Science.gov

Sample records for nucleotidyl transferase subunits

  1. Nucleotidyl transferase assisted DNA labeling with different click chemistries.

    PubMed

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-09-30

    Here, we present a simple, modular and efficient strategy that allows the 3'-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3'-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Nucleotidyl transferase assisted DNA labeling with different click chemistries

    PubMed Central

    Winz, Marie-Luise; Linder, Eva Christina; André, Timon; Becker, Juliane; Jäschke, Andres

    2015-01-01

    Here, we present a simple, modular and efficient strategy that allows the 3′-terminal labeling of DNA, regardless of whether it has been chemically or enzymatically synthesized or isolated from natural sources. We first incorporate a range of modified nucleotides at the 3′-terminus, using terminal deoxynucleotidyl transferase. In the second step, we convert the incorporated nucleotides, using either of four highly efficient click chemistry-type reactions, namely copper-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, Staudinger ligation or Diels-Alder reaction with inverse electron demand. Moreover, we create internal modifications, making use of either ligation or primer extension, after the nucleotidyl transferase step, prior to the click reaction. We further study the influence of linker variants on the reactivity of azides in different click reactions. We find that different click reactions exhibit distinct substrate preferences, a fact that is often overlooked, but should be considered when labeling oligonucleotides or other biomolecules with click chemistry. Finally, our findings allowed us to extend our previously published RNA labeling strategy to the use of a different copper-free click chemistry, namely the Staudinger ligation. PMID:26013812

  3. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs in Arabidopsis.

    PubMed

    Wang, Xiaoyan; Zhang, Shuxin; Dou, Yongchao; Zhang, Chi; Chen, Xuemei; Yu, Bin; Ren, Guodong

    2015-04-01

    All types of small RNAs in plants, piwi-interacting RNAs (piRNAs) in animals and a subset of siRNAs in Drosophila and C. elegans are subject to HEN1 mediated 3' terminal 2'-O-methylation. This modification plays a pivotal role in protecting small RNAs from 3' uridylation, trimming and degradation. In Arabidopsis, HESO1 is a major enzyme that uridylates small RNAs to trigger their degradation. However, U-tail is still present in null hen1 heso1 mutants, suggesting the existence of (an) enzymatic activities redundant with HESO1. Here, we report that UTP: RNA uridylyltransferase (URT1) is a functional paralog of HESO1. URT1 interacts with AGO1 and plays a predominant role in miRNA uridylation when HESO1 is absent. Uridylation of miRNA is globally abolished in a hen1 heso1 urt1 triple mutant, accompanied by an extensive increase of 3'-to-5' trimming. In contrast, disruption of URT1 appears not to affect the heterochromatic siRNA uridylation. This indicates the involvement of additional nucleotidyl transferases in the siRNA pathway. Analysis of miRNA tailings in the hen1 heso1 urt1 triple mutant also reveals the existence of previously unknown enzymatic activities that can add non-uridine nucleotides. Importantly, we show HESO1 may also act redundantly with URT1 in miRNA uridylation when HEN1 is fully competent. Taken together, our data not only reveal a synergistic action of HESO1 and URT1 in the 3' uridylation of miRNAs, but also independent activities of multiple terminal nucleotidyl transferases in the 3' tailing of small RNAs and an antagonistic relationship between uridylation and trimming. Our results may provide further insight into the mechanisms of small RNA 3' end modification and stability control.

  4. A novel strategy for the functional cloning of enzymes using filamentous phage display: the case of nucleotidyl transferases

    PubMed Central

    Brunet, Erika; Chauvin, Camille; Choumet, Valérie; Jestin, Jean-Luc

    2002-01-01

    In vitro selections for catalytic activity have been designed for the isolation of genes encoding enzymes from libraries of proteins displayed on filamentous phages. The proteins are generally expressed as C-terminal fusions with the N-terminus of the minor coat protein p3 for display on phages. As full-length cDNAs generally contain several stop codons near their 3′ end, this approach cannot be used for their expression on the surface of phages. Here we show that in vitro selection for catalytic activity is compatible with a system for expression of proteins as N-terminal fusions on the surface of bacteriophages. It is highlighted for the Stoffel fragment of Taq DNA polymerase I and makes use of (p3–Jun/Fos–Stoffel fragment) fusions. The efficiency of the selection is measured by an enrichment factor found to be about 55 for a phage polymerase versus a phage not expressing a polymerase. This approach could provide a method for the functional cloning of nucleotidyl transferases from cDNA libraries using filamentous phage display. PMID:11972355

  5. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases.

    PubMed

    Jagtap, Pravin Kumar Ankush; Verma, Sunil Kumar; Vithani, Neha; Bais, Vaibhav Singh; Prakash, Balaji

    2013-05-27

    N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.

  6. The 3' addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1.

    PubMed

    Sasarman, Florin; Thiffault, Isabelle; Weraarpachai, Woranontee; Salomon, Steven; Maftei, Catalina; Gauthier, Julie; Ellazam, Benjamin; Webb, Neil; Antonicka, Hana; Janer, Alexandre; Brunel-Guitton, Catherine; Elpeleg, Orly; Mitchell, Grant; Shoubridge, Eric A

    2015-05-15

    Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.

  7. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography.

    PubMed Central

    Ostlund Farrants, A K; Meyer, D J; Coles, B; Southan, C; Aitken, A; Johnson, P J; Ketterer, B

    1987-01-01

    A simple method is described for the separation and quantification of the subunits of GSH transferases present in rat tissue extracts. This method, involving GSH-agarose affinity chromatography followed by reverse-phase h.p.l.c., is rapid and sufficiently sensitive to measure 5 micrograms of each subunit in a mixture. Examples are given of its application to extracts of rat kidney, adrenal, testicular interstitial cells and seminiferous tubules. The analysis of seminiferous tubules indicates that the technique may be of value for the identification of novel subunits. Preliminary separations of subunits from human GSH transferases are also described. PMID:3663168

  8. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  9. Microinjected glutathione S-transferase Yb subunits translocate to the cell nucleus.

    PubMed Central

    Bennett, C F; Yeoman, L C

    1987-01-01

    We have previously shown that a 30 kDa DNA-binding protein isolated from rat cell nuclei exhibits the chemical and immunological properties of glutathione S-transferase Yb subunits [Bennett, Spector & Yeoman (1986) J. Cell Biol. 102, 600-609]. It was of interest, therefore, to determine whether Yb subunits isolated from rat liver nuclei would return to nuclear fractions upon reintroduction to cell cytoplasms via red-blood-cell-mediated fusion. Labelled Yb subunits were associated with nuclear fractions 60 min after cell fusion. The microinjected protein remained associated with the nuclei for 18 h and was not extractable with low-salt washes. In addition, injected Yb subunits were found to equally distribute between extractable (56%) and residual (44%) nuclear fractions. These experiments demonstrate that glutathione S-transferase Yb subunits isolated from nuclei rapidly translocate to nuclei upon reintroduction into cell cytoplasms. Images Fig. 2. PMID:3689337

  10. Developmental aspects of a unique glutathione S-transferase subunit Yx in the liver cytosol from rats with hereditary hyperbilirubinuria. Comparison with rat fetal liver transferase subunit Yfetus.

    PubMed Central

    Igarashi, T; Tsuchiya, T; Shikata, Y; Sagami, F; Tagaya, O; Horie, T; Satoh, T

    1992-01-01

    The unique glutathione S-transferase (GST) subunit Yx, which is undetectable in normal adult rat liver cytosol, was shown to occur in the liver cytosol of rats with hereditary hyperbilirubinuria (EHB). The Yx subunit is a member of the Alpha-class GST subunits, and is immunologically closely related to the Yc subunit. The Yx subunit has an apparent M(r) of 26,400, different from those of Ya (M(r) 25,800), Yb1 and Yb2 (both M(r) 27,200) and Yc (M(r) 28,400). During postnatal development in livers of EHB rats, the Yx subunit concentration in either sex was highest during the first week post partum and declined rapidly with age. Although the concentration of subunit Yx at 8 weeks of age accounted for about 60% in females and 40% in males of that observed in 1-week-old 'neonatal' male EHB rats, concentrations in females thereafter increased gradually to almost the neonatal level and remained at this high level at least up to 37 weeks of age, whereas the concentration in males did not increase again. Thus the post-pubertal Yx subunit concentration was 2-fold higher in females than in males. In contrast, in normal Sprague-Dawley rat liver, the Yfetus subunit, with the same M(r) as the Yx subunit, had the highest concentration in 10-day-old animals, declined rapidly thereafter, and was not detectable in the post-pubertal period. The Yfetus subunit was also immunoreactive with an antibody against GST YcYc. The analysis of GST subunits by reverse-phase h.p.l.c. revealed that the Yx subunit was eluted at a retention time different from other known subunits, but coincided with that of Yfetus. The N-terminal amino acid sequence of the Yx subunit displayed a high degree of sequence similarity to that of the Yfetus subunit. These data suggest that the Yx subunit in EHB rats may be very similar to, if not identical with, the Yfetus subunit. Images Fig. 1. Fig. 2. Fig. 3. PMID:1567376

  11. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat.

    PubMed Central

    Danielson, U H; Mannervik, B

    1985-01-01

    The steady-state kinetics of the dimeric glutathione transferases deviate from Michaelis-Menten kinetics, but have hyperbolic binding isotherms for substrates and products of the enzymic reaction. The possibility of subunit interactions during catalysis as an explanation for the rate behaviour was investigated by use of rat isoenzymes composed of subunits 1, 2, 3 and 4, which have distinct substrate specificities. The kinetic parameter kcat./Km was determined with 1-chloro-2,4-dinitrobenzene, 4-hydroxyalk-2-enals, ethacrynic acid and trans-4-phenylbut-3-en-2-one as electrophilic substrates for six isoenzymes: rat glutathione transferases 1-1, 1-2, 2-2, 3-3, 3-4 and 4-4. It was found that the kcat./Km values for the heterodimeric transferases 1-2 and 3-4 could be predicted from the kcat./Km values of the corresponding homodimers. Likewise, the initial velocities determined with transferases 3-3, 3-4 and 4-4 at different degrees of saturation with glutathione and 1-chloro-2,4-dinitrobenzene demonstrated that the kinetic properties of the subunits are additive. These results show that the subunits of glutathione transferase are kinetically independent. PMID:4062896

  12. Characterization of the basic glutathione S-transferase B1 and B2 subunits from human liver.

    PubMed Central

    Stockman, P K; McLellan, L I; Hayes, J D

    1987-01-01

    The basic glutathione S-transferases in human liver are composed of at least two immunochemically distinct polypeptides, designated B1 and B2. These subunits exist as homodimers, but can hybridize to form the B1B2 heterodimer [Stockman, Beckett & Hayes (1985) Biochem. J. 227, 457-465]. Although these basic glutathione S-transferases possess similar catalytic properties, the B2 subunit exhibits significantly greater selenium-independent glutathione peroxidase activity than subunit B1. The use of the ligands haematin, tributyltin acetate and Bromosulphophthalein as inhibitors of 1-chloro-2,4-dinitrobenzene-GSH-conjugating activity clearly discriminate between the B1 and B2 subunits and should help facilitate their identification. Peptide mapping experiments showed that B1 and B2 are structurally distinct, but related, subunits; subunit B1 yielded 43 tryptic peptides, seven of which were unique, whereas subunit B2 yielded 40 tryptic peptides, four of which were unique. PMID:3663118

  13. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    SciTech Connect

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  14. Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis.

    PubMed

    Gutkowska, Malgorzata; Wnuk, Marta; Nowakowska, Julita; Lichocka, Malgorzata; Stronkowski, Michal M; Swiezewska, Ewa

    2015-01-01

    Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αβ. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.

  15. Solution Structure of Alg13: The Sugar Donor Subunit of a Yeast N-Acetylglucosamine Transferase

    PubMed Central

    Wang, Xu; Weldeghorghis, Thomas; Zhang, Guofeng; Imperiali, Barbara; Prestegard, James H.

    2008-01-01

    Summary The solution structure of Alg13, the glycosyl-donor binding domain of an important bipartite glycosyltransferase in the yeast S. cerevisiae, is presented. This glycosyl transferase is unusual in that it is only active in the presence of a binding partner, Alg14. Alg13 is found to adopt a unique topology amongst glycosyltransferases. Rather than the conventional Rossmann fold found in all GT-B type enzymes, the N-terminal half of the protein is a Rossmann-like fold with a mixed parallel and anti-parallel β sheet. The Rossmann fold of the C-terminal half of Alg13 is conserved. However, while conventional GT-B type enzymes usually possess three helices at the C-terminus, only two helices are present in Alg13. Titration of Alg13 with both UDP-GlcNAc, the native glycosyl donor, and a paramagnetic mimic, UDP-TEMPO, shows that the interaction of Alg13 with the sugar donor is primarily through the residues in the C-terminal half of the protein. PMID:18547528

  16. YrdC exhibits properties expected of a subunit for a tRNA threonylcarbamoyl transferase.

    PubMed

    Harris, Kimberly A; Jones, Victoria; Bilbille, Yann; Swairjo, Manal A; Agris, Paul F

    2011-09-01

    The post-transcriptional nucleoside modifications of tRNA's anticodon domain form the loop structure and dynamics required for effective and accurate recognition of synonymous codons. The N(6)-threonylcarbamoyladenosine modification at position 37 (t(6)A(37)), 3'-adjacent to the anticodon, of many tRNA species in all organisms ensures the accurate recognition of ANN codons by increasing codon affinity, enhancing ribosome binding, and maintaining the reading frame. However, biosynthesis of this complex modification is only partially understood. The synthesis requires ATP, free threonine, a single carbon source for the carbamoyl, and an enzyme yet to be identified. Recently, the universal protein family Sua5/YciO/YrdC was associated with t(6)A(37) biosynthesis. To further investigate the role of YrdC in t(6)A(37) biosynthesis, the interaction of the Escherichia coli YrdC with a heptadecamer anticodon stem and loop of lysine tRNA (ASL(Lys)(UUU)) was examined. YrdC bound the unmodified ASL(Lys)(UUU) with high affinity compared with the t(6)A(37)-modified ASL(Lys)(UUU) (K(d) = 0.27 ± 0.20 μM and 1.36 ± 0.39 μM, respectively). YrdC also demonstrated specificity toward the unmodified versus modified anticodon pentamer UUUUA and toward threonine and ATP. The protein did not significantly alter the ASL architecture, nor was it able to base flip A(37), as determined by NMR, circular dichroism, and fluorescence of 2-aminopuine at position 37. Thus, current data support the hypothesis that YrdC, with many of the properties of a putative threonylcarbamoyl transferase, most likely functions as a component of a heteromultimeric protein complex for t(6)A(37) biosynthesis.

  17. Subunit diversity and tissue distribution of human glutathione S-transferases: interpretations based on electrospray ionization-MS and peptide sequence-specific antisera.

    PubMed Central

    Rowe, J D; Nieves, E; Listowsky, I

    1997-01-01

    Uncertainties about the composition and identities of glutathione S-transferases (GSTs) in human tissue have impeded studies on their biological functions. A rigorous protocol has therefore been developed to characterize the human proteins. Cytosolic GST subunits were resolved by reverse-phase HPLC methods, individual components were assigned to Alpha, Mu and Pi classes on the basis of their immunoreactivities, and peptide-sequence-specific antisera were used to distinguish among five different Mu-class subunits (GSTM1-GSTM5). Each subunit type was characterized and identified unambiguously by electrospray ionization-MS. Acetylation of N-terminal residues in the GSTA1, GSTA2, GSTM3 and GSTM4 subunits were the only natural post-translational modifications detected. The unique structure of GSTM3, with N- and C-terminal peptide extensions predicted from cDNA sequences, was confirmed. Only testis and brain were rich sources of GSTM3 subunits. Subunit profiles were distinct and characteristic of the particular tissue type, and this tissue specificity in GST expression was evident even in organs from different individuals. For instance, livers had relatively simple GST compositions, consisting of a preponderance of Alpha-class subunits and GSTM1 (when present). By contrast, representation of most subunit types was a characteristic feature of testis, which had the highest levels of GSTs. GSTM4 and GSTM5 subunits, here identified for the first time in human tissue extracts, were minor components, with GSTM5 found only in brain, lung and testis. Specimens devoid of GSTM1 subunits, particularly those from null-genotype individuals, were readily discerned at the protein level. Liver was the only rich source of the GSTM1 subunit (although it also constituted a major fraction of adrenal GSTs), and so the functional consequences of the GSTM1 gene deletion are likely to vary in extrahepatic tissues. PMID:9230131

  18. Regulation of glutathione S-transferase Ya subunit gene expression: Identification of a unique xenobiotic-responsive element controlling inducible expression by planar aromatic compounds

    SciTech Connect

    Rushmore, T.H.; King, R.G.; Pickett, C.B. ); Paulson, K.E. )

    1990-05-01

    The authors have identified a region in the 5{prime} flanking sequence of the glutathione S-transferase Ya subunit gene that contains a unique xenobiotic-responsive element (XRE). The regulatory region spans nucleotides {minus}722 to {minus}682 of the 5{prime} flanking sequence and is responsible for part of the basal level as well as inducible expression of the Ya subunit gene by planar aromatic compounds such as {beta}-naphthoflavone ({beta}-NF) and 3-methylcholanthrene. The DNA sequence of this region ({beta}-NF-responsive element) is distinct from the DNA sequence of the XRE found in the cytochrome P-450 IA1 gene. In addition to the region containing the {beta}-NF-responsive element, two other regulatory regions of the Ya subunit gene have been identified. The data suggest that regulation of gene expression by planar aromatic compounds can be mediated by a DNA sequence this is distinct from the XRE sequence.

  19. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element

    SciTech Connect

    Friling, R.S.; Bensimon, A.; Tichauer, Y.; Daniel, V. )

    1990-08-01

    Glutathione S-transferase (GST) Ya subunit gene expression is induced in mammalian tissues by two types of chemical agents: (i) planar aromatic compounds (e.g., 3-methylcholanthrene, {beta}-naphthoflavone, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and (ii) electrophiles (e.g., trans-4-phenyl-3-buten-2-one and dimethyl fumarate) or compounds easily oxidized to electrophiles (e.g., tert-butylhydroquinone). To study the mechanism of this induction, the authors have introduced deletions in the 5{prime} flanking region of a mouse GST Ya subunit gene, fused it to the coding sequence for chloramphenicol acetyltransferase (CAT) activity, and transfected the Ya-CAT genes for expression into hepatoma cells. They show that a single cis-regulatory element, between nucleotides {minus}754 and {minus}713 from the start of transcription, is responsible for the induction by both planar aromatic and electrophilic compounds. Using murine hepatoma cell mutants defective in either the Ah-encoded aryl hydrocarbon receptor (BP{sup r}c1 mutant) or in cytochrome P{sub 1}-450 gene (c1 mutant), they show that induction by planar aromatic but not by electrophilic inducers requires a functional Ah receptor and cytochrome P{sub 1}-450 activity. From this it is concluded that Ya gene activation by planar aromatic compounds involves metabolism of these inducers by the phase I xenobiotic-metabolizing cytochrome P{sub 1}-450 system into electrophilic compounds. Therefore, the regulatory sequence of the Ya gene should be considered an electrophile-responsive element (EpRE) activated exclusively by inducers containing an electrophilic center.

  20. Molecular cloning and heterologous expression of a cDNA encoding a mouse glutathione S-transferase Yc subunit possessing high catalytic activity for aflatoxin B1-8,9-epoxide.

    PubMed Central

    Hayes, J D; Judah, D J; Neal, G E; Nguyen, T

    1992-01-01

    Resistance to the carcinogenic effects of aflatoxin B1 (AFB1) in the mouse is due to the constitutive expression of an Alpha-class glutathione S-transferase (GST), YcYc, with high detoxification activity towards AFB1-8,9-epoxide. A cDNA clone (pmusGST Yc) for a murine GST Yc polypeptide has been isolated. Sequencing has shown the cDNA insert of pmusGST Yc to be 922 bp in length, with an open reading frame of 663 bp that encodes a polypeptide of M(r) 25358. The primary structure of the murine GST Yc subunit predicted by pmusGST Yc is in complete agreement with the partial amino acid sequence of the aflatoxin-metabolizing mouse liver GST described previously [McLellan, Kerr, Cronshaw & Hayes (1991) Biochem. J. 276, 461-469]. A plasmid, termed pKK-musGST Yc, which permits the expression of the murine Yc subunit in Escherichia coli, has been constructed. The murine GST expressed in E. coli was purified and found to be catalytically active towards several GST substrates, including AFB1-8,9-epoxide. This enzyme was also found to possess electrophoretic and immunochemical properties closely similar to those of the GST Yc subunit from mouse liver. However, the GST synthesized in E. coli and the constitutive mouse liver Alpha-class GST exhibited small differences in their chromatographic behaviour during reverse-phase h.p.l.c. Automated Edman degradation revealed alanine to be the N-terminal amino acid in the GST Yc subunit expressed in E. coli, whereas the enzyme in mouse liver possesses a blocked N-terminus. Although sequencing showed that the purified Yc subunit from E. coli lacked the initiator methionine, the amino acid sequence obtained over the first eleven N-terminal residues agreed with that predicted from the cDNA clone, pmusGST Yc. Comparison of the deduced amino acid sequence of the mouse Yc polypeptide with the primary structures of the rat Alpha-class GST enzymes revealed that it is more closely related to the ethoxyquin-induced rat liver Yc2 subunit than to

  1. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  2. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses

    PubMed Central

    Lehmann, Kathleen C.; Gulyaeva, Anastasia; Zevenhoven-Dobbe, Jessika C.; Janssen, George M. C.; Ruben, Mark; Overkleeft, Hermen S.; van Veelen, Peter A.; Samborskiy, Dmitry V.; Kravchenko, Alexander A.; Leontovich, Andrey M.; Sidorov, Igor A.; Snijder, Eric J.; Posthuma, Clara C.; Gorbalenya, Alexander E.

    2015-01-01

    RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies. PMID:26304538

  3. Intra-subunit residue interactions from the protein surface to the active site of glutathione S-transferase AdGSTD3-3 impact on structure and enzyme properties.

    PubMed

    Wongtrakul, Jeerang; Sramala, Issara; Prapanthadara, La-aied; Ketterman, Albert J

    2005-03-01

    Structural residues are one of the major factors that modulate the catalytic specificity as well as having a role in stability of the glutathione S-transferases (GST). To understand how residues remote from the active site can affect enzymatic properties, four mutants, His144Ala, Val147Leu, Val147Ala and Arg96Ala, were generated. The selected residues appear to be in a putative intra-subunit interaction pathway from the exterior Asp150 to the active site Arg66 of AdGSTD3-3. The analysis of the four mutants suggested that the interaction formed between Asp150 and His144 is required for the packing of the hydrophobic core in domain 2. Mutations of both Asp150 and His144 impacted upon enzymatic properties. Two Val147 mutants also showed contribution to packing and support of the N-capping box motif by demonstrating shorter half-lives. The planar guanidinium of Arg96 is in a stacked geometry with the face of the aromatic ring of Phe140 in a cation-pi interaction. The Arg96 also interacts with several other residues one of which, Asp100, is in the active site. These interactions restrict movement of the residues in this region and as the data demonstrates when Arg96 is changed have dramatic impact on stability and enzyme properties. These findings indicate the significance of the roles played by residue interactions which can cause conformational changes and thereby influence the catalytic activity and stability of an enzyme.

  4. Glutathione Transferases

    PubMed Central

    Dixon, David P.; Edwards, Robert

    2010-01-01

    The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not “glutathione transferase” activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies. PMID:22303257

  5. cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects.

    PubMed

    Beckert, Ulrike; Grundmann, Manuel; Wolter, Sabine; Schwede, Frank; Rehmann, Holger; Kaever, Volkhard; Kostenis, Evi; Seifert, Roland

    2014-09-05

    In addition to the well-known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. The Pseudomonas aeruginosa toxin ExoY massively increases cGMP and cUMP in cells, whereas the Bordetella pertussis toxin CyaA increases cAMP and, to a lesser extent, cCMP. To mimic and dissect toxin effects, we synthesized cNMP-acetoxymethylesters as prodrugs. cNMP-AMs rapidly and effectively released the corresponding cNMP in cells. The combination of cGMP-AM plus cUMP-AM mimicked cytotoxicity of ExoY. cUMP-AM and cGMP-AM differentially activated gene expression. Certain cCMP and cUMP effects were independent of the known cNMP effectors protein kinases A and G and guanine nucleotide exchange factor Epac. In conclusion, cNMP-AMs are useful tools to mimic and dissect bacterial nucleotidyl cyclase toxin effects.

  6. Cytosolic glutathione transferases from rat liver. Primary structure of class alpha glutathione transferase 8-8 and characterization of low-abundance class Mu glutathione transferases.

    PubMed Central

    Alin, P; Jensson, H; Cederlund, E; Jörnvall, H; Mannervik, B

    1989-01-01

    Six GSH transferases with neutral/acidic isoelectric points were purified from the cytosol fraction of rat liver. Four transferases are class Mu enzymes related to the previously characterized GSH transferases 3-3, 4-4 and 6-6, as judged by structural and enzymic properties. Two additional GSH transferases are distinguished by high specific activities with 4-hydroxyalk-2-enals, toxic products of lipid peroxidation. The most abundant of these two enzymes, GSH transferase 8-8, a class Alpha enzyme, has earlier been identified in rat lung and kidney. The amino acid sequence of subunit 8 was determined and showed a typical class Alpha GSH transferase structure including an N-acetylated N-terminal methionine residue. PMID:2775231

  7. Mechanisms of Nucleotidyl Transfer Catalyzed by the Yeast RNA Polymerase II

    NASA Astrophysics Data System (ADS)

    Zhu, Rui; Salahub, Dennis R.

    2007-11-01

    It has been proposed that all classes of nucleic acid polymerases use the same two-metal-ion mechanism for nucleotide incorporation. The main chemical kinetic scheme is that the oxygen atom of the 3'-OH group of the transcript primer, acting as a nucleophile, forms a phosphodiester bond with the first phosphate of the (deoxy)nucleoside triphosphate and the other two phosphates form a pyrophosphate leaving group. While some molecular modeling studies on DNA polymerases have been performed to investigate the detailed chemical steps involved in the kinetic scheme, few theoretical studies on RNA polymerases are available in the literature. Here, we report a molecular dynamics study of nucleotidyl transfer catalyzed by the yeast RNA polymerase II, which is based on the most recently published crystal structures. We particularly focus on the creation of the nucleophile, i.e., deprotonation of the 3'-OH group. Two pathways are examined: (i) proton transfer to the conserved Asp485 residue of the active site in association with nucleophilic attack and (ii) proton transfer to a nearby water molecule before nucleophilic attack. All the molecular dynamics simulations are carried out by a recently developed reactive force field, ReaxFF, whose parameters are derived directly from quantum chemical calculations. The rate-limiting step of the reaction in both cases is the dissociation of the pyrophosphate leaving group, which needs about 23 kcal/mol of activation energy. The nucleophilic attack needs about 19 kcal/mol of activation energy for pathway (i) and 17 kcal/mol of activation energy for pathway (ii). The water-assisting deprotonation just needs about 7 kcal/mol of activation energy. These data indicate that pathway (i) is comparable to pathway (ii). If water misses the deprotonation of the 3'-OH group before nucleophilic attack in the latter pathway, the general base (Asp485) of the polymerase active site can readily perform the deprotonation in the attack through the

  8. Actin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins

    PubMed Central

    Belyy, Alexander; Raoux-Barbot, Dorothée; Saveanu, Cosmin; Namane, Abdelkader; Ogryzko, Vasily; Worpenberg, Lina; David, Violaine; Henriot, Veronique; Fellous, Souad; Merrifield, Christien; Assayag, Elodie; Ladant, Daniel; Renault, Louis; Mechold, Undine

    2016-01-01

    The nucleotidyl cyclase toxin ExoY is one of the virulence factors injected by the Pseudomonas aeruginosa type III secretion system into host cells. Inside cells, it is activated by an unknown eukaryotic cofactor to synthesize various cyclic nucleotide monophosphates. ExoY-like adenylate cyclases are also found in Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) toxins produced by various Gram-negative pathogens. Here we demonstrate that filamentous actin (F-actin) is the hitherto unknown cofactor of ExoY. Association with F-actin stimulates ExoY activity more than 10,000 fold in vitro and results in stabilization of actin filaments. ExoY is recruited to actin filaments in transfected cells and alters F-actin turnover. Actin also activates an ExoY-like adenylate cyclase MARTX effector domain from Vibrio nigripulchritudo. Finally, using a yeast genetic screen, we identify actin mutants that no longer activate ExoY. Our results thus reveal a new sub-group within the class II adenylyl cyclase family, namely actin-activated nucleotidyl cyclase (AA-NC) toxins. PMID:27917880

  9. Identification of a novel glutathione transferase in human skin homologous with class alpha glutathione transferase 2-2 in the rat.

    PubMed

    Del Boccio, G; Di Ilio, C; Alin, P; Jörnvall, H; Mannervik, B

    1987-05-15

    Six forms of glutathione transferase with pI values of 4.6, 5.9, 6.8, 7.1, 8.5 and 9.9 have been isolated from the cytosol fraction of normal skin from three human subjects. The three most abundant enzymes were an acidic Class Pi transferase (pI 4.6; apparent subunit Mr 23,000), a basic Class Alpha transferase (pI 8.5; apparent subunit Mr 24,000) and an even more basic glutathione transferase of Class Alpha (pI 9.9; apparent subunit Mr 26,500). The last enzyme, which was previously unknown, accounts for 10-20% of the glutathione transferase in human skin. The novel transferase showed greater similarities with rat glutathione transferase 2-2, another Class Alpha enzyme, than with any other known transferase irrespective of species. The most striking similarities included reactions with antibodies, amino acid compositions and identical N-terminal amino acid sequences (16 residues). The close relationship between the human most basic and the rat glutathione transferase 2-2 supports the classification of the transferases previously proposed and indicates that the similarities between enzymes isolated from different species are more extensive than had been assumed previously.

  10. Identification of a novel glutathione transferase in human skin homologous with class alpha glutathione transferase 2-2 in the rat.

    PubMed Central

    Del Boccio, G; Di Ilio, C; Alin, P; Jörnvall, H; Mannervik, B

    1987-01-01

    Six forms of glutathione transferase with pI values of 4.6, 5.9, 6.8, 7.1, 8.5 and 9.9 have been isolated from the cytosol fraction of normal skin from three human subjects. The three most abundant enzymes were an acidic Class Pi transferase (pI 4.6; apparent subunit Mr 23,000), a basic Class Alpha transferase (pI 8.5; apparent subunit Mr 24,000) and an even more basic glutathione transferase of Class Alpha (pI 9.9; apparent subunit Mr 26,500). The last enzyme, which was previously unknown, accounts for 10-20% of the glutathione transferase in human skin. The novel transferase showed greater similarities with rat glutathione transferase 2-2, another Class Alpha enzyme, than with any other known transferase irrespective of species. The most striking similarities included reactions with antibodies, amino acid compositions and identical N-terminal amino acid sequences (16 residues). The close relationship between the human most basic and the rat glutathione transferase 2-2 supports the classification of the transferases previously proposed and indicates that the similarities between enzymes isolated from different species are more extensive than had been assumed previously. Images Fig. 2. Fig. 3. PMID:3117035

  11. Isoenzymes of glutathione transferase in rat small intestine.

    PubMed Central

    Tahir, M K; Ozer, N; Mannervik, B

    1988-01-01

    The major glutathione transferases in the rat small-intestine cytosol were isolated and characterized. The enzymes active with 1-chloro-2,4-dinitrobenzene as second substrate were almost quantitatively recovered after affinity chromatography on immobilized S-hexylglutathione. The different basic forms of glutathione transferase, which account for 90% of the activity, were resolved by chromatofocusing. Fractions containing enzymes with lower isoelectric points were not further resolved. The isolated fractions were characterized by their elution position in chromatofocusing, apparent subunit Mr, reactions with specific antibodies, substrate specificities and inhibition characteristics. The major basic forms identified were glutathione transferases 1-1, 4-4 and 7-7. In addition, evidence for the presence of a variant form of subunit 1, as well as trace amounts of subunits 2 and 3, was obtained. A significant amount of transferase 8-8 in the fraction of acidic enzyme forms was demonstrated by immunoblot and Ouchterlony double-diffusion analysis. In the comparison of the occurrence of the different forms of glutathione transferase in liver, lung, kidney and small intestine, it was found that the small intestine is the richest source of glutathione transferase 7-7. Images Fig. 2. Fig. 3. Fig. 4. PMID:3140787

  12. Structure of the RNA 30-Phosphate Cyclase-Adenylate Intermediate Illuminates Nucleotide Specificity and Covalent Nucleotidyl Transfer

    SciTech Connect

    Tanaka, N.; Smith, P; Shuman, S

    2010-01-01

    RNA 3-phosphate cyclase (RtcA) synthesizes RNA 2,3 cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-AMP intermediate; transfer of adenylate to an RNA 3-phosphate to form RNA(3)pp(5)A; and attack of the vicinal O2 on the 3-phosphorus to form a 2,3 cyclic phosphate. Here we report the 1.7 {angstrom} crystal structure of the RtcA-AMP intermediate, which reveals the mechanism of nucleotidyl transfer. Adenylate is linked via a phosphoamide bond to the His309 N{var_epsilon} atom. A network of hydrogen bonds to the ribose O2 and O3 accounts for the stringent ribonucleotide preference. Adenine is sandwiched in a hydrophobic pocket between Tyr284 and Pro131 and the preference for adenine is enforced by Phe135, which packs against the purine C2 edge. Two sulfates bound near the adenylate plausibly mimic the 3-terminal and penultimate phosphates of RNA. The structure illuminates how the four {alpha}2/{beta}4 domains contribute to substrate binding and catalysis.

  13. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion.

    PubMed

    Lior-Hoffmann, Lee; Wang, Lihua; Wang, Shenglong; Geacintov, Nicholas E; Broyde, Suse; Zhang, Yingkai

    2012-10-01

    Human DNA Pol κ is a polymerase enzyme, specialized for near error-free bypass of certain bulky chemical lesions to DNA that are derived from environmental carcinogens present in tobacco smoke, automobile exhaust and cooked food. By employing ab initio QM/MM-MD (Quantum Mechanics/Molecular Mechanics-Molecular Dynamics) simulations with umbrella sampling, we have determined the entire free energy profile of the nucleotidyl transfer reaction catalyzed by Pol κ and provided detailed mechanistic insights. Our results show that a variant of the Water Mediated and Substrate Assisted (WMSA) mechanism that we previously deduced for Dpo4 and T7 DNA polymerases is preferred for Pol κ as well, suggesting its broad applicability. The hydrogen on the 3'-OH primer terminus is transferred through crystal and solvent waters to the γ-phosphate of the dNTP, followed by the associative nucleotidyl transfer reaction; this is facilitated by a proton transfer from the γ-phosphate to the α,β-bridging oxygen as pyrophosphate leaves, to neutralize the evolving negative charge. MD simulations show that the near error-free incorporation of dCTP opposite the major benzo[a]pyrene-derived dG lesion is compatible with the WMSA mechanism, allowing for an essentially undisturbed pentacovalent phosphorane transition state, and explaining the bypass of this lesion with little mutation by Pol κ.

  14. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion

    PubMed Central

    Lior-Hoffmann, Lee; Wang, Lihua; Wang, Shenglong; Geacintov, Nicholas E.; Broyde, Suse; Zhang, Yingkai

    2012-01-01

    Human DNA Pol κ is a polymerase enzyme, specialized for near error-free bypass of certain bulky chemical lesions to DNA that are derived from environmental carcinogens present in tobacco smoke, automobile exhaust and cooked food. By employing ab initio QM/MM–MD (Quantum Mechanics/Molecular Mechanics–Molecular Dynamics) simulations with umbrella sampling, we have determined the entire free energy profile of the nucleotidyl transfer reaction catalyzed by Pol κ and provided detailed mechanistic insights. Our results show that a variant of the Water Mediated and Substrate Assisted (WMSA) mechanism that we previously deduced for Dpo4 and T7 DNA polymerases is preferred for Pol κ as well, suggesting its broad applicability. The hydrogen on the 3′-OH primer terminus is transferred through crystal and solvent waters to the γ-phosphate of the dNTP, followed by the associative nucleotidyl transfer reaction; this is facilitated by a proton transfer from the γ-phosphate to the α,β-bridging oxygen as pyrophosphate leaves, to neutralize the evolving negative charge. MD simulations show that the near error-free incorporation of dCTP opposite the major benzo[a]pyrene—derived dG lesion is compatible with the WMSA mechanism, allowing for an essentially undisturbed pentacovalent phosphorane transition state, and explaining the bypass of this lesion with little mutation by Pol κ. PMID:22772988

  15. [Glutathione S-transferase of alpha class from pike liver].

    PubMed

    Borvinskaia, E V; Smirnov, L P; Nemova, N N

    2013-01-01

    In this study, glutathione S-transferase (GST) was isolated from the liver of pike Esox lucius, which was homogenous according to SDS-PAGE and isoelectrofocusing. It is a homodimer with subunits mass 25235.36 Da (according to HPLC-MS/MS) and pI about 6.4. Substrate specificity, thermostability, some kinetic characteristics and optimum pH were determined. The enzyme was identified as Alpha class GST.

  16. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  17. Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: similarity to the nucleotidyl attachment motif of DNA and RNA ligases.

    PubMed Central

    Fresco, L D; Buratowski, S

    1994-01-01

    Nascent mRNA chains are capped at the 5' end by the addition of a guanylyl residue to form a G(5')ppp(5')N ... structure. During the capping reaction, the guanylyltransferase (GTP:mRNA guanylyltransferase, EC 2.7.7.50) is reversibly and covalently guanylylated. In this enzyme-GMP (E-GMP) intermediate, GMP is linked to the epsilon-amino group of a lysine residue via a phosphoamide bond. Lys-70 was identified as the GMP attachment site of the Saccharomyces cerevisiae guanylyltransferase (encoded by the CEG1 gene) by guanylylpeptide sequencing. CEG1 genes with substitutions at Lys-70 were unable to support viability in yeast and produced proteins that were not guanylylated in vitro. The CEG1 active site exhibits sequence similarity to the active sites of viral guanylyltransferases and polynucleotide ligases, suggesting similarity in the mechanisms of nucleotidyl transfer catalyzed by these enzymes. Images PMID:8022828

  18. Characterization of oligosaccharyl transferase

    SciTech Connect

    Kaplan, H.A.; Lennarz, W.J.

    1987-05-01

    Oligosaccharyl transferase (OT), the enzyme catalyzing the transfer of oligosaccharide from dolichol-PP-GlcNAc2Man9Glc3 to asparagine residues of -Asn-X-Thr/Ser- sequences in nascent polypeptides, was characterized in hen oviduct microsomes using an active site-directed photoaffinity probe, N/sup /-( SVI)-3-(4-hydroxyphenylpropionyl)-Asn-Lys(N/sup epsilon/-p-azidobenzoyl)-Thr-NH2. Kinetic experiments revealed that the labeled probe interacted with a 57 kDa Coomassie Blue stainable protein at short incubation intervals; the radioactive probe was found linked to a 60 kDa protein after longer incubations. Endo H digestion of the 60 kDa SVI-photolabeled OT decreased the molecular mass to 57 kDa. The 57 kDa Coomassie Blue stainable protein was not endo H sensitive. When dolichol-PP-oligosaccharide was depleted by preincubating the microsomes with excess acceptor peptide, only the 57 kDa SVI-labeled OT was formed. These data suggest that 1) OT is a 57 kDa protein, and 2) the appearance of the 60 kDa SVI-labeled OT is the result of covalent attachment of glycosylated tripeptide probe. The molecular mass of photolabeled OT was found to be similar in a variety of eukaryotes except in yeast, where it was larger. OT isolated by liquid chromatographic and 2-D gel electrophoretic techniques was used as immunogen to prepare monospecific polyclonal antisera. The specificity of the antibody was based on its ability to 1) recognize OT by immunblotting following electrophoretic transfer to nitrocellulose, 2) immunoprecipitate photolabeled enzyme, and 3) block active-site photolabeling of the enzyme.

  19. Molecular Cloning of Adenosinediphosphoribosyl Transferase.

    DTIC Science & Technology

    1987-09-08

    AD-RIB5 458 NOLECULNA CLONING OF AOENOSINEDXPNOSPHORIBOSyL 1/1 TRNSFERASEMU CAILIFORNIA UNIV SRN FRANCISCO E KUN US SEP 8? WFOSR-TR-87-0982 SWFOSR-B5...ACCESSION NO.D,. 03261102F 2312 A~5 11. TITLE (include Securqt Classification) 0 Molecular Cloning of Adenosinediphosphoribosyl Transferase 12. PERSONAL...I’:- AFOSR.Tlt. 8 7 - 0 9 8,2 0IL * pi AFOSR- 85 -0377 PROGRESS REPORT Molecular Cloning of Adenosinediphosphoribosyl Transferase 5." Period of

  20. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  1. Expression of glutathione S-transferase during rat liver development.

    PubMed Central

    Tee, L B; Gilmore, K S; Meyer, D J; Ketterer, B; Vandenberghe, Y; Yeoh, G C

    1992-01-01

    The ontogeny of rat liver glutathione S-transferase (EC 2.5.1.18) (GSTs) during foetal and postnatal development was investigated. The GSTs are dimers, the subunits of which belong to three multigene families, Alpha (subunits 1, 2, 8 and 10), Mu (subunits 3, 4, 6, 9 and 11) and Pi (subunit 7) [Mannervik, Alin, Guthenberg, Jennsson, Tahir, Warholm & Jörnvall (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7202-7206; Kispert, Meyer, Lalor, Coles & Ketterer (1989) Biochem. J. 260, 789-793]. There is considerable structural homology within each gene family, with the result that whereas reverse-phase h.p.l.c. successfully differentiates individual subunits, immunocytochemical and Northern-blotting analyses may only differentiate families. Enzymic activity, h.p.l.c. and Northern blotting indicated that expression of GST increased from very low levels at 12 days of foetal growth to substantial amounts at day 21. At birth, GST concentrations underwent a dramatic decline and remained low until 5-10 days post partum, after which they increased to adult levels. During the period under study, GST subunits underwent differential expression. The Mu family had a lower level of expression than the Alpha family, and, within the Alpha family, subunit 1 was more dominant in the adult than the foetus. Subunit 2 is the major form in the foetus. Most noteworthy were subunits 7 and 10, which were prominent in the foetus, but present at low levels post partum. Immunocytochemical analysis of the 17-day foetal and newborn rat livers showed marked differences in the distribution of GSTs in hepatocytes. In the 17-day foetal liver Pi greater than Alpha greater than Mu whereas in the newborns Alpha greater than Mu much greater than Pi. Erythropoietic cells were not stained for any of the three GST families. Steady-state mRNA concentrations in the foetus correlated with the relative transcription of the Alpha, Mu and Pi class genes. However, in those genes expressed post partum, namely the Alpha and

  2. Interactions between the human RNA polymerase II subunits.

    PubMed

    Acker, J; de Graaff, M; Cheynel, I; Khazak, V; Kedinger, C; Vigneron, M

    1997-07-04

    As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.

  3. tRNA[superscript His] guanylyltransferase (THG1), a unique 3;#8242;-5;#8242; nucleotidyl transferase, shares unexpected structural homology with canonical 5;#8242;-3;#8242; DNA polymerases

    SciTech Connect

    Hyde, Samantha J.; Eckenroth, Brian E.; Smith, Brian A.; Eberley, William A.; Heintz, Nicholas H.; Jackman, Jane E.; Doublié, Sylvie

    2011-11-07

    All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA{sup His} guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-{angstrom} crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.

  4. Hibiscus cannabinus feruloyl-coa:monolignol transferase

    SciTech Connect

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-15

    The invention relates to isolated nucleic acids encoding a feruloyl-CoA:monolignol transferase and feruloyl-CoA:monolignol transferase enzymes. The isolated nucleic acids and/or the enzymes enable incorporation of monolignol ferulates into the lignin of plants, where such monolignol ferulates include, for example, p-coumaryl ferulate, coniferyl ferulate, and/or sinapyl ferulate. The invention also includes methods and plants that include nucleic acids encoding a feruloyl-CoA:monolignol transferase enzyme and/or feruloyl-CoA:monolignol transferase enzymes.

  5. Glutathione transferase isoenzymes from human prostate.

    PubMed Central

    Di Ilio, C; Aceto, A; Bucciarelli, T; Angelucci, S; Felaco, M; Grilli, A; Federici, G

    1990-01-01

    By using affinity-chromatography and isoelectric-focusing techniques, several forms of glutathione transferase (GSTs) were resolved from human prostate cytosol. All the three major classes of GST, i.e. Alpha, Mu and Pi, are present in human prostate. However, large inter-individual variation in the qualitative and quantitative expression of different isoenzymes resulted in the samples investigated. The most abundant group of prostate isoenzymes showed acid (pI 4.3-4.7) behaviour and were classified as Pi class GSTs on the basis of their immunological and structural properties. Immunohistochemical staining of Pi class GSTs was prevalently distributed in the epithelial cells surrounding the alveolar lumen. Class Mu GSTs are also expressed, although in small amounts and in a limited number of samples, by human prostate. The major cationic isoenzyme purified from prostate, GST-9.6; (pI 9.6; apparent subunit molecular mass of 28 kDa), appears to be different from the cationic GST alpha-epsilon forms isolated from human liver and kidney as evidenced by its structural, kinetical and immunological properties. This enzyme, which accounts for about 20-30% (on protein basis) of total amount of GSTs, is expressed by only 40% of samples. GST-9.6 has the ability to cross-react in immunoblotting analysis with antisera raised against rat liver GST 2-2, rather than with antisera raised against members of human Alpha, Mu and Pi class GSTs. Although prostate GST-9.6 shows close relationship with the human skin GST pI 9.9, it does not correspond to any other known human GST. Images Fig. 2. Fig. 3. Fig. 4. PMID:2241927

  6. [A promoter responsible for over-expression of cholera toxin B subunit in cholera toxin A subunit structure gene].

    PubMed

    Cao, C; Shi, C; Li, P; Ma, Q

    1997-01-01

    A promoter sequence, which promotes the transcription of cholera toxin B subunit gene, was found in cholera toxin A subunit structure gene. The transcription starts at the adenine Located at +833, that is 456bp upstream to the A of the initiation codon ATG of cholera toxin B gene. Under the control of the promoter, cholera toxin B subunit was over-expressed as high as 200 mg/L at an optimized culture condition. The chloramphenicol acetyl transferase gene and beta-galactosidase could also be efficiently expressed under the direction of the promoter. This promoter may be responsible for the 6 fold and 7 fold higher expression level of cholera toxin B subunit than cholera toxin A subunit in V. cholerae and Escheria coli respectively. The over-expression of CTB may be useful in preparing vaccine against cholera and facilitating the construction of peptide-bearing immunogenic hybrid proteins.

  7. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-11-08

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  8. Feruloyl-CoA:monolignol transferase

    DOEpatents

    Wilkerson, Curtis; Ralph, John; Withers, Saunia; Mansfield, Shawn D.

    2016-09-13

    The invention relates to nucleic acids encoding a feruloyl-CoA:monolignol transferase and the feruloyl-CoA:monolignol transferase enzyme that enables incorporation of monolignol ferulates, for example, including p-coumaryl ferulate, coniferyl ferulate, and sinapyl ferulate, into the lignin of plants.

  9. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-06

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  10. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases.

    PubMed Central

    Boyer, T D; Vessey, D A; Holcomb, C; Saley, N

    1984-01-01

    The dimeric enzyme glutathione S-transferase B is composed of two dissimilar subunits, referred to as Ya and Yc. Transferase B (YaYc) and two other transferases that are homodimers of the individual Ya and Yc subunits were purified from rat liver. Inhibition of these three enzymes by Indocyanine Green, biliverdin and several bile acids was investigated at different values of pH (range 6.0-8.0). Indocyanine Green, biliverdin and chenodeoxycholate were found to be effective inhibitors of transferases YaYc and YcYc at low (pH 6.0) but not high (pH 8.0) values of pH. Between these extremes of pH intermediate degrees of inhibition were observed. Cholate and taurochenodeoxycholate, however, were ineffective inhibitors of transferase YcYc at all values of pH. The observed differences in bile acids appeared to be due, in part, to differences in their state of ionization. In contrast with the above results, transferase YaYa was inhibited by at least 80% by the non-substrate ligands at all values of pH. These effects of pH on the three transferases could not be accounted for by pH-induced changes in the enzyme's affinity for the inhibitor. Thus those glutathione S-transferases that contain the Yc subunit are able to act simultaneously as both enzymes and binding proteins. In addition to enzyme structure, the state of ionization of the non-substrate ligands may also influence whether the transferases can perform both functions simultaneously. PMID:6696720

  11. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  12. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center.

    PubMed

    Long, Katherine S; Hansen, Lykke H; Jakobsen, Lene; Vester, Birte

    2006-04-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design of pleuromutilin-based drugs, the binding of the antibiotic pleuromutilin and three semisynthetic derivatives with different side chain extensions has been investigated using chemical footprinting. The nucleotides A2058, A2059, G2505, and U2506 are affected in all of the footprints, suggesting that the drugs are similarly anchored in the binding pocket by the common tricyclic mutilin core. However, varying effects are observed at U2584 and U2585, indicating that the side chain extensions adopt distinct conformations within the cavity and thereby affect the rRNA conformation differently. An Escherichia coli L3 mutant strain is resistant to tiamulin and pleuromutilin, but not valnemulin, implying that valnemulin is better able to withstand an altered rRNA binding surface around the mutilin core. This is likely due to additional interactions made between the valnemulin side chain extension and the rRNA binding site. The data suggest that pleuromutilin drugs with enhanced antimicrobial activity may be obtained by maximizing the number of interactions between the side chain moiety and the peptidyl transferase cavity.

  13. Interaction of Pleuromutilin Derivatives with the Ribosomal Peptidyl Transferase Center

    PubMed Central

    Long, Katherine S.; Hansen, Lykke H.; Jakobsen, Lene; Vester, Birte

    2006-01-01

    Tiamulin is a pleuromutilin antibiotic that is used in veterinary medicine. The recently published crystal structure of a tiamulin-50S ribosomal subunit complex provides detailed information about how this drug targets the peptidyl transferase center of the ribosome. To promote rational design of pleuromutilin-based drugs, the binding of the antibiotic pleuromutilin and three semisynthetic derivatives with different side chain extensions has been investigated using chemical footprinting. The nucleotides A2058, A2059, G2505, and U2506 are affected in all of the footprints, suggesting that the drugs are similarly anchored in the binding pocket by the common tricyclic mutilin core. However, varying effects are observed at U2584 and U2585, indicating that the side chain extensions adopt distinct conformations within the cavity and thereby affect the rRNA conformation differently. An Escherichia coli L3 mutant strain is resistant to tiamulin and pleuromutilin, but not valnemulin, implying that valnemulin is better able to withstand an altered rRNA binding surface around the mutilin core. This is likely due to additional interactions made between the valnemulin side chain extension and the rRNA binding site. The data suggest that pleuromutilin drugs with enhanced antimicrobial activity may be obtained by maximizing the number of interactions between the side chain moiety and the peptidyl transferase cavity. PMID:16569865

  14. Characterizing guayule rubber transferase activity

    SciTech Connect

    Cornish, K.; Backhaus, R.A. )

    1989-04-01

    Rubber transferase (RuT) activity, measured as incorporation of {sup 14}C(isopentenyl pyrophosphate) (IPP) into rubber, was assayed in suspensions of rubber particles purified from bark tissue of Parthenium argentatum, Gray. Rubber particle suspensions (RSP) have high RuT activity which is not diminished by repeated washing of the particles, demonstrating the firm association of the enzyme system with the particles. RuT activity varied with line: 11591 yielded more rubber particles with a greater activity per particle, than did other lines tested. Variation in activity also varied with bark age and season. Activity rapidly declined at temperatures above 16{degree}C in line 593, but was more stable in RSP isolated form line 11591. IPP-incorporation depends upon the concentration of two substrates, IPP and the starter molecule farnesyl pyrophosphate (FPP). In lines 593 and 11591, 20 uM FPP saturated the enzyme present in 6 {times} 10{sup 10} particles {times} cm{sup {minus}3}, whereas about 1 mM IPP was required for saturation. Under saturating FPP, the apparent K{sub m} of RuT was about 250 uM.

  15. Ribosome Subunit Stapling for Orthogonal Translation in E.  coli.

    PubMed

    Fried, Stephen D; Schmied, Wolfgang H; Uttamapinant, Chayasith; Chin, Jason W

    2015-10-19

    The creation of orthogonal large and small ribosomal subunits, which interact with each other but not with endogenous ribosomal subunits, would extend our capacity to create new functions in the ribosome by making the large subunit evolvable. To this end, we rationally designed a ribosomal RNA that covalently links the ribosome subunits via an RNA staple. The stapled ribosome is directed to an orthogonal mRNA, allowing the introduction of mutations into the large subunit that reduce orthogonal translation, but have minimal effects on cell growth. Our approach provides a promising route towards orthogonal subunit association, which may enable the evolution of key functional centers in the large subunit, including the peptidyl-transferase center, for unnatural polymer synthesis in cells.

  16. Expression of human glutathione S-transferase 2 in Escherichia coli. Immunological comparison with the basic glutathione S-transferases isoenzymes from human liver.

    PubMed Central

    Board, P G; Pierce, K

    1987-01-01

    A plasmid, termed pTacGST2, which contains the complete coding sequence of a GST2 (glutathione S-transferase 2) subunit and permits the expression of the protein in Escherichia coli was constructed. The expressed protein had the same subunit Mr as the enzyme from normal human liver and retained its catalytic function with both GST and glutathione peroxidase activity. Antiserum raised against the bacterially synthesized protein cross-reacted with all the basic GST isoenzymes in human liver. The electrophoretic mobility in agarose of the bacterially expressed isoenzyme suggested that its pI is identical with that of the cationic isoenzyme from human liver previously termed GST2 type 1. The available evidence suggests that the three common cationic isoenzymes found in human liver are the products of two very similar gene loci. Images Fig. 3. Fig. 4. Fig. 5. PMID:3325043

  17. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  18. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  19. Purification and characterization of a labile rat glutathione transferase of the Mu class.

    PubMed Central

    Kispert, A; Meyer, D J; Lalor, E; Coles, B; Ketterer, B

    1989-01-01

    A labile GSH transferase homodimer termed 11-11 was purified from rat testis by GSH-agarose affinity chromatography followed by anion-exchange f.p.l.c. The enzyme is unstable in the absence of thiol(s) and has relatively low affinity for both 1-chloro-2,4-dinitrobenzene (Km 4.4 mM) and GSH (Km(app.) 4.4mM). Its mobility on SDS/polyacrylamide-gel electrophoresis is slightly less than that of subunits 3 and 4 and its pI is 5.2. Subunit 11 has a blocked N-terminal amino acid residue, but after CNBr cleavage fragments accounting for 113 amino acid residues were sequenced and showed 65% homology with corresponding sequences in subunit 4, indicating that it is a member of the Mu family. GSH transferase 11 is a major isoenzyme in testis, epididymis, prostate and brain and present at lower concentrations in other tissues. Images Fig. 3. Fig. 4. PMID:2764905

  20. Characterization of rat pancreatic glutathione S-transferases by chromatofocusing, reverse-phase high-performance liquid chromatography, and immunohistochemistry.

    PubMed

    March, T H; Jeffery, E H; Wallig, M A

    1998-10-01

    The cytosolic glutathione S-transferases (GSTs) are a family of phase II detoxifying isoenzymes that catalyze the interaction of the tripeptide thiol glutathione (GSH) with a wide variety of reactive and often toxic or carcinogenic electrophilic substrates. Pancreatic GSTs, however, have only been partially characterized. In this study, pancreatic cytosolic GSTs from male Fisher 344 rats were semipurified by affinity chromatography and then analyzed for isoenzyme content by chromatofocusing (fast protein liquid chromatography) and for subunit content by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography. In addition, polyclonal rabbit antisera were produced against homodimeric isoenzymes purified from rat liver and kidney, including the alpha class isoenzymes 1-1 and 2-2, the mu class isoenzyme 4-4, and the pi class isoenzyme 7-7. These antisera were used in immunohistochemical (IHC) studies of the distribution of the pancreatic GSTs. A range of 0.5-1.6% of the total protein in rat pancreatic cytosol was found to be GST protein. The most abundant subunits present were the pi subunit 7 and mu subunits 3 and 4. Using modified methodology, smaller amounts of the alpha subunit 2 and the mu subunit 6 were detected, whereas very small amounts of the alpha subunits 1 and 8 were present. The IHC demonstrated that the GSTs were in large part limited to the duct system of the exocrine pancreas, with positive staining of endothelial cells and stroma observed for the alpha and mu subunits. Isoenzymes containing the alpha subunit 2 were preferentially expressed in centroacinar cells and small ductules, whereas those containing the mu subunit 4 and the pi subunit 7 were more prevalent within larger ductules and ducts. The lumens of the largest ducts also contained the two subunits 4 and 7. It is concluded that the acinar cells of the exocrine pancreas may lack the protection against electrophilic toxic and

  1. Farnesyl transferase inhibitors as anticancer agents.

    PubMed

    Haluska, P; Dy, G K; Adjei, A A

    2002-09-01

    Protein farnesylation catalysed by the enzyme farnesyl protein transferase involves the addition of a 15-carbon farnesyl group to conserved amino acid residues at the carboxyl terminus of certain proteins. Protein substrates of farnesyl transferase include several G-proteins, which are critical intermediates of cell signalling and cytoskeletal organisation such as Ras, Rho, PxF and lamins A and B. Activated Ras proteins trigger a cascade of phosphorylation events through sequential activation of the PI3 kinase/AKT pathway, which is critical for cell survival, and the Raf/Mek/Erk kinase pathway that has been implicated in cell proliferation. Ras mutations which encode for constitutively activated proteins are found in 30% of human cancers. Because farnesylation of Ras is required for its transforming and proliferative activity, the farnesyl protein transferase inhibitors were designed as anticancer agents to abrogate Ras function. However, current evidence suggests that the anticancer activity of the farnesyl transferase inhibitors may not be simply due to Ras inhibition. This review will discuss available clinical data on three of these agents that are currently undergoing clinical trials.

  2. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  3. Purification and characterization of the Oligosaccharyl transferase

    SciTech Connect

    Kapoor, T.M.

    1990-11-01

    Oligosaccharyl transferase was characterized to be a glycoprotein with at least one saccharide unit that had a D-manno or D- glucopyranose configuration with unmodified hydroxy groups at C-3, C-4 and C-6, using a Concanavalin A affinity column. This afforded a 100 fold increase in the transferase purity in the solubilized microsomal sample and also removed over 90% of the microsomal proteins (the cytosolic ones being removed before solubilization). The detergent, N,N-Dimethyldodecylamine N-oxide (LDAO) was used for solubilization and it yielded a system compatible with the assay and the purification steps. An efficient method for detergent extraction without dilution of sample or protein precipitation was also developed.

  4. Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor.

    PubMed

    Beste, Kerstin Y; Spangler, Corinna M; Burhenne, Heike; Koch, Karl-Wilhelm; Shen, Yuequan; Tang, Wei-Jen; Kaever, Volkhard; Seifert, Roland

    2013-01-01

    Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis possess nucleotidyl cyclase (NC) activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.

  5. Rubber transferase in guayule plants. [Parthenium argentatum

    SciTech Connect

    Rosenfield, C.L.; Foster, M.A.; Benedict, C.R.

    1986-04-01

    Rubber transferase catalyzes the transfer of cis-1,4-polyprenyl-PP to isopentenyl-PP (IPP) with the elimination of PP/sub i/. Rubber transferase activity in guayule (Parthenium argentatum Gray) stems was localized in the lipid fraction of the homogenate following centrifugation in buffer and 0.4M Mannitol. Washed rubber particles were obtained by the chromatography of the lipid fraction on Ultrogel columns with an exclusion limit of 750,000 daltons by the procedure of B.G. Audley (private communication). The rubber particles catalyzed the incorporation of /sup 14/C-IPP into cis-polyisoprene. The radioactive cis-polyisoprene was identified by ozonolysis and chromatography of the resulting /sup 14/C-levulinic acid. The synthesis of cis-polyisoprene in the rubber particles required Mg/sup 2 +/ and IPP and was stimulated 2-fold with the addition of DMAPP. Rubber synthesis in guayule plants growing in the Permian Basin of West Texas does not occur during summer months but is induced by the cold night temperatures of the fall and winter. From August to December individual plants (which were transplanted in May) accumulated from 66mg to 11,800mg or rubber. During this period there was a 4-fold increase in rubber transferase activity in stem homogenates induced by the low temperatures.

  6. Purification and characterization of hepatic glutathione S-transferases of rhesus monkeys. A family of enzymes similar to the human hepatic glutathione S-transferases.

    PubMed Central

    Hoesch, R M; Boyer, T D

    1988-01-01

    Thirteen forms of glutathione S-transferase were purified from the livers of female rhesus monkeys (Macaque mulatta). Most (74.7%) of the activity in the hepatic cytosol adhered well to the GSH affinity column and could be eluted only with the addition of GSH to the eluting buffer. The predominant isoenzymes (n = 5) in this 'high-affinity' fraction had alkaline pI values (greater than 9.0) and contained a subunit with an Mr value of 24,000. All of these isoenzymes had high organic peroxidase activity and, on the basis of amino acid analysis, substrate specificities and affinity for non-substrate ligands, appear to belong to the family of glutathione S-transferases that have been termed alpha [Mannervik, Alin, Guthenberg, Jensson, Tahir, Warholm & Jörnvall (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7202-7206]. Also within the high-affinity fraction was an isoenzyme with an acidic (5.8) pI value. This acidic isoenzyme was composed of a unique subunit (Mr 23,000). The N-terminal sequence (ten residues) of this acidic enzyme was identical with that of a human form that is referred to as pi. The predominant form of enzyme in the 'low-affinity' (eluted from the GSH affinity column with an increase in buffer pH) fraction was a homodimer of a 26,000-Mr subunit. It had an alkaline pI (greater than 9.0) but it lacked organic peroxidase activity. The N-terminal sequence (ten residues) of this enzyme was identical with that of a human enzyme referred to as mu. The substrate specificities and affinity for non-substrate ligands of this monkey enzyme also were similar to those of the human enzyme. In conclusion, the liver cytosol of rhesus monkeys contains a number of glutathione S-transferase isoenzymes that are very similar to the human hepatic enzymes. Images Fig. 3. PMID:3390162

  7. Human glutathione S-transferases. Characterization of the anionic forms from lung and placenta.

    PubMed Central

    Dao, D D; Partridge, C A; Kurosky, A; Awasthi, Y C

    1984-01-01

    Anionic glutathione S-transferases were purified from human lung and placenta. Chemical and immunochemical characterization, including polyacrylamide-gel electrophoresis, gave strong evidence that the anionic lung and placental enzymes are chemically similar, if not identical, proteins. The electrophoretic mobilities of both proteins were identical in conventional alkaline gels as well as in gels containing sodium dodecyl sulphate. Gel filtration of the intact active enzyme established an Mr value of 45000; however, with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under dissociating conditions a subunit Mr of 22500 was obtained. Amino acid sequence analysis of the N-terminal region of the placental enzyme revealed a single polypeptide sequence identical with that of lung. Results obtained from immunoelectrophoresis, immunotitration, double immunodiffusion and rocket immunoelectrophoresis also indicated the anionic lung and placental enzymes to be closely similar. The chemical similarity of these two proteins was further supported by protein compositional analysis and fragment analysis after chemical hydrolysis. Immunochemical comparison of the anionic lung and placental enzymes with human liver glutathione S-transferases revealed cross-reactivity with the anionic omega enzyme, but no cross-reactivity was detectable with the cationic enzymes. Comparison of the N-terminal region of the human anionic enzyme with reported sequences of rat liver glutathione S-transferases gave strong evidence of chemical similarity, indicating that these enzymes are evolutionarily related. However, computer analysis of the 30-residue N-terminal sequence did not show any significant chemical similarity to any other reported protein sequence, pointing to the fact that the glutathione S-transferases represent a unique class of proteins. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:6466318

  8. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.

    PubMed

    Poulsen, S M; Karlsson, M; Johansson, L B; Vester, B

    2001-09-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.

  9. Chromatofocusing of glutathione S-transferases from human kidney.

    PubMed

    Koskelo, K; Icén, A

    1984-04-01

    The glutathione S-transferase isoenzyme patterns of four human kidneys have been determined by chromatofocusing. The elution profiles were essentially similar in each tissue. Two major basic transferases and one acidic were partially characterized. All three were inhibited by bilirubin but considerable differences were found in the rate and extent of inactivation. The molecular weights, KM values and pH optima were similar to the values for transferases from other tissues. Chromatofocusing was found to be effective for the separation and purification of human glutathione transferases.

  10. Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.

    PubMed Central

    Tang, S S; Chang, G G

    1996-01-01

    Octopus glutathione transferase (GST) was enzymically active in aerosol-OT [sodium bis-(2-ethylhexyl)sulphosuccinate]/iso-octane reverse micelles albeit with lowered catalytic constant (kcat). The enzyme reaction rate was found to be dependent on the [H2O]/[surfactant] ratio (omega(o)) of the system with maximum rate observed at omega(o) 13.88, which corresponded to vesicles with a core volume of 64 nm3. According to the physical examinations, a vesicle of this size is barely large enough to accommodate a monomeric enzyme subunit. Dissociation of the enzyme in reverse micelles was confirmed by cross-linking of the associated subunits with glutaraldehyde and separation of the monomers and dimers with electrophoresis in the presence of SDS. The kinetic properties of the enzyme were investigated by steady-state kinetic analysis. Both GSH and 1-chloro-2,4-dinitrobenzene (CDNB) showed substrate inhibition and the Michaelis constant for CDNB was increased by 36-fold to 11.05 mM in reverse micelles. Results on the initial-velocity and product-inhibition studies indicate that the octopus GST conforms to a steady-state sequential random Bi Bi mechanism. The results from a log kcat versus pH plot suggest that amino acid residues with pKa values of 6.56 0.07 and 8.81 0.17 should be deprotonated to give optimum catalytic function. In contrast, the amino acid residue with a pKa value of 9.69 0.16 in aqueous solution had to be protonated for the reaction to proceed. We propose that the pKa1 (6.56) is that for the enzyme-bound GSH, which has a pKa value lowered by 1.40-1.54 pH units compared with that of free GSH in reverse micelles. The most probable candidate for the observed pKa2 (8.81) is Tyr7 of GST. The pKa of Tyr7 is 0.88 pH unit lower than that in aqueous solution and is about 2 pH units below the normal tyrosine. This tyrosyl residue may act as a base catalyst facilitating the dissociation of enzyme-bound GSH. The possible interaction of GST with plasma membrane in vivo

  11. Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.

    PubMed

    Tang, S S; Chang, G G

    1996-04-15

    Octopus glutathione transferase (GST) was enzymically active in aerosol-OT [sodium bis-(2-ethylhexyl)sulphosuccinate]/iso-octane reverse micelles albeit with lowered catalytic constant (kcat). The enzyme reaction rate was found to be dependent on the [H2O]/[surfactant] ratio (omega(o)) of the system with maximum rate observed at omega(o) 13.88, which corresponded to vesicles with a core volume of 64 nm3. According to the physical examinations, a vesicle of this size is barely large enough to accommodate a monomeric enzyme subunit. Dissociation of the enzyme in reverse micelles was confirmed by cross-linking of the associated subunits with glutaraldehyde and separation of the monomers and dimers with electrophoresis in the presence of SDS. The kinetic properties of the enzyme were investigated by steady-state kinetic analysis. Both GSH and 1-chloro-2,4-dinitrobenzene (CDNB) showed substrate inhibition and the Michaelis constant for CDNB was increased by 36-fold to 11.05 mM in reverse micelles. Results on the initial-velocity and product-inhibition studies indicate that the octopus GST conforms to a steady-state sequential random Bi Bi mechanism. The results from a log kcat versus pH plot suggest that amino acid residues with pKa values of 6.56 0.07 and 8.81 0.17 should be deprotonated to give optimum catalytic function. In contrast, the amino acid residue with a pKa value of 9.69 0.16 in aqueous solution had to be protonated for the reaction to proceed. We propose that the pKa1 (6.56) is that for the enzyme-bound GSH, which has a pKa value lowered by 1.40-1.54 pH units compared with that of free GSH in reverse micelles. The most probable candidate for the observed pKa2 (8.81) is Tyr7 of GST. The pKa of Tyr7 is 0.88 pH unit lower than that in aqueous solution and is about 2 pH units below the normal tyrosine. This tyrosyl residue may act as a base catalyst facilitating the dissociation of enzyme-bound GSH. The possible interaction of GST with plasma membrane in vivo

  12. Sex-specific constitutive expression of the pre-neoplastic marker glutathione S-transferase, YfYf, in mouse liver.

    PubMed Central

    McLellan, L I; Hayes, J D

    1987-01-01

    Hepatic glutathione S-transferase isoenzyme content has been investigated in both sexes of three inbred strains of mice (DBA/2, C3H/He, C57BL6). A polypeptide (Mr 24,800), which is immunologically related to Yf purified from rat lung, was found to be expressed as a major form in all male mouse livers but represented only a minor enzyme form in female mouse liver. Glutathione S-transferases comprising subunits with molecular masses of 25,800 (Ya) or 26,400 (Yb) were present in males and females of the three strains under investigation. Cytosolic isoenzymes from all strains and sexes were purified to apparent homogeneity and no significant inter-strain differences in the properties of the individual forms were observed. In addition, no differences were detected in the microsomal glutathione S-transferase content of the different strains or sexes. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3663166

  13. Characterization of the safener-induced glutathione S-transferase isoform II from maize.

    PubMed

    Holt, D C; Lay, V J; Clarke, E D; Dinsmore, A; Jepson, I; Bright, S W; Greenland, A J

    1995-01-01

    The safener-induced maize (Zea mays L.) glutathione S-transferase, GST II (EC 2.5.1.18) and another predominant isoform, GST I, were purified from extracts of maize roots treated with the safeners R-25788 (N,N-diallyl-2-dichloroacetamide) or R-29148 (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidone). The isoforms GST I and GST II are respectively a homodimer of 29-kDa (GST-29) subunits and a heterodimer of 29- and 27-kDa (GST-27) subunits, while GST I is twice as active with 1-chloro-2,4-dinitrobenzene as GST II, GST II is about seven times more active against the herbicide, alachlor. Western blotting using antisera raised against GST-29 and GST-27 showed that GST-29 is present throughout the maize plant prior to safener treatment. In contrast, GST-27 is only present in roots of untreated plants but is induced in all the major aerial organs of maize after root-drenching with safener. The amino-acid sequences of proteolytic fragments of GST-27 show that it is related to GST-29 and identical to the 27-kDa subunit of GST IV.

  14. Structural basis for the interaction of antibiotics with peptidyl transferase center in eubacteria

    SciTech Connect

    Schlunzen, Frank; Zarivach, Raz; Harms, Jörg; Bashan, Anat; Tocilj, Ante; Albrecht, Renate; Yonath, Ada; Franceschi, Francois

    2009-10-07

    Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg{sup +2} ions for the binding of some drugs. This structural analysis should facilitate rational drug design.

  15. Purification and properties of 4-hydroxybutyrate coenzyme A transferase from Clostridium aminobutyricum.

    PubMed Central

    Scherf, U; Buckel, W

    1991-01-01

    A new coenzyme A (CoA)-transferase from the anaerobe Clostridium aminobutyricum catalyzing the formation of 4-hydroxybutyryl-CoA from 4-hydroxybutyrate and acetyl-CoA is described. The enzyme was purified to homogeneity by standard techniques, including fast protein liquid chromatography under aerobic conditions. Its molecular mass was determined to be 110 kDa, and that of the only subunit was determined to be 54 kDa, indicating a homodimeric structure. Besides acetate and acetyl-CoA, the following substrates were detected (in order of decreasing kcat/Km): 4-hydroxybutyryl-CoA, butyryl-CoA and propionyl-CoA, vinyl-acetyl-CoA (3-butenoyl-CoA), and 5-hydroxyvaleryl-CoA. In an indirect assay the corresponding acids were also found to be substrates; however, DL-lactate, DL-2-hydroxybutyrate, DL-3-hydroxybutyrate, crotonate, and various dicarboxylates were not. PMID:1768145

  16. Glucose-induced expression of MIP-1 genes requires O-GlcNAc transferase in monocytes

    SciTech Connect

    Chikanishi, Toshihiro; Fujiki, Ryoji; Hashiba, Waka; Sekine, Hiroki; Yokoyama, Atsushi; Kato, Shigeaki

    2010-04-16

    O-glycosylation has emerged as an important modification of nuclear proteins, and it appears to be involved in gene regulation. Recently, we have shown that one of the histone methyl transferases (MLL5) is activated through O-glycosylation by O-GlcNAc transferase (OGT). Addition of this monosaccharide is essential for forming a functional complex. However, in spite of the abundance of OGT in the nucleus, the impact of nuclear O-glycosylation by OGT remains largely unclear. To address this issue, the present study was undertaken to test the impact of nuclear O-glycosylation in a monocytic cell line, THP-1. Using a cytokine array, MIP-1{alpha} and -1{beta} genes were found to be regulated by nuclear O-glycosylation. Biochemical purification of the OGT interactants from THP-1 revealed that OGT is an associating partner for distinct co-regulatory complexes. OGT recruitment and protein O-glycosylation were observed at the MIP-1{alpha} gene promoter; however, the known OGT partner (HCF-1) was absent when the MIP-1{alpha} gene promoter was not activated. From these findings, we suggest that OGT could be a co-regulatory subunit shared by functionally distinct complexes supporting epigenetic regulation.

  17. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    PubMed Central

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.; Kasatsky, Pavel; Kartsev, Victor G.; Bogdanov, Alexey A.; Dontsova, Olga A.

    2017-01-01

    Abstract The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome. PMID:28505372

  18. Purification and characterization of glutathione S-transferases of human kidney.

    PubMed Central

    Singh, S V; Leal, T; Ansari, G A; Awasthi, Y C

    1987-01-01

    Several forms of glutathione S-transferase (GST) are present in human kidney, and the overall isoenzyme pattern of kidney differs significantly from those of other human tissues. All the three major classes of GST isoenzymes (alpha, mu and pi) are present in significant amounts in kidney, indicating that GST1, GST2 and GST3 gene loci are expressed in this tissue. More than one form of GST is present in each of these classes of enzymes, and individual variations are observed for these classes. The structural, immunological and functional properties of GST isoenzymes of three classes differ significantly from each other, whereas the isoenzymes belonging to the same class have similar properties. All the cationic GST isoenzymes of human kidney except for GST 9.1 are heterodimers of 26,500-Mr and 24,500-Mr subunits. GST 9.1 is a dimer of 24,500-Mr subunits. All the cationic isoenzymes of kidney GST cross-react with antibodies raised against a mixture of GST alpha, beta, gamma, delta and epsilon isoenzymes of liver. GST 6.6 and GST 5.5 of kidney are dimers of 26,500-Mr subunits and are immunologically similar to GST psi of liver. Unlike other human tissues, kidney has at least two isoenzymes (pI 4.7 and 4.9) associated with the GST3 locus. Both these isoenzymes are dimers of 22,500-Mr subunits and are immunologically similar to GST pi of placenta. Some of the isoenzymes of kidney do not correspond to known GST isoenzymes from other human tissues and may be specific to this tissue. Images Fig. 2. PMID:3118868

  19. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  20. Properties of Succinyl-Coenzyme A:l-Malate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Steindorf, Astrid; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The 3-hydroxypropionate cycle has been proposed to operate as the autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus. In this pathway, acetyl coenzyme A (acetyl-CoA) and two bicarbonate molecules are converted to malate. Acetyl-CoA is regenerated from malyl-CoA by l-malyl-CoA lyase. The enzyme forming malyl-CoA, succinyl-CoA:l-malate coenzyme A transferase, was purified. Based on the N-terminal amino acid sequence of its two subunits, the corresponding genes were identified on a gene cluster which also contains the gene for l-malyl-CoA lyase, the subsequent enzyme in the pathway. Both enzymes were severalfold up-regulated under autotrophic conditions, which is in line with their proposed function in CO2 fixation. The two CoA transferase genes were cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified and studied. Succinyl-CoA:l-malate CoA transferase forms a large (αβ)n complex consisting of 46- and 44-kDa subunits and catalyzes the reversible reaction succinyl-CoA + l-malate → succinate + l-malyl-CoA. It is specific for succinyl-CoA as the CoA donor but accepts l-citramalate instead of l-malate as the CoA acceptor; the corresponding d-stereoisomers are not accepted. The enzyme is a member of the class III of the CoA transferase family. The demonstration of the missing CoA transferase closes the last gap in the proposed 3-hydroxypropionate cycle. PMID:16547052

  1. Folding of active calcium channel beta(1b) -subunit by size-exclusion chromatography and its role on channel function.

    PubMed

    Neely, Alan; Garcia-Olivares, Jennie; Voswinkel, Stephan; Horstkott, Hannelore; Hidalgo, Patricia

    2004-05-21

    Voltage-gated calcium channels mediate the influx of Ca(2+) ions into eukaryotic cells in response to membrane depolarization. They are hetero-multimer membrane proteins formed by at least three subunits, the poreforming alpha(1)-subunit and the auxiliary beta- and alpha(2)delta-subunits. The beta-subunit is essential for channel performance because it regulates two distinct features of voltage-gated calcium channels, the surface expression and the channel activity. Four beta-subunit genes have been cloned, beta(1-4), with molecular masses ranging from 52 to 78 kDa, and several splice variants have been identified. The beta(1b)-subunit, expressed at high levels in mammalian brain, has been used extensively to study the interaction between the pore forming alpha(1)- and the regulatory beta-subunit. However, structural characterization has been impaired for its tendency to form aggregates when expressed in bacteria. We applied an on-column refolding procedure based on size exclusion chromatography to fold the beta(1b)-subunit of the voltage gated-calcium channels from Escherichia coli inclusion bodies. The beta(1b)-subunit refolds into monomers, as shown by sucrose gradient analysis, and binds to a glutathione S-transferase protein fused to the known target in the alpha(1)-subunit (the alpha-interaction domain). Using the cut-open oocyte voltage clamp technique, we measured gating and ionic currents in Xenopus oocytes expressing cardiac alpha(1)-subunit (alpha(1C)) co-injected with folded-beta(1b)-protein or beta(1b)-cRNA. We demonstrate that the co-expression of the alpha(1C)-subunit with either folded-beta(1b)-protein or beta(1b)-cRNA increases ionic currents to a similar extent and with no changes in charge movement, indicating that the beta(1b)-subunit primarily modulates channel activity, rather than expression.

  2. Gamma-glutamyl transferase and cardiovascular disease

    PubMed Central

    Kastrati, Adnan

    2016-01-01

    Gamma-glutamyl transferase (GGT) is an enzyme located on the external surface of cellular membranes. GGT contributes in maintaining the physiological concentrations of cytoplasmic glutathione and cellular defense against oxidative stress via cleavage of extracellular glutathione and increased availability of amino acids for its intracellular synthesis. Increased GGT activity is a marker of antioxidant inadequacy and increased oxidative stress. Ample evidence suggests that elevated GGT activity is associated with increased risk of cardiovascular disease (CVD) such as coronary heart disease (CHD), stroke, arterial hypertension, heart failure, cardiac arrhythmias and all-cause and CVD-related mortality. The evidence is weaker for an association between elevated GGT activity and acute ischemic events and myocardial infarction. The risk for CVD or CVD-related mortality mediated by GGT may be explained by the close correlation of GGT with conventional CVD risk factors and various comorbidities, particularly non-alcoholic fatty liver disease, alcohol consumption, oxidative stress, metabolic syndrome, insulin resistance and systemic inflammation. The finding of GGT activity in atherosclerotic plaques and correlation of intra-plaque GGT activity with histological indexes of plaque instability may suggest a participation of GGT in the pathophysiology of CVD, particularly atherosclerosis. However, whether GGT has a direct role in the pathophysiology of CVD or it is an epiphenomenon of coexisting CVD risk factors or comorbidities remains unknown and Hill’s criteria of causality relationship between GGT and CVD are not fulfilled. The exploration whether GGT provides prognostic information on top of the information provided by known cardiovascular risk factors regarding the CVD or CVD-related outcome and exploration of molecular mechanisms of GGT involvement in the pathophysiology of CVD and eventual use of interventions to reduce circulating GGT activity remain a duty of

  3. Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea.

    PubMed

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-27

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  4. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    PubMed Central

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-01

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism. PMID:24473139

  5. High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium

    SciTech Connect

    Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada

    2009-10-07

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

  6. Comparative study on glutathione transferases of rat brain and testis under the stress of phenobarbitol and β-methylcholanthrene*

    PubMed Central

    Thyagaraju, K.; Hemavathi, B.; Vasundhara, K.; Rao, A.D.; Devi, K.N.

    2005-01-01

    A comparative study was made on the tissue specific expression of glutathione transferases (GST) in brain and testis after exposure of rat to phenobarbitol (PB) and β-methylcholanthrene (MC). Glutathione transferases, a family of multifunctional proteins are involved in intracellular transport processes and in detoxication of electrophilic xenobiotics by catalyzing reactions such as conjugation, isomerization, reduction and thiolysis. On purification, the yield of GST proteins by affinity chromatography was 39% in testis and 32% in brain. The affinity purified testis GSTs were resolved by chromatofocusing into six anionic and four cationic isozymes, and in brain glutathione transferases were resolved into four anionic and three cationic isozymes, suggesting the presence of multiple isozymes with Yc, Yb, Yβ and Yδ in both of them. In testis and brain, these isozymes at identical pI values showed variable functions with a battery of substrates and the cationic isozymes of brain and testis showed identical properties in CHP (cumene hydroperoxide) at pH values of above 7.0. Substrate specificity studies and immunoblot analysis of testis and brain proteins revealed that they play a predominant role in the detoxication of phenobarbitol or β-methylcholanthrene. Expression of the isozymes in testis and brain on exposure to PB and MC indicated elevated subunit variation. In both testis and brain, Yδ of π class was expressed on PB treatment and Yc of α class and Yβ of μ class was expressed in MC treated testis and only Yc was predominantly expressed in MC treated brain. Thus these subunits expression is considered as markers for carcinogenesis and specific to chemical toxicity under phenobarbitol and β-methylcholanthrene stress. PMID:16052709

  7. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    PubMed Central

    Harms, Jörg M; Schlünzen, Frank; Fucini, Paola; Bartels, Heike; Yonath, Ada

    2004-01-01

    Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield

  8. Purification and characterization of three forms of glutathione transferase from Proteus mirabilis.

    PubMed Central

    Di Ilio, C; Aceto, A; Piccolomini, R; Allocati, N; Faraone, A; Cellini, L; Ravagnan, G; Federici, G

    1988-01-01

    Three forms of glutathione transferase (GST) with pI values of 6.0, 6.4 and 7.3 were isolated from Proteus mirabilis AF 2924 by glutathione-affinity chromatography followed by isoelectric focusing, and their structural, kinetic and immunological properties were investigated. Upon SDS/polyacrylamide-slab-gel electrophoresis, all forms proved to be composed of two subunits of identical (22,500) Mr. GST-6.0 and GST-6.4 together account for about 95% of the total activity, whereas GST-7.3 is present only in trace amounts. Extensive similarities have been found between GST-6.0 and GST-6.4. These include subunit molecular mass, amino acid composition, substrate specificities and immunological characteristics. GST-7.3 also cross-reacted (non-identity) with antisera raised against bacterial GST-6.0. None of the antisera raised against a number of human, rat and mouse GSTs cross-reacted with the bacterial enzymes, indicating major structural differences between them and the mammalian GSTs. This conclusion is further supported by c.d. spectra. Images Fig. 2. Fig. 3. PMID:3145740

  9. Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti.

    PubMed Central

    Glucksmann, M A; Reuber, T L; Walker, G C

    1993-01-01

    Rhizobium meliloti produces an acidic exopolysaccharide, termed succinoglycan or EPS I, that is important for invasion of the nodules that it elicits on its host, Medicago sativa. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide subunits. These subunits are synthesized on membrane-bound isoprenoid lipid carriers, beginning with a galactose residue followed by seven glucose residues, and modified by the addition of acetate, succinate, and pyruvate. Biochemical characterizations of lipid-linked succinoglycan biosynthetic intermediates from previously identified exo mutant strains have been carried out in our laboratory (T. L. Reuber and G. C. Walker, Cell 74:269-280, 1993) to determine where each mutation blocks the biosynthetic pathway. We have carried out a fine structure genetic analysis of a portion of the cluster of exo genes present on the second symbiotic megaplasmid of R. meliloti and have identified several new genes. In addition, the DNA sequence of 16 kb of the exo cluster was determined and the genetic map was correlated with the DNA sequence. In this paper we present the sequence of a family of glycosyl transferases required for the synthesis of succinoglycan and discuss their functions. PMID:8226645

  10. Interactions among rice ORC subunits.

    PubMed

    Tan, Deyong; Lv, Qundan; Chen, Xinai; Shi, Jianghua; Ren, Meiyan; Wu, Ping; Mao, Chuanzao

    2013-08-01

    The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.

  11. Properties of Succinyl-Coenzyme A:d-Citramalate Coenzyme A Transferase and Its Role in the Autotrophic 3-Hydroxypropionate Cycle of Chloroflexus aurantiacus

    PubMed Central

    Friedmann, Silke; Alber, Birgit E.; Fuchs, Georg

    2006-01-01

    The phototrophic bacterium Chloroflexus aurantiacus uses the 3-hydroxypropionate cycle for autotrophic CO2 fixation. This cycle starts with acetyl-coenzyme A (CoA) and produces glyoxylate. Glyoxylate is an unconventional cell carbon precursor that needs special enzymes for assimilation. Glyoxylate is combined with propionyl-CoA to β-methylmalyl-CoA, which is converted to citramalate. Cell extracts catalyzed the succinyl-CoA-dependent conversion of citramalate to acetyl-CoA and pyruvate, the central cell carbon precursor. This reaction is due to the combined action of enzymes that were upregulated during autotrophic growth, a coenzyme A transferase with the use of succinyl-CoA as the CoA donor and a lyase cleaving citramalyl-CoA to acetyl-CoA and pyruvate. Genomic analysis identified a gene coding for a putative coenzyme A transferase. The gene was heterologously expressed in Escherichia coli and shown to code for succinyl-CoA:d-citramalate coenzyme A transferase. This enzyme, which catalyzes the reaction d-citramalate + succinyl-CoA → d-citramalyl-CoA + succinate, was purified and studied. It belongs to class III of the coenzyme A transferase enzyme family, with an aspartate residue in the active site. The homodimeric enzyme composed of 44-kDa subunits was specific for succinyl-CoA as a CoA donor but also accepted d-malate and itaconate instead of d-citramalate. The CoA transferase gene is part of a cluster of genes which are cotranscribed, including the gene for d-citramalyl-CoA lyase. It is proposed that the CoA transferase and the lyase catalyze the last two steps in the glyoxylate assimilation route. PMID:16952935

  12. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  13. Degradation of aromatics and chloroaromatics by Pseudomonas sp. strain B13: purification and characterization of 3-oxoadipate:succinyl-coenzyme A (CoA) transferase and 3-oxoadipyl-CoA thiolase.

    PubMed

    Kaschabek, Stefan R; Kuhn, Bernd; Müller, Dagmar; Schmidt, Eberhard; Reineke, Walter

    2002-01-01

    The degradation of 3-oxoadipate in Pseudomonas sp. strain B13 was investigated and was shown to proceed through 3-oxoadipyl-coenzyme A (CoA) to give acetyl-CoA and succinyl-CoA. 3-Oxoadipate:succinyl-CoA transferase of strain B13 was purified by heat treatment and chromatography on phenyl-Sepharose, Mono-Q, and Superose 6 gels. Estimation of the native molecular mass gave a value of 115,000 +/- 5,000 Da with a Superose 12 column. Polyacrylamide gel electrophoresis under denaturing conditions resulted in two distinct bands of equal intensities. The subunit A and B values were 32,900 and 27,000 Da. Therefore it can be assumed that the enzyme is a heterotetramer of the type A2B2 with a molecular mass of 120,000 Da. The N-terminal amino acid sequences of both subunits are as follows: subunit A, AELLTLREAVERFVNDGTVALEGFTHLIPT; subunit B, SAYSTNEMMTVAAARRLKNGAVVFV. The pH optimum was 8.4. Km values were 0.4 and 0.2 mM for 3-oxoadipate and succinyl-CoA, respectively. Reversibility of the reaction with succinate was shown. The transferase of strain B13 failed to convert 2-chloro- and 2-methyl-3-oxoadipate. Some activity was observed with 4-methyl-3-oxoadipate. Even 2-oxoadipate and 3-oxoglutarate were shown to function as poor substrates of the transferase. 3-oxoadipyl-CoA thiolase was purified by chromatography on DEAE-Sepharose, blue 3GA, and reactive brown-agarose. Estimation of the native molecular mass gave 162,000 +/- 5,000 Da with a Superose 6 column. The molecular mass of the subunit of the denatured protein, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was 42 kDa. On the basis of these results, 3-oxoadipyl-CoA thiolase should be a tetramer of the type A4. The N-terminal amino acid sequence of 3-oxoadipyl-CoA thiolase was determined to be SREVYI-DAVRTPIGRFG. The pH optimum was 7.8. Km values were 0.15 and 0.01 mM for 3-oxoadipyl-CoA and CoA, respectively. Sequence analysis of the thiolase terminus revealed high percentages of identity

  14. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex

    PubMed Central

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B.; Webb, Kristofor; Bennett, Eric J.; Vinterbo, Staal; Potter, Clinton S.; Carragher, Bridget; Joazeiro, Claudio A. P.

    2014-01-01

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes. PMID:25349383

  15. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.

    PubMed

    Lyumkis, Dmitry; Oliveira dos Passos, Dario; Tahara, Erich B; Webb, Kristofor; Bennett, Eric J; Vinterbo, Staal; Potter, Clinton S; Carragher, Bridget; Joazeiro, Claudio A P

    2014-11-11

    All organisms have evolved mechanisms to manage the stalling of ribosomes upon translation of aberrant mRNA. In eukaryotes, the large ribosomal subunit-associated quality control complex (RQC), composed of the listerin/Ltn1 E3 ubiquitin ligase and cofactors, mediates the ubiquitylation and extraction of ribosome-stalled nascent polypeptide chains for proteasomal degradation. How RQC recognizes stalled ribosomes and performs its functions has not been understood. Using single-particle cryoelectron microscopy, we have determined the structure of the RQC complex bound to stalled 60S ribosomal subunits. The structure establishes how Ltn1 associates with the large ribosomal subunit and properly positions its E3-catalytic RING domain to mediate nascent chain ubiquitylation. The structure also reveals that a distinguishing feature of stalled 60S particles is an exposed, nascent chain-conjugated tRNA, and that the Tae2 subunit of RQC, which facilitates Ltn1 binding, is responsible for selective recognition of stalled 60S subunits. RQC components are engaged in interactions across a large span of the 60S subunit surface, connecting the tRNA in the peptidyl transferase center to the distally located nascent chain tunnel exit. This work provides insights into a mechanism linking translation and protein degradation that targets defective proteins immediately after synthesis, while ignoring nascent chains in normally translating ribosomes.

  16. A Novel Method of Production and Biophysical Characterization of the Catalytic Domain of Yeast Oligosaccharyl Transferase

    PubMed Central

    Huang, Chengdong; Mohanty, Smita; Banerjee, Monimoy

    2010-01-01

    Oligosaccharyl transferase (OT) is a multi-subunit enzyme that catalyzes N-linked glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum. In the case of Saccharomyces cerevisiae, OT is composed of nine integral membrane protein subunits. Defects in N-linked glycosylation cause a series of disorders known as congenital disorders of glycosylation (CDG). The C-terminal domain of Stt3p subunit has been reported to contain the acceptor protein recognition site and/or catalytic site. We report here the subcloning, overexpression, a robust but novel method of production of pure C-terminal domain of Stt3p at 60∼70 mg/L in E. coli. CD spectra indicate that the C-terminal Stt3p is highly helical and has a stable tertiary structure in SDS micelles. The well dispersed 2D {1H-15N}-HSQC spectrum in SDS micelles indicates that it is feasible to determine the atomic structure by NMR. The effect of the conserved D518E mutation on the conformation of the C-terminal Stt3p is particularly interesting. The comparative analysis of the fluorescence and NMR data of the mutant and the wild-type C-terminal domain of Stt3p revealed that the replacement of the key residue Asp518, which is located within the WWDYG signature motif (residues 516-520), led to a distinct tertiary structure, even though both proteins have similar overall secondary structures. This observation strongly suggests that Asp518, which was previously proposed to primarily function as a catalytic residue, also plays a critical structural role. Moreover, the activity of the protein was confirmed by Saturation Transfer Difference (STD) and NMR titration studies. PMID:20047336

  17. Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galli.

    PubMed Central

    Meyer, D J; Muimo, R; Thomas, M; Coates, D; Isaac, R E

    1996-01-01

    Comparison of partial primary sequences of sigma-class glutathione S-transferases (GSH) of parasitic helminths and a GSH-dependent prostaglandin (PG)-H D-isomerase of rat immune accessory cells suggested that some of the helminth enzymes may also be involved in PG biosynthesis [Meyer and Thomas (1995) Biochem. J. 311, 739-742]. A soluble GSH transferase of the parasitic nematode Ascaridia galli has now been purified which shows high activity and specificity in the GSH-dependent isomerization of PGH to PGE, comparable to that of the rat spleen enzyme in its isomerization of PGH to PGD, and similarly stimulates the activity of prostaglandin H synthase. The enzyme subunit is structurally related to the rat spleen enzyme and sigma-class GSH transferases of helminths according to the partial primary sequence. The data support the hypothesis that some sigma-class GSH transferases of helminth parasites are involved in PG biosynthesis which, in the case of PGE, is likely to be associated with the subversion or suppression of host immunity. A PG-H E-isomerase of comparable specificity and activity has not previously been isolated. PMID:8546687

  18. Regulation of aflatoxin B1-metabolizing aldehyde reductase and glutathione S-transferase by chemoprotectors.

    PubMed Central

    McLellan, L I; Judah, D J; Neal, G E; Hayes, J D

    1994-01-01

    Ingestion of aflatoxin B1 (AFB1) represents a major risk factor in the aetiology of human hepatocellular carcinoma. In the rat, the harmful effects of AFB1 can be prevented by the administration of certain drugs which induce hepatic detoxification enzymes. We have previously shown that treatment of rats with the chemoprotector ethoxyquin (EQ) results in a marked increase in expression of the Alpha-class glutathione S-transferase (GST) Yc2 subunit which has high activity towards AFB1-8,9-epoxide [Hayes, Judah, McLellan, Kerr, Peacock and Neal (1991) Biochem. J. 279, 385-398]. To allow an assessment of whether the increased expression of GST Yc2 represents a general adaptive resistance mechanism to chemical stress, that is invoked by both chemoprotectors and carcinogens, we have examined the effects of EQ, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), phenobarbital (PB), AFB1, 3-methylcholanthrene (3-MC) and clofibrate on the AFB1-glutathione-conjugating activity and the GST subunit levels in rat liver. In addition, the effect of these drugs on the hepatic levels of an aldehyde reductase (AFB1-AR) that metabolizes the cytotoxic dialdehydic form of AFB1 has been studied as this enzyme also appears to be important in chemoprotection. Administration of the antioxidants EQ, BHA or BHT, as well as PB, led to a marked increase in levels of the GST Yc2 subunit in rat liver, and this increase coincided with a substantial rise in the GST activity towards AFB1-8,9-epoxide; neither AFB1, 3-MC nor clofibrate caused induction of Yc2 or any of the GST subunits examined. Among the xenobiotics studied, EQ was found to be the most effective inducing agent for the Yc2 subunit as well as Yc1, Yb1 and Yf. However, PB was equally as effective as EQ in increasing levels of the Ya-type subunits, although it was not found to be as potent an inducer of the other GST subunits, including Yc2. In addition to induction of GST, EQ caused a substantial increase in the hepatic

  19. Characterization of methylation of rat liver cytosolic glutathione S-transferases by using reverse-phase h.p.l.c. and chromatofocusing.

    PubMed

    Johnson, J A; Neal, T L; Collins, J H; Siegel, F L

    1990-09-01

    Glutathione S-transferase (GST) subunits in rat liver cytosol were separated by reverse-phase h.p.l.c.; five major proteins were isolated and identified as subunits 1, 2, 3, 4 and 8. F.p.l.c. chromatofocusing resolved the affinity-purified GST pool into nine different isoenzymes. The five basic (Alpha class) dimeric peaks of GST activity were 1-1, 1-2a, 1-2b, 2-2a and 2-2b. Reverse-phase h.p.l.c. analysis revealed that subunit 8 was also present in the protein peaks designated 1-1, 1-2a and 1-2b. The four neutral (Mu class) isoenzymes were 3-3, 3-4, 3-6 and 4-4. The GST pool was methylated in vitro before reverse-phase h.p.l.c. or f.p.l.c. chromatofocusing. Chromatofocusing indicated that the Mu class isoforms (3-3, 3-4 and 4-4) were the primary GSTs methylated, and h.p.l.c. analysis confirmed that subunits 3 and 4 were the major methyl-accepting GST subunits. The addition of calmodulin stimulated the methylation in vitro of GST isoenzymes 3-3, 3-4 and 4-4 by 3.0-, 7.5- and 9.9-fold respectively. Reverse-phase h.p.l.c. also indicated that only the methylation of GST subunits 3 and 4 was stimulated by calmodulin. Basic GST isoenzymes were minimally methylated and the methylation was not enhanced by calmodulin. Investigation of the time course of methylation of GST subunits 3 and 4 indicated that at incubation times less than 4 h the methylation of both Mu class subunits was stimulated by calmodulin, and that under such conditions subunit 4 was the preferred substrate. In contrast, there was essentially no calmodulin-stimulated methylation at incubation times of 4 or 6 h, and the methylation of subunit 3 was predominant. Kinetic parameters at 2 h of incubation were determined in the presence and in the absence of calmodulin. The addition of calmodulin doubled the Vmax. for methylation of both subunits 3 and 4 and decreased the Km of subunit 4 for S-adenosyl-L-methionine 3.6-fold. Finally, methylation was substoichiometric and after 6 h of incubation ranged from 2

  20. Characterization of methylation of rat liver cytosolic glutathione S-transferases by using reverse-phase h.p.l.c. and chromatofocusing.

    PubMed Central

    Johnson, J A; Neal, T L; Collins, J H; Siegel, F L

    1990-01-01

    Glutathione S-transferase (GST) subunits in rat liver cytosol were separated by reverse-phase h.p.l.c.; five major proteins were isolated and identified as subunits 1, 2, 3, 4 and 8. F.p.l.c. chromatofocusing resolved the affinity-purified GST pool into nine different isoenzymes. The five basic (Alpha class) dimeric peaks of GST activity were 1-1, 1-2a, 1-2b, 2-2a and 2-2b. Reverse-phase h.p.l.c. analysis revealed that subunit 8 was also present in the protein peaks designated 1-1, 1-2a and 1-2b. The four neutral (Mu class) isoenzymes were 3-3, 3-4, 3-6 and 4-4. The GST pool was methylated in vitro before reverse-phase h.p.l.c. or f.p.l.c. chromatofocusing. Chromatofocusing indicated that the Mu class isoforms (3-3, 3-4 and 4-4) were the primary GSTs methylated, and h.p.l.c. analysis confirmed that subunits 3 and 4 were the major methyl-accepting GST subunits. The addition of calmodulin stimulated the methylation in vitro of GST isoenzymes 3-3, 3-4 and 4-4 by 3.0-, 7.5- and 9.9-fold respectively. Reverse-phase h.p.l.c. also indicated that only the methylation of GST subunits 3 and 4 was stimulated by calmodulin. Basic GST isoenzymes were minimally methylated and the methylation was not enhanced by calmodulin. Investigation of the time course of methylation of GST subunits 3 and 4 indicated that at incubation times less than 4 h the methylation of both Mu class subunits was stimulated by calmodulin, and that under such conditions subunit 4 was the preferred substrate. In contrast, there was essentially no calmodulin-stimulated methylation at incubation times of 4 or 6 h, and the methylation of subunit 3 was predominant. Kinetic parameters at 2 h of incubation were determined in the presence and in the absence of calmodulin. The addition of calmodulin doubled the Vmax. for methylation of both subunits 3 and 4 and decreased the Km of subunit 4 for S-adenosyl-L-methionine 3.6-fold. Finally, methylation was substoichiometric and after 6 h of incubation ranged from 2

  1. Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12

    SciTech Connect

    Board, P.G.; Webb, G.C.

    1987-04-01

    The glutathione S-transferases (GST) (glutathione transferase; EC 2.5.1.18) are a family of enzymes responsible for the metabolism of a broad range of xenobiotics and carcinogens. A cDNA clone containing the entire amino acid coding sequence of a human GST-2 subunit has been isolated using a lambdagt11 expression library. The complete nucleotide sequence and a partial restriction map are presented. The subunit is composed of 221 amino acids with a molecular weight of 25,425 before post translational modification. The deduced amino acid sequence is rich in lysine, which is consistent with the relatively high pI of GST-2. The human sequence shows considerable homology with the rat Ya and Yc GST sequences but little homology with the rat GSTp and Yb subunit sequences. Southern blots of restriction digests of human DNA indicate that there may be multiple GST-2 genes. In situ hybridization of the cloned cDNA to human chromosomes produces intense labeling only over band p12 on the short arm of chromosome 6 near the centromere. This indicates that the GST-2 gene(s) are located only at this site.

  2. Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12.

    PubMed Central

    Board, P G; Webb, G C

    1987-01-01

    The glutathione S-transferases (GST) (glutathione transferase; EC 2.5.1.18) are a family of enzymes responsible for the metabolism of a broad range of xenobiotics and carcinogens. A cDNA clone containing the entire amino acid coding sequence of a human GST-2 subunit has been isolated using a lambda gt11 expression library. The complete nucleotide sequence and a partial restriction map are presented. The subunit is composed of 221 amino acids with a molecular weight of 25,425 before posttranslational modification. The deduced amino acid sequence is rich in lysine, which is consistent with the relatively high pI of GST-2. The human sequence shows considerable homology with the rat Ya and Yc GST sequences but little homology with the rat GSTp and Yb subunit sequences. Southern blots of restriction digests of human DNA indicate that there may be multiple GST-2 genes. In situ hybridization of the cloned cDNA to human chromosomes produces intense labeling only over band p12 on the short arm of chromosome 6 near the centromere. This indicates that the GST-2 gene(s) are located only at this site. Images PMID:3031680

  3. Identification of a glutathione S-transferase associated with microsomes of tumor cells resistant to nitrogen mustards.

    PubMed

    Clapper, M L; Tew, K D

    1989-06-15

    Walker 256 rat mammary carcinoma cells resistant to chlorambucil (WR) exhibited an approximate 4-fold increase in glutathione S-transferase (GST) activity using 1-chloro-2,4-dinitrobenzene as compared to the sensitive parent cell line (WS). WR cells maintained without biannual exposure to chlorambucil (WRr) reverted to the sensitive phenotype and possessed GST levels equivalent to WS. Mitochondria, microsomes and cytosol were isolated from WS, WR and WRr cell lines and analyzed for their GST composition. GST activity in each subcellular compartment of resistant cells was increased over the sensitive cells. Antibodies raised against total rat liver cytosolic GST crossreacted in resistant cells with two microsomal proteins (25.7 kD and 29 kD). The 29 kD protein was not detected in microsomal fractions from either WS or WRr and this protein was found to be dissimilar from cytosolic GST subunits in its isoelectric point (pI 6.7) and migration on two-dimensional polyacrylamide gels. In addition, the 29 kD microsome-associated GST from WR cells was immunologically distinct from a 14 kD GST subunit previously identified in rat liver microsomes. These data implicate the induction of a specific microsomal GST subunit in WR cells following drug selection and suggest its potential involvement in the establishment of cellular resistance to chlorambucil.

  4. Homogentisate solanesyl transferase (HST) cDNA’s in maize

    USDA-ARS?s Scientific Manuscript database

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This reaction ...

  5. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  6. Histamine N-methyl transferase: inhibition by drugs.

    PubMed Central

    Pacifici, G M; Donatelli, P; Giuliani, L

    1992-01-01

    1. Histamine N-methyl transferase activity was measured in samples of human liver, brain, kidney, lung and intestinal mucosa. The mean (+/- s.d.) rate (nmol min-1 mg-1 protein) of histamine N-methylation was 1.78 +/- 0.59 (liver, n = 60), 1.15 +/- 0.38 (renal cortex, n = 8), 0.79 +/- 0.14 (renal medulla, n = 8), 0.35 +/- 0.08 (lung, n = 20), 0.47 +/- 0.18 (human intestine, n = 30) and 0.29 +/- 0.14 (brain, n = 13). 2. Inhibition of histamine N-methyl transferase by 15 drugs was investigated in human liver. The IC50 for the various drugs ranged over three orders of magnitude; chloroquine was the most potent inhibitor. 3. The average IC50 values for chloroquine were 12.6, 22.0, 19.0, 21.6 microM in liver, renal cortex, brain and colon, respectively. These values are lower than the Michaelis-Menten constant for histamine N-methyltransferase in liver (43.8 microM) and kidney (45.5 microM). Chloroquine carried a mixed non-competitive inhibition of hepatic histamine N-methyl transferase. Some side-effects of chloroquine may be explained by inhibition of histamine N-methyl transferase. PMID:1457266

  7. Late onset ornithine carbamoyl transferase deficiency in males.

    PubMed Central

    Drogari, E; Leonard, J V

    1988-01-01

    Six boys with ornithine carbamoyl transferase deficiency presenting in infancy or later childhood are described. There was wide variation in both the time of presentation and the symptoms, which may initially suggest a neurological, behavioural, or gastroenterological problem. Two patients died, as did two male siblings who were probably affected, but with early recognition of the hyperammonaemia the outlook is good. PMID:3202644

  8. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  9. 21 CFR 862.1535 - Ornithine carbamyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ornithine carbamyl transferase test system. 862.1535 Section 862.1535 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and treatment of liver diseases, such as infectious hepatitis, acute cholecystitis (inflammation of...

  10. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  11. Glutathione S-transferase π complexes with and stimulates Na⁺,K⁺-ATPase.

    PubMed

    Ochiai, Hideo; Eguchi, Hiroshi; Noguchi, Shunsuke; Hayashi, Yutaro; Nishino, Hideaki; Kawamura, Masaru; Wu, Chau H

    2013-01-01

    Glutathione S-transferase (GST) was found to complex with the Na⁺,K⁺-ATPase as shown by binding assay using quartz crystal microbalance. The complexation was obstructed by the addition of antiserum to the α-subunit of the Na⁺,K⁺-ATPase, suggesting the specificity of complexation between GST and the Na⁺,K⁺-ATPase. Co-immunoprecipitation experiments, using the anti-α-subunit antiserum to precipitate the GST-Na⁺,K⁺-ATPase complex and then using antibodies specific to an isoform of GST to identify the co-precipitated proteins, revealed that GSTπ was complexed with the Na⁺,K⁺-ATPase. GST stimulated the Na⁺,K⁺-ATPase activity up to 1.4-fold. The level of stimulation exhibited a saturable dose-response relationship with the amount of GST added, although the level of stimulation varied depending on the content of GSTπ in the lots of GST received from supplier. The stimulation was also obtained when recombinant GSTπ was used, confirming the results. When GST was treated with reduced glutathione, GST activity was greatly stimulated, whereas the level of stimulation of the Na⁺,K⁺-ATPase activity was similar to that when untreated GST was added. When GST was treated with H₂O₂, GST activity was greatly diminished while the stimulation of the Na⁺,K⁺-ATPase activity was preserved. The results suggest that GSTπ complexes with the Na⁺,K⁺-ATPase and stimulates the latter independent of its GST activity. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Phosphorylation and inhibition of. gamma. -glutamyl transferase activity by cAMP-dependent protein kinase

    SciTech Connect

    Kolesnichenko, L.S.; Chernov, N.N.

    1986-10-20

    It was shown that preparations of bovine kidney ..gamma..-glutamyl transferase of differing degrees of purity are phosphorylated by cAMP-dependent protein kinase. This is accompanied by a decrease in both the transferase and hydrolase activities of the enzyme. Consequently, ..gamma..-glutamyl transferase may serve as the substrate and target of the regulation of cAMP-dependent protein kinase.

  13. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the activity...

  14. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Galactose-1-phosphate uridyl transferase test... Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification. A galactose-1-phosphate uridyl transferase test system is a device intended to measure the activity...

  15. Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro

    PubMed Central

    Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe

    2013-01-01

    AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294

  16. A comparative study on liver ornithine carbamoyl transferase from a marine mammal Stenella and an elasmobranch Sphyrna zygaena.

    PubMed

    De Gregorio, A; Valentini, G; Bellocco, E; Desideri, A; Cuzzocrea, G

    1993-01-01

    1. Ornithine carbamoyl transferases from liver of the dolphin Stenella and the shark Sphyrna zygaena were purified to homogenity and compared for some kinetic and structural properties. 2. The two enzymes showed a specific activity of 211 and 115 respectively. 3. With respect to molecular weight, trimeric subunit structure and Km values, they were alike and similar to enzymes from other species. 4. Both enzymes were thermolable, but they were protected from thermal inactivation in a different way by ornithine and phosphate. 5. The two enzymes focused, respectively, at pH 8.6 and between pH 6.4 and 8.0, the former value being appreciably higher than those of enzymes from other species.

  17. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors

    PubMed Central

    Toh, Seok-Ming; Mankin, Alexander S.

    2017-01-01

    A number of nucleotide residues in ribosomal RNA undergo specific posttranscriptional modification. The roles of most modifications are unclear, but their clustering in the functionally-important regions of rRNA suggest that they might either directly affect the activity or assembly of the ribosome or modulate its interactions with ligands. Of the 25 modified nucleotides in E. coli 23S rRNA, 14 are located in the peptidyl transferase center, the main antibiotic target in the large ribosomal subunit. Since nucleotide modifications have been closely associated with both antibiotic sensitivity and antibiotic resistance, the loss of some of these posttranscriptional modifications may affect the susceptibility of bacteria to antibiotics. We investigated the antibiotic sensitivity of E. coli cells in which the genes of eight rRNA modifying enzymes targeting the PTC were individually inactivated. The lack of pseudouridine at position 2504 of 23S rRNA was found to significantly increase the susceptibility of bacteria to peptidyl transferase inhibitors. Therefore, this indigenous posttranscriptional modification may have evolved as an intrinsic resistance mechanism protecting bacteria against natural antibiotics. PMID:18554609

  18. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  19. Purification and kinetic mechanism of the major glutathione S-transferase from bovine brain.

    PubMed Central

    Young, P R; Briedis, A V

    1989-01-01

    The major glutathione S-transferase isoenzyme from bovine brain was isolated and purified approx. 500-fold. The enzyme has a pI of 7.39 +/- 0.02 and consists of two non-identical subunits having apparent Mr values of 22,000 and 24,000. The enzyme is uniformly distributed in brain, and kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate suggest a random rapid-equilibrium mechanism. The kinetics of inhibition by product, by GSH analogues and by NADH are consistent with the suggested mechanism and require inhibitor binding to several different enzyme forms. Long-chain fatty acids are excellent inhibitors of the enzyme, and values of 1nKi for hexanoic acid, octanoic acid, decanoic acid and lauric acid form a linear series when plotted as a function of alkyl chain length. A free-energy change of -1900 J/mol (-455 cal/mol) per CH2 unit is calculated for the contribution of hydrophobic binding energy to the inhibition constants. The turnover number of the purified enzyme dimer is approx. 3400/min. When compared with the second-order rate constant for the reaction between CDNB and GSH, the enzyme is providing a rate acceleration of about 1000-fold. The role of entropic contributions to this small rate acceleration is discussed. PMID:2930465

  20. Mice deficient in dihydrolipoyl succinyl transferase show increased vulnerability to mitochondrial toxins.

    PubMed

    Yang, Lichuan; Shi, Qingli; Ho, Daniel J; Starkov, Anatoly A; Wille, Elizabeth J; Xu, Hui; Chen, H L; Zhang, Steven; Stack, Cliona M; Calingasan, Noel Y; Gibson, Gary E; Beal, M Flint

    2009-11-01

    The activity of a key mitochondrial tricarboxylic acid cycle enzyme, alpha-ketoglutarate dehydrogenase complex (KGDHC), declines in many neurodegenerative diseases. KGDHC consists of three subunits. The dihydrolipoyl succinyl transferase (DLST) component is unique to KGDHC. DLST(+/-) mice showed reduced mRNA and protein levels and decreased brain mitochondrial KGDHC activity. Neurotoxic effects of mitochondrial toxins were exacerbated in DLST(+/-) mice. MPTP produced a significantly greater reduction of striatal dopamine and tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta of DLST(+/-) mice. DLST deficiency enhanced the severity of lipid peroxidation in the substantia nigra after MPTP treatment. Striatal lesions induced by either malonate or 3-nitropropionic acid (3-NP) were significantly larger in DLST(+/-) mice than in wildtype controls. DLST deficiency enhanced the 3-NP inhibition of mitochondria enzymes, and 3-NP induced protein and DNA oxidations. These observations support the hypothesis that reductions in KGDHC may impair the adaptability of the brain and contribute to the pathogenesis of neurodegenerative diseases.

  1. Rat spleen glutathione transferases. A new acidic form belonging to the Alpha class.

    PubMed Central

    Tsuchida, S; Sato, K

    1990-01-01

    Cytosolic glutathione transferases (GSTs) were purified from the rat spleen by S-hexyl-GSH-Sepharose chromatography, and two major forms were identified as GSTs 2-2 and 7-7 (GST P). Besides these forms an acidic form (pI 5.8) was purified by chromatofocusing at pH 7-4 and it accounted for about 1% of the total GST activity bound to S-hexyl-GSH-Sepharose. Two-dimensional gel electrophoresis revealed that it is a homodimer (subunit Mr 26,000 with pI 5.8). Immunoblot analysis demonstrated that it was immunologically related to GSTs 2-2 and 1-1, and its N-terminal amino acid was apparently blocked, similarly to other forms of the class Alpha. This form had a low activity towards cumene hydroperoxide or 4-hydroxynon-2-enal, indicating that this form differed from GSTs 10-10 and 8-8 as well as from GSTs 1-1 and 2-2. These results suggest that it is a new form of GST belonging to the class Alpha. Images Fig. 1. Fig. 3. Fig. 4. PMID:2317200

  2. The trans-stilbene oxide-active glutathione transferase in human mononuclear leucocytes is identical with the hepatic glutathione transferase mu.

    PubMed Central

    Seidegård, J; Guthenberg, C; Pero, R W; Mannervik, B

    1987-01-01

    A glutathione transferase from human mononuclear leucocytes with high activity towards trans-stilbene oxide (GT-tSBO) was purified. GT-tSBO is expressed in only about 50% of the individuals studied. As judged from activity measurements, immunological studies and the fact that only those individuals who express glutathione transferase mu have high activity towards trans-stilbene oxide, it is concluded that the hepatic transferase mu is identical with the glutathione transferase (GT-tSBO) in mononuclear leucocytes. PMID:3689332

  3. Glutathione-S-transferase activity in malarial parasites.

    PubMed

    Srivastava, P; Puri, S K; Kamboj, K K; Pandey, V C

    1999-04-01

    Glutathione-S-transferase (GST) activity has been detected in rodent (Plasmodium berghei, P. yoelii), simian (P. knowlesi) and human (P. falciparum) malarial parasites, and in different intraerythrocytic stages of P. knowlesi (schizont > ring > trophozoite). In chloroquine-resistant strains of rodent and human malarial parasites GST activity significantly increases compared to sensitive strains. Further, the increase in enzyme activity is directly related to drug pressure of resistant P. berghei. Complete inhibition of chloroquine-sensitive and resistant P. berghei glutathione-S-transferase activities was observed at 2.5 and 5. micrometer concentration of hemin, respectively. An inverse relationship was found between the heme level and enzyme activity of chloroquine-resistant and sensitive P. berghei. Chloroquine, artemisinin, and primaquine noticeably inhibited GST activity in P. knowlesi.

  4. Inhibition of Escherichia coli ribosome subunit dissociation by chloramphenicol and Blasticidin: a new mode of action of the antibiotics.

    PubMed

    Pathak, B K; Mondal, S; Barat, C

    2017-01-01

    The ability of the ribosome to assist in folding of proteins both in vitro and in vivo is well documented and is a nontranslational function of the ribosome. The interaction of the unfolded protein with the peptidyl transferase centre (PTC) of the bacterial large ribosomal subunit is followed by release of the protein in the folding competent state and rapid dissociation of ribosomal subunits. Our study demonstrates that the PTC-specific antibiotics, chloramphenicol and blasticidin S inhibit unfolded protein-mediated subunit dissociation. During post-termination stage of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. Ribosome dissociation mediated by RRF and induced at low magnesium concentration was also inhibited by the antibiotics indicating that the PTC antibiotics exert an associative effect on ribosomal subunits. In vivo, the antibiotics can also reduce the ribosomal degradation during carbon starvation, a process requiring ribosome subunit dissociation. This study reveals a new mode of action of the broad-spectrum antibiotics chloramphenicol and blasticidin. Ribosome synthesizes protein in all organisms and is the target for multiple antimicrobial agents. Our study demonstrates that chloramphenicol and blasticidin S that target the peptidyl transferase centre of the bacterial ribosome can then inhibit dissociation of 70S ribosome mediated by (i) unfolded protein, (ii) translation factors or (iii) low Mg(+2) concentrations in vitro and thereby suppresses ribosomal degradation during carbon starvation in vivo. The demonstration of this new mode of action furthers the understanding of these broad-spectrum antibiotics that differentially inhibit protein synthesis in prokaryotic and eukaryotic cells. © 2016 The Society for Applied Microbiology.

  5. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Futai, Masamitsu

    2013-03-01

    In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.

  6. Bacterial transferase MraY inhibitors: synthesis and biological evaluation.

    PubMed

    Lecerclé, Delphine; Clouet, Anthony; Al-Dabbagh, Bayan; Crouvoisier, Muriel; Bouhss, Ahmed; Gravier-Pelletier, Christine; Le Merrer, Yves

    2010-06-15

    New inhibitors of the bacterial transferase MraY are described. Their structure is based on an aminoribosyl-O-uridine like scaffold, readily obtained in two key steps. The amino group can be coupled with proline or guanylated. Alternatively, these amino, prolinyl or guanidinyl groups can be introduced through a triazole linker. Biological evaluation of these compounds on MraY from Bacillus subtilis revealed interesting inhibitory activity for both amino compounds. Copyright 2010. Published by Elsevier Ltd.

  7. Magnesium deficiency upregulates serine palmitoyl transferase (SPT 1 and SPT 2) in cardiovascular tissues: relationship to serum ionized Mg and cytochrome c.

    PubMed

    Altura, Burton M; Shah, Nilank C; Li, Zhiqiang; Jiang, Xian-Cheng; Perez-Albela, Jose Luis; Altura, Bella T

    2010-09-01

    The present work tested the hypothesis that a short-term dietary deficiency of magnesium (Mg) (21 days) in rats would result in the upregulation of the two major subunits of serine palmitoyl-CoA-transferase, serine palmitoyl transferase (SPT 1) and SPT 2 (the rate-limiting enzymes responsible for the de novo biosynthesis of ceramides) in left ventricular, right ventricular, and atrial heart muscle and abdominal aortic smooth muscle, as well as induce a reduction in serum sphingomyelin concomitant with the release of mitochondrial cytochrome c (Cyto c) in these tissues. Our data indicate that short-term Mg deficiency (MgD) resulted in an upregulation of SPT 1 and SPT 2, concomitant with a very significant release of Cyto c in left ventricular, right ventricular, atrial, and abdominal aortic smooth muscle. Short-term MgD also produced a lowering of serum sphingomyelin and ionized Mg. The greater the reduction in serum ionized Mg, the greater the upregulation of SPT 1 and 2 and the more the increase in free Cyto c. The data suggest that MgD, most likely, causes a biosynthesis of ceramides via two pathways in cardiovascular tissues, viz., via the activation of serine palmitoyl-CoA-transferase and sphingomyelinase, which lead to apoptotic events via intrinsic (present study) and extrinsic pathways (previous studies). Low levels of drinking water Mg were cardio- and vasculoprotective.

  8. Nifedipine prevents etoposide-induced caspase-3 activation, prenyl transferase degradation and loss in cell viability in pancreatic β-cells

    PubMed Central

    Arora, Daleep K.; Mohammed, Abiy M.; Kowluru, Anjaneyulu

    2012-01-01

    Emerging evidence implicates novel roles for post-translational prenylation [i.e., farnesylation and geranylgeranylation] of various signaling proteins in a variety of cellular functions including hormone secretion, survival and apoptosis. In the context of cellular apoptosis, it has been shown previously that caspase-3 activation, a hallmark of mitochondrial dysregulation, promotes hydrolysis of several key cellular proteins. We report herein that exposure of insulin-secreting INS 832/13 cells or normal rat islets to etoposide leads to significant activation of caspase-3 and subsequent degradation of the common α-subunit of farnesyl/geranylgeranyl transferases [FTase/GGTase]. Furthermore, the above stated signaling steps were prevented by Z-DEVD-FMK, a known inhibitor of caspase-3. In addition, treatment of cell lysates with recombinant caspase-3 also caused FTase/GGTase α-subunit degradation. Moreover, nifedipine, a calcium channel blocker, markedly attenuated etoposide-induced caspase-3 activation, FTase/GGTase α-subunit degradation in INS 832/13 cells and normal rat islets. Further, nifedipine significantly restored etoposide-induced loss in metabolic cell viability in INS 832/13 cells. Based on these findings, we conclude that etoposide induces loss in cell viability by inducing mitochondrial dysfunction, caspase-3 activation and degradation of FTase/GGTase α-subunit. Potential significance of these findings in the context of protein prenylation and β-cell survival are discussed. PMID:23054080

  9. Determination of Activity of the Enzymes Hypoxanthine Phosphoribosyl Transferase (HPRT) and Adenine Phosphoribosyl Transferase (APRT) in Blood Spots on Filter Paper.

    PubMed

    Auler, Kasie; Broock, Robyn; Nyhan, William L

    2015-07-01

    Hypoxanthine-guanine phosphoribosyl-transferase (HPRT) deficiency is the cause of Lesch-Nyhan disease. Adenine phosphoribosyl-transferase (APRT) deficiency causes renal calculi. The activity of each enzyme is readily determined on spots of whole blood on filter paper. This unit describes a method for detecting deficiencies of HPRT and APRT. Copyright © 2015 John Wiley & Sons, Inc.

  10. Single-step purification and h.p.l.c. analysis of glutathione transferase 8-8 in rat tissues.

    PubMed Central

    Meyer, D J; Lalor, E; Coles, B; Kispert, A; Alin, P; Mannervik, B; Ketterer, B

    1989-01-01

    GSSG selectively elutes two GSH transferases from a mixture of rat GSH transferases bound to a GSH-agarose affinity matrix. One is a form of GSH transferase 1-1 and the other is shown to be GSH transferase 8-8. By using tissues that lack this form of GSH transferase 1-1 (e.g. lung), GSH transferase 8-8 may thus be purified from cytosol in a single step. Quantitative analysis of the tissue distribution of GSH transferase 8-8 was obtained by h.p.l.c. PMID:2764904

  11. Molecular recognition at the dimer interface of a class mu glutathione transferase: role of a hydrophobic interaction motif in dimer stability and protein function.

    PubMed

    Hornby, Judith A T; Codreanu, Simona G; Armstrong, Richard N; Dirr, Heini W

    2002-12-03

    Cytosolic glutathione (GSH) transferases (GSTs) exist as stable homo- and heterodimers. Interactions at the subunit interface serve an important role in stabilizing the subunit tertiary structures of all GSH transferases. In addition, the dimer is required to maintain functional conformations at the active site on each subunit and the nonsubstrate ligand binding site at the dimer interface [Dirr, H. W. (2001) Chem.-Biol. Interact. 133, 19-23]. In this study, we report on the contribution of a specific intersubunit hydrophobic motif in rGSTM1-1 to dimer stability and protein function. The motif consists of the side chain of F56 from one subunit intercalated between helices 4 and 5 of the second subunit. Replacement of F56 with the hydrophilic side chains of serine, arginine, and glutamate results in a change in the structure of the active site, a marked diminution in catalytic efficiency, and alterations in the ability to bind nonsubstrate ligands. The mutations also affect the ability of the enzyme to bind GSH and the substrate analogue glutathione sulfonate. The functionality of rGSTM1-1 was disrupted to the greatest extent for the F56E mutant. Though mutations at this position do not alter the three-state equilibrium folding process for rGSTM1-1 (i.e., N(2) <--> 2I <--> 2U), destabilizing mutations at position 56 shift the equilibrium between the folded dimer (N(2)) and the monomeric intermediate (I) toward the latter conformational state. The transition to the unfolded state (U) is not significantly affected. The folded monomeric intermediate is also observed by electrospray ionization mass spectrometry. The amount of the intermediate is dependent on protein concentration and the residue at position 56. Mutations at position 56 have little impact on the secondary structure and stability of the monomeric folding intermediate. The dimerization process is proposed to induce a conformational change in the loop containing F56, resulting in improved stability and

  12. Site-specific Arylation of Rat Glutathione S-Transferase A1 and A2 by Bromobenzene Metabolites in vivo

    PubMed Central

    Koen, Yakov M.; Yue, Weimin; Galeva, Nadezhda A.; Williams, Todd D.; Hanzlik, Robert P.

    2006-01-01

    The hepatotoxicity of bromobenzene (BB) derives from its reactive metabolites (epoxides and quinones) which arylate cellular proteins. Application of proteomic methods to liver proteins from rats treated with an hepatotoxic dose of [14C]-BB has identified more than 40 target proteins, but no adducted peptides have yet been observed. Because such proteins are known to contain bromophenyl- and bromodihydroxyphenyl derivatives of cysteine, histidine and lysine, the failure to observe modified peptides has been attributed to the low level of total covalent binding and to the “dilution” effect of multiple metabolites reacting at multiple sites on multiple proteins. In this work glutathione transferase, a well known and abundant BB-target protein, was isolated from liver cytosol of rats treated with 14C-BB using a GSH-agarose affinity column and further resolved by reverse phase HPLC into subunits M1, M2, A1, A2 and A3. The subunits were identified by a combination of SDS-PAGE, whole-molecule mass spectrometry and peptide mass mapping and found to contain radioactivity corresponding to 0.01 - 0.05 adduct per molecule of protein. Examination of tryptic digests of these subunits by MALDI-TOF and ESI-MS again failed to reveal any apparent adducted peptides despite observed sequence coverages up to 87%. However, using HPLC-LTQ-FTMS to search for predicted modified tryptic peptides revealed peaks corresponding, with a high degree of mass accuracy, to a bromobenzoquinone adduct of peptide 89-119 in both GSTA1 and A2. The identity of these adducts and their location at Cys-111 was confirmed by MS-MS. No evidence for the presence of any putative BB-adducts in GST M1, M2 or A3 was obtained. This work highlights the challenges involved in the unambiguous identification of reactive metabolite adducts formed in vivo. PMID:17112229

  13. Stoichiometry of δ subunit containing GABAA receptors

    PubMed Central

    Patel, B; Mortensen, M; Smart, T G

    2014-01-01

    Background and Purpose Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Experimental Approach Using site-directed mutagenesis, we inserted a highly characterized 9′ serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Key Results Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose–response curves of cells co-expressing WT subunits with their respective L9′S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Conclusions and Implications Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. PMID:24206220

  14. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  15. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1315 Galactose-1-phosphate uridyl transferase test system. (a) Identification...

  16. Acrolein-detoxifying isozymes of glutathione transferase in plants.

    PubMed

    Mano, Jun'ichi; Ishibashi, Asami; Muneuchi, Hitoshi; Morita, Chihiro; Sakai, Hiroki; Biswas, Md Sanaullah; Koeduka, Takao; Kitajima, Sakihito

    2017-02-01

    Acrolein is a lipid-derived highly reactive aldehyde, mediating oxidative signal and damage in plants. We found acrolein-scavenging glutathione transferase activity in plants and purified a low K M isozyme from spinach. Various environmental stressors on plants cause the generation of acrolein, a highly toxic aldehyde produced from lipid peroxides, via the promotion of the formation of reactive oxygen species, which oxidize membrane lipids. In mammals, acrolein is scavenged by glutathione transferase (GST; EC 2.5.1.18) isozymes of Alpha, Pi, and Mu classes, but plants lack these GST classes. We detected the acrolein-scavenging GST activity in four species of plants, and purified an isozyme showing this activity from spinach (Spinacia oleracea L.) leaves. The isozyme (GST-Acr), obtained after an affinity chromatography and two ion exchange chromatography steps, showed the K M value for acrolein 93 μM, the smallest value known for acrolein-detoxifying enzymes in plants. Peptide sequence homology search revealed that GST-Acr belongs to the GST Tau, a plant-specific class. The Arabidopsis thaliana GST Tau19, which has the closest sequence similar to spinach GST-Acr, also showed a high catalytic efficiency for acrolein. These results suggest that GST plays as a scavenger for acrolein in plants.

  17. Characterization of two Arabidopsis thaliana glutathione S-transferases.

    PubMed

    Nutricati, Eliana; Miceli, Antonio; Blando, Federica; De Bellis, Luigi

    2006-09-01

    Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.

  18. Characterization of glutathione S-transferase of Taenia solium.

    PubMed

    Vibanco-Pérez, N; Jiménez, L; Merchant, M T; Landa, A

    1999-06-01

    A Taenia solium glutathione-S-transferase fraction (SGSTF) was isolated from a metacestode crude extract by affinity chromatography on reduced glutathione (GSH)-sepharose. The purified fraction displayed a specific glutathione S-transferase (GST) activity of 2.8 micromol/min/mg and glutathione peroxidase selenium-independent activity of 0.22 micromol/min/mg. Enzymatic characterization of the fraction suggested that the activity was closer to the mammalian mu-class GSTs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and enzyme activity analysis showed that the fraction was composed of a major band of Mr = 26 kd and that the active enzyme was dimeric. Immunohistochemical studies using specific antibodies against the major 26-kd band of the SGSTF indicated that GST protein was present in the tegument, parenchyma, protonephridial, and tegumentary cytons of the T. solium metacestode. Antibodies generated against the SGSTF tested in western blot showed cross-reactivity against GSTs purified from Taenia saginata, T. taeniaeformis, and T. crassiceps, but did not react with GSTs from Schistosoma mansoni, or mice, rabbit, and pig liver tissue. Furthermore, immunization of mice with SGSTF reduced the metacestode burden up to 74.2%. Our findings argue in favor of GST having an important role in the survival of T. solium in its hosts.

  19. Characterization of the complex of glutathione S-transferase pi and 1-cysteine peroxiredoxin.

    PubMed

    Ralat, Luis A; Misquitta, Stephanie A; Manevich, Yefim; Fisher, Aron B; Colman, Roberta F

    2008-06-01

    Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the M(w) of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The M(w) of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the K(m) value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer.

  20. Biochemical Warfare on the Reef: The Role of Glutathione Transferases in Consumer Tolerance of Dietary Prostaglandins

    PubMed Central

    Whalen, Kristen E.; Lane, Amy L.; Kubanek, Julia; Hahn, Mark E.

    2010-01-01

    Background Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Principal Findings Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. Significance The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may

  1. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners.

    PubMed

    DeRidder, Ben P; Dixon, David P; Beussman, Douglas J; Edwards, Robert; Goldsbrough, Peter B

    2002-11-01

    Herbicide safeners increase herbicide tolerance in cereals but not in dicotyledenous crops. The reason(s) for this difference in safening is unknown. However, safener-induced protection in cereals is associated with increased expression of herbicide detoxifying enzymes, including glutathione S-transferases (GSTs). Treatment of Arabidopsis seedlings growing in liquid medium with various safeners similarly resulted in enhanced GST activities toward a range of xenobiotics with benoxacor, fenclorim, and fluxofenim being the most effective. Safeners also increased the tripeptide glutathione content of Arabidopsis seedlings. However, treatment of Arabidopsis plants with safeners had no effect on the tolerance of seedlings to chloroacetanilide herbicides. Each safener produced a distinct profile of enhanced GST activity toward different substrates suggesting a differential induction of distinct isoenzymes. This was confirmed by analysis of affinity-purified GST subunits by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. AtGSTU19, a tau class GST, was identified as a dominant polypeptide in all samples. When AtGSTU19 was expressed in Escherichia coli, the recombinant enzyme was highly active toward 1-chloro-2,4-dinitrobenzene, as well as chloroacetanilide herbicides. Immunoblot analysis confirmed that AtGSTU19 was induced in response to several safeners. Differential induction of tau GSTs, as well as members of the phi and theta classes by safeners, was demonstrated by RNA-blot analysis. These results indicate that, although Arabidopsis may not be protected from herbicide injury by safeners, at least one component of their detoxification systems is responsive to these compounds.

  2. Induction of Glutathione S-Transferases in Arabidopsis by Herbicide Safeners1

    PubMed Central

    DeRidder, Ben P.; Dixon, David P.; Beussman, Douglas J.; Edwards, Robert; Goldsbrough, Peter B.

    2002-01-01

    Herbicide safeners increase herbicide tolerance in cereals but not in dicotyledenous crops. The reason(s) for this difference in safening is unknown. However, safener-induced protection in cereals is associated with increased expression of herbicide detoxifying enzymes, including glutathione S-transferases (GSTs). Treatment of Arabidopsis seedlings growing in liquid medium with various safeners similarly resulted in enhanced GST activities toward a range of xenobiotics with benoxacor, fenclorim, and fluxofenim being the most effective. Safeners also increased the tripeptide glutathione content of Arabidopsis seedlings. However, treatment of Arabidopsis plants with safeners had no effect on the tolerance of seedlings to chloroacetanilide herbicides. Each safener produced a distinct profile of enhanced GST activity toward different substrates suggesting a differential induction of distinct isoenzymes. This was confirmed by analysis of affinity-purified GST subunits by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. AtGSTU19, a tau class GST, was identified as a dominant polypeptide in all samples. When AtGSTU19 was expressed in Escherichia coli, the recombinant enzyme was highly active toward 1-chloro-2,4-dinitrobenzene, as well as chloroacetanilide herbicides. Immunoblot analysis confirmed that AtGSTU19 was induced in response to several safeners. Differential induction of tau GSTs, as well as members of the phi and theta classes by safeners, was demonstrated by RNA-blot analysis. These results indicate that, although Arabidopsis may not be protected from herbicide injury by safeners, at least one component of their detoxification systems is responsive to these compounds. PMID:12428014

  3. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target.

    PubMed

    Harwaldt, Petra; Rahlfs, Stefan; Becker, Katja

    2002-05-01

    Glutathione S-transferases (GSTs), which occur abundantly in most organisms, are essentially involved in the intracellular detoxification of numerous substances including chemotherapeutic agents, and thus play a major role in the development of drug resistance. A gene encoding a protein with sequence identity of up to 37% with known GSTs was identified on chromosome 14 of the malarial parasite Plasmodium falciparum. It was amplified using gametocyte cDNA and expressed in Escherichia coli as a hexahistidyl-tagged protein of 26 kDa subunit size. The homodimeric enzyme (PfGST) was found to catalyse the glutathione (GSH)-dependent modification of 1-chloro-2,4-dinitrobenzene and other typical GST substrates such as o-nitrophenyl acetate, ethacrynic acid, and cumene hydroperoxide. The Km value for GSH was 164+/-20 microM. PfGST was inhibited by cibacron blue (Ki=0.5 microM), S-hexylglutathione (Ki=35 microM), and protoporphyrin IX (Ki=10 microM). Hemin, a most toxic compound for parasitised erythrocytes, was found to be an uncompetitive ligand of PfGST with a Ki of 6.5 microM. Based on the activity of PfGST in extracts of P. falciparum, the enzyme represents 1 to 10% of cellular protein and might therefore serve as an efficient in vivo buffer for parasitotoxic hemin. Destabilising ligands of GST are thus expected to be synergistic with the antimalarial drug chloroquine, which itself was found to be a very weak inhibitor of PfGST (IC50>200 microM). X-ray quality crystals of PfGST (250x200x50 microm) will serve as starting point for structure-based drug design.

  4. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays).

    PubMed Central

    Irzyk, G P; Fuerst, E P

    1993-01-01

    A glutathione S-transferase (GST) isozyme from maize (Zea mays Pioneer hybrid 3906) treated with the dichloroacetamide herbicide safener benoxacor (CGA-154281) was purified to homogeneity and partially characterized. The enzyme, assayed with metolachlor as a substrate, was purified approximately 200-fold by ammonium sulfate precipitation, anion-exchange chromatography on Mono Q resins, and affinity chromatography on S-hexylglutathione agarose from total GST activity present in etiolated shoots. The purified protein migrated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) as a single band with a molecular mass of 27 kD. Using nondenaturing PAGE, we determined that the native protein has a molecular mass of about 57 kD and that the protein exists as a dimer. Two-dimensional electrophoresis revealed only a single protein with an isoelectric point of 5.75 and molecular mass of 27 kD. These results further suggest that the protein exists as a homodimer of two identical 27-kD subunits. The enzyme was most active with substrates possessing a chloroacetamide structure. trans-Cinnamic acid and 1-chloro-2,4-dinitrobenzene were not effective substrates. Apparent Km values for the enzyme were 10.8 microM for the chloroacetamide metolachlor and 292 microM for glutathione. The enzyme was active from pH 6 to 9, with a pH optimum between 7.5 and 8. An apparently blocked amino terminus of the intact protein prevented direct amino acid sequencing. The enzyme was digested with trypsin, and the amino acid sequences of several peptide fragments were obtained. The sequence information for the isolated GST we have designated "GST IV" indicates that the enzyme is a unique maize GST but shares some homology with maize GSTs I and III. PMID:8278534

  5. Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins.

    PubMed

    Whalen, Kristen E; Lane, Amy L; Kubanek, Julia; Hahn, Mark E

    2010-01-06

    Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A(2) (PGA(2)) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA(2)) were also the most potent inhibitors. In vivo estimates of PGA(2) concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA(2) and operating at or near physiological capacity. The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer's gorgonian diet. This generalist's GSTs may operate as 'all-purpose' detoxification

  6. The Subunit Structure of Benzylsuccinate Synthase†

    PubMed Central

    Li, Lei; Patterson, Dustin P.; Fox, Christel C.; Lin, Brian; Coschigano, Peter W.; Marsh, E. Neil G.

    2010-01-01

    Benzylsuccinate synthase is a member of the glycyl radical family of enzymes. It catalyzes the addition of toluene to fumarate to form benzylsuccinate as the first step in the anaerobic pathway of toluene fermentation. The enzyme comprises three subunits α, β and γ that in Thauera Aromatica T1 strain are encoded by the tutD, tutG and tutF genes respectively. The large α-subunit contains the essential glycine and cysteine residues that are conserved in all glycyl radical enzymes. However, the function of the small β- and γ-subunits has remained unclear. We have over-expressed all three subunits of benzylsuccinate synthase in E. coli, both individually and in combination. Co-expression of the γ-subunit (but not the β-subunit) is essential for efficient expression of the α-subunit. The benzylsuccinate synthase complex lacking the glycyl radical could be purified as an α2β2γ2 hexamer by nickel-affinity chromatography through a ‘His6’ affinity tag engineered onto the C-terminus of the α-subunit. Unexpectedly, BSS was found to contain two iron-sulfur clusters, one associated with the β-subunit and the other with the γ-subunit that appear to be necessary for the structural integrity of the complex. The spectroscopic properties of these clusters suggest that they are most likely [4Fe-4S] clusters. Removal of iron with chelating agents results in dissociation of the complex; similarly a mutant γ-subunit lacking the [4Fe-4S] cluster is unable to stabilize the α-subunit when the proteins are co-expressed. PMID:19159265

  7. Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases.

    PubMed Central

    Robinson, Anna; Huttley, Gavin A; Booth, Hilary S; Board, Philip G

    2004-01-01

    The Kappa class of GSTs (glutathione transferases) comprises soluble enzymes originally isolated from the mitochondrial matrix of rats. We have characterized a Kappa class cDNA from human breast. The cDNA is derived from a single gene comprising eight exons and seven introns located on chromosome 7q34-35. Recombinant hGSTK1-1 was expressed in Escherichia coli as a homodimer (subunit molecular mass approximately 25.5 kDa). Significant glutathione-conjugating activity was found only with the model substrate CDNB (1-chloro-2,4-ditnitrobenzene). Hyperbolic kinetics were obtained for GSH (parameters: K(m)app, 3.3+/-0.95 mM; V(max)app, 21.4+/-1.8 micromol/min per mg of enzyme), while sigmoidal kinetics were obtained for CDNB (parameters: S0.5app, 1.5+/-1.0 mM; V(max)app, 40.3+/-0.3 micromol/min per mg of enzyme; Hill coefficient, 1.3), reflecting low affinities for both substrates. Sequence analyses, homology modelling and secondary structure predictions show that hGSTK1 has (a) most similarity to bacterial HCCA (2-hydroxychromene-2-carboxylate) isomerases and (b) a predicted C-terminal domain structure that is almost identical to that of bacterial disulphide-bond-forming DsbA oxidoreductase (root mean square deviation 0.5-0.6 A). The structures of hGSTK1 and HCCA isomerase are predicted to possess a thioredoxin fold with a polyhelical domain (alpha(x)) embedded between the beta-strands (betaalphabetaalpha(x)betabetaalpha, where the underlined elements represent the N and C motifs of the thioredoxin fold), as occurs in the bacterial disulphide-bond-forming oxidoreductases. This is in contrast with the cytosolic GSTs, where the helical domain occurs exclusively at the C-terminus (betaalphabetaalphabetabetaalphaalpha(x)). Although hGSTK1-1 catalyses some typical GST reactions, we propose that it is structurally distinct from other classes of cytosolic GSTs. The present study suggests that the Kappa class may have arisen in prokaryotes well before the divergence of the

  8. Caffeine junkie: an unprecedented glutathione S-transferase-dependent oxygenase required for caffeine degradation by Pseudomonas putida CBB5.

    PubMed

    Summers, Ryan M; Seffernick, Jennifer L; Quandt, Erik M; Yu, Chi Li; Barrick, Jeffrey E; Subramanian, Mani V

    2013-09-01

    Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners.

  9. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases.

    PubMed Central

    Danielson, U H; Esterbauer, H; Mannervik, B

    1987-01-01

    The substrate specificities of 15 cytosolic glutathione transferases from rat, mouse and man have been explored by use of a homologous series of 4-hydroxyalkenals, extending from 4-hydroxypentenal to 4-hydroxypentadecenal. Rat glutathione transferase 8-8 is exceptionally active with the whole range of 4-hydroxyalkenals, from C5 to C15. Rat transferase 1-1, although more than 10-fold less efficient than transferase 8-8, is the second most active transferase with the longest chain length substrates. Other enzyme forms showing high activities with these substrates are rat transferase 4-4 and human transferase mu. The specificity constants, kcat./Km, for the various enzymes have been determined with the 4-hydroxyalkenals. From these constants the incremental Gibbs free energy of binding to the enzyme has been calculated for the homologous substrates. The enzymes responded differently to changes in the length of the hydrocarbon side chain and could be divided into three groups. All glutathione transferases displayed increased binding energy in response to increased hydrophobicity of the substrate. For some of the enzymes, steric limitations of the active site appear to counteract the increase in binding strength afforded by increased chain length of the substrate. Comparison of the activities with 4-hydroxyalkenals and other activated alkenes provides information about the active-site properties of certain glutathione transferases. The results show that the ensemble of glutathione transferases in a given species may serve an important physiological role in the conjugation of the whole range of 4-hydroxyalkenals. In view of its high catalytic efficiency with all the homologues, rat glutathione transferase 8-8 appears to have evolved specifically to serve in the detoxication of these reactive compounds of oxidative metabolism. PMID:3426557

  10. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila.

    PubMed

    Dunlap, David; Yokoyama, Ruth; Ling, Huiping; Sun, He-Ying; McGill, Kerry; Cugusi, Simona; Lucchesi, John C

    2012-12-01

    The regulatory mechanism of dosage compensation is the paramount example of epigenetic regulation at the chromosomal level. In Drosophila, this mechanism, designed to compensate for the difference in the dosage of X-linked genes between the sexes, depends on the MSL complex that enhances the transcription of the single dose of these genes in males. We have investigated the function of various subunits of the complex in mediating dosage compensation. Our results confirm that the highly enriched specific acetylation of histone H4 at lysine 16 of compensated genes by the histone acetyl transferase subunit MOF induces a more disorganized state of their chromatin. We have determined that the association of the MSL complex reduces the level of negative supercoiling of the deoxyribonucleic acid of compensated genes, and we have defined the role that the other subunits of the complex play in this topological modification. Lastly, we have analyzed the potential contribution of ISWI-containing remodeling complexes to the architecture of compensated chromatin, and we suggest a role for this remodeling factor in dosage compensation.

  11. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome

    PubMed Central

    Ahmed, Tofayel; Yin, Zhan; Bhushan, Shashi

    2016-01-01

    Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features. PMID:27762343

  12. Succinyl-CoA:3-Sulfinopropionate CoA-Transferase from Variovorax paradoxus Strain TBEA6, a Novel Member of the Class III Coenzyme A (CoA)-Transferase Family

    PubMed Central

    Schürmann, Marc; Hirsch, Beatrice; Wübbeler, Jan Hendrik; Stöveken, Nadine

    2013-01-01

    The act gene of Variovorax paradoxus TBEA6 encodes a succinyl-CoA:3-sulfinopropionate coenzyme A (CoA)-transferase, ActTBEA6 (2.8.3.x), which catalyzes the activation of 3-sulfinopropionate (3SP), an intermediate during 3,3′-thiodipropionate (TDP) degradation. In a previous study, accumulation of 3SP was observed in a Tn5::mob-induced mutant defective in growth on TDP. In contrast to the wild type and all other obtained mutants, this mutant showed no growth when 3SP was applied as the sole source of carbon and energy. The transposon Tn5::mob was inserted in a gene showing high homology to class III CoA-transferases. In the present study, analyses of the translation product clearly allocated ActTBEA6 to this protein family. The predicted secondary structure indicates the lack of a C-terminal α-helix. ActTBEA6 was heterologously expressed in Escherichia coli Lemo21(DE3) and was then purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography. Analytical size exclusion chromatography revealed a homodimeric structure with a molecular mass of 96 ± 3 kDa. Enzyme assays identified succinyl-CoA, itaconyl-CoA, and glutaryl-CoA as potential CoA donors and unequivocally verified the conversion of 3SP to 3SP-CoA. Kinetic studies revealed an apparent Vmax of 44.6 μmol min−1 mg−1 for succinyl-CoA, which corresponds to a turnover number of 36.0 s−1 per subunit of ActTBEA6. For 3SP, the apparent Vmax was determined as 46.8 μmol min−1 mg−1, which corresponds to a turnover number of 37.7 s−1 per subunit of ActTBEA6. The apparent Km values were 0.08 mM for succinyl-CoA and 5.9 mM for 3SP. Nonetheless, the V. paradoxus Δact mutant did not reproduce the phenotype of the Tn5::mob-induced mutant. This defined deletion mutant was able to utilize TDP or 3SP as the sole carbon source, like the wild type. Complementation of the Tn5::mob-induced mutant with pBBR1MCS5::acdDPN7 partially restored growth on 3SP, which indicated a polar effect of the Tn5::mob transposon

  13. Succinyl-CoA:3-sulfinopropionate CoA-transferase from Variovorax paradoxus strain TBEA6, a novel member of the class III coenzyme A (CoA)-transferase family.

    PubMed

    Schürmann, Marc; Hirsch, Beatrice; Wübbeler, Jan Hendrik; Stöveken, Nadine; Steinbüchel, Alexander

    2013-08-01

    The act gene of Variovorax paradoxus TBEA6 encodes a succinyl-CoA:3-sulfinopropionate coenzyme A (CoA)-transferase, Act(TBEA6) (2.8.3.x), which catalyzes the activation of 3-sulfinopropionate (3SP), an intermediate during 3,3'-thiodipropionate (TDP) degradation. In a previous study, accumulation of 3SP was observed in a Tn5::mob-induced mutant defective in growth on TDP. In contrast to the wild type and all other obtained mutants, this mutant showed no growth when 3SP was applied as the sole source of carbon and energy. The transposon Tn5::mob was inserted in a gene showing high homology to class III CoA-transferases. In the present study, analyses of the translation product clearly allocated Act(TBEA6) to this protein family. The predicted secondary structure indicates the lack of a C-terminal α-helix. Act(TBEA6) was heterologously expressed in Escherichia coli Lemo21(DE3) and was then purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography. Analytical size exclusion chromatography revealed a homodimeric structure with a molecular mass of 96 ± 3 kDa. Enzyme assays identified succinyl-CoA, itaconyl-CoA, and glutaryl-CoA as potential CoA donors and unequivocally verified the conversion of 3SP to 3SP-CoA. Kinetic studies revealed an apparent V(max) of 44.6 μmol min(-1) mg(-1) for succinyl-CoA, which corresponds to a turnover number of 36.0 s(-1) per subunit of Act(TBEA6). For 3SP, the apparent V(max) was determined as 46.8 μmol min(-1) mg(-1), which corresponds to a turnover number of 37.7 s(-1) per subunit of Act(TBEA6). The apparent K(m) values were 0.08 mM for succinyl-CoA and 5.9 mM for 3SP. Nonetheless, the V. paradoxus Δact mutant did not reproduce the phenotype of the Tn5::mob-induced mutant. This defined deletion mutant was able to utilize TDP or 3SP as the sole carbon source, like the wild type. Complementation of the Tn5::mob-induced mutant with pBBR1MCS5::acdDPN7 partially restored growth on 3SP, which indicated a polar effect of the Tn5

  14. Role of the Rubisco Small Subunit

    SciTech Connect

    Spreitzer, Robert Joseph

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  15. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    SciTech Connect

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.; Atkins, W.M.; Adman, E.T.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.

  16. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases.

    PubMed

    Feng, Feng; Yang, Fan; Rong, Wei; Wu, Xiaogang; Zhang, Jie; Chen, She; He, Chaozu; Zhou, Jian-Min

    2012-04-15

    Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.

  17. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  18. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases

    NASA Astrophysics Data System (ADS)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-07-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  19. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  20. Spectroscopic properties of Callinectes sapidus hemocyanin subunits

    NASA Astrophysics Data System (ADS)

    Stoeva, Stanka; Dolashka, Pavlina; Bankov, Banko; Voelter, Wolfgang; Salvato, Benedeto; Genov, Nicolay

    1995-10-01

    The two major subunits of the Callinectes sapidus hemocyanin were isolated and characterized by spectroscopic techniques. They consist of 641 and 652 residues, respectively. Circular dichroism spectra showed that the structural integrity of the isolated polypeptide chains is preserved. Tryptophan fluorescence parameters were determined for the hemocyanin aggregates and for the subunits Cs1 and Cs2. The emitting tryptophyl fluorophores in the native hemocyanin are deeply buried in hydrophobic regions and are shielded from the solvent by the quaternary structure of the protein aggregates. In two subunits, obtained after dissociation of the aggregates, these residues become "exposed". It is concluded that the tryptophyl side chains in Cs1 and Cs2 are located in subunit interfaces (contact regions) in a negatively charged environment when the polypeptide chains are aggregated. Most probably they participate in hydrophobic protein-protein interactions. The environment of these fluorophores is more negatively charged after the dissociation of the aggregates to subunits.

  1. The herpes zoster subunit vaccine.

    PubMed

    Cunningham, Anthony L

    2016-01-01

    Herpes zoster (HZ) causes severe pain and rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN). HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age related or other causes of decreased T cell immunity. A concentrated live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 5-8 years. The new HZ subunit (HZ/su or Shingrix) vaccine combines a key surface VZV glycoprotein (E) with T cell boosting adjuvant (AS01B). It is highly efficacious in protection (97%) against HZ in immunocompetent subjects, with no decline in advancing age and protection maintained for >3 years. Phase I-II trials showed safety and similar immunogenicity in severely immunocompromised patients. Local injection site pain and swelling can be severe in a minority (9.5%) but is transient (2 days). The HZ/su vaccine appears very promising in immunocompetent patients in the ZoE-50 controlled trial. The unblinding of the current ZoE-50 trial and publication of results from the accompanying ZoE-70 trial will reveal more about its mechanism of action and its efficacy against PHN, particularly in subjects >70 years. Phase III trial results in immunocompromised patients are eagerly awaited.

  2. Differential induction of the expression of GST subunits by geniposide in rat hepatocytes.

    PubMed

    Kuo, Wu-Hsien; Wang, Chau-Jong; Young, Shun-Chieh; Sun, Yuan-Chang; Chen, Yi-Jun; Chou, Fen-Pi

    2004-01-01

    Geniposide, an iridoid glycoside isolated from the fruit of Gardenia jasminoides Ellis, has the biological capabilities of detoxication, antioxidation, and anticarcinogenesis. In this study, the mechanism of geniposide affecting the GST (glutathione S-transferase) system was investigated. Primary cultured rat hepatocytes were treated with geniposide and examined for total GST activity and expression of GST subunits. The results showed that the geniposide-induced GST activity was dose and time dependent. Western blotting data demonstrated that geniposide induced increased protein levels of GSTM1 and GSTM2 (approximately 1.7- and 1.8-fold of control, respectively), but did not increase those of GSTA1. The corresponding transcripts levels were confirmed by RT-PCR. Using PD98059, the effect of geniposide was verified to be via the MEK pathway. The results suggest that geniposide possesses a potential for detoxication by inducing GST activity via increasing the transcription of GSTM1 and GSTM2.

  3. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly

    PubMed Central

    Mueller, Susanne; Wahlander, Asa; Selevsek, Nathalie; Otto, Claudia; Ngwa, Elsy Mankah; Poljak, Kristina; Frey, Alexander D.; Aebi, Markus; Gauss, Robert

    2015-01-01

    Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation. PMID:25995378

  4. [Co-expression of beta-subunit with other subunits of Qbeta replicase].

    PubMed

    Wang, Dong

    2004-12-01

    In researches involving in vitro protein synthesis and self-replication system, Qbeta replicase is one of the key enzymes, which are demanded for the high availability. Qbeta replicase is a RNA-dependent RNA polymerase of Qbeta coliphage. It consists of four subunits (alpha, beta, gamma, and delta subunit), where the beta-subunit is encoded by the viral genome, while the other three subunits are host proteins normally involved in protein synthesis, namely, ribosomal protein S1 (alpha), elongation factors EF-Tu (gamma) and EF-Ts (delta). To increase the production of the Qbeta replicase holoenzyme, several types of expression vectors, including pKK, pET and others, were employed to produce Qbeta replicase. However, the beta-subunit was almost in the precipitate fraction. Considering that the four subunits of Qbeta replicase holoenzyme are in equivalent molar ratio and the amount of the subunits, ribosomal S1 and EF-Ts, being produced by the host cells is relatively low, co-expression of beta-subunit with the other three subunits was performed to know whether the availability of the host subunits is the contributing factor for the solubility of the Qbeta replicase. pBAD33-rep was constructed by cloning the beta-subunit gene into pBAD 33, a pACYC derivative, and pET21a(+) was employed as expression vector for the three other subunits. Among the different combinations of co-expression experiments, solubility was found to slightly increase by SDS-PAGE analysis when the beta-subunit was co-expressed with EF-Tu-Ts. And the replicase activity assay showed this soluble enzyme is in active form. The expression of beta-subunit was enhanced by decreasing the level of inducer IPTG in co-expression, and more soluble enzyme were obtained.

  5. Subunit mass analysis for monitoring antibody oxidation

    PubMed Central

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J.; Hu, Ping

    2017-01-01

    ABSTRACT Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation. PMID:28106519

  6. Subunit mass analysis for monitoring antibody oxidation.

    PubMed

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  7. Enhanced glutathione S-transferase expression in 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine-resistant IEC-18 cells.

    PubMed

    Teubner, W; Fuchs, J I; Steinberg, P

    2007-05-01

    In the present study we show that repeated exposure of the rat intestinal epithelial cell line IEC-18 to 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP), from a toxicological point of view the most relevant phase-1 metabolite of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP, the main heterocyclic aromatic amine present in processed meat), led to the selection of N-OH-PhIP-resistant IEC-18 cells. This phenomenon was accompanied by a fivefold increase in total glutathione S-transferase (GST) activity, measured with the broad-spectrum substrate 1-chloro-2,4-dinitrobenzene, in the N-OH-PhIP-resistant IEC-18 cells. Furthermore, a Western blotting analysis revealed that the expression of GST subunits A1, A3, A4, M1 and P1 was enhanced in the N-OH-PhIP-resistant IEC-18 cells.

  8. Messenger RNA encoding a glutathione-S-transferase responsible for herbicide tolerance in maize is induced in response to safener treatment.

    PubMed

    Wiegand, R C; Shah, D M; Mozer, T J; Harding, E I; Diaz-Collier, J; Saunders, C; Jaworski, E G; Tiemeier, D C

    1986-07-01

    Glutathione-S-transferases (GST's) in maize represent a family of enzymes which conjugate glutathione to several major classes of pre-emergent, selective herbicides. Chemicals termed safeners have been demonstrated to increase the tolerance of maize toward such herbicides when the maize seed has been previously treated with safeners. It has subsequently been shown that corresponding increases in glutathione-S-transferase species occur. To determine whether these compounds act at a transcriptional level we have used synthetic oligonucleotide probes to isolate cDNA clones encoding the major GST polypeptide subunit, designated GST A. The identity of the clones has been confirmed by hybrid-selected mRNA translation and immunoprecipitation using antibodies made against this GST species as well as by production of active GST in yeast cells transformed with an expression vector containing the cloned DNA. GST A has been found to be encoded in a mRNA of 1.1 kb. Sequencing of cDNA products obtained by primer extension of maize mRNA using our oligonucleotide probes is consistent with this mRNA corresponding to the isolated cDNA clone. Using the clone as a probe for Northern analysis we have found a three to four-fold increase in the steady state level of this mRNA in maize tissue grown from safener-treated seeds. The level of safener which gives this induction is comparable to that required to obtain herbicide tolerance in the field.

  9. Identification and Characterization of an Alternatively Spliced Isoform of the Human Protein Phosphatase 2Aα Catalytic Subunit*

    PubMed Central

    Migueleti, Deivid L. S.; Smetana, Juliana H. C.; Nunes, Hugo F.; Kobarg, Jörg; Zanchin, Nilson I. T.

    2012-01-01

    PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation. PMID:22167190

  10. Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus.

    PubMed

    LaCourse, E James; Hernandez-Viadel, Mariluz; Jefferies, James R; Svendsen, Claus; Spurgeon, David J; Barrett, John; Morgan, A John; Kille, Peter; Brophy, Peter M

    2009-01-01

    The earthworm Lumbricus rubellus (Hoffmeister, 1843) is a terrestrial pollution sentinel. Enzyme activity and transcription of phase II detoxification superfamily glutathione transferases (GST) is known to respond in earthworms after soil toxin exposure, suggesting GST as a candidate molecular-based pollution biomarker. This study combined sub-proteomics, bioinformatics and biochemical assay to characterise the L. rubellus GST complement as pre-requisite to initialise assessment of the applicability of GST as a biomarker. L. rubellus possesses a range of GSTs related to known classes, with evidence of tissue-specific synthesis. Two affinity-purified GSTs dominating GST protein synthesis (Sigma and Pi class) were cloned, expressed and characterised for enzyme activity with various substrates. Electrospray ionisation mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) following SDS-PAGE were superior in retaining subunit stability relative to two-dimensional gel electrophoresis (2-DE). This study provides greater understanding of Phase II detoxification GST superfamily status of an important environmental pollution sentinel organism.

  11. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  12. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  13. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria.

    PubMed

    Chatterjee, Aindrila; Seyfferth, Janine; Lucci, Jacopo; Gilsbach, Ralf; Preissl, Sebastian; Böttinger, Lena; Mårtensson, Christoph U; Panhale, Amol; Stehle, Thomas; Kretz, Oliver; Sahyoun, Abdullah H; Avilov, Sergiy; Eimer, Stefan; Hein, Lutz; Pfanner, Nikolaus; Becker, Thomas; Akhtar, Asifa

    2016-10-20

    A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The role of glutathione transferases in cadmium stress.

    PubMed

    Adamis, Paula D B; Gomes, Débora S; Pinto, Maria Lucia C C; Panek, Anita D; Eleutherio, Elis C A

    2004-12-01

    Using Saccharomyces cerevisiae as experimental model, we observed that cells mutated in the GTT1 or GTT2 genes showed twice as much cadmium absorption than the control strain. We proposed that the formation of the cadmium-glutathione complex is dependent on that transferase, since it was previously demonstrated that the cytoplasmic levels of this complex affect cadmium uptake. The addition of glutathione monoethyl ester (GME), a drug that mimics glutathione (GSH), to gtt1Delta cells restored the levels of metal absorption to those of the control strain. However, with respect to gtt2Delta cells, addition of GME did not alter the capacity of removing cadmium from the medium. Taken together, these results suggest that Gtt1 and Gtt2 play different roles in the mechanism of cadmium detoxification. By analyzing the toxic effect of this metal, we verified that gtt2Delta and gsh1Delta cells showed, respectively, higher and lower tolerance to cadmium stress than control cells, suggesting that although GSH plays a relevant role in cell protection, formation of the GSH-Cd conjugate is deleterious to the mechanism of defense.

  15. Crystal structure of E. coli lipoprotein diacylglyceryl transferase.

    PubMed

    Mao, Guotao; Zhao, Yan; Kang, Xusheng; Li, Zhijie; Zhang, Yan; Wang, Xianping; Sun, Fei; Sankaran, Krishnan; Zhang, Xuejun C

    2016-01-05

    Lipoprotein biogenesis is essential for bacterial survival. Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is an integral membrane enzyme that catalyses the first reaction of the three-step post-translational lipid modification. Deletion of the lgt gene is lethal to most Gram-negative bacteria. Here we present the crystal structures of Escherichia coli Lgt in complex with phosphatidylglycerol and the inhibitor palmitic acid at 1.9 and 1.6 Å resolution, respectively. The structures reveal the presence of two binding sites and support the previously reported structure-function relationships of Lgt. Complementation results of lgt-knockout cells with different mutant Lgt variants revealed critical residues, including Arg143 and Arg239, that are essential for diacylglyceryl transfer. Using a GFP-based in vitro assay, we correlated the activities of Lgt with structural observations. Together, the structural and biochemical data support a mechanism whereby substrate and product, lipid-modified lipobox-containing peptide, enter and leave the enzyme laterally relative to the lipid bilayer.

  16. Glutathione S-transferase polymorphisms in thyroid cancer patients.

    PubMed

    Hernández, Alba; Céspedes, Walkiria; Xamena, Noel; Surrallés, Jordi; Creus, Amadeu; Galofré, Pere; Marcos, Ricardo

    2003-02-10

    Glutathione S-transferases (GST) are enzymes involved in the metabolism of many carcinogens and mutagens, also acting as important free-radical scavengers. The existence of different genetic polymorphisms in human populations has proven to be a susceptibility factor for different tumours. Nevertheless, as far as we know, for thyroid cancer no study has been conducted until now linking its incidence to genetic susceptibility biomarkers. The present investigation has been conducted to detect the possible association between polymorphism at the GSTM1, GSTT1 and GSTP1 genes and thyroid cancer incidence. Thus, 134 thyroid cancer patients and 116 controls, all from the urban district of Barcelona (Spain), have been included in this study. The results indicate that, according to the calculated odds ratio, the frequencies of the different genotypes found in the group of cancer patients do not significantly differ from those values obtained in the controls. This is true for the overall data as well as for the tumour characterization as follicular and papillar types. In addition, none of the possible combinations of mutant genotypes were shown to be risk factors. Finally, when the sex of the patients, the age of tumour onset, and life-style habits were also taken into account, no influence was observed related to the different genotypes. In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to the different GST polymorphic enzymes are not a predisposing factor in thyroid cancer disease.

  17. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  18. Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer

    PubMed Central

    Diedrich, Gundo; Spahn, Christian M.T.; Stelzl, Ulrich; Schäfer, Markus A.; Wooten, Tammy; Bochkariov, Dmitry E.; Cooperman, Barry S.; Traut, Robert R.; Nierhaus, Knud H.

    2000-01-01

    Ribosomal proteins L2, L3 and L4, together with the 23S RNA, are the main candidates for catalyzing peptide bond formation on the 50S subunit. That L2 is evolutionarily highly conserved led us to perform a thorough functional analysis with reconstituted 50S particles either lacking L2 or harboring a mutated L2. L2 does not play a dominant role in the assembly of the 50S subunit or in the fixation of the 3′-ends of the tRNAs at the peptidyl-transferase center. However, it is absolutely required for the association of 30S and 50S subunits and is strongly involved in tRNA binding to both A and P sites, possibly at the elbow region of the tRNAs. Furthermore, while the conserved histidyl residue 229 is extremely important for peptidyl-transferase activity, it is apparently not involved in other measured functions. None of the other mutagenized amino acids (H14, D83, S177, D228, H231) showed this strong and exclusive participation in peptide bond formation. These results are used to examine critically the proposed direct involvement of His229 in catalysis of peptide synthesis. PMID:11013226

  19. Cloning and heterologous expression of cDNA encoding class alpha rat glutathione transferase 8-8, an enzyme with high catalytic activity towards genotoxic alpha,beta-unsaturated carbonyl compounds.

    PubMed Central

    Stenberg, G; Ridderström, M; Engström, A; Pemble, S E; Mannervik, B

    1992-01-01

    A cDNA clone, lambda GTRA8, encoding rat glutathione transferase subunit 8 has been isolated from a lambda gt10 rat hepatoma cDNA library. The previously known amino acid sequence of the enzyme was used to design primers for a polymerase chain reaction that yielded a 0.3 kb DNA fragment from the hepatoma library. The 0.3 kb fragment was used as a probe for screening and a 0.9 kb cDNA clone containing a complete open reading frame was obtained. After DNA sequencing and subcloning into an expression vector, the enzyme was expressed in Escherichia coli and purified. Specific activities and kcat./Km values were determined for a number of substrates, including alpha,beta-unsaturated carbonyl compounds. The highest activity was obtained with 4-hydroxyalkenals and with acrolein, genotoxic products of lipid peroxidation. In addition, the rat class Alpha glutathione transferase 8-8 displays high catalytic activity in the reaction between glutathione and the diuretic drug ethacrynic acid, a compound normally considered as a substrate characteristic for class Pi glutathione transferases. PMID:1599415

  20. Carnitine palmitoyl transferase deficiency with an atypical presentation and ultrastructural mitochondrial abnormalities.

    PubMed Central

    Carey, M P; Poulton, K; Hawkins, C; Murphy, R P

    1987-01-01

    A case of carnitine palmitoyl transferase deficiency presenting in a 72 year old woman with the clinical picture of ophthalmoplegia plus other muscle weakness is reported. Histological and ultrastructural examination showed the features of a mitochondrial myopathy. Images PMID:3655814

  1. Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection.

    PubMed

    Hiraishi, Hiroyuki; Shin, Byung-Sik; Udagawa, Tsuyoshi; Nemoto, Naoki; Chowdhury, Wasimul; Graham, Jymie; Cox, Christian; Reid, Megan; Brown, Susan J; Asano, Katsura

    2013-09-01

    In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.

  2. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.

    PubMed

    Watanabe, Kazunori; Toh, Yukimatsu; Suto, Kyoko; Shimizu, Yoshihiro; Oka, Natsuhisa; Wada, Takeshi; Tomita, Kozo

    2007-10-18

    Eubacterial leucyl/phenylalanyl-tRNA protein transferase (LF-transferase) catalyses peptide-bond formation by using Leu-tRNA(Leu) (or Phe-tRNA(Phe)) and an amino-terminal Arg (or Lys) of a protein, as donor and acceptor substrates, respectively. However, the catalytic mechanism of peptide-bond formation by LF-transferase remained obscure. Here we determine the structures of complexes of LF-transferase and phenylalanyl adenosine, with and without a short peptide bearing an N-terminal Arg. Combining the two separate structures into one structure as well as mutation studies reveal the mechanism for peptide-bond formation by LF-transferase. The electron relay from Asp 186 to Gln 188 helps Gln 188 to attract a proton from the alpha-amino group of the N-terminal Arg of the acceptor peptide. This generates the attacking nucleophile for the carbonyl carbon of the aminoacyl bond of the aminoacyl-tRNA, thus facilitating peptide-bond formation. The protein-based mechanism for peptide-bond formation by LF-transferase is similar to the reverse reaction of the acylation step observed in the peptide hydrolysis reaction by serine proteases.

  3. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase

    PubMed Central

    Fung, Angela Wai Shan; Leung, Charles Chung Yun; Fahlman, Richard Peter

    2014-01-01

    Escherichia coli leucyl/phenylalanyl-tRNA protein transferase catalyzes the tRNA-dependent post-translational addition of amino acids onto the N-terminus of a protein polypeptide substrate. Based on biochemical and structural studies, the current tRNA recognition model by L/F transferase involves the identity of the 3′ aminoacyl adenosine and the sequence-independent docking of the D-stem of an aminoacyl-tRNA to the positively charged cluster on L/F transferase. However, this model does not explain the isoacceptor preference observed 40 yr ago. Using in vitro-transcribed tRNA and quantitative MALDI-ToF MS enzyme activity assays, we have confirmed that, indeed, there is a strong preference for the most abundant leucyl-tRNA, tRNALeu (anticodon 5′-CAG-3′) isoacceptor for L/F transferase activity. We further investigate the molecular mechanism for this preference using hybrid tRNA constructs. We identified two independent sequence elements in the acceptor stem of tRNALeu (CAG)—a G3:C70 base pair and a set of 4 nt (C72, A4:U69, C68)—that are important for the optimal binding and catalysis by L/F transferase. This maps a more specific, sequence-dependent tRNA recognition model of L/F transferase than previously proposed. PMID:24935875

  4. Phosphonocarboxylates Inhibit the Second Geranylgeranyl Addition by Rab Geranylgeranyl Transferase*

    PubMed Central

    Baron, Rudi A.; Tavaré, Richard; Figueiredo, Ana C.; Błażewska, Katarzyna M.; Kashemirov, Boris A.; McKenna, Charles E.; Ebetino, Frank H.; Taylor, Adam; Rogers, Michael J.; Coxon, Fraser P.; Seabra, Miguel C.

    2009-01-01

    Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases. PMID:19074143

  5. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae).

    PubMed

    Zeng, Qing-Yin; Lu, Hai; Wang, Xiao-Ru

    2005-05-01

    Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification metabolism in plants. To date, studies on GSTs in higher plants have focused largely on agricultural plants. In contrast, there is virtually no information on the molecular characteristics of GSTs in gymnosperms. The present study reports for the first time the cloning, expression and characteristics of a GST gene (PtGSTU1) from a pine, Pinus tabulaeformis, which is widely distributed from northern to central China covering cold temperate and drought regions. The PtGSTU1 gene encodes a protein of 228 amino acid residues with a calculated molecular mass of 26.37 kDa. Reverse transcription PCR revealed that PtGSTU1 was expressed in different tissues, both above and below ground, of P. tabulaeformis. The over-expressed recombinant PtGSTU1 showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a Km of 0.47 mM and Vmax of 169.1 micromol/min per mg of protein. The recombinant PtGSTU1 retained more than 60% of its maximum enzymatic activity from 15 degrees C to 45 degrees C with a broad optimum Tm range of 25 degrees C - 35 degrees C. The enzyme had a maximum activity at approximately pH 8.5 - 9.0. Site-directed mutagenesis revealed that Ser13 in the N-terminal domain is a critical catalytic residue, responsible for stabilisation of the thiolate anion of enzyme-bound glutathione. Based on comparative analyses of its amino acid sequence, phylogeny and predicted three-dimensional structure, the PtGSTU1 should be classified as a tau class GST.

  6. Cloning and characterization of GST fusion tag stabilized large subunit of Escherichia coli acetohydroxyacid synthase I.

    PubMed

    Li, Heng; Liu, Nan; Wang, Wen-Ting; Wang, Ji-Yu; Gao, Wen-Yun

    2016-01-01

    There are three acetohydroxyacid synthase (AHAS, EC 4.1.3.18) isozymes (I, II, and III) in the enterobacteria Escherichia coli among which AHAS I is the most active. Its large subunit (LSU) possesses full catalytic machinery, but is unstable in the absence of the small subunit (SSU). To get applicable LSU of AHAS I, we prepared and characterized in this study the polypeptide as a His-tagged (His-LSU) and a glutathione S-transferase (GST)-tagged (GST-LSU) fusion protein, respectively. The results showed that the His-LSU is unstable, whereas the GST-LSU displays excellent stability. This phenomenon suggests that the GST polypeptide fusion tag could stabilize the target protein when compared with histidine tag. It is the first time that the stabilizing effect of the GST tag was observed. Further characterization of the GST-LSU protein indicated that it possesses the basic functions of AHAS I with a specific activity of 20.8 μmol min(-1) mg(-1) and a Km value for pyruvate of 0.95 mM. These observations imply that introduction of the GST fusion tag to LSU of AHAS I does not affect the function of the protein. The possible reasons that the GST fusion tag could make the LSU stable are initially discussed. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1: energetics of organic anion ligand binding.

    PubMed Central

    Sayed, Yasien; Hornby, Judith A T; Lopez, Marimar; Dirr, Heini

    2002-01-01

    In addition to their catalytic functions, cytosolic glutathioneS-transferases (GSTs) are a major reserve of high-capacity binding proteins for a large variety of physiological and exogenous non-substrate compounds. This ligandin function has implicated GSTs in numerous ligand-uptake, -transport and -storage processes. The binding of non-substrate ligands to GSTs can inhibit catalysis. In the present study, the energetics of the binding of the non-substrate ligand 8-anilino-1-naphthalene sulphonate (ANS) to wild-type human class Alpha GST with two type-1 subunits (hGSTA1-1) and its DeltaPhe-222 deletion mutant were studied by isothermal titration calorimetry. The stoichiometry of binding to both proteins is one ANS molecule per GST subunit with a greater affinity for the wild-type (K(d)=65 microM) than for the DeltaPhe-222 mutant (K(d)=105 microM). ANS binding to the wild-type protein is enthalpically driven and it is characterized by a large negative heat-capacity change, DeltaC(p). The negative DeltaC(p) value for ANS binding indicates a specific interface with a significant hydrophobic component in the protein-ligand complex. The negatively charged sulphonate group of the anionic ligand is apparently not a major determinant of its binding. Phe-222 contributes to the binding affinity for ANS and the hydrophobicity of the binding site. PMID:11931663

  8. The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation.

    PubMed

    Manikas, Rizos-Georgios; Thomson, Emma; Thoms, Matthias; Hurt, Ed

    2016-02-29

    Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA-protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Drosophila laminin: sequence of B2 subunit and expression of all three subunits during embryogenesis

    PubMed Central

    1989-01-01

    In a previous study, we described the cloning of the genes encoding the three subunits of Drosophila laminin, a substrate adhesion molecule, and the cDNA sequence of the B1 subunit (Montell and Goodman, 1988). This analysis revealed the similarity of Drosophila laminin with the mouse and human complexes in subunit composition, domain structure, and amino acid sequence. In this paper, we report the deduced amino acid sequence of the B2 subunit. We then describe the expression and tissue distribution of the three subunits of laminin during Drosophila embryogenesis using both in situ hybridization and immunolocalization techniques, with particular emphasis on its expression in and around the developing nervous system. PMID:2808533

  10. Squid glutathione S-transferase. Relationships with other glutathione S-transferases and S-crystallins of cephalopods.

    PubMed

    Tomarev, S I; Zinovieva, R D; Guo, K; Piatigorsky, J

    1993-02-25

    Glutathione S-transferase (GST, EC 2.5.1.18) was purified from the digestive gland of the squid Ommastrephes sloani pacificus. It had high enzymatic activity for the 1-chloro-2,4-dinitrobenzene substrate and was composed of a major and a minor polypeptide band, both with molecular masses near 25 kDa on SDS-polyacrylamide gels. GST cDNA clones were derived from the digestive gland mRNA. The deduced GSTs of the longest cDNAs (pGST5 and pGST11) containing the entire coding sequence have a molecular mass near 23 kDa. Sequence comparisons showed that the squid GST is 42-44% identical to both squid and octopus S-crystallins (the major proteins of the lens), 32-34% identical to class pi and 29-32% identical to class alpha GSTs of vertebrates, and 19-23% identical to other GSTs of vertebrates and insects. Northern blot hybridization revealed that GST mRNAs were much more abundant in the digestive gland than in the testis, mantle, or lens. Analysis of a squid GST gene indicated that it has an exon-intron structure similar to that of the vertebrate class pi GST gene. An apparently novel repetitive element was identified in the 5'-flanking sequence of the squid GST gene. Our results suggest that multiple duplications of an ancestral GST gene gave rise to a family of enzymatically inactive crystallins specialized for lens refraction and one (or two) active GST enzyme expressed preferentially, but not exclusively, in the digestive gland in squids. This differs from the innovation of refractive function from a metabolic enzyme by increased expression in the lens with minimal or no gene duplication, as occurred among the enzyme-crystallins of vertebrates.

  11. Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function

    PubMed Central

    Nemoto, Naoki; Udagawa, Tsuyoshi; Chowdhury, Wasimul; Kitabatake, Makoto; Shin, Byung-shik; Hiraishi, Hiroyuki; Wang, Suzhi; Singh, Chingakham Ranjit; Brown, Susan J.; Ohno, Mutsuhito; Asano, Katsura

    2013-01-01

    In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation. PMID:26824023

  12. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  13. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    SciTech Connect

    Mazur, Olga; Zimmer, Jochen

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  14. Induction of Glutathione S-Transferase Isozymes in Sorghum by Herbicide Antidotes 1

    PubMed Central

    Dean, John V.; Gronwald, John W.; Eberlein, Charlotte V.

    1990-01-01

    Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution profiles of glutathione S-transferase isozymes from untreated and antidote-treated seedlings were generated by fast protein liquid chromatography utilizing an anion exchange (Mono Q) column. In untreated seedlings, there were two glutathione S-transferase isozymes, a major isozyme which exhibited activity toward 1-chloro-2,4-dinitrobenzene and a minor isozyme which exhibited activity toward metolachlor. Treating sorghum seedlings with various antidotes (flurazole, oxabetrinil, CGA-133205, naphthalic anhydride, dichlormid) resulted in the appearance of four to five additional glutathione S-transferase isozymes (de-pending on the particular antidote) which exhibited activity toward metolachlor as a substrate and little or no activity with 1-chloro-2,4-dinitrobenzene. Treating etiolated sorghum shoots with metolachlor was also found to induce at least four isozymes which exhibited activity toward the herbicide. An increase in glutathione S-transferase activity, measured with metolachlor as substrate, was detected within 4 h after treatment with 30 micromolar oxabetrinil, but 36 hours were required for maximum expression of activity. Addition of either the transcription inhibitor cordycepin or the translation inhibitor cycloheximide inhibited the appearance of glutathione S-transferase activity measured with metolachlor as substrate. The results are consistent with the hypothesis that antidotes confer protection against metolachlor injury in sorghum by inducing the de novo synthesis of glutathione S-transferase isozymes which catalyze the detoxification of the herbicide. PMID:16667299

  15. Optimized subunit vaccine protects against experimental leishmaniasis

    PubMed Central

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F.; Carter, Darrick; Coler, Rhea N.; Vedvick, Thomas S.; Reed, Steven G.

    2009-01-01

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-γ, TNF, and IL-2 double and triple positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists. PMID:19786136

  16. Optimized subunit vaccine protects against experimental leishmaniasis.

    PubMed

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F; Carter, Darrick; Coler, Rhea N; Vedvick, Thomas S; Reed, Steven G

    2009-11-23

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.

  17. Design of two chimaeric human-rat class alpha glutathione transferases for probing the contribution of C-terminal segments of protein structure to the catalytic properties.

    PubMed Central

    Björnestedt, R; Widersten, M; Board, P G; Mannervik, B

    1992-01-01

    Two chimaeric human-rat class Alpha glutathione transferases were constructed by fusion of DNA segments derived from the plasmids pTGT2-AT and pGTB38 and expression of the corresponding proteins in Escherichia coli. The recombinant proteins H1R1/1 and H1R1/2 encoded by plasmids pH1R1/1 and pH1R1/2 are composed of a segment of the human class Alpha subunit 1 from the N-terminus to His-143 and Pro-207 respectively, followed by the complementary C-terminal portion of the rat class Alpha subunit 1 sequence. Compared with the parental human enzyme, H1R1/1 is altered in 20 positions due to the introduction of 79 residues from the rat enzyme, while H1R1/2 is altered in five positions out of 15 in the C-terminal region. The design of mutant H1R1/1 is equivalent to introduction of exons 6 and 7 of the rat subunit 1 gene in place of the homologous human nucleotide sequence. The two chimaeric proteins are enzymatically active with several substrates, even though the activity in most cases is somewhat decreased in comparison with the wild-type human enzyme. Inhibition studies show that the kinetic properties mimic those of the human enzyme, indicating that the N-terminal two-thirds of the primary structure plays the major role in governing the catalytic properties. The results of this study demonstrate that recombination of segments of primary structure between homologous enzymes may serve as a useful cassette technique for design of novel catalytically active proteins. PMID:1546966

  18. Subunits of phycoerythrin from Fremyella diplosiphon: chemical and immunochemical characterization.

    PubMed

    Takemoto, J; Bogorad, L

    1975-03-25

    The alpha and beta subunits of the phycobiliprotein, phycoerythrin, isolated from the filamentous blue-green alga, Fremyella diplosiphon, have been separated by chromatography on Bio-Rex 70 ion exchange resin. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis shows no detectable cross-contamination of these subunit preparations. The molar extinction coefficients at 552 nm of the alpha and beta subunits in 8 M urea are 25,549 and 48,456, respectively. The amino acid compositions of the subunits are very similar. Molecular weights of the alpha and beta subunits are 19,500 and 21,700, respectively, based on the amino acid composition analyses. Antisera prepared against the alpha subunit reacts with the beta subunit, and vice versa. Tryptic peptide maps reveal that the subunits share share at least eight common tryptic peptides. These results indicate that the phycoerythrin subunits are chemically very similar.

  19. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells.

    PubMed

    Bähre, Heike; Danker, Kerstin Y; Stasch, Johannes-Peter; Kaever, Volkhard; Seifert, Roland

    2014-01-24

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The gamma subunit of transducin is farnesylated.

    PubMed Central

    Lai, R K; Perez-Sala, D; Cañada, F J; Rando, R R

    1990-01-01

    Protein prenylation with farnesyl or geranylgeranyl moieties is an important posttranslational modification that affects the activity of such diverse proteins as the nuclear lamins, the yeast mating factor mata, and the ras oncogene products. In this article, we show that whole retinal cultures incorporate radioactive mevalonic acid into proteins of 23-26 kDa and one of 8 kDa. The former proteins are probably the "small" guanine nucleotide-binding regulatory proteins (G proteins) and the 8-kDa protein is the gamma subunit of the well-studied retinal heterotrimeric G protein (transducin). After deprenylating purified transducin and its subunits with Raney nickel or methyl iodide/base, the adducted prenyl group can be identified as an all-trans-farnesyl moiety covalently linked to a cysteine residue. Thus far, prenylation reactions have been found to occur at cysteine in a carboxyl-terminal consensus CAAX sequence, where C is the cysteine, A is an aliphatic amino acid, and X is undefined. Both the alpha and gamma subunits of transducin have this consensus sequence, but only the gamma subunit is prenylated. Therefore, the CAAX motif is not necessary and sufficient to direct prenylation. Finally, since transducin is the best understood G protein, both structurally and mechanistically, the discovery that it is farnesylated should allow for a quantitative understanding of this post-translational modification. Images PMID:2217200

  1. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    SciTech Connect

    Ilic, Zoran; Crawford, Dana; Egner, Patricia A.; Sell, Stewart

    2010-02-01

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.

  2. Modulation of the glutathione S-transferase in Ochrobactrum anthropi: function of xenobiotic substrates and other forms of stress.

    PubMed Central

    Favaloro, B; Tamburro, A; Trofino, M A; Bologna, L; Rotilio, D; Heipieper, H J

    2000-01-01

    The gluthathione S-transferase gene of the atrazine-degrading bacterium Ochrobactrum anthropi (OaGST) encodes a single-subunit polypeptide of 201 amino acid residues (Favaloro et al. 1998, Biochem. J. 335, 573-579). RNA blot analysis showed that the gene is transcribed into an mRNA of about 800 nucleotides, indicating a monocistronic transcription of the OaGST gene. The modulation of OaGST in this bacterium, in the presence of different stimulants, was investigated. The level of expression of OaGST was detected both by measuring the mRNA level and by immunoblotting experiments. OaGST is a constitutive enzyme which is also inducible by several stimulants. In fact, atrazine caused an increase in the expression of OaGST even at concentrations which had no effect on growth rates of the bacteria. Moreover, the presence of other aromatic substrates of this bacterium, such as phenol and chlorophenols, leads to a marked enhancement in OaGST expression. In this case, the expression of OaGST was related to growth inhibition and membrane damage caused by these hydrophobic compounds, and to the adaptive responses of the cell membranes. On the other hand, toluene and xylene, two aromatic compounds not degradable by this bacterium, did not induce the OaGST expression. The same was observed for other stress conditions such as low pH, heat shock, hydrogen peroxide, osmotic stress, starvation, the presence of aliphatic alcohols or heavy metals. These results suggest a co-regulation of the OaGST gene by the catabolic pathways of phenols and chlorophenols in this bacterium. Therefore, OaGST could function as a detoxifying agent within the catabolism of these xenobiotics. PMID:10677378

  3. The interaction of the chemotherapeutic drug chlorambucil with human glutathione transferase A1-1: kinetic and structural analysis.

    PubMed

    Karpusas, Michael; Axarli, Irine; Chiniadis, Lykourgos; Papakyriakou, Athanasios; Bethanis, Kostas; Scopelitou, Katholiki; Clonis, Yannis D; Labrou, Nikolaos E

    2013-01-01

    Glutathione transferases (GSTs) are enzymes that contribute to cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of xenobiotic compounds, including several chemotherapeutic drugs. In the present work we investigated the interaction of the chemotherapeutic drug chlorambucil (CBL) with human GSTA1-1 (hGSTA1-1) using kinetic analysis, protein crystallography and molecular dynamics. In the presence of GSH, CBL behaves as an efficient substrate for hGSTA1-1. The rate-limiting step of the catalytic reaction between CBL and GSH is viscosity-dependent and kinetic data suggest that product release is rate-limiting. The crystal structure of the hGSTA1-1/CBL-GSH complex was solved at 2.1 Å resolution by molecular replacement. CBL is bound at the H-site attached to the thiol group of GSH, is partially ordered and exposed to the solvent, making specific interactions with the enzyme. Molecular dynamics simulations based on the crystal structure indicated high mobility of the CBL moiety and stabilization of the C-terminal helix due to the presence of the adduct. In the absence of GSH, CBL is shown to be an alkylating irreversible inhibitor for hGSTA1-1. Inactivation of the enzyme by CBL followed a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of CBL per mol of dimeric enzyme being incorporated. Structural analysis suggested that the modifying residue is Cys112 which is located at the entrance of the H-site. The results are indicative of a structural communication between the subunits on the basis of mutually exclusive modification of Cys112, indicating that the two enzyme active sites are presumably coordinated.

  4. The Interaction of the Chemotherapeutic Drug Chlorambucil with Human Glutathione Transferase A1-1: Kinetic and Structural Analysis

    PubMed Central

    Karpusas, Michael; Axarli, Irine; Chiniadis, Lykourgos; Papakyriakou, Athanasios; Bethanis, Kostas; Scopelitou, Katholiki; Clonis, Yannis D.; Labrou, Nikolaos E.

    2013-01-01

    Glutathione transferases (GSTs) are enzymes that contribute to cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of xenobiotic compounds, including several chemotherapeutic drugs. In the present work we investigated the interaction of the chemotherapeutic drug chlorambucil (CBL) with human GSTA1-1 (hGSTA1-1) using kinetic analysis, protein crystallography and molecular dynamics. In the presence of GSH, CBL behaves as an efficient substrate for hGSTA1-1. The rate-limiting step of the catalytic reaction between CBL and GSH is viscosity-dependent and kinetic data suggest that product release is rate-limiting. The crystal structure of the hGSTA1-1/CBL-GSH complex was solved at 2.1 Å resolution by molecular replacement. CBL is bound at the H-site attached to the thiol group of GSH, is partially ordered and exposed to the solvent, making specific interactions with the enzyme. Molecular dynamics simulations based on the crystal structure indicated high mobility of the CBL moiety and stabilization of the C-terminal helix due to the presence of the adduct. In the absence of GSH, CBL is shown to be an alkylating irreversible inhibitor for hGSTA1-1. Inactivation of the enzyme by CBL followed a biphasic pseudo-first-order saturation kinetics with approximately 1 mol of CBL per mol of dimeric enzyme being incorporated. Structural analysis suggested that the modifying residue is Cys112 which is located at the entrance of the H-site. The results are indicative of a structural communication between the subunits on the basis of mutually exclusive modification of Cys112, indicating that the two enzyme active sites are presumably coordinated. PMID:23460799

  5. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells.

    PubMed

    Sacoman, Juliana L; Dagda, Raul Y; Burnham-Marusich, Amanda R; Dagda, Ruben K; Berninsone, Patricia M

    2017-03-17

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.

  6. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray) 1

    PubMed Central

    Madhavan, S.; Benedict, Chauncey R.

    1984-01-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [14C]isopentenyl pyrophosphate into the polymer and the recovery of [14C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant. The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg2+ for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia. Images Fig. 2 Fig. 3

  7. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).

    PubMed

    Madhavan, S; Benedict, C R

    1984-08-01

    Electron micrographs of the mesophyll cells of guayule Parthenium argentatum Gray leaves show deposits of cis-polyisoprene (rubber) in the cytoplasm in the vicinity of mitochondria and chloroplasts and demonstrate that the rubber-synthesizing enzymes are present in guayule leaves. The terminal step in the synthesis of cis-polyisoprene from isopentenyl pyrophosphate (IPP) catalyzed by isopentenyl pyrophosphate cis-1,4-polyisoprenyl transferase has been demonstrated in crude leaf extracts by the enzymic incorporation of [(14)C]isopentenyl pyrophosphate into the polymer and the recovery of [(14)C]levulinic acid following ozonolysis. The rubber transferase activity in the crude extracts of guayule leaves was 5.8 nanomoles isopentenyl pyrophosphate incorporated per milligram protein per hour. This is the first description of the rubber transferase from a nonlaticiferous plant.The specific activity (in units of nanomoles IPP converted per milligram protein per hour) of the partially purified enzyme following chromatography on diethylaminoethyl-cellulose columns was 41.7 units and contained 0.29 units of IPP isomerase activity and 0.08 units of farnesyl pyrophosphate synthetase activity. The rubber transferase requires reduced glutathione and Mg(2+) for maximal activity. There was no incorporation of IPP into cis-1,4-polyisoprene in the absence of rubber particles as primer, and Langmuir isotherm plots showed that the specific activity of the enzyme was proportional to the concentration of the enzyme on the surface of the rubber particles. For a given rubber particle distribution, enzyme activity was proportional to time, IPP concentration, and rubber concentration. The addition of 0.4 millimolar dimethylallyl pyrophosphate to the rubber transferase reaction resulted in a 2-fold increase in the incorporation of IPP into rubber. A comparison was made of the relative activities of rubber transferase in different species of Parthenium, Ficus, and Euphorbia.

  8. Calorimetric and structural studies of the nitric oxide carrier S-nitrosoglutathione bound to human glutathione transferase P1-1

    PubMed Central

    Téllez-Sanz, Ramiro; Cesareo, Eleonora; Nuccetelli, Marzia; Aguilera, Ana M.; Barón, Carmen; Parker, Lorien J.; Adams, Julian J.; Morton, Craig J.; Lo Bello, Mario; Parker, Michael W.; García-Fuentes, Luis

    2006-01-01

    The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 Å resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix α2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix α2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario. PMID:16597834

  9. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  10. The Making of a Sweet Modification: Structure and Function of O-GlcNAc Transferase*

    PubMed Central

    Janetzko, John; Walker, Suzanne

    2014-01-01

    O-GlcNAc transferase is an essential mammalian enzyme responsible for transferring a single GlcNAc moiety from UDP-GlcNAc to specific serine/threonine residues of hundreds of nuclear and cytoplasmic proteins. This modification is dynamic and has been implicated in numerous signaling pathways. An unexpected second function for O-GlcNAc transferase as a protease involved in cleaving the epigenetic regulator HCF-1 has also been reported. Recent structural and biochemical studies that provide insight into the mechanism of glycosylation and HCF-1 cleavage will be described, with outstanding questions highlighted. PMID:25336649

  11. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  12. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  13. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  15. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  16. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  17. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  18. Global deletion of glutathione S-Transferase A4 exacerbates developmental nonalcoholic steatohepatitis

    USDA-ARS?s Scientific Manuscript database

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4-/-)/peroxisome proliferator activated receptor a (Ppara-/-) double knockout 129/SvJ mice for 12 weeks from weaning. We us...

  19. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    USDA-ARS?s Scientific Manuscript database

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  20. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  1. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  2. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  3. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  4. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  5. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  6. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  7. 21 CFR 862.1315 - Galactose-1-phosphate uridyl transferase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Galactose-1-phosphate uridyl transferase test system. 862.1315 Section 862.1315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  9. Polymorphism in the intron 20 of porcine O-linked N-acetylglucosamine transferase

    USDA-ARS?s Scientific Manuscript database

    Objective: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-GlcNAc and GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling and transcription. Pig OGT is located near the region of chromosome X that affects follicle stimulating hormone...

  10. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli†

    PubMed Central

    Zeczycki, Tonya N.; Maurice, Martin St.; Jitrapakdee, Sarawut; Wallace, John C.; Attwood, Paul V.; Cleland, W. Wallace

    2009-01-01

    The effects of mutations in the active site of the carboxyl transferase domain of R. etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain, but surprisingly showed a 7- and 3.5-fold increase in activity, as compared to the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and proton removal from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction. PMID:19341298

  11. Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

    PubMed Central

    Lisewski, Andreas M.

    2014-01-01

    Membrane glutathione S-transferases from the class of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) form a superfamily of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a broad spectrum of xenobiotics and hydrophobic electrophiles. Evolutionarily unrelated to the cytosolic glutathione S-transferases, they are found across bacterial and eukaryotic domains, for example in mammals, plants, fungi and bacteria in which significant levels of glutathione are maintained. Species of genus Plasmodium, the unicellular protozoa that are commonly known as malaria parasites, do actively support glutathione homeostasis and maintain its metabolism throughout their complex parasitic life cycle. In humans and in other mammals, the asexual intraerythrocytic stage of malaria, when the parasite feeds on hemoglobin, grows and eventually asexually replicates inside infected red blood cells (RBCs), is directly associated with host disease symptoms and during this critical stage GSH protects the host RBC and the parasite against oxidative stress from parasite-induced hemoglobin catabolism. In line with these observations, several GSH-dependent Plasmodium enzymes have been characterized including glutathione reductases, thioredoxins, glyoxalases, glutaredoxins and glutathione S-transferases (GSTs); furthermore, GSH itself have been found to associate spontaneously and to degrade free heme and its hydroxide, hematin, which are the main cytotoxic byproducts of hemoglobin catabolism. However, despite the apparent importance of glutathione metabolism for the parasite, no membrane associated glutathione S-transferases of genus Plasmodium have been previously described. We recently reported the first examples of MAPEG members among Plasmodium spp. PMID:28357217

  12. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  13. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  14. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  15. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  16. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  17. 21 CFR 862.1030 - Alanine amino transferase (ALT/SGPT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alanine amino transferase (ALT/SGPT) test system. 862.1030 Section 862.1030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  18. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  19. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)

    SciTech Connect

    Boone, Christopher D.; Zhong, Guo; Smeltz, Marci; James, Margaret O. McKenna, Robert

    2014-01-21

    Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.

  1. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  2. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis.

    PubMed

    Hemsley, Piers A; Kemp, Alison C; Grierson, Claire S

    2005-09-01

    TIP GROWTH DEFECTIVE1 (TIP1) of Arabidopsis thaliana affects cell growth throughout the plant and has a particularly strong effect on root hair growth. We have identified TIP1 by map-based cloning and complementation of the mutant phenotype. TIP1 encodes an ankyrin repeat protein with a DHHC Cys-rich domain that is expressed in roots, leaves, inflorescence stems, and floral tissue. Two homologues of TIP1 in yeast (Saccharomyces cerevisiae) and human (Homo sapiens) have been shown to have S-acyl transferase (also known as palmitoyl transferase) activity. S-acylation is a reversible hydrophobic protein modification that offers swift, flexible control of protein hydrophobicity and affects protein association with membranes, signal transduction, and vesicle trafficking within cells. We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype. Our results demonstrate that S-acylation is essential for normal plant cell growth and identify a plant S-acyl transferase, an essential research tool if we are to understand how this important, reversible lipid modification operates in plant cells.

  3. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  4. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  5. Peptidyl transferase centre of bacterial ribosomes: substrate specificity and binding sites.

    PubMed Central

    Krayevsky, A A; Kukhanova, M K; Gottikh, B P

    1975-01-01

    A detailed scheme of the Peptidyl Transferase Centre of bacterial ribosomes is proposed by summarizing the literature data on the substrate specificity of the acceptor and donor sites. According to the proposed scheme only the elements of the donor and acceptor having a stable structure bind with the ribosome. The present paper proposes such main elements for the donor and acceptor. PMID:802510

  6. Association study of polymorphisms in the alpha 7 nicotinic acetylcholine receptor subunit and catechol-o-methyl transferase genes with sensory gating in first-episode schizophrenia.

    PubMed

    Liu, Xia; Hong, Xiaohong; Chan, Raymond C K; Kong, Fanzhi; Peng, Zhizhen; Wan, Xiaona; Wang, Changqing; Cheng, Lu

    2013-10-30

    The purpose of the current study was to explore the association of auditory P50 sensory gating (P50) and prepulse inhibition (PPI) of schizophrenia with polymorphisms in the CHRNA7 and COMT genes. One hundred and fourty patients with schizophrenia participated in this study. They were administered the tests P50 and PPI. Moreover, three single nucleotide polymorphisms (SNPs) (rs2337980, rs1909884 and rs883473) in CHRNA7 and three SNPs (rs4680, rs737865 and rs165599) in COMT were selected to be genotyped by polyacrylamide gel microarray techniques. P50 index showed significant reduction in S2 amplitude between wild-type and mutation groups in the COMT rs4680. S1 amplitude of mutation group in the COMT rs737865 was also lower compared to wild-type group. PPI index revealed a shorter pulse latency of mutation group in the rs4680. The suppression ratio of mutation group was lower in COMT rs165599. Negative findings were shown between comparisons in all the CHRNA7 SNPs. We find that P50 and PPI may be influenced by COMT rs4680 polymorphisms in schizophrenia; more excitingly, we find that P50 might be influenced by COMT rs737865 polymorphisms and PPI may be influenced by COMT rs165599 polymorphisms in schizophrenia, and their mutations are associated with the reduction of the risk of P50 or PPI defects in schizophrenia. Futher studies with a larger number of subjects are needed to verify the present findings.

  7. Differential accumulation of ribonucleotide reductase subunits in clam oocytes: the large subunit is stored as a polypeptide, the small subunit as untranslated mRNA

    PubMed Central

    1986-01-01

    Within minutes of fertilization of clam oocytes, translation of a set of maternal mRNAs is activated. One of the most abundant of these stored mRNAs encodes the small subunit of ribonucleotide reductase (Standart, N. M., S. J. Bray, E. L. George, T. Hunt, and J. V. Ruderman, 1985, J. Cell Biol., 100:1968-1976). Unfertilized oocytes do not contain any ribonucleotide reductase activity; such activity begins to appear shortly after fertilization. In virtually all organisms, this enzyme is composed of two dissimilar subunits with molecular masses of approximately 44 and 88 kD, both of which are required for activity. This paper reports the identification of the large subunit of clam ribonucleotide reductase isolated by dATP-Sepharose chromatography as a relatively abundant 86-kD polypeptide which is already present in oocytes, and whose level remains constant during early development. The enzyme activity of this large subunit was established in reconstitution assays using the small subunit isolated from embryos by virtue of its binding to the anti-tubulin antibody YL 1/2. Thus the two components of clam ribonucleotide reductase are differentially stored in the oocyte: the small subunit in the form of untranslated mRNA and the large subunit as protein. When fertilization triggers the activation of translation of the maternal mRNA, the newly synthesized small subunit combines with the preformed large subunit to generate active ribonucleotide reductase. PMID:3536960

  8. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    PubMed Central

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  9. Prefoldin subunits are protected from ubiquitin-proteasome system-mediated degradation by forming complex with other constituent subunits.

    PubMed

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2011-06-03

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.

  10. Inherent conformational flexibility of F1-ATPase α-subunit.

    PubMed

    Hahn-Herrera, Otto; Salcedo, Guillermo; Barril, Xavier; García-Hernández, Enrique

    2016-09-01

    The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP.

  11. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    DOE PAGES

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes andmore » orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.« less

  12. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    SciTech Connect

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-05-23

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. Here in this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. Finally, the ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  13. Functional Dissection of the Bipartite Active Site of the Class I Coenzyme A (CoA)-Transferase Succinyl-CoA:Acetate CoA-Transferase

    PubMed Central

    Murphy, Jesse R.; Mullins, Elwood A.; Kappock, T. Joseph

    2016-01-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates <3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analog dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analog of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA. PMID:27242998

  14. Functional dissection of the bipartite active site of the class I coenzyme A (CoA)-transferase succinyl-CoA:acetate CoA-transferase

    NASA Astrophysics Data System (ADS)

    Murphy, Jesse; Mullins, Elwood; Kappock, T.

    2016-05-01

    Coenzyme A (CoA)-transferases catalyze the reversible transfer of CoA from acyl-CoA thioesters to free carboxylates. Class I CoA-transferases produce acylglutamyl anhydride intermediates that undergo attack by CoA thiolate on either the internal or external carbonyl carbon atoms, forming distinct tetrahedral intermediates less than 3 Å apart. In this study, crystal structures of succinyl-CoA:acetate CoA-transferase (AarC) from Acetobacter aceti are used to examine how the Asn347 carboxamide stabilizes the internal oxyanion intermediate. A structure of the active mutant AarC-N347A bound to CoA revealed both solvent replacement of the missing contact and displacement of the adjacent Glu294, indicating that Asn347 both polarizes and orients the essential glutamate. AarC was crystallized with the nonhydrolyzable acetyl-CoA (AcCoA) analogue dethiaacetyl-CoA (1a) in an attempt to trap a closed enzyme complex containing a stable analogue of the external oxyanion intermediate. One active site contained an acetylglutamyl anhydride adduct and truncated 1a, an unexpected result hinting at an unprecedented cleavage of the ketone moiety in 1a. Solution studies confirmed that 1a decomposition is accompanied by production of near-stoichiometric acetate, in a process that seems to depend on microbial contamination but not AarC. A crystal structure of AarC bound to the postulated 1a truncation product (2a) showed complete closure of one active site per dimer but no acetylglutamyl anhydride, even with acetate added. These findings suggest that an activated acetyl donor forms during 1a decomposition; a working hypothesis involving ketone oxidation is offered. The ability of 2a to induce full active site closure furthermore suggests that it subverts a system used to impede inappropriate active site closure on unacylated CoA.

  15. A specific tryptophan in the I-II linker is a key determinant of beta-subunit binding and modulation in Ca(V)2.3 calcium channels.

    PubMed Central

    Berrou, L; Klein, H; Bernatchez, G; Parent, L

    2002-01-01

    The ancillary beta subunits modulate the activation and inactivation properties of high-voltage activated (HVA) Ca(2+) channels in an isoform-specific manner. The beta subunits bind to a high-affinity interaction site, alpha-interaction domain (AID), located in the I-II linker of HVA alpha1 subunits. Nine residues in the AID motif are absolutely conserved in all HVA channels (QQxExxLxGYxxWIxxxE), but their contribution to beta-subunit binding and modulation remains to be established in Ca(V)2.3. Mutations of W386 to either A, G, Q, R, E, F, or Y in Ca(V)2.3 disrupted [(35)S]beta3-subunit overlay binding to glutathione S-transferase fusion proteins containing the mutated I-II linker, whereas mutations (single or multiple) of nonconserved residues did not affect the protein-protein interaction with beta3. The tryptophan residue at position 386 appears to be an essential determinant as substitutions with hydrophobic (A and G), hydrophilic (Q, R, and E), or aromatic (F and Y) residues yielded the same results. beta-Subunit modulation of W386 (A, G, Q, R, E, F, and Y) and Y383 (A and S) mutants was investigated after heterologous expression in Xenopus oocytes. All mutant channels expressed large inward Ba(2+) currents with typical current-voltage properties. Nonetheless, the typical hallmarks of beta-subunit modulation, namely the increase in peak currents, the hyperpolarization of peak voltages, and the modulation of the kinetics and voltage dependence of inactivation, were eliminated in all W386 mutants, although they were preserved in part in Y383 (A and S) mutants. Altogether these results suggest that W386 is critical for beta-subunit binding and modulation of HVA Ca(2+) channels. PMID:12202369

  16. [Nose surgical anatomy in six aesthetic subunits].

    PubMed

    Chaput, B; Lauwers, F; Lopez, R; Saboye, J; André, A; Grolleau, J-L; Chavoin, J-P

    2013-04-01

    The nose is a complex entity, combining aesthetic and functional roles. Descriptive anatomy is a fundamental science that it can be difficult to relate directly to our daily surgical activity. Reasoning in terms of aesthetic subunits to decide on his actions appeared to us so obvious. The aim of this paper is to resume the anatomical bases relevant to our daily practice in order to fully apprehend the restorative or cosmetic procedures. We discuss the limits of the systematization of these principles in nasal oncology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions.

    PubMed Central

    Paul, K; Morell, M K; Andrews, T J

    1993-01-01

    The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme. PMID:8278544

  18. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly.

    PubMed

    Mueller, Susanne; Wahlander, Asa; Selevsek, Nathalie; Otto, Claudia; Ngwa, Elsy Mankah; Poljak, Kristina; Frey, Alexander D; Aebi, Markus; Gauss, Robert

    2015-07-15

    Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation. © 2015 Mueller et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Glycine receptor subunits expression in the developing rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Velázquez-Flores, Miguel Ángel; Ruiz Esparza-Garrido, Ruth; Salceda, Rocío

    2017-09-01

    Glycine receptor (GlyR) consists of two α (1-4) and three β subunits. Considerable evidence indicates that the adult retina expresses the four types of α subunits; however, the proportion of these subunits in adult and immature retina is almost unknown. In this report we have studied mRNA and the protein expression of GlyR subunits in the retina during postnatal rat development by Real-Time qRT-PCR and western blot. mRNA and protein expression indicated a gradual increase of the α1, α3, α4 and β GlyR subunits during postnatal ages tested. The mRNA β subunit showed higher expression levels (∼3 fold) than those observed for the α1 and α3 subunits. Very interestingly, the α2 GlyR subunit had the highest expression in the retina, even in the adult. These results revealed the expression of GlyR at early postnatal ages, supporting its role in retina development. In addition, our results indicated that the adult retina expressed a high proportion of the α2 subunit, suggesting the expression of monomeric and/or heteromeric receptors. A variety of studies are needed to further characterize the role of the specific subunits in both adult and immature retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stoichiometry of δ subunit containing GABA(A) receptors.

    PubMed

    Patel, B; Mortensen, M; Smart, T G

    2014-02-01

    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. © 2013 The British Pharmacological Society.

  1. MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome

    PubMed Central

    Rorbach, Joanna; Boesch, Pierre; Gammage, Payam A.; Nicholls, Thomas J. J.; Pearce, Sarah F.; Patel, Dipali; Hauser, Andreas; Perocchi, Fabiana; Minczuk, Michal

    2014-01-01

    Defects of the translation apparatus in human mitochondria are known to cause disease, yet details of how protein synthesis is regulated in this organelle remain to be unveiled. Ribosome production in all organisms studied thus far entails a complex, multistep pathway involving a number of auxiliary factors. This includes several RNA processing and modification steps required for correct rRNA maturation. Little is known about the maturation of human mitochondrial 16S rRNA and its role in biogenesis of the mitoribosome. Here we investigate two methyltransferases, MRM2 (also known as RRMJ2, encoded by FTSJ2) and MRM3 (also known as RMTL1, encoded by RNMTL1), that are responsible for modification of nucleotides of the 16S rRNA A-loop, an essential component of the peptidyl transferase center. Our studies show that inactivation of MRM2 or MRM3 in human cells by RNA interference results in respiratory incompetence as a consequence of diminished mitochondrial translation. Ineffective translation in MRM2- and MRM3-depleted cells results from aberrant assembly of the large subunit of the mitochondrial ribosome (mt-LSU). Our findings show that MRM2 and MRM3 are human mitochondrial methyltransferases involved in the modification of 16S rRNA and are important factors for the biogenesis and function of the large subunit of the mitochondrial ribosome. PMID:25009282

  2. Cloning, expression and properties of porcine trachea UDP-galnac: polypeptide N-acetylgalactosaminyl transferase.

    PubMed

    Sangadala, Sreedhara; Swain, Ja Baris; McNear, Adrian; Mendicino, Joseph

    2004-11-01

    A UDP-GalNAc:polypeptide N-acetyl-galactosaminyl transferase which catalyses the transfer of GalNAc from UDP-GalNAc to serine and threonine residues in mucin polypeptide chains was purified to homogeneity from swine trachea epithelium (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998). Peptides obtained by proteolysis of the purified enzyme were isolated, sequenced and used to prepare degenerate oligonucleotide primers. Amplified segments of a gene encoding GalNAc transferase were synthesised using the primers and a swine trachea epithelial cDNA library. Selected cDNA fragments were then used to screen the cDNA library, and a clone containing an open reading frame encoding 559 amino acids was isolated. The predicted amino acid sequence contains type II transmembrane region, three potential N-glycosylation sites as well as all of the isolated peptide sequences. The nucleotide sequence and predicted primary protein structure of the transferase were very similar to those of type T-1 GalNAc transferases. The isolated clone was transiently expressed in COS 7 cells and the recombinant enzyme, which contained an N-terminal hexa-histidine tag, was purified to homogeneity and its enzymatic properties were examined. The Vmax of the recombinant enzyme, 2.08 micromol/(min mg), was nearly the same as the native enzyme, 2.12 micromol/(min mg), when assayed with partially deglycosylated mucins as glycosyl acceptors. Both enzymes showed much higher activities when assayed with peptides prepared by limited acid hydrolysis of incompletely deglycosylated Cowper's gland, swine, and human respiratory mucins and tryptic peptides isolated from deglycosylated mucin polypeptide chains. However, as noted earlier (Mendicino J, Sangadala S: Mol Cell Biochem 185: 135-145, 1998), these enzymes showed very little activity with completely deglycosylated mucin polypeptide chains. When completely deglycosylated polypeptide chains were partially glycosylated by incubation with microsome

  3. The role of the C-terminal region on the oligomeric state and enzymatic activity of Trypanosoma cruzi hypoxanthine phosphoribosyl transferase.

    PubMed

    Valsecchi, Wanda M; Cousido-Siah, Alexandra; Defelipe, Lucas A; Mitschler, André; Podjarny, Alberto; Santos, Javier; Delfino, José M

    2016-06-01

    Hypoxanthine phosphoribosyl transferase from Trypanosoma cruzi (TcHPRT) is a critical enzyme for the survival of the parasite. This work demonstrates that the full-length form in solution adopts a stable and enzymatically active tetrameric form, exhibiting large inter-subunit surfaces. Although this protein irreversibly aggregates during unfolding, oligomerization is reversible and can be modulated by low concentrations of urea. When the C-terminal region, which is predicted as a disordered stretch, is excised by proteolysis, TcHPRT adopts a dimeric state, suggesting that the C-terminal region acts as a main guide for the quaternary arrangement. These results are in agreement with X-ray crystallographic data presented in this work. On the other hand, the C-terminal region exhibits a modulatory role on the enzyme, as attested by the enhanced activity observed for the dimeric form. Bisphosphonates act as substrate-mimetics, uncovering long-range communications among the active sites. All in all, this work contributes to establish new ways applicable to the design of novel inhibitors that could eventually result in new drugs against parasitic diseases.

  4. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans.

    PubMed

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L J; Wöhnert, Jens; Entian, Karl-Dieter

    2016-05-19

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins*

    PubMed Central

    Bertsova, Yulia V.; Fadeeva, Maria S.; Kostyrko, Vitaly A.; Serebryakova, Marina V.; Baykov, Alexander A.; Bogachev, Alexander V.

    2013-01-01

    Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) contains two flavin residues as redox-active prosthetic groups attached by a phosphoester bond to threonine residues in subunits NqrB and NqrC. We demonstrate here that flavinylation of truncated Vibrio harveyi NqrC at Thr-229 in Escherichia coli cells requires the presence of a co-expressed Vibrio apbE gene. The apbE genes cluster with genes for Na+-NQR and other FMN-binding flavoproteins in bacterial genomes and encode proteins with previously unknown function. Experiments with isolated NqrC and ApbE proteins confirmed that ApbE is the only protein factor required for NqrC flavinylation and also indicated that the reaction is Mg2+-dependent and proceeds with FAD but not FMN. Inactivation of the apbE gene in Klebsiella pneumoniae, wherein the nqr operon and apbE are well separated in the chromosome, resulted in a complete loss of the quinone reductase activity of Na+-NQR, consistent with its dependence on covalently bound flavin. Our data thus identify ApbE as a novel modifying enzyme, flavin transferase. PMID:23558683

  6. Inactivation of mouse liver glutathione S-transferase YfYf (Pi class) by ethacrynic acid and 5,5'-dithiobis-(2-nitrobenzoic acid).

    PubMed Central

    Phillips, M F; Mantle, T J

    1993-01-01

    Mouse liver glutathione S-transferase YfYf (Pi class) reacts with [14C]ethacrynic acid to form a covalent adduct with a stoichiometry of 1 mol per mol of subunit. Proteolytic digestion of the enzyme-[14C]ethacrynic acid adduct with V8 protease produced an 11 kDa fragment containing radioactivity. Sequencing revealed this to be an N-terminal peptide (minus the first 15 residues, terminating at Glu-112) which contains only one cysteine residue (Cys-47). This is tentatively identified as the site of ethacrynic attachment. Kinetic studies reveal that glutathione S-conjugates protect against inactivation by ethacrynic acid, but the level of protection is not consistent with their potency as product inhibitors. A model is proposed in which glutathione S-conjugates and ethacrynic acid compete for the free enzyme, and a second molecule of ethacrynic acid reacts covalently with the enzyme-ethacrynic acid complex. The native protein contains one thiol reactive with 5,5'-dithiobis-(2-nitrobenzoic acid) at neutral pH. The resultant mixed disulphide, like the ethacrynic acid adduct, is inactive, but treatment with cyanide (which incorporates on a mol for mol basis) restores activity to 35% of that of the native enzyme. Images Figure 4 PMID:8363586

  7. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans

    PubMed Central

    Meyer, Britta; Wurm, Jan Philip; Sharma, Sunny; Immer, Carina; Pogoryelov, Denys; Kötter, Peter; Lafontaine, Denis L. J.; Wöhnert, Jens; Entian, Karl-Dieter

    2016-01-01

    The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m1acp3Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes. PMID:27084949

  8. Restoration of Hypoxanthine Phosphoribosyl Transferase Activity in Mouse 1R Cells After Fusion with Chick-Embryo Fibroblasts

    PubMed Central

    Bakay, Bohdan; Croce, Carlo M.; Koprowski, Hilary; Nyhan, William L.

    1973-01-01

    Fusion of the 1R mouse cell, which lacks activity of hypoxanthine phosphoribosyl transferase (EC 2.4.2.8), with chick-embryo fibroblasts yielded progeny cells that survived in hypoxanthine-aminopterin-thymidine selective medium. This property and the failure of the progeny to survive in 8-azaguanine indicated that hypoxanthine phosphoribosyl transferase activity was present. Electrophoretic analysis revealed that the enzyme was of mouse, not chick, origin. These observations are consistent with the operation of a regulator gene responsible for the absence of hypoxanthine phosphoribosyl-transferase activity in the 1R cell and its presence in the progeny. Images PMID:4516198

  9. Complementation of subunits from different bacterial luciferases. Evidence for the role of the. beta. subunit in the bioluminescent mechanism

    SciTech Connect

    Meighen, E.A.; Bartlet, I.

    1980-12-10

    Complementation of the nonidentical subunits (..cap alpha.. and ..beta..) of luciferases isolated from two different bioluminescent strains, Beneckea harveyi and Photobacterium phosphoreum, has resulted in the formation of a functional hybrid luciferase (..cap alpha../sub h/..beta../sub p/) containing the ..cap alpha.. subunit from B. harveyi luciferase (..cap alpha../sub h/) and the ..beta.. subunit from P. phosphoreum luciferase (..beta../sub p/). The complementation was unidirectional; activity could not be restored by complementing the ..cap alpha.. subunit of P. phosphoreum luciferase with the ..beta.. subunit of B. harveyi luciferase, showing that the subunits from these luciferases were not identical. Kinetic parameters of the hybrid luciferase reflecting the intermediate and later steps of the bioluminescent reaction as well as the overall activity and specificity were essentially identical to the same kinetic parameters for B. harveyi luciferase, the source of the ..cap alpha.. subunit, and quite distinct from those of P. phosphoreum luciferase. However, kinetic parameters that reflected the initial step in the reaction involving interaction of FMNH/sub 2/ and luciferase were altered in the hybrid luciferase compared to both the parental luciferases, the K/sub d/ for FMNH/sub 2/ actually being closer to that observed for the P. phosphoreum luciferase (the source of the ..beta.. subunit). These results provide direct evidence that modification or alteration of the ..beta.. subunit in a dimeric luciferase molecule can affect the kinetic properties and indicates that the ..beta.. subunit plays a functional role in the bioluminescent mechanism. It is proposed that both the ..cap alpha.. and ..beta.. subunits are involved with the initial interaction with FMNH/sub 2/, whereas subsequent steps in the mechanism are dictated exclusively by the ..cap alpha.. subunit and are unaffected by alterations in the ..beta.. subunit.

  10. Formation of active bacterial luciferase between interspecific subunits in vivo.

    PubMed

    Almashanu, S; Tuby, A; Hadar, R; Einy, R; Kuhn, J

    1995-01-01

    Interspecific complementation between luxAs and luxBs from Vibrio harveyi, Vibrio fischeri, Photobacterium leiognathi and Xenorhabdus luminescens was examined in vivo. The individual genes from these species were cloned on different compatible plasmids or amplified by PCR and brought together to yield cis combinations without extraneous DNA. The beta subunits from V. harveyi and X. luminescens form active enzyme only with alpha subunits from one of these species. All other combinations yield active enzymes. The lack of activity of the V. harveyi and X. luminescens beta subunits with the alpha subunits from V. fischeri and P. leiognathi results from a lack of association. This was shown by in vivo competition in which these beta subunits were overproduced in comparison with the beta and alpha of V. fischeri. No reduction in light was found. Overall, the in vivo results parallel those found in vitro using isolated denatured subunits and renaturation by removal of the denaturant.

  11. Sodium channel β subunits: emerging targets in channelopathies

    PubMed Central

    O’Malley, Heather A.; Isom, Lori L.

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Originally called “auxiliary,” we now know that β subunit proteins are multifunctional signaling molecules that play roles in both excitable and non-excitable cell types, and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. While VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  12. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  13. Design and synthesis of potent inhibitors of the mono(ADP-ribosyl)transferase, PARP14.

    PubMed

    Upton, Kristen; Meyers, Matthew; Thorsell, Ann-Gerd; Karlberg, Tobias; Holechek, Jacob; Lease, Robert; Schey, Garrett; Wolf, Emily; Lucente, Adrianna; Schüler, Herwig; Ferraris, Dana

    2017-07-01

    A series of (Z)-4-(3-carbamoylphenylamino)-4-oxobut-2-enyl amides were synthesized and tested for their ability to inhibit the mono-(ADP-ribosyl)transferase, PARP14 (a.k.a. BAL-2; ARTD-8). Two synthetic routes were established for this series and several compounds were identified as sub-micromolar inhibitors of PARP14, the most potent of which was compound 4t, IC50=160nM. Furthermore, profiling other members of this series identified compounds with >20-fold selectivity over PARP5a/TNKS1, and modest selectivity over PARP10, a closely related mono-(ADP-ribosyl)transferase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Diversity of heterotrimeric G-protein γ subunits in plants.

    PubMed

    Trusov, Yuri; Chakravorty, David; Botella, José Ramón

    2012-10-31

    Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  15. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  16. Metal-catalyzed oxidation and cleavage of octopus glutathione transferase by the Cu(II)-ascorbate system.

    PubMed

    Tang, S S; Lin, C C; Chang, G G

    1996-01-01

    Glutathione transferase (GST) from octopus hepatopancreas was rapidly inactivated by micromolar concentration of Cu(II) in the presence of ascorbate at neutral pH and 0 degree C. Omitting the metal ion or ascorbate, or replacing the Cu(II) with Fe(II) did not result in any inactivation. Glutathione or the conjugation product of glutathione and 1-chloro-2,4-dinitrobenzene offered complete protection of the enzyme from Cu(II)-induced inactivation. 1-Chloro-2,4-dinitrobenzene, however, did not provide any protection. The inactivation was time and Cu(II) concentration dependent. The dependence of inactivation rate on Cu(II) concentration displayed saturation kinetics, which suggests that the inactivation occurs in two steps with Cu(II) binding with the enzyme first (KdCu = 260 microM), then the locally generated free radicals modify the essential amino acid residues in the active center, which results in enzyme inactivation. The Cu(II)-ascorbate system is, thus, an affinity reagent for the octopus GST. The enzyme inactivation was demonstrated to be followed by protein cleavage. Native octopus GST has a subunit M(r) of 24,000. The inactivated enzyme was cleaved at the C-terminal domain (domain II) of the enzyme molecule and resulted in the formation of peptide fragment of M(r) 15,300, which has the identical N-terminal amino acid sequence as the native enzyme. The other half of the peptide with M(r) approximately 7700 was visible in the gels only after silver staining, which also revealed a minor cleavage site, also located at the domain II, to produce peptide fragments of M(r) approximately 11,300 and 8300. The oxygen carrier molecule in the cephalopods' blood is the copper-containing hemocyanin, which during turnover will release Cu(II). Our results indicate that Cu(II) catalyzes a site-specific oxidation of the essential amino acid residues at the C-terminus of GST causing enzyme inactivation. The modified-enzyme is then affinity cleaved at the putative metal binding

  17. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity.

  18. Genetic analysis of neuronal ionotropic glutamate receptor subunits.

    PubMed

    Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A

    2011-09-01

    In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.

  19. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  20. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens.

    PubMed

    Gourmelen, A; Blondelet-Rouault, M H; Pernodet, J L

    1998-10-01

    In Streptomyces ambofaciens, the producer of the macrolide antibiotic spiramycin, an open reading frame (ORF) was found downstream of srmA, a gene conferring resistance to spiramycin. The deduced product of this ORF had high degrees of similarity to Streptomyces lividans glycosyl transferase, which inactivates macrolides, and this ORF was called gimA. The cloned gimA gene was expressed in a susceptible host mutant of S. lividans devoid of any background macrolide-inactivating glycosyl transferase activity. In the presence of UDP-glucose, cell extracts from this strain could inactivate various macrolides by glycosylation. Spiramycin was not inactivated but forocidin, a spiramycin precursor, was modified. In vivo studies showed that gimA could confer low levels of resistance to some macrolides. The spectrum of this resistance differs from the one conferred by a rRNA monomethylase, such as SrmA. In S. ambofaciens, gimA was inactivated by gene replacement, without any deleterious effect on the survival of the strain, even under spiramycin-producing conditions. But the overexpression of gimA led to a marked decrease in spiramycin production. Studies with extracts from wild-type and gimA-null mutant strains revealed the existence of another macrolide-inactivating glycosyl transferase activity with a different substrate specificity. This activity might compensate for the effect of gimA inactivation.

  1. Characterization of a Glycosyl Transferase Inactivating Macrolides, Encoded by gimA from Streptomyces ambofaciens

    PubMed Central

    Gourmelen, Anne; Blondelet-Rouault, Marie-Hélène; Pernodet, Jean-Luc

    1998-01-01

    In Streptomyces ambofaciens, the producer of the macrolide antibiotic spiramycin, an open reading frame (ORF) was found downstream of srmA, a gene conferring resistance to spiramycin. The deduced product of this ORF had high degrees of similarity to Streptomyces lividans glycosyl transferase, which inactivates macrolides, and this ORF was called gimA. The cloned gimA gene was expressed in a susceptible host mutant of S. lividans devoid of any background macrolide-inactivating glycosyl transferase activity. In the presence of UDP-glucose, cell extracts from this strain could inactivate various macrolides by glycosylation. Spiramycin was not inactivated but forocidin, a spiramycin precursor, was modified. In vivo studies showed that gimA could confer low levels of resistance to some macrolides. The spectrum of this resistance differs from the one conferred by a rRNA monomethylase, such as SrmA. In S. ambofaciens, gimA was inactivated by gene replacement, without any deleterious effect on the survival of the strain, even under spiramycin-producing conditions. But the overexpression of gimA led to a marked decrease in spiramycin production. Studies with extracts from wild-type and gimA-null mutant strains revealed the existence of another macrolide-inactivating glycosyl transferase activity with a different substrate specificity. This activity might compensate for the effect of gimA inactivation. PMID:9756764

  2. Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity.

    PubMed

    Spanò, Delia; Pintus, Francesca; Esposito, Francesca; Loche, Danilo; Floris, Giovanni; Medda, Rosaria

    2015-02-01

    We have recently characterized a natural rubber in the latex of Euphorbia characias. Following that study, we here investigated the rubber particles and rubber transferase in that Mediterranean shrub. Rubber particles, observed by scanning electron microscopy, are spherical in shape with diameter ranging from 0.02 to 1.2 μm. Washed rubber particles exhibit rubber transferase activity with a rate of radiolabeled [(14)C]IPP incorporation of 4.5 pmol min(-1)mg(-1). Denaturing electrophoresis profile of washed rubber particles reveals a single protein band of 37 kDa that is recognized in western blot analysis by antibodies raised against the synthetic peptide whose sequence, DVVIRTSGETRLSNF, is included in one of the five regions conserved among cis-prenyl chain elongation enzymes. The cDNA nucleotide sequence of E. characias rubber transferase (GenBank JX564541) and the deduced amino acid sequence appear to be highly homologous to the sequence of several plant cis-prenyltransferases.

  3. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  4. Influence of Culture Medium on the Glucosyl Transferase- and Dextran-Binding Capacity of Streptococcus mutans 6715 Cells

    PubMed Central

    Spinell, D. M.; Gibbons, R. J.

    1974-01-01

    Growth of Streptococcus mutans 6715 in a medium containing trace amounts of sucrose or dextran promotes cell-associated glucosyl transferase activity and increases the dextran-binding capacity of the organisms. PMID:4140162

  5. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  6. Alkaline-extracted influenza subunit vaccine.

    PubMed Central

    Eckert, E A

    1976-01-01

    Treatment of influenza virus concentrates with alkaline solvents releases a major fraction of the viral structural protein content. As determined by polyacrylamide gel electrophoresis, the surface glycoprotein substructures, hemagglutinin and neuraminidase, are the primary solubilized products. Two forms of hemagglutinin antigen are recovered, a 39S active hemagglutinin and a 23S blocking antigen. Dose-response assays in mice demonstrate that hemagglutination-inhibiting and neuraminidase antibodies are induced. Antibody responses are comparable to those resulting from immunization with inactivated whole virus. On the basis of demonstrated purity, high yields of protective antigens, immunogenic potency, and absence of deleterious reagents, alkaline-extracted influenza protein preparations merit consideration as subunit vaccines for human use. PMID:826484

  7. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  8. Subunit vaccine efficacy against Botulinum neurotoxin subtypes.

    PubMed

    Henkel, James S; Tepp, William H; Przedpelski, Amanda; Fritz, Robert B; Johnson, Eric A; Barbieri, Joseph T

    2011-10-13

    Botulinum neurotoxins (BoNT) are classified into 7 serotypes (A-G) based upon neutralization by serotype-specific anti-sera. Several recombinant serotype-specific subunit BoNT vaccines have been developed, including a subunit vaccine comprising the receptor binding domain (HCR) of the BoNTs. Sequencing of the genes encoding BoNTs has identified variants (subtypes) that possess up to 32% primary amino acid variation among different BoNT serotypes. Studies were conducted to characterize the ability of the HCR of BoNT/A to protect against challenge by heterologous BoNT/A subtypes (A1-A3). High dose vaccination with HCR/A subtypes A1-A4 protected mice from challenge by heterologous BoNT/A subtype A1-A3, while low dose HCR vaccination yielded partial protection to heterologous BoNT/A subtype challenge. Absolute IgG titers to HCRs correlated to the dose of HCR used for vaccination, where HCR/A1 elicited an A1 subtype-specific IgG response, which was not observed with HCR/A2 vaccination. Survival of mice challenged to heterologous BoNT/A2 following low dose HCR/A1 vaccination correlated with elevated IgG titers directed to the denatured C-terminal sub-domain of HCR/A2, while survival of mice to heterologous BoNT/A1 following low dose HCR/A2 vaccination correlated to elevated IgG titers directed to native HCRc/A1. This implies that low dose vaccinations with HCR/A subtypes elicit unique IgG responses, and provides a basis to define how the host develops a neutralizing immune response to BoNT intoxication. These results may provide a reference for the development of pan-BoNT vaccines.

  9. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    PubMed

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  10. Crystallographic trapping of the glutamyl-CoA thioester intermediate of family I CoA transferases

    SciTech Connect

    Rangarajan,E.; Li, Y.; Ajamian, E.; Iannuzzi, P.; Kernaghan, S.; Fraser, M.; Cygler, M.; Matte, A.

    2005-01-01

    Coenzyme A transferases are involved in a broad range of biochemical processes in both prokaryotes and eukaryotes, and exhibit a diverse range of substrate specificities. The YdiF protein from Escherichia coli O157:H7 is an acyl-CoA transferase of unknown physiological function, and belongs to a large sequence family of CoA transferases, present in bacteria to humans, which utilize oxoacids as acceptors. In vitro measurements showed that YdiF displays enzymatic activity with short-chain acyl-CoAs. The crystal structures of YdiF and its complex with CoA, the first co-crystal structure for any Family I CoA transferase, have been determined and refined at 1.9 and 2.0 Angstrom resolution, respectively. YdiF is organized into tetramers, with each monomer having an open {alpha}/{beta} structure characteristic of Family I CoA transferases. Co-crystallization of YdiF with a variety of CoA thioesters in the absence of acceptor carboxylic acid resulted in trapping a covalent {gamma}-glutamyl-CoA thioester intermediate. The CoA binds within a well defined pocket at the N- and C-terminal domain interface, but makes contact only with the C-terminal domain. The structure of the YdiF complex provides a basis for understanding the different catalytic steps in the reaction of Family I CoA transferases.

  11. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes.

    PubMed

    Reeks, Judith; Graham, Shirley; Anderson, Linzi; Liu, Huanting; White, Malcolm F; Naismith, James H

    2013-05-01

    The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.

  12. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  13. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

    PubMed

    Tandrup Schmidt, Signe; Foged, Camilla; Korsholm, Karen Smith; Rades, Thomas; Christensen, Dennis

    2016-03-10

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  14. Epitopes from two soybean glycinin subunits antigenic in pigs

    USDA-ARS?s Scientific Manuscript database

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  15. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  16. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  17. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  18. The Development and Institutionalization of Subunit Power in Organizations.

    ERIC Educational Resources Information Center

    Boeker, Warren

    1989-01-01

    Examines the effects of founding events on the evolution of subunit importance in the semiconductor industry from 1958 to 1985. Distributions of power and subunit importance represent not only influences of current conditions, but also vestiges of earlier events, including the institution's founding. Includes 55 references. (MLH)

  19. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  20. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    PubMed Central

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  1. [Penicillin acylase from Escherichia coli: catalytically active subunits].

    PubMed

    Kabakov, V E; Kliachko, N L; Levashov, A V

    1995-05-01

    Gel filtration under denaturing conditions was used to isolate the alpha- and beta-subunits of penicillin acylase (PA). Refolded subunits were obtained through removing urea by dialysis. Both renatured subunits were catalytically active during hydrolysis of phenylacetic acid p-nitroanilide; this activity decreased after addition of a serine-specific inhibitor--phenylmethanesulfonyl fluoride. The subunits were also active in reversed micelles of Aerosol OT (AOT) in octane, the optimum hydration degree being 11.9 and 17.5 for the light (alpha) and heavy (beta) subunits, respectively. The positions of the maxima were consistent with both theoretically calculated optimum hydration degrees and the earlier reported profile of enzymatic activity for native PA in reversed micelles.

  2. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  3. Biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates by employing butyryl-CoA transferases in metabolically engineered Escherichia coli.

    PubMed

    David, Yokimiko; Joo, Jeong Chan; Yang, Jung Eun; Oh, Young Hoon; Lee, Sang Yup; Park, Si Jae

    2017-09-01

    We previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, we examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase was cultured in chemically defined MR medium containing 20 g/L of glucose, 2 g/L of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA were produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase was cultured in MR medium containing 20 g/L of glucose and 2 g/L of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) was produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes was expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers. This article is protected by copyright. All rights reserved.

  4. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    PubMed

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  5. The subunit composition and function of mammalian cytochrome c oxidase.

    PubMed

    Kadenbach, Bernhard; Hüttemann, Maik

    2015-09-01

    Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.

  6. Subunit structure of the follitropin receptor

    SciTech Connect

    Shin, J.

    1985-01-01

    Both of the ..cap alpha.. and ..beta.. subunits of intact human follitropin (FSH) were radioiodinated with /sup 125/I-FSH-sodium iodide and chloramine-T, and could be resolved on polyacrylamide gels (SDS-PAGE). The electrophoretic mobility of radioiodinated FSH ..cap alpha.. and ..beta.. subunits as well as the ..cap alpha beta.. dimer changed markedly depending on the concentration of reducing agents. /sup 125/I-FSH (Ka = 1.4 x 10/sup 10/ M/sup -1/), complexes to the receptor on procine granulosa cells or in Triton X-100 extracts, was affinity-crosslinked with a cleavable (nondisulfide) homobifunctional reagent, bis(2-(succinimidooxycarbonyloxy)ethyl)sulfone, solubilized in sodium dodecyl sulfate with or without reducing agents, and electrophoresed. Crosslinked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65 (unreduced 62), 83 (unreduced 76) and 117 (unreduced 110)kDa, in addition to hormone bands. Formation of the three bands requires the /sup 125/I-FSH hormone to bind specifically to the receptor with subsequent cross-linking. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22, 18, and 34 kDa components to the FSH ..cap alpha beta.. dimer. The results of reduction of cross-linked complexes demonstrated the existence of disulfide linkage between the three components. FSH was photoactively derivatized with N-hydroxysuccinimide ester of 4-azidobenzolyl-glycine and radioiodinated for photoaffinity labeling. When derivatized /sup 125/I-FSH (Ka = 1.12 10/sup 10/ M/sup -1/) bound to the cell was photolyzed for cross-linking and resolved on the SDS-PAGE, two new bands (106 and 61 kDa) under reducing condition appeared in addition to the hormone bands. Upon reduction with dithiotheitol and second-dimensional electrophoresis, the unreduced 104 kDa (reduced 106 kDa) band released two small components 31 and 14 kDa.

  7. Na, K ATPase beta3 subunit (CD298): association with alpha subunit and expression on peripheral blood cells.

    PubMed

    Chiampanichayakul, S; Khunkaewla, P; Pata, S; Kasinrerk, W

    2006-12-01

    Beta3 subunit is described as one of the Na, K ATPase subunits. Recently, we generated a monoclonal antibody (mAb), termed P-3E10. This mAb was shown to react with the Na, K ATPase beta3 subunit or CD298. By immunofluorescence analysis using mAb P-3E10, it was found that all peripheral blood leukocytes express Na, K ATPase beta3. The presence of beta3 subunit on leukocytes is not in a quantitative polymorphic manner. Upon phytohemagglutinin or phorbol myristate acetate activation, the expression level of the Na, K ATPase beta3 subunit on activated peripheral blood mononuclear cells was not altered in comparison with those of unstimulated cells. Red blood cells (RBCs) of healthy donors showed negative reactivity with mAb P-3E10. However, more than 80% of thalassemic RBCs showed positive reactivity. By immunoprecipitation, moreover, a protein band of 55-65 kDa was precipitated from normal RBC membrane using mAb P-3E10. These results evidenced that the beta3 subunit of Na, K ATPase is expressed on RBC membrane but the epitope recognized by mAb P-3E10 is hidden in normal RBCs. Furthermore, we showed the association of beta3 subunit and alpha subunit of Na, K ATPase. This information is important for further understanding of the functional roles of this molecule.

  8. Subunit recombinant vaccine protects against monkeypox.

    PubMed

    Heraud, Jean-Michel; Edghill-Smith, Yvette; Ayala, Victor; Kalisz, Irene; Parrino, Janie; Kalyanaraman, Vaniambadi S; Manischewitz, Jody; King, Lisa R; Hryniewicz, Anna; Trindade, Christopher J; Hassett, Meredith; Tsai, Wen-Po; Venzon, David; Nalca, Aysegul; Vaccari, Monica; Silvera, Peter; Bray, Mike; Graham, Barney S; Golding, Hana; Hooper, Jay W; Franchini, Genoveffa

    2006-08-15

    The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20-155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.

  9. Three CoA Transferases Involved in the Production of Short Chain Fatty Acids in Porphyromonas gingivalis

    PubMed Central

    Sato, Mitsunari; Yoshida, Yasuo; Nagano, Keiji; Hasegawa, Yoshiaki; Takebe, Jun; Yoshimura, Fuminobu

    2016-01-01

    Butyryl-CoA:acetate CoA transferase, which produces butyrate and acetyl-CoA from butyryl-CoA and acetate, is responsible for the final step of butyrate production in bacteria. This study demonstrates that in the periodontopathogenic bacterium Porphyromonas gingivalis this reaction is not catalyzed by PGN_1171, previously annotated as butyryl-CoA:acetate CoA transferase, but by three distinct CoA transferases, PGN_0725, PGN_1341, and PGN_1888. Gas chromatography/mass spectrometry (GC-MS) and spectrophotometric analyses were performed using crude enzyme extracts from deletion mutant strains and purified recombinant proteins. The experiments revealed that, in the presence of acetate, PGN_0725 preferentially utilized butyryl-CoA rather than propionyl-CoA. By contrast, this preference was reversed in PGN_1888. The only butyryl-CoA:acetate CoA transferase activity was observed in PGN_1341. Double reciprocal plots revealed that all the reactions catalyzed by these enzymes follow a ternary-complex mechanism, in contrast to previously characterized CoA transferases. GC-MS analysis to determine the concentrations of short chain fatty acids (SCFAs) in culture supernatants of P. gingivalis wild type and mutant strains revealed that PGN_0725 and PGN_1888 play a major role in the production of butyrate and propionate, respectively. Interestingly, a triple deletion mutant lacking PGN_0725, PGN_1341, and PGN_1888 produced low levels of SCFAs, suggesting that the microorganism contains CoA transferase(s) in addition to these three enzymes. Growth rates of the mutant strains were mostly slower than that of the wild type, indicating that many carbon compounds produced in the SCFA synthesis appear to be important for the biological activity of this microorganism. PMID:27486457

  10. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy.

  11. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola.

    PubMed

    Calmes, Benoit; Morel-Rouhier, Mélanie; Bataillé-Simoneau, Nelly; Gelhaye, Eric; Guillemette, Thomas; Simoneau, Philippe

    2015-06-18

    Glutathione transferases (GSTs) represent an extended family of multifunctional proteins involved in detoxification processes and tolerance to oxidative stress. We thus anticipated that some GSTs could play an essential role in the protection of fungal necrotrophs against plant-derived toxic metabolites and reactive oxygen species that accumulate at the host-pathogen interface during infection. Mining the genome of the necrotrophic Brassica pathogen Alternaria brassicicola for glutathione transferase revealed 23 sequences, 17 of which could be clustered into the main classes previously defined for fungal GSTs and six were 'orphans'. Five isothiocyanate-inducible GSTs from five different classes were more thoroughly investigated. Analysis of their catalytic properties revealed that two GSTs, belonging to the GSTFuA and GTT1 classes, exhibited GSH transferase activity with isothiocyanates (ITC) and peroxidase activity with cumene hydroperoxide, respectively. Mutant deficient for these two GSTs were however neither more susceptible to ITC nor less aggressive than the wild-type parental strain. By contrast mutants deficient for two other GSTs, belonging to the Ure2pB and GSTO classes, were distinguished by their hyper-susceptibility to ITC and low aggressiveness against Brassica oleracea. In particular AbGSTO1 could participate in cell tolerance to ITC due to its glutathione-dependent thioltransferase activity. The fifth ITC-inducible GST belonged to the MAPEG class and although it was not possible to produce the soluble active form of this protein in a bacterial expression system, the corresponding deficient mutant failed to develop normal symptoms on host plant tissues. Among the five ITC-inducible GSTs analyzed in this study, three were found essential for full aggressiveness of A. brassicicola on host plant. This, to our knowledge is the first evidence that GSTs might be essential virulence factors for fungal necrotrophs.

  12. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  13. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed

    Blocki, F A; Ellis, L B; Wackett, L P

    1993-12-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain.

  14. Glutathione-S-transferase (GST)-fusion based assays for studying protein-protein interactions.

    PubMed

    Vikis, Haris G; Guan, Kun-Liang

    2015-01-01

    Glutathione-S-transferase (GST)-fusion proteins have become an effective reagent to use in the study of protein-protein interactions. GST-fusion proteins can be produced in bacterial and mammalian cells in large quantities and purified rapidly. GST can be coupled to a glutathione matrix, which permits its use as an effective affinity column to study interactions in vitro or to purify protein complexes in cells expressing the GST-fusion protein. Here, we provide a technical description of the utilization of GST-fusion proteins as both a tool to study protein-protein interactions and also as a means to purify interacting proteins.

  15. Glutathione-Binding Site of a Bombyx mori Theta-Class Glutathione Transferase

    PubMed Central

    Hossain, M. D. Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents. PMID:24848539

  16. Genetic Variations in Human Glutathione Transferase Enzymes: Significance for Pharmacology and Toxicology

    PubMed Central

    Josephy, P. David

    2010-01-01

    Glutathione transferase enzymes (GSTs) catalyze reactions in which electrophiles are conjugated to the tripeptide thiol glutathione. While many GST-catalyzed transformations result in the detoxication of xenobiotics, a few substrates, such as dihaloalkanes, undergo bioactivation to reactive intermediates. Many molecular epidemiological studies have tested associations between polymorphisms (especially, deletions) of human GST genes and disease susceptibility or response to therapy. This review presents a discussion of the biochemistry of GSTs, the sources—both genetic and environmental—of interindividual variation in GST activities, and their implications for pharmaco- and toxicogenetics; particular attention is paid to the Theta class GSTs. PMID:20981235

  17. New C25 carbamate rifamycin derivatives are resistant to inactivation by ADP-ribosyl transferases.

    PubMed

    Combrink, Keith D; Denton, Daniel A; Harran, Susan; Ma, Zhenkun; Chapo, Katrina; Yan, Dalai; Bonventre, Eric; Roche, Eric D; Doyle, Timothy B; Robertson, Gregory T; Lynch, Anthony S

    2007-01-15

    A novel series of 3-morpholino rifamycins in which the C25 acetate group was replaced by a carbamate group were prepared and found to exhibit significantly improved antimicrobial activity than rifampin against Mycobacterium smegmatis. Further characterization of such compounds suggests that relatively large groups attached to the rifamycin core via a C25 carbamate linkage prevent inactivation via ribosylation of the C23 alcohol as catalyzed by the endogenous rifampin ADP-ribosyl transferase of M. smegmatis. SAR studies of the C25 carbamate rifamycin series against M. smegmatis and other bacteria are reported.

  18. Farnesyl protein transferase inhibitors targeting the catalytic zinc for enhanced binding.

    PubMed

    Njoroge, F George; Vibulbhan, Bancha; Pinto, Patrick; Strickland, Corey; Kirschmeier, Paul; Bishop, W Robert; Girijavallabhan, V

    2004-12-06

    Successful efforts to make farnesyl transferase (FT) inhibitors with appropriately tethered ligands designed to interact with a catalytic zinc that exist in the enzyme have been realized. Thus, by introducing either a pyridylmethylamino or propylaminolimidazole amide moieties off the 2-position of the piperidine ring, FT inhibitors with activities in the picomolar range have been achieved as exemplified by compounds 12a and 12b. An X-ray structure of 11b bound to FT shows the enhanced activity is a result of interacting with the active-site zinc.

  19. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug.

    PubMed

    Rautio, Jarkko; Vernerová, Monika; Aufderhaar, Imke; Huttunen, Kristiina M

    2014-11-01

    In this study, three sulfonamide prodrugs of metformin were designed and synthesized. The bioconversion of the sulfonamide prodrugs by glutathione-S-transferase (GST) was evaluated in rat and human liver S9 fractions as well as with recombinant human GST forms. One of the prodrugs (3) was bioactivated by GST and released metformin in a quantitative manner, whereas the two others were enzymatically stable. Prodrug 3 had a much higher logD value relative to metformin and it was reasonably stable in both acidic buffer and rat small intestine homogenate, which indicates that this prodrug has the potential to increase the oral absorption of metformin.

  20. Fucosylation of xyloglucan: localization of the transferase in dictyosomes of pea stem cells. [Pisum sativum

    SciTech Connect

    Camirand, A.; Brummell, D.; MacLachlan, G.

    1987-07-01

    Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.

  1. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos.

    PubMed

    Lee, H L; Chong, W L

    1995-03-01

    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.

  2. Genomic organization of the glutathione S-transferase family in insects.

    PubMed

    Friedman, Robert

    2011-12-01

    Cytosolic glutathione S-transferases (GSTs) are a large and diverse gene family in insects. They are classified into six major subclasses. Sigma, Omega, Zeta, and Theta have representatives across Metazoa while Delta and Epsilon are specific to Insecta and Holometabola, respectively. In this study, GSTs are assigned to a subclass by a combination of literature, phylogenetic, and genomic evidence. Moreover, it is confirmed that GSTs frequently cluster by genomic position as a result of recent gene expansions. These expansions are largely explained by the number of protein-coding genes in the genome, although life history is another contributing factor. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Phosphopantetheinyl Transferases: Catalysis of a Posttranslational Modification Crucial for Life

    PubMed Central

    Beld, Joris; Sonnenschein, Eva C.; Vickery, Christopher R.; Noel, Joseph P.; Burkart, Michael D.

    2014-01-01

    Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers has been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4′-phosphopantetheine arm on various carrier proteins. PMID:24292120

  4. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast.

    PubMed

    Eustice, D C; Wakem, L P; Wilhelm, J M; Sherman, F

    1986-03-20

    The five suppressors SUP35, SUP43, SUP44, SUP45 and SUP46, each mapping at a different chromosomal locus in the yeast Saccharomyces cerevisiae, suppress a wide range of mutations, including representatives of all three types of nonsense mutations, UAA, UAG and UGA. We have demonstrated that ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46 translate polyuridylate templates in vitro with higher errors than ribosomes from the normal stain, and that this misreading is substantially enhanced by the antibiotic paromomycin. Furthermore, ribosomal subunit mixing experiments established that the 40 S ribosomal subunit, and this subunit only, is responsible for the higher levels of misreading. Thus, the gene products of SUP35, SUP44, SUP45 and SUP46 are components of the 40 S subunit or are enzymes that modify the subunit. In addition, a protein from the 40 S subunit of the SUP35 suppressor has an altered electrophoretic mobility; this protein is distinct from the altered protein previously uncovered in the 40 S subunit of the SUP46 suppressor. In contrast to the ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46, the ribosomes from the SUP43 suppressor do not significantly misread polyuridylate templates in vitro, suggesting that this locus may not encode a ribosomal component or that the misreading is highly specific.

  5. Regulator of G protein signaling Z1 (RGSZ1) interacts with Galpha i subunits and regulates Galpha i-mediated cell signaling.

    PubMed

    Wang, Yuren; Ho, Guyu; Zhang, Jerry J; Nieuwenhuijsen, Bart; Edris, Wade; Chanda, Pranab K; Young, Kathleen H

    2002-12-13

    Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.

  6. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin causes

  7. Deficiency of subunits of Complex I and mitochondrial encephalomyopathy.

    PubMed

    Ichiki, T; Tanaka, M; Nishikimi, M; Suzuki, H; Ozawa, T; Kobayashi, M; Wada, Y

    1988-03-01

    Enzymic activities of the respiratory chain and content of immunochemically detectable subunits in NADH-ubiquinone oxidoreductase (Complex I) were measured in mitochondria from the skeletal muscles of 4 patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). The rotenone-sensitive NADH-cytochrome c reductase activity was extremely decreased, ranging from 0% to 27% of the control value. In all patients, the content of subunits of Complex I was also reduced in parallel with the rotenone-sensitive NADH-cytochrome c reductase activity. It is suggested that the variation in the degree of deficiency of Complex I subunits could explain the clinical heterogeneity of patients with MELAS.

  8. Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States

    PubMed Central

    Monteiro, Karina M.; Cardoso, Mateus B.; Follmer, Cristian; da Silveira, Nádya P.; Vargas, Daiani M.; Kitajima, Elliot W.; Zaha, Arnaldo; Ferreira, Henrique B.

    2012-01-01

    Background Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the

  9. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda).

    PubMed

    Gasser, R B; Zhu, X; McManus, D P

    1999-12-01

    Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit 1 sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (approximately 5.9-30.8%) was usually greater than in cytochrome c oxidase subunit 1 (approximately 2.5-18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit 1 sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.

  10. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    PubMed

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-07-27

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  11. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    PubMed Central

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  12. Structural plasticity of Cid1 provides a basis for its distributive RNA terminal uridylyl transferase activity

    PubMed Central

    Yates, Luke A.; Durrant, Benjamin P.; Fleurdépine, Sophie; Harlos, Karl; Norbury, Chris J.; Gilbert, Robert J.C.

    2015-01-01

    Terminal uridylyl transferases (TUTs) are responsible for the post-transcriptional addition of uridyl residues to RNA 3′ ends, leading in some cases to altered stability. The Schizosaccharomyces pombe TUT Cid1 is a model enzyme that has been characterized structurally at moderate resolution and provides insights into the larger and more complex mammalian TUTs, ZCCHC6 and ZCCHC11. Here, we report a higher resolution (1.74 Å) crystal structure of Cid1 that provides detailed evidence for uracil selection via the dynamic flipping of a single histidine residue. We also describe a novel closed conformation of the enzyme that may represent an intermediate stage in a proposed product ejection mechanism. The structural insights gained, combined with normal mode analysis and biochemical studies, demonstrate that the plasticity of Cid1, particularly about a hinge region (N164–N165), is essential for catalytic activity, and provide an explanation for its distributive uridylyl transferase activity. We propose a model clarifying observed differences between the in vitro apparently processive activity and in vivo distributive monouridylylation activity of Cid1. We suggest that modulating the flexibility of such enzymes—for example by the binding of protein co-factors—may allow them alternatively to add single or multiple uridyl residues to the 3′ termini of RNA molecules. PMID:25712096

  13. Crystal Structure of Escherichia coli originated MCR-1, a phosphoethanolamine transferase for Colistin Resistance

    PubMed Central

    Hu, Menglong; Guo, Jiubiao; Cheng, Qipeng; Yang, Zhiqiang; Chan, Edward Wai Chi; Chen, Sheng; Hao, Quan

    2016-01-01

    MCR-1 is a phosphoethanolamine (pEtN) transferase that modifies the pEtN moiety of lipid A, conferring resistance to colistin, which is an antibiotic belonging to the class of polypeptide antibiotics known as polymyxins and is the last-line antibiotic used to treat multidrug resistant bacterial infections. Here we determined the crystal structure of the catalytic domain of MCR-1 (MCR-1-ED), which is originated in Escherichia coli (E. coli). MCR-1-ED was found to comprise several classical β-α-β-α motifs that constitute a “sandwich” conformation. Two interlaced molecules with different phosphorylation status of the residue T285 could give rise to two functional statuses of MCR-1 depending on the physiological conditions. MCR-1, like other known pEtN transferases, possesses an enzymatic site equipped with zinc binding residues. Interestingly, two zinc ions were found to mediate intermolecular interactions between MCR-1-ED molecules in one asymmetric unit and hence concatenation of MCR-1, allowing the protein to be oligomer. Findings of this work shall provide important insight into development of effective and clinically useful inhibitors of MCR-1 or structurally similar enzymes. PMID:27958270

  14. Structure of Human O-GlcNAc Transferase and its Complex with a Peptide Substrate

    SciTech Connect

    M Lazarus; Y Nam; J Jiang; P Sliz; S Walker

    2011-12-31

    The essential mammalian enzyme O-linked {beta}-N-acetylglucosamine transferase (O-GlcNAc transferase, here OGT) couples metabolic status to the regulation of a wide variety of cellular signalling pathways by acting as a nutrient sensor. OGT catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins, including numerous transcription factors, tumour suppressors, kinases, phosphatases and histone-modifying proteins. Aberrant glycosylation by OGT has been linked to insulin resistance, diabetic complications, cancer and neurodegenerative diseases including Alzheimer's. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 {angstrom} resolution) and as a ternary complex with UDP and a peptide substrate (1.95 {angstrom}). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT's functions; it will also help the design of inhibitors for use as cellular probes and help to assess its potential as a therapeutic target.

  15. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    PubMed

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  16. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target

    PubMed Central

    Dobb, Katharine S.; Kaye, Sarah J.; Beckmann, Nicola; Thain, John L.; Stateva, Lubomira; Birch, Mike; Oliver, Jason D.

    2015-01-01

    Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds. PMID:26606674

  17. Glutathione S-transferase alpha 1 risk polymorphism and increased bilateral thalamus mean diffusivity in schizophrenia.

    PubMed

    Spalletta, Gianfranco; Piras, Fabrizio; Gravina, Paolo; Bello, Mario Lo; Bernardini, Sergio; Caltagirone, Carlo

    2012-01-01

    Oxidative damage in brain cells is one of the factors hypothesized to be involved in the pathogenesis of schizophrenia. Glutathione S-transferase (GST) A1*B polymorphism, a genotype associated with a higher risk of oxidative damage, is associated with increased frequency of schizophrenia diagnosis. Thus, here we studied Glutathione S-transferase (GST) A1 polymorphism and diffusion tensor imaging-mean diffusivity (MD) data on deep grey matter brain structures in 56 patients with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revised (DSM-IV-TR) schizophrenia. Clinical diagnosis and psychopathological symptom severity were assessed by using the Structured Clinical Interview for DSM-IV-TR (SCID-P) and the Scales for Assessment of Positive and Negative Symptoms (SAPS and SANS). Results confirmed that patients with schizophrenia who were carriers of the GSTA1 *B risk allele had an increased MD in bilateral thalami and increased severity of auditory and global hallucinations in comparison with non-B carriers. Thus, oxidative stress associated factors may be implicated in specific mechanisms of schizophrenia such as altered microstructure of the thalami and specific psychopathological features of auditory hallucinations.

  18. Copper-Induced Inactivation of Camel Liver Glutathione S-Transferase.

    PubMed

    Ahmed, Anwar; Malik, Ajamaluddin; Jagirdar, Haseeb; Rabbani, Nayyar; Khan, Mohd Shahnawaz; Al-Senaidy, Abdulrahman M; Ismael, Mohamed A

    2016-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes and play an important role in detoxification of xenobiotics and protection against oxidative stress. Camel liver glutathione transferase (cGST) was recently isolated and characterized in our lab. In this study, we have evaluated the effect of monovalent, divalent, and trivalent cations on its activity and stability. Cu(++) was found to be the potent inhibitor of GST activity which loses complete activity at 0.5-mM concentration. Other metal ions did not inhibit GST even at higher concentration of 2 mM. GST incubated with Cu(++) (0.1 mM) resulted decrease in free sulfhydryl groups by 55%, whereas other metal ions did not show any effect on free thiol content. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed formation of GST aggregates instantly in the presence of Cu(++), which further increased in molecular size with increase in time of incubation. DTT treatment resulted in de-aggregation of GST oligomers to its monomeric form. However, the GST activity was not recovered completely after de-aggregation. Cu(++) was found to inhibit GST activity by accelerating the inter- and intra-disulfide bond formation. Far-UV circular dichroism (CD) results showed that Cu(++)-catalyzed air oxidation of sulfhydryl groups leads to minor conformational changes in the GST.

  19. Nicotinamide Mononucleotide Adenylyl Transferase 2: A Promising Diagnostic and Therapeutic Target for Colorectal Cancer

    PubMed Central

    Cui, Chunhui; Qi, Jia; Deng, Quanwen; Chen, Rihong; Zhai, Duanyang; Yu, Jinlong

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers all over the world. It is essential to search for more effective diagnostic and therapeutic methods for CRC. Abnormal nicotinamide adenine dinucleotide (NAD) metabolism has been considered as a characteristic of cancer cells. In this study, nicotinamide mononucleotide adenylyl transferases (NMNATs) as well as p53-mediated cancer signaling pathways were investigated in patients with colorectal cancer. The CRC tissues and adjacent normal tissues were obtained from 95 untreated colorectal cancer patients and were stained for expression of nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) and p53. The survival rate was analyzed by the Kaplan-Meier method and the log-rank test. The multivariate Cox proportional hazard regression analysis was conducted as well. Our data demonstrated that expression of NMNAT2 and p53 was significantly higher in CRC tissues, while NMNAT2 expression is in correlation with the invasive depth of tumors and TNM stage. Significant positive correlation was found between the expression of NMNAT2 and the expression of p53. However, NMNAT2 expression was not a statistically significant prognostic factor for overall survival. In conclusion, our results indicated that NMNAT2 might participate in tumorigenesis of CRC in a p53-dependent manner and NMNAT2 expression might be a potential therapeutic target for CRC. PMID:27218101

  20. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo.

    PubMed Central

    Zufferey, R; Knauer, R; Burda, P; Stagljar, I; te Heesen, S; Lehle, L; Aebi, M

    1995-01-01

    N-linked glycosylation is a ubiquitous protein modification, and is essential for viability in eukaryotic cells. A lipid-linked core-oligosaccharide is assembled at the membrane of the endoplasmic reticulum and transferred to selected asparagine residues of nascent polypeptide chains by the oligosaccharyl transferase (OTase) complex. Based on the synthetic lethal phenotype of double mutations affecting the assembly of the lipid-linked core-oligosaccharide and the OTase activity, we have performed a novel screen for mutants in Saccharomyces cerevisiae with altered N-linked glycosylation. Besides novel mutants deficient in the assembly of the lipid-linked oligosaccharide (alg mutants), we identified the STT3 locus as being required for OTase activity in vivo. The essential STT3 protein is approximately 60% identical in amino acid sequence to its human homologue. A mutation in the STT3 locus affects substrate specificity of the OTase complex in vivo and in vitro. In stt3-3 cells very little glycosyl transfer occurs from incomplete lipid-linked oligosaccharide, whereas the transfer of full-length Glc3Man9GlcNAc2 is hardly affected as compared with wild-type cells. Depletion of the STT3 protein results in loss of transferase activity in vivo and a deficiency in the assembly of OTase complex. Images PMID:7588624

  1. Vaccination of buffaloes with Fasciola gigantica recombinant glutathione S-transferase and fatty acid binding protein.

    PubMed

    Kumar, Niranjan; Anju, Varghese; Gaurav, Nagar; Chandra, Dinesh; Samanta, S; Gupta, S C; Adeppa, J; Raina, O K

    2012-01-01

    Fasciola gigantica, causative agent of tropical fasciolosis, inflicts substantial economic losses on the livestock industry, affecting severely buffalo productivity in the tropical countries. Very few vaccination trials with different target antigens against F. gigantica infection have been conducted in this host. Present study describes a vaccination trial in buffaloes with F. gigantica recombinant glutathione S-transferase and fatty acid binding protein. The two recombinant proteins were expressed in Escherichia coli and evaluated for their immunoprophylactic potential in buffalo calves, using montanide 70 M-VG, a mineral oil-based adjuvant, for delivering the antigens. Buffalo calves were distributed in three groups, with group I, II and III calves immunized with recombinant glutathione S-transferase, fatty acid binding protein and a cocktail of these two antigens, respectively. Immunization of the calves evoked a mixed IgG1 and IgG2 antibody response. Present vaccination trial in these animals achieved a maximum protection level of 35%, when the two antigens were used in combination. Eosinophils were measured in both immunized and non-immunized challenge control animals, which showed a steady increase in their count in response to immunization with both the antigens and infection with F. gigantica, respectively.

  2. Affinity labeling of a reactive sulfhydryl residue at the peptidyl transferase P site in Drosophila ribosomes.

    PubMed

    Fabijanski, S; Pellegrini, M

    1979-12-11

    An affinity label has been prepared that is specific for the P site of a eucaryotic peptidyl transferase, that of Drosophila melanogaster. It has the sequence C-A-C-C-A-(Ac[3H]Leu) with a mercury atom added at the C-5 position of all three cytosine residues (referred to as the mercurated fragment). This label is an analogue of the 3' terminus of N-acetylleucyl-tRNA. The mercurated fragment binds specifically to the P site of peptidyl transferase. It participates fully in peptide bond formation as judged by its ability to transfer N-acetylleucine to puromycin with at least the same efficiency as a nonmercurated fragment. Once bound to the P site, the mercurated fragment reacts covalently with a ribosomal protein(s). This affinity-labeling process can be effectively competed by nonmercurated fragment, which indicates a site-specific reaction. The covalent attachment of the affinity label to a ribosomal protein(s) occurs through the formation of a mercury-sulfur bond, as judged by its lability in the presence of thiol reducing agents. The major ribosomal protein labeled at the P site of D. melanogaster was found to be a small, basic protein. The electrophoretic behavior of this protein parallels that of major P site proteins found in Escherichia coli ribosomes and in other eucaryotes. These results suggest conservation of some of the overall properties of the P site proteins from these organisms.

  3. Endothelial cell palmitoylproteomics identifies novel lipid modified targets and potential substrates for protein acyl transferases

    PubMed Central

    Marin, Ethan P.; Derakhshan, Behrad; Lam, TuKiet T.; Davalos, Alberto; Sessa, William C.

    2012-01-01

    Rationale Protein S-palmitoylation is the post-translational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well understood, in part due to technological limits on palmitoylprotein detection. Objective To develop a method using acyl-biotinyl exchange (ABE) technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in EC. Methods and Results More than 150 putative palmitoyl proteins were identified in EC using ABE and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase 1 (SOD1), an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine 6 prevents palmitoylation, leads to reduction in SOD1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for SOD1 palmitoylation. Moreover, we used ABE to search for substrates of particular protein acyl transferases in EC. We found that palmitoylation of the cell adhesion protein PECAM1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of PECAM1 at the cell surface. Conclusions Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important post-translational lipid modification in EC biology. PMID:22496122

  4. Characterization of glutathione S-transferase from dwarf pine needles (Pinus mugo Turra).

    PubMed

    Schröder, P; Rennenberg, H

    1992-09-01

    Glutathione S-transferase activity conjugating xenobiotics with glutathione (GSH) was found in extracts from needles of dwarf pine (Pinus mugo Turra). In vivo incubation of needle segments with the herbicide fluorodifen at 25 degrees C resulted in conversion of the xenobiotic to water-soluble products at initial rates of 0.7 nmol h(-1) g(fw) (-1). At 15 degrees C, the initial rate of product formation was decreased to 0.1 nmol h(-1) g(fw) (-1). In vitro conjugation studies with chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) as model substrates gave apparent K(m) values of 0.5 mM GSH and 1.14 mM CDNB in the GSH/CDNB system and 0.3 mM GSH and 0.44 mM DCNB in the GSH/DCNB system. The pH optimum was between 7.7 and 7.9 for both the GSH/CDNB and the GSH/DCNB systems. The temperature optimum for these model substrates was between 30 and 35 degrees C, and only minute amounts of enzyme activity were detected at 15 degrees C. The activation energy in the temperature range of 15 to 30 degrees C was 46 kJ mol(-1). Dwarf pine glutathione S-transferase exhibited an approximate molecular weight of 52 kD.

  5. A strategy to discover inhibitors of Bacillus subtilis surfactin-type phosphopantetheinyl transferase.

    PubMed

    Yasgar, Adam; Foley, Timothy L; Jadhav, Ajit; Inglese, James; Burkart, Michael D; Simeonov, Anton

    2010-02-01

    Surfactin-type phosphopantetheinyl transferases (Sfp-PPTases) are responsible for modifying type I polyketide and non-ribosomal peptide synthases of prokaryotes and have been implicated in the activation of a variety of pathogen-associated virulence factors. As such, inhibitors of this enzyme class represent enticing leads for antibiotic development and can serve as tools in studies of bacterial metabolism. Currently, no small molecule inhibitors of Sfp-PPTase are known, highlighting the need for efficient methods for PPTase inhibitor identification and development. Herein, we present the design and implementation of a robust and miniaturized high-throughput kinetic assay for inhibitors of Sfp-PPTase using the substrate combination of rhodamine-labeled coenzyme A and Black Hole Quencher-2 labeled consensus acceptor peptide YbbR. Upon PPTase-catalyzed transfer of the rhodamine-labeled phosphopantetheinyl arm onto the acceptor peptide, the fluorescent donor and quencher are covalently joined and the fluorescence signal is reduced. This assay was miniaturized to a low 4 microL volume in 1536-well format and was used to screen the library of pharmacologically active compounds (LOPAC(1280)). Top inhibitors identified by the screen were further characterized in secondary assays, including protein phosphopantetheinylation detected by gel electrophoresis. The present assay enables the screening of large compound libraries against Sfp-PPTase in a robust and automated fashion and is applicable to designing assays for related transferase enzymes.

  6. Characterization of a Bvg-regulated fatty acid methyl-transferase in Bordetella pertussis

    PubMed Central

    Rivera-Millot, Alex; Lesne, Elodie; Solans, Luis; Coutte, Loic; Bertrand-Michel, Justine; Froguel, Philippe; Dhennin, Véronique; Hot, David; Locht, Camille; Antoine, Rudy

    2017-01-01

    The whooping cough agent Bordetella pertussis controls the expression of its large virulence regulon in a coordinated manner through the two-component signal transduction system BvgAS. In addition to the genes coding for bona fide virulence factors, the Bvg regulon comprises genes of unknown function. In this work, we characterized a new Bvg-activated gene called BP2936. Homologs of BP2936 are found in other pathogenic Bordetellae and in several other species, including plant pathogens and environmental bacteria. We showed that the gene product of BP2936 is a membrane-associated methyl-transferase of free fatty acids. We thus propose to name it FmtB, for fatty acid methyl-transferase of Bordetella. The role of this protein was tested in cellular and animal models of infection, but the loss of BP2936 did not appear to affect host-pathogen interactions in those assays. The high level of conservation of BP2936 among B. pertussis isolates nevertheless argues that it probably plays a role in the life cycle of this pathogen. PMID:28493897

  7. Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class

    PubMed Central

    Thuillier, Anne; Ngadin, Andrew A.; Thion, Cécile; Billard, Patrick; Jacquot, Jean-Pierre; Gelhaye, Eric; Morel, Mélanie

    2011-01-01

    The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints. PMID:22164343

  8. Miners compensated for pneumoconiosis and glutathione s-transferases M1 and T1 genotypes.

    PubMed

    Zimmermann, Anna; Ebbinghaus, Rainer; Prager, Hans-Martin; Blaszkewicz, Meinolf; Hengstler, Jan G; Golka, Klaus

    2012-01-01

    Chronic inhalation of quartz-containing dust produces reversible inflammatory changes in lungs resulting in irreversible fibrotic changes termed pneumoconiosis. Due to the inflammatory process in the lungs, highly reactive substances are released that may be detoxified by glutathione S-transferases. Therefore, 90 hard coal miners with pneumoconiosis as a recognized occupational disease (in Germany: Berufskrankheit BK 4101) were genotyped for glutathione S-transferases M1 (GSTM1) and T1 (GSTT1) according to standard methods. Furthermore, occupational exposure and smoking habits were assessed by questionnaire. Changes in a chest x-ray were classified according to ILO classification 2000. Of the investigated hard coal miners 43% were GSTM1 negative whereas 57% were GSTM1 positive. The arithmetic mean of the age at time of investigation was 74.2 yr (range: 42-87 yr). Seventy-four percent of the hard coal miners reported being ever smokers, while 26% denied smoking. All hard coal miners provided pneumoconiosis-related changes in the chest x-ray. The observed frequency of GSTM1 negative hard coal miners was not different from frequencies reported for general Caucasian populations and in agreement with findings reported for Chinese coal miners. In contrast, in a former study, 16 of 19 German hard coal miners (84%) with urinary bladder cancer displayed a GSTM1 negative genotype. The outcome of this study provides evidence that severely occupationally exposed Caucasian hard coal miners do not present an elevated level of GSTM1 negative individuals.

  9. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding.

    PubMed

    Anandan, Anandhi; Evans, Genevieve L; Condic-Jurkic, Karmen; O'Mara, Megan L; John, Constance M; Phillips, Nancy J; Jarvis, Gary A; Wills, Siobhan S; Stubbs, Keith A; Moraes, Isabel; Kahler, Charlene M; Vrielink, Alice

    2017-02-28

    Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.

  10. Induction of Glutathione S-Transferase in Biofilms and Germinating Spores of Mucor hiemalis Strain EH5 from Cold Sulfidic Spring Waters▿

    PubMed Central

    Hoque, Enamul; Pflugmacher, Stephan; Fritscher, Johannes; Wolf, Manfred

    2007-01-01

    The occurrence and activation of glutathione S-transferase (GST) and the GST activities in biofilms in cold sulfidic spring waters were compared to the occurrence and activation of GST and the GST activities of the aquatic fungal strains EH5 and EH7 of Mucor hiemalis isolated for the first time from such waters. Using fluorescently labeled polyclonal anti-GST antibodies and GST activity measurements, we demonstrated that a high level of GST occurred in situ in natural biofilms and pure cultures of strain EH5. Measurement of microsomal and cytosolic soluble GST activities using different xenobiotic substrates, including 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)propane, 1-iodo-2,4-dinitrobenzene, and fluorodifen, showed that the overall biotransforming abilities of biofilms were at least sixfold greater than that of strain EH5 alone. Increasing the level of sodium thiosulfate (STS) in the medium stimulated the microsomal and cytosolic GST activities with CDNB of strain EH5 about 44- and 94-fold, respectively, compared to the activities in the control. The induction of microsomal GST activity with fluorodifen by STS was strongly linear, but the initial strong linear increase in cytosolic GST activity with fluorodifen showed saturation-like effects at STS concentrations higher than approximately 1 mM. Using laser scanning confocal and conventional fluorescence microscopy, abundant fluorescently labeled GST proteins were identified in germinating sporangiospores of strain EH5 after activation by STS. High-performance size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of at least two main GSTs (∼27.8- and ∼25.6-kDa subunits) in the cytosol of EH5, whereas the major 27.8-kDa subunit was the only GST in microsomes. We suggest that differential cellular GST expression takes place in strain EH5 depending on spore and hyphal development. Our results may

  11. Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae).

    PubMed

    Wu, Shuang; Dou, Wei; Wu, Jing-Jing; Wang, Jin-Jun

    2009-02-01

    Enzymes that possess glutathione S-transferase (GST) activity were purified to homogeneity by glutathione-agarose affinity chromatography from three field populations of Liposcelis paeta (Pearman). These populations were collected from Nanyang city of Henan Province (NY), Wuzhou (WZ) and Hezhou (HZ) cities of Guangxi Province, China, and had different susceptibilities to dichlorvos [LC(50)s of the NY (281.48 mg/m(2)), the WZ (285.07 mg/m(2)), and the HZ (243.52 mg/m(2)), respectively]. The specific activities of purified enzymes from these three populations increased 32.24-, 99.81-, and 42.52-fold, respectively. Kinetic analyses showed that the catalytic activity of purified GST from NY population towards GSH was much higher than the others, while WZ population reached the highest in V(max) (CDNB). SDS-polyacrylamide electrophoresis revealed that the purified GST had two subunits with a molecular mass of 23.31 and 20.43 kDa for NY, 53.14 and 20.13 kDa for WZ, and 50.79 and 19.42 kDa for HZ, respectively. The in vitro inhibition studies of GSTs indicated that three kinds of insecticides (chlorpyrifos, carbosulfan, and cypermethrin) and five metallic ions (Zn(2+), Ba(2+), Ca(2+), Hg(2+), Mn(2+), and Mg(2+)) all possessed inhibitory effects on purified GST, and ethacrynic acid (EA, a specific inhibitor of GST) expressed inhibitory effects. In the bioassay, three populations of L. paeta had different susceptibilities to different insecticides, even after they were reared on diets consisting of 25% EA. The GST activities of L. paeta from different areas also showed different temperature and pH stabilities. The differences in GST among the three populations may be attributed partially to the differences in control practices for psocids between Henan and Guangxi Provinces. (c) 2009 Wiley Periodicals, Inc.

  12. Stability of the domain interface contributes towards the catalytic function at the H-site of class alpha glutathione transferase A1-1.

    PubMed

    Balchin, David; Fanucchi, Sylvia; Achilonu, Ikechukwu; Adamson, Roslin J; Burke, Jonathan; Fernandes, Manuel; Gildenhuys, Samantha; Dirr, Heini W

    2010-12-01

    Cytosolic glutathione transferases (GSTs) are major detoxification enzymes in aerobes. Each subunit has two distinct domains and an active site consisting of a G-site for binding GSH and an H-site for an electrophilic substrate. While the active site is located at the domain interface, the role of the stability of this interface in the catalytic function of GSTs is poorly understood. Domain 1 of class alpha GSTs has a conserved tryptophan (Trp21) in helix 1 that forms a major interdomain contact with helices 6 and 8 in domain 2. Replacing Trp21 with an alanine is structurally non-disruptive but creates a cavity between helices 1, 6 and 8 thus reducing the packing density and van der Waals contacts at the domain interface. This results in destabilization of the protein and a marked reduction in catalytic activity. While functionality at the G-site is not adversely affected by the W21A mutation, the H-site becomes more accessible to solvent and less favorable for the electrophilic substrate 1-chloro-2,4-dinitrobenzene (CDNB). Not only does the mutation result in a reduction in the energy for stabilizing the transition state formed in the S(N)Ar reaction between the substrates GSH and CDNB, it also compromises the ability of the enzyme to form and stabilize a transition state analogue (Meisenheimer complex) formed between GSH and 1,3,5-trinitrobenzene (TNB). The study demonstrates that the stability of the domain-domain interface plays a role in mediating the catalytic functionality of the active site, particularly the H-site, of class alpha GSTs. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Diuretic drug binding to human glutathione transferase P1-1: potential role of Cys-101 revealed in the double mutant C47S/Y108V.

    PubMed

    Quesada-Soriano, Indalecio; Parker, Lorien J; Primavera, Alessandra; Wielens, Jerome; Holien, Jessica K; Casas-Solvas, Juan M; Vargas-Berenguel, Antonio; Aguilera, Ana M; Nuccetelli, Marzia; Mazzetti, Anna P; Lo Bello, Mario; Parker, Michael W; García-Fuentes, Luis

    2011-01-01

    The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S-transferase (GST P1-1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr-108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys-47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X-ray diffraction. Surprisingly, in the absence of Cys-47, Cys-101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys-47. The Cys-47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G-site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H-site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H-site and in the water network at the dimer interface.

  14. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Van de Peer, Y; Chapelle, S; De Wachter, R

    1994-01-01

    A database on large ribosomal subunit RNA is made available. It contains 258 sequences. It provides sequence, alignment and secondary structure information in computer-readable formats. Files can be obtained using ftp. PMID:7524023

  15. Genetic Analysis of the Cytoplasmic Dynein Subunit Families

    PubMed Central

    Pfister, K. Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M. C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles. PMID:16440056

  16. The eukaryotic RNA exosome: same scaffold but variable catalytic subunits.

    PubMed

    Lykke-Andersen, Søren; Tomecki, Rafal; Jensen, Torben Heick; Dziembowski, Andrzej

    2011-01-01

    The RNA exosome is a versatile ribonucleolytic protein complex that participates in a multitude of cellular RNA processing and degradation events. It consists of an invariable nine-subunit core that associates with a variety of enzymatically active subunits and co-factors. These contribute to or even provide the catalytic activity and substrate specificity of the complex. The S. cerevisiae exosome has been intensively studied since its discovery in 1997 and thus serves as the archetype of eukaryotic exosomes. Notably, its catalytic potential, derived exclusively from associated subunits, differs between the nuclear and cytoplasmic versions of the complex. The same holds true for other eukaryotes, however, recent discoveries from various laboratories including our own have revealed that there are variations on this theme. Here, we review the latest findings concerning catalytic subunits of eukaryotic exosomes, and we discuss the apparent need for differential composition and subcellular distribution of exosome variants.

  17. A process yields large quantities of pure ribosome subunits

    NASA Technical Reports Server (NTRS)

    Friedman, M.; Lu, P.; Rich, A.

    1972-01-01

    Development of process for in-vitro protein synthesis from living cells followed by dissociation of ribosomes into subunits is discussed. Process depends on dialysis or use of chelating agents. Operation of process and advantages over previous methods are outlined.

  18. Null genotypes of glutathione S-transferase μ1 and glutathione S-transferase θ1 are associated with osteosarcoma risk: A meta-analysis

    PubMed Central

    HAN, JICHENG; DENG, WEI; WANG, LAIYING; QI, WANLI

    2015-01-01

    Glutathione S-transferase (GST) genetic polymorphisms has been reported to be associated with osteosarcoma; however, the results of previous studies are conflicting. Thus, in the present study, a meta-analysis was conducted to investigate the effects of GSTM1 and GSTT1 polymorphisms on osteosarcoma risk. A literature search was performed in the PubMed, Cochrane Library and China National Knowledge Infrastructure databases to identify case-control studies published prior to March 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. In addition, Begg’s test was used to measure publication bias. Sensitivity analysis were performed to ensure the accuracy of the results. The meta-analysis results demonstrated no significant association between the null genotype of GSTM1 and osteosarcoma risk (OR=0.83; 95% CI, 0.37–1.85). By contrast, the results revealed a significant association for the comparison of null vs. non-null genotypes of GSTT1 (OR=1.54; 95% CI, 1.09–2.19). In conclusion, the GSTT1 null genotype may be associated with an increased risk of developing osteosarcoma. Further studies with larger sample sizes and well-designed methodologies are required to verify these conclusions. PMID:25789067

  19. Human liver glutathione S-transferase psi. Chemical characterization and secondary-structure comparison with other mammalian glutathione S-transferases.

    PubMed Central

    Singh, S V; Kurosky, A; Awasthi, Y C

    1987-01-01

    The isolation and chemical characterization of the anionic human liver glutathione S-transferase (GST) psi (pI 5.5) are described and compared with other GST isoenzymes reported for rat and human. Amino acid compositional analysis, substrate specificity and isoelectric focusing indicated that GST psi is a unique isoenzyme form of GST. Strikingly, however, amino acid sequence analysis of the N-terminal region indicated that GST psi was identical with GST mu in the first 23 amino acid residues reported. It is likely that these two enzyme forms are at least partially structurally related. In order to investigate further the genetic relationship of GST psi to other reported GST isoenzymes, secondary-structure analysis was performed. Despite substantial differences in the N-terminal-region amino acid sequences of some of the GST isoenzymes, the secondary structure of all the isoenzymes is highly conserved at their N-termini. The general uniformity of the secondary structure of this enzyme class at their N-termini strongly indicated that the observed diversity of these isoenzymes probably occurred as a result of a mechanism of gene duplication followed by divergence rather than a mechanism of convergent evolution. PMID:3606582

  20. Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases

    PubMed Central

    Lim, Cindy E.L.; Matthaei, Klaus I.; Blackburn, Anneke C.; Davis, Richard P.; Dahlstrom, Jane E.; Koina, Mark E.; Anders, M.W.; Board, Philip G.

    2004-01-01

    Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of α-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1−/− mice do not have demonstrable activity with maleylacetone and α-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate. PMID:15277241

  1. Subunit-Specific Trafficking of GABAA Receptors during Status Epilepticus

    PubMed Central

    Goodkin, Howard P.; Joshi, Suchitra; Mtchedlishvili, Zakaria; Brar, Jasmit; Kapur, Jaideep

    2010-01-01

    It is proposed that a reduced surface expression of GABAA receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABARβ2/3 and γ2 subunits was reduced, whereas that of the δ subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the γ2 subunit, but not the δ subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the γ2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency. PMID:18322097

  2. F-subunit reinforces torque generation in V-ATPase.

    PubMed

    Kishikawa, Jun-ichi; Seino, Akihiko; Nakanishi, Atsuko; Tirtom, Naciye Esma; Noji, Hiroyuki; Yokoyama, Ken; Hayashi, Kumiko

    2014-09-01

    Vacuolar-type H(+)-pumping ATPases (V-ATPases) perform remarkably diverse functions in eukaryotic organisms. They are present in the membranes of many organelles and regulate the pH of several intracellular compartments. A family of V-ATPases is also present in the plasma membranes of some bacteria. Such V-ATPases function as ATP-synthases. Each V-ATPase is composed of a water-soluble domain (V1) and a membrane-embedded domain (Vo). The ATP-driven rotary unit, V[Formula: see text], is composed of A, B, D, and F subunits. The rotary shaft (the DF subcomplex) rotates in the central cavity of the A3B3-ring (the catalytic hexamer ring). The D-subunit, which has a coiled-coil domain, penetrates into the ring, while the F-subunit is a globular-shaped domain protruding from the ring. The minimal ATP-driven rotary unit of V[Formula: see text] is comprised of the A3B3D subunits, and we therefore investigated how the absence of the globular-shaped F-subunit affects the rotary torque generation of V[Formula: see text]. Using a single-molecule technique, we observed the motion of the rotary motors. To obtain the torque values, we then analyzed the measured motion trajectories based on the fluctuation theorem, which states that the law of entropy production in non-equilibrium conditions and has been suggested as a novel and effective method for measuring torque. The measured torque of A3B3D was half that of the wild-type V1, and full torque was recovered in the mutant V1, in which the F-subunit was genetically fused with the D-subunit, indicating that the globular-shaped F-subunit reinforces torque generation in V1.

  3. Transcription Activator Interactions with Multiple SWI/SNF Subunits

    PubMed Central

    Neely, Kristen E.; Hassan, Ahmed H.; Brown, Christine E.; Howe, LeAnn; Workman, Jerry L.

    2002-01-01

    We have previously shown that the yeast SWI/SNF complex stimulates in vitro transcription from chromatin templates in an ATP-dependent manner. SWI/SNF function in this regard requires the presence of an activator with which it can interact directly, linking activator recruitment of SWI/SNF to transcriptional stimulation. In this study, we determine the SWI/SNF subunits that mediate its interaction with activators. Using a photo-cross-linking label transfer strategy, we show that the Snf5, Swi1, and Swi2/Snf2 subunits are contacted by the yeast acidic activators, Gcn4 and Hap4, in the context of the intact native SWI/SNF complex. In addition, we show that the same three subunits can interact individually with acidic activation domains, indicating that each subunit contributes to binding activators. Furthermore, mutations that reduce the activation potential of these activators also diminish its interaction with each of these SWI/SNF subunits. Thus, three distinct subunits of the SWI/SNF complex contribute to its interactions with activation domains. PMID:11865042

  4. Subunit structure of the acetylcholine receptor from Electrophorus electricus.

    PubMed

    Conti-Tronconi, B M; Hunkapiller, M W; Lindstrom, J M; Raftery, M A

    1982-11-01

    The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR.

  5. Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.

    PubMed

    Body, A; Brownstein, B H

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.

  6. Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium

    PubMed Central

    Body, Barbara A.; Brownstein, Bernard H.

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833

  7. The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase 1

    PubMed Central

    Okita, Thomas W.; Nakata, Paul A.; Anderson, Joseph M.; Sowokinos, Joseph; Morell, Matthew; Preiss, Jack

    1990-01-01

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure (JR Sowokinos, J Preiss [1982] Plant Physiol 69: 1459-1466) together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes. Images Figure 1 Figure 2 Figure 3 PMID:16667537

  8. Transcriptional regulators of Na,K-ATPase subunits

    PubMed Central

    Li, Zhiqin; Langhans, Sigrid A.

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic α-subunit, the β-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids, and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits has been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease. PMID:26579519

  9. Further characterization of the ovine lutropin alpha and beta subunits prepared by the salt precipitation method.

    PubMed

    Sairam, M R

    1979-08-01

    The subunits of ovine lutropin prepared by acid dissociation and salt precipitation were characterized by end group analysis, tryptic peptide mapping, SDS gel electrophoresis and biological activity. No evidence of internal peptide cleavage was found in the alpha subunit. The subunits possessed low activity. The alpha and beta subunits recombined effectively to generate a complex that had full receptor binding activity and in vitro biological activity. The recombinants of subunits prepared by countercurrent distribution showed only 50% activity in both assays. The salt precipitation method alpha subunit could be completely reduced and reoxidized in the absence of denaturants. The reoxidized alpha subunit combines with the native beta subunit generating full activity. However, this recombined hormone tends to lose activity with time, suggesting that the reoxidation may not fully restore the native structur of the reduced alpha subunit. The native lutropin alpha subunit effectively combined with follitropin beta subunit generating complete follitropin activity.

  10. Calcium channel beta subunits differentially modulate recovery of the channel from inactivation.

    PubMed

    Jeziorski, M C; Greenberg, R M; Anderson, P A

    2000-10-20

    We examined the effects of calcium channel beta subunits upon the recovery from inactivation of alpha(1) subunits expressed in Xenopus oocytes. Recovery of the current carried by the L-type alpha(1) subunit (cyCa(v)1) from the jellyfish Cyanea capillata was accelerated by coexpression of any beta subunit, but the degree of potentiation differed according to which beta isoform was coexpressed. The Cyanea beta subunit was most effective, followed by the mammalian b(3), b(4), and beta(2a) subtypes. Recovery of the human Ca(v)2.3 subunit was also modulated by beta subunits, but was slowed instead. beta(3) was the most potent subunit tested, followed by beta(4), then beta(2a), which had virtually no effect. These results demonstrate that different beta subunit isoforms can affect recovery of the channel to varying degrees, and provide an additional mechanism by which beta subunits can differentially regulate alpha(1) subunits.

  11. Immunohistochemical localisation of the voltage gated potassium ion channel subunit Kv3.3 in the rat medulla oblongata and thoracic spinal cord.

    PubMed

    Brooke, Ruth E; Atkinson, Lucy; Edwards, Ian; Parson, Simon H; Deuchars, Jim

    2006-01-27

    Voltage gated K+ channels (Kv) are a diverse group of channels important in determining neuronal excitability. The Kv superfamily is divided into 12 subfamilies (Kv1-12) and members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique expression pattern. Since the localisation of Kv subunits is important in defining the roles they play in neuronal function, we have used immunohistochemistry to determine the distribution of the Kv3.3 subunit in the medulla oblongata and spinal cord of rats. Kv3.3 subunit immunoreactivity (Kv3.3-IR) was widespread but present only in specific cell populations where it could be detected in somata, dendrites and synaptic terminals. Labelled neurones were observed in the spinal cord in laminae IV and V, in the region of the central canal and in the ventral horn. In the medulla oblongata, labelled cell bodies were numerous in the spinal trigeminal, cuneate and gracilis nuclei whilst rarer in the lateral reticular nucleus, hypoglossal nucleus and raphe nucleus. Regions containing autonomic efferent neurones were predominantly devoid of labelling with only occasional labelled neurones being observed. Dual immunohistochemistry revealed that some Kv3.3-IR neurones in the ventral medullary reticular nucleus, spinal trigeminal nucleus, dorsal horn, ventral horn and central canal region were also immunoreactive for the Kv3.1b subunit. The presence of Kv3.3 subunits in terminals was confirmed by co-localisation of Kv3.3-IR with the synaptic vesicle protein SV2, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. Co-localisation of Kv3.3-IR was not observed with VGluT1, tyrosine hydroxylase, serotonin or choline acetyl transferase. Electron microscopy confirmed the presence of Kv3.3-IR in terminals and somatic membranes in ventral horn neurones, but not motoneurones. This study provides evidence supporting a role for Kv3.3 subunits in regulating neuronal excitability

  12. Biosynthesis of osmoregulated periplasmic glucans in Escherichia coli: the phosphoethanolamine transferase is encoded by opgE.

    PubMed

    Bontemps-Gallo, Sébastien; Cogez, Virginie; Robbe-Masselot, Catherine; Quintard, Kevin; Dondeyne, Jacqueline; Madec, Edwige; Lacroix, Jean-Marie

    2013-01-01

    Osmoregulated periplasmic glucans (OPGs) are oligosaccharides found in the periplasm of many Gram-negative bacteria. Glucose is the sole constitutive sugar and this backbone may be substituted by various kinds of molecules depending on the species. In E. coli, OPG are substituted by phosphoglycerol and phosphoethanolamine derived from membrane phospholipids and by succinyl residues. In this study, we describe the isolation of the opgE gene encoding the phosphoethanolamine transferase by a screen previously used for the isolation of the opgB gene encoding the phosphoglycerol transferase. Both genes show structural and functional similarities without sequence similarity.

  13. Biosynthesis of Osmoregulated Periplasmic Glucans in Escherichia coli: The Phosphoethanolamine Transferase Is Encoded by opgE

    PubMed Central

    Bontemps-Gallo, Sébastien; Robbe-Masselot, Catherine; Quintard, Kevin; Dondeyne, Jacqueline; Madec, Edwige

    2013-01-01

    Osmoregulated periplasmic glucans (OPGs) are oligosaccharides found in the periplasm of many Gram-negative bacteria. Glucose is the sole constitutive sugar and this backbone may be substituted by various kinds of molecules depending on the species. In E. coli, OPG are substituted by phosphoglycerol and phosphoethanolamine derived from membrane phospholipids and by succinyl residues. In this study, we describe the isolation of the opgE gene encoding the phosphoethanolamine transferase by a screen previously used for the isolation of the opgB gene encoding the phosphoglycerol transferase. Both genes show structural and functional similarities without sequence similarity. PMID:24228245

  14. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants.

    PubMed

    Zhang, Xing-Hai; Webb, James; Huang, Yi-Hong; Lin, Li; Tang, Ri-Sheng; Liu, Aimin

    2011-03-01

    Biogenesis of functional ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in plants requires specific assembly in the chloroplast of the imported, cytosol-synthesized small subunits (SS) with the chloroplast-made large subunits (LS). Accumulating evidence indicates that chloroplasts (plastids) generally have a low tolerance for assembling foreign or modified Rubisco. To explore Rubisco engineering, we created two lines of transplastomic tobacco plants whose rbcL gene was replaced by tomato-derived rbcL: plant LLS2 with Rubisco composed of tobacco SS and Q437R LS and plant LLS4 with a hybrid Rubisco of tobacco SS and tomato LS (representing four substitutions of Y226F, A230T, S279T and Q437R from tobacco LS). Plant LLS2 exhibited similar phenotypes as the wild type. Plant LLS4 showed lower chlorophyll and Rubisco levels particularly in young emerging leaves, lower photosynthesis rates and biomass during early stages of development, but was able to reach reproductive maturity and somewhat wild type-like phenotype under ambient CO₂ condition. In vitro assays detected similar carboxylase activity and RuBP affinity in LLS2 and LLS4 plants as in wild type. Our studies demonstrated that tomato LS was sufficiently assembled with tobacco SS into functional Rubisco. The hybrid Rubisco of tomato LS and tobacco SS can drive photosynthesis that supports photoautotrophic growth and reproduction of tobacco plants under ambient CO₂ and light conditions. We discuss the effect of these residue substitutions on Rubisco activity and the possible attribution of chlorophyll deficiency to the in planta photosynthesis performance in the hybrid Rubisco plants.

  15. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    SciTech Connect

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu . E-mail: nakanaka@kenroku.kanazawa-u.ac.jp

    2005-09-10

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.

  16. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells.

    PubMed

    Yang, Min; Chen, Ping; Peng, Hong; Zhang, Hongliang; Chen, Yan; Cai, Shan; Lu, Qianjin; Guan, Chaxiang

    2015-03-01

    Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs.

  17. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease

    PubMed Central

    Rastogi, Radhika; Geng, Xiaokun; Li, Fengwu; Ding, Yuchuan

    2017-01-01

    Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body’s antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX’s deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47-phox, p67-phox, p40-phox and Rac, and membrane subunits, gp91-phox and p22-phox, the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47-phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22-phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47-phox and p22-phox, are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47-phox with p22-phox, key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation. PMID:28119569

  18. Protein Expression of Proteasome Subunits in Elderly Patients with Schizophrenia

    PubMed Central

    Scott, Madeline R; Rubio, Maria D; Haroutunian, Vahram; Meador-Woodruff, James H

    2016-01-01

    The ubiquitin proteasome system (UPS) is a major regulator of protein processing, trafficking, and degradation. While protein ubiquitination is utilized for many cellular processes, one major function of this system is to target proteins to the proteasome for degradation. In schizophrenia, studies have found UPS transcript abnormalities in both blood and brain, and we have previously reported decreased protein expression of ubiquitin-associated proteins in brain. To test whether the proteasome is similarly dysregulated, we measured the protein expression of proteasome catalytic subunits as well as essential subunits from proteasome regulatory complexes in 14 pair-matched schizophrenia and comparison subjects in superior temporal cortex. We found decreased expression of Rpt1, Rpt3, and Rpt6, subunits of the 19S regulatory particle essential for ubiquitin-dependent degradation by the proteasome. Additionally, the α subunit of the 11S αβ regulatory particle, which enhances proteasomal degradation of small peptides and unfolded proteins, was also decreased. Haloperidol-treated rats did not have altered expression of these subunits, suggesting the changes we observed in schizophrenia are likely not due to chronic antipsychotic treatment. Interestingly, expression of the catalytic subunits of both the standard and immunoproteasome were unchanged, suggesting the abnormalities we observed may be specific to the complexed state of the proteasome. Aging has significant effects on the proteasome, and several subunits (20S β2, Rpn10, Rpn13, 11Sβ, and 11Sγ) were significantly correlated with subject age. These data provide further evidence of dysfunction of the ubiquitin-proteasome system in schizophrenia, and suggest that altered proteasome activity may be associated with the pathophysiology of this illness. PMID:26202105

  19. Cytochrome c oxidase: Evolution of control via nuclear subunit addition☆

    PubMed Central

    Pierron, Denis; Wildman, Derek E.; Hüttemann, Maik; Markondapatnaikuni, Gopi Chand; Aras, Siddhesh; Grossman, Lawrence I.

    2014-01-01

    According to theory, present eukaryotic cells originated from a beneficial association between two free-living cells. Due to this endosymbiotic event the pre-eukaryotic cell gained access to oxidative phosphorylation (OXPHOS), which produces more than 15 times as much ATP as glycolysis. Because cellular ATP needs fluctuate and OXPHOS both requires and produces entities that can be toxic for eukaryotic cells such as ROS or NADH, we propose that the success of endosymbiosis has largely depended on the regulation of endosymbiont OXPHOS. Several studies have presented cytochrome c oxidase as a key regulator of OXPHOS; for example, COX is the only complex of mammalian OXPHOS with known tissue-specific isoforms of nuclear encoded subunits. We here discuss current knowledge about the origin of nuclear encoded subunits and the appearance of different isozymes promoted by tissue and cellular environments such as hypoxia. We also review evidence for recent selective pressure acting on COX among vertebrates, particularly in primate lineages, and discuss the unique pattern of co-evolution between the nuclear and mitochondrial genomes. Finally, even though the addition of nuclear encoded subunits was a major event in eukaryotic COX evolution, this does not lead to emergence of a more efficient COX, as might be expected from an anthropocentric point of view, for the “higher” organism possessing large brains and muscles. The main function of these subunits appears to be “only” to control the activity of the mitochondrial subunits. We propose that this control function is an as yet underappreciated key point of evolution. Moreover, the importance of regulating energy supply may have caused the addition of subunits encoded by the nucleus in a process comparable to a “domestication scenario” such that the host tends to control more and more tightly the ancestral activity of COX performed by the mtDNA encoded subunits. This article is part of a Special Issue entitled

  20. Cytochrome c oxidase: evolution of control via nuclear subunit addition.

    PubMed

    Pierron, Denis; Wildman, Derek E; Hüttemann, Maik; Markondapatnaikuni, Gopi Chand; Aras, Siddhesh; Grossman, Lawrence I

    2012-04-01

    According to theory, present eukaryotic cells originated from a beneficial association between two free-living cells. Due to this endosymbiotic event the pre-eukaryotic cell gained access to oxidative phosphorylation (OXPHOS), which produces more than 15 times as much ATP as glycolysis. Because cellular ATP needs fluctuate and OXPHOS both requires and produces entities that can be toxic for eukaryotic cells such as ROS or NADH, we propose that the success of endosymbiosis has largely depended on the regulation of endosymbiont OXPHOS. Several studies have presented cytochrome c oxidase as a key regulator of OXPHOS; for example, COX is the only complex of mammalian OXPHOS with known tissue-specific isoforms of nuclear encoded subunits. We here discuss current knowledge about the origin of nuclear encoded subunits and the appearance of different isozymes promoted by tissue and cellular environments such as hypoxia. We also review evidence for recent selective pressure acting on COX among vertebrates, particularly in primate lineages, and discuss the unique pattern of co-evolution between the nuclear and mitochondrial genomes. Finally, even though the addition of nuclear encoded subunits was a major event in eukaryotic COX evolution, this does not lead to emergence of a more efficient COX, as might be expected from an anthropocentric point of view, for the "higher" organism possessing large brains and muscles. The main function of these subunits appears to be "only" to control the activity of the mitochondrial subunits. We propose that this control function is an as yet under appreciated key point of evolution. Moreover, the importance of regulating energy supply may have caused the addition of subunits encoded by the nucleus in a process comparable to a "domestication scenario" such that the host tends to control more and more tightly the ancestral activity of COX performed by the mtDNA encoded subunits. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Paradoxical inhibition of rat glutathione transferase 4-4 by indomethacin explained by substrate-inhibitor-enzyme complexes in a random-order sequential mechanism.

    PubMed Central

    Danielson, U H; Mannervik, B

    1988-01-01

    Under standard assay conditions, with 1-chloro-2,4-dinitrobenzene (CDNB) as electrophilic substrate, rat glutathione transferase 4-4 is strongly inhibited (I50 = 1 microM) by indomethacin. No other glutathione transferase investigated is significantly inhibited by micromolar concentrations of indomethacin. Paradoxically, the strong inhibition of glutathione transferase 4-4 was dependent on high (millimolar) concentrations of CDNB; at low concentrations of this substrate or with other substrates the effect of indomethacin on the enzyme was similar to the moderate inhibition noted for other glutathione transferases. In general, the inhibition of glutathione transferases can be explained by a random-order sequential mechanism, in which indomethacin acts as a competitive inhibitor with respect to the electrophilic substrate. In the specific case of glutathione transferase 4-4 with CDNB as substrate, indomethacin binds to enzyme-CDNB and enzyme-CDNB-GSH complexes with an even greater affinity than to the corresponding complexes lacking CDNB. Under presumed physiological conditions with low concentrations of electrophilic substrates, indomethacin is not specific for glutathione transferase 4-4 and may inhibit all forms of glutathione transferase. PMID:3390138

  2. Glutathione-S-transferase-pi (GST-pi) expression in renal cell carcinoma.

    PubMed

    Kaprilian, Christina; Horti, Maria; Kandilaris, Kosmas; Skolarikos, Andreas; Trakas, Nikolaos; Kastriotis, Ioannis; Deliveliotis, Charalambos

    2015-01-01

    Multidrug resistance correlates with unfavourable treatment outcomes in numerous cancers including renal cell carcinoma. The expression and clinical relevance of Glutathione-S-transferase-pi (GST-pi), a multidrug resistance factor, in kidney tumors remain controversial. We analyzed the expression of GST-pi in 60 formalin-fixed, paraffin-embedded renal cell carcinoma samples by immunohistochemistry and compared them with matched normal regions of the kidney. A significantly higher expression of GST-pi was observed in 87% of clear cell carcinoma and 50% of papillary subtypes. GST-pi expression did not correlate with tumor grade or patient survival. GST-pi is unlikely to be a prognostic factor for renal cell carcinoma. However, further studies with large number of samples are warranted to establish the role of GST-pi, if any, in intrinsic or acquired resistance of renal cell carcinoma to conventional treatments.

  3. SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling.

    PubMed

    Detienne, Giel; Van de Walle, Pieter; De Haes, Wouter; Schoofs, Liliane; Temmerman, Liesbet

    2016-01-01

    In C. elegans research, transcriptional activation of glutathione S-transferase 4 (gst-4) is often used as a read-out for SKN-1 activity. While many heed an assumed non-exclusivity of the GFP reporter signal driven by the gst-4 promoter to SKN-1, this is also often ignored. We here show that gst-4 can also be transcriptionally activated by EOR-1, a transcription factor mediating effects of the epidermal growth factor (EGF) pathway. Along with enhancing exogenous oxidative stress tolerance, EOR-1 inde-pendently of SKN-1 increases gst-4 transcription in response to augmented EGF signaling. Our findings caution researchers within the C. elegans community to always rely on sufficient experimental controls when assaying SKN-1 transcriptional activity with a gst-4p::gfp reporter, such as SKN-1 loss-of-function mutants and/or additional target genes next to gst-4.

  4. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase.

    PubMed

    Pekkurnaz, Gulcin; Trinidad, Jonathan C; Wang, Xinnan; Kong, Dong; Schwarz, Thomas L

    2014-07-03

    Cells allocate substantial resources toward monitoring levels of nutrients that can be used for ATP generation by mitochondria. Among the many specialized cell types, neurons are particularly dependent on mitochondria due to their complex morphology and regional energy needs. Here, we report a molecular mechanism by which nutrient availability in the form of extracellular glucose and the enzyme O-GlcNAc Transferase (OGT), whose activity depends on glucose availability, regulates mitochondrial motility in neurons. Activation of OGT diminishes mitochondrial motility. We establish the mitochondrial motor-adaptor protein Milton as a required substrate for OGT to arrest mitochondrial motility by mapping and mutating the key O-GlcNAcylated serine residues. We find that the GlcNAcylation state of Milton is altered by extracellular glucose and that OGT alters mitochondrial motility in vivo. Our findings suggest that, by dynamically regulating Milton GlcNAcylation, OGT tailors mitochondrial dynamics in neurons based on nutrient availability.

  5. Recent advances in protein engineering and biotechnological applications of glutathione transferases.

    PubMed

    Perperopoulou, Fereniki; Pouliou, Fotini; Labrou, Nikolaos E

    2017-09-22

    Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.

  6. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    PubMed Central

    Feil, Susanne C.; Tang, Julian; Hansen, Guido; Gorman, Michael A.; Wiktelius, Eric; Stenberg, Gun; Parker, Michael W.

    2009-01-01

    Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds. PMID:19407380

  7. Crystallization and preliminary X-ray analysis of glutathione transferases from cyanobacteria

    SciTech Connect

    Feil, Susanne C.; Tang, Julian; Hansen, Guido; Gorman, Michael A.; Wiktelius, Eric; Stenberg, Gun; Parker, Michael W.

    2009-05-08

    Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.

  8. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate

    PubMed Central

    Lisewski, Andreas Martin; Quiros, Joel P.; Ng, Caroline L.; Adikesavan, Anbu Karani; Miura, Kazutoyo; Putluri, Nagireddy; Eastman, Richard T.; Scanfeld, Daniel; Regenbogen, Sam J.; Altenhofen, Lindsey; Llinás, Manuel; Sreekumar, Arun; Long, Carole; Fidock, David A.; Lichtarge, Olivier

    2014-01-01

    Summary A central problem in biology is to identify gene function. One approach is to infer function in large supergenomic networks of interactions and ancestral relationships among genes; however, their analysis can be computationally prohibitive. We show here that these biological networks are compressible. They can be shrunk dramatically by eliminating redundant evolutionary relationships and this process is efficient because in these networks the number of compressible elements rises linearly rather than exponentially as in other complex networks. Compression enables global network analysis to computationally harness hundreds of interconnected genomes and to produce functional predictions. As a demonstration, we show that the essential, but functionally uncharacterized Plasmodium falciparum antigen EXP1 is a membrane glutathione S-transferase. EXP1 efficiently degrades cytotoxic hematin, is potently inhibited by artesunate, and is associated with artesunate metabolism and susceptibility in drug-pressured malaria parasites. These data implicate EXP1 in the mode of action of a frontline antimalarial drug. PMID:25126794

  9. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Nagaoka, Sumiharu; Banno, Yutaka; Aso, Yoichi

    2009-05-01

    A cDNA encoding an omega-class glutathione S-transferase of the silkmoth, Bombyx mori (bmGSTO), was cloned by reverse transcriptase-polymerase chain reaction. The resulting clone was sequenced and deduced for amino acid sequence, which revealed 40, 40, and 39% identities to omega-class GSTs from human, pig, and mouse, respectively. A recombinant protein (rbmGSTO) was functionally overexpressed in Escherichia coli cells in a soluble form and purified to homogeneity. rbmGSTO was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation. This enzyme was shown to have high affinity for organophosphorus insecticide and was present abundantly in silkmoth strain exhibiting fenitrothion resistance. These results indicate that bmGSTO could be involved in the increase in level of insecticide resistance for lepidopteran insects.

  10. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  11. Glutathione S-transferase mediates an ageing response to mitochondrial dysfunction

    PubMed Central

    Dancy, Beverley M.; Brockway, Nicole; Ramadasan-Nair, Renjini; Yang, Yoing; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    To understand primary mitochondrial disease, we utilized a complex I-deficient Caenorhabditis elegans mutant, gas-1. These animals strongly upregulate the expression of gst-14 (encoding a glutathione S-transferase). Knockdown of gst-14 dramatically extends the lifespan of gas-1 and increases hydroxynonenal (HNE) modified mitochondrial proteins without improving complex I function. We observed no change in reactive oxygen species levels as measured by Mitosox staining, consistent with a potential role of GST-14 in HNE clearance. The upregulation of gst-14 in gas-1 animals is specific to the pharynx. These data suggest that an HNE-mediated response in the pharynx could be beneficial for lifespan extension in the context of complex I dysfunction in C. elegans. Thus, whereas HNE is typically considered damaging, our work is consistent with recent reports of its role in signaling, and that in this case, the signal is pro-longevity in a model of mitochondrial dysfunction. PMID:26704446

  12. Functional Identification of Proteus mirabilis eptC Gene Encoding a Core Lipopolysaccharide Phosphoethanolamine Transferase

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Knirel, Yuriy A.; Regué, Miguel; Tomás, Juan M.

    2014-01-01

    By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains. PMID:24756091

  13. Recombinant human dihydroxyacetonephosphate acyl-transferase characterization as an integral monotopic membrane protein.

    PubMed

    Piano, Valentina; Nenci, Simone; Magnani, Francesca; Aliverti, Alessandro; Mattevi, Andrea

    2016-12-02

    Although the precise functions of ether phospholipids are still poorly understood, significant alterations in their physiological levels are associated either to inherited disorders or to aggressive metastatic cancer. The essential precursor, alkyl-dihydroxyacetone phosphate (DHAP), for all ether phospholipids species is synthetized in two consecutive reactions performed by two enzymes sitting on the inner side of the peroxisomal membrane. Here, we report the characterization of the recombinant human DHAP acyl-transferase, which performs the first step in alkyl-DHAP synthesis. By exploring several expression systems and designing a number of constructs, we were able to purify the enzyme in its active form and we found that it is tightly bound to the membrane through the N-terminal residues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Activity of carboxylesterases, glutathione-S-transferase and monooxygenase on Rhipicephalus microplus exposed to fluazuron.

    PubMed

    Gaudêncio, Fabrício Nascimento; Klafke, Guilherme Marcondes; Tunholi-Alves, Vinícius Menezes; Ferreira, Thaís Paes; Coelho, Cristiane Nunes; da Fonseca, Adivaldo Henrique; da Costa Angelo, Isabele; Pinheiro, Jairo

    2017-10-01

    The objective of this study was to assess the effect of the exposure to fluazuron on the activity of common pesticide detoxification enzyme groups in the cattle tick (Rhipicephalus microplus). Engorged females of a susceptible strain (POA) and a resistant strain (Jaguar) were exposed in vitro to fluazuron and their eggs and larvae were used to compare the activities of the general esterases, mixed-function oxidases (MFO) and glutathione-S-transferase (GST). The results showed significant elevation in MFO contents and esterases activity in the resistant strain when compared with the susceptible strain, in eggs and larvae respectively. In the POA strain, the MFO activity in eggs was down-regulated by fluazuron exposure. Based on these results, it can be concluded that different detoxification enzymes can act in distinct pathways depending on the tick's development stage, and may be related to fluazuron detoxification in resistant strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glutathione transferases are structural and functional outliers in the thioredoxin fold.

    PubMed

    Atkinson, Holly J; Babbitt, Patricia C

    2009-11-24

    Glutathione transferases (GSTs) are ubiquitous scavengers of toxic compounds that fall, structurally and functionally, within the thioredoxin fold suprafamily. The fundamental catalytic capability of GSTs is catalysis of the nucleophilic addition or substitution of glutathione at electrophilic centers in a wide range of small electrophilic compounds. While specific GSTs have been studied in detail, little else is known about the structural and functional relationships between different groupings of GSTs. Through a global analysis of sequence and structural similarity, it was determined that variation in the binding of glutathione between the two major subgroups of cytosolic (soluble) GSTs results in a different mode of glutathione activation. Additionally, the convergent features of glutathione binding between cytosolic GSTs and mitochondrial GST kappa are described. The identification of these structural and functional themes helps to illuminate some of the fundamental contributions of the thioredoxin fold to catalysis in the GSTs and clarify how the thioredoxin fold can be modified to enable new functions.

  16. Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones.

    PubMed

    Dekker, Frank J; Ghizzoni, Massimo; van der Meer, Nanette; Wisastra, Rosalina; Haisma, Hidde J

    2009-01-15

    Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyl transferases (HATs) in the cell and have relevance for oncology. We present a systematic investigation of the inhibition of the HAT p300/CBP Associated Factor (PCAF) by isothiazolones with different substitutions. 5-chloroisothiazolones proved to be the most potent inhibitors of PCAF. The growth inhibition of 4 different cell lines was studied and the growth of two cell lines (A2780 and HEK 293) was inhibited at micromolar concentrations by 5-chloroisothiazolones. Furthermore, the 5-chloroisothiazolone preservative Kathon CG that is used in cosmetics inhibited PCAF and the growth of cell lines A2780 and HEK 293, which indicates that this preservative should be applied with care.

  17. Glutathione-S-transferase-pi (GST-pi) expression in renal cell carcinoma

    PubMed Central

    Horti, Maria; Kandilaris, Kosmas; Skolarikos, Andreas; Trakas, Nikolaos; Kastriotis, Ioannis; Deliveliotis, Charalambos

    2015-01-01

    Multidrug resistance correlates with unfavourable treatment outcomes in numerous cancers including renal cell carcinoma. The expression and clinical relevance of Glutathione-S-transferase-pi (GST-pi), a multidrug resistance factor, in kidney tumors remain controversial. We analyzed the expression of GST-pi in 60 formalin-fixed, paraffin-embedded renal cell carcinoma samples by immunohistochemistry and compared them with matched normal regions of the kidney. A significantly higher expression of GST-pi was observed in 87% of clear cell carcinoma and 50% of papillary subtypes. GST-pi expression did not correlate with tumor grade or patient survival. GST-pi is unlikely to be a prognostic factor for renal cell carcinoma. However, further studies with large number of samples are warranted to establish the role of GST-pi, if any, in intrinsic or acquired resistance of renal cell carcinoma to conventional treatments.

  18. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis.

    PubMed

    Schimpl, Marianne; Zheng, Xiaowei; Borodkin, Vladimir S; Blair, David E; Ferenbach, Andrew T; Schüttelkopf, Alexander W; Navratilova, Iva; Aristotelous, Tonia; Albarbarawi, Osama; Robinson, David A; Macnaughtan, Megan A; van Aalten, Daan M F

    2012-12-01

    Protein O-GlcNAcylation is an essential post-translational modification on hundreds of intracellular proteins in metazoa, catalyzed by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) using unknown mechanisms of transfer and substrate recognition. Through crystallographic snapshots and mechanism-inspired chemical probes, we define how human OGT recognizes the sugar donor and acceptor peptide and uses a new catalytic mechanism of glycosyl transfer, involving the sugar donor α-phosphate as the catalytic base as well as an essential lysine. This mechanism seems to be a unique evolutionary solution to the spatial constraints imposed by a bulky protein acceptor substrate and explains the unexpected specificity of a recently reported metabolic OGT inhibitor.

  19. Phi Class of Glutathione S-transferase Gene Superfamily Widely Exists in Nonplant Taxonomic Groups

    PubMed Central

    Munyampundu, Jean-Pierre; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-01

    Glutathione S-transferases (GSTs) constitute a superfamily of enzymes involved in detoxification of noxious compounds and protection against oxidative damage. GST class Phi (GSTF), one of the important classes of plant GSTs, has long been considered as plant specific but was recently found in basidiomycete fungi. However, the range of nonplant taxonomic groups containing GSTFs remains unknown. In this study, the distribution and phylogenetic relationships of nonplant GSTFs were investigated. We identified GSTFs in ascomycete fungi, myxobacteria, and protists Naegleria gruberi and Aureococcus anophagefferens. GSTF occurrence in these bacteria and protists correlated with their genome sizes and habitats. While this link was missing across ascomycetes, the distribution and abundance of GSTFs among ascomycete genomes could be associated with their lifestyles to some extent. Sequence comparison, gene structure, and phylogenetic analyses indicated divergence among nonplant GSTFs, suggesting polyphyletic origins during evolution. Furthermore, in silico prediction of functional partners suggested functional diversification among nonplant GSTFs. PMID:26884677

  20. Glutathione mediated regulation of oligomeric structure and functional activity of Plasmodium falciparum glutathione S-transferase.

    PubMed

    Tripathi, Timir; Rahlfs, Stefan; Becker, Katja; Bhakuni, Vinod

    2007-10-17

    In contrast to many other organisms, the malarial parasite Plasmodium falciparum possesses only one typical glutathione S-transferase. This enzyme, PfGST, cannot be assigned to any of the known GST classes and represents a most interesting target for antimalarial drug development. The PfGST under native conditions forms non-covalently linked higher aggregates with major population (approximately 98%) being tetramer. However, in the presence of 2 mM GSH, a dimer of PfGST is observed. Recently reported study on binding and catalytic properties of PfGST indicated a GSH dependent low-high affinity transition with simultaneous binding of two GSH molecules to PfGST dimer suggesting that GSH binds to low affinity inactive enzyme dimer converting it to high affinity functionally active dimer. In order to understand the role of GSH in tetramer-dimer transition of PfGST as well as in modulation of functional activity of the enzyme, detailed structural, functional and stability studies on recombinant PfGST in the presence and absence of GSH were carried out. Our data indicate that the dimer - and not the tetramer - is the active form of PfGST, and that substrate saturation is directly paralleled by dissociation of the tetramer. Furthermore, this dissociation is a reversible process indicating that the tetramer-dimer equilibrium of PfGST is defined by the surrounding GSH concentration. Equilibrium denaturation studies show that the PfGST tetramer has significantly higher stability compared to the dimer. The enhanced stability of the tetramer is likely to be due to stronger ionic interactions existing in it. This is the first report for any GST where an alteration in oligomeric structure and not just small conformational change is observed upon GSH binding to the enzyme. Furthermore we also demonstrate a reversible mechanism of regulation of functional activity of Plasmodium falciparum glutathione S-transferase via GSH induced dissociation of functionally inactive tetramer into

  1. Transferase activity function and system development process are critical in cattle embryo development.

    PubMed

    Adams, Heather A; Southey, Bruce R; Everts, Robin E; Marjani, Sadie L; Tian, Cindy X; Lewin, Harris A; Rodriguez-Zas, Sandra L

    2011-03-01

    Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.

  2. The Drosophila protein palmitoylome: Characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases

    PubMed Central

    Bannan, Barbra A.; Van Etten, Jamie; Kohler, John A.; Tsoi, Yui; Hansen, Nicole M.; Sigmon, Stacey; Fowler, Elizabeth; Buff, Haley; Williams, Tiffany S.; Ault, Jeffrey G.; Glaser, Robert L.; Korey, Christopher A.

    2010-01-01

    Palmitoylation is the post-translational addition of a palmitate moiety to a cysteine residue through a covalent thioester bond. The addition and removal of this modification is controlled by both palmitoyl acyl-transferases and thioesterases. Using bioinformatic analysis, we identified 22 DHHC family palmitoyl acyl-transferase homologs in the Drosophila genome. We used in situ hybridization, RT-PCR, and published FlyAtlas microarray data to characterize the expression patterns of all 22 fly homologs. Our results indicate that all are expressed genes, but several, including CG1407, CG4676, CG5620, CG6017/dHIP14, CG6618, CG6627, and CG17257 appear to be enriched in neural tissues suggesting that they are important for neural function. Furthermore, we have found that several may be expressed in a sex-specific manner with adult male-specific expression of CG4483 and CG17195. Using tagged versions of the DHHC genes, we demonstrate that fly DHHC proteins are primarily located in either the Golgi Apparatus or Endoplasmic Reticulum in S2 cells, except for CG1407, which was found on the plasma membrane. We also characterized the subcellular localization and expression of the three known thioesterases: Palmitoyl-protein Thioesterase 1 (Ppt1), Palmitoyl-protein Thioesterase 2 (Ppt2), and Acyl-protein Thioesterase 1 (APT1). Our results indicate that Ppt1 and Ppt2 are the major lysosomal thioesterases while APT1 is the likely cytoplasmic thioesterase. Finally, in vivo rescue experiments show that Ppt2 expression cannot rescue the neural inclusion phenotypes associated with loss of Ppt1, further supporting distinct functions and substrates for these two thioesterases. These results will serve as the basis for a more complete understanding of the protein palmitoylome's normal cellular functions in the fly and will lead to further insights into the molecular etiology of diseases associated with the mis-regulation of palmitoylation. PMID:18719403

  3. Global Deletion of Glutathione S-Transferase A4 Exacerbates Developmental Nonalcoholic Steatohepatitis.

    PubMed

    Ronis, Martin; Mercer, Kelly; Engi, Bridgette; Pulliam, Casey; Zimniak, Piotr; Hennings, Leah; Shearn, Colin; Badger, Thomas; Petersen, Dennis

    2017-02-01

    We established a mouse model of developmental nonalcoholic steatohepatitis (NASH) by feeding a high polyunsaturated fat liquid diet to female glutathione-S-transferase 4-4 (Gsta4(-/-))/peroxisome proliferator activated receptor α (Ppara(-/-)) double knockout 129/SvJ mice for 12 weeks from weaning. We used it to probe the importance of lipid peroxidation in progression of NASH beyond simple steatosis. Feeding Gsta4(-/-)/Ppara(-/-) double-knockout (dKO) mice liquid diets containing corn oil resulted in a percentage fat-dependent increase in steatosis and necroinflammatory injury (P < 0.05). Increasing fat to 70% from 35% resulted in increases in formation of 4-hydroxynonenal protein adducts accompanied by evidence of stellate cell activation, matrix remodeling, and fibrosis (P < 0.05). Comparison of dKO mice with wild-type (Wt) and single knockout mice revealed additive effects of Gsta4(-/-) and Ppara(-/-) silencing on steatosis, 4-hydroxynonenal adduct formation, oxidative stress, serum alanine amino transferase, expression of tumor necrosis factor alpha, Il6, interferon mRNA, and liver pathology (P < 0.05). Induction of Cyp2e1 protein by high-fat diet was suppressed in Gsta4(-/-) and dKO groups (P < 0.05). The dKO mice had similar levels of markers of stellate cell activation and matrix remodeling as Ppara(-/-) single KO mice. These data suggest that lipid peroxidation products play a role in progression of liver injury to steatohepatitis in NASH produced by high-fat feeding during development but appear less important in development of fibrosis. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. A Glutathione Transferase from Agrobacterium tumefaciens Reveals a Novel Class of Bacterial GST Superfamily

    PubMed Central

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C.; Labrou, Nikolaos E.

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity. PMID:22496785

  5. Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase.

    PubMed

    Buchko, G W; Rozek, A; Kanda, P; Kennedy, M A; Cushley, R J

    2000-08-01

    A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I. Relative to CETIP, baboon apoC-I is a weak inhibitor of baboon cholesteryl ester transferase (CET). To study the structural features responsible for CET inhibition, CETIP was synthesized by solid-phase methods. Using sodium dodecyl sulfate (SDS) to model the lipoprotein environment, the solution structure of CETIP was probed by optical and 1H NMR spectroscopy. Circular dichroism data show that the protein lacks a well-defined structure in water but, upon the addition of SDS, becomes helical (56%). A small blue shift of 8 nm was observed in the intrinsic tryptophan fluorescence of CETIP in the presence of saturating amounts of SDS, suggesting that tryptophan-23 is not buried deeply in the lipid environment. The helical nature of CETIP in the presence of SDS was confirmed by upfield 1Halpha secondary shifts and an average solution structure determined by distance geometry/simulated annealing calculations using 476 NOE-based distance restraints. The backbone (N-Calpha-C=O) root-mean-square deviation of an ensemble of 17 out of 25 calculated structures superimposed on the average structure was 1.06+0.30 A using residues V4-P35 and 0.51+/-0.17 A using residues A7-S32. Although the side-chain orientations fit the basic description of a class A amphipathic helix, both intramolecular salt bridge formation and "snorkeling" of basic side chains toward the polar face play minor, if any, roles in stabilizing the lipid-bound amphipathic structure. Conformational features of the calculated structures for CETIP are discussed relative to models of CETIP inhibition of cholesteryl ester transferase.

  6. Mitochondrial carnitine palmitoyl transferase-II inactivity aggravates lipid accumulation in rat hepatocarcinogenesis

    PubMed Central

    Gu, Juan-Juan; Yao, Min; Yang, Jie; Cai, Yin; Zheng, Wen-Jie; Wang, Li; Yao, Deng-Bing; Yao, Deng-Fu

    2017-01-01

    AIM To investigate the dynamic alteration of mitochondrial carnitine palmitoyl transferase II (CPT-II) expression during malignant transformation of rat hepatocytes. METHODS Sprague-Dawley male rats were fed with normal, high fat (HF), and HF containing 2-fluorenylacetamide (2-FAA) diet, respectively. According to the Hematoxylin and Eosin staining of livers, rats were divided into control, fatty liver, degeneration, precancerous, and cancerous groups. Liver lipids were dyed with Oil Red O, CPT-II alterations were analyzed by immunohistochemistry, and compared with CPT-II specific concentration (μg/mg protein). Levels of total cholesterol (Tch), triglyceride (TG), and amino-transferases [alanine aminotransferase (ALT), aspartate aminotransferase (AST)] were determined by the routine methods. RESULTS After intake of HF and/or HF+2-FAA diets, the rat livers showed mass lipid accumulation. The lipid level in the control group was significantly lower than that in other groups. The changes of serum TG and Tch levels were abnormally increasing, 2-3 times more than those in the controls (P < 0.05). During the rat liver morphological changes from normal to cancer development process with hepatocyte injury, serum AST and ALT levels were significantly higher (4-8 times, P < 0.05) than those in the control group. The specific concentration of CPT-II in liver tissues progressively decreased during hepatocyte malignant transformation, with the lowest CPT-II levels in the cancer group than in any of the other groups (P < 0.05). CONCLUSION Low CPT-II expression might lead to abnormal hepatic lipid accumulation, which should promote the malignant transformation of hepatocytes. PMID:28127199

  7. Mechanistic studies of inactivation of glutathione S-transferase Pi isozyme by a haloenol lactone derivative.

    PubMed

    Zheng, Jiang; Liu, Guangxian; Tozkoparan, Birsen; Wen, Dingyi

    2005-03-01

    Cancer chemotherapy often fails due to acquired drug resistance. One of the most critical biochemical changes observed in drug-resistant tumor cells is over-expression of glutathione S-transferase Pi isozyme (GSTP1). Glutathione S-transferase inhibitors have been used as potentiating agents of chemotherapeutic drugs. Earlier we reported haloenol lactone 1 as a site-directed GSTP1 inactivator. We proposed that enzymatic hydrolysis of the haloenol lactone may be the initial step of GSTP1 chemical modification, resulting in the inactivation of the enzyme. Enzyme inactivation is initiated through addition of Cys-47 to the lactone ring, which is opened in the process to form an alpha-bromoketone adduct. The acidity of Cys-47 confers good leaving group properties, and rapid hydrolysis occurs to generate an alpha-bromoketoacid intermediate. The reaction may proceed via alkylation of the transient thioester to form a six-membered ring episulfonium ion intermediate which would be yet more reactive toward hydrolysis, with either process leading to the observed mass increase of 230 Da. To probe the importance of the bromine of the lactone in GST inactivation, we designed and synthesized compound 2. Unlike lactone 1, lactone 2 did not show time-dependent inhibitory effect on GSTP1. Incubation of compounds 1 and 2 with excess of N-acetyl cysteine produced the corresponding di-N-acetyl cysteine conjugate and mono-N-acetyl cysteine conjugate, respectively. To probe the role of Cys-47 in the inactivation of GSTP1 by compound 1, we prepared mutant C47A GSTP1. The mutant GSTP1 still showed good activity toward CDNB, but it lost susceptibility to the inactivation by compound 1. In addition, LC-MS/MS technique allowed us to identify the modified Cys-47 after the enzyme was exposed to compound 1.

  8. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    USDA-ARS?s Scientific Manuscript database

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  9. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    USDA-ARS?s Scientific Manuscript database

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  10. Uncovering the enzymatic pKa of the ribosomal peptidyl transferase reaction utilizing a fluorinated puromycin derivative.

    PubMed

    Okuda, Kensuke; Seila, Amy C; Strobel, Scott A

    2005-05-03

    The ribosome-catalyzed peptidyl transferase reaction displays a complex pH profile resulting from two functional groups whose deprotonation is important for the reaction, one within the A-site substrate and a second unidentified group thought to reside in the rRNA peptidyl transferase center. Here we report the synthesis and activity of the beta,beta-difluorophenylalanyl derivative of puromycin, an A-site substrate. The fluorine atoms reduce the pK(a) of the nucleophilic alpha-amino group (<5.0) such that it is deprotonated at all pHs amenable to ribosomal analysis (pH 5.2-9.5). In the 50S modified fragment assay, this substrate reacts substantially faster than puromycin at neutral or acidic pH. The reaction follows a simplified pH profile that is dependent only upon deprotonation of a titratable group within the ribosomal active site. This feature will simplify characterization of the peptidyl transferase reaction mechanism. On the basis of the reaction efficiency of the doubly fluorinated substrate compared to the unfluorinated derivative, the Bronsted coefficient for the nucleophile is estimated to be substantially smaller than that reported for uncatalyzed aminolysis reactions, which has important mechanistic implications for the peptidyl transferase reaction.

  11. BIOTRANSFORMATION AND GENOTOXICITY OF THE DRINKING WATER DISINFECTION BYPRODUCT BROMODICHLOROMETHANE: DNA BINDING MEDIATED BY GLUTATHIONE TRANSFERASE THETA 1-1

    EPA Science Inventory

    The drinking water disinfection byproduct bromodichloromethane (CHBrCl2) was
    previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione
    transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study
    to inve...

  12. Characterization of spermidine hydroxycinnamoyl transferases from eggplant (Solanum melongena L.) and its wild relative Solanum richardii Dunal

    USDA-ARS?s Scientific Manuscript database

    Eggplant produces a variety of hydroxycinnamic acid amides (HCAAs) that play an important role in plant development and adaptation to environmental changes. However, the HCAA pathway remains largely uncharacterized in Solanaceae. In this study, a spermidine hydroxycinnamoyl transferase (SHT) from eg...

  13. Stereoselectivity of rat liver glutathione transferase isoenzymes for alpha-bromoisovaleric acid and alpha-bromoisovalerylurea enantiomers.

    PubMed Central

    Te Koppele, J M; Coles, B; Ketterer, B; Mulder, G J

    1988-01-01

    The stereoselectivity of purified rat GSH transferases towards alpha-bromoisovaleric acid (BI) and its amide derivative alpha-bromoisovalerylurea (BIU) was investigated. GSH transferase 2-2 was the only enzyme to catalyse the conjugation of BI and was selective for the (S)-enantiomer. The conjugation of (R)- and (S)-BIU was catalysed by the isoenzymes 2-2, 3-3 and 4-4. Transferase 1-1 was less active, and no catalytic activity was observed with transferase 7-7. Isoenzymes 1-1 and 2-2 of the Alpha multigene family preferentially catalysed the conjugation of the (S)-enantiomer of BIU (and BI), whereas isoenzymes 3-3 and 4-4 of the Mu multigene family preferred (R)-BIU. The opposite stereoselectivity of conjugation of BI and BIU previously observed in isolated rat hepatocytes and the summation of activities of enzymes known to be present in hepatocytes on the basis of present data are in accord. PMID:3421896

  14. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  15. The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in humans*

    EPA Science Inventory

    Background: The Glutathione-S-Transferase Mu 1 null genotype has been reported to be a risk factor for acute respiratory disease associated with increases in ambient air ozone. Ozone is known to cause an immediate decrease in lung function and increased airway inflammation. Howev...

  16. Synthesis and evaluation of a novel series of farnesyl protein transferase inhibitors as non-peptidic CAAX tetrapeptide analogues.

    PubMed

    Perez, Michel; Maraval, Catherine; Dumond, Stephan; Lamothe, Marie; Schambel, Philippe; Etiévant, Chantal; Hill, Bridget

    2003-04-17

    A novel series of compounds, derived from 4-amino-phenyl piperazine, has been designed to selectively inhibit farnesyl protein transferase (FPTase) as CAAX tetrapeptide analogues. Certain of these compounds were shown to possess low nanomolar inhibitory activity both against the isolated enzyme and in cultured cells.

  17. COMPARATIVE EXPRESSION OF TWO ALPHA CLASS GLUTATHIONE S-TRANSFERASES IN HUMAN ADULT AND PRENATAL LIVER TISSUES. (R827441)

    EPA Science Inventory

    Abstract

    The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular int...

  18. The structure of the neisserial lipooligosaccharide phosphoethanolamine transferase A (LptA) required for resistance to polymyxin.

    PubMed

    Wanty, Christopher; Anandan, Anandhi; Piek, Susannah; Walshe, James; Ganguly, Jhuma; Carlson, Russell W; Stubbs, Keith A; Kahler, Charlene M; Vrielink, Alice

    2013-09-23

    Gram-negative bacteria possess an outer membrane envelope consisting of an outer leaflet of lipopolysaccharides, also called endotoxins, which protect the pathogen from antimicrobial peptides and have multifaceted roles in virulence. Lipopolysaccharide consists of a glycan moiety attached to lipid A, embedded in the outer membrane. Modification of the lipid A headgroups by phosphoethanolamine (PEA) or 4-amino-arabinose residues increases resistance to the cationic cyclic polypeptide antibiotic, polymyxin. Lipid A PEA transferases are members of the YhjW/YjdB/YijP superfamily and usually consist of a transmembrane domain anchoring the enzyme to the periplasmic face of the cytoplasmic membrane attached to a soluble catalytic domain. The crystal structure of the soluble domain of the protein of the lipid A PEA transferase from Neisseria meningitidis has been determined crystallographically and refined to 1.4Å resolution. The structure reveals a core hydrolase fold similar to that of alkaline phosphatase. Loop regions in the structure differ, presumably to enable interaction with the membrane-localized substrates and to provide substrate specificity. A phosphorylated form of the putative nucleophile, Thr280, is observed. Metal ions present in the active site are coordinated to Thr280 and to residues conserved among the family of transferases. The structure reveals the protein components needed for the transferase chemistry; however, substrate-binding regions are not evident and are likely to reside in the transmembrane domain of the protein. © 2013 Elsevier Ltd. All rights reserved.

  19. Dimethyl adenosine transferase (KsgA) deficiency in Salmonella Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens

    USDA-ARS?s Scientific Manuscript database

    : Dimethyladenosine transferase (KsgA) performs diverse roles in bacteria including ribosomal maturation, DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that ksgA mutation in Salmonella Enteritidis results in impaired invasiveness i...

  20. BIOTRANSFORMATION AND GENOTOXICITY OF THE DRINKING WATER DISINFECTION BYPRODUCT BROMODICHLOROMETHANE: DNA BINDING MEDIATED BY GLUTATHIONE TRANSFERASE THETA 1-1

    EPA Science Inventory

    The drinking water disinfection byproduct bromodichloromethane (CHBrCl2) was
    previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione
    transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study
    to inve...

  1. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining

    PubMed Central

    Kent, Tatiana; Mateos-Gomez, Pedro A; Sfeir, Agnel; Pomerantz, Richard T

    2016-01-01

    DNA polymerase θ (Polθ) promotes insertion mutations during alternative end-joining (alt-EJ) by an unknown mechanism. Here, we discover that mammalian Polθ transfers nucleotides to the 3’ terminus of DNA during alt-EJ in vitro and in vivo by oscillating between three different modes of terminal transferase activity: non-templated extension, templated extension in cis, and templated extension in trans. This switching mechanism requires manganese as a co-factor for Polθ template-independent activity and allows for random combinations of templated and non-templated nucleotide insertions. We further find that Polθ terminal transferase activity is most efficient on DNA containing 3’ overhangs, is facilitated by an insertion loop and conserved residues that hold the 3’ primer terminus, and is surprisingly more proficient than terminal deoxynucleotidyl transferase. In summary, this report identifies an unprecedented switching mechanism used by Polθ to generate genetic diversity during alt-EJ and characterizes Polθ as among the most proficient terminal transferases known. DOI: http://dx.doi.org/10.7554/eLife.13740.001 PMID:27311885

  2. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.

    PubMed

    Pettersson, Par L; Johansson, Ann-Sofie; Mannervik, Bengt

    2002-08-16

    A major goal in protein engineering is the tailor-making of enzymes for specified chemical reactions. Successful attempts have frequently been based on directed molecular evolution involving libraries of random mutants in which variants with desired properties were identified. For the engineering of enzymes with novel functions, it would be of great value if the necessary changes of the active site could be predicted and implemented. Such attempts based on the comparison of similar structures with different substrate selectivities have previously met with limited success. However, the present work shows that the knowledge-based redesign restricted to substrate-binding residues in human glutathione transferase A2-2 can introduce high steroid double-bond isomerase activity into the enzyme originally characterized by glutathione peroxidase activity. Both the catalytic center activity (k(cat)) and catalytic efficiency (k(cat)/K(m)) match the values of the naturally evolved glutathione transferase A3-3, the most active steroid isomerase known in human tissues. The substrate selectivity of the mutated glutathione transferase was changed 7000-fold by five point mutations. This example demonstrates the functional plasticity of the glutathione transferase scaffold as well as the potential of rational active-site directed mutagenesis as a complement to DNA shuffling and other stochastic methods for the redesign of proteins with novel functions.

  3. COMPARATIVE EXPRESSION OF TWO ALPHA CLASS GLUTATHIONE S-TRANSFERASES IN HUMAN ADULT AND PRENATAL LIVER TISSUES. (R827441)

    EPA Science Inventory

    Abstract

    The ability of the fetus to detoxify transplacental drugs and chemicals can be a critical determinant of teratogenesis and developmental toxicity. Developmentally regulated expression of alpha class glutathione S-transferases (GSTs) is of particular int...

  4. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  5. A distinct holoenzyme organization for two-subunit pyruvate carboxylase

    PubMed Central

    Choi, Philip H.; Jo, Jeanyoung; Lin, Yu-Cheng; Lin, Min-Han; Chou, Chi-Yuan; Dietrich, Lars E. P.; Tong, Liang

    2016-01-01

    Pyruvate carboxylase (PC) has important roles in metabolism and is crucial for virulence for some pathogenic bacteria. PC contains biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP) components. It is a single-chain enzyme in eukaryotes and most bacteria, and functions as a 500 kD homo-tetramer. In contrast, PC is a two-subunit enzyme in a collection of Gram-negative bacteria, with the α subunit containing the BC and the β subunit the CT and BCCP domains, and it is believed that the holoenzyme has α4β4 stoichiometry. We report here the crystal structures of a two-subunit PC from Methylobacillus flagellatus. Surprisingly, our structures reveal an α2β4 stoichiometry, and the overall architecture of the holoenzyme is strikingly different from that of the homo-tetrameric PCs. Biochemical and mutagenesis studies confirm the stoichiometry and other structural observations. Our functional studies in Pseudomonas aeruginosa show that its two-subunit PC is important for colony morphogenesis. PMID:27708276

  6. Expression and function of two nicotinic subunits in insect neurons.

    PubMed

    Vermehren, A; Trimmer, B A

    2005-02-15

    Nicotinic acetylcholine receptors (nAChRs) in insects are neuron-specific oligomeric proteins essential for the central transmission of sensory information. Little is known about their subunit composition because it is difficult to express functional insect nAChRs in heterologous systems. As an alternative approach we have examined the native expression of two subunits in neurons of the nicotinic-resistant, tobacco-feeding insect Manduca sexta. Both the alpha-subunit MARA1 and the beta-subunit MARB can be detected by in situ hybridization in the majority of cultured neurons with an overlapping, but not identical, distribution. Changes in intracellular Ca(2+) evoked by nicotinic stimulation are more strongly correlated to the expression of MARA1 than MARB and are independent of cell size. Unlike the previously reported critical role of MARA1 in mediating nicotinic Ca(2+) responses, down-regulation of MARB by RNA interference (RNAi) did not reduce the number of responding neurons or the size of evoked responses, suggesting that additional subunits remain to be identified in Manduca.

  7. Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency.

    PubMed

    Hymes, J; Fleischhauer, K; Wolf, B

    1995-10-01

    Serum biotinidase has biotinyl-transferase activity in addition to biocytin hydrolase activity. A sensitive assay for biotinyl-transferase activity was developed based on the transfer of biotin from biocytin to histones. Biotinidase biotinyl-transferase occurs at physiological and alkaline pHs, whereas hydrolysis of biocytin occurs optimally at pH 4.5 to 6.0. Measurement of hydrolysis requires micromolar concentrations of biocytin, whereas biotinylation of histones can be detected readily at 1.5 nM biocytin. Because polylysine is readily biotinylated by biotinidase in the presence of biocytin, whereas polyarginine is not, the enzyme likely transfers biotin to the epsilon-amino group of lysyl residues. To determine if patients who are deficient in biocytin hydrolase activity are also deficient in biotinyl-transferase activity, serum from 103 children (25 identified by exhibiting clinical symptoms and 78 detected by newborn screening) with profound biotinidase deficiency (less than 10% of mean normal biotinyl-p-aminobenzoate hydrolyzing activity) were assessed for biotinyl-transferase activity and for the presence of cross-reacting material (CRM) to antibodies prepared against purified serum biotinidase. Sera from all symptomatic patients, both CRM-negative and CRM-positive, had no biotinyl-transferase activity. Sera that was CRM-negative from children ascertained by newborn screening also had no biotinyl-transferase activity, whereas sera from 67% of the CRM-positive children identified by newborn screening had varying degrees of biotinyl-transferase activity. These results indicate that there is a large group of enzyme-deficient children detected by newborn screening who are different biochemically from those who are symptomatic. The clinical relevance of having some degree of biotinyl-transferase activity for individuals with biotinidase deficiency remains to be determined. In addition, it is important to determine if biotinyl-transferase activity, especially

  8. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.

    PubMed

    Fung, Angela W; Ebhardt, H Alexander; Abeysundara, Heshani; Moore, Jack; Xu, Zhizhong; Fahlman, Richard P

    2011-06-17

    Eubacterial leucyl/phenylalanyl tRNA protein transferase (L/F transferase) catalyzes the transfer of a leucine or a phenylalanine from an aminoacyl-tRNA to the N-terminus of a protein substrate. This N-terminal addition of an amino acid is analogous to that of peptide synthesis by ribosomes. A previously proposed catalytic mechanism for Escherichia coli L/F transferase identified the conserved aspartate 186 (D186) and glutamine 188 (Q188) as key catalytic residues. We have reassessed the role of D186 and Q188 by investigating the enzymatic reactions and kinetics of enzymes possessing mutations to these active-site residues. Additionally three other amino acids proposed to be involved in aminoacyl-tRNA substrate binding are investigated for comparison. By quantitatively measuring product formation using a quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based assay, our results clearly demonstrate that, despite significant reduction in enzymatic activity as a result of different point mutations introduced into the active site of L/F transferase, the formation of product is still observed upon extended incubations. Our kinetic data and existing X-ray crystal structures result in a proposal that the critical roles of D186 and Q188, like the other amino acids in the active site, are for substrate binding and orientation and do not directly participate in the chemistry of peptide bond formation. Overall, we propose that L/F transferase does not directly participate in the chemistry of peptide bond formation but catalyzes the reaction by binding and orientating the substrates for reaction in an analogous mechanism that has been described for ribosomes.

  9. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.

    PubMed

    Poulsen, S M; Kofoed, C; Vester, B

    2000-12-01

    Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.

  10. Separation and characterization of alpha-chain subunits from tilapia (Tilapia zillii) skin gelatin using ultrafiltration.

    PubMed

    Chen, Shulin; Tang, Lanlan; Su, Wenjin; Weng, Wuyin; Osako, Kazufumi; Tanaka, Munehiko

    2015-12-01

    Alpha-chain subunits were separated from tilapia skin gelatin using ultrafiltration, and the physicochemical properties of obtained subunits were investigated. As a result, α1-subunit and α2-subunit could be successfully separated by 100 kDa MWCO regenerated cellulose membranes and 150 kDa MWCO polyethersulfone membranes, respectively. Glycine was the most dominant amino acid in both α1-subunit and α2-subunit. However, the tyrosine content was higher in α2-subunit than in α1-subunit, resulting in strong absorption near 280 nm observed in the UV absorption spectrum. Based on the DSC analysis, it was found that the glass transition temperatures of gelatin, α1-subunit and α2-subunit were 136.48 °C, 126.77 °C and 119.43 °C, respectively. Moreover, the reduced viscosity and denaturation temperature of α1-subunit were higher than those of α2-subunit, and the reduced viscosity reached the highest when α-subunits were mixed with α1/α2 ratio of approximately 2, suggesting that α1-subunit plays a more important role in the thermostability of gelatin than α2-subunit.

  11. Antigenic breadth: a missing ingredient in HSV-2 subunit vaccines?

    PubMed

    Halford, William P

    2014-06-01

    The successful human papillomavirus and hepatitis B virus subunit vaccines contain single viral proteins that represent 22 and 12%, respectively, of the antigens encoded by these tiny viruses. The herpes simplex virus 2 (HSV-2) genome is >20 times larger. Thus, a single protein subunit represents 1% of HSV-2's total antigenic breadth. Antigenic breadth may explain why HSV-2 glycoprotein subunit vaccines have failed in clinical trials, and why live HSV-2 vaccines that express 99% of HSV-2's proteome may be more effective. I review the mounting evidence that live HSV-2 vaccines offer a greater opportunity to stop the spread of genital herpes, and I consider the unfounded 'safety concerns' that have kept live HSV-2 vaccines out of U.S. clinical trials for 25 years.

  12. Dengue vaccine: an update on recombinant subunit strategies.

    PubMed

    Martin, J; Hermida, L

    2016-03-01

    Dengue is an increasing public health problem worldwide, with the four serotypes of the virus infecting over 390 million people annually. There is no specific treatment or antiviral drug for dengue, and prevention is largely limited to controlling the mosquito vectors or disrupting the human-vector contact. Despite the considerable progress made in recent years, an effective vaccine against the virus is not yet available. The development of a dengue vaccine has been hampered by many unique challenges, including the need to ensure the absence of vaccine-induced enhanced severity of disease. Recombinant protein subunit vaccines offer a safer alternative to other vaccine approaches. Several subunit vaccine candidates are presently under development, based on different structural and non-structural proteins of the virus. Novel adjuvants or immunopotentiating strategies are also being tested to improve their immunogenicity. This review summarizes the current status and development trends of subunit dengue vaccines.

  13. Cholera toxin B: one subunit with many pharmaceutical applications.

    PubMed

    Baldauf, Keegan J; Royal, Joshua M; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2015-03-20

    Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  14. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    PubMed Central

    Baldauf, Keegan J.; Royal, Joshua M.; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2015-01-01

    Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction. PMID:25802972

  15. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene.

    PubMed Central

    Azuma, Y; Yamagishi, M; Ishihama, A

    1993-01-01

    To improve our understanding of the structure and function of eukaryotic RNA polymerase II, we purified the enzyme from the fission yeast Schizosaccharomyces pombe. The highly purified RNA polymerase II contained more than eleven polypeptides. The sizes of the largest the second-, and the third-largest polypeptides as measured by SDS-polyacrylamide gel electrophoresis were about 210, 150, and 40 kilodaltons (kDa), respectively, and are similar to those of RPB1, 2, and 3 subunits of Saccharomyces cerevisiae RNA polymerase II. Using the degenerated primers designed after amino acid micro-sequencing of the 40 kDa third-largest polypeptide (subunit 3), we cloned the subunit 3 gene (rpb3) and determined its DNA sequence. Taken together with the sequence of parts of PCR-amplified cDNA, the predicted coding sequence of rpb3, interrupted by two introns, was found to encode a polypeptide of 297 amino acid residues in length with a molecular weight of 34 kDa. The S. pombe subunit 3 contains four structural domains conserved for the alpha-subunit family of RNA polymerase from both eukaryotes and prokaryotes. A putative leucine zipper motif was found to exist in the C-terminal proximal conserved region (domain D). Possible functions of the conserved domains are discussed. Images PMID:8367291

  16. Rod Phosphodiesterase-6 (PDE6) Catalytic Subunits Restore Cone Function in a Mouse Model Lacking Cone PDE6 Catalytic Subunit*

    PubMed Central

    Kolandaivelu, Saravanan; Chang, Bo; Ramamurthy, Visvanathan

    2011-01-01

    Rod and cone photoreceptor neurons utilize discrete PDE6 enzymes that are crucial for phototransduction. Rod PDE6 is composed of heterodimeric catalytic subunits (αβ), while the catalytic core of cone PDE6 (α′) is a homodimer. It is not known if variations between PDE6 subunits preclude rod PDE6 catalytic subunits from coupling to the cone phototransduction pathway. To study this issue, we generated a cone-dominated mouse model lacking cone PDE6 (Nrl−/− cpfl1). In this animal model, using several independent experimental approaches, we demonstrated the expression of rod PDE6 (αβ) and the absence of cone PDE6 (α′) catalytic subunits. The rod PDE6 enzyme expressed in cone cells is active and contributes to the hydrolysis of cGMP in response to light. In addition, rod PDE6 expressed in cone cells couples to the light signaling pathway to produce S-cone responses. However, S-cone responses and light-dependent cGMP hydrolysis were eliminated when the β-subunit of rod PDE6 was removed (Nrl−/− cpfl1 rd). We conclude that either rod or cone PDE6 can effectively couple to the cone phototransduction pathway to mediate visual signaling. Interestingly, we also found that functional PDE6 is required for trafficking of M-opsin to cone outer segments. PMID:21799013

  17. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits.

    PubMed Central

    Strathmann, M P; Simon, M I

    1991-01-01

    Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) are central to the signaling processes of multicellular organisms. We have explored the diversity of the G protein subunits in mammals and found evidence for a large family of genes that encode the alpha subunits. Amino acid sequence comparisons show that the different alpha subunits fall into at least three classes. These classes have been conserved in animals separated by considerable evolutionary distances; they are present in mammals, Drosophila, and nematodes. We have now obtained cDNA clones encoding two murine alpha subunits, G alpha 12 and G alpha 13, that define a fourth class. The translation products are predicted to have molecular masses of 44 kDa and to be insensitive to ADP-ribosylation by pertussis toxin. They share 67% amino acid sequence identity with each other and less than 45% identity with other alpha subunits. Their transcripts can be detected in every tissue examined, although the relative levels of the G alpha 13 message appear somewhat variable. Images PMID:1905812

  18. Stiffness of γ subunit of F(1)-ATPase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2010-11-01

    F(1)-ATPase is a molecular motor in which the γ subunit rotates inside the α(3)β(3) ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F(1)-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the γ subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F(1) and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the γ subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F(1) from thermophilic Bacillus PS3: the internal part of the γ subunit embedded in the α(3)β(3) ring, and the complex of the external part of the γ subunit and the α(3)β(3) ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the γ subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between F(o) and F(1)-ATPase.

  19. Subunit structure of the acetylcholine receptor from Electrophorus electricus.

    PubMed Central

    Conti-Tronconi, B M; Hunkapiller, M W; Lindstrom, J M; Raftery, M A

    1982-01-01

    The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR. Images PMID:6959131

  20. Subunit composition of Kv1 channels in human CNS.

    PubMed

    Coleman, S K; Newcombe, J; Pryke, J; Dolly, J O

    1999-08-01

    The alpha subunits of Shaker-related K+ channels (Kv1.X) show characteristic distributions in mammalian brain and restricted coassembly. Despite the functional importance of these voltage-sensitive K+ channels and involvement in a number of diseases, little progress has been achieved in deciphering the subunit composition of the (alpha)4(beta)4 oligomers occurring in human CNS. Thus, the association of alpha and beta subunits was investigated in cerebral grey and white matter and spinal cord from autopsy samples. Immunoblotting established the presence of Kv1.1, 1.2, and 1.4 in all the tissues, with varying abundance. Sequential immunoprecipitations identified the subunits coassembled. A putative tetramer of Kv1.3/1.4/1.1/1.2 was found in grey matter. Both cerebral white matter and spinal cord contained the heterooligomers Kv1.1/1.4 and Kv1.1/1.2, similar to grey matter, but both lacked Kv1.3 and the Kv1.4/1.2 combination. An apparent Kv1.4 homooligomer was detected in all the samples, whereas only the brain tissue possessed a putative Kv1.2 homomer. In grey matter, Kvbeta2.1 was coassociated with the Kv1.1/1.2 combination and Kv1.2 homooligomer. In white matter, Kvbeta2.1 was associated with Kv1.2 only, whereas Kvbeta1.1 coprecipitated with all the alpha subunits present. This represents the first description of Kv1 subunit complexes in the human CNS and demonstrates regional variations, indicative of functional specialisation.

  1. Localisation of AMPK γ subunits in cardiac and skeletal muscles.

    PubMed

    Pinter, Katalin; Grignani, Robert T; Watkins, Hugh; Redwood, Charles

    2013-12-01

    The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca(2+) channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca(2+) influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.

  2. Micelle-Based Adjuvants for Subunit Vaccine Delivery

    PubMed Central

    Trimaille, Thomas; Verrier, Bernard

    2015-01-01

    In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery. PMID:26426060

  3. Dissociation of Mammalian Polyribosomes into Subunits by Puromycin

    PubMed Central

    Blobel, Günter; Sabatini, David

    1971-01-01

    Hepatic ribosomes have been dissociated into biologically active subunits as follows. Polysomes were treated at 0°C with puromycin at high ionic strength. This released most of the nascent polypeptide chains without dissociating the polysomes, which retained the mRNA and the tRNA moiety of peptidyl tRNA, but were unable to continue the translation of mRNA. The polysomes were then heated to 37°C, when they dissociated completely into subunits. Similar treatment without puromycin resulted in only partial dissociation. PMID:5277091

  4. Advancements in the development of subunit influenza vaccines

    PubMed Central

    Zhang, Naru; Zheng, Bo-Jian; Lu, Lu; Zhou, Yusen; Jiang, Shibo; Du, Lanying

    2014-01-01

    The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines. PMID:25529753

  5. Carrier Subunit of Plasma Membrane Transporter Is Required for Oxidative Folding of Its Helper Subunit*

    PubMed Central

    Rius, Mònica; Chillarón, Josep

    2012-01-01

    We study the amino acid transport system b0,+ as a model for folding, assembly, and early traffic of membrane protein complexes. System b0,+ is made of two disulfide-linked membrane subunits: the carrier, b0,+ amino acid transporter (b0,+AT), a polytopic protein, and the helper, related to b0,+ amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b0,+AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b0,+AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally. PMID:22493502

  6. Carrier subunit of plasma membrane transporter is required for oxidative folding of its helper subunit.

    PubMed

    Rius, Mònica; Chillarón, Josep

    2012-05-25

    We study the amino acid transport system b(0,+) as a model for folding, assembly, and early traffic of membrane protein complexes. System b(0,+) is made of two disulfide-linked membrane subunits: the carrier, b(0,+) amino acid transporter (b(0,+)AT), a polytopic protein, and the helper, related to b(0,+) amino acid transporter (rBAT), a type II glycoprotein. rBAT ectodomain mutants display folding/trafficking defects that lead to type I cystinuria. Here we show that, in the presence of b(0,+)AT, three disulfides were formed in the rBAT ectodomain. Disulfides Cys-242-Cys-273 and Cys-571-Cys-666 were essential for biogenesis. Cys-673-Cys-685 was dispensable, but the single mutants C673S, and C685S showed compromised stability and trafficking. Cys-242-Cys-273 likely was the first disulfide to form, and unpaired Cys-242 or Cys-273 disrupted oxidative folding. Strikingly, unassembled rBAT was found as an ensemble of different redox species, mainly monomeric. The ensemble did not change upon inhibition of rBAT degradation. Overall, these results indicated a b(0,+)AT-dependent oxidative folding of the rBAT ectodomain, with the initial and probably cotranslational formation of Cys-242-Cys-273, followed by the oxidation of Cys-571-Cys-666 and Cys-673-Cys-685, that was completed posttranslationally.

  7. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal.

    PubMed

    Iersel, M L; Ploemen, J P; Struik, I; van Amersfoort, C; Keyzer, A E; Schefferlie, J G; van Bladeren, P J

    1996-10-21

    The glutathione S-transferase (GST) activity towards 1-chloro-2,4-dinitrobenzene in intact human IGR-39 melanoma cells was determined by the quantification by HPLC-analysis of the excreted glutathione (GSH) conjugate (S-(2,4-dinitrophenyl)glutathione; DNPSG). The major GST subunit expressed in these melanoma cells is the pi-class GST subunit P1. Using this system, the effect of exposure for 1 h to a series of alpha, beta-unsaturated carbonyl compounds at non-toxic concentrations was studied. Curcumin was the most potent inhibitor (96% inhibition at 25 microM), while 67 and 61% inhibition at 25 microM was observed for ethacrynic acid and trans-2-hexenal, respectively. Moderate inhibition was observed for cinnamaldehyde and crotonaldehyde, while no inhibition was found for citral. The reactive acrolein did not inhibit the DNPSG-excretion at 2.5 microM, the highest non-toxic concentration. Up to about 50% GSH-depletion was found after treatment with crotonaldehyde, curcumin and ethacrynic acid, however the consequences for GST conjugation are presumably small. Reversible inhibition of GST was the major mechanism of inhibition of DNPSG-excretion in melanoma cells, except in the cases of curcumin and ethacrynic acid, which compounds also inactivated GSTP1-1 by covalent modification. This was clear from the fact that depending on the dose between 30 and 80% inhibition was still observed after lysis of the cells, under which conditions reversible inhibition was is absent. Intracellular levels of DNPSG remained relatively high in the case of ethacrynic acid. It is possible that ethacrynic acid also inhibits the transport of DNPSG by inhibition of the multidrug resistance-associated protein gene encoding glutathione conjugate export pump (MRP/GS-X pump) in some way.

  8. Atrazine Resistance in a Velvetleaf (Abutilon theophrasti) Biotype Due to Enhanced Glutathione S-Transferase Activity 1

    PubMed Central

    Anderson, Michael P.; Gronwald, John W.

    1991-01-01

    We previously reported that a velvetleaf (Abutilon theophrasti Medic) biotype found in Maryland was resistant to atrazine because of an enhanced capacity to detoxify the herbicide via glutathione conjugation (JW Gronwald, Andersen RN, Yee C [1989] Pestic Biochem Physiol 34: 149-163). The biochemical basis for the enhanced atrazine conjugation capacity in this biotype was examined. Glutathione levels and glutathione S-transferase activity were determined in extracts from the atrazine-resistant biotype and an atrazine-susceptible or “wild-type” velvetleaf biotype. In both biotypes, the highest concentration of glutathione (approximately 500 nanomoles per gram fresh weight) was found in leaf tissue. However, no significant differences were found in glutathione levels in roots, stems, or leaves of either biotype. In both biotypes, the highest concentration of glutathione S-transferase activity measured with 1-chloro-2,4-dinitrobenzene or atrazine as substrate was in leaf tissue. Glutathione S-transferase measured with 1-chloro-2,4-dinitrobenzene as substrate was 40 and 25% greater in leaf and stem tissue, respectively, of the susceptible biotype compared to the resistant biotype. In contrast, glutathione S-transferase activity measured with atrazine as substrate was 4.4- and 3.6-fold greater in leaf and stem tissue, respectively, of the resistant biotype. Kinetic analyses of glutathione S-transferase activity in leaf extracts from the resistant and susceptible biotypes were performed with the substrates glutathione, 1-chloro-2,4-dinitrobenzene, and atrazine. There was little or no change in apparent Km values for glutathione, atrazine, or 1-chloro-2,4-dinitrobenzene. However, the Vmax for glutathione and atrazine were approximately 3-fold higher in the resistant biotype than in the susceptible biotype. In contrast, the Vmax for 1-chloro-2,4-dinitrobenzene was 30% lower in the resistant biotype. Leaf glutathione S-transferase isozymes that exhibit activity with

  9. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking.

    PubMed

    Tursun, Ablat; Zhu, Shaotong; Vik, Steven B

    2016-12-01

    Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  11. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    PubMed

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood

  12. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    SciTech Connect

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-02-15

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.

  13. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    PubMed

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and

  14. Glutathione mediated regulation of oligomeric structure and functional activity of Plasmodium falciparum glutathione S-transferase

    PubMed Central

    Tripathi, Timir; Rahlfs, Stefan; Becker, Katja; Bhakuni, Vinod

    2007-01-01

    Background In contrast to many other organisms, the malarial parasite Plasmodium falciparum possesses only one typical glutathione S-transferase. This enzyme, PfGST, cannot be assigned to any of the known GST classes and represents a most interesting target for antimalarial drug development. The PfGST under native conditions forms non-covalently linked higher aggregates with major population (~98%) being tetramer. However, in the presence of 2 mM GSH, a dimer of PfGST is observed. Recently reported study on binding and catalytic properties of PfGST indicated a GSH dependent low-high affinity transition with simultaneous binding of two GSH molecules to PfGST dimer suggesting that GSH binds to low affinity inactive enzyme dimer converting it to high affinity functionally active dimer. In order to understand the role of GSH in tetramer-dimer transition of PfGST as well as in modulation of functional activity of the enzyme, detailed structural, functional and stability studies on recombinant PfGST in the presence and absence of GSH were carried out. Results Our data indicate that the dimer – and not the tetramer – is the active form of PfGST, and that substrate saturation is directly paralleled by dissociation of the tetramer. Furthermore, this dissociation is a reversible process indicating that the tetramer-dimer equilibrium of PfGST is defined by the surrounding GSH concentration. Equilibrium denaturation studies show that the PfGST tetramer has significantly higher stability compared to the dimer. The enhanced stability of the tetramer is likely to be due to stronger ionic interactions existing in it. Conclusion This is the first report for any GST where an alteration in oligomeric structure and not just small conformational change is observed upon GSH binding to the enzyme. Furthermore we also demonstrate a reversible mechanism of regulation of functional activity of Plasmodium falciparum glutathione S-transferase via GSH induced dissociation of functionally

  15. Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates.

    PubMed

    Scott, Deborah J; da Costa, Bernardo M T; Espy, Stephanie C; Keasling, Jay D; Cornish, Katrina

    2003-09-01

    Metal cofactors are necessary for the activity of alkylation by prenyl transfer in enzyme-catalyzed reactions. Rubber transferase (RuT, a cis-prenyl transferase) associated with purified rubber particles from Hevea brasiliensis, Parthenium argentatum and Ficus elastica can use magnesium and manganese interchangably to achieve maximum velocity. We define the concentration of activator required for maximum velocity as [A](max). The [A](max)(Mg2+) in F. elastica (100 mM) is 10 times the [A](max)(Mg2+) for either H. brasiliensis (10 mM) or P. argentatum (8 mM). The [A](max)(Mn2+) in F. elastica (11 mM), H. brasiliensis (3.8 mM) and P. argentatum (6.8 mM) and the [A](max)(Mg2+) in H. brasiliensis (10 mM) and P. argentatum (8 mM) are similar. The differences in [A](max)(Mg2+) correlate with the actual endogenous Mg(2+) concentrations in the latex of living plants. Extremely low Mn(2+) levels in vivo indicate that Mg(2+) is the RuT cofactor in living H. brasiliensis and F. elastica trees. Kinetic analyses demonstrate that FPP-Mg(2+) and FPP-Mn(2+) are active substrates for rubber molecule initiation, although free FPP and metal cations, Mg(2+) and Mn(2+), can interact independently at the active site with the following relative dissociation constants K(d)(FPP)

  16. O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance.

    PubMed

    Su, Cathy; Schwarz, Thomas L

    2017-02-22

    O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood-brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation

  17. Structural snapshots along the reaction pathway of Yersinia pestis RipA, a putative butyryl-CoA transferase

    SciTech Connect

    Torres, Rodrigo; Lan, Benson; Latif, Yama; Chim, Nicholas; Goulding, Celia W.

    2014-04-01

    The crystal structures of Y. pestis RipA mutants were determined to provide insights into the CoA transferase reaction pathway. Yersinia pestis, the causative agent of bubonic plague, is able to survive in both extracellular and intracellular environments within the human host, although its intracellular survival within macrophages is poorly understood. A novel Y. pestis three-gene rip (required for intracellular proliferation) operon, and in particular ripA, has been shown to be essential for survival and replication in interferon γ-induced macrophages. RipA was previously characterized as a putative butyryl-CoA transferase proposed to yield butyrate, a known anti-inflammatory shown to lower macrophage-produced NO levels. RipA belongs to the family I CoA transferases, which share structural homology, a conserved catalytic glutamate which forms a covalent CoA-thioester intermediate and a flexible loop adjacent to the active site known as the G(V/I)G loop. Here, functional and structural analyses of several RipA mutants are presented in an effort to dissect the CoA transferase mechanism of RipA. In particular, E61V, M31G and F60M RipA mutants show increased butyryl-CoA transferase activities when compared with wild-type RipA. Furthermore, the X-ray crystal structures of E61V, M31G and F60M RipA mutants, when compared with the wild-type RipA structure, reveal important conformational changes orchestrated by a conserved acyl-group binding-pocket phenylalanine, Phe85, and the G(V/I)G loop. Binary structures of M31G RipA and F60M RipA with two distinct CoA substrate conformations are also presented. Taken together, these data provide CoA transferase reaction snapshots of an open apo RipA, a closed glutamyl-anhydride intermediate and an open CoA-thioester intermediate. Furthermore, biochemical analyses support essential roles for both the catalytic glutamate and the flexible G(V/I)G loop along the reaction pathway, although further research is required to fully

  18. Cycloheximide resistance can be mediated through either ribosomal subunit.

    PubMed Central

    Sutton, C A; Ares, M; Hallberg, R L

    1978-01-01

    Two cycloheximide-resistant mutants of Tetrahymena thermophila were analyzed to determine the site of their cycloheximide resistance. The mutations in both strains had been previously shown to be genetically dominant and located at separate loci (denoted Chx-A and Chx-B). Strains carrying these mutations were readily distinguished by the extent to which they were resistant to the drug. The homozygous double mutant was more resistant than either single mutant. Cell-free extracts of wild type and of the three mutant strains, assayed for protein synthetic activity by both runoff of natural mRNA and poly(U)-dependent phenylalanine polymerization, demonstrated that in vitro the mutants were all more resistant than the wild type. Further fractionation of the cell-free systems into ribosomes and supernates localized cycloheximide resistance to the ribosome for both Chx-A and Chx-B homozygotes. Ribosome dissociation and pairwise subunit mixing in the in vitro system indicated that ribosome resistance was conferred by the 60S subunit from one strain whereas resistance in the other strain was mediated through the 40S subunit. This was further confirmed by reconstruction of all four cycloheximide-resistance "phenotypes" by mixing ribosomal subunits from appropriate strains. This finding suggests that the mechanisms by which these mutations confer resistance to cycloheximide are different. PMID:277918

  19. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-06

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.

  20. Calcium channel gamma subunits: a functionally diverse protein family.

    PubMed

    Chen, Ren-Shiang; Deng, Tzyy-Chyn; Garcia, Thomas; Sellers, Zachary M; Best, Philip M

    2007-01-01

    The calcium channel gamma subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first gamma subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing gamma1 and gamma6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (gamma2, gamma3, gamma4, gamma8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (gamma5, gamma7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.

  1. Emergence of ion channel modal gating from independent subunit kinetics

    PubMed Central

    Bicknell, Brendan A.

    2016-01-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca2+ concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  2. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    PubMed Central

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  3. CMF70 is a subunit of the dynein regulatory complex

    PubMed Central

    Kabututu, Zakayi P.; Thayer, Michelle; Melehani, Jason H.; Hill, Kent L.

    2010-01-01

    Flagellar motility drives propulsion of several important pathogens and is essential for human development and physiology. Motility of the eukaryotic flagellum requires coordinate regulation of thousands of dynein motors arrayed along the axoneme, but the proteins underlying dynein regulation are largely unknown. The dynein regulatory complex, DRC, is recognized as a focal point of axonemal dynein regulation, but only a single DRC subunit, trypanin/PF2, is currently known. The component of motile flagella 70 protein, CMF70, is broadly and uniquely conserved among organisms with motile flagella, suggesting a role in axonemal motility. Here we demonstrate that CMF70 is part of the DRC from Trypanosoma brucei. CMF70 is located along the flagellum, co-sediments with trypanin in sucrose gradients and co-immunoprecipitates with trypanin. RNAi knockdown of CMF70 causes motility defects in a wild-type background and suppresses flagellar paralysis in cells with central pair defects, thus meeting the functional definition of a DRC subunit. Trypanin and CMF70 are mutually conserved in at least five of six extant eukaryotic clades, indicating that the DRC was probably present in the last common eukaryotic ancestor. We have identified only the second known subunit of this ubiquitous dynein regulatory system, highlighting the utility of combined genomic and functional analyses for identifying novel subunits of axonemal sub-complexes. PMID:20876659

  4. Effects of cations and cosolvents on eukaryotic ribosomal subunit conformation

    SciTech Connect

    Moore, M.N.; Spremulli, L.L.

    1985-01-01

    The effects of various cations and cosolvents on the conformation of wheat germ ribosomes and ribosomal subunits have been investigated by using the techniques of circular dichroism and differential hydrogen exchange. A class of hydrogens on both the 40S and 60S subunits exchange out more rapidly as the Mg/sup 2 +/ concentration is raised, indicating that Mg/sup 2 +/ causes a change in subunit conformation. Ca/sup 2 +/ and the polyamines produce a similar increase in the rate of hydrogen exchange. These results suggest that increases in cation concentrations permit a tightening of ribosome structure and a greater degree of internalization of the rRNA. The cosolvent glycerol causes an alteration in the CD spectrum of 80S ribosomes in both the nucleic acid and protein portions of the spectrum. Glycerol also causes a decrease in the rate of exchange of a number of hydrogens on both the 40S and 60S subunits. These results are interpreted to mean that glycerol favors a more native, less denatured structure in the ribosome.

  5. Spectroscopic properties of Carcinus aestuarii hemocyanin and its structural subunits

    NASA Astrophysics Data System (ADS)

    Dolashka-Angelova, Pavlina; Hristova, Rumiyana; Stoeva, Stanka; Voelter, Wolfgang

    1999-12-01

    Hemocyanin (Hc) of Carcinus aestuarii contains three major and one minor electrophoretically separable polypeptide chains which were purified by fast protein liquid chromatography (FPLC) ion exchange chromatography. N-terminal amino acid sequences of four structural subunits (SSs) from C. aestuarii were compared with known N-terminal sequences from other arthropodan hemocyanins. The conformational changes, induced by various treatments, were monitored by far UV, CD and fluorescence spectroscopy. The critical temperatures for the structural subunits, Tc, determined by fluorescence spectroscopy, are in the region of 52-59°C and coincide with the melting temperatures, Tm (49-55°C), determined by CD spectroscopy. The free energy of stabilization in water, Δ GDH 2O , toward guanidinium hydrochloride is about 1.3 times higher for the dodecameric Hc as compared to the isolated subunits and about one time higher for Ca1, comparing with other SSs. The studies reveal that the conformational stability of the native dodecamer towards various denaturants (temperature and guanidinium hydrochloride) indicate that the quaternary structure is stabilized by oligomerization between structural subunits, and the possibility of a structural role of the sugar mojeties cannot be excluded.

  6. GABAB(1) receptor subunit isoforms differentially regulate stress resilience

    PubMed Central

    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic targets for the treatment of stress-related disorders such as depression. These receptors are predominantly expressed as heterodimers of a GABAB(2) subunit with either a GABAB(1a) or a GABAB(1b) subunit. Here we show that mice lacking the GABAB(1b) receptor isoform are more resilient to both early-life stress and chronic psychosocial stress in adulthood, whereas mice lacking GABAB(1a) receptors are more susceptible to stress-induced anhedonia and social avoidance compared with wild-type mice. In addition, increased hippocampal expression of the GABAB(1b) receptor subunit is associated with a depression-like phenotype in the helpless H/Rouen genetic mouse model of depression. Stress resilience in GABAB(1b)−/− mice is coupled with increased proliferation and survival of newly born cells in the adult ventral hippocampus and increased stress-induced c-Fos activation in the hippocampus following early-life stress. Taken together, the data suggest that GABAB(1) receptor subunit isoforms differentially regulate the deleterious effects of stress and, thus, may be important therapeutic targets for the treatment of depression. PMID:25288769

  7. The multifaceted subunit interfaces of ionotropic glutamate receptors.

    PubMed

    Green, Tim; Nayeem, Naushaba

    2015-01-01

    The past fifteen years has seen a revolution in our understanding of ionotropic glutamate receptor (iGluR) structure, starting with the first view of the ligand binding domain (LBD) published in 1998, and in many ways culminating in the publication of the full-length structure of GluA2 in 2009. These reports have revealed not only the central role played by subunit interfaces in iGluR function, but also myriad binding sites within interfaces for endogenous and exogenous factors. Changes in the conformation of inter-subunit interfaces are central to transmission of ligand gating into pore opening (itself a rearrangement of interfaces), and subsequent closure through desensitization. With the exception of the agonist binding site, which is located entirely within individual subunits, almost all modulatory factors affecting iGluRs appear to bind to sites in subunit interfaces. This review seeks to summarize what we currently understand about the diverse roles interfaces play in iGluR function, and to highlight questions for future research.

  8. The multifaceted subunit interfaces of ionotropic glutamate receptors.

    PubMed

    Green, Tim; Nayeem, Naushaba

    2014-06-06

    The past fifteen years has seen a revolution in our understanding of ionotropic glutamate receptor (iGluR) structure, starting with the first view of the ligand binding domain (LBD) published in 1998, and in many ways culminating in the publication of the full-length structure of GluA2 in 2009. These reports have revealed not only the central role played by subunit interfaces in iGluR function, but also myriad binding sites within interfaces for endogenous and exogenous factors. Changes in the conformation of inter-subunit interfaces are central to transmission of ligand gating into pore opening (itself a rearrangement of interfaces), and subsequent closure through desensitization. With the exception of the agonist binding site, which is located entirely within individual subunits, almost all modulatory factors affecting iGluRs appear to bind to sites in subunit interfaces. This review seeks to summarize what we currently understand about the diverse roles interfaces play in iGluR function, and to highlight questions for future research.

  9. ATP-induced helicase slippage reveals highly coordinated subunits

    NASA Astrophysics Data System (ADS)

    Wang, Michelle D.

    2012-02-01

    Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. T7 helicase, a model hexameric motor, has been observed to use dTTP, but not ATP, to unwind dsDNA as it translocates along ssDNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was greatly reduced with the supplement of a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. Our results support a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.

  10. A World History Sub-Unit: Teaching about Turkey.

    ERIC Educational Resources Information Center

    Lynn, Karen

    This document is a sub-unit teaching plan for world history teachers who want to use multicultural concepts in the world history curriculum. The objective explored includes a student response to the Turkish question of "Who are we"? Teacher preparation involves defining social and cultural roots and outlining periods of Turkish history.…

  11. ATP Synthesis-coupled and -uncoupled Acetate Production from Acetyl-CoA by Mitochondrial Acetate:Succinate CoA-transferase and Acetyl-CoA Thioesterase in Trypanosoma*

    PubMed Central

    Millerioux, Yoann; Morand, Pauline; Biran, Marc; Mazet, Muriel; Moreau, Patrick; Wargnies, Marion; Ebikeme, Charles; Deramchia, Kamel; Gales, Lara; Portais, Jean-Charles; Boshart, Michael; Franconi, Jean-Michel; Bringaud, Frédéric

    2012-01-01

    Insect stage trypanosomes use an “acetate shuttle” to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F0/F1-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F0/F1-ATP synthase F1β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F0/F1-ATP synthase, for ATP production in the mitochondrion. PMID:22474284

  12. Succinate dehydrogenase subunit D and succinate dehydrogenase subunit B mutation analysis in canine phaeochromocytoma and paraganglioma.

    PubMed

    Holt, D E; Henthorn, P; Howell, V M; Robinson, B G; Benn, D E

    2014-07-01

    Phaeochromocytomas (PCs) are tumours of the adrenal medulla chromaffin cells. Paragangliomas (PGLs) arise in sympathetic ganglia (previously called extra-adrenal PCs) or in non-chromaffin parasympathetic ganglia cells that are usually non-secretory. Parenchymal cells from these tumours have a common embryological origin from neural crest ectoderm. Several case series of canine PCs and PGLs have been published and a link between the increased incidence of chemoreceptor neoplasia in brachycephalic dog breeds and chronic hypoxia has been postulated. A similar link to hypoxia in man led to the identification of germline heterozygous mutations in the gene encoding succinate dehydrogenase subunit D (SDHD) and subsequently SDHA, SDHB and SDHC in similar tumours. We investigated canine PCs (n = 6) and PGLs (n = 2) for SDHD and SDHB mutations and in one PGL found a somatic SDHD mutation c.365A>G (p.Lys122Arg) in exon 4, which was not present in normal tissue from this brachycephalic dog. Two PCs were heterozygous for both c.365A>G (p.Lys122Arg) mutation and an exon 3 silent variant c.291G>A. We also identified the heterozygous SDHB exon 2 mutation c.113G>A (p.Arg38Gln) in a PC. These results illustrate that genetic mutations may underlie tumourigenesis in canine PCs and PGLs. The spontaneous nature of these canine diseases and possible association of PGLs with hypoxia in brachycephalic breeds may make them an attractive model for studying the corresponding human tumours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. ATP-Induced Helicase Slippage Reveals Highly Coordinated Subunits

    PubMed Central

    Sun, Bo; Johnson, Daniel S.; Patel, Gayatri; Smith, Benjamin Y.; Pandey, Manjula; Patel, Smita S.; Wang, Michelle D.

    2011-01-01

    Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair, and recombination1,2. Bacteriophage T7 gene product 4 is a model hexameric helicase which has been observed to utilize dTTP, but not ATP, to unwind dsDNA as it translocates from 5′ to 3′ along ssDNA2–6. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate1,7. Here we address this question using a single molecule approach to monitor helicase unwinding. We discovered that T7 helicase does in fact unwind dsDNA in the presence of ATP and the unwinding rate is even faster than that with dTTP. However unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behavior was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found T7 helicase binds and hydrolyzes ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective Vmax, KM, and concentrations. In contrast, processivity does not follow a simple competitive behavior and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding

  14. Analysis of the Subunit Stoichiometries in Viral Entry

    PubMed Central

    Magnus, Carsten; Regoes, Roland R.

    2012-01-01

    Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems

  15. Glycoprotein hormone assembly in the endoplasmic reticulum: I. The glycosylated end of human alpha-subunit loop 2 is threaded through a beta-subunit hole.

    PubMed

    Xing, Yongna; Myers, Rebecca V; Cao, Donghui; Lin, Win; Jiang, Mei; Bernard, Michael P; Moyle, William R

    2004-08-20

    Glycoprotein hormone heterodimers are stabilized by their unusual structures in which a glycosylated loop of the alpha-subunit straddles a hole in the beta-subunit. This hole is formed when a cysteine at the end of a beta-subunit strand known as the "seatbelt" becomes "latched" by a disulfide to a cysteine in the beta-subunit core. The heterodimer is stabilized in part by the difficulty of threading the glycosylated end of the alpha-subunit loop 2 through this hole, a phenomenon required for subunit dissociation. Subunit combination in vitro, which occurs by the reverse process, can be accelerated by removing the alpha-subunit oligosaccharide. In cells, heterodimer assembly was thought to occur primarily by a mechanism in which the seatbelt is wrapped around the alpha-subunit after the subunits dock. Here we show that this "wraparound" process can be used to assemble disulfide cross-linked human choriogonadotropin analogs that contain an additional alpha-subunit cysteine, but only if the normal beta-subunit latch site has been removed. Normally, the seatbelt is latched before the subunits dock and assembly is completed when the glycosylated end of alpha-subunit loop 2 is threaded beneath the seatbelt. The unexpected finding that most assembly of human choriogonadotropin, human follitropin, and human thyrotropin heterodimers occurs in this fashion, indicates that threading may be an important phenomenon during protein folding and macromolecule assembly in the endoplasmic reticulum. We suggest that the unusual structures of the glycoprotein hormones makes them useful for identifying factors that influence this process in living cells.

  16. Heterotrimeric G protein subunit Gγ13 is critical to olfaction

    PubMed Central

    Li, Feng; Ponissery-Saidu, Samsudeen; Yee, Karen; Wang, Hong; Chen, Meng-Ling; Iguchi, Naoko; Zhang, Genhua; Jiang, Ping; Reisert, Johannes; Huang, Liquan

    2013-01-01

    The activation of G-protein-coupled olfactory receptors on the olfactory sensory neurons (OSNs) triggers a signaling cascade, which is mediated by a heterotrimeric G protein consisting of α, β and γ subunits. Although its α subunit, Gαolf, has been identified and well characterized, the identities of its β and γ subunits and their function in olfactory signal transduction, however, have not been well established yet. We and others have found the expression of Gγ13 in the olfactory epithelium, particularly in the cilia of the OSNs. In this study, we generated a conditional gene knockout mouse line to specifically nullify Gγ13 expression in the olfactory marker protein-expressing OSNs. Immunohistochemical and Western blot results showed that Gγ13 subunit was indeed eliminated in the mutant mice’s olfactory epithelium. Intriguingly, Gαolf, β1 subunits, Ric-8B and CEP290 proteins were also absent in the epithelium whereas the presence of the effector enzyme adenylyl cyclase III remained largely unaltered. Electro-olfactogram studies showed that the mutant animals had greatly reduced responses to a battery of odorants including three presumable pheromones. Behavioral tests indicated that the mutant mice had a remarkably reduced ability to perform an odor-guided search task although their motivation and agility seemed normal. Our results indicate that Gαolf exclusively forms a functional heterotrimeric G protein with Gβ1 and Gγ13 in OSNs, mediating olfactory signal transduction. The identification of the olfactory G protein’s βγ moiety has provided a novel approach to understanding the feedback regulation of olfactory signal transduction pathways as well as the control of subcellular structures of OSNs. PMID:23637188

  17. Binding interactions with the complementary subunit of nicotinic receptors.

    PubMed

    Blum, Angela P; Van Arnam, Ethan B; German, Laurel A; Lester, Henry A; Dougherty, Dennis A

    2013-03-08

    The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.

  18. The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    PubMed Central

    2010-01-01

    The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity. PMID:21080238

  19. Expression of glutamate receptor subunits in human cancers.

    PubMed

    Stepulak, Andrzej; Luksch, Hella; Gebhardt, Christine; Uckermann, Ortrud; Marzahn, Jenny; Sifringer, Marco; Rzeski, Wojciech; Staufner, Christian; Brocke, Katja S; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2009-10-01

    Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.

  20. Targeting signals and subunit interactions in coated vesicle adaptor complexes

    PubMed Central

    1995-01-01

    There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma- adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane. PMID:7593184

  1. The centromere-kinetochore complex: a repeat subunit model

    PubMed Central

    1991-01-01

    The three-dimensional structure of the kinetochore and the DNA/protein composition of the centromere-kinetochore region was investigated using two novel techniques, caffeine-induced detachment of unreplicated kinetochores and stretching of kinetochores by hypotonic and/or shear forces generated in a cytocentrifuge. Kinetochore detachment was confirmed by EM and immunostaining with CREST autoantibodies. Electron microscopic analyses of serial sections demonstrated that detached kinetochores represented fragments derived from whole kinetochores. This was especially evident for the seven large kinetochores in the male Indian muntjac that gave rise to 80-100 fragments upon detachment. The kinetochore fragments, all of which interacted with spindle microtubules and progressed through the entire repertoire of mitotic movements, provide evidence for a subunit organization within the kinetochore. Further support for a repeat subunit model was obtained by stretching or uncoiling the metaphase centromere-kinetochore complex by hypotonic treatments. When immunostained with CREST autoantibodies and subsequently processed for in situ hybridization using synthetic centromere probes, stretched kinetochores displayed a linear array of fluorescent subunits arranged in a repetitive pattern along a centromeric DNA fiber. In addition to CREST antigens, each repetitive subunit was found to bind tubulin and contain cytoplasmic dynein, a microtubule motor localized in the zone of the corona. Collectively, the data suggest that the kinetochore, a plate-like structure seen by EM on many eukaryotic chromosomes is formed by the folding of a linear DNA fiber consisting of tandemly repeated subunits interspersed by DNA linkers. This model, unlike any previously proposed, can account for the structural and evolutional diversity of the kinetochore and its relationship to the centromere of eukaryotic chromosomes of many species. PMID:1828250

  2. The catalytically active domain in the A subunit of calcineurin.

    PubMed

    Xiang, Benqiong; Liu, Ping; Jiang, Guohua; Zou, Ke; Yi, Fang; Yang, Shujie; Wei, Qun

    2003-01-01

    Calcineurin (CaN) is a heterodimer composed of a catalytic subunit A (CaNA) and a regulatory subunit B (CaNB). We report here an active truncated mutation of the rat CaNAdelta that contains only the catalytic domain (residues 1-347, also known as a/CaNA). The p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were higher than that of CaNA. Both p-nitrophenyl phosphatase activity and protein phosphatase activity of a/CaNA were unaffected by CaM and the B-subunit; the B-subunit and CaM have relatively little effect on p-nitrophenyl phosphatase activity and a crucial effect on protein phosphatase activity of CaNA. Mn2+ and Ni2+ ions effeciently activated CaNA. The Km of a/CaNA was about 16 mM, and the k(cat) of a/CaNA was 10.03 s(-1) using pNPP as substrate. With RII peptide as a substrate, the Km of a/CaNA was about 21 microM and the k(cat) of a/CaNA was 0.51 s(-1). The optimum reaction temperature was about 45 degrees C, and the optimum reaction pH was about 7.2. Our results indicate that a/CaNA is the catalytic core of CaNA, and CaN and the B-subunit binding domain itself might play roles in the negative regulation of the phosphatase activity of CaN. The results provide the basis for future studies on the catalytic domain of CaN.

  3. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori.

    PubMed

    Yu, Quanyou; Lu, Cheng; Li, Bin; Fang, Shoumin; Zuo, Weidong; Dai, Fangyin; Zhang, Ze; Xiang, Zhonghuai

    2008-12-01

    Glutathione S-transferases (GSTs) are a multifunctional supergene family and some play an important role in insecticide resistance. We have identified 23 putative cytosolic GSTs by searching the new assembly of the Bombyx mori genome sequence. Phylogenetic analyses on the amino acid sequences reveal that 21 of the B. mori GSTs fall into six classes represented in other insects, the other two being unclassified. The majority of the silkworm GSTs belong to the Delta, Epsilon, and Omega classes. Most members of each class are tandemly arranged in the genome, except for the Epsilon GSTs. Expressed sequence tags (ESTs) corresponding to 19 of the 23 GSTs were found in available databases. Furthermore RT-PCR experiments detected expression of all the GSTs in multiple tissues on day 3 of fifth instar larvae. Surprisingly, we found little or no expression of most Delta and Epsilon GSTs in the fat body, which is thought to be the main detoxification organ. This may explain the sensitivity of the silkworm to certain insecticides. Our data provide some insights into the evolution of the B. mori GST family and the functions of individual GST enzymes.

  4. Staphylococcus aureus Formyl-Methionyl Transferase Mutants Demonstrate Reduced Virulence Factor Production and Pathogenicity

    PubMed Central

    Lewandowski, Thomas; Huang, Jianzhong; Fan, Frank; Rogers, Shannon; Gentry, Daniel; Holland, Reannon; DeMarsh, Peter; Zalacain, Magdalena

    2013-01-01

    Inhibitors of peptide deformylase (PDF) represent a new class of antibacterial agents with a novel mechanism of action. Mutations that inactivate formyl methionyl transferase (FMT), the enzyme that formylates initiator methionyl-tRNA, lead to an alternative initiation of protein synthesis that does not require deformylation and are the predominant cause of resistance to PDF inhibitors in Staphylococcus aureus. Here, we report that loss-of-function mutations in FMT impart pleiotropic effects that include a reduced growth rate, a nonhemolytic phenotype, and a drastic reduction in production of multiple extracellular proteins, including key virulence factors, such as α-hemolysin and Panton-Valentine leukocidin (PVL), that have been associated with S. aureus pathogenicity. Consequently, S. aureus FMT mutants are greatly attenuated in neutropenic and nonneutropenic murine pyelonephritis infection models and show very high survival rates compared with wild-type S. aureus. These newly discovered effects on extracellular virulence factor production demonstrate that FMT-null mutants have a more severe fitness cost than previously anticipated, leading to a substantial loss of pathogenicity and a restricted ability to produce an invasive infection. PMID:23571548

  5. Association between herbivore stress and glutathione S-transferase expression in Pinus brutia Ten.

    PubMed

    Semiz, A; Çelik-Turgut, G; Semiz, G; Özgün, Ö; Şen, A

    2016-03-31

    Plants have developed mechanisms to defend themselves against many factors including biotic stress such as herbivores and pathogens. Glutathione S-transferase (GST) is a glutathione-dependent detoxifying enzyme and plays critical roles in stress tolerance and detoxification metabolism in plants. Pinus brutia Ten. is a prominent native forest tree species in Turkey, due to both its economic and ecological assets. One of the problems faced by P. brutia afforestation sites is the attacks by pine processionary moth (Thaumetopoea wilkinsoni Tams.). In this study, we investigated the changes in activity and mRNA expression of GST in pine samples taken from both resistant and susceptible clones against T. wilkinsoni over a nine month period in a clonal seed orchard. It was found that the average cytosolic GST activities of trees in March and July were significantly higher than the values obtained in November. November was considered to be the control since trees were not under stress yet. In addition, RT-PCR results clearly showed that levels of GST transcripts in March and July samples were significantly higher as compared to the level seen in November. These findings strongly suggest that GST activity from P. brutia would be a valuable marker for exposure to herbivory stress.

  6. Urinary π-glutathione S-transferase Predicts Advanced Acute Kidney Injury Following Cardiovascular Surgery.

    PubMed

    Shu, Kai-Hsiang; Wang, Chih-Hsien; Wu, Che-Hsiung; Huang, Tao-Min; Wu, Pei-Chen; Lai, Chien-Heng; Tseng, Li-Jung; Tsai, Pi-Ru; Connolly, Rory; Wu, Vin-Cent

    2016-08-16

    Urinary biomarkers augment the diagnosis of acute kidney injury (AKI), with AKI after cardiovascular surgeries being a prototype of prognosis scenario. Glutathione S-transferases (GST) were evaluated as biomarkers of AKI. Urine samples were collected in 141 cardiovascular surgical patients and analyzed for urinary alpha-(α-) and pi-(π-) GSTs. The outcomes of advanced AKI (KDIGO stage 2, 3) and all-cause in-patient mortality, as composite outcome, were recorded. Areas under the receiver operator characteristic (ROC) curves and multivariate generalized additive model (GAM) were applied to predict outcomes. Thirty-eight (26.9%) patients had AKI, while 12 (8.5%) were with advanced AKI. Urinary π-GST differentiated patients with/without advanced AKI or composite outcome after surgery (p < 0.05 by generalized estimating equation). Urinary π-GST predicted advanced AKI at 3 hrs post-surgery (p = 0.033) and composite outcome (p = 0.009), while the corresponding ROC curve had AUC of 0.784 and 0.783. Using GAM, the cutoff value of 14.7 μg/L for π-GST showed the best performance to predict composite outcome. The addition of π-GST to the SOFA score improved risk stratification (total net reclassification index = 0.47). Thus, urinary π-GST levels predict advanced AKI or hospital mortality after cardiovascular surgery and improve in SOFA outcome assessment specific to AKI.

  7. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  8. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity

    PubMed Central

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M.; Bortolato, Marco

    2015-01-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy indivi