Po, and functionally competed with inhibitory nucleotides. From kinetic analyses we conclude that (a) ATP, ADP, and AMP bind to a common site; (b) inhibition by nucleotides occurs through simple reversible binding, as a consequence of tighter binding to the closed-channel relative to the open-channel conformation; (c) the conformation of the nucleotide binding site is not directly modulated by Ca2+ and voltage; (d) the differences in inhibitory potency of ATP, ADP, and AMP reflect their different affinities for the closed channel; and (e) though decavanadate is the only example found to date of a compound that stimulates Po with high affinity even in the presence of millimolar nucleotides, apparently by competing for the nucleotide binding site, a comparable mechanism might allow CA-NSC channels to open in living cells despite physiological levels of nucleotides. Decavanadate now provides a valuable tool for studying native CA-NSC channels and for screening cloned

  3. The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami

    PubMed Central

    Subramanian, Hari K. K.; Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2011-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genetic variation in the human genome. Kinetic methods based on branch migration have proved successful for detecting SNPs because a mispair inhibits the progress of branch migration in the direction of the mispair. We have combined the effectiveness of kinetic methods with AFM of DNA origami patterns to produce a direct visual readout of the target nucleotide contained in the probe sequence. The origami contains graphical representations of the four nucleotide alphabetic characters, A, T, G and C, and the symbol containing the test nucleotide identity vanishes in the presence of the probe. The system also works with pairs of probes, corresponding to heterozygous diploid genomes. PMID:21235216

  4. Nucleotide release provides a mechanism for airway surface liquid homeostasis.

    PubMed

    Lazarowski, Eduardo R; Tarran, Robert; Grubb, Barbara R; van Heusden, Catharina A; Okada, Seiko; Boucher, Richard C

    2004-08-27

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.

  5. Nucleotide Release Provides a Mechanism for Airway Surface Liquid Homeostasis*

    PubMed Central

    Lazarowski, Eduardo R.; Tarran, Robert; Grubb, Barbara R.; van Heusden, Catharina A.; Okada, Seiko; Boucher, Richard C.

    2010-01-01

    Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca2+- and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A2b adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N6-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolayers that endogenously express a luminal A2b adenosine receptor, we found that basal as well as forskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A2b receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis. PMID:15210701

  6. A type of nucleotide motif that distinguishes tobamovirus species more efficiently than nucleotide signatures.

    PubMed

    Gibbs, A J; Armstrong, J S; Gibbs, M J

    2004-10-01

    The complete genomic sequences of forty-eight tobamoviruses were classified and found to form at least twelve species clusters. Individual species were not conveniently defined by 'nucleotide signatures' (i.e. strings of one or more nucleotides unique to a taxon) as these were scattered sparsely throughout the genomes and were mostly single nucleotides. By contrast all the species were concisely and uniquely distinguished by short nucleotide motifs consisting of conserved genus-specific sites intercalated with variable sites that provided species-specific combinations of nucleotides (nucleotide combination motifs; NC-motifs). We describe the procedure for finding NC-motifs in a convenient and phylogenetically conserved region of the tobamovirus RNA polymerase gene, the '4404-50 motif'. NC-motifs have been found in other sets of homologous sequences, and are convenient for use in published taxonomic descriptions.

  7. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  8. Dynamic Nucleotide Mutation Gradients and Control Region Usage in Squamate Reptile Mitochondrial Genomes

    PubMed Central

    Castoe, T.A.; Gu, W.; de Koning, A.P.J.; Daza, J.M.; Jiang, Z.J.; Parkinson, C.L.; Pollock, D.D.

    2010-01-01

    Gradients of nucleotide bias and substitution rates occur in vertebrate mitochondrial genomes due to the asymmetric nature of the replication process. The evolution of these gradients has previously been studied in detail in primates, but not in other vertebrate groups. From the primate study, the strengths of these gradients are known to evolve in ways that can substantially alter the substitution process, but it is unclear how rapidly they evolve over evolutionary time or how different they may be in different lineages or groups of vertebrates. Given the importance of mitochondrial genomes in phylogenetics and molecular evolutionary research, a better understanding of how asymmetric mitochondrial substitution gradients evolve would contribute key insights into how this gradient evolution may mislead evolutionary inferences, and how it may also be incorporated into new evolutionary models. Most snake mitochondrial genomes have an additional interesting feature, 2 nearly identical control regions, which vary among different species in the extent that they are used as origins of replication. Given the expanded sampling of complete snake genomes currently available, together with 2 additional snakes sequenced in this study, we reexamined gradient strength and CR usage in alethinophidian snakes as well as several lizards that possess dual CRs. Our results suggest that nucleotide substitution gradients (and corresponding nucleotide bias) and CR usage is highly labile over the ∼200 m.y. of squamate evolution, and demonstrates greater overall variability than previously shown in primates. The evidence for the existence of such gradients, and their ability to evolve rapidly and converge among unrelated species suggests that gradient dynamics could easily mislead phylogenetic and molecular evolutionary inferences, and argues strongly that these dynamics should be incorporated into phylogenetic models. PMID:20215734

  9. Dynamic nucleotide mutation gradients and control region usage in squamate reptile mitochondrial genomes.

    PubMed

    Castoe, T A; Gu, W; de Koning, A P J; Daza, J M; Jiang, Z J; Parkinson, C L; Pollock, D D

    2009-01-01

    Gradients of nucleotide bias and substitution rates occur in vertebrate mitochondrial genomes due to the asymmetric nature of the replication process. The evolution of these gradients has previously been studied in detail in primates, but not in other vertebrate groups. From the primate study, the strengths of these gradients are known to evolve in ways that can substantially alter the substitution process, but it is unclear how rapidly they evolve over evolutionary time or how different they may be in different lineages or groups of vertebrates. Given the importance of mitochondrial genomes in phylogenetics and molecular evolutionary research, a better understanding of how asymmetric mitochondrial substitution gradients evolve would contribute key insights into how this gradient evolution may mislead evolutionary inferences, and how it may also be incorporated into new evolutionary models. Most snake mitochondrial genomes have an additional interesting feature, 2 nearly identical control regions, which vary among different species in the extent that they are used as origins of replication. Given the expanded sampling of complete snake genomes currently available, together with 2 additional snakes sequenced in this study, we reexamined gradient strength and CR usage in alethinophidian snakes as well as several lizards that possess dual CRs. Our results suggest that nucleotide substitution gradients (and corresponding nucleotide bias) and CR usage is highly labile over the approximately 200 m.y. of squamate evolution, and demonstrates greater overall variability than previously shown in primates. The evidence for the existence of such gradients, and their ability to evolve rapidly and converge among unrelated species suggests that gradient dynamics could easily mislead phylogenetic and molecular evolutionary inferences, and argues strongly that these dynamics should be incorporated into phylogenetic models.

  10. Convergent evolution of marine mammals is associated with distinct substitutions in common genes

    PubMed Central

    Zhou, Xuming; Seim, Inge; Gladyshev, Vadim N.

    2015-01-01

    Phenotypic convergence is thought to be driven by parallel substitutions coupled with natural selection at the sequence level. Multiple independent evolutionary transitions of mammals to an aquatic environment offer an opportunity to test this thesis. Here, whole genome alignment of coding sequences identified widespread parallel amino acid substitutions in marine mammals; however, the majority of these changes were not unique to these animals. Conversely, we report that candidate aquatic adaptation genes, identified by signatures of likelihood convergence and/or elevated ratio of nonsynonymous to synonymous nucleotide substitution rate, are characterized by very few parallel substitutions and exhibit distinct sequence changes in each group. Moreover, no significant positive correlation was found between likelihood convergence and positive selection in all three marine lineages. These results suggest that convergence in protein coding genes associated with aquatic lifestyle is mainly characterized by independent substitutions and relaxed negative selection. PMID:26549748

  11. Convergent evolution of marine mammals is associated with distinct substitutions in common genes.

    PubMed

    Zhou, Xuming; Seim, Inge; Gladyshev, Vadim N

    2015-11-09

    Phenotypic convergence is thought to be driven by parallel substitutions coupled with natural selection at the sequence level. Multiple independent evolutionary transitions of mammals to an aquatic environment offer an opportunity to test this thesis. Here, whole genome alignment of coding sequences identified widespread parallel amino acid substitutions in marine mammals; however, the majority of these changes were not unique to these animals. Conversely, we report that candidate aquatic adaptation genes, identified by signatures of likelihood convergence and/or elevated ratio of nonsynonymous to synonymous nucleotide substitution rate, are characterized by very few parallel substitutions and exhibit distinct sequence changes in each group. Moreover, no significant positive correlation was found between likelihood convergence and positive selection in all three marine lineages. These results suggest that convergence in protein coding genes associated with aquatic lifestyle is mainly characterized by independent substitutions and relaxed negative selection.

  12. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl amino substituted triazine...

  13. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl amino substituted triazine...

  14. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl amino substituted triazine...

  15. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine...

  16. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl amino substituted triazine...

  17. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  18. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  19. 40 CFR 721.10214 - Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic). 721.10214 Section 721.10214... Poly(oxyalkylenediyl),.alpha.-substituted carbomonocycle-.omega.-substituted carbomonocycle (generic... identified generically as poly(oxyalkylenediyl),.alpha.-substituted...

  20. Polyimides comprising substituted benzidines

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1991-01-01

    A new class of polyimides and copolyimides made from substituted benzidines and aromatic dianhydrides and other aromatic diamines. The polyimides obtained with said diamines are distinguished by excellent thermal, excellent solubility, excellent electrical properties such as very low dielectric constants, excellent clarity and mechanical properties making the polyimides ideally suited as coating materials for microelectronic apparatii, as membranes for selective molecular or gas separation, as fibers in molecular composites, as high tensile strength, high compression strength fibers, as film castable coatings, or as fabric components.

  1. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  2. Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010-2015

    NASA Astrophysics Data System (ADS)

    Smith, Braeton J.; Eggert, Roderick G.

    2016-07-01

    Substitution is an important response for material users when faced with disruption to the availability or price of an essential material. In economic terms, substitution refers to the ability of firms to alter their patterns of material use in response to exogenous market shocks. Substitution comes in different forms which vary from situation to situation. This paper uses expert opinion to identify the specific forms of substitution that occurred in permanent magnets, specifically neodymium-iron-boron magnets, following the significant increase in rare earth prices in 2010-2011. The paper provides a framework for understanding the multifaceted nature of substitution and assesses the relative importance of five different types of substitution. Technology-for-element, grade-for-grade, and system-for-system substitution appear to have been more important than element-for-element and magnet-for-magnet substitution. Cost pass-through and absorption were also important responses.

  3. Cyclic nucleotide phosphodiesterases (PDEs): coincidence detectors acting to spatially and temporally integrate cyclic nucleotide and non-cyclic nucleotide signals.

    PubMed

    Maurice, Donald H; Wilson, Lindsay S; Rampersad, Sarah N; Hubert, Fabien; Truong, Tammy; Kaczmarek, Milosz; Brzezinska, Paulina; Freitag, Silja I; Umana, M Bibiana; Wudwud, Alie

    2014-04-01

    The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.

  4. Nucleotide triphosphates are required for the transport of glycolate oxidase into peroxisomes.

    PubMed

    Brickner, D G; Olsen, L J

    1998-01-01

    All peroxisomal proteins are nuclear encoded, synthesized on free cytosolic ribosomes, and posttranslationally targeted to the organelle. We have used an in vitro assay to reconstitute protein import into pumpkin (Cucurbita pepo) glyoxysomes, a class of peroxisome found in the cotyledons of oilseed plants, to study the mechanisms involved in protein transport across peroxisome membranes. Results indicate that ATP hydrolysis is required for protein import into peroxisomes; nonhydrolyzable analogs of ATP could not substitute for this requirement. Nucleotide competition studies suggest that there may be a nucleotide binding site on a component of the translocation machinery. Peroxisomal protein import also was supported by GTP hydrolysis. Nonhydrolyzable analogs of GTP did not substitute in this process. Experiments to determine the cation specificity of the nucleotide requirement show that the Mg2+ salt was preferred over other divalent and monovalent cations. The role of a putative protonmotive force across the peroxisomal membrane was also examined. Although low concentrations of ionophores had no effect on protein import, relatively high concentrations of all ionophores tested consistently reduced the level of protein import by approximately 50%. This result suggests that a protonmotive force is not absolutely required for peroxisomal protein import.

  5. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighboring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  6. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  7. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules

    PubMed Central

    Sesma, Juliana I.; Kreda, Silvia M.; Okada, Seiko F.; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C.; O'Neal, Wanda K.; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori

    2013-01-01

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca2+-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins. PMID:23467297

  8. Vesicular nucleotide transporter regulates the nucleotide content in airway epithelial mucin granules.

    PubMed

    Sesma, Juliana I; Kreda, Silvia M; Okada, Seiko F; van Heusden, Catharina; Moussa, Lama; Jones, Lisa C; O'Neal, Wanda K; Togawa, Natsuko; Hiasa, Miki; Moriyama, Yoshinori; Lazarowski, Eduardo R

    2013-05-15

    Nucleotides within the airway surface liquid promote fluid secretion via activation of airway epithelial purinergic receptors. ATP is stored within and released from mucin granules as co-cargo with mucins, but the mechanism by which ATP, and potentially other nucleotides, enter the lumen of mucin granules is not known. We assessed the contribution of the recently identified SLC17A9 vesicle nucleotide transporter (VNUT) to the nucleotide availability within isolated mucin granules and further examined the involvement of VNUT in mucin granule secretion-associated nucleotide release. RT-PCR and Western blot analyses indicated that VNUT is abundantly expressed in airway epithelial goblet-like Calu-3 cells, migrating as a duplex with apparent mobility of 55 and 60 kDa. Subcellular fractionation studies indicated that VNUT55 was associated with high-density mucin granules, whereas VNUT60 was associated with low-density organelles. Immunofluorescence studies showed that recombinant VNUT localized to mucin granules and other organelles. Mucin granules isolated from VNUT short hairpin RNA-expressing cells exhibited a marked reduction of ATP, ADP, AMP, and UTP levels within granules. Ca(2+)-regulated vesicular ATP release was markedly reduced in these cells, but mucin secretion was not affected. These results suggest that VNUT is the relevant nucleotide transporter responsible for the uptake of cytosolic nucleotides into mucin granules. By controlling the entry of nucleotides into mucin granules, VNUT contributes to the release of purinergic signaling molecules necessary for the proper hydration of co-released mucins.

  9. Substituted hydroxyapatites for bone repair.

    PubMed

    Shepherd, Jennifer H; Shepherd, David V; Best, Serena M

    2012-10-01

    Calcium phosphates such as hydroxyapatite have a wide range of applications both in bone grafts and for the coating of metallic implants, largely as a result of their chemical similarity to the mineral component of bone. However, to more accurately mirror the chemistry, various substitutions, both cationic (substituting for the calcium) and anionic (substituting for the phosphate or hydroxyl groups) have been produced. Significant research has been carried out in the field of substituted apatites and this paper aims to summarise some of the key effect of substitutions including magnesium, zinc, strontium, silicon and carbonate on physical and biological characteristics. Even small substitutions have been shown to have very significant effects on thermal stability, solubility, osteoclastic and osteoblastic response in vitro and degradation and bone regeneration in vivo.

  10. Nucleotide variability in the 5-enolpyruvylshikimate-3-phosphate synthase gene from Eleusine indica (L.) Gaertn.

    PubMed

    Chong, J L; Wickneswari, R; Ismail, B S; Salmijah, S

    2008-02-01

    This study reports the results of the partial DNA sequence analysis of the 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant (R) and glyphosate-susceptible (S) biotypes of Eleusine indica (L.) Gaertn from Peninsular Malaysia. Sequencing results revealed point mutation at nucleotide position 875 in the R biotypes of Bidor, Chaah and Temerloh. In the Chaah R population, substitution of cytosine (C) to adenine (A) resulted in the change of threonine (Thr106) to proline (Pro106) and from C to thymidine (T) in the Bidor R population, leading to serine (Ser106) from Pro106. As for the Temerloh R, C was substituted by T resulting in the change of Pro106 to Ser106. A new mutation previously undetected in the Temerloh R was revealed with C being substituted with A, resulting in the change of Pro106 to Thr106 indicating multiple founding events rather than to the spread of a single resistant allele. There was no point mutation recorded at nucleotide position 875 previously demonstrated to play a pivotal role in conferring glyphosate resistance to E. indica for the Lenggeng, Kuala Selangor, Melaka R populations. Thus, there may be another resistance mechanism yet undiscovered in the resistant Lenggeng, Kuala Selangor and Melaka populations.

  11. The International Nucleotide Sequence Database Collaboration

    PubMed Central

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Takagi, Toshihisa; Sequence Database Collaboration, International Nucleotide

    2016-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org) comprises three global partners committed to capturing, preserving and providing comprehensive public-domain nucleotide sequence information. The INSDC establishes standards, formats and protocols for data and metadata to make it easier for individuals and organisations to submit their nucleotide data reliably to public archives. This work enables the continuous, global exchange of information about living things. Here we present an update of the INSDC in 2015, including data growth and diversification, new standards and requirements by publishers for authors to submit their data to the public archives. The INSDC serves as a model for data sharing in the life sciences. PMID:26657633

  12. RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2009-01-01

    We present a new database and an on-line search engine, which store and query the protein binding pockets that interact with single-stranded RNA nucleotide bases. The database consists of a classification of binding sites derived from protein-RNA complexes. Each binding site is assigned to a cluster of similar binding sites in other protein-RNA complexes. Cluster members share similar spatial arrangements of physico-chemical properties, thus can reveal novel similarity between proteins and RNAs with different sequences and folds. The clusters provide 3D consensus binding patterns important for protein-nucleotide recognition. The database search engine allows two types of useful queries: first, given a PDB code of a protein-RNA complex, RsiteDB can detail and classify the properties of the protein binding pockets accommodating extruded RNA nucleotides not involved in local RNA base pairing. Second, given an unbound protein structure, RsiteDB can perform an on-line structural search against the constructed database of 3D consensus binding patterns. Regions similar to known patterns are predicted to serve as binding sites. Alignment of the query to these patterns with their corresponding RNA nucleotides allows making unique predictions of the protein-RNA interactions at the atomic level of detail. This database is accessible at http://bioinfo3d.cs.tau.ac.il/RsiteDB.

  13. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  14. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  15. Single nucleotide polymorphisms of mucosa-associated lymphoid tissue 1 in oral carcinoma cells and gingival fibroblasts.

    PubMed

    Oyama, Go; Midorikawa, Toshiaki; Matsumoto, Yasutaka; Takeyama, Mayu; Yamada, Kenji; Nozawa, Takaomi; Morikawa, Masako; Imai, Kazushi

    2013-07-01

    Oral carcinoma patients with inactivation of mucosa-associated lymphoid tissue 1 (MALT1) expression worsen their prognoses. Although the genetic mutation could be responsible for the inactivation, no information is available at present. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) and normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets spanning MALT1 exons, and nucleotide substitutions were analyzed by the single strand conformation polymorphism analysis. The substitutions were commonly observed in all cells, which express MALT1 at various levels. The substitutions at exons 1 and 9 were located at the 5' untranslated region and replaced (336)Asp to Asn, respectively, and others were positioned at the introns. Among the intronic substitutions, four were matched with the single nucleotide polymorphisms (SNPs) registered at the database. Since all cells were derived from a Japanese population, all substitutions detected are the SNPs. Absence of the carcinoma cell-specific mutation suggests that the inactivation of MALT1 expression but not the mutation promotes oral carcinoma progression.

  16. The International Nucleotide Sequence Database Collaboration.

    PubMed

    Nakamura, Yasukazu; Cochrane, Guy; Karsch-Mizrachi, Ilene

    2013-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org), one of the longest-standing global alliances of biological data archives, captures, preserves and provides comprehensive public domain nucleotide sequence information. Three partners of the INSDC work in cooperation to establish formats for data and metadata and protocols that facilitate reliable data submission to their databases and support continual data exchange around the world. In this article, the INSDC current status and update for the year of 2012 are presented. Among discussed items of international collaboration meeting in 2012, BioSample database and changes in submission are described as topics.

  17. Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block.

    PubMed

    Kirk, Sarah R; Andrade, Adriana L; Melich, Kenneth; Jackson, Evan P; Cuellar, Elysia; Karpen, Jeffrey W

    2011-11-01

    A series of new tetracaine derivatives with substituents on the aromatic ring was prepared and evaluated for block of retinal rod cyclic nucleotide-gated (CNG) channels. Aromatic substitutions had little effect starting with the basic tetracaine scaffold, but electron-withdrawing substituents significantly improved the blocking potency of an octyl-tail derivative of tetracaine. In particular, halogen substitutions at either the 2- or 3-position on the ring resulted in compounds that were up to eight-fold more potent than the parent octyl-tail derivative and up to 50-fold more potent than tetracaine.

  18. Halogen substituents on the aromatic moiety of the tetracaine scaffold improve potency of cyclic nucleotide-gated channel block

    PubMed Central

    Kirk, Sarah R.; Andrade, Adriana L.; Melich, Kenneth; Jackson, Evan P.; Cuellar, Elysia; Karpen, Jeffrey W.

    2011-01-01

    A series of new tetracaine derivatives with substituents on the aromatic ring was prepared and evaluated for block of retinal rod cyclic nucleotide-gated (CNG) channels. Aromatic substitutions had little effect starting with the basic tetracaine scaffold, but electron-withdrawing substituents significantly improved the blocking potency of an octyl-tail derivative of tetracaine. In particular, halogen substitutions at either the 2- or 3-position on the ring resulted in compounds that were up to 8-fold more potent than the parent octyl-tail derivative and up to 50-fold more potent than tetracaine. PMID:21944857

  19. Novel interactions of fluorinated nucleotide derivatives targeting orotidine-5′-monophosphate decarboxylase

    PubMed Central

    Lewis, Melissa; Avina, Maria Elena Meza; Wei, Lianhu; Crandall, Ian E.; Bello, Angelica Mara; Poduch, Ewa; Liu, Yan; Paige, Christopher J.; Kain, Kevin C.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists due to their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2′-deoxy-2′-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine-5′-monophosphate decarboxylase (ODCase). These compounds were synthesized from the key intermediate, fully-protected 2′-deoxy-2′-fluorouridine. Among the synthesized compounds, 2′-deoxy-2′-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M−1sec−1. Interestingly, the 6-cyano-2′-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2′-fluoro moiety influences the chemistry at the C6 position of the nucleotides, thus interactions in the active site of ODCase. Molecular interactions of the 2′-fluorinated nucleotides are compared to those with the 3′-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations. PMID:21417464

  20. Reprogramming the purine nucleotide cofactor requirement of Drosophila P element transposase in vivo.

    PubMed Central

    Mul, Y M; Rio, D C

    1997-01-01

    Guanosine triphosphate (GTP)-binding proteins are involved in controlling a wide range of fundamental cellular processes. In vitro studies have indicated a role for GTP during Drosophila P element transposition. Here we show that P element transposase contains a non-canonical GTP-binding domain that is critical for its ability to mediate transposition in Drosophila cells. Moreover, a single amino acid substitution could switch the nucleotide binding-specificity of transposase from GTP to xanthosine triphosphate (XTP). Importantly, this mutant protein could no longer function effectively in transposition in vivo but required addition of exogenous xanthine or xanthosine for reactivation. These results suggest that transposition may be controlled by physiological GTP levels and demonstrate that a single mutation can switch the nucleotide specificity for a complex cellular process in vivo. PMID:9250688

  1. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant.

    PubMed

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance.

  2. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

    PubMed Central

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance. PMID:27282255

  3. Nucleotide composition and codon usage bias of SRY gene.

    PubMed

    Choudhury, M N; Uddin, A; Chakraborty, S

    2017-01-26

    The SRY gene is present within the sex-determining region of the Y chromosome which is responsible for maleness in mammals. The nonuniform usage of synonymous codons in the mRNA transcript for encoding a particular amino acid is the codon usage bias (CUB). Analysis of codon usage pattern is important to understand the genetic and molecular organisation of a gene. It also helps in heterologous gene expression, design of primer and synthetic gene. However, the analysis of codon usage bias of SRY gene was not yet studied. We have used bioinformatic tools to analyse codon usage bias of SRY gene across mammals. Codon bias index (CBI) indicated that the overall extent of codon usage bias was weak. The relative synonymous codon usage (RSCU) analysis suggested that most frequently used codons had an A or C at the third codon position. Compositional constraint played an important role in codon usage pattern as evident from correspondence analysis (CA). Significant correlation among nucleotides constraints indicated that both mutation pressure and natural selection affect the codon usage pattern. Neutrality plot suggested that natural selection might play a major role, while mutation pressure might play a minor role in codon usage pattern in SRY gene in different species of mammals.

  4. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  5. Block of cyclic nucleotide-gated channels by tetracaine derivatives: role of apolar interactions at two distinct locations

    PubMed Central

    Strassmaier, Timothy; Kirk, Sarah R.; Banerji, Tapasree; Karpen, Jeffrey W.

    2008-01-01

    A series of new tetracaine derivatives was synthesized to explore the effects of hydrophobic character on blockade of cyclic nucleotide-gated (CNG) channels. Increasing the hydrophobicity at either of two positions on the tetracaine scaffold, the tertiary amine or the butyl tail, yields blockers with increased potency. However, shape also plays an important role. While gradual increases in length of the butyl tail lead to increased potency, substitution of the butyl tail with branched alkyl or cyclic groups is deleterious. PMID:18055205

  6. The Complete Nucleotide Sequence of the Mitochondrial Genome of Bactrocera minax (Diptera: Tephritidae)

    PubMed Central

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5′ end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  7. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae).

    PubMed

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5' end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  8. Patterns of Somatic Mutations in Immunoglobulin Variable Genes

    PubMed Central

    Golding, G. Brian; Gearhart, Patricia J.; Glickman, Barry W.

    1987-01-01

    The mechanism responsible for somatic mutation in the variable genes of antibodies is unknown and may differ from previously described mechanisms that produce mutation in DNA. We have analyzed 421 somatic mutations from the rearranged immunoglobulin variable genes of mice to determine (1) if the nucleotide substitutions differ from those generated during meiosis and (2) if the presence of nearby direct and inverted repeated sequences could template mutations around the variable gene. The results reveal a difference in the pattern of substitutions obtained from somatic mutations vs. meiotic mutations. An increased frequency of T:A to C:G transitions and a decreased frequency of mutations involving a G in the somatic mutants compared to the meiotic mutants is indicated. This suggests that the mutational processes responsible for somatic mutation in antibody genes differs from that responsible for mutation during meiosis. An analysis of the local DNA sequences revealed many direct repeats and palindromic sequences that were capable of templating some of the known mutations. Although additional factors may be involved in targeting mutations to the variable gene, mistemplating by nearby repeats may provide a mechanism for the enhancement of somatic mutation. PMID:3557109

  9. A recombinant RNA bacteriophage system to identify functionally important nucleotides in a self-cleaving ribozyme

    PubMed Central

    2014-01-01

    Background RNA bacteriophages like Qbeta and MS2 are well known for their high mutation rate, short infection cycle and strong selection against foreign inserts. The hammerhead ribozyme (HHRz) is a small self-cleaving RNA molecule whose active residues have previously been identified by mutational analysis of each individual base. Here the functionally important bases of HHRz were determined in a single screening experiment by inserting the HHRz into the genome of MS2. Findings The minimal HHRz of satellite Tobacco ringspot virus was cloned into the genome of RNA bacteriophage MS2. Sequence analysis of the surviving phages revealed that the majority had acquired single base-substitutions that apparently inactivated the HHRz. The positions of these substitutions exactly matched that of the previously determined core residues of the HHRz. Conclusions Natural selection against a ribozyme in the genome of MS2 can be used to quickly identify nucleotides required for self-cleavage. PMID:24946926

  10. Cardiac Cyclic Nucleotide Phosphodiesterases: Function, Regulation, and Therapeutic Prospects

    PubMed Central

    Knight, W. E.; Yan, C.

    2014-01-01

    The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed. PMID:22951903

  11. High-Throughput Genotyping with Single Nucleotide Polymorphisms

    PubMed Central

    Ranade, Koustubh; Chang, Mau-Song; Ting, Chih-Tai; Pei, Dee; Hsiao, Chin-Fu; Olivier, Michael; Pesich, Robert; Hebert, Joan; Chen, Yii-Der I.; Dzau, Victor J.; Curb, David; Olshen, Richard; Risch, Neil; Cox, David R.; Botstein, David

    2001-01-01

    To make large-scale association studies a reality, automated high-throughput methods for genotyping with single-nucleotide polymorphisms (SNPs) are needed. We describe PCR conditions that permit the use of the TaqMan or 5′ nuclease allelic discrimination assay for typing large numbers of individuals with any SNP and computational methods that allow genotypes to be assigned automatically. To demonstrate the utility of these methods, we typed >1600 individuals for a G-to-T transversion that results in a glutamate-to-aspartate substitution at position 298 in the endothelial nitric oxide synthase gene, and a G/C polymorphism (newly identified in our laboratory) in intron 8 of the 11–β hydroxylase gene. The genotyping method is accurate—we estimate an error rate of fewer than 1 in 2000 genotypes, rapid—with five 96-well PCR machines, one fluorescent reader, and no automated pipetting, over one thousand genotypes can be generated by one person in one day, and flexible—a new SNP can be tested for association in less than one week. Indeed, large-scale genotyping has been accomplished for 23 other SNPs in 13 different genes using this method. In addition, we identified three “pseudo-SNPs” (WIAF1161, WIAF2566, and WIAF335) that are probably a result of duplication. PMID:11435409

  12. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state.

  13. Activation of ras p21 transforming properties associated with an increase in the release rate of bound guanine nucleotide.

    PubMed Central

    Lacal, J C; Aaronson, S A

    1986-01-01

    An Ala-to-Thr substitution at position 59 activates the transforming properties of the p21ras protein without impairment of GTPase activity, a biochemical alteration associated with other activating mutations. To investigate the basis for the transforming properties of the Thr-59 mutant, we characterized guanine nucleotide release. This reaction exhibited a slow rate and stringent temperature requirements. To further dissect the release reaction, we used monoclonal antibodies directed against different epitopes of the p21 molecule. One monoclonal specifically interfered with nucleotide release, while others which recognized different regions of the molecule blocked nucleotide binding. Mutants with the Thr-59 substitution exhibited a three- to ninefold-higher rate of GDP and GTP release than normal p21 or mutants with other activating lesions. This alteration in the Thr-59 mutant would have the effect of increasing its rate of nucleotide exchange. In an intracellular environment with a high GTP/GDP ratio, this would favor the association of GTP with the Thr-59 mutant. Consistent with knowledge of known G-regulatory proteins, these findings support a model in which the p21-GTP complex is the biologically active form of the p21 protein. PMID:3540608

  14. Function Identification of the Nucleotides in Key cis-Element of DYSFUNCTIONAL TAPETUM1 (DYT1) Promoter

    PubMed Central

    Zhou, Shumin; Zhang, Hongli; Li, Ruisha; Hong, Qiang; Li, Yang; Xia, Qunfang; Zhang, Wei

    2017-01-01

    As a core regulatory gene of the anther development, DYSFUNCTIONAL TAPETUM1 (DYT1) was expressed in tapetum preferentially. Previous study had confirmed that a “CTCC” sequence within DYT1 promoter was indispensable for correct DYT1 expression. However, precise analysis on the function of each nucleotide of this sequence still lacks. Here we employed site mutation assay to identify the function roles of the nucleotides. As a result, the “T” and final “C” of “CTCC” were found essential for the temporal and spatial specificity of DYT1 expression, whereas the other two “C” nucleotides exhibited substitutable somewhat. The substitutes of two flanking nucleotides of “CTCC,” however, hardly affected the normal promoter function, suggesting that the “CTCC” sequence as a whole did meet the standard of a canonical cis-element by definition. In addition, it was found that as short as 497 bp DYT1 promoter was sufficient for tissue-specific expression, while longer 505 bp DYT1 promoter sequence was sufficient for species-specific expression. PMID:28261229

  15. How Do Substitute Teachers Substitute? An Empirical Study of Substitute-Teacher Labor Supply

    ERIC Educational Resources Information Center

    Gershenson, Seth

    2012-01-01

    This paper examines the daily labor supply of a potentially important, but often overlooked, source of instruction in U.S. public schools: substitute teachers. I estimate a sequential binary-choice model of substitute teachers' job-offer acceptance decisions using data on job offers made by a randomized automated calling system. Importantly, this…

  16. Effects of 2'-O-methyl nucleotide on ligation capability of T4 DNA ligase.

    PubMed

    Zhao, Bin; Tong, Zhaoxue; Zhao, Guojie; Mu, Runqing; Shang, Hong; Guan, Yifu

    2014-09-01

    To further understand the ligation mechanism, effects of 2'-O-methyl nucleotide (2'-OMeN) on the T4 DNA ligation efficiency were investigated. Fluorescence resonance energy transfer assay was used to monitor the nick-joining process by T4 DNA ligase. Results showed that substitutions at 5'- and 3'-ends of the nick decreased the ligation efficiency by 48.7% ± 6.7% and 70.6% ± 4.0%, respectively. Substitutions at both 5'- and 3'-ends decreased the ligation efficiency by 76.6% ± 1.3%. Corresponding kinetic parameters, Vmax, Km, and kcat, have been determined in each case by using the Michaelis-Menten equation. The kinetic data showed that the 2'-OMeN substitutions reduced the maximal initial velocity and increased the Michaelis constant of T4 DNA ligase. Mismatches at 5'- and 3'-ends of the nick have also shown different influences on the ligation. Results here showed that the sugar pucker conformation at 3'-end impairs the ligation efficiency more profoundly than that at 5'-end. Different concentrations of Mg(2+), Ca(2+), K(+), Na(+), and ATP were also demonstrated to affect the T4 DNA ligase activity. These results enriched our knowledge about the effects of 2'-OMeN substitutions on the T4 DNA ligase.

  17. Nucleotide sequence of papaya mosaic virus RNA.

    PubMed

    Sit, T L; Abouhaidar, M G; Holy, S

    1989-09-01

    The RNA genome of papaya mosaic virus is 6656 nucleotides long [excluding the poly(A) tail] with six open reading frames (ORFs) more than 200 nucleotides long. The four nearest the 5' end each overlap with adjacent ORFs and could code for proteins with Mr 176307, 26248, 11949 and 7224 (ORFs 1 to 4). The fifth ORF produces the capsid protein of Mr 23043 and the sixth ORF, located completely within ORF1, could code for a protein with Mr 14113. The translation products of ORFs 1 to 3 show strong similarity with those of other potexviruses but the ORF 4 protein has only limited similarity with the other potexvirus ORF 4 proteins of 7K to 11K.

  18. Radiation and thermal stabilities of adenine nucleotides.

    PubMed

    Demidov, V V; Potaman, V N; Solyanina, I P; Trofimov, V I

    1995-03-01

    We have investigated in detail radiation and thermal stabilities and transformations of adenosine mono- and triphosphates in liquid and frozen solid aqueous solutions within a wide range of absorbed radiation dose (up to 75 kGy) and temperature (up to 160 degrees C). Dephosphorylation is the main pathway of high temperature hydrolysis of adenine nucleotides. Basic thermodynamic and kinetic parameters of this process have been determined. Radiolysis of investigated compounds at room temperature results in scission of N-glycosidic bond with a radiation yield about of 1 mol/100 eV. Solution freezing significantly enhances radiation stability of nucleotides as well as other biomolecules. This circumstance is essential in the discussion of panspermia concepts.

  19. Evolution of functional six-nucleotide DNA.

    PubMed

    Zhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jiménez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L; Huang, Zhen; Tan, Weihong; Benner, Steven A

    2015-06-03

    Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.

  20. Nucleotide excision repair in Escherichia coli.

    PubMed Central

    Van Houten, B

    1990-01-01

    One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell. PMID:2181258

  1. [Nucleotide receptors in learning and neuronal plasticity].

    PubMed

    Czajkowski, Rafał

    2014-01-01

    Nucleotide signalling plays an important role in neuronal plasticity and learning. Nucleotides are released at the synaptic terminals and may act pre- and postsynaptically by activating Pland P2 receptors. The A1 receptor, activated tonically by resting concentration of adenosine regulates basal neurotransmission. The A2A receptor is activated by increased adenosine levels and participates in plastic changes. ATP may act as an independent neurotransmitter on the P2X1 receptor, or via P2X3 subtype as a neuromodulator that affects NMDA receptor signalling. The G protein coupled P2Y receptors also evoke neuromodulatory effect on the neuronal plasticity, inhibiting LTD in prefrontal cortex. P2X7 receptor is responsible for communication between astrocytes and for synchronizing their activity. ATP and adenosine released by astrocytes act as neuromodulators both at the release site and heterosynaptically. Taken together, these multiple actions of nucleotides constitute a mechanism regulating homeostatic processes that are necessary for proper brain functioning: synaptic scaling and metaplasticity.

  2. Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour.

    PubMed

    Buffon, Andréia; Ribeiro, Vanessa B; Schanoski, Alessandra S; Sarkis, João J F

    2006-01-01

    Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5'-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumour-promoting molecule) in the circulation.

  3. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling.

    PubMed

    Till, Bradley J; Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-11-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches.

  4. Non-Natural Nucleotides as Probes for the Mechanism and Fidelity of DNA Polymerases

    PubMed Central

    Lee, Irene; Berdis, Anthony J.

    2009-01-01

    DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some cases, selectively incorporate non-natural nucleotides lacking classic hydrogen-bonding capabilities into DNA. In this review, we describe the results of several laboratories that have employed a variety of non-natural nucleotide analogs to decipher the molecular mechanism of DNA polymerization. The use of various non-natural nucleotides has lead to the development of several different models that can explain how efficient DNA synthesis can occur in the absence of hydrogen-bonding interactions. These models include the influence of steric fit and shape complementarity, hydrophobicity and solvation energies, base-stacking capabilities, and negative selection as alternatives to rules invoking simple recognition of hydrogen bonding patterns. Discussions are also provided regarding how the kinetics of primer extension and exonuclease proofreading activities associated with high-fidelity DNA polymerases are influenced by the absence of hydrogen-bonding functional groups exhibited by non-natural nucleotides. PMID:19733263

  5. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  6. Nucleophilic Substitution by Benzodithioate Anions.

    ERIC Educational Resources Information Center

    Bonnans-Plaisance, Chantal; Gressier, Jean-Claude

    1988-01-01

    Describes a two-session experiment designed to provide a good illustration of, and to improve student knowledge of, the Grignard reaction and nucleophilic substitution. Discusses the procedure, experimental considerations, and conclusion of this experiment. (CW)

  7. Nucleotide sequence of the 3'-noncoding region of alfalfa mosaic virus RNA 4 and its homology with the genomic RNAs.

    PubMed Central

    Koper-Zwarthoff, E C; Brederode, F T; Walstra, P; Bol, J F

    1979-01-01

    A 226-nucleotide fragment was derived from alfalfa mosaic virus RNA 4 (ALMV RNA 4), the subgenomic messenger for viral coat protein, and its sequence was deduced by in vitro labeling with polynucleotide kinase and application of RNA sequencing techniques. The fragment contains the 3'-terminal 45 nucleotides of the coat protein cistron and the complete 3'-noncoding region of 182 nucleotides. The total length of RNA 4 was calculated to be 881 nucleotides. AlMV RNAs 1, 2 and 3 were elongated with a 3'-terminal poly(A) stretch and subjected to sequence analysis by using a specific primer, reverse transcriptase and chain terminators. This revealed and extensive homology between the 3'-terminal 140 to 150 nucleotides of all four ALMV RNAs. Despite a number of base substitutions, the secondary structure of the homologous region is highly conserved. The observed homology indicates that, as with RNA 4, the sites with a high affinity for the viral coat protein are located at the 3'-termini of the genomic RNAs. Images PMID:537914

  8. Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases.

    PubMed

    Yang, Xiaorong; Liu, Xinran; Musser, Derek M; Moustafa, Ibrahim M; Arnold, Jamie J; Cameron, Craig E; Boehr, David D

    2017-03-03

    The nucleotide incorporation fidelity of the viral RNA-dependent RNA polymerase (RdRp) is important for maintaining functional genetic information but, at the same time, is also important for generating sufficient genetic diversity to escape the bottlenecks of the host's antiviral response. We have previously shown that the structural dynamics of the motif D loop are closely related to nucleotide discrimination. Previous studies have also suggested that there is a reorientation of the triphosphate of the incoming nucleotide, which is essential before nucleophilic attack from the primer RNA 3'-hydroxyl. Here, we have used (31)P NMR with poliovirus RdRp to show that the binding environment of the triphosphate is different when correct versus incorrect nucleotide binds. We also show that amino acid substitutions at residues known to interact with the triphosphate can alter the binding orientation/environment of the nucleotide, sometimes lead to protein conformational changes, and lead to substantial changes in RdRp fidelity. The analyses of other fidelity variants also show that changes in the triphosphate binding environment are not always accompanied by changes in the structural dynamics of the motif D loop or other regions known to be important for RdRp fidelity, including motif B. Altogether, our studies suggest that the conformational changes in motifs B and D, and the nucleoside triphosphate reorientation represent separable, "tunable" fidelity checkpoints.

  9. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation.

    PubMed Central

    Pecon Slattery, J; O'Brien, S J

    1998-01-01

    The 37 species of modern cats have evolved from approximately eight phylogenetic lineages within the past 10 to 15 million years. The Felidae family has been described with multiple measures of morphologic and molecular evolutionary methods that serve as a framework for tracking gene divergence during brief evolutionary periods. In this report, we compare the mode and tempo of evolution of noncoding sequences of a large intron within Zfy (783 bp) and Zfx (854 bp), homologous genes located on the felid Y and X chromosomes, respectively. Zfy sequence variation evolves at about twice the rate of Zfx, and both gene intron sequences track feline hierarchical topologies accurately. As homoplasies are infrequent in patterns of nucleotide substitution, the Y chromosome sequence displays a remarkable degree of phylogenetic consistency among cat species and provides a highly informative glimpse of divergence of sex chromosome sequences in Felidae. PMID:9539439

  10. Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome

    SciTech Connect

    Satler, C.A.; Walsh, E.P.; Vesely, M.R.

    1996-10-02

    Autosomal-dominant long QT syndrome (LQT) is an inherited disorder, predisposing affected individuals to sudden death from tachyarrhythmias. To identify the gene(s) responsible for LQT, we identified and characterized an LQT family consisting of 48 individuals. DNA was screened with 150 microsatellite polymorphic markers encompassing approximately 70% of the genome. We found evidence for linkage of the LQT phenotype to chromosome 7(q35-36). Marker D7S636 yielded a maximum lod score of 6.93 at a recombination fraction ({theta}) of 0.00. Haplotype analysis further localized the LQT gene within a 6-2-cM interval. HERG encodes a potassium channel which has been mapped to this region. Single-strand conformational polymorphism analyses demonstrated aberrant bands that were unique to all affected individuals. DNA sequencing of the aberrant bands demonstrated a G to A substitution in all affected patients; this point mutation results in the substitution of a highly conserved valine residue with a methionine (V822M) in the cyclic nucleotide-binding domain of this potassium channel. The cosegregation of this distinct mutation with LQT demonstrates that HERG is the LQT gene in this pedigree. Furthermore, the location and character of this mutation suggests that the cyclic nucleotide-binding domain of the potassium channel encoded by HERG plays an important role in normal cardiac repolarization and may decrease susceptibility to ventricular tachyarrhythmias. 38 refs., 7 figs., 2 tabs.

  11. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    SciTech Connect

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  12. HPLC purification of RNA aptamers up to 59 nucleotides with single-nucleotide resolution.

    PubMed

    Huang, Zhen; Lin, Chi-Yen; Jaremko, William; Niu, Li

    2015-01-01

    An RNA sample is usually heterogeneous. RNA heterogeneity refers to difference in length or size (i.e., number of nucleotides [nt]), sequence, or alternative but coexisting conformations. Separation and purification of RNA is generally required for investigating the structure and function of RNA, such as RNA catalysis and RNA structure determination by nuclear magnetic resonance or crystallography. Separation and purification of RNA is also required for using RNAs as functional probes and therapeutics as well as building blocks for RNA nanoparticles. Previously established protocols are limited in separating RNAs longer than 25 nt by single-nucleotide resolution. When the length of RNAs becomes longer, single-nucleotide separation of RNAs becomes more challenging. Here we describe protocols, by the use of ion-pair, reverse-phase high-performance liquid chromatography (HPLC), to extend our ability to separate regular RNAs up to 59 nt with single-nucleotide resolution. For chemically modified RNAs at 2' positions on the ribose, we can resolve RNAs of similar sizes even with a 26 Da difference. This is much less than 320 Da, an average single-nucleotide molecular weight difference.

  13. Mutation Master: profiles of substitutions in hepatitis C virus RNA of the core, alternate reading frame, and NS2 coding regions.

    PubMed

    Walewski, José L; Gutierrez, Julio A; Branch-Elliman, Westyn; Stump, Decherd D; Keller, Toby R; Rodriguez, Alfredo; Benson, Gary; Branch, Andrea D

    2002-05-01

    The RNA genome of the hepatitis C virus (HCV) undergoes rapid evolutionary change. Efforts to control this virus would benefit from the advent of facile methods to identify characteristic features of HCV RNA and proteins, and to condense the vast amount of mutational data into a readily interpretable form. Many HCV sequences are available in GenBank. To facilitate analysis, consensus sequences were constructed to eliminate the overrepresentation of certain genotypes, such as genotype 1, and a novel package of sequence analysis tools was developed. Mutation Master generates profiles of point mutations in a population of sequences and produces a set of visual displays and tables indicating the number, frequency, and character of substitutions. It can be used to analyze hundreds of sequences at a time. When applied to 255 HCV core protein sequences, Mutation Master identified variable domains and a series of mutations meriting further investigation. It flagged position 4, for example, where 90% or more of all sequences in genotypes 1, 2, 4, and 5, have N4, whereas those in genotypes 3, 6, 7, 8, 9, and 10 have L4. This pattern is noteworthy: L (hydrophobic) to N (polar) substitutions are generally rare, and genotypes 1, 2, 4, and 5 do not form a recognized super family of sequences. Thus, the L4N substitution probably arose independently several times. Moreover, not one member of genotypes 1, 2, 4, or 5 has L4 and not one member of genotypes 3, 6, 7, 8, 9, or 10 has N4. This nonoverlapping pattern suggests that coordinated changes at position 4 and a second site are required to yield a viable virus. The package generated a table of genotype-specific substitutions whose future analysis may help to identify interacting amino acids. Three substitutions were present in 100% of genotype 2 members and absent from all others: A68D, R74K, and R114H. Finally, this study revealed thatARFP, a novel protein encoded in an overlapping reading frame, is as conserved as conventional

  14. De Novo Assembly of Highly Substituted Morpholines and Piperazines

    PubMed Central

    2017-01-01

    The morpholine and piperazine with their remarkable physical and biochemical properties are popular heterocycles in organic and medicinal chemistry used in rational property design. However, in the majority of cases these rings are added to an existing molecule in a building block approach thus limiting their substitution pattern and diversity. Here we introduce a versatile de novo synthesis of the morpholine and piperazine rings using multicomponent reaction chemistry. The large scale amenable building blocks can be further substituted at up to four positions, making this a very versatile scaffold synthesis strategy. Our methods thus fulfill the increasing demand for novel building block design and nontraditional scaffolds which previously were not accessible PMID:28102692

  15. Apolipoprotein A-I mutant proteins having cysteine substitutions and polynucleotides encoding same

    DOEpatents

    Oda, Michael N.; Forte, Trudy M.

    2007-05-29

    Functional Apolipoprotein A-I mutant proteins, having one or more cysteine substitutions and polynucleotides encoding same, can be used to modulate paraoxonase's arylesterase activity. These ApoA-I mutant proteins can be used as therapeutic agents to combat cardiovascular disease, atherosclerosis, acute phase response and other inflammatory related diseases. The invention also includes modifications and optimizations of the ApoA-I nucleotide sequence for purposes of increasing protein expression and optimization.

  16. Esters of pyromellitic acid. Part I. Esters of achiral alcohols: regioselective synthesis of partial and mixed pyromellitate esters, mechanism of transesterification in the quantitative esterification of the pyromellitate system using orthoformate esters, and a facile synthesis of the ortho pyromellitate diester substitution pattern.

    PubMed

    Paine, John B

    2008-07-04

    Mild conditions and reversible anhydride formation allow a relative differentiation to be made of the four equivalent carbonyl groups of pyromellitic dianhydride (PMDA, benzene-1,2,4,5-tetracarboxylic dianhydride) in esterification, leading to regioselective methods to generate a wide range of partially or totally esterified products or products bearing differing esterifying groups at the different positions. Pyromellitate monoester anhydrides form efficiently in dichloromethane/triethylamine from 1 equiv of the alcohol. Under the same conditions, two different alcohols can be made to react sequentially. With 2 equiv of an alcohol, the usual mixture of meta and para diesters is obtained, separated by crystallization from HOAc. Meta and para dibenzyl pyromellitates served as regiospecific sources of other diesters, by further esterification followed by hydrogenolysis. Refluxing orthoformate triesters were found to effect quantitative esterification of the pyromellitate system under autocatalytic conditions; minor ester exchange with pre-existing esters (0-5% of total product) was ascribed to reversible anhydride formation. For general esterification with alcohols, partial ester acid chlorides were obtained using oxalyl chloride. Pyromellitate triesters afforded the ortho diester anhydrides upon distillation, thereby providing facile entry into the mostly novel ortho substitution pattern in this system. The requisite triesters were prepared by selective saponification or by the prior incorporation of one benzyl ester substituent, which could be removed by catalytic hydrogenolysis. The various benzyl esters of pyromellitates hydrogenolyzed smoothly to release the carboxylic acid groups without disturbance of pyromellitate aromaticity.

  17. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries.

    PubMed

    Goodman, Morris; Sterner, Kirstin N; Islam, Munirul; Uddin, Monica; Sherwood, Chet C; Hof, Patrick R; Hou, Zhuo-Cheng; Lipovich, Leonard; Jia, Hui; Grossman, Lawrence I; Wildman, Derek E

    2009-12-08

    Specific sets of brain-expressed genes, such as aerobic energy metabolism genes, evolved adaptively in the ancestry of humans and may have evolved adaptively in the ancestry of other large-brained mammals. The recent addition of genomes from two afrotherians (elephant and tenrec) to the expanding set of publically available sequenced mammalian genomes provided an opportunity to test this hypothesis. Elephants resemble humans by having large brains and long life spans; tenrecs, in contrast, have small brains and short life spans. Thus, we investigated whether the phylogenomic patterns of adaptive evolution are more similar between elephant and human than between either elephant and tenrec lineages or human and mouse lineages, and whether aerobic energy metabolism genes are especially well represented in the elephant and human patterns. Our analyses encompassed approximately 6,000 genes in each of these lineages with each gene yielding extensive coding sequence matches in interordinal comparisons. Each gene's nonsynonymous and synonymous nucleotide substitution rates and dN/dS ratios were determined. Then, from gene ontology information on genes with the higher dN/dS ratios, we identified the more prevalent sets of genes that belong to specific functional categories and that evolved adaptively. Elephant and human lineages showed much slower nucleotide substitution rates than tenrec and mouse lineages but more adaptively evolved genes. In correlation with absolute brain size and brain oxygen consumption being largest in elephants and next largest in humans, adaptively evolved aerobic energy metabolism genes were most evident in the elephant lineage and next most evident in the human lineage.

  18. Germline Methylation Patterns Determine the Distribution of Recombination Events in the Dog Genome

    PubMed Central

    Berglund, Jonas; Quilez, Javier; Arndt, Peter F.; Webster, Matthew T.

    2015-01-01

    The positive-regulatory domain containing nine gene, PRDM9, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both. Using a genome-wide dog single nucleotide polymorphism data set and comparisons of the dog genome with related species, we show that recombination-associated CGIs have low CpG mutation rates, and that CpG mutation rate is negatively correlated with recombination rate genome wide, indicating that nonmethylation attracts the recombination machinery. We next use a neighbor-dependent model of nucleotide substitution to disentangle the effects of CpG mutability and gBGC and analyze the effects that loss of PRDM9 has on these rates. We infer that methylation patterns have been stable during canid genome evolution, but that dog CGIs have experienced a drastic increase in substitution rate due to gBGC, consistent with increased levels of recombination in these regions. We also show that gBGC is likely to have generated many new CGIs in the dog genome, but these mostly occur away from genes, whereas the number of CGIs in gene promoter regions has not increased greatly in recent evolutionary history. Recombination has a major impact on the distribution of CGIs that are detected in the dog genome due to the interaction between methylation and gBGC. The results indicate that germline methylation patterns are the main determinant of recombination rates in the absence of PRDM9. PMID:25527838

  19. Germline methylation patterns determine the distribution of recombination events in the dog genome.

    PubMed

    Berglund, Jonas; Quilez, Javier; Arndt, Peter F; Webster, Matthew T

    2014-12-19

    The positive-regulatory domain containing nine gene, PRDM9, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both. Using a genome-wide dog single nucleotide polymorphism data set and comparisons of the dog genome with related species, we show that recombination-associated CGIs have low CpG mutation rates, and that CpG mutation rate is negatively correlated with recombination rate genome wide, indicating that nonmethylation attracts the recombination machinery. We next use a neighbor-dependent model of nucleotide substitution to disentangle the effects of CpG mutability and gBGC and analyze the effects that loss of PRDM9 has on these rates. We infer that methylation patterns have been stable during canid genome evolution, but that dog CGIs have experienced a drastic increase in substitution rate due to gBGC, consistent with increased levels of recombination in these regions. We also show that gBGC is likely to have generated many new CGIs in the dog genome, but these mostly occur away from genes, whereas the number of CGIs in gene promoter regions has not increased greatly in recent evolutionary history. Recombination has a major impact on the distribution of CGIs that are detected in the dog genome due to the interaction between methylation and gBGC. The results indicate that germline methylation patterns are the main determinant of recombination rates in the absence of PRDM9.

  20. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  1. Abasic pivot substitution harnesses target specificity of RNA interference.

    PubMed

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-12-18

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA-target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼ 80-100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications.

  2. Biocomputational analysis of evolutionary relationship between toll-like receptor and nucleotide-binding oligomerization domain-like receptors genes

    PubMed Central

    Bhardwaj, Rabia; Mukhopadhyay, Chandra Shekhar; Deka, Dipak; Verma, Ramneek; Dubey, P. P.; Arora, J. S.

    2016-01-01

    Aim: The active domains (TIR and NACHT) of the pattern recognition receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding oligomerization domain [NOD]-like receptors [NLR], respectively) are the major hotspots of evolution as natural selection has crafted their final structure by substitution of residues over time. This paper addresses the evolutionary perspectives of the TLR and NLR genes with respect to the active domains in terms of their chronological fruition, functional diversification, and species-specific stipulation. Materials and Methods: A total of 48 full-length cds (and corresponding peptide) of the domains were selected as representatives of each type of PRRs, belonging to divergent animal species, for the biocomputational analyses. The secondary and tertiary structure of the taurine TIR and NACHT domains was predicted to compare the relatedness among the domains under study. Results: Multiple sequence alignment and phylogenetic tree results indicated that these host-specific PRRs formed entirely different clusters, with active domains of NLRs (NACHT) evolved earlier as compared to the active domains of TLRs (TIR). Each type of TLR or NLR shows comparatively less variation among the animal species due to the specificity of action against the type of microbes. Conclusion: It can be concluded from the study that there has been no positive selection acting on the domains associated with disease resistance which is a fitness trait indicating the extent of purifying pressure on the domains. Gene duplication could be a possible reason of genesis of similar kinds of TLRs (virus or bacteria specific). PMID:27956772

  3. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  4. Covariation in Frequencies of Substitution, Deletion, Transposition, and Recombination During Eutherian Evolution

    PubMed Central

    Hardison, Ross C.; Roskin, Krishna M.; Yang, Shan; Diekhans, Mark; Kent, W. James; Weber, Ryan; Elnitski, Laura; Li, Jia; O'Connor, Michael; Kolbe, Diana; Schwartz, Scott; Furey, Terrence S.; Whelan, Simon; Goldman, Nick; Smit, Arian; Miller, Webb; Chiaromonte, Francesca; Haussler, David

    2003-01-01

    Six measures of evolutionary change in the human genome were studied, three derived from the aligned human and mouse genomes in conjunction with the Mouse Genome Sequencing Consortium, consisting of (1) nucleotide substitution per fourfold degenerate site in coding regions, (2) nucleotide substitution per site in relics of transposable elements active only before the human–mouse speciation, and (3) the nonaligning fraction of human DNA that is nonrepetitive or in ancestral repeats; and three derived from human genome data alone, consisting of (4) SNP density, (5) frequency of insertion of transposable elements, and (6) rate of recombination. Features 1 and 2 are measures of nucleotide substitutions at two classes of “neutral” sites, whereas 4 is a measure of recent mutations. Feature 3 is a measure dominated by deletions in mouse, whereas 5 represents insertions in human. It was found that all six vary significantly in megabase-sized regions genome-wide, and many vary together. This indicates that some regions of a genome change slowly by all processes that alter DNA, and others change faster. Regional variation in all processes is correlated with, but not completely accounted for, by GC content in human and the difference between GC content in human and mouse. [Supplemental material is available online at www.genome.org and http://www.soe.ucsc.edu/research/compbio/covariation/.] PMID:12529302

  5. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2017-04-01

    For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested.

  6. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Reports substitution. 1260.55 Section...

  7. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Reports substitution. 1260.55 Section...

  8. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Reports substitution. 1260.55 Section...

  9. 14 CFR 1260.55 - Reports substitution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS General Special Conditions § 1260.55 Reports substitution. Reports Substitution October 2000 Technical Reports may be substituted for the required Performance Reports. The title page of such reports... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Reports substitution. 1260.55 Section...

  10. Nucleotide sequence alignment using sparse coding and belief propagation.

    PubMed

    Roozgard, Aminmohammad; Barzigar, Nafise; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila; Cheng, Samuel

    2013-01-01

    Advances in DNA information extraction techniques have led to huge sequenced genomes from organisms spanning the tree of life. This increasing amount of genomic information requires tools for comparison of the nucleotide sequences. In this paper, we propose a novel nucleotide sequence alignment method based on sparse coding and belief propagation to compare the similarity of the nucleotide sequences. We used the neighbors of each nucleotide as features, and then we employed sparse coding to find a set of candidate nucleotides. To select optimum matches, belief propagation was subsequently applied to these candidate nucleotides. Experimental results show that the proposed approach is able to robustly align nucleotide sequences and is competitive to SOAPaligner [1] and BWA [2].

  11. In Vitro Selection Using Modified or Unnatural Nucleotides

    PubMed Central

    Stovall, Gwendolyn M.; Bedenbaugh, Robert S.; Singh, Shruti; Meyer, Adam J.; Hatala, Paul J.; Ellington, Andrew D.; Hall, Bradley

    2014-01-01

    Incorporation of modified nucleotides into in vitro RNA or DNA selections offer many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions. PMID:25606981

  12. Periodic sequence patterns in human exons

    SciTech Connect

    Baldi, P.; Brunak, S.; Engelbrecht, J.; Chauvin, Y.; Krogh, A.

    1995-12-31

    We analyze the sequential structure of human exons and their flanking introns by hidden Markov models. Together, models of donor site regions, acceptor site regions and flanked internal exons, show that exons -- besides the reading frame -- hold a specific periodic pattern. The pattern, which has the consensus: non-T(A/T)G and a minimal periodicity of roughly 10 nucleotides, is not a consequence of the nucleotide statistics in the three codon positions, nor of the well known nucleosome positioning signal. We discuss the relation between the pattern and other known sequence elements responsible for the intrinsic bending or curvature of DNA.

  13. Molybdenum, Tungsten, and Aluminium Substitution for Enhancement of the Thermoelectric Performance of Higher Manganese Silicides

    NASA Astrophysics Data System (ADS)

    Nhi Truong, D. Y.; Berthebaud, David; Gascoin, Franck; Kleinke, Holger

    2015-10-01

    An easy and efficient process involving ball milling under soft conditions and spark plasma sintering was used to synthesize higher manganese silicide (HMS)-based compounds, for example MnSi1.75Ge0.02, with different molybdenum, tungsten, and aluminium substitution. The x-ray diffraction patterns of the samples after sintering showed the main phase to be HMS with the presence of some side products. Molybdenum substitution enlarges the unit cells more than tungsten substitution, owing to its greater solubility in the HMS structure, whereas substitution with aluminium did not substantially alter the cell parameters. The electrical resistivity of HMS-based compounds was reduced by <10% by this substitution, because of increased carrier concentrations. Changes of the Seebeck coefficient were insignificant after molybdenum and aluminium substitution whereas tungsten substitution slightly reduced the thermopower of the base material by approximately 8% over the whole temperature range; this was ascribed to reduced carrier mobility as a result of enhanced scattering. Substitution with any combination of two of these elements resulted in no crucial modification of the electrical properties of the base material. Large decreases of lattice thermal conductivity were observed, because of enhanced phonon scattering, with the highest reduction up to 25% for molybdenum substitution; this resulted in a 20% decrease of total thermal conductivity, which contributed to improvement of the figure of merit ZT of the HMS-based materials. The maximum ZT value was approximately 0.40 for the material with 2 at.% molybdenum substitution at the Mn sites.

  14. Cyclic nucleotide imaging and cardiovascular disease.

    PubMed

    Berisha, Filip; Nikolaev, Viacheslav O

    2017-02-16

    The universal second messengers cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) play central roles in cardiovascular function and disease. They act in discrete, functionally relevant subcellular microdomains which regulate, for example, calcium cycling and excitation-contraction coupling. Such localized cAMP and cGMP signals have been difficult to measure using conventional biochemical techniques. Recent years have witnessed the advent of live cell imaging techniques which allow visualization of these functionally relevant second messengers with unprecedented spatial and temporal resolution at cellular, subcellular and tissue levels. In this review, we discuss these new imaging techniques and give examples how they are used to visualize cAMP and cGMP in physiological and pathological settings to better understand cardiovascular function and disease. Two primary techniques include the use of Förster resonance energy transfer (FRET) based cyclic nucleotide biosensors and nanoscale scanning ion conductance microscopy (SICM). These methods can provide deep mechanistic insights into compartmentalized cAMP and cGMP signaling.

  15. Magnesium substitution in brushite cements.

    PubMed

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  16. Substitution systems and nonextensive statistics

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2015-12-01

    Substitution systems evolve in time by generating sequences of symbols from a finite alphabet: At a certain iteration step, the existing symbols are systematically replaced by blocks of Nk symbols also within the alphabet (with Nk, a natural number, being the length of the kth block of the substitution). The dynamics of these systems leads naturally to fractals and self-similarity. By using B-calculus (García-Morales, 2012) universal maps for deterministic substitution systems both of constant and non-constant length, are formulated in 1D. It is then shown how these systems can be put in direct correspondence with Tsallis entropy. A 'Second Law of Thermodynamics' is also proved for these systems in the asymptotic limit of large words.

  17. Bone Graft Substitution and Augmentation.

    PubMed

    Nauth, Aaron; Lane, Joseph; Watson, J Tracy; Giannoudis, Peter

    2015-12-01

    Selection of appropriate bone graft or bone graft substitute requires careful recognition of the bone healing needs of the patient's specific clinical problem and a thorough understanding of the different properties possessed by the available bone grafts and substitutes. Although autogenous iliac crest bone graft remains the gold standard of treatment for delayed unions, nonunions, and bone defects, there are a number of promising alternatives available, and emerging evidence suggests that they can be very effective when used in the proper setting. Among these, reamer-irrigator-aspirator bone graft, bone marrow concentrate, bone morphogenetic proteins, and calcium phosphate cements have received a great deal of attention in the literature. This review describes these grafts in detail along with the evidence for their use. In addition, a framework is provided for selecting the appropriate graft or substitute based on their provided properties.

  18. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  19. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  20. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  1. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  2. Hypoxic radiosensitizers: substituted styryl derivatives.

    PubMed

    Nudelman, A; Falb, E; Odesa, Y; Shmueli-Broide, N

    1994-10-01

    A number of novel styryl epoxides, N-substituted-styryl-ethanolamines, N-mono and N,N'-bis-(2-hydroxyethyl)-cinnamamides--analogues to the known radiosensitizers RSU-1069, pimonidazole and etanidazole--display selective hypoxic radiosensitizing activity. The styryl group, especially when substituted by electron withdrawing groups, was found to be bioisosteric to the nitroimidazolyl functionality. The most active derivative 2-(2'-nitrophenyl)ethen-1-yl-oxirane 8a displayed a sensitizer enhancement ratio (SER) of 5 relative to misonidazole.

  3. Genetic heterogeneity in patients with pantothenate kinase-associated neurodegeneration and classic magnetic resonance imaging eye-of-the-tiger pattern.

    PubMed

    Valentino, Paola; Annesi, Grazia; Cirò Candiano, Innocenza C; Annesi, Ferdinanda; Civitelli, Donatella; Tarantino, Patrizia; Naso, Francesco; Spadafora, Patrizia; Carrideo, Sara; De Marco, Elvira V; Consoli, Domenico; Zappia, Mario; Gambardella, Antonio; Quattrone, Aldo

    2006-02-01

    We performed a detailed molecular study in two unrelated families with pantothenate kinase-associated neurodegeneration (PKAN) and the specific magnetic resonance imaging (MRI) eye-of-the-tiger pattern. In the first family with classic PKAN, linkage analysis using polymorphic markers from the PANK2 region ruled out linkage with this locus, and no mutation of the PANK2 gene was found. In the second family with atypical PKAN, we identified a novel homozygous C-to-T transition at nucleotide 1069 of the PANK2 gene, which resulted in an arginine to tryptophane substitution at codon 357. As far as we are aware, this is the first case of classic PKAN with the specific MRI eye-of-the-tiger pattern not carrying a PANK2 mutation. Therefore, the present observation reinforces the notion of the phenotypic and genetic heterogeneity in PKAN.

  4. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  5. Substitute Teaching: Sink or Swim.

    ERIC Educational Resources Information Center

    Duebber, Diane

    2000-01-01

    Advises new substitute teachers to be prepared, tote emergency activity folders, dress professionally (but wear flamingo earrings), be early, figure out the game plan, communicate expectations to students, enforce consequences, have a gimmick to reward cooperation, relish the teachable moment, leave the room tidy, and believe in themselves. (MLH)

  6. Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses.

    PubMed

    Masta, Susan E; Longhorn, Stuart J; Boore, Jeffrey L

    2009-01-01

    Phylogenetic analyses based on mitochondrial DNA have yielded widely differing relationships among members of the arthropod lineage Arachnida, depending on the nucleotide coding schemes and models of evolution used. We enhanced taxonomic coverage within the Arachnida greatly by sequencing seven new arachnid mitochondrial genomes from five orders. We then used all 13 mitochondrial protein-coding genes from these genomes to evaluate patterns of nucleotide and amino acid biases. Our data show that two of the six orders of arachnids (spiders and scorpions) have experienced shifts in both nucleotide and amino acid usage in all their protein-coding genes, and that these biases mislead phylogeny reconstruction. These biases are most striking for the hydrophobic amino acids isoleucine and valine, which appear to have evolved asymmetrical exchanges in response to shifts in nucleotide composition. To improve phylogenetic accuracy based on amino acid differences, we tested two recoding methods: (1) removing all isoleucine and valine sites and (2) recoding amino acids based on their physiochemical properties. We find that these methods yield phylogenetic trees that are consistent in their support of ancient intraordinal divergences within the major arachnid lineages. Further refinement of amino acid recoding methods may help us better delineate interordinal relationships among these diverse organisms.

  7. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  8. Cyclic Nucleotide Signaling in Polycystic Kidney Disease

    PubMed Central

    Wang, Xiaofang; Ward, Christopher J.; Harris, Peter C.; Torres, Vicente E.

    2013-01-01

    Increased levels of 3’–5’-cyclic adenosine monophosphate (cAMP) stimulate cell proliferation and fluid secretion in polycystic kidney disease (PKD). Since hydrolytic capacity of phosphodiesterases (PDE) far exceeds maximum rate of synthesis by adenylyl cyclases (AC), cellular levels of cAMP are more sensitive to PDE inhibition than to AC activity changes. We have used enzymatic, western blot, immunohistochemistry, PCR and biochemical assays to study activity and expression of PDE families and isoforms and expression of downstream effectors of cAMP signaling in wildtype and PKD rat and mouse kidneys. The results indicate: 1) Species specific differences in PDE expression; higher PDE activity in kidneys from mice compared to rats; higher contribution of PDE1, relative to PDE4 and PDE3, to total PDE activity of kidney lysate and lower PDE1, PDE3 and PDE4 activities in murine cystic compared to wildtype kidneys. 2) Reduced levels of several PDE1, PDE3 and PDE4 proteins despite mRNA upregulation, possibly due to increased protein degradation. 3) Increased cGMP levels in polycystic kidneys, suggesting in vivo downregulation of PDE1 activity. 4) Additive stimulatory effect of cAMP and cGMP on cystogenesis in vitro. 5) Upregulation of cAMP-dependent protein kinase (PKA) subunits Iα and IIβ, PKare, CREB-1 mRNA, and CREM, ATF-1 and ICER proteins in cystic compared to wildtype kidneys. In summary, the results of this study suggest that alterations in cyclic nucleotide catabolism may render the cystic epithelium particularly susceptible to factors acting on Gs coupled receptors, account at least in part for the upregulation of cyclic nucleotide signaling in PKD, and contribute substantially to the progression of this disease. PMID:19924104

  9. Patterns of Broken Patterns

    NASA Astrophysics Data System (ADS)

    Field, R. W.; Park, G. B.; Changala, P. B.; Baraban, J. H.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Spectroscopy - it is all about patterns. Some patterns look so indescribably complicated that, unlike pornography, you do not know one when you see one. It is tempting to say that, at high vibrational excitation, interactions among normal mode basis states are so strong and widespread that all patterns are obliterated. But this is not true. When normal mode frequencies are in near integer multiple ratios, polyads emerge. A polyad is a robust pattern often comprising many vibrational eigenstates. Each such pattern might span many hundreds of cm^{-1}, and it is inevitable that several unrelated polyad patterns overlap. When polyads overlap, it might seem impossible to disentangle them. However, the key to disentanglement is that polyads come in families in which successive generations are related by harmonic oscillator matrix element selection and scaling rules. Families of polyads are described by families of scaling-based effective Hamiltonian matrices, {H}^{{eff}}. No matter how complex and overlapped, the polyad {H}^{{eff}} serves as a magic decoder for picking out the polyad pattern. Sometimes the polyad patterns are systematically broken (a meta-pattern), owing to proximity to an isomerization barrier, as occurs in highly excited bending levels of the S_{1} state of HCCH, which encode the trans-cis minimum energy isomerization path. Quantum Chemists often dismiss {H}^{{eff}} models, precisely because they are models that do not express the full dimensionality of the complete Hamiltonian. But an {H}^{{eff}} explains rather than describes. Shunning {H}^{{eff}}s is like throwing out the baby with the bath water. Don't do it!

  10. The druggability of intracellular nucleotide-degrading enzymes.

    PubMed

    Rampazzo, Chiara; Tozzi, Maria Grazia; Dumontet, Charles; Jordheim, Lars Petter

    2016-05-01

    Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10-15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.

  11. 40 CFR Appendix B to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Use Conditions Substitutes Application Substitute Decision Conditions Comments Electronics Cleaning w.... Electronics cleaning w/CFC-113 Dibromomethane Unacceptable High ODP; other alternatives exist....

  12. 40 CFR Appendix B to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Use Conditions Substitutes Application Substitute Decision Conditions Comments Electronics Cleaning w.... Electronics cleaning w/CFC-113 Dibromomethane Unacceptable High ODP; other alternatives exist....

  13. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    NASA Astrophysics Data System (ADS)

    Jin, Neng-zhi; Liu, Zi-xian; Qiu, Wen-yuan

    2009-02-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, ..., TT) in 12 human chromosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  14. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for ¹⁹F NMR studies.

    PubMed

    Baranowski, Marek R; Nowicka, Anna; Rydzik, Anna M; Warminski, Marcin; Kasprzyk, Renata; Wojtczak, Blazej A; Wojcik, Jacek; Claridge, Timothy D W; Kowalska, Joanna; Jemielity, Jacek

    2015-04-17

    To broaden the scope of existing methods based on (19)F nucleotide labeling, we developed a new method for the synthesis of fluorophosphate (oligo)nucleotide analogues containing an O to F substitution at the terminal position of the (oligo)phosphate moiety and evaluated them as tools for (19)F NMR studies. Using three efficient and comprehensive synthetic approaches based on phosphorimidazolide chemistry and tetra-n-butylammonium fluoride, fluoromonophosphate, or fluorophosphate imidazolide as fluorine sources, we prepared over 30 fluorophosphate-containing nucleotides, varying in nucleobase type (A, G, C, U, m(7)G), phosphate chain length (from mono to tetra), and presence of additional phosphate modifications (thio, borano, imido, methylene). Using fluorophosphate imidazolide as fluorophosphorylating reagent for 5'-phosphorylated oligos we also synthesized oligonucleotide 5'-(2-fluorodiphosphates), which are potentially useful as (19)F NMR hybridization probes. The compounds were characterized by (19)F NMR and evaluated as (19)F NMR molecular probes. We found that fluorophosphate nucleotide analogues can be used to monitor activity of enzymes with various specificities and metal ion requirements, including human DcpS enzyme, a therapeutic target for spinal muscular atrophy. The compounds can also serve as reporter ligands for protein binding studies, as exemplified by studying interaction of fluorophosphate mRNA cap analogues with eukaryotic translation initiation factor (eIF4E).

  15. Preparation of nucleotide advanced glycation endproducts--imidazopurinone adducts formed by glycation of deoxyguanosine with glyoxal and methylglyoxal.

    PubMed

    Fleming, Thomas; Rabbani, Naila; Thornalley, Paul J

    2008-04-01

    An analytical procedure was developed for nucleotide advanced glycation endproducts formed by the reaction of glyoxal and methylglyoxal with deoxyguanosine under physiological conditions. For this, the imidazopurinone derivatives, 3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxyimidazo[2,3-b]purin-9(8)one (dG-G) and 3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6-methylimidazo-[2,3-b]purine-9(8)one (dG-MG), were prepared. Authentic standard and stable isotope-substituted standard adducts were prepared and an isotopic dilution analysis assay methodology was developed using liquid chromatography with tandem mass spectrometry and optimized DNA extraction and nuclease digestion procedures. Analysis of dG-G, dG-MG, and the oxidative marker 8-hydroxydeoxyguanosine in the DNA of cultured human cells and mononuclear leukocytes showed that nucleotide advanced glycation endproducts are major markers of DNA damage in human cells.

  16. Patient-specific factors influence somatic variation patterns in von Hippel–Lindau disease renal tumours

    PubMed Central

    Fei, Suzanne S.; Mitchell, Asia D.; Heskett, Michael B.; Vocke, Cathy D.; Ricketts, Christopher J.; Peto, Myron; Wang, Nicholas J.; Sönmez, Kemal; Linehan, W. Marston; Spellman, Paul T.

    2016-01-01

    Cancer development is presumed to be an evolutionary process that is influenced by genetic background and environment. In laboratory animals, genetics and environment are variables that can largely be held constant. In humans, it is possible to compare independent tumours that have developed in the same patient, effectively constraining genetic and environmental variation and leaving only stochastic processes. Patients affected with von Hippel–Lindau disease are at risk of developing multiple independent clear cell renal carcinomas. Here we perform whole-genome sequencing on 40 tumours from six von Hippel-Lindau patients. We confirm that the tumours are clonally independent, having distinct somatic single-nucleotide variants. Although tumours from the same patient show many differences, within-patient patterns are discernible. Single-nucleotide substitution type rates are significantly different between patients and show biases in trinucleotide mutation context. We also observe biases in chromosome copy number aberrations. These results show that genetic background and/or environment can influence the types of mutations that occur. PMID:27174753

  17. Assessing Dissimilarity of Genes by Comparing Their Rnase a Mismatch Cleavage Patterns

    PubMed Central

    Rzhetsky, A.; Dopazo, J.; Snyder, E.; Dangler, C. A.; Ayala, F. J.

    1996-01-01

    We propose a simple algorithm for estimating the number of nucleotide differences between a pair of RNA or DNA sequences through comparison of their RNAse A mismatch cleavage patterns. In the RNAse A mismatch cleavage technique two or more sample sequences are hybridized to the same RNA probe, the hybrids are partially digested with RNAse A, and the digestion products are compared on an electrophoretic gel. Here we provide an algorithm for converting the numbers of unique and matching electrophoretic bands into an estimate of the number of nucleotide differences between the sequences. Computer simulation indicates that the proposed method yields a robust estimate of the genetic distance despite stochastic errors and occasional violation of certain assumptions. Our study suggests that the method performs best when the distance between the sequences is <15 differences. When the sequences under analysis are likely to have larger distances, we advise to substitute one long riboprobe with a set of shorter nonoverlapping probes. The new algorithm is applied to infer the proximity of several strains of pseudorabies virus. PMID:8978080

  18. Patterns of variation among distinct alleles of the Flag silk gene from Nephila clavipes.

    PubMed

    Higgins, Linden E; White, Sheryl; Nuñez-Farfán, Juan; Vargas, Jesus

    2007-02-20

    Spider silk proteins and their genes are very attractive to researchers in a wide range of disciplines because they permit linking many levels of organization. However, hypotheses of silk gene evolution have been built primarily upon single sequences of each gene each species, and little is known about allelic variation within a species. Silk genes are known for their repeat structure with high levels of homogenization of nucleotide and amino acid sequence among repeated units. One common explanation for this homogeneity is gene convergence. To test this model, we sequenced multiple alleles of one intron-exon segment from the Flag gene from four populations of the spider Nephila clavipes and compared the new sequences to a published sequence. Our analysis revealed very high levels of heterozygosity in this gene, with no pattern of population differentiation. There was no evidence of gene convergence within any of these alleles, with high levels of nucleotide and amino acid substitution among the repeating motifs. Our data suggest that minimally, there is relaxed selection on mutations in this gene and that there may actually be positive selection for heterozygosity.

  19. Pattern Recognition on Read Positioning in Next Generation Sequencing

    PubMed Central

    Byeon, Boseon; Kovalchuk, Igor

    2016-01-01

    The usefulness and the utility of the next generation sequencing (NGS) technology are based on the assumption that the DNA or cDNA cleavage required to generate short sequence reads is random. Several previous reports suggest the existence of sequencing bias of NGS reads. To address this question in greater detail, we analyze NGS data from four organisms with different GC content, Plasmodium falciparum (19.39%), Arabidopsis thaliana (36.03%), Homo sapiens (40.91%) and Streptomyces coelicolor (72.00%). Using machine learning techniques, we recognize the pattern that the NGS read start is positioned in the local region where the nucleotide distribution is dissimilar from the global nucleotide distribution. We also demonstrate that the mono-nucleotide distribution underestimates sequencing bias, and the recognized pattern is explained largely by the distribution of multi-nucleotides (di-, tri-, and tetra- nucleotides) rather than mono-nucleotides. This implies that the correction of sequencing bias needs to be performed on the basis of the multi-nucleotide distribution. Providing companion software to quantify the effect of the recognized pattern on read positioning, we exemplify that the bias correction based on the mono-nucleotide distribution may not be sufficient to clean sequencing bias. PMID:27299343

  20. Pyridine nucleotide coenzymes: Chemical, biological, and medical aspects. Vol. 2, Pt. A

    SciTech Connect

    Dolphin, D.; Poulson, R.; Avramovic, O.

    1987-01-01

    This text contains the following: History of the Pyridine Nucleotides Nomenclature; Evolution of Pyridine Nucleotide; Relationship Between Biosynthesis and Evolution; Crystal Structure; Coenzyme Conformations; Protein Interactions; Optical Spectroscopy of the Pyridine Nucleotides; Excited States of Pyridine Nucleotide Coenzymes; Fluorescence and Phosphorescence; Nuclear Magnetic Resonance Spectroscopy of Pyridine Nucleotides; Mass Spectrometry of Pyridine Nucleotides; Mechanism of Action of the Pyridine Nucleotides; Chemical Stability and Reactivity of Pyridine Nucleotide Coenzymes; Stereochemistry of Fatty Acid Biosynthesis and Metabolism; Kinetics of Pyridine Nucleotide-Utilizing Enzymes; Preparation and Properties of NAD and NADP Analogs; Model Studies and Biological Activity of Analogs; and Spin-Labeled Pyridine Nucleotide Derivatives.

  1. [Evolution of urinary bladder substitution].

    PubMed

    Kock, N G

    1992-11-01

    The historical background to the currently used methods for continent bladder substitution is shortly outlined. The significance for the patient's quality of life of various methods for bladder reconstruction or urinary diversion is briefly discussed. The importance of reservoir configuration for achieving a high compliant urinary receptacle is pointed out. Factors affecting reabsorption of urinary constituents are stressed and the significance of an antireflux mechanism is discussed. Currently the majority of patients undergoing cystectomy for cancer or for other reasons can be offered bladder substitutes providing continence and easy emptying; that is, complete control over voiding. This can be achieved by orthotopic bladder reconstruction or by diverting the urine to the augmented and valved rectum or to the skin via a continent intestinal reservoir.

  2. Nucleotide Binding in an Engineered Recombinant Ca(2+)-ATPase N-Domain.

    PubMed

    Páez-Pérez, Edgar D; De La Cruz-Torres, Valentín; Sampedro, José G

    2016-12-13

    A recombinant Ca(2+)-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg(2+)) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg(2+) > ATP-Mg(2+). Interestingly, it was found that Ca(2+) binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca(2+) (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca(2+)-ATPase performs structural dynamics upon Ca(2+) and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca(2+) binding may be involved in Ca(2+)-ATPase activation under normal physiological conditions.

  3. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling

    PubMed Central

    Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A.; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-01-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1395-5) contains supplementary material, which is available to authorized users. PMID:20589365

  4. Substitutes for School Nurses in Illinois

    ERIC Educational Resources Information Center

    Vollinger, Linda Jeno; Bergren, Martha Dewey; Belmonte-Mann, Frances

    2011-01-01

    The purpose of this descriptive study was to explore utilization of nurse substitutes in the school setting in Illinois. The literature described personnel who staff the school health office in the absence of the school nurse and the barriers to obtaining nurse substitutes. There were no empirical studies conducted on school nurse substitutes in…

  5. 40 CFR 721.5867 - Substituted phenol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted phenol. 721.5867 Section... Substances § 721.5867 Substituted phenol. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted phenol (PMNs P-89-1125,...

  6. 40 CFR 721.4476 - Substituted imines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted imines. 721.4476 Section... Substances § 721.4476 Substituted imines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted imines (PMNs...

  7. 40 CFR 721.4476 - Substituted imines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted imines. 721.4476 Section... Substances § 721.4476 Substituted imines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted imines (PMNs...

  8. 40 CFR 721.4476 - Substituted imines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted imines. 721.4476 Section... Substances § 721.4476 Substituted imines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted imines (PMNs...

  9. 40 CFR 721.4476 - Substituted imines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted imines. 721.4476 Section... Substances § 721.4476 Substituted imines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted imines (PMNs...

  10. 40 CFR 721.4476 - Substituted imines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted imines. 721.4476 Section... Substances § 721.4476 Substituted imines. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted imines (PMNs...

  11. Tele-substitutions in Heterocyclic Chemistry.

    PubMed

    Tišler, Miha

    2011-03-01

    Particular and rare examples of aromatic nucleophilic substitution are described as tele-substitution. Usually strong nucleophiles are involved and the entering group is introduced at a position distant from the expected leaving group. Examples of tele-substitution in various heteroaromatic systems are presented.

  12. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  13. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  14. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  15. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  16. 40 CFR 721.4280 - Substituted hydrazine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted hydrazine. 721.4280... Substances § 721.4280 Substituted hydrazine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted hydrazine (PMN P-90-594)...

  17. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  18. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  19. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  20. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  1. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamide. 721.323... Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  2. 40 CFR 192.42 - Substitute provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Substitute provisions. 192.42 Section... § 192.42 Substitute provisions. The regulatory agency may, with the concurrence of EPA, substitute for any provisions of § 192.41 of this subpart alternative provisions it deems more practical that...

  3. Resonant photodissociation in substituted benzenes

    NASA Astrophysics Data System (ADS)

    Scarborough, Tim; McAcy, Collin; Foote, David; Uiterwaal, Cornelis

    2011-05-01

    Cyclic aromatic molecules are abundant in organic chemistry, with a wide variety of applications, including pharmacology, pollution studies and genetic research. Among the simplest of these molecules is benzene (C6H6) , with many relevant molecules being benzene-like with a single atomic substitution. In such a substitution, the substituent determines a characteristic perturbation of the electronic structure of the molecule. We discuss the substitution of halogens into the ring (C6H5X), and its effects on the dynamics of ionization and dissociation of the molecule without the focal volume effect. In particular, using 800-nm, 50-fs laser pulses, we present results in the dissociation of fluorobenzene, chlorobenzene, bromobenzene and iodobenzene into the phenyl ring (C6H5) and the atomic halogen, and the subsequent ionization of these fragments. The impact of the ``heavy atom effect'' on a 1 (π , π*) -->3 (n , σ*) singlet-triplet intersystem crossing will be emphasized. Currently under investigation is whether such a dissociation can be treated as an effective source of the neutral substituent. This material is based upon work supported by the National Science Foundation under Grant No. PHY-0355235.

  4. Iridium-Catalyzed Allylic Substitution

    NASA Astrophysics Data System (ADS)

    Hartwig, John F.; Pouy, Mark J.

    Iridium-catalyzed asymmetric allylic substitution has become a valuable method to prepare products from the addition of nucleophiles at the more substituted carbon of an allyl unit. The most active and selective catalysts contain a phosphoramidite ligand possessing at least one arylethyl substituent on the nitrogen atom of the ligand. In these systems, the active catalyst is generated by a base-induced cyclometalation at the methyl group of this substituent to generate an iridium metalacycle bound by the COD ligand of the [Ir(COD)Cl]2 precursor and one additional labile dative ligand. Such complexes catalyze the reactions of linear allylic esters with alkylamines, arylamines, phenols, alcohols, imides, carbamates, ammonia, enolates and enolate equivalents, as well as typical stabilized carbon nucleophiles generated from malonates and cyanoesters. Iridium catalysts for enantioselective allylic substitution have also been generated from phosphorus ligands with substituents bound by heteroatoms, and an account of the studies of such systems, along with a description of the development of iridium catalysts is included.

  5. Accounting for product substitution in the analysis of food taxes targeting obesity.

    PubMed

    Miao, Zhen; Beghin, John C; Jensen, Helen H

    2013-11-01

    We extend the existing literature on food taxes targeting obesity. We systematically incorporate the implicit substitution between added sugars and solid fats into a comprehensive food demand system and evaluate the effect of taxes on sugars and fats. The approach conditions how food and obesity taxes affect total calorie intake. The proposed methodology accounts for the ability of consumers to substitute leaner low-fat and low-sugar items for rich food items within the same food group. We calibrate this demand system approach using recent food intake data and existing estimates of price and income elasticities of demand. The demand system accounts for both the within-food group substitution and the substitution across these groups. Simulations of taxes on added sugars and solid fat show that the tax impact on consumption patterns is understated and the induced welfare loss is overstated when not allowing for the substitution possibilities within food groups.

  6. [Nucleotide sequence of HLA-DQA1 promoter region (QAP) in a lung cancer patient].

    PubMed

    Qiu, C; Zhou, W; Song, C

    1996-06-01

    The HLA-DQA1 allele and nucleotide sequence of HLA-DQA1 promoter region (QAP) in a patient with IDDM complicated lung cancer have been identified by PCR/SSCP, PCR/SSCP and PCR/sequencing. The results showed that: (1) All of the lung cancer patient and his family members carried HLA-DQA1* 0301/0501 alleles. (2) a single base substitution G-->A at position -155 and deletion CAA at position -161 to -163 occurred in the patient. These results suggest that the mutation of HLA-DQA1 promoter region may modulate HLA-DQA1 gene expression by trans-acting factors binding to variant cis-acting elements and may be responsible for pathogenesis of lung cancer.

  7. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    SciTech Connect

    Doerk, T.; Wulbrand, U.; Tuemmler, B. )

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compound heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.

  8. Selective breakage of DNA alongside 5-bromodeoxyuridine nucleotide residues by high temperature hydrolysis.

    PubMed Central

    Grigg, G W

    1977-01-01

    The substitution of thymine mucleotides (pT) in oligodeoxynucleotides by bromouracil nucleotides (pBU) changes the properties of the oligonucleotides in two ways: (1) It alters their mobility during DEAE-Cellulose homochromatography1. (2) It substantially enhances their sensitivity to high temperature hydrolysis under mildly alkaline conditions (pH 8.9). The resultant breaks occur adjacent to pBU residues and leave terminal phosphates on the breakage products. With more extreme conditions some loss of terminal phosphates can occur. Heating at 100 degrees for 16 hr at pH 8.9 produces cleavage at about half of the pBU residues with minimal loss of terminal phosphates. The properties described here may explain the thermal sensitivity of bacteria grown in 5BU2 and may have a use in DNA sequencing technology. Images PMID:866201

  9. Sizeable red-shift of absorption and fluorescence of subporphyrazine induced by peripheral push and pull substitution.

    PubMed

    Liang, Xu; Shimizu, Soji; Kobayashi, Nagao

    2014-11-18

    Peripheral substitution with electron-donating (push) and electron-withdrawing (pull) substituents caused a sizeable red-shift of the Q band absorption and fluorescence of subporphyrazine, and the red-shift was controlled by the push substituents. Control of the chromophore symmetry and inherent molecular chirality arising from the pattern of substitution were also investigated.

  10. Single nucleotide polymorphisms and suicidal behaviour.

    PubMed

    Pregelj, Peter

    2012-09-01

    The World Health Organization estimates that almost one million deaths each year are attributable to suicide, and suicide attempt is close to 10 times more common than suicide completion. Suicidal behaviour has multiple causes that are broadly divided into proximal stressors or triggers and predisposition such as genetic. It is also known that single nucleotide polymorphisms (SNPs) occur throughout a human DNA influencing the structure, quantity and the function of proteins and other molecules. Abnormalities of the serotonergic system were observed in suicide victims. Beside 5-HT1A and other serotonin receptors most studied are the serotonin transporter 5' functional promoter variant, and monoamine oxidase A and the tryptophan-hydroxylase 1 and 2 (TPH) polymorphisms. It seems that especially genes regulating serotoninergic system and neuronal systems involved in stress response are associated with suicidal behaviour. Most genetic studies on suicidal behaviour have considered a small set of functional polymorphisms relevant mostly to monoaminergic neurotransmission. However, genes involved in regulation of other factors such as brain-derived neurotropic factor seems to be even more relevant for further research.

  11. NDP kinase reactivity towards 3TC nucleotides.

    PubMed

    Kreimeyer, A; Schneider, B; Sarfati, R; Faraj, A; Sommadossi, J P; Veron, M; Deville-Bonne, D

    2001-05-01

    Nucleoside diphosphate (NDP) kinase is usually considered as the enzyme responsible for the last step of the cellular phosphorylation pathway leading to the synthesis of biologically active triphospho-derivatives of nucleoside analogs used in antiviral therapies and in particular in the treatment of AIDS. NDP kinase lacks specificity for the nucleobase and can use as substrate both ribo- or 2'-deoxyribonucleotides. However, only nucleoside analogs with a sugar moiety in the D-configuration (e.g. 3'-deoxy-3'-azidothymidine (AZT), 2',3'-didehydro-2',3'-dideoxythymidine (d4T)) have so far been analyzed as substrates of NDP kinase. In contrast, beta-L-2',3'-dideoxy-3'-thiacytidine (3TC), also called lamivudine, is a nucleoside analog that is now widely used in AIDS therapy and has a sugar moiety in the L-configuration. Using protein fluorescence to monitor the phosphotransfer between the enzyme and the nucleotide derivative at the presteady state, we have studied the reactivity of 3TC triphosphate and of other L-dideoxynucleotides with NDP kinase. We found that L-dideoxynucleoside triphosphates have a poor affinity for NDP kinase and that the catalytic efficiency of the phosphorylation of L-dideoxyderivatives is very low as compared with their D-enantiomers. We discuss these results using a computer model of 3TC diphosphate bound to the NDP kinase active site. NDP kinase may not seem to be the major enzyme phosphorylating 3TC-DP, in contrast to current opinion.

  12. Pyridine nucleotide redox abnormalities in diabetes.

    PubMed

    Ido, Yasuo

    2007-07-01

    In addition to hyperglycemia, diabetes is associated with increased levels of circulating free fatty acids, lactate, and branched chain amino acids, all of which produce an excessive reduced form of pyridine nucleotides NADH (reductive stress) in the cytosol and mitochondria. Our studies suggest that cytosolic NADH reductive stress under high glucose is largely caused by increased flux of glucose through polyol (sorbitol) pathway consisting of aldose reductase and sorbitol dehydrogenase. Inhibition of aldose reductase that blocks the polyol pathway has been shown to ameliorate diabetic neuropathy in humans. Cytosolic NADH reductive stress is predicted to increase production of diglycerides, reactive oxygen species, and methylglyoxal. Recent studies indicate that increasing NADH affects gene expression through the NADH activating transcriptional co-repressor, C-terminal binding protein (CtBP). In addition, it has been shown that the NADH utilizing enzyme, glyceraldehyde-3-phosphate dehydrogenase, participates as transcriptional regulator. These findings testify to the importance of NADH redox balance in cell biology and pathogenesis of diabetes and its complications. For example, through CtBP, the high NADH to NAD(+) ratio decreases an expression of SirT1, the protein inducing longevity and anti-apoptosis. This review covers metabolic cascades causing reductive stress and oxidative stress in diabetes after a brief introduction of the redox concept.

  13. Davydov's solitons in a homogeneous nucleotide chain

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor D.

    Charge transfer in homogeneous nucleotide chains is modeled on the basis of Holstein Hamiltonian. The path length of Davydov solitons in these chains is being studied. It is shown that in a dispersionless case, when the soliton velocity V is small, the path length grows exponentially as V decreases. In this case, the state of a moving soliton is quasisteady. In the presence of dispersion determined by the dependenceΩ2 =Ω 02 + V 02κ2, the path length in the region 0 < V < V0 is equal to infinity. In this case, the phonon environment follows the charge motion. In the region V > V0, the soliton motion is accompanied by emission of phonons which leads to a finite path length of a soliton. The latter tends to infinity as V → V0 + 0 and V → ∞. The presence of dissipation leads to a finite soliton path length. An equilibrium velocity of soliton in an external electric field is calculated. It is shown that there is a maximum intensity of an electric field at which a steady motion of a soliton is possible. The soliton mobility is calculated for the stable or ohmic brunch.

  14. Human molecular cytogenetics: From cells to nucleotides.

    PubMed

    Riegel, Mariluce

    2014-03-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.

  15. Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants.

    PubMed

    Matsumoto, Katsutoshi; Johnishi, Kousuke; Hamada, Hiroyuki; Sawada, Hiromasa; Takeuchi, Shigeharu; Kobayashi, Kappei; Suzuki, Kazumi; Kiba, Akinori; Hikichi, Yasufumi

    2009-03-01

    Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle virus (PaMMV) at 32 degrees C but not 24 degrees C. To identify the viral elicitor that activates the Hk-mediated resistance, several chimeric viral genomes were constructed between PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino acid change from threonine to serine at the 241st residue in the methyltransferase domain. Introduction of the A721U mutation into the replicase genes of parental PaMMV overcame the Hk resistance at 32 degrees C. The results indicate that Hk-mediated resistance is induced by PaMMV replicase proteins and that methyltransferase domain has a role in this elicitation.

  16. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  17. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  18. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  19. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  20. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  1. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  2. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  3. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  4. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  5. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  6. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  11. Collective judgment predicts disease-associated single nucleotide variants

    PubMed Central

    2013-01-01

    Background In recent years the number of human genetic variants deposited into the publicly available databases has been increasing exponentially. The latest version of dbSNP, for example, contains ~50 million validated Single Nucleotide Variants (SNVs). SNVs make up most of human variation and are often the primary causes of disease. The non-synonymous SNVs (nsSNVs) result in single amino acid substitutions and may affect protein function, often causing disease. Although several methods for the detection of nsSNV effects have already been developed, the consistent increase in annotated data is offering the opportunity to improve prediction accuracy. Results Here we present a new approach for the detection of disease-associated nsSNVs (Meta-SNP) that integrates four existing methods: PANTHER, PhD-SNP, SIFT and SNAP. We first tested the accuracy of each method using a dataset of 35,766 disease-annotated mutations from 8,667 proteins extracted from the SwissVar database. The four methods reached overall accuracies of 64%-76% with a Matthew's correlation coefficient (MCC) of 0.38-0.53. We then used the outputs of these methods to develop a machine learning based approach that discriminates between disease-associated and polymorphic variants (Meta-SNP). In testing, the combined method reached 79% overall accuracy and 0.59 MCC, ~3% higher accuracy and ~0.05 higher correlation with respect to the best-performing method. Moreover, for the hardest-to-define subset of nsSNVs, i.e. variants for which half of the predictors disagreed with the other half, Meta-SNP attained 8% higher accuracy than the best predictor. Conclusions Here we find that the Meta-SNP algorithm achieves better performance than the best single predictor. This result suggests that the methods used for the prediction of variant-disease associations are orthogonal, encoding different biologically relevant relationships. Careful combination of predictions from various resources is therefore a good strategy

  12. Substrate selectivity of Dengue and Zika virus NS5 polymerase towards 2'-modified nucleotide analogues.

    PubMed

    Potisopon, Supanee; Ferron, François; Fattorini, Véronique; Selisko, Barbara; Canard, Bruno

    2017-04-01

    In targeting the essential viral RNA-dependent RNA-polymerase (RdRp), nucleotide analogues play a major role in antiviral therapies. In the Flaviviridae family, the hepatitis C virus (HCV) can be eradicated from chronically infected patients using a combination of drugs which generally include the 2'-modified uridine analogue Sofosbuvir, delivered as nucleotide prodrug. Dengue and Zika viruses are emerging flaviviruses whose RdRp is closely related to that of HCV, yet no nucleoside drug has been clinically approved for these acute infections. We have purified dengue and Zika virus full-length NS5, the viral RdRps, and used them to assemble a stable binary complex made of NS5 and virus-specific RNA primer/templates. The complex was used to assess the selectivity of NS5 towards nucleotide analogues bearing modifications at the 2'-position. We show that dengue and Zika virus RdRps exhibit the same discrimination pattern: 2'-O-Me > 2'-C-Me-2'-F > 2'-C-Me nucleoside analogues, unlike HCV RdRp for which the presence of the 2'-F is beneficial rendering the discrimination pattern 2'-O-Me > 2'-C-Me ≥ 2'-C-Me-2'-F. Both 2'-C-Me and 2'-C-Me-2'-F analogues act as non-obligate RNA chain terminators. The dengue and Zika NS5 nucleotide selectivity towards 2'-modified NTPs mirrors potency of the corresponding analogues in infected cell cultures.

  13. Nucleotide variation of the Est-6 gene region in natural populations of Drosophila melanogaster.

    PubMed Central

    Balakirev, Evgeniy S; Ayala, Francisco J

    2003-01-01

    We have investigated nucleotide polymorphism in the Est-6 gene region in four samples of Drosophila melanogaster derived from natural populations of East Africa (Zimbabwe), Europe (Spain), North America (California), and South America (Venezuela). There are two divergent sequence types in the North and South American samples, which are not perfectly (North America) or not at all (South America) associated with the Est-6 allozyme variation. Less pronounced or no sequence dimorphism occurs in the European and African samples, respectively. The level of nucleotide diversity is highest in the African sample, lower (and similar to each other) in the samples from Europe and North America, and lowest in the sample from South America. The extent of linkage disequilibrium is low in Africa (1.23% significant associations), but much higher in non-African populations (22.59, 21.45, and 37.68% in Europe, North America, and South America, respectively). Tests of neutrality with recombination are significant in non-African samples but not significant in the African sample. We propose that demographic history (bottleneck and admixture of genetically different populations) is the major factor shaping the nucleotide patterns in the Est-6 gene region. However, positive selection modifies the pattern: balanced selection creates elevated levels of nucleotide variation around functionally important (target) polymorphic sites (RsaI-/RsaI+ in the promoter region and F/S in the coding region) in both African and non-African samples; and directional selection, acting during the geographic expansion phase of D. melanogaster, creates an excess of very similar sequences (RsaI- and S allelic lineages, in the promoter and coding regions, respectively) in the non-African samples. PMID:14704175

  14. A method for fast database search for all k-nucleotide repeats.

    PubMed Central

    Benson, G; Waterman, M S

    1994-01-01

    A significant portion of DNA consists of repeating patterns of various sizes, from very small (one, two and three nucleotides) to very large (over 300 nucleotides). Although the functions of these repeating regions are not well understood, they appear important for understanding the expression, regulation and evolution of DNA. For example, increases in the number of trinucleotide repeats have been associated with human genetic disease, including Fragile-X mental retardation and Huntington's disease. Repeats are also useful as a tool in mapping and identifying DNA; the number of copies of a particular pattern at a site is often variable among individuals (polymorphic) and is therefore helpful in locating genes via linkage studies and also in providing DNA fingerprints of individuals. The number of repeating regions is unknown as is the distribution of pattern sizes. It would be useful to search for such regions in the DNA database in order that they may be studied more fully. The DNA database currently consists of approximately 150 million basepairs and is growing exponentially. Therefore, any program to look for repeats must be efficient and fast. In this paper, we present some new techniques that are useful in recognizing repeating patterns and describe a new program for rapidly detecting repeat regions in the DNA database where the basic unit of the repeat has size up to 32 nucleotides. It is our hope that the examples in this paper will illustrate the unrealized diversity of repeats in DNA and that the program we have developed will be a useful tool for locating new and interesting repeats. PMID:7984436

  15. Structural basis for activation of alpha-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase.

    PubMed

    Meyer, P; Schneider, B; Sarfati, S; Deville-Bonne, D; Guerreiro, C; Boretto, J; Janin, J; Véron, M; Canard, B

    2000-07-17

    AIDS chemotherapy is limited by inadequate intracellular concentrations of the active triphosphate form of nucleoside analogues, leading to incomplete inhibition of viral replication and the appearance of drug-resistant virus. Drug activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively. We synthesized analogues with a borano (BH(3)(-)) group on the alpha-phosphate, and found that they are substrates for both enzymes. X-ray structures of complexes with nucleotide diphosphate kinase provided a structural basis for their activation. The complex with d4T triphosphate displayed an intramolecular CH.O bond contributing to catalysis, and the R(p) diastereoisomer of thymidine alpha-boranotriphosphate bound like a normal substrate. Using alpha-(R(p))-boranophosphate derivatives of the clinically relevant compounds AZT and d4T, the presence of the alpha-borano group improved both phosphorylation by nucleotide diphosphate kinase and inhibition of reverse transcription. Moreover, repair of blocked DNA chains by pyrophosphorolysis was reduced significantly in variant reverse transcriptases bearing substitutions found in drug-resistant viruses. Thus, the alpha-borano modification of analogues targeting reverse transcriptase may be of generic value in fighting viral drug resistance.

  16. Structural basis for activation of α-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase

    PubMed Central

    Meyer, Philippe; Schneider, Benoît; Sarfati, Simon; Deville-Bonne, Dominique; Guerreiro, Catherine; Boretto, Joëlle; Janin, Joël; Véron, Michel; Canard, Bruno

    2000-01-01

    AIDS chemotherapy is limited by inadequate intracellular concentrations of the active triphosphate form of nucleoside analogues, leading to incomplete inhibition of viral replication and the appearance of drug-resistant virus. Drug activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively. We synthesized analogues with a borano (BH3–) group on the α-phosphate, and found that they are substrates for both enzymes. X-ray structures of complexes with nucleotide diphosphate kinase provided a structural basis for their activation. The complex with d4T triphosphate displayed an intramolecular CH…O bond contributing to catalysis, and the Rp diastereoisomer of thymidine α-boranotriphosphate bound like a normal substrate. Using α-(Rp)-boranophosphate derivatives of the clinically relevant compounds AZT and d4T, the presence of the α-borano group improved both phosphorylation by nucleotide diphosphate kinase and inhibition of reverse transcription. Moreover, repair of blocked DNA chains by pyrophosphorolysis was reduced significantly in variant reverse transcriptases bearing substitutions found in drug-resistant viruses. Thus, the α-borano modification of analogues targeting reverse transcriptase may be of generic value in fighting viral drug resistance. PMID:10899107

  17. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity.

    PubMed Central

    Ogilvie, K K; Usman, N; Nicoghosian, K; Cedergren, R J

    1988-01-01

    Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites. p-Nitro-phenylethyl groups were used to protect the O6 of guanine residues. The fully deprotected tRNA analogue was characterized by polyacrylamide gel electrophoresis (sizing), terminal nucleotide analysis, sequencing, and total enzyme degradation, all of which indicated that the sequence was correct and contained only 3-5 linkages. The 77-mer was then assayed for amino acid acceptor activity by using E. coli methionyl-tRNA synthetase. The results indicated that the synthetic product, lacking modified bases, is a substrate for the enzyme and has an amino acid acceptance 11% of that of the major native species, tRNA(fMet) containing 7-methylguanosine at position 47. Images PMID:3413059

  18. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  19. Synthesis and nucleophilic aromatic substitution of 3-fluoro-5-nitro-1-(pentafluorosulfanyl)benzene

    PubMed Central

    Ajenjo, Javier; Greenhall, Martin; Zarantonello, Camillo

    2016-01-01

    Summary 3-Fluoro-5-nitro-1-(pentafluorosulfanyl)benzene was prepared by three different ways: as a byproduct of direct fluorination of 1,2-bis(3-nitrophenyl)disulfane, by direct fluorination of 4-nitro-1-(pentafluorosulfanyl)benzene, and by fluorodenitration of 3,5-dinitro-1-(pentafluorosulfanyl)benzene. The title compound was subjected to a nucleophilic aromatic substitution of the fluorine atom with oxygen, sulfur and nitrogen nucleophiles affording novel (pentafluorosulfanyl)benzenes with 3,5-disubstitution pattern. Vicarious nucleophilic substitution of the title compound with carbon, oxygen, and nitrogen nucleophiles provided 3-fluoro-5-nitro-1-(pentafluorosulfanyl)benzenes substituted in position four. PMID:26977178

  20. Fast nucleotide identification through fingerprinting using gold nanoparticle-based surface-assisted laser desorption/ionisation.

    PubMed

    Larguinho, Miguel; Capelo, José L; Baptista, Pedro V

    2013-02-15

    We report a method centred on gold nanoparticle-based surface-assisted laser desorption/ionisation for analysis of deoxynucleotides and alkylated nucleobases. Gold nanoparticles allow for enhanced analysis capability by eliminating undesired signature peaks; thus more elegant mass spectra can be attained that allow identification by nucleotide mass fingerprint. The resulting fingerprinting patterns on the spectra are compared and associated with the presence of different nucleotides in the sample. This method can be easily extended to modified nucleotides implicated in genome lesions due to exposure to environment chemicals, such as DNA adducts (e.g. guanine adducts). The use of gold nanoparticles for surface-assisted laser desorption/ionisation can be an useful tool to resolve common issues of background noise when analysing nucleic acids samples.

  1. Nucleotide variation in the p53 tumor-suppressor gene of voles from Chernobyl, Ukraine.

    PubMed

    DeWoody, J A

    1999-02-02

    The 1986 Chernobyl disaster contaminated vast regions of Ukraine and Belarus with a variety of radioactive isotopes and heavy metals. While over 90% of the radioactive isotopes have decayed into stable compounds, radiation levels in contaminated areas are still extraordinarily high. In fact, some rodents living near the reactor have internal 134,137Cs concentrations approaching 80 000 Bq/g. Several recent genetic analyses of vertebrates have illustrated that mutation rates of organisms exposed to radiation from Chernobyl are higher than in control groups, but none have studied DNA sequences. Nucleotide sequences of rodent mitochondrial genes were originally reported to have been hypervariable, but those results were subsequently retracted. Herein, I report the results of a pilot study to determine the extent of nucleotide variation at the p53 gene in four species of rodents (voles) from Chernobyl and from control sites. I sequenced a 788 bp region (coding and non-coding) of p53 in 30 different mice comprising four different species of Microtus. Nucleotide variation at the population level was due to deletions and substitutions; both were limited to introns. There were no significant differences between the number of haplotypes in radioactive and control populations (p=0.60). Rare or private alleles might have arisen due to unique mutational pressures at Chernobyl. Alternatively, natural selection might have favored one allele over others (i.e., a selective sweep). Neither scenario is strongly supported by these data. Thus, no apparent genetic effects of the Chernobyl disaster on the p53 gene of resident voles were revealed; more extensive surveys will be necessary to determine if mutation rates are indeed elevated in mice from Chernobyl. However, two salient points emerge; the first involves the utility of introns as markers for mutations in coding regions and the second considers the relative merits of cloning in mutation detection studies.

  2. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter

    PubMed Central

    Hohl, Michael; Hürlimann, Lea M.; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G.; Bordignon, Enrica; Seeger, Markus A.

    2014-01-01

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5′-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport. PMID:25030449

  3. What happened to blood substitutes?

    PubMed

    Stowell, C P

    2005-11-01

    Concerns about the safety and adequacy of the blood supply have fostered twenty years of research into the so-called "blood substitutes" among them the oxygen carriers based on modified hemoglobin. Although none of these materials has yet been licensed for use in North America or Europe, the results of research and clinical trials have increased our understanding of oxygen delivery and its regulation. In particular, the examination of the basis for the vasoactivity observed with some of the hemoglobin based oxygen carriers has led to the insight that several colligative properties of hemoglobin solutions, such as their diffusion coefficient for oxygen, viscosity and colloid oncotic pressure, are important determinants of efficacy.

  4. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes.

    PubMed Central

    Orchinik, M; Murray, T F; Franklin, P H; Moore, F L

    1992-01-01

    The recently characterized corticosteroid receptor on amphibian neuronal membranes appears to mediate rapid, stress-induced changes in male reproductive behaviors. Because the transduction mechanisms associated with this receptor are unknown, we performed radioligand binding studies to determine whether this steroid receptor is negatively modulated by guanyl nucleotides. The binding of [3H]corticosterone to neuronal membranes was inhibited by nonhydrolyzable guanyl nucleotides in both equilibrium saturation binding and titration studies. The addition of guanyl nucleotide plus unlabeled corticosterone induced a rapid phase of [3H]corticosterone dissociation from membranes that was not induced by addition of unlabeled ligand alone. Furthermore, the equilibrium binding of [3H]corticosterone and the sensitivity of the receptor to modulation by guanyl nucleotides were both enhanced by Mg2+. These results are consistent with the formation of a ternary complex of steroid, receptor, and guanine nucleotide-binding protein that is subject to regulation by guanyl nucleotides. Therefore, rapid signal transduction through corticosteroid receptors on neuronal membranes appears to be mediated by guanine nucleotide-binding proteins. PMID:1570300

  5. Importance of purine and pyrimidine content of local nucleotide sequences (six bases long) for evolution of the human immunodeficiency virus type 1.

    PubMed Central

    Doi, H

    1991-01-01

    Human immunodeficiency virus type 1 evolves rapidly, and random base change is thought to act as a major factor in this evolution. However, segments of the viral genome differ in their variability: there is the highly variable env gene, particularly hypervariable regions located within env, and, in contrast, the conservative gag and pol genes. Computer analysis of the nucleotide sequences of human immunodeficiency virus type 1 isolates reveals that base substitution in this virus is nonrandom and affected by local nucleotide sequences. Certain local sequences 6 base pairs long are excessively frequent in the hypervariable regions. These sequences exhibit base-substitution hotspots at specific positions in their 6 bases. The hotspots tend to be nonsilent letters of codons in the hypervariable regions--thus leading to marked amino acid substitutions there. Conversely, in the conservative gag and pol genes the hotspots tend to be silent letters because of a difference in codon frame from the hypervariable regions. Furthermore, base substitutions in the local sequences that frequently appear in the conservative genes occurred at a low level, even within the variable env. Thus, despite the high variability of this virus, the conservative genes and their products could be conserved. These may be some of the strategies evolved in human immunodeficiency virus type 1 to allow for positive-selection pressures, such as the host immune system, and negative-selection pressures on the conservative gene products. Images PMID:1924392

  6. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  7. Identifying 2'-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions.

    PubMed

    Chen, Wei; Feng, Pengmian; Tang, Hua; Ding, Hui; Lin, Hao

    2016-06-01

    2'-O-methylationation is an important post-transcriptional modification and plays important roles in many biological processes. Although experimental technologies have been proposed to detect 2'-O-methylationation sites, they are cost-ineffective. As complements to experimental techniques, computational methods will facilitate the identification of 2'-O-methylationation sites. In the present study, we proposed a support vector machine-based method to identify 2'-O-methylationation sites. In this method, RNA sequences were formulated by nucleotide chemical properties and nucleotide compositions. In the jackknife cross-validation test, the proposed method obtained an accuracy of 95.58% for identifying 2'-O-methylationation sites in the human genome. Moreover, the model was also validated by identifying 2'-O-methylation sites in the Mus musculus and Saccharomyces cerevisiae genomes, and the obtained accuracies are also satisfactory. These results indicate that the proposed method will become a useful tool for the research on 2'-O-methylation.

  8. Use This Test to Spruce Up Your Substitute Teacher Program.

    ERIC Educational Resources Information Center

    Sendor, Elizabeth

    1982-01-01

    Presents and interprets an 18-question test to determine how well a school's substitute teacher program functions. Topics covered include substitute teacher screening and preparation, lists of substitutes, lesson plans, staff and student evaluation of substitutes, substitutes' salaries, legal considerations, and making substitutes feel needed.…

  9. Biologic and synthetic skin substitutes: An overview.

    PubMed

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  10. Biologic and synthetic skin substitutes: An overview

    PubMed Central

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd. Yussof, Shah Jumaat

    2010-01-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing. PMID:21321652

  11. Single-nucleotide polymorphism discovery by targeted DNA photocleavage.

    PubMed

    Hart, Jonathan R; Johnson, Martin D; Barton, Jacqueline K

    2004-09-28

    Single-nucleotide polymorphisms are the largest source of genetic variation in humans. We report a method for the discovery of single-nucleotide polymorphisms within genomic DNA. Pooled genomic samples are amplified, denatured, and annealed to generate mismatches at polymorphic DNA sites. Upon photoactivation, these DNA mismatches are then cleaved site-specifically by using a small molecular probe, a bulky metallointercalator, Rhchrysi or Rhphzi. Fluorescent labeling of the cleaved products and separation by capillary electrophoresis permits rapid identification with single-base resolution of the single-nucleotide polymorphism site. This method is remarkably sensitive and minor allele frequencies as low as 5% can be readily detected.

  12. Dependence of the Excitability of Pituitary Cells on Cyclic Nucleotides

    PubMed Central

    Stojilkovic, Stanko S.; Kretschmannova, Karla; Tomic, Melanija; Stratakis, Constantine A.

    2012-01-01

    Cyclic 3′,5′-adenosine monophosphate and cyclic 3′,5′-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. Here, we review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process. PMID:22564128

  13. Nucleotide Accumulation Induced in Staphylococcus aureus by Glycine

    PubMed Central

    Strominger, Jack L.; Birge, Claire H.

    1965-01-01

    Strominger, Jack L. (Washington University School of Medicine, St. Louis, Mo.), and Claire H. Birge. Nucleotide accumulation induced in Staphylococcus aureus by glycine. J. Bacteriol. 89:1124–1127. 1965.—High concentrations of glycine induce accumulation of four uridine nucleotides in Staphylococcus aureus. Investigations of their structure suggest that these compounds are uridine diphosphate (UDP)-acetylmuramic acid, UDP-acetylmuramyl-gly-d-glu-l-lys, UDP-acetylmuramyl-l-ala-d-glu-l-lys and UDP-acetylmuramyl-gly-d-glu-l-lys-d-ala-d-ala. The mechanism by which glycine may induce uridine nucleotide accumulation and protoplast formation is discussed. Images PMID:14276106

  14. Time-resolved FRET for single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Andreoni, Alessandra; Nardo, Luca; Bondani, Maria

    2009-05-01

    By tens-of-picosecond resolved fluorescence detection (TCSPC, time-correlated single-photon counting) we study Förster resonance energy transfer between a donor and a black-hole-quencher acceptor bound at the 5'- and 3'-positions of a synthetic DNA oligonucleotide. This dual labelled oligonucleotide is annealed with either the complementary sequence or with sequences that mimic single-nucleotide polymorphic gene sequences: they differ in one nucleotide at positions near either the ends or the center of the oligonucleotide. We find donor fluorescence decay times whose values are definitely distinct and discuss the feasibility of single nucleotide polymorphism genotyping by this method.

  15. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis.

    PubMed

    Neale, A D; Scopes, R K; Wettenhall, R E; Hoogenraad, N J

    1987-02-25

    Pyruvate decarboxylase (EC 4.1.1.1), the penultimate enzyme in the alcoholic fermentation pathway of Zymomonas mobilis, converts pyruvate to acetaldehyde and carbon dioxide. The complete nucleotide sequence of the structural gene encoding pyruvate decarboxylase from Zymomonas mobilis has been determined. The coding region is 1704 nucleotides long and encodes a polypeptide of 567 amino acids with a calculated subunit mass of 60,790 daltons. The amino acid sequence was confirmed by comparison with the amino acid sequence of a selection of tryptic fragments of the enzyme. The amino acid composition obtained from the nucleotide sequence is in good agreement with that obtained experimentally.

  16. Cement from magnesium substituted hydroxyapatite.

    PubMed

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  17. Substitutional doping in nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.; Wong, Eric; Datta, Bianca; Damodhar, Divij; Doan-Nguyen, Vicky V. T.; Herzing, Andrew A.; Kagan, Cherie R.; Murray, Christopher B.

    2015-08-01

    Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

  18. Nucleotide Sequence of the Akv env Gene

    PubMed Central

    Lenz, Jack; Crowther, Robert; Straceski, Anthony; Haseltine, William

    1982-01-01

    The sequence of 2,191 nucleotides encoding the env gene of murine retrovirus Akv was determined by using a molecular clone of the Akv provirus. Deduction of the encoded amino acid sequence showed that a single open reading frame encodes a 638-amino acid precursor to gp70 and p15E. In addition, there is a typical leader sequence preceding the amino terminus of gp70. The locations of potential glycosylation sites and other structural features indicate that the entire gp70 molecule and most of p15E are located on the outer side of the membrane. Internal cleavage of the env precursor to generate gp70 and p15E occurs immediately adjacent to several basic amino acids at the carboxyl terminus of gp70. This cleavage generates a region of 42 uncharged, relatively hydrophobic amino acids at the amino terminus of p15E, which is located in a position analogous to the hydrophobic membrane fusion sequence of influenza virus hemagglutinin. The mature polypeptides are predicted to associate with the membrane via a region of 30 uncharged, mostly hydrophobic amino acids located near the carboxyl terminus of p15E. Distal to this membrane association region is a sequence of 35 amino acids at the carboxyl terminus of the env precursor, which is predicted to be located on the inner side of the membrane. By analogy to Moloney murine leukemia virus, a proteolytic cleavage in this region removes the terminal 19 amino acids, thus generating the carboxyl terminus of p15E. This leaves 15 amino acids at the carboxyl terminus of p15E on the inner side of the membrane in a position to interact with virion cores during budding. The precise location and order of the large RNase T1-resistant oligonucleotides in the env region were determined and compared with those from several leukemogenic viruses of AKR origin. This permitted a determination of how the differences in the leukemogenic viruses affect the primary structure of the env gene products. PMID:6283170

  19. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  20. Linking the human cytogenetic map with nucleotide sequence: the CCAP clone set.

    PubMed

    Jang, Wonhee; Yonescu, Raluca; Knutsen, Turid; Brown, Theresa; Reppert, Tricia; Sirotkin, Karl; Schuler, Gregory D; Ried, Thomas; Kirsch, Ilan R

    2006-07-15

    We present the completed dataset and clone repository of the Cancer Chromosome Aberration Project (CCAP), an initiative developed and funded through the intramural program of the U.S. National Cancer Institute, to provide seamless linkage of human cytogenetic markers with the primary nucleotide sequence of the human genome. Spaced at 1-2 Mb intervals across the human genome, 1,339 bacterial artificial chromosome (BAC) clones have been localized to chromosomal bands through high-resolution fluorescence in situ hybridization (FISH) mapping. Of these clones, 99.8% can be positioned on the primary human genome sequence and 95% are placed at or close to their precise nucleotide starts and stops. This dataset can be studied and manipulated within generally available public Web sites. The clones are available from a commercial repository. The CCAP BAC clone set provides anchors for the interrogation of gene and sequence involvement in oncogenic and developmental disorders when the starting point is the recognition of a structural, numerical, or interstitial chromosomal aberration. This dataset also provides a current view of the quality and coherence of the available genome sequence and insight into the nucleotide and three-dimensional structures that manifest as Giemsa light and dark chromosomal banding patterns.

  1. Cyclic nucleotide gated channels and related signaling components in plant innate immunity.

    PubMed

    Ma, Wei; Smigel, Andries; Verma, Rajeev; Berkowitz, Gerald A

    2009-04-01

    Although plants lack the mobile sentry cells present in animal innate immune systems, plants have developed complex innate immune reactions triggering basal resistance and the hypersensitive response (HR). Cytosolic Ca(2+) elevation is considered to be an important early event in this pathogen response signal transduction cascade. Plasma membrane (PM)-localized cyclic nucleotide gated channels (CNGCs) contribute to the cytosolic Ca(2+) rise upon pathogen perception. Recent work suggests that some PM-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) may be involved in the perception of pathogen associated molecular pattern molecules and triggering some pathogen responses in plants, some of these LRR-RLKs might have cyclic nucleotide cyclase activity. The recognition of pathogens may be connected to cyclic nucleotide generation and the activation of CNGCs, followed by cytosolic Ca(2+) increase and downstream signaling events (possibly involving nitric oxide, reactive oxygen species (ROS), calmodulin (CaM), CaM-like protein (CML) and protein kinases). Notably, CaM or CML could be the crucial sensor downstream from the early Ca(2+) signal leading to nitric oxide (NO) production during plant innate immune responses.

  2. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  3. Why Nature Chose A, C, G and U/T: An Error-Coding Perspective of Nucleotide Alphabet Composition

    NASA Astrophysics Data System (ADS)

    Dónaill, Dónall A. Mac

    2003-10-01

    The question of whether the size and make-up of the natural nucleotide alphabet is a consequence of selection pressure, or simply a frozen accident, is one of the fundamental questions of biology. Nucleotide replication is essentially an information transmission phenomenon, and so it seems reasonable to explore the issue from the perspective of theoretical computer science, and of error-coding theory in particular. In this analysis it is shown that the essential recognition features of nucleotides may be naturally expressed as 4-digit binary numbers, capturing the hydrogen acceptor/donor patterns (3-bits) and the purine/pyrimidine feature (1-bit). Optimal alphabets consist of nucleotides in which the purine/pyrimidine feature is related to the acceptor/donor pattern as a parity bit. Numerically interpreted, such alphabets correspond to parity check codes, simple but effective error-resistant structures. The natural alphabet appears to be an adaptation of one of two optimal solutions, constrained to its present size and composition by a combination of chemical and coding-theory factors.

  4. Rapid replacement of human respiratory syncytial virus A with the ON1 genotype having 72 nucleotide duplication in G gene.

    PubMed

    Kim, You-Jin; Kim, Dae-Won; Lee, Wan-Ji; Yun, Mi-Ran; Lee, Ho Yeon; Lee, Han Saem; Jung, Hee-Dong; Kim, Kisoon

    2014-08-01

    Human respiratory syncytial virus (HRSV) is the main cause of severe respiratory illness in young children and elderly people. We investigated the genetic characteristics of the circulating HRSV subgroup A (HRSV-A) to determine the distribution of genotype ON1, which has a 72-nucleotide duplication in attachment G gene. We obtained 456 HRSV-A positive samples between October 2008 and February 2013, which were subjected to sequence analysis. The first ON1 genotype was discovered in August 2011 and 273 samples were identified as ON1 up to February 2013. The prevalence of the ON1 genotype increased rapidly from 17.4% in 2011-2012 to 94.6% in 2012-2013. The mean evolutionary rate of G protein was calculated as 3.275 × 10(-3) nucleotide substitution/site/year and several positively selected sites for amino acid substitutions were located in the predicted epitope region. This basic and important information may facilitate a better understanding of HRSV epidemiology and evolution.

  5. Activation of anti-reverse transcriptase nucleotide analogs by nucleoside diphosphate kinase: improvement by alpha-boranophosphate substitution.

    PubMed

    Schneider, B; Meyer, P; Sarfati, S; Mulard, L; Guerreiro, C; Boretto, J; Janin, J; Véron, M; Deville-Bonne, D; Canard, B

    2001-01-01

    Nucleoside activation by nucleoside diphosphate kinase and inhibition of HIV-1 reverse transcriptase were studied comparatively for a new class of nucleoside analogs with a borano (BH3-) or a thio (SH) group on the alpha-phosphate. Both the alpha-Rp-borano derivatives of AZT and d4T improved phosphorylation by NDP kinase, inhibition of reverse transcription as well as stability of alpha-borano nonophosphate derivatives in terminated viral DNA chain.

  6. Dominant Role of Nucleotide Substitution in the Diversification of Serotype 3 Pneumococci over Decades and during a Single Infection

    PubMed Central

    Croucher, Nicholas J.; Mitchell, Andrea M.; Gould, Katherine A.; Inverarity, Donald; Barquist, Lars; Feltwell, Theresa; Fookes, Maria C.; Harris, Simon R.; Dordel, Janina; Salter, Susannah J.; Browall, Sarah; Zemlickova, Helena; Parkhill, Julian; Normark, Staffan; Henriques-Normark, Birgitta; Hinds, Jason; Mitchell, Tim J.; Bentley, Stephen D.

    2013-01-01

    Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex's entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that up-regulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype. PMID:24130509

  7. Transposon-directed base-exchange mutagenesis (TDEM): a novel method for multiple-nucleotide substitutions within a target gene.

    PubMed

    Kim, Yun Cheol; Lee, Hui Sun; Yoon, Sukjoon; Morrison, Sherie L

    2009-06-01

    In this report we describe transposon-directed base-exchange mutagenesis (TDEM), an efficient and controllable method for introducing a mutation into a gene. Each round of TDEM can remove up to 11 base pairs from a randomly selected site within the target gene and replace them with any length of DNA of predetermined sequence. Therefore, the number of bases to be deleted and inserted can be independently regulated providing greater versatility than existing methods of transposon-based mutagenesis. Subsequently, multiple rounds of mutagenesis will provide a diverse mutant library that contains multiple mutations throughout the gene. Additionally, we developed a simple frame-checking procedure that eliminates nonfunctional mutants containing frameshifts or stop codons. As a proof of principle, we used TDEM to generate mutant lacZalpha lacking alpha-complementation activity and recovered active revertants using a second round of TDEM. Furthermore, a single round of TDEM yielded unique, inactive mutants of ccdB.

  8. Nucleotide excision repair of DNA: The very early history.

    PubMed

    Friedberg, Errol C

    2011-07-15

    This article, taken largely from the book Correcting the Blueprint of Life: An Historical Account of the Discovery of DNA Repair Mechanisms, summarizes the very early history of the discovery of nucleotide excision repair.

  9. Blood Substitutes: Effects on Drug Pharmacokinetics.

    DTIC Science & Technology

    1984-03-01

    RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A - S . *.* , S. AD __ _ _ _ _? ,:-:t’ REPORT NUMBER: 2 BLOOD SUBSTITUTES: EFFECTS ON DRUG ...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER.1-t 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED FINAL REPORT BLOOD SUBSTITUTES: EFFECTS ON DRUG ...Identify by block number) Blood substitutes; perfluorocarbons; stroma-free hemoglobin; drug pharmaco- kinetics S. ADST RACT (Cn*tfe am revere dm* if

  10. Design, synthesis and anticonvulsant evaluation of novel N-(4-substituted phenyl)-2-[4-(substituted) benzylidene]-hydrazinecarbothio amides.

    PubMed

    Tripathi, Laxmi; Kumar, Praveen; Singh, Ranjit; Stables, James P

    2012-01-01

    Thirty six new N-(4-substituted phenyl)-2-[4-(substituted) benzylidene]-hydrazinecarbothioamides were synthesized and evaluated for anticonvulsant activity and neurotoxicity. The anticonvulsant activity was established in three seizure models i.e. MES, scMET and 6 Hz model. The most active compound was 2-[4-(4-chlorophenoxy)benzylidene]-N-(4-fluorophenyl)hydrazinecarbothioamide PC 31 which showed 100% protection at 0.5 h in the 6 Hz test. Compound 2-[4-(4-bromophenoxy) benzylidene]-N-(4-bromophenyl) hydrazinecarbothioamide PC 23 was found to be active in both the MES and 6 Hz test. A computational study was carried out from calculation of a pharmacophore pattern and the prediction of pharmacokinetic properties. Titled compounds have also exhibited good binding properties with epilepsy molecular targets such as glutamate, GABA (A) delta and GABA (A) alpha-1 receptors, in the Lamarckian genetic algorithm based on flexible docking studies.

  11. Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38.

    PubMed

    Higashida, Haruhiro; Yokoyama, Shigeru; Huang, Jian-Jun; Liu, Li; Ma, Wen-Jie; Akther, Shirin; Higashida, Chiharu; Kikuchi, Mitsuru; Minabe, Yoshio; Munesue, Toshio

    2012-11-01

    Previously, we demonstrated that CD38, a transmembrane protein with ADP-ribosyl cyclase activity, plays a critical role in mouse social behavior by regulating the release of oxytocin (OXT), which is essential for mutual recognition. When CD38 was disrupted, social amnesia was observed in Cd38 knockout mice. The autism spectrum disorders (ASDs), characterized by defects in reciprocal social interaction and communication, occur either sporadically or in a familial pattern. However, the etiology of ASDs remains largely unknown. Therefore, the theoretical basis for pharmacological treatments has not been established. Hence, there is a rationale for investigating single nucleotide polymorphisms (SNPs) in the human CD38 gene in ASD subjects. We found several SNPs in this gene. The SNP rs3796863 (C>A) was associated with high-functioning autism (HFA) in American samples from the Autism Gene Resource Exchange. Although this finding was partially confirmed in low-functioning autism subjects in Israel, it has not been replicated in Japanese HFA subjects. The second SNP of interest, rs1800561 (4693C>T), leads to the substitution of an arginine (R) at codon 140 by tryptophan (W; R140W) in CD38. This mutation was found in four probands of ASD and in family members of three pedigrees with variable levels of ASD or ASD traits. The plasma levels of OXT in ASD subjects with the R140W allele were lower than those in ASD subjects lacking this allele. The OXT levels were unchanged in healthy subjects with or without this mutation. One proband with the R140W allele receiving intranasal OXT for approximately 3years showed improvement in areas of social approach, eye contact and communication behaviors, emotion, irritability, and aggression. Five other ASD subjects with mental deficits received nasal OXT for various periods; three subjects showed improved symptoms, while two showed little or no effect. These results suggest that SNPs in CD38 may be possible risk factors for ASD by

  12. Reducing nontemplated 3' nucleotide addition to polynucleotide transcripts

    DOEpatents

    Kao, C. Cheng

    2000-01-01

    Non-template 3' nucleotide addition to a transcript is reduced by transcribing a transcript from a template comprising an ultimate and/or penultimate 5' ribose having a C'2 substituent such as methoxy, which reduces non-template 3' nucleotide addition to the transcript. The methods are shown to be applicable to a wide variety of polymerases, including Taq, T7 RNA polymerase, etc.

  13. Microsporidia: Why Make Nucleotides if You Can Steal Them?

    PubMed Central

    Dean, Paul; Hirt, Robert P.

    2016-01-01

    Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions. PMID:27855212

  14. Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition

    PubMed Central

    Quinn, Ryan; Basanta-Sanchez, Maria; Rose, Rebecca E.; Fabris, Daniele

    2013-01-01

    The challenges posed by the analysis of mono-nucleotide mixtures by direct infusion electrospray ionization (ESI) were examined in the context of recent advances of MS technologies. In particular, we evaluated the merits of high-resolution mass analysis, multistep gas-phase dissociation, and ion mobility determinations for the characterization of species with very similar or identical elemental composition. The high resolving power afforded by a linear trap quadrupole (LTQ)-orbitrap allowed the complete differentiation of overlapping isotopic distributions produced by nucleotides that differed by a single mass unit. Resolving 12C signals from nearly overlapped 13C contributions provided the exact masses necessary to calculate matching elemental compositions for unambiguous formulae assignment. However, it was the ability to perform sequential steps of gas-phase dissociation (i.e., MSn-type analysis) that proved more valuable for discriminating between truly isobaric nucleotides, such as the AMP/dGMP and UMP/ψMP couples, which were differentiated in the mixture from their unique fragmentation patterns. The identification of diagnostic fragments enabled the deconvolution of dissociation spectra containing the products of coexisting isobars that could not be individually isolated in the mass-selection step. Approaches based on ion mobility spectrometry (IMS)-MS provided another dimension upon which isobaric nucleotides could be differentiated according to their distinctive mobility behaviors. Subtle structural variations, such as the different positions of an oxygen atom in AMP/dGMP or the glycosidic bond in UMP/ψMP, produced detectable differences in the respective ion mobility profiles, which enabled the differentiation of the isobaric couples in the mixture. Parallel activation of all ions emerging from the ion mobility element provided an additional dimension for differentiating these analytes on the basis of both mobility and fragmentation properties. PMID

  15. Direct infusion analysis of nucleotide mixtures of very similar or identical elemental composition.

    PubMed

    Quinn, Ryan; Basanta-Sanchez, Maria; Rose, Rebecca E; Fabris, Daniele

    2013-06-01

    The challenges posed by the analysis of mono-nucleotide mixtures by direct infusion electrospray ionization were examined in the context of recent advances of mass spectrometry (MS) technologies. In particular, we evaluated the merits of high-resolution mass analysis, multistep gas-phase dissociation, and ion mobility determinations for the characterization of species with very similar or identical elemental composition. The high resolving power afforded by a linear trap quadrupole-orbitrap allowed the complete differentiation of overlapping isotopic distributions produced by nucleotides that differed by a single mass unit. Resolving (12)C signals from nearly overlapped (13)C contributions provided the exact masses necessary to calculate matching elemental compositions for unambiguous formulae assignment. However, it was the ability to perform sequential steps of gas-phase dissociation (i.e. MS(n)-type analysis) that proved more valuable for discriminating between truly isobaric nucleotides, such as the AMP/dGMP and UMP/ΨMP couples, which were differentiated in the mixture from their unique fragmentation patterns. The identification of diagnostic fragments enabled the deconvolution of dissociation spectra containing the products of coexisting isobars that could not be individually isolated in the mass-selection step. Approaches based on ion mobility spectrometry-MS provided another dimension upon which isobaric nucleotides could be differentiated according to their distinctive mobility behaviors. Subtle structural variations, such as the different positions of an oxygen atom in AMP/dGMP or the glycosidic bond in UMP/ΨMP, produced detectable differences in the respective ion mobility profiles, which enabled the differentiation of the isobaric couples in the mixture. Parallel activation of all ions emerging from the ion mobility element provided an additional dimension for differentiating these analytes on the basis of both mobility and fragmentation properties.

  16. A Fluorescence Light-Up Ag Nanocluster Probe that Discriminates Single-Nucleotide Variants by Emission Color

    PubMed Central

    Yeh, Hsin-Chih; Sharma, Jaswinder; Shih, Ie-Ming; Vu, Dung M.; Martinez, Jennifer S.; Werner, James H.

    2012-01-01

    Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual’s genome is still an unmet challenge at point-of-care settings. One crucial step towards this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCluster Beacons (NCBs) are collections of a small number of Ag atoms templated on single-stranded DNA that fluoresce strongly when placed in proximity to particular DNA sequences, termed enhancers. Here we show the fluorescence emission color of a NCB can change substantially (a shift of 60–70 nm in the emission maximum) depending upon the alignment between the silver nanocluster and the DNA enhancer sequence. Chameleon NCBs exploit this color shift to directly detect SNPs, based on the fact that different SNPs produce a different alignment between the Ag nanocluster and the enhancer. This SNP detection method has been validated on all single-nucleotide substitution scenarios in three synthetic DNA targets, in six disease-related SNP targets, and in two clinical samples taken from patients with ovarian serous borderline tumors. Samples with single-nucleotide variations can be easily identified by the naked eye under UV excitation, making this method a reliable and low-cost assay with a simple readout format. PMID:22775452

  17. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color.

    PubMed

    Yeh, Hsin-Chih; Sharma, Jaswinder; Shih, Ie-Ming; Vu, Dung M; Martinez, Jennifer S; Werner, James H

    2012-07-18

    Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual's genome is still an unmet challenge at point-of-care settings. One crucial step toward this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCluster Beacons (NCBs) are collections of a small number of Ag atoms templated on single-stranded DNA that fluoresce strongly when placed in proximity to particular DNA sequences, termed enhancers. Here we show the fluorescence emission color of a NCB can change substantially (a shift of 60-70 nm in the emission maximum) depending upon the alignment between the silver nanocluster and the DNA enhancer sequence. Chameleon NCBs exploit this color shift to directly detect SNPs, based on the fact that different SNPs produce a different alignment between the Ag nanocluster and the enhancer. This SNP detection method has been validated on all single-nucleotide substitution scenarios in three synthetic DNA targets, in six disease-related SNP targets, and in two clinical samples taken from patients with ovarian serous borderline tumors. Samples with single-nucleotide variations can be easily identified by the naked eye under UV excitation, making this method a reliable and low-cost assay with a simple readout format.

  18. Mammalian mismatches in nucleotide metabolism: implications for xenotransplantation.

    PubMed

    Khalpey, Zain; Yuen, Ada H Y; Lavitrano, Marialuisa; McGregor, Christopher G A; Kalsi, Kameljit K; Yacoub, Magdi H; Smolenski, Ryszard T

    2007-10-01

    Acute humoral rejection (AHR) limits the clinical application of animal organs for xenotransplantation. Mammalian disparities in nucleotide metabolism may contribute significantly to the microvascular component in AHR; these, however remain ill-defined. We evaluated the extent of species-specific differences in nucleotide metabolism. HPLC analysis was performed on venous blood samples (nucleotide metabolites) and heart biopsies (purine enzymes) from wild type mice, rats, pigs, baboons, and human donors.Ecto-5'-nucleotidase (E5'N) activities were 4-fold lower in pigs and baboon hearts compared to human and mice hearts while rat activity was highest. Similar differences between pigs and humans were also observed with kidneys and endothelial cells. More than 10-fold differences were observed with other purine enzymes. AMP deaminase (AMPD) activity was exceptionally high in mice but very low in pig and baboon hearts. Adenosine deaminase (ADA) activity was highest in baboons. Adenosine kinase (AK) activity was more consistent across different species. Pig blood had the highest levels of hypoxanthine, inosine and adenine. Human blood uric acid concentration was almost 100 times higher than in other species studied. We conclude that species-specific differences in nucleotide metabolism may affect compatibility of pig organs within a human metabolic environment. Furthermore, nucleotide metabolic mismatches may affect clinical relevance of animal organ transplant models. Supplementation of deficient precursors or application of inhibitors of nucleotide metabolism (e.g., allopurinol) or transgenic upregulation of E5'N may overcome some of these differences.

  19. Single nucleotide polymorphisms in nucleotide excision repair genes, cancer treatment, and head and neck cancer survival

    PubMed Central

    Wyss, Annah B.; Weissler, Mark C.; Avery, Christy L.; Herring, Amy H.; Bensen, Jeannette T.; Barnholtz-Sloan, Jill S.; Funkhouser, William K.

    2014-01-01

    Purpose Head and neck cancers (HNC) are commonly treated with radiation and platinum-based chemotherapy, which produce bulky DNA adducts to eradicate cancerous cells. Because nucleotide excision repair (NER) enzymes remove adducts, variants in NER genes may be associated with survival among HNC cases both independently and jointly with treatment. Methods Cox proportional hazards models were used to estimate race-stratified (White, African American) hazard ratios (HRs) and 95 % confidence intervals for overall (OS) and disease-specific (DS) survival based on treatment (combinations of surgery, radiation, and chemotherapy) and 84 single nucleotide polymorphisms (SNPs) in 15 NER genes among 1,227 HNC cases from the Carolina Head and Neck Cancer Epidemiology Study. Results None of the NER variants evaluated were associated with survival at a Bonferroni-corrected alpha of 0.0006. However, rs3136038 [OS HR = 0.79 (0.65, 0.97), DS HR = 0.69 (0.51, 0.93)] and rs3136130 [OS HR = 0.78 (0.64, 0.96), DS HR = 0.68 (0.50, 0.92)] of ERCC4 and rs50871 [OS HR = 0.80 (0.64, 1.00), DS HR = 0.67 (0.48, 0.92)] of ERCC2 among Whites, and rs2607755 [OS HR = 0.62 (0.45, 0.86), DS HR = 0.51 (0.30, 0.86)] of XPC among African Americans were suggestively associated with survival at an uncorrected alpha of 0.05. Three SNP-treatment joint effects showed possible departures from additivity among Whites. Conclusions Our study, a large and extensive evaluation of SNPs in NER genes and HNC survival, identified mostly null associations, though a few variants were suggestively associated with survival and potentially interacted additively with treatment. PMID:24487794

  20. Diazepam with your dinner, Sir? The lifestyle drug-substitution strategy: a radical alcohol policy.

    PubMed

    Charlton, B G

    2005-06-01

    Over recent decades the drink problem in the British Isles has grown to become arguably the worst in the Western world, combining the high average alcohol intake of southern Europe with binge-drinking typical of extreme latitudes. Since the problem continues to worsen, and traditional strategies regulating price and access are probably untenable, radical new alcohol policies are required. The drug-substitution strategy is based on an assumption that most people use lifestyle drugs rationally for self-medication purposes, to achieve specific desired psychological effects, especially enhanced well-being. When there is access to an equally effective, but safer, alternative drug, then people would tend to switch to it (especially when the substitute is legal and socially-acceptable). There are several safer lifestyle drug-substitutes for alcohol, including benzodiazepines, SSRIs and marijuana. Southern Europeans use alcohol mainly as an anxiolytic social lubricant, taken in low but frequent doses with high annual per capita consumption, and for this pattern, benzodiazepines might be a medically safer lifestyle drug-substitute. Northern Europeans traditionally use alcohol in high doses as a euphoric intoxicant, and for this pattern, marijuana might be a safer and less-antisocial substitute. Since this risk-benefit calculus implies that there are better alternatives to alcohol, government policy should promote safer lifestyle drug-substitutes by removing legal barriers and altering the balance of economic and social incentives.

  1. Auditory Sensory Substitution is Intuitive and Automatic with Texture Stimuli

    PubMed Central

    Stiles, Noelle R. B.; Shimojo, Shinsuke

    2015-01-01

    Millions of people are blind worldwide. Sensory substitution (SS) devices (e.g., vOICe) can assist the blind by encoding a video stream into a sound pattern, recruiting visual brain areas for auditory analysis via crossmodal interactions and plasticity. SS devices often require extensive training to attain limited functionality. In contrast to conventional attention-intensive SS training that starts with visual primitives (e.g., geometrical shapes), we argue that sensory substitution can be engaged efficiently by using stimuli (such as textures) associated with intrinsic crossmodal mappings. Crossmodal mappings link images with sounds and tactile patterns. We show that intuitive SS sounds can be matched to the correct images by naive sighted participants just as well as by intensively-trained participants. This result indicates that existing crossmodal interactions and amodal sensory cortical processing may be as important in the interpretation of patterns by SS as crossmodal plasticity (e.g., the strengthening of existing connections or the formation of new ones), especially at the earlier stages of SS usage. An SS training procedure based on crossmodal mappings could both considerably improve participant performance and shorten training times, thereby enabling SS devices to significantly expand blind capabilities. PMID:26490260

  2. IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate responsive element.

    PubMed

    Garat, Anne; Cauffiez, Christelle; Hamdan-Khalil, Rima; Glowacki, François; Devos, Aurore; Leclerc, Julie; Lionet, Arnaud; Allorge, Delphine; Lo-Guidice, Jean-Marc; Broly, Franck

    2009-12-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH), which catalyzes a key step in the de novo biosynthesis of guanine nucleotide, is mediated by two highly conserved isoforms, IMPDH1 and IMPDH2. In this study, IMPDH2 genetic polymorphism was investigated in 96 individuals of Caucasian origin. Four single-nucleotide polymorphisms were identified, comprising one previously described single base-pair substitution in the close vicinity of the consensus donor splice site of intron 7 (IVS7+10T>C), and three novel polymorphisms, one silent substitution in exon 9 (c.915C>G), one single base-pair insertion (g.6971_6972insT) within the 3'-untranslated region of the gene, and one substitution located in the promoter region (c.-95T>G) in a transcription factor binding site CRE(A) (cyclic adenosine monophosphate [cAMP] response element). Considering the nature and location of this latter polymorphism, its functional relevance was examined by transfecting HEK293 and Jurkat cell lines with constructs of the related region of IMPDH2/luciferase reporter gene. The c.-95T>G mutation leads to a significant decrease of luciferase activity (HEK293: 55% decrease, p < 0.05; Jurkat: 65% decrease, p < 0.05) compared with the wild-type promoter sequence and, therefore, is likely to determine interindividual differences in IMPDH2 transcriptional regulation. These results might contribute to a better understanding of the variability in clinical outcome and dose adjustments of certain immunosuppressors that are metabolized through the IMPDH pathway or that are IMPDH inhibitors.

  3. Prevalence of Ile-460-Val/ParE substitution in clinical Streptococcus pneumoniae isolates that were less susceptible to fluoroquinolones.

    PubMed

    Kawamura-Sato, Kumiko; Hasegawa, Tadao; Torii, Keizo; Ito, Hideo; Ohta, Michio

    2005-07-01

    A total of 73 clinical isolates of Streptococcus pneumoniae were measured for susceptibilities to nine fluoroquinolones, and nucleotide sequences of the quinolone resistance-determining regions (QRDRs) were determined. MIC90s of sparfloxacin, tosufloxacin, grepafloxacin, and gatifloxacin were less than 0.5 mg/L and the MIC90 of ciprofloxacin was 2 mg/L, although MIC values of some isolates to ciprofloxacin were more than 2 mg/L. We found that 60 of 73 isolates had only Ile-460-Val/ParE substitution and two isolates had an additional substitution of Ser-114-Gly/GyrA, while none of the isolates had any other substitutions in QRDRs of either ParC/E or GyrA/B. The isolates carrying Ile-460-Val/ParE substitution were more resistant to the fluoroquinolones norfloxacin and ciprofloxacin than the isolates with no amino acid substitution and the differences in MIC values were significant, suggesting that Ile-460-Val/ParE substitution in recent clinical S. pneumoniae isolates should be involved in the low-level fluoroquinolone resistance.

  4. Synthesis of SF5-Substituted Tetrapyrroles, Metalloporphyrins, BODIPYs, and Their Dipyrrane Precursors.

    PubMed

    Golf, Hartwig R A; Reissig, Hans-Ulrich; Wiehe, Arno

    2015-05-15

    The synthesis of novel pentafluorosulfanyl (SF5)-substituted A4-type porphyrins, their corresponding Zn(II)- and Pd(II)-metal complexes, A3-, A2B- and AB2-type corroles, BODIPYs, and their dipyrrane precursors was studied utilizing commercially available SF5-substituted aryl aldehydes. In addition, the functionalization of SF5-substituted tetrapyrroles was investigated by applying the concept of the nucleophilic aromatic substitution (S(N)Ar) with alcohols and sodium azide onto the pentafluorophenyl moiety of a trans-A2B2-porphyrin and two corrole derivatives with a mixed substitution pattern involving the SF5 group. This allows a fine-tuning of the properties of these macrocycles through a selective and mild introduction of functional groups, giving access to multifunctionalized SF5-substituted porphyrinoids. As an example, one functionalized corrole was further reacted with an azido-substituted BODIPY via the copper(I)-catalyzed 1,3-dipolar cycloaddition yielding the first corrole-BODIPY heterodimer involving the pentafluorosulfanyl group.

  5. 40 CFR 721.5340 - Substituted benzothiazole-azo-substituted benzoquinoline nickel complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-substituted benzoquinoline nickel complex (generic). 721.5340 Section 721.5340 Protection of Environment...-substituted benzoquinoline nickel complex (generic). (a) Chemical substance and significant new uses subject...-substituted benzoquinoline nickel complex (PMN P-99-897) is subject to reporting under this section for...

  6. 40 CFR 721.5340 - Substituted benzothiazole-azo-substituted benzoquinoline nickel complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-substituted benzoquinoline nickel complex (generic). 721.5340 Section 721.5340 Protection of Environment...-substituted benzoquinoline nickel complex (generic). (a) Chemical substance and significant new uses subject...-substituted benzoquinoline nickel complex (PMN P-99-897) is subject to reporting under this section for...

  7. 40 CFR 721.5340 - Substituted benzothiazole-azo-substituted benzoquinoline nickel complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-substituted benzoquinoline nickel complex (generic). 721.5340 Section 721.5340 Protection of Environment...-substituted benzoquinoline nickel complex (generic). (a) Chemical substance and significant new uses subject...-substituted benzoquinoline nickel complex (PMN P-99-897) is subject to reporting under this section for...

  8. 40 CFR 721.5340 - Substituted benzothiazole-azo-substituted benzoquinoline nickel complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-substituted benzoquinoline nickel complex (generic). 721.5340 Section 721.5340 Protection of Environment...-substituted benzoquinoline nickel complex (generic). (a) Chemical substance and significant new uses subject...-substituted benzoquinoline nickel complex (PMN P-99-897) is subject to reporting under this section for...

  9. 40 CFR 721.5340 - Substituted benzothiazole-azo-substituted benzoquinoline nickel complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-substituted benzoquinoline nickel complex (generic). 721.5340 Section 721.5340 Protection of Environment...-substituted benzoquinoline nickel complex (generic). (a) Chemical substance and significant new uses subject...-substituted benzoquinoline nickel complex (PMN P-99-897) is subject to reporting under this section for...

  10. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  11. 40 CFR 721.10497 - Substituted alkyl ester, hydrolysis products with silica and substituted silane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl ester, hydrolysis... ester, hydrolysis products with silica and substituted silane (generic). (a) Chemical substance and... alkyl ester, hydrolysis products with silica and substituted silane (PMNs P-06-276 and P-06-279)...

  12. 40 CFR Appendix D to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Comments Electronics Cleaning w/CFC-113 and MCF HFC-4310mee Acceptable Subject to a 200 ppm time-weighted... Electronics Cleaning w/CFC-113 and MCF Perfluoropolyethers Perfluoropolyethers are acceptable substitutes for... that for PFCs. Unacceptable Substitutes End-use Substitute Decision Comments Electronics Cleaning...

  13. 40 CFR Appendix D to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Comments Electronics Cleaning w/CFC-113 and MCF HFC-4310mee Acceptable Subject to a 200 ppm time-weighted... Electronics Cleaning w/CFC-113 and MCF Perfluoropolyethers Perfluoropolyethers are acceptable substitutes for... that for PFCs. Unacceptable Substitutes End-use Substitute Decision Comments Electronics Cleaning...

  14. 40 CFR Appendix D to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Comments Electronics Cleaning w/CFC-113 and MCF HFC-4310mee Acceptable Subject to a 200 ppm time-weighted... Electronics Cleaning w/CFC-113 and MCF Perfluoropolyethers Perfluoropolyethers are acceptable substitutes for... that for PFCs. Unacceptable Substitutes End-use Substitute Decision Comments Electronics Cleaning...

  15. 40 CFR Appendix D to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Comments Electronics Cleaning w/CFC-113 and MCF HFC-4310mee Acceptable Subject to a 200 ppm time-weighted... Electronics Cleaning w/CFC-113 and MCF Perfluoropolyethers Perfluoropolyethers are acceptable substitutes for... that for PFCs. Unacceptable Substitutes End-use Substitute Decision Comments Electronics Cleaning...

  16. 40 CFR Appendix D to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Comments Electronics Cleaning w/CFC-113 and MCF HFC-4310mee Acceptable Subject to a 200 ppm time-weighted... Electronics Cleaning w/CFC-113 and MCF Perfluoropolyethers Perfluoropolyethers are acceptable substitutes for... that for PFCs. Unacceptable Substitutes End-use Substitute Decision Comments Electronics Cleaning...

  17. Audio-lingual Teaching and the Pattern Drill.

    ERIC Educational Resources Information Center

    Frey, Herschel J.

    1968-01-01

    Pattern practice, as a functional part of the audiolingual and grammar translation methods of language instruction, is described. Characteristics and limitations of repetition, substitution, transformation, and translation drills are outlined. (AF)

  18. Optimization of band gap in Ni-substituted magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Rana, Geeta; Johri, Umesh C.

    2013-06-01

    The excellent biocompatibility and magnetic properties of magnetite nanoparticles have encouraged a tremendous amount of research in the last decade. Lots of work has been reported on their magnetic and electric properties but little work is done to study the optical properties (band gap). In the present work Ni is substituted with varying concentration in magnetite nanoparticles. XRD patterns confirm their spinel phase and particle size is estimated using TEM. The UV-visible reflectance and Kubelka-Munk function plot gives the optical band gap of NixFe1-xFe2O4 which is found to be decreasing with respect to the pure magnetite samples.

  19. Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals

    PubMed Central

    El Houmami, Nawal; Seligmann, Hervé

    2017-01-01

    We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals.

  20. Evolution of Nucleotide Punctuation Marks: From Structural to Linear Signals.

    PubMed

    El Houmami, Nawal; Seligmann, Hervé

    2017-01-01

    We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication initiation fits this scenario. Some observations reported in the literature corroborate that several signals for nucleotide synthesis function in translation, and vice versa. (a) Polymerase-induced frameshift mutations occur preferentially at translational termination signals (nucleotide deletion is interpreted as termination of nucleotide polymerization, paralleling the role of stop codons in translation). (b) Stem-loop hairpin presence/absence modulates codon-amino acid assignments, showing that translational signals sometimes combine primary and secondary nucleotide structures (here codon and stem-loop). (c) Homopolymer nucleotide triplets (AAA, CCC, GGG, TTT) cause transcriptional and ribosomal frameshifts. Here we find in recently described human mitochondrial RNAs that systematically lack mono-, dinucleotides after each trinucleotide (delRNAs) that delRNA triplets include 2x more homopolymers than mitogenome regions not covered by delRNA. Further analyses of delRNAs show that the natural circular code X (a little-known group of 20 translational signals enabling ribosomal frame retrieval consisting of 20 codons {AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC} universally overrepresented in coding versus other frames of gene sequences), regulates frameshift in transcription and translation. This dual transcription and translation role confirms for X the hypothesis that translational signals were carried over from transcriptional signals.

  1. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    PubMed

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  2. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide

    NASA Astrophysics Data System (ADS)

    Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.

    2015-01-01

    Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.

  3. Multisensory integration, sensory substitution and visual rehabilitation.

    PubMed

    Proulx, Michael J; Ptito, Maurice; Amedi, Amir

    2014-04-01

    Sensory substitution has advanced remarkably over the past 35 years since first introduced to the scientific literature by Paul Bach-y-Rita. In this issue dedicated to his memory, we describe a collection of reviews that assess the current state of neuroscience research on sensory substitution, visual rehabilitation, and multisensory processes.

  4. Educators Take Another Look at Substitutes

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2012-01-01

    The mythology surrounding the substitute teacher is not a pretty one: Paper airplanes, lost learning, bullying. But as schools collect more information about teacher absenteeism and its consequences, districts and schools are exploring ways to professionalize substitute teaching--or experiment with alternative ways of coping with teacher absences.…

  5. Substitute Your Way to a Real Job

    ERIC Educational Resources Information Center

    Stephens, Cathy

    2013-01-01

    For some, substitute teaching is a career choice. However, for the majority of new teachers, it is often a necessary gateway to landing a first job. Either way, it is a great way to sharpen one's skills. This article presents tips from principals, teachers, and human resource directors to make the most of the substitute teaching experience…

  6. 25 CFR 522.9 - Substitute approval.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Substitute approval. 522.9 Section 522.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.9 Substitute approval. If the Chairman fails...

  7. 25 CFR 522.9 - Substitute approval.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Substitute approval. 522.9 Section 522.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.9 Substitute approval. If the Chairman fails...

  8. Carboranylmethylene-substituted phosphazenes and polymers thereof

    NASA Technical Reports Server (NTRS)

    Allcock, H. R.; Scopelianos, A. G. (Inventor)

    1984-01-01

    Carboranylmethylene-substituted cyclophosphazenes are described which can be thermally polymerized into carboranylmethylene-substituted phosphazene polymers. The polymers are useful as thermally stable coatings. Also, due to the characteristics of these polymers in acting as a ligand for transition metals, metalocarboranylmethylene phosphazene polymers are described which can act as immobilized catalyst systems, and are electrically conductive and superconductive.

  9. Substitutes for Leadership: An Empirical Study.

    ERIC Educational Resources Information Center

    Howell, Jon P.; Dorfman, Peter W.

    The leadership substitutes hypothesis has been used to explain the occasional successes and frequent failures of leadership predictions. Three hypotheses were formulated to test the viability of the leadership substitutes concepts. Questionnaires were administered to hospital managers (N=63) and engineers (N=71). Instrumental and supportive leader…

  10. 40 CFR 721.8775 - Substituted pyridines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8775 Substituted pyridines. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted pyridine (PMN P-84-1219)...

  11. 25 CFR 522.9 - Substitute approval.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Substitute approval. 522.9 Section 522.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR APPROVAL OF CLASS II AND CLASS III ORDINANCES AND RESOLUTIONS SUBMISSION OF GAMING ORDINANCE OR RESOLUTION § 522.9 Substitute approval. If the Chairman fails...

  12. Quinine substitutes in the confederate army.

    PubMed

    Hasegawa, Guy R

    2007-06-01

    During the Civil War, the unreliable supply and high cost of quinine forced the Confederate Army to use alternative treatments for malaria. Many quinine substitutes were mentioned in the literature of the time, but relatively few were advocated by Confederate officials and even fewer are described in surviving records. Medical supply officers often issued substitute remedies when quinine was requisitioned. Most alternative treatments were made from indigenous plants such as dogwood, willow (a constituent of which gave rise to aspirin), and tulip tree. High hopes were held for Georgia bark, which was thought to be closely related to cinchona, from which quinine was derived. Documentation of the effectiveness of quinine substitutes is scanty but is most plentiful for the external application of turpentine. The quinine substitutes were generally considered useful but not as effective as quinine. The Confederate Surgeon General's Office was active in seeking out and supplying troops with quinine substitutes.

  13. [Prophylaxis of dental caries using sugar substitutes].

    PubMed

    Eberle, G

    1984-12-01

    Among the three measures, which are capable of producing a preventive effect against caries only when applied combined, i.e. adequate fluoride supply, proper mouth hygiene and healthy nutrition, the latter is dealt with in greater detail. The use of sugar substitutes is discussed under the aspects of caries prevention, substitute composition and production technology as well as from a medical point of view. Among the presently available sugar substitutes with nutritive value are mentioned Xylite, Lycasine, Mannite, Sorbite, Palatinite, the non-calorific substitutes such as the natural Aspartame as well as the synthetic sweetening agents Saccharine and Cyclamate. The possibilities and limitations of using these sugar substitutes in the prevention of caries in adults and children are presented.

  14. Prolonged Nonhydrolytic Interaction of Nucleotide with CFTR's NH2-terminal Nucleotide Binding Domain and its Role in Channel Gating

    PubMed Central

    Basso, Claudia; Vergani, Paola; Nairn, Angus C.; Gadsby, David C.

    2003-01-01

    CFTR, the protein defective in cystic fibrosis, functions as a Cl− channel regulated by cAMP-dependent protein kinase (PKA). CFTR is also an ATPase, comprising two nucleotide-binding domains (NBDs) thought to bind and hydrolyze ATP. In hydrolyzable nucleoside triphosphates, PKA-phosphorylated CFTR channels open into bursts, lasting on the order of a second, from closed (interburst) intervals of a second or more. To investigate nucleotide interactions underlying channel gating, we examined photolabeling by [α32P]8-N3ATP or [γ32P]8-N3ATP of intact CFTR channels expressed in HEK293T cells or Xenopus oocytes. We also exploited split CFTR channels to distinguish photolabeling at NBD1 from that at NBD2. To examine simple binding of nucleotide in the absence of hydrolysis and gating reactions, we photolabeled after incubation at 0°C with no washing. Nucleotide interactions under gating conditions were probed by photolabeling after incubation at 30°C, with extensive washing, also at 30°C. Phosphorylation of CFTR by PKA only slightly influenced photolabeling after either protocol. Strikingly, at 30°C nucleotide remained tightly bound at NBD1 for many minutes, in the form of nonhydrolyzed nucleoside triphosphate. As nucleotide-dependent gating of CFTR channels occurred on the time scale of seconds under comparable conditions, this suggests that the nucleotide interactions, including hydrolysis, that time CFTR channel opening and closing occur predominantly at NBD2. Vanadate also appeared to act at NBD2, presumably interrupting its hydrolytic cycle, and markedly delayed termination of channel open bursts. Vanadate somewhat increased the magnitude, but did not alter the rate, of the slow loss of nucleotide tightly bound at NBD1. Kinetic analysis of channel gating in Mg8-N3ATP or MgATP reveals that the rate-limiting step for CFTR channel opening at saturating [nucleotide] follows nucleotide binding to both NBDs. We propose that ATP remains tightly bound or occluded at

  15. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  16. Allele Mining and Selective Patterns of Pi9 Gene in a Set of Rice Landraces from India

    PubMed Central

    Imam, Jahangir; Mandal, Nimai P.; Variar, Mukund; Shukla, Pratyoosh

    2016-01-01

    Allelic variants of the broad-spectrum blast resistance gene, Pi9 (nucleotide binding site-leucine-rich repeat region) have been analyzed in Indian rice landraces. They were selected from the list of 338 rice landraces phenotyped in the rice blast nursery at central Rainfed Upland Rice Research Station, Hazaribag. Six of them were further selected on the basis of their resistance and susceptible pattern for virulence analysis and selective pattern study of Pi9 gene. The sequence analysis and phylogenetic study illustrated that such sequences are vastly homologous and clustered into two groups. All the blast resistance Pi9 alleles were grouped into one cluster, whereas Pi9 alleles of susceptible landraces formed another cluster even though these landraces have a low level of DNA polymorphisms. A total number of 136 polymorphic sites comprising of transitions, transversions, and insertion and deletions (InDels) were identified in the 2.9 kb sequence of Pi9 alleles. Lower variation in the form of mutations (77) (Transition + Transversion), and InDels (59) were observed in the Pi9 alleles isolated from rice landraces studied. The results showed that the Pi9 alleles of the selected rice landraces were less variable, suggesting that the rice landraces would have been exposed to less number of pathotypes across the country. The positive Tajima’s D (0.33580), P > 0.10 (not significant) was observed among the seven rice landraces, which suggests the balancing selection of Pi9 alleles. The value of synonymous substitution (-0.43337) was less than the non-synonymous substitution (0.78808). The greater non-synonymous substitution than the synonymous means that the coding region, mainly the leucine-rich repeat domain was under diversified selection. In this study, the Pi9 gene has been subjected to balancing selection with low nucleotide diversity which is different from the earlier reports, this may be because of the closeness of the rice landraces, cultivated in the same

  17. Brillouin function characteristics for La-Co substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Wu, Chuanjian; Yu, Zhong; Yang, Yan; Sun, Ke; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen

    2015-09-01

    La-Co substituted barium hexaferrites with the chemical formula of Ba1-xLaxFe12-xCoxO19 (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f1, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ωbf2, ωkf1, ωaf1, ωkf2, and ωbk of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f1, 4f2, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ωbf2 and ωaf1 decrease constantly, while the molecular-field coefficients ωkf1, ωkf2, and ωbk show a slight change.

  18. Lattice strain induced magnetism in substituted nanocrystalline cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Kar, Manoranjan

    2016-10-01

    Strontium (Sr) substituted cobalt ferrite i.e. Co1-xSrxFe2O4 (x=0.00, 0.01, 0.015, 0.02, 0.05, 0.1) have been synthesized by the citric acid modified sol-gel method. Crystal structure and phase purity have been studied by the X-ray powder diffraction technique. The Rietveld refinement of XRD pattern using the space group Fd 3 bar m shows monotonically increasing of lattice parameter with the increase in Sr concentration. Magnetic hysteresis loops measurement has been carried out at room temperature using a vibrating sample magnetometer (VSM) over a field range of ±1.5 T. Magnetocrystalline anisotropy constant were calculated by employing the Law of Approach (LA) to the saturation. It is observed that magnetocrystalline anisotropy has anomaly for x=0.01 (Co0.99Sr0.01Fe2O4) sample. Strain mediated modification of magnetic properties in Sr substituted cobalt ferrite has been observed. The saturation magnetization for doping concentration i.e. x=0.01 abruptly increase while for x>0.01 decreases with the increase in Sr concentration. A correlation between lattice strain and magnetic behavior in non-magnetic Sr- substituted nano-crystalline cobalt ferrite has been reported.

  19. Full-length cDNA nucleotide sequence of a serologically undetectable HLA-DQA1 allele: HLA-DQA1*"LA".

    PubMed

    Lardy, N M; Otting, N; van der Horst, A R; Bontrop, R E; de Waal, L P

    1997-10-01

    This study describes the characterization of a serological HLA-DQ"blank" specificity that segregates with the HLA-A2, -B7, -DR14, -DR52 haplotype. Although conventional serological typing techniques could not detect an HLA-DQ product on the haplotype positive for the HLA-DQ"blank" specificity, sequence-specific oligonucleotide (SSO) dot-blot analysis demonstrated the presence of the HLA-DQA1*01 and HLA-DQB1*05 alleles. Full-length cDNA nucleotide sequence analysis revealed that the HLA-DQB1 allele that segregated with the HLA-DQ"blank" specificity was identical to HLA-DQB1*05031. As for the HLA DQA1 allele, one nucleotide substitution distinguished the HLA-DQA1 "blank" allele from HLA-DQA1*0104. In exon 2 at nucleotide position 304 a C was substituted for a T (Arg-->Cys). Pending official recognition by the WHO Nomenclature Committee, this HLA-DQA1 "blank" allele is termed HLA-DQA1*"LA". Furthermore, it is postulated that the introduction of cysteine at amino acid position 102 abrogates the classical HLA-DQ1 specificity.

  20. The structural switch of nucleotide-free kinesin

    PubMed Central

    Cao, Luyan; Cantos-Fernandes, Soraya; Gigant, Benoît

    2017-01-01

    Kinesin-1 is an ATP-dependent motor protein that moves towards microtubules (+)-ends. Whereas structures of isolated ADP-kinesin and of complexes with tubulin of apo-kinesin and of ATP-like-kinesin are available, structural data on apo-kinesin-1 in the absence of tubulin are still missing, leaving the role of nucleotide release in the structural cycle unsettled. Here, we identified mutations in the kinesin nucleotide-binding P-loop motif that interfere with ADP binding. These mutations destabilize the P-loop (T87A mutant) or magnesium binding (T92V), highlighting a dual mechanism for nucleotide release. The structures of these mutants in their apo form are either isomorphous to ADP-kinesin-1 or to tubulin-bound apo-kinesin-1. Remarkably, both structures are also obtained from the nucleotide-depleted wild-type protein. Our results lead to a model in which, when detached from microtubules, apo-kinesin possibly occupies the two conformations we characterized, whereas, upon microtubule binding, ADP-kinesin converts to the tubulin-bound apo-kinesin conformation and releases ADP. This conformation is primed to bind ATP and, therefore, to run through the natural nucleotide cycle of kinesin-1. PMID:28195215

  1. Substituted Hydroxyapatites with Antibacterial Properties

    PubMed Central

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency. PMID:24949423

  2. [The child as a substitute].

    PubMed

    Sabbadini, A

    1989-01-01

    The feeling of temporarily not being oneself is a common phenomenon, with many manifestations in normality and psychopathology. I relate it here to the Freudian category of the uncanny (das Unheimliche) and to the literary device of the double (der Doppelgänger) and I consider the splitting in the ego and the distortion of the sense of identity to be their main psychological characteristics. An extreme instance of this phenomenon is represented by the replacement child, that is a child conceived with the conscious purpose on the part of its parents of substituting a dead sibling. Replacement children inevitably suffer from a sense of confusion in the area of self-identity and often display serious difficulties in the development of self-esteem and in the establishment of mature object-relationships. As illustrations of some of the problems encountered by replacement children, I briefly refer to the experiences of two great artists (Van Gogh and Dali) and I use clinical material from two of my psychoanalytic patients.

  3. Substituted androstanes as aromatase inhibitors

    NASA Astrophysics Data System (ADS)

    Levina, Inna S.

    1998-11-01

    The synthesis and structure-activity relationships of inhibitors of steroid aromatase which catalyses the last stage of a multistep biotransformation of cholesterol into estrogens, viz., aromatisation of C19-steroids into C18-phenolic steroids, are discussed. Compounds of the androstane series which are structurally related to the natural substrate, viz., androst-4-ene-3,17-dione, are the subjects of consideration. The review encompasses problems of synthesis of various substituted androstanes and their aromatase-inhibiting activities and structural requirements for selective specific aromatase inhibitors based on in vitro and in vivo structure-activity studies of compounds synthesised, their biological properties and the results of clinical trials. Special attention is paid to practical applications of aromatase inhibitors in the treatment of hormone-dependent mammary and ovarian tumours as well as benign prostatic tumours. In writing this report, the author has used all the information currently available in the chemical, biochemical, endocrinological and medicinal literature as well as in patents. The bibliography includes 173 references.

  4. Resorbable calcium phosphate bone substitute.

    PubMed

    Knaack, D; Goad, M E; Aiolova, M; Rey, C; Tofighi, A; Chakravarthy, P; Lee, D D

    1998-01-01

    The in vitro and in vivo properties of a novel, fully resorbable, apatitic calcium phosphate bone substitute (ABS) are described. The ABS was prepared from calcium phosphate precursors that were hydrated to form an injectable paste that hardens endothermically at 37 degrees C to form a poorly crystalline apatitic calcium phosphate (PCA). The PCA reaction product is stable in vivo as determined by FTIR and XRD analysis of rabbit intramuscular implants of ABS retrieved 4, 7, and 14 days postimplantation. Bone formation and resorption characteristics of the ABS material were characterized in a canine femoral slot defect model. Femoral slot defects in dogs were filled with either autologous bone implants or the ABS material. Sections of femoral bone defect site from animals sacrificed at 3, 4, 12, 26, and 52 weeks demonstrated that new bone formation proceeded similarly in both autograft and ABS filled slots. Defects receiving either material were filled with trabecular bone in the first 3 to 4 weeks after implantation; lamellar or cortical bone formation was well established by week 12. New bone formation in ABS filled defects followed a time course comparable to autologous bone graft filled defects. Histomorphometric evaluation of ABS resorption and new bone formation indicated that the ABS material was greater than 99% resorbed within 26 weeks; residual ABS occupied 0.36+/-0.36% (SEM, n = 4) of the original defect area at 26 weeks. Quantitatively and qualitatively, the autograft and ABS were associated with similar new bone growth and defect filling characteristics.

  5. Uproar over Milk Substitutes Act.

    PubMed

    1993-11-15

    Health policy activists lobbied 7 years for the Infant Milk Substitutes, Feeding Bottles and Infant Food Bill. Proponents of the bill say that it basically curtails unethical marketing practices, not the sales of baby foods, and argue that it was conceived to reduce the trend of mothers over-diluting commercial milk in order to reduce household expenses as well as stem the potential erosion of knowledge on locally available weaning foods. Even though the bill will become an Act only after its rules and regulations have been finalized, the government has already banned baby food advertisements on television and in other electronic media under its control. Women's groups now argue that the bill tends to focus almost exclusively upon the welfare of children and compromises the position of women who can not lactate adequately. Moreover, they hold that the bill may be used to compel wives to stay out of the formal workforce so that they may feed their babies. The intention of the bill may be meaningless without complementary legislation addressing the problems of working mothers. Specifically, amendments to the Maternity Benefits Act of 1961 would extend maternity leave to 4 months after delivery and lengthen the duration of nursing breaks. It is, however, feared that these changes may reduce employment prospects for women.

  6. Substituted hydroxyapatites with antibacterial properties.

    PubMed

    Kolmas, Joanna; Groszyk, Ewa; Kwiatkowska-Różycka, Dagmara

    2014-01-01

    Reconstructive surgery is presently struggling with the problem of infections located within implantation biomaterials. Of course, the best antibacterial protection is antibiotic therapy. However, oral antibiotic therapy is sometimes ineffective, while administering an antibiotic at the location of infection is often associated with an unfavourable ratio of dosage efficiency and toxic effect. Thus, the present study aims to find a new factor which may improve antibacterial activity while also presenting low toxicity to the human cells. Such factors are usually implemented along with the implant itself and may be an integral part of it. Many recent studies have focused on inorganic factors, such as metal nanoparticles, salts, and metal oxides. The advantages of inorganic factors include the ease with which they can be combined with ceramic and polymeric biomaterials. The following review focuses on hydroxyapatites substituted with ions with antibacterial properties. It considers materials that have already been applied in regenerative medicine (e.g., hydroxyapatites with silver ions) and those that are only at the preliminary stage of research and which could potentially be used in implantology or dentistry. We present methods for the synthesis of modified apatites and the antibacterial mechanisms of various ions as well as their antibacterial efficiency.

  7. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.

    PubMed Central

    Overington, J.; Donnelly, D.; Johnson, M. S.; Sali, A.; Blundell, T. L.

    1992-01-01

    The local environment of an amino acid in a folded protein determines the acceptability of mutations at that position. In order to characterize and quantify these structural constraints, we have made a comparative analysis of families of homologous proteins. Residues in each structure are classified according to amino acid type, secondary structure, accessibility of the side chain, and existence of hydrogen bonds from the side chains. Analysis of the pattern of observed substitutions as a function of local environment shows that there are distinct patterns, especially for buried polar residues. The substitution data tables are available on diskette with Protein Science. Given the fold of a protein, one is able to predict sequences compatible with the fold (profiles or templates) and potentially to discriminate between a correctly folded and misfolded protein. Conversely, analysis of residue variation across a family of aligned sequences in terms of substitution profiles can allow prediction of secondary structure or tertiary environment. PMID:1304904

  8. Determination of substitution positions in hyaluronic acid hydrogels using NMR and MS based methods.

    PubMed

    Wende, Frida J; Gohil, Suresh; Mojarradi, Hotan; Gerfaud, Thibaud; Nord, Lars I; Karlsson, Anders; Boiteau, Jean-Guy; Kenne, Anne Helander; Sandström, Corine

    2016-01-20

    In hydrogels of cross-linked polysaccharides, the total amount of cross-linker and the degree of cross-linking influence the properties of the hydrogel. The substitution position of the cross-linker on the polysaccharide is another parameter that can influence hydrogel properties; hence methods for detailed structural analysis of the substitution pattern are required. NMR and LC-MS methods were developed to determine the positions and amounts of substitution of 1,4-butanediol diglycidyl ether (BDDE) on hyaluronic acid (HA), and for the first time it is shown that BDDE can react with any of the four available hydroxyl groups of the HA disaccharide repeating unit. This was achieved by studying di-, tetra-, and hexasaccharides obtained from degradation of BDDE cross-linked HA hydrogel by chondroitinase. Furthermore, amount of linker substitution at each position was shown to be dependent on the size of the oligosaccharides. For the disaccharide, substitutions were predominantly at ΔGlcA-OH2 and GlcNAc-OH6 while in the tetra- and hexasaccharides, it was mainly at the reducing end GlcNAc-OH4. In the disaccharide there was no substitution at this position. Since chondroitinase is able to completely hydrolyse non-substituted HA into unsaturated disaccharides, these results indicate that the enzyme is prevented to cleave on the non-reducing side of an oligosaccharide substituted at the reducing end GlcNAc-OH4. The procedure can be adopted for the determination of substitution positions in other types of polymers.

  9. First principles investigation of substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Dixit, Vivek

    This dissertation investigates how the magnetic properties of strontium hexaferrite change upon the substitution of foreign atoms at the Fe sites. Strontium hexaferrite, SrFe12O19, is a commonly used hard magnetic material and is produced in large quantities (around 500,000 tons per year). For different applications of strontium hexaferrite, its magnetic properties can be tuned by a proper substitution of the foreign atoms. Experimental screening for a proper substitution is a cost-intensive and time-consuming process, whereas computationally it can be done more efficiently. We used the 'density functional theory' a first principles based method to study substituted strontium hexaferrite. The site occupancies of the substituted atoms were estimated by calculating the substitution energies of different configurations. The formation probabilities of configurations were used to calculate the magnetic properties of substituted strontium hexaferrite. In the first study, Al-substituted strontium hexaferrite, SrFe12-x AlxO19 with x=0.5 and x=1.0 were investigated. It was found that at the annealing temperature the non-magnetic Al +3 ions preferentially replace Fe+3 ions from the 12 k and 2a sites. We found that the magnetization decreases and the magnetic anisotropy field increases as the fraction, x of the Al atoms increases. In the second study, SrFe12-xGaxO19 and SrFe12-xInxO19 with x=0.5 and x=1.0 were investigated. In the case of SrFe12-xGaxO19, the sites where Ga+3 ions prefer to enter are: 12 k, 2a, and 4f1. For SrFe12-xInxO19, In+3 ions most likely to occupy the 12k, 4f1 , and 4f2 sites. In both cases the magnetization was found to decrease slightly as the fraction of substituted atom increases. The magnetic anisotropy field increased for SrFe12-xGaxO 19, and decreased for SrFe12-xInxO19 as the concentration of substituted atoms increased. In the third study, 23 elements (M) were screened for their possible substitution in strontium hexaferrite, SrFe12-xMxO 19

  10. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein.

    PubMed

    Zhang, Xinsheng; Wallace, Olivia L; Domi, Arban; Wright, Kevin J; Driscoll, Jonathan; Anzala, Omu; Sanders, Eduard J; Kamali, Anatoli; Karita, Etienne; Allen, Susan; Fast, Pat; Gilmour, Jill; Price, Matt A; Parks, Christopher L

    2015-08-01

    Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies.

  12. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  13. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  14. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  15. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  16. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid Sequences § 1.821 Nucleotide and/or amino acid sequence disclosures in patent applications. (a) Nucleotide...

  17. SNP Profile within the Human Major Histocompatibility Complex Reveals an Extreme and Interrupted Level of Nucleotide Diversity

    PubMed Central

    Gaudieri, Silvana; Dawkins, Roger L.; Habara, Kaori; Kulski, Jerzy K.; Gojobori, Takashi

    2000-01-01

    The human major histocompatibility complex (MHC) is characterized by polymorphic multicopy gene families, such as HLA and MIC (PERB11); duplications; insertions and deletions (indels); and uneven rates of recombination. Polymorphisms at the antigen recognition sites of the HLA class I and II genes and at associated neutral sites have been attributed to balancing selection and a hitchhiking effect, respectively. We, and others, have previously shown that nucleotide diversity between MHC haplotypes at non-HLA sites is unusually high (>10%) and up to several times greater than elsewhere in the genome (0.08%–0.2%). We report here the most extensive analysis of nucleotide diversity within a continuous sequence in the genome. We constructed a single nucleotide polymorphism (SNP) profile that reveals a pattern of extreme but interrupted levels of nucleotide diversity by comparing a continuous sequence within haplotypes in three genomic subregions of the MHC. A comparison of several haplotypes within one of the genomic subregions containing the HLA-B and -C loci suggests that positive selection is operating over the whole subgenomic region, including HLA and non-HLA genes. [The sequence data for the multiple haplotype comparisons within the class I region have been submitted to DDBJ/EMBL/GenBank under accession nos. AF029061, AF029062, and AB031005–AB031010. Additional sequence data have been submitted to the DDBJ data library under accession nos. AB031005–AB03101 and AF029061–AF029062.] PMID:11042155

  18. Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum.

    PubMed

    Ran, Yanchao; Thibodeau, Patrick H

    2017-02-03

    ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.

  19. The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.

    PubMed

    Zhao, Yaxian; Goldschen-Ohm, Marcel P; Morais-Cabral, João H; Chanda, Baron; Robertson, Gail A

    2017-02-01

    Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide-binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an "intrinsic ligand." The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance-voltage (G-V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole-Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577-708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole-Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects.

  20. Compositions and methods for detecting single nucleotide polymorphisms

    SciTech Connect

    Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.

    2016-11-22

    Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.