Science.gov

Sample records for nucleus caudalis neurons

  1. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats

    PubMed Central

    Sekiguchi, Kenta; Takehana, Shiori; Shibuya, Eri; Matsuzawa, Nichiwa; Hidaka, Shiori; Kanai, Yurie; Inoue, Maki; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    Background Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. Results Inflammation was induced by injection of complete Freund’s adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. Conclusion These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron

  2. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia. PMID:26608254

  3. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia.

  4. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    PubMed

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents. PMID:27288246

  5. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    PubMed

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents.

  6. Attenuation by butalbital of capsaicin-induced c-fos-like immunoreactivity in trigeminal nucleus caudalis.

    PubMed

    Cutrer, F M; Mitsikostas, D D; Ayata, G; Sanchez del Rio, M

    1999-01-01

    We examined the effects of butalbital (30, 100, and 1000 micrograms/kg) on the number of cells expressing c-fos-like immunoreactivity (c-fos-LI), a marker of neuronal activation, within lamina I, IIo of the trigeminal nucleus caudalis and the nucleus of the solitary tract 2 hours after the intracisternal injection of capsaicin (0.1 mL; 15.25 mg/mL) or vehicle in urethane-anesthetized guinea pigs (N = 45). Robust c-fos-LI was observed within nuclei of cells in the trigeminal nucleus caudalis after capsaicin (329 +/- 35). Butalbital dose-dependently reduced the number of labeled cells to a maximum of 66% (1000 micrograms/kg intraperitoneally [i.p.], P < .01) in lamina I, IIo but not within area postrema, medial reticular nucleus, or the nucleus of the solitary tract. Pretreatment with bicuculline (30 micrograms/kg i.p.) blocked the effect of butalbital, thereby suggesting the importance of the GABAA receptor to activation involved in the transmission of nociceptive information. Our studies suggest the possibility that GABAA receptors might provide an important therapeutic target in migraine and related headache disorders.

  7. Inflammation enhanced brain-derived neurotrophic factor-induced suppression of the voltage-gated potassium currents in small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone.

    PubMed

    Takeda, M; Takahashi, M; Matsumoto, S

    2014-03-01

    We recently indicated that brain-derived neurotrophic factor (BDNF) enhances the excitability of small-diameter trigeminal ganglion (TRG) neurons projecting onto the trigeminal nucleus interpolaris/caudalis (Vi/Vc) transition zone via a paracrine mechanism following masetter muscle (MM) inflammation. The present study investigated whether modulation of voltage-gated potassium (K) channels by BDNF contributes to this hyperexcitability effect. To induce inflammation we injected complete Freund's adjuvant (CFA) into the MM. The escape threshold from mechanical stimulation applied to skin above the inflamed MM was significantly lower than in naïve rats. TRG neurons innervating the site of inflammation were subsequently identified by fluorogold (FG) labeling, and microbeads (MB) were used to label neurons projecting specifically to the Vi/Vc region. BDNF significantly decreased the total, transient (IA), and sustained (IK) currents in FG-/MB-labeled small-diameter TRG neurons under voltage-clamp conditions in naïve and inflamed rats. The magnitude of inhibition of IA and IK currents by BDNF in FG-/MB-labeled TRG neurons was significantly greater in inflamed rats than in naïve rats, and BDNF inhibited IA to a significantly greater extent than IK. Furthermore, co-administration of K252a, a tyrosine kinase inhibitor, abolished the suppression of IA and IK currents by BDNF. These results suggested that the inhibitory effects of BDNF on IA and IK currents in small-diameter TRG neurons projecting onto the Vi/Vc potentiate neuronal excitability, and in turn, contribute to MM inflammatory hyperalgesia. These findings support the development of voltage-gated K(+) channel openers and tyrosine kinase inhibitors as potential therapeutic agents for the treatment of trigeminal inflammatory hyperalgesia.

  8. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine.

    PubMed

    Mitsikostas, D D; Sanchez del Rio, M

    2001-03-01

    In intracranial structures unmyelinated C- and Adelta-fibers of the trigeminal nerve transmit pain stimuli from meninges to the trigeminal nucleus caudalis (Sp5C). Peripheral nerve endings surround meningeal vessels (the so-called trigeminovascular system) and contain vasoactive neuropeptides (calcitonin gene-related peptide, substance P and neurokinin A). Activation of the trigeminovascular system promotes a meningeal sterile inflammatory response through the release of neuropeptides by peripheral endings. Orthodromic conduction along trigeminovascular fibers transmits information centrally with induction of immediate early c-fos gene within post-synaptic Sp5C neurons, as a marker of neuronal activity within central nociceptive pathways. In laboratory animals the system is activated by either electrical stimulation of the TG, chemical stimulation of the meninges, electrical or mechanical stimulation of the superior sagittal sinus or by induction of cortical spreading depression. All these techniques induce c-fos within Sp5C and are used as a rodent/feline model of vascular headache in humans. Up-to-date there is evidence that at least ten receptors (5-HT(1B), 5-HT(1D), 5-HT(lF), 5-HT(2B), NK-1, GABA(A), NMDA, AMPA, class III metabotropic glutamate receptors, and opioids mu receptors) modulate c-fos expression within Sp5C. These receptors represent potential targets for anti-migraine drugs as shown by triptans (5-HT(1B/1D/1F)) and ergot alkaloids (5-HT(1A1B/1D/1F)). This review discusses the importance of c-fos expression within Sp5C as a marker of cephalic nociception, the different cephalic pain models that induce c-fos within Sp5C, the receptors involved and their potential role as targets for anti-migraine drugs.

  9. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue

    PubMed Central

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J

    2016-01-01

    Background Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. Results The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of

  10. Projections of nucleus caudalis and spinal cord to brainstem and diencephalon in the hedgehog (Erinaceus europaeus and Paraechinus aethiopicus): a degeneration study.

    PubMed

    Ring, G; Ganchrow, D

    1983-05-10

    In the light of hypotheses related to the evolution of pain-carrying systems in mammals, terminal projection fields in brainstem and diencephalon of efferents of nucleus caudalis (NC) of the spinal trigeminal complex and spinal cord were determined in hedgehog by using Nauta-Gygax and Fink-Heimer silver techniques for degeneration. Unilateral NC lesions resulted in medullary degeneration in the ventral portion of NC contralaterally and bilaterally in cuneate nucleus (CU) and reticular formation. Pontine degeneration was noted ipsilaterally in medial (PBM) and lateral (PBL) parabrachial, facial motor (VII), and interpolar, oral, and main sensory trigeminal nuclei; degeneration in reticular formation was bilateral. Midbrain degeneration was seen bilaterally in caudal superior colliculus (SC), inferior colliculus (IC), periaqueductal gray, and tegmentum. In thalamus, projections to ventroposterior nucleus (VP) were contralateral and concentrated in a crescent extending along the lateral one-third-to-one-half and ventral border of the nucleus. Bilateral degeneration fields were noted in a dorsomedial sector of the "ventral nuclear field," posterior complex (PO), and mediodorsal nucleus (MD), the degeneration always heavier contralaterally in these nuclei. Sparse degeneration was noted in the medial most portions of the medial geniculate nuclei bordering PO and VP. In rostral diencephalon, bilateral degeneration was traced from the inferior thalamic peduncle to the lateral hypothalamic area (LH). Unilateral spinal cord lesions made between C7 and T1 vertebrae resulted in medullary degeneration in NC contralaterally, ipsilaterally in CU and lateral cuneate nucleus, and bilaterally in gracile nucleus, inferior olivary complex, and reticular formation. Pontine degeneration was limited to ipsilateral PBL and bilaterally to VII. Midbrain degeneration was found bilaterally in IC, SC, nucleus sagulum, and tegmentum; a minor projection was noted in interpeduncular nucleus. In

  11. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat.

    PubMed

    Goadsby, P J; Knight, Y E; Hoskin, K L

    1997-10-01

    Patients with primary headache syndromes often describe a distribution of pain that involves both frontal and occipital parts of the head. Such a distribution of pain does not respect the cutaneous sensory innervation of the head which would divide it into anterior (trigeminally innervated) and posterior (spinal nerve root innervated) regions. Studies of pain-producing intracranial structures, such as the superior sagittal sinus, have demonstrated that second order neurons as caudal as C2 are activated after either electrical or mechanical stimulation. For this study cats were anaesthetised with halothane (during surgery) and alpha-chloralose (60 mg/kg, i.p., then 20 mg/kg intravenous maintenance), paralysed (gallamine 6 mg/kg) and ventilated. The greater occipital nerve was isolated bilaterally and stimulated unilaterally using hook electrodes with stimuli of 100 V at 0.3 Hz. Metabolic activity in the caudal brain stem and upper cervical cord was measured using 2-deoxyglucose autoradiography and quantitative densitometry. Stimulation of the greater occipital nerve increased metabolic activity by 220% ipsilateral to stimulation and by a lesser amount contralaterally. Increases in metabolic activity were seen in the dorsal horn at the level of C1 and C2 as might be predicted from the cervical origin of the nerve. Neuronal activation appeared contiguous with the trigeminal nucleus caudalis and was in the same distribution as is seen when trigeminally-innervated structures are stimulated. These data suggest that the well recognised clinical phenomenon of pain at the front and back of the head and in the upper neck are likely to be a consequence of overlap of processing of nociceptive information at the level of the second order neurons. PMID:9414053

  12. Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats.

    PubMed

    Tsujimura, Takanori; Shinoda, Masamichi; Honda, Kuniya; Hitomi, Suzuro; Kiyomoto, Masaaki; Matsuura, Shingo; Katagiri, Ayano; Tsuji, Kojun; Inoue, Makoto; Shiga, Yoshi; Iwata, Koichi

    2011-10-12

    Many phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells are expressed in the trigeminal spinal subnucleus caudalis (Vc), upper cervical spinal cord (C1-C2), nucleus tractus solitarii (NTS) and paratrigeminal nucleus (Pa5) after capsaicin injection into the whisker pad (WP), masseter muscle (MM), digastric muscle (DM) or sternohyoideus muscle (SM). The pERK-IR cells also showed NeuN immunoreactivity, indicating that ERK phosphorylation occurs in neurons. The pERK-IR cells were significantly reduced after intrathecal injection of MEK 1/2 inhibitor PD98059. The pERK-IR cells expressed bilaterally in the Vc and C1-C2 after capsaicin injection into the unilateral DM or SM, whereas unilaterally in the Vc and C1-C2 after unilateral WP or MM injection. After capsaicin injection into the WP or MM, the pERK-IR cell expression in the Vc was restricted rostrocaudally within a narrow area. However, the distribution of pERK-IR cells was more wide spread without a clear peak in the Vc and C1-C2 after capsaicin injection into the DM or SM. In the NTS, the unimodal pERK-IR cell expression peaked at 0-720μm rostral from the obex following capsaicin injection into WP, MM, DM or SM. In the ipsilateral Pa5, many pERK-IR cells were observed following capsaicin injection into the SM. The number of swallows elicited by distilled water administration was significantly smaller after capsaicin injection into the WP, MM or DM but not SM compared to that of vehicle-injected rats. Various noxious inputs due to the masticatory or swallowing-related muscle inflammation may be differentially involved in muscle pain and swallowing reflex activity.

  13. Baicalin Activates Glycine and γ-Aminobutyric Acid Receptors on Substantia Gelatinosa Neurons of the Trigeminal Subsnucleus Caudalis in Juvenile Mice.

    PubMed

    Yin, Hua; Bhattarai, Janardhan Prasad; Oh, Sun Mi; Park, Soo Joung; Ahn, Dong Kuk; Han, Seong Kyu

    2016-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation

  14. [Impregnoarchitectonic study of neurons in the caudal hypothalamic area in sheep].

    PubMed

    Rajtová, V

    1985-06-01

    The impregnoarchitectonics of neurons in the regio hypothalamica caudalis was studied by the methods after Ramón-Moliner and Golgi-Cox. Neuron types, morphology of synaptic conjugations and orientation of dendrites and axons are indicated for each nucleus. Small spindle-shaped neurons are the most frequent neuron forms occurring in the regio hypothalamica caudalis. It is only in the nucl. hypothalamicus perifornicalis that neuron processes and the long cell axes are oriented around the columna fornicis. One especially large neuron "occupies" the dorsal part of this nucleus.

  15. Neuronal loss in human medial vestibular nucleus.

    PubMed

    Alvarez, J C; Díaz, C; Suárez, C; Fernández, J A; González del Rey, C; Navarro, A; Tolivia, J

    1998-08-01

    The data concerning the effects of age on the brainstem are inconsistent, and few works are devoted to the human vestibular nuclear complex. The medial vestibular nucleus (MVN) is the largest nucleus of the vestibular nuclear complex, and it seems to be related mainly to vestibular compensation and vestibulo-ocular reflexes. Eight human brainstems have been used in this work. The specimens were embedded in paraffin, sectioned, and stained by the formaldehyde-thionin technique. Neuron profiles were drawn with a camera lucida at x330. Abercrombie's method was used to estimate the total number of neurons. We used the test of Kolmogorov-Smirnov with the correction of Lilliefors to evaluate the fit of our data to a normal distribution, and a regression analysis was performed to determine if the variation of our data with age was statistically significant. The present study clearly shows that neuronal loss occurs with aging. The total number of neurons decreases with age, from 122,241 +/- 651 cells in a 35-year-old individual to 75,915 +/- 453 cells in an 89-year-old individual. Neuron loss was significant in the caudal and intermediate thirds of the nucleus, whereas the changes in the rostral third were not significant. The nuclear diameter of surviving neurons decreased significantly with age. There is a neuron loss in the MVN that seems to be age-related. It could help explain why elderly people find it hard to compensate for unilateral vestibular deficits. The preservation of neurons in the rostral third could be related to the fact that this area primarily innervates the oculolmotor nuclei; these latter neurons do not decrease in number in other species studied.

  16. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission.

  17. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  18. Serotonin neurons in the dorsal raphe nucleus encode reward signals.

    PubMed

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-28

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing.

  19. Serotonin neurons in the dorsal raphe nucleus encode reward signals

    PubMed Central

    Li, Yi; Zhong, Weixin; Wang, Daqing; Feng, Qiru; Liu, Zhixiang; Zhou, Jingfeng; Jia, Chunying; Hu, Fei; Zeng, Jiawei; Guo, Qingchun; Fu, Ling; Luo, Minmin

    2016-01-01

    The dorsal raphe nucleus (DRN) is involved in organizing reward-related behaviours; however, it remains unclear how genetically defined neurons in the DRN of a freely behaving animal respond to various natural rewards. Here we addressed this question using fibre photometry and single-unit recording from serotonin (5-HT) neurons and GABA neurons in the DRN of behaving mice. Rewards including sucrose, food, sex and social interaction rapidly activate 5-HT neurons, but aversive stimuli including quinine and footshock do not. Both expected and unexpected rewards activate 5-HT neurons. After mice learn to wait for sucrose delivery, most 5-HT neurons fire tonically during waiting and then phasically on reward acquisition. Finally, GABA neurons are activated by aversive stimuli but inhibited when mice seek rewards. Thus, DRN 5-HT neurons positively encode a wide range of reward signals during anticipatory and consummatory phases of reward responses. Moreover, GABA neurons play a complementary role in reward processing. PMID:26818705

  20. Developmental changes in synaptic distribution in arcuate nucleus neurons.

    PubMed

    Baquero, Arian F; Kirigiti, Melissa A; Baquero, Karalee C; Lee, Shin J; Smith, M Susan; Grove, Kevin L

    2015-06-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9-10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements.

  1. Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates.

    PubMed

    Rak, Kristen; Wasielewski, Natalia; Radeloff, Andreas; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-05-01

    Auditory brainstem implants provide sound information by direct stimulation of the cochlear nucleus to patients with dysfunctional or absent cranial nerve VIII. In contrast to patients with cochlear implants, the use of the auditory brainstem implants is less successful. This cannot be fully explained by the difference location of stimulation but a rather unspecific neuronal stimulation. The aim of this study was to further examine neuronal cells of the cochlear nucleus and to test their interactions with semiconductor substrates as a potential electrode material for improved auditory brainstem implants. The cochlear nuclei of postnatal day 7 rats were microsurgically dissected. The tissue was dissociated enzymatically and plated on coverslips as control and on the semiconductor substrates silicon or silicon nitride. After 4 days in culture the morphology and growth of dissociated cells was determined by fluorescence and scanning electron microscopy. Dissociated cells of the cochlear nucleus showed reduced cell growth on semiconductor substrates compared with controls. SEM analysis demonstrated close contact of neurons with supporting cells in culture and good adherence of neuronal growth cones on the used materials. These findings present basic knowledge for the development of neuron-electrode interfaces for future auditory brainstem implants. PMID:21370446

  2. Reward prediction error computation in the pedunculopontine tegmental nucleus neurons.

    PubMed

    Kobayashi, Yasushi; Okada, Ken-Ichi

    2007-05-01

    In this article, we address the role of neuronal activity in the pathways of the brainstem-midbrain circuit in reward and the basis for believing that this circuit provides advantages over previous reinforcement learning theory. Several lines of evidence support the reward-based learning theory proposing that midbrain dopamine (DA) neurons send a teaching signal (the reward prediction error signal) to control synaptic plasticity of the projection area. However, the underlying mechanism of where and how the reward prediction error signal is computed still remains unclear. Since the pedunculopontine tegmental nucleus (PPTN) in the brainstem is one of the strongest excitatory input sources to DA neurons, we hypothesized that the PPTN may play an important role in activating DA neurons and reinforcement learning by relaying necessary signals for reward prediction error computation to DA neurons. To investigate the involvement of the PPTN neurons in computation of reward prediction error, we used a visually guided saccade task (VGST) during recording of neuronal activity in monkeys. Here, we predict that PPTN neurons may relay the excitatory component of tonic reward prediction and phasic primary reward signals, and derive a new computational theory of the reward prediction error in DA neurons.

  3. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons

    PubMed Central

    Hong, Simon; Hikosaka, Okihide

    2014-01-01

    Dopamine (DA) neurons in the midbrain are crucial for motivational control of behavior. However, recent studies suggest that signals transmitted by DA neurons are heterogeneous. This may reflect a wide range of inputs to DA neurons, but which signals are provided by which brain areas is still unclear. Here we focused on the pedunculopontine tegmental nucleus (PPTg) in macaque monkeys and characterized its inputs to DA neurons. Since the PPTg projects to many brain areas, it is crucial to identify PPTg neurons that project to DA neuron areas. For this purpose we used antidromic activation technique by electrically stimulating three locations (medial, central, lateral) in the substantia nigra pars compacta (SNc). We found SNc-projecting neurons mainly in the PPTg, and some in the cuneiform nucleus (CuN). Electrical stimulation in the SNc-projecting PPTg regions induced a burst of spikes in presumed DA neurons, suggesting that the PPTg-DA(SNc) connection is excitatory. Behavioral tasks and clinical tests showed that the SNc-projecting PPTg neurons encoded reward, sensorimotor and arousal/alerting signals. Importantly, reward-related PPTg neurons tended to project to the medial and central SNc, whereas sensorimotor/arousal/alerting-related PPTg neurons tended to project to the lateral SNc. Most reward-related signals were positively biased: excitation and inhibition when a better and worse reward was expected, respectively. These PPTg neurons tended to retain the reward value signal until after a reward outcome, representing ‘value state’; this was different from DA neurons which show phasic signals representing ‘value change’. Our data, together with previous studies, suggest that PPTg neurons send positive reward-related signals mainly to the medial-central SNc where DA neurons encode motivational values and sensorimotor/arousal signals to the lateral SNc where DA neurons encode motivational salience. PMID:25058502

  4. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons

    PubMed Central

    Kolaj, Miloslav; Zhang, Li; Hermes, Michael L. H. J.

    2014-01-01

    Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT), derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH) that exhibit significant diurnal change. Their resting membrane potential (RMP) is maintained by various ionic conductances that include inward rectifier (Kir), hyperpolarization-activated nonselective cation (HCN) and TWIK-related acid sensitive (TASK) K+ channels. Firing patterns are regulated by high voltage-activated (HVA) and low voltage-activated (LVA) Ca2+ conductances. Moreover, transient receptor potential (TRP)-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa) contribute to unique slow afterhyperpolarizing potentials (sAHPs) that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. The excitability of PVT neurons is also modulated by activation of neurotransmitter receptors associated with afferent pathways to PVT and other thalamic midline nuclei. We report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins). This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system

  5. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons.

    PubMed

    Urbano, Francisco J; Luster, Brennon R; D'Onofrio, Stasia; Mahaffey, Susan; Garcia-Rill, Edgar

    2016-01-01

    Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro. PMID:27684729

  6. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons.

    PubMed

    Urbano, Francisco J; Luster, Brennon R; D'Onofrio, Stasia; Mahaffey, Susan; Garcia-Rill, Edgar

    2016-09-14

    Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.

  7. MATURATION OF FIRING PATTERN IN CHICK VESTIBULAR NUCLEUS NEURONS

    PubMed Central

    SHAO, M.; HIRSCH, J. C.; PEUSNER, K. D.

    2007-01-01

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when < 20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on

  8. Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse.

    PubMed

    Darrow, Keith N; Benson, Thane E; Brown, M Christian

    2012-05-01

    Medial olivocochlear (MOC) neurons originate in the superior olivary complex and project to the cochlea, where they act to reduce the effects of noise masking and protect the cochlea from damage. MOC neurons respond to sound via a reflex pathway; however, in this pathway the cochlear nucleus cell type that provides input to MOC neurons is not known. We investigated whether multipolar cells of the ventral cochlear nucleus have projections to MOC neurons by labeling them with injections into the dorsal cochlear nucleus. The projections of one type of labeled multipolar cell, planar neurons, were traced into the ventral nucleus of the trapezoid body, where they were observed terminating on MOC neurons (labeled in some cases by a second cochlear injection of FluoroGold). These terminations formed what appear to be excitatory synapses, i.e., containing small, round vesicles and prominent postsynaptic densities. These data suggest that cochlear nucleus planar multipolar neurons drive the MOC neuron's response to sound.

  9. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens.

    PubMed

    Winters, Bradley D; Krüger, Juliane M; Huang, Xiaojie; Gallaher, Zachary R; Ishikawa, Masago; Czaja, Krzysztof; Krueger, James M; Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2012-10-01

    Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc. PMID:23012412

  10. Urocortin 3 elevates cytosolic calcium in nucleus ambiguus neurons.

    PubMed

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Chitravanshi, Vineet C; Brailoiu, Eugen

    2012-09-01

    Urocortin 3 (also known as stresscopin) is an endogenous ligand for the corticotropin-releasing factor receptor 2 (CRF(2)). Despite predominant G(s) coupling of CRF(2), promiscuous coupling with other G proteins has been also associated with the activation of this receptor. As urocortin 3 has been involved in central cardiovascular regulation at hypothalamic and medullary sites, we examined its cellular effects on cardiac vagal neurons of nucleus ambiguus, a key area for the autonomic control of heart rate. Urocortin 3 (1 nM-1000 nM) induced a concentration-dependent increase in cytosolic Ca(2+) concentration that was blocked by the CRF(2) antagonist K41498. In the case of two consecutive treatments with urocortin 3, the second urocortin 3-induced Ca(2+) response was reduced, indicating receptor desensitization. The effect of urocortin 3 was abolished by pre-treatment with pertussis toxin and by inhibition of phospolipase C with U-73122. Urocortin 3 activated Ca(2+) influx via voltage-gated P/Q-type channels as well as Ca(2+) release from endoplasmic reticulum. Urocortin 3 promoted Ca(2+) release via inositol 1,4,5 trisphosphate receptors, but not ryanodine receptors. Our results indicate a novel Ca(2+) -mobilizing effect of urocortin 3 in vagal pre-ganglionic neurons of nucleus ambiguus, providing a cellular mechanism for a previously reported role for this peptide in parasympathetic cardiac regulation.

  11. Neuronal relationships between the dorsal periaqueductal nucleus and the inferior colliculus (nucleus commissuralis) in the cat. A Golgi study.

    PubMed

    Herrera, M; Sánchez del Campo, F; Ruiz, A; Smith Agreda, V

    1988-06-01

    Cell types in the dorsal periaqueductal nucleus (PAGd) were studied with the aid of the rapid Golgi method in young cats. The neurons were subdivided into fusiform and stellate types with several varieties of the latter class according to the final destination of their axons. Fusiform neurons send their axons to the neuropil of the Ncom. In turn these neurons receive descending fibres from the nucleus commissuralis (Ncom) which seem to establish axo-dendritic contacts. Also commissural neurons receive contacts from ascending fibres of the PAGd. On the basis of Golgi material it is concluded that particular neuronal types of the PAGd could establish reciprocal connections with neuronal elements of the ventral part of the Ncom. The present study supports the hypothesis that the PAGd could be subdivided into discrete cell groups according to their afferent and efferent projections.

  12. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro.

    PubMed

    Liebig, Luise; von Ameln-Mayerhofer, Andreas; Hentschke, Harald

    2015-01-01

    3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

  13. A light and electron microscope study of rat abducens nucleus neurons projecting to the cerebellar flocculus.

    PubMed Central

    Rodella, L; Rezzani, R; Corsetti, G; Simonetti, C; Stacchiotti, A; Ventura, R G

    1995-01-01

    Injection of horseradish peroxidase (HRP) into the cerebellar flocculus of the rat was employed to identify neurons in the abducens nucleus that project to the flocculus. The number, ultrastructural features and precise localisation of these neurons in the nucleus were examined. They were present bilaterally and represented about 7% of the total neuronal population of each nucleus. They were localised principally in the dorsomedial area of the cranial half of each nucleus and did not display the typical ultrastructural features of motoneurons. It is concluded that the localisation and ultrastructural characteristics of these HRP-positive neurons are useful for distinguishing them from other neuronal populations within the nucleus. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:7649835

  14. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

    PubMed

    Xi, Ming Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2003-06-27

    The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT. PMID:12763260

  15. Dynamics of abducens nucleus neurons in the awake mouse

    PubMed Central

    Thumser, Zachary C.

    2012-01-01

    The mechanics of the eyeball and orbital tissues (the “ocular motor plant”) are a fundamental determinant of ocular motor signal processing. The mouse is used increasingly in ocular motor physiology, but little is known about its plant mechanics. One way to characterize the mechanics is to determine relationships between extraocular motoneuron firing and eye movement. We recorded abducens nucleus neurons in mice executing compensatory eye movements during 0.1- to 1.6-Hz oscillation in the light. We analyzed firing rates to extract eye position and eye velocity sensitivities, from which we determined time constants of a viscoelastic model of the plant. The majority of abducens neurons were already active with the eye in its central rest position, with only 6% recruited at more abducted positions. Firing rates exhibited largely linear relationships to eye movement, although there was a nonlinearity consisting of increasing modulation in proportion to eye movement as eye amplitudes became small (due to reduced stimulus amplitude or reduced alertness). Eye position and velocity sensitivities changed with stimulus frequency as expected for an ocular motor plant dominated by cascaded viscoelasticities. Transfer function poles lay at approximately 0.1 and 0.9 s. Compared with previously studied animal species, the mouse plant is stiffer than the rabbit but laxer than cat and rhesus. Differences between mouse and rabbit can be explained by scaling for eye size (allometry). Differences between the mouse and cat or rhesus can be explained by differing ocular motor repertoires of animals with and without a fovea or area centralis. PMID:22896719

  16. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components

  17. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons

    NASA Technical Reports Server (NTRS)

    Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.

    2002-01-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  18. Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input

    PubMed Central

    McCall, Andrew A; Miller, Daniel J; Catanzaro, Michael F; Cotter, Lucy A; Yates, Bill J

    2015-01-01

    Integration of vestibular and proprioceptive afferent information within the central nervous system is a critical component of postural regulation. We recently demonstrated that labyrinthine and hindlimb signals converge onto vestibular nucleus neurons, such that hindlimb movement modulates the activity of these cells. However, it is unclear whether similar convergence of hindlimb and vestibular signals also occurs upstream from the vestibular nuclei, particularly in the rostral fastigial nucleus (rFN). We tested the hypothesis that rFN neurons have similar responses to hindlimb movement as vestibular nucleus neurons. Recordings were obtained from 53 rFN neurons that responded to hindlimb movement in decerebrate cats. In contrast to vestibular nucleus neurons, which commonly encoded the direction of hindlimb movement (81% of neurons), few rFN neurons (21%) that responded to leg movement encoded such information. Instead, most rFN neurons responded to both limb flexion and extension. Half of the rFN neurons whose activity was modulated by hindlimb movement received convergent vestibular inputs. These results show that rFN neurons receive somatosensory inputs from the hindlimb, and that a subset of rFN neurons integrates vestibular and hindlimb signals. Such rFN neurons likely perform computations that participate in maintenance of balance during upright stance and movement. Although vestibular nucleus neurons are interconnected with the rFN, the dissimilarity of responses of neurons sensitive to hindlimb movement in the two regions suggest that they play different roles in coordinating postural responses during locomotion and other movements which entail changes in limb position. PMID:25976518

  19. Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus.

    PubMed

    Chen, Z; Travers, S P; Travers, J B

    2016-08-01

    Inhibition is presumed to play an important role in gustatory processing in the rostral nucleus of the solitary tract (rNST). One source of inhibition, GABA, is abundant within the nucleus and comes both from local, intrasolitary sources and from outside the nucleus. In addition to the receptor-mediated effects of GABA on rNST neurons, the hyperpolarization-sensitive currents, Ih and IA, have the potential to further modulate afferent signals. To elucidate the effects of GABAergic modulation on solitary tract (ST)-evoked responses in phenotypically defined rNST neurons and to define the presence of IA and Ih in the same cells, we combined in vitro recording and optogenetics in a transgenic mouse model. This mouse expresses channelrhodopsin 2 (ChR2) in GAD65-expressing GABAergic neurons throughout the rNST. GABA positive (GABA+) neurons differed from GABA negative (GABA-) neurons in their response to membrane depolarization and ST stimulation. GABA+ neurons had lower thresholds to direct membrane depolarization compared with GABA- neurons, but GABA- neurons responded more faithfully to ST stimulation. Both IA and Ih were present in subsets of GABA+ and GABA- neurons. Interestingly, GABA+ neurons with Ih were more responsive to afferent stimulation than inhibitory neurons devoid of these currents, whereas GABA- neurons with IA were more subject to inhibitory modulation. These results suggest that the voltage-gated channels underlying IA and Ih play an important role in modulating rNST output through a circuit of feedforward inhibition. PMID:27146980

  20. Neuron types and organisation of the rabbit dorsal lateral geniculate nucleus.

    PubMed

    Caballero, J L; Ostos, M V; Abadía-Fenoll, F

    1986-10-01

    The Golgi technique was employed in order to study the types of neurons composing the dorsal lateral geniculate nucleus and to elucidate its organisational features in the rabbit. Four types of neurons were identified based on differences in perikaryon size or the particular features of their dendrites and dendritic appendages. Types 1 and 2 were comparable to the relay cells previously identified in functional and morphological studies in other mammals as projecting upon the visual cortex. Type 3 cells were morphologically identified as interneurons. Type 4 neurons, not described in detail in the present paper, were observed along the nuclear periphery underlying the optic tract. Types 1 and 2 neurons along with their dendritic trees were orientated in planes which converged radially in the anteromedial region of the nucleus. Retinal afferent fibres from the optic tract traversed the nucleus as part of a longitudinal fibre system, running parallel to the planes of cell orientation, to establish synapses with the relay neurons.

  1. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments.

    PubMed

    Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Völker, Christine; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Jablonka, Sibylle; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf

    2015-08-01

    The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss. PMID:25960344

  2. Projections from inspiratory neurons of the ventral respiratory group to the subretrofacial nucleus of the cat.

    PubMed

    Pilowsky, P; Llewellyn-Smith, I J; Lipski, J; Minson, J; Arnolda, L; Chalmers, J

    1994-01-01

    Arterial blood pressure and the activity of many sympathetic nerves are known to be affected by changes in central respiratory activity. The central neurons responsible for this respiratory modulation are unknown. In the present study we have labelled inspiratory neurons (n = 24) in the rostral ventral respiratory group and Bötzinger complex in the medulla oblongata of the cat using intracellular injection of biocytin. The filled neurons were examined to see if they had axonal projections to the subretrofacial nucleus, an important brainstem nucleus in the tonic and reflex control of blood pressure. The subretrofacial nucleus was identified histologically as a cluster of neurons in the rostral ventrolateral medulla, some of which are tyrosine hydroxylase immunoreactive. Varicose axons arising from labelled inspiratory neurons were mostly found dorsal to this cluster, within the area corresponding to the Bötzinger complex. A small number of axon varicosities were seen in the subretrofacial nucleus. The results suggest that a part of the respiratory modulation of sympathetic nerve activity may be due to a direct synaptic input from inspiratory neurons of the ventral respiratory group to neurons of the subretrofacial nucleus. PMID:7907937

  3. In vitro electrophysiology of neurons in the lateral dorsal tegmental nucleus.

    PubMed

    Wilcox, K S; Grant, S J; Burkhart, B A; Christoph, G R

    1989-03-01

    The lateral dorsal tegmental nucleus (LDT) provides ascending cholinergic projections to forebrain structures such as prefrontal cortex, septum, habenula, and thalamus, but relatively little is known of the physiology of LDT neurons. Intracellular recordings from LDT neurons in guinea pig brain slices found that most neurons fired action potentials either tonically or in bursts. The voltage dependent characteristics of the neurons suggest that a prolonged afterhyperpolarization due to an outward potassium current and a low-threshold calcium conductance contributed to these two modes of firing. Intracellular injections of Lucifer Yellow and subsequent staining for NADPH-diaphorase activity permitted positive identification of cholinergic neurons.

  4. Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness.

    PubMed

    Catanzaro, Michael F; Miller, Daniel J; Cotter, Lucy A; McCall, Andrew A; Yates, Bill J

    2014-08-01

    Previous studies demonstrated that ingestion of the emetic compound copper sulfate (CuSO4) alters the responses to vestibular stimulation of a large fraction of neurons in brainstem regions that mediate nausea and vomiting, thereby affecting motion sickness susceptibility. Other studies suggested that the processing of vestibular inputs by cerebellar neurons plays a critical role in generating motion sickness and that neurons in the cerebellar fastigial nucleus receive visceral inputs. These findings raised the hypothesis that stimulation of gastrointestinal receptors by a nauseogenic compound affects the processing of labyrinthine signals by fastigial nucleus neurons. We tested this hypothesis in decerebrate cats by determining the effects of intragastric injection of CuSO4 on the responses of rostral fastigial nucleus to whole-body rotations that activate labyrinthine receptors. Responses to vestibular stimulation of fastigial nucleus neurons were more complex in decerebrate cats than reported previously in conscious felines. In particular, spatiotemporal convergence responses, which reflect the convergence of vestibular inputs with different spatial and temporal properties, were more common in decerebrate than in conscious felines. The firing rate of a small percentage of fastigial nucleus neurons (15%) was altered over 50% by the administration of CuSO4; the firing rate of the majority of these cells decreased. The responses to vestibular stimulation of a majority of these cells were attenuated after the compound was provided. Although these data support our hypothesis, the low fraction of fastigial nucleus neurons whose firing rate and responses to vestibular stimulation were affected by the administration of CuSO4 casts doubt on the notion that nauseogenic visceral inputs modulate motion sickness susceptibility principally through neural pathways that include the cerebellar fastigial nucleus. Instead, it appears that convergence of gastrointestinal and

  5. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Luque-Garcia, Aina; Luque-Martinez, Aina; Blasco-Serra, Arantxa; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Teruel-Martí, Vicent

    2015-04-01

    This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit.

  6. The Foxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits.

    PubMed

    Bilella, Alessandro; Alvarez-Bolado, Gonzalo; Celio, Marco R

    2016-10-15

    The parvafox nucleus is an elongated structure that is lodged within the ventrolateral hypothalamus and lies along the optic tract. It comprises axially located parvalbumin (Parv)-positive neurons and a peripheral cuff of Foxb1-expressing ones. In the present study, injections of Cre-dependent adenoviral constructs were targeted to the ventrolateral hypothalamus of Foxb1/Cre mice to label specifically and map the efferent connections of the Foxb1-expressing subpopulation of neurons of the parvafox nucleus. These neurons project more widely than do the Parv-positive ones and implicate a part of the axons known to emanate from the lateral hypothalamus. High labeling densities were found in the dorsolateral and the upper lateral portion of the periaqueductal gray (PAG), the Su3 and PV2 nuclei of the ventrolateral PAG, the cuneiform nucleus, the mesencephalic reticular formation, and the superior colliculus. Intermediate densities of terminals were encountered in the septum, bed nucleus of the stria terminalis, substantia innominata, various thalamic and hypothalamic nuclei, pedunculopontine nucleus, Barrington's nucleus, retrofacial nucleus, and retroambigual nucleus. Scattered terminals were observed in the olfactory bulbs, the prefrontal cortex and the lamina X of the cervical spinal cord. Because the terminals were demonstrated to express the glutamate transporter VGlut2, the projections are presumed to be excitatory. A common denominator of the main target sites of the Foxb1-positive axons of the parvafox nucleus appears to be an involvement in the defensive reactions to life-threatening situations. The hypothalamic parvafox nucleus may contribute to the autonomic manifestations that accompany the expression of emotions. J. Comp. Neurol. 524:2955-2981, 2016. © 2016 Wiley Periodicals, Inc. PMID:27292133

  7. The Foxb1-expressing neurons of the ventrolateral hypothalamic parvafox nucleus project to defensive circuits.

    PubMed

    Bilella, Alessandro; Alvarez-Bolado, Gonzalo; Celio, Marco R

    2016-10-15

    The parvafox nucleus is an elongated structure that is lodged within the ventrolateral hypothalamus and lies along the optic tract. It comprises axially located parvalbumin (Parv)-positive neurons and a peripheral cuff of Foxb1-expressing ones. In the present study, injections of Cre-dependent adenoviral constructs were targeted to the ventrolateral hypothalamus of Foxb1/Cre mice to label specifically and map the efferent connections of the Foxb1-expressing subpopulation of neurons of the parvafox nucleus. These neurons project more widely than do the Parv-positive ones and implicate a part of the axons known to emanate from the lateral hypothalamus. High labeling densities were found in the dorsolateral and the upper lateral portion of the periaqueductal gray (PAG), the Su3 and PV2 nuclei of the ventrolateral PAG, the cuneiform nucleus, the mesencephalic reticular formation, and the superior colliculus. Intermediate densities of terminals were encountered in the septum, bed nucleus of the stria terminalis, substantia innominata, various thalamic and hypothalamic nuclei, pedunculopontine nucleus, Barrington's nucleus, retrofacial nucleus, and retroambigual nucleus. Scattered terminals were observed in the olfactory bulbs, the prefrontal cortex and the lamina X of the cervical spinal cord. Because the terminals were demonstrated to express the glutamate transporter VGlut2, the projections are presumed to be excitatory. A common denominator of the main target sites of the Foxb1-positive axons of the parvafox nucleus appears to be an involvement in the defensive reactions to life-threatening situations. The hypothalamic parvafox nucleus may contribute to the autonomic manifestations that accompany the expression of emotions. J. Comp. Neurol. 524:2955-2981, 2016. © 2016 Wiley Periodicals, Inc.

  8. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    PubMed Central

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  9. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  10. Characteristics of GABAergic and cholinergic neurons in perinuclear zone of mouse supraoptic nucleus

    PubMed Central

    Ennis, Matthew; Szabó, Gábor; Armstrong, William E.

    2014-01-01

    The perinuclear zone (PNZ) of the supraoptic nucleus (SON) contains some GABAergic and cholinergic neurons thought to innervate the SON proper. In mice expressing enhanced green fluorescent protein (eGFP) in association with glutamate decarboxylase (GAD)65 we found an abundance of GAD65-eGFP neurons in the PNZ, whereas in mice expressing GAD67-eGFP, there were few labeled PNZ neurons. In mice expressing choline acetyltransferase (ChAT)-eGFP, large, brightly fluorescent and small, dimly fluorescent ChAT-eGFP neurons were present in the PNZ. The small ChAT-eGFP and GAD65-eGFP neurons exhibited a low-threshold depolarizing potential consistent with a low-threshold spike, with little transient outward rectification. Large ChAT-eGFP neurons exhibited strong transient outward rectification and a large hyperpolarizing spike afterpotential, very similar to that of magnocellular vasopressin and oxytocin neurons. Thus the large soma and transient outward rectification of large ChAT-eGFP neurons suggest that these neurons would be difficult to distinguish from magnocellular SON neurons in dissociated preparations by these criteria. Large, but not small, ChAT-eGFP neurons were immunostained with ChAT antibody (AB144p). Reconstructed neurons revealed a few processes encroaching near and passing through the SON from all types but no clear evidence of a terminal axon arbor. Large ChAT-eGFP neurons were usually oriented vertically and had four or five dendrites with multiple branches and an axon with many collaterals and local arborizations. Small ChAT-eGFP neurons had a more restricted dendritic tree compared with parvocellular GAD65 neurons, the latter of which had long thin processes oriented mediolaterally. Thus many of the characteristics found previously in unidentified, small PNZ neurons are also found in identified GABAergic neurons and in a population of smaller ChAT-eGFP neurons. PMID:25376783

  11. [Response characteristics of neurons to tone in dorsal nucleus of the lateral lemniscus of the mouse].

    PubMed

    Si, Wen-Juan; Cheng, Yan-Ling; Yang, Dan-Dan; Wang, Xin

    2016-02-25

    The dorsal nucleus of lateral lemniscus (DNLL) is a nucleus in the auditory ascending pathway, and casts inhibitory efferent projections to the inferior colliculus. Studies on the DNLL are less than studies on the auditory brain stem and inferior colliculus. To date, there is no information about response characteristics of neurons in DNLL of albino mouse. Under free field conditions, we used extracellular single unit recording to study the acoustic signal characteristics of DNLL neurons in Kunming mice (Mus musculus). Transient (36%) and ongoing (64%) firing patterns were found in 96 DNLL neurons. Neurons with different firing patterns have significant differences in characteristic frequency and minimal threshold. We recorded frequency tuning curves (FTCs) of 87 DNLL neurons. All of the FTCs exhibit an open "V" shape. There is no significant difference in FTCs between transient and ongoing neurons, but among the ongoing neurons, the FTCs of sustained neurons are sharper than those of onset plus sustained neurons and pauser neurons. Our results showed that the characteristic frequency of DNLL neurons of mice was not correlated with depth, supporting the view that the DNLL of mouse has no frequency topological organization through dorsal-ventral plane, which is different from cats and some other animals. Furthermore, by using rate-intensity function (RIF) analysis the mouse DNLL neurons can be classified as monotonic (60%), saturated (31%) and non-monotonic (8%) types. Each RIF type includes transient and ongoing firing patterns. Dynamic range of the transient firing pattern is smaller than that of ongoing firing ones (P < 0.01), suggesting that the inhibitory inputs may underlie the formation of transient firing pattern. Multiple firing patterns and intensity coding of DNLL neurons may derive from the projections from multiple auditory nuclei, and play different roles in auditory information processing. PMID:26915316

  12. Local inputs to aldosterone-sensitive neurons of the nucleus tractus solitarius.

    PubMed

    Sequeira, S M; Geerling, J C; Loewy, A D

    2006-09-15

    Aldosterone-sensitive neurons in the nucleus tractus solitarius (NTS) become activated during sodium depletion and could be key neural elements regulating sodium intake. The afferent inputs to these neurons have not yet been defined, but one source may be neurons in the area postrema, a neighboring circumventricular organ that innervates the NTS and exerts a powerful inhibitory influence on sodium appetite [Contreras RJ, Stetson PW (1981) Changes in salt intake after lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Res 211:355-366]. After an anterograde axonal tracer was injected into the area postrema in rats, sections through the NTS were immunolabeled for the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a marker for aldosterone-sensitive neurons, and examined by confocal microscopy. We found that some of the aldosterone-sensitive neurons received close appositions from processes originating in the area postrema, suggesting that input to the HSD2 neurons could be involved in the inhibition of sodium appetite by this site. Axonal varicosities originating from the area postrema also made close appositions with other neurons in the medial NTS, including the neurotensin-immunoreactive neurons in the dorsomedial NTS. Besides these projections, a dense field of neurotensinergic axon terminals overlapped the distribution of the HSD2 neurons. Neurotensin-immunoreactive axon terminals were identified in close apposition to the dendrites and cell bodies of some HSD2 neurons, as well as unlabeled neurons lying in the same zone within the medial NTS. A local microcircuit involving the area postrema, HSD2 neurons, and neurotensinergic neurons may play a major role in the regulation of sodium appetite.

  13. [Response characteristics of neurons to tone in dorsal nucleus of the lateral lemniscus of the mouse].

    PubMed

    Si, Wen-Juan; Cheng, Yan-Ling; Yang, Dan-Dan; Wang, Xin

    2016-02-25

    The dorsal nucleus of lateral lemniscus (DNLL) is a nucleus in the auditory ascending pathway, and casts inhibitory efferent projections to the inferior colliculus. Studies on the DNLL are less than studies on the auditory brain stem and inferior colliculus. To date, there is no information about response characteristics of neurons in DNLL of albino mouse. Under free field conditions, we used extracellular single unit recording to study the acoustic signal characteristics of DNLL neurons in Kunming mice (Mus musculus). Transient (36%) and ongoing (64%) firing patterns were found in 96 DNLL neurons. Neurons with different firing patterns have significant differences in characteristic frequency and minimal threshold. We recorded frequency tuning curves (FTCs) of 87 DNLL neurons. All of the FTCs exhibit an open "V" shape. There is no significant difference in FTCs between transient and ongoing neurons, but among the ongoing neurons, the FTCs of sustained neurons are sharper than those of onset plus sustained neurons and pauser neurons. Our results showed that the characteristic frequency of DNLL neurons of mice was not correlated with depth, supporting the view that the DNLL of mouse has no frequency topological organization through dorsal-ventral plane, which is different from cats and some other animals. Furthermore, by using rate-intensity function (RIF) analysis the mouse DNLL neurons can be classified as monotonic (60%), saturated (31%) and non-monotonic (8%) types. Each RIF type includes transient and ongoing firing patterns. Dynamic range of the transient firing pattern is smaller than that of ongoing firing ones (P < 0.01), suggesting that the inhibitory inputs may underlie the formation of transient firing pattern. Multiple firing patterns and intensity coding of DNLL neurons may derive from the projections from multiple auditory nuclei, and play different roles in auditory information processing.

  14. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    PubMed

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone.

  15. Synaptic responses in cochlear nucleus neurons evoked by activation of the olivocochlear system.

    PubMed

    Mulders, W H A M; Paolini, A G; Needham, K; Robertson, D

    2009-10-01

    The action of olivocochlear collaterals to the cochlear nucleus is not fully established. Synaptic ultrastructure suggests an excitatory role. Extracellular recordings show spikes evoked by electrical stimulation of olivocochlear axons, but these spikes in the cochlear nucleus may be antidromic (activation of output axons) or orthodromic (synaptic input). We therefore recorded intracellular responses to shocks to olivocochlear axons in anaesthetized guinea pigs. In chopper and primary-like neurons shocks caused either no response or an inhibitory synaptic response (IPSP), but never an excitatory one (EPSP). In contrast, onset neurons never showed IPSPs but showed a variety of other responses; antidromic spikes, EPSPs, orthodromic spikes or no effect. The results agree with earlier extracellular observations in that olivocochlear collaterals provide excitatory input to onset neurons. Because some onset neurons are inhibitory they may be the source of the IPSPs observed in other cochlear nucleus neurons. The data also show that electrical stimulation at the floor of the IVth ventricle results in antidromic spikes as well. However, intracellular recording enabled the orthodromic action to be verified and the presumed olivocochlear action to be better understood. Our data support the hypothesis that olivocochlear collaterals initiate excitatory input onto onset-chopper neurons. PMID:19607895

  16. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    PubMed

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  17. Insulin suppresses ghrelin-induced calcium signaling in neuropeptide Y neurons of the hypothalamic arcuate nucleus

    PubMed Central

    Maejima, Yuko; Kohno, Daisuke; Iwasaki, Yusaku; Yada, Toshihiko

    2011-01-01

    Neuropeptide Y (NPY) neurons in the hypothalamic arcuate nucleus (ARC) play an important role in feeding regulation. Plasma levels of ghrelin and insulin show reciprocal dynamics before and after meals. We hypothesized that ghrelin and insulin also exert reciprocal effects on ARC NPY neurons. Cytosolic Ca2+ concentration ([Ca2+]i) was measured by fura-2 microfluorometry in single neurons isolated from ARC of adult rats, followed by immunocytochemical identification of NPY neurons. Ghrelin at 10−10 M increased [Ca2+]i in isolated ARC neurons, and co-administration of insulin concentration-dependently suppressed the ghrelin-induced [Ca2+]i increases. Insulin at 10−16 M, 10−14 M, 10−12 M and 10−10 M counteracted ghrelin action in 26%, 41%, 61% and 53% of ghrelin-responsive neurons, respectively, showing a maximal effect at 10−12 M, the estimated postprandial concentration of insulin in the brain. The majority (>70%) of the ghrelin-activated insulin-inhibited neurons were shown to contain NPY. Double-immunohistochemistry revealed that 85% of NPY neurons in ARC express insulin receptors. These data demonstrate that insulin directly interacts with ARC NPY neurons and counteracts ghrelin action. Our results suggest that postprandial increase in plasma insulin/ghrelin ratio and insulin inhibition of ghrelin action on ARC NPY neurons cooperate to effectively inhibit the neuron activity and terminate feeding. PMID:22081645

  18. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  19. Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN)

    SciTech Connect

    Silverman, A.J.; Oldfield, B.J.

    1984-01-01

    Following injections of horseradish peroxidase into the PVN, retrogradely filled cells were found in regions of the limbic system known to contain glucocorticoid concentrating neurons. To determine if these regions which include the lateral septum, medial amygdala and ventral subiculum have a monosynaptic input to vasopressin neurons the authors developed a double label ultrastructural technique to simultaneously visualize immunoreactive neuropeptide and anterogradely transported HRP. Following injections of tracer into all three of these regions, HRP labeled fibers were seen at the light microscopic level to form a halo in the perinuclear, cell poor zone around the PVN. Ultrastructural examination of this area resulted in the discovery of a small number of limbic system synapses on vasopressin dendrites. In a similar fashion they were interested in determining the distribution of noradrenergic terminals on vasopressin neurons in the various subnuclei of the PVN. The authors have combined immunocytochemistry for vasopressin with radioautography for /sup 3/H-norepinephrine (NE) at the ultrastructural level. NE terminals were numerous in the periventricular zone, innervating both vasopressin containing dendrites and non-immunoreactive dendrites and cell bodies. These studies demonstrate the need for ultrastructural analysis of synaptic input to neurosecretory cells.

  20. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  1. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Tica, Andrei A.; Rabinowitz, Joseph E.; Tilley, Douglas G.; Benamar, Khalid; Koch, Walter J.; Brailoiu, Eugen

    2013-01-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. Since we have previously demonstrated that nesfatin-1 elicits Ca2+ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca2+ in cardiac preganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca2+ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca2+ rise is critically dependent on Ca2+ influx via P/Q-type voltage-activated Ca2+ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Further, nesfatin produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. PMID:23795642

  2. Immunohistochemical study of neurons in the rat abducens nucleus that project to the flocculus.

    PubMed Central

    Rodella, L; Rezzani, R; Bianchi, R

    1996-01-01

    The neurons of the rat abducens nucleus that project to the flocculus of the cerebellum were studied by double labelling using the retrograde transport of horseradish peroxidase (HRP) and choline acetyltransferase (ChAT) immunohistochemistry. Double-labelled cells were present bilaterally in the dorsal and dorsomedial zones of the cranial pole of the nucleus. They represented about half of the total number of HRP-positive neurons. These findings show the existence of a bilateral projection from the abducens nucleus to the flocculus which uses acetylcholine as a neurotransmitter. This projection could be part of the system of the nerve circuits through which the cerebellum modulates visual activities. Images Fig. 3 Fig. 4 Fig. 5 PMID:8763489

  3. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats.

    PubMed

    Stern, Javier E; Sonner, Patrick M; Son, Sook Jin; Silva, Fabiana C P; Jackson, Keshia; Michelini, Lisete C

    2012-05-01

    Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na(+) spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.

  4. Nicotine enhances inhibition of mouse vagal motor neurons by modulating excitability of premotor GABAergic neurons in the nucleus tractus solitarii

    PubMed Central

    Xu, Hong; Boychuk, Jeffery A.; Boychuk, Carie R.; Uteshev, Victor V.

    2014-01-01

    The caudal nucleus of the solitary tract (NTS) serves as the site of the first synapse for visceral sensory inputs to the central nervous system. The NTS sends functional projections to multiple brain nuclei, with gastric-related projections primarily targeting the dorsal motor nucleus of the vagus (DMV). Previous studies have demonstrated that the majority of caudal NTS neurons that project to the DMV respond robustly to nicotine and express nicotinic acetylcholine receptors (nAChRs). However, the cytochemical identity and relationship with specific viscera of DMV-projecting, nicotine-responsive caudal NTS neurons have not been determined. The present study used transgenic mice that express enhanced green fluorescent protein (EGFP) under a GAD67 promoter in a subset of GABAergic neurons, in vivo retrograde pseudorabies viral labeling to identify gastric-related vagal complex neurons, and patch-clamp electrophysiology in acute brain stem slices to test the hypothesis that gastric-related and GABAergic inhibitory synaptic input to the DMV from the caudal NTS is under a robust modulatory control by nAChRs. Our results suggest that activation of nAChRs in the caudal NTS, but not DMV, potentiates GABAergic, but not glutamatergic, input to the DMV. Gastric-related caudal NTS and DMV neurons are directly involved in this nicotine-sensitive circuitry. Understanding the central patterns of nicotinic modulation of visceral sensory-motor circuitry may help develop therapeutic interventions to restore autonomic homeostasis in patients with autonomic impairments. PMID:25429117

  5. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus

    PubMed Central

    Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  6. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    PubMed

    Jeong, Jae Hoon; Woo, Young Jae; Chua, Streamson; Jo, Young-Hwan

    2016-01-01

    The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC), plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT)-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th) mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat. PMID:27611685

  7. Evidence for a glutamatergic input to pontine preganglionic neurons of the superior salivatory nucleus in rat.

    PubMed

    Lin, Li Hsien; Agassandian, Khristofor; Fujiyama, Fumino; Kaneko, Taneshi; Talman, William T

    2003-07-01

    Parasympathetic preganglionic neurons of the superior salivatory nucleus (SSN), which projects to the pterygopalatine ganglion (PPG), modulate salivation, lacrimation, and cerebrovascular tone. Our previous studies suggest that excitatory projections from the nucleus tractus solitarii modulate cerebrovascular tone by actions on SSN neurons. In this study we sought to test the hypothesis that N-methyl-D-aspartate (NMDA) type glutamate receptors and vesicular glutamate transporters (VGLUT) are present in the SSN and that SSN neurons receive glutamatergic input. In six rats we injected tetramethylrhodamine dextran (TRD), a fluorescent tracer, unilaterally into the PPG to label SSN neurons. Four days later, rats were perfused and brain stem sections containing the SSN were processed for fluorescent immunohistochemistry for N-methyl-D-aspartate receptor subunit 1 (NMDAR1) and vesicular glutamate transporters (VGLUT1 and VGLUT2). Confocal laser scanning microscopy showed that 88+/-3% of TRD-labeled SSN neurons contained NMDAR1-immunoreactivity (IR). The surrounding neuropil contained numerous fibers labeled for VGLUT2-IR, but not VGLUT1-IR. Double fluorescent immunohistochemistry for NMDAR1 and VGLUT2 revealed that fibers containing VGLUT2-IR were often in close proximity to cell bodies or proximal dendrites of TRD-labeled SSN neurons that were positive for NMDAR1-IR. These studies support our hypothesis that NMDA receptors and VGLUT are present in the SSN. They further provide support for the suggestion that there are glutamatergic inputs to SSN neurons and would be consistent with an excitatory input that could regulate cerebrovascular tone.

  8. Neuron types and organisation of the rabbit dorsal lateral geniculate nucleus.

    PubMed Central

    Caballero, J L; Ostos, M V; Abadía-Fenoll, F

    1986-01-01

    The Golgi technique was employed in order to study the types of neurons composing the dorsal lateral geniculate nucleus and to elucidate its organisational features in the rabbit. Four types of neurons were identified based on differences in perikaryon size or the particular features of their dendrites and dendritic appendages. Types 1 and 2 were comparable to the relay cells previously identified in functional and morphological studies in other mammals as projecting upon the visual cortex. Type 3 cells were morphologically identified as interneurons. Type 4 neurons, not described in detail in the present paper, were observed along the nuclear periphery underlying the optic tract. Types 1 and 2 neurons along with their dendritic trees were orientated in planes which converged radially in the anteromedial region of the nucleus. Retinal afferent fibres from the optic tract traversed the nucleus as part of a longitudinal fibre system, running parallel to the planes of cell orientation, to establish synapses with the relay neurons. Images Fig. 3 Fig. 5 Fig. 7 Fig. 8 PMID:3693085

  9. Relationships of nucleus reticularis pontis oralis neuronal discharge with sensory and carbachol evoked hippocampal theta rhythm.

    PubMed

    Nuñez, A; de Andrés, I; García-Austt, E

    1991-01-01

    The activity of 72 neurons recorded in the reticularis pontis oralis nucleus (RPO) was examined in anesthetized and curarized rats during hippocampal theta (theta) rhythm elicited by either sensory stimulation or carbachol microinjections. During hippocampal theta rhythm evoked by sensory stimulation, 63.9% of RPO neurons increased their discharge rate while the firing rate decreased in 20.8%. In all cases, the RPO neurons maintained a non-rhythmic discharge pattern. In 44% of the neurons the discharges tended to occur on the positive wave of the theta rhythm. Similar firing patterns were seen in 18 RPO neurons recorded during theta rhythm elicited by both, sensory stimulation and a carbachol microinjection; this effect was blocked by atropine. These results indicate that the RPO region contributes to the generation of hippocampal theta rhythm with a tonic and nonrhythmic outflow through a cholinergic system which may be muscarinic.

  10. Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: Pathways controlling rodent choroidal blood flow.

    PubMed

    Li, Chunyan; Fitzgerald, Malinda E C; Ledoux, Mark S; Gong, Suzhen; Ryan, Patrick; Del Mar, Nobel; Reiner, Anton

    2010-10-28

    Using intrachoroidal injection of the transneuronal retrograde tracer pseudorabies virus (PRV) in rats, we previously localized preganglionic neurons in the superior salivatory nucleus (SSN) that regulate choroidal blood flow (ChBF) via projections to the pterygopalatine ganglion (PPG). In the present study, we used higher-order transneuronal retrograde labeling following intrachoroidal PRV injection to identify central neuronal cell groups involved in parasympathetic regulation of ChBF via input to the SSN. These prominently included the hypothalamic paraventricular nucleus (PVN) and the nucleus of the solitary tract (NTS), both of which are responsive to systemic BP and are involved in systemic sympathetic vasoconstriction. Conventional pathway tracing methods were then used to determine if the PVN and/or NTS project directly to the choroidal subdivision of the SSN. Following retrograde tracer injection into SSN (biotinylated dextran amine 3K or Fluorogold), labeled perikarya were found in PVN and NTS. Injection of the anterograde tracer, biotinylated dextran amine 10K (BDA10K), into PVN or NTS resulted in densely packed BDA10K+terminals in prechoroidal SSN (as defined by its enrichment in nitric oxide synthase-containing perikarya). Double-label studies showed these inputs ended directly on prechoroidal nitric oxide synthase-containing neurons of SSN. Our study thus establishes that PVN and NTS project directly to the part of SSN involved in parasympathetic vasodilatory control of the choroid via the PPG. These results suggest that control of ChBF may be linked to systemic blood pressure and central control of the systemic vasculature.

  11. Projections from the Hypothalamic Paraventricular Nucleus and the Nucleus of the Solitary Tract to Prechoroidal Neurons in the Superior Salivatory Nucleus: Pathways Controlling Rodent Choroidal Blood Flow

    PubMed Central

    Li, Chunyan; Fitzgerald, Malinda E.C.; LeDoux, Mark S.; Gong, Suzhen; Ryan, Patrick; Del Mar, Nobel; Reiner, Anton

    2010-01-01

    Using intrachoroidal injection of the transneuronal retrograde tracer pseudorabies virus (PRV) in rats, we previously localized preganglionic neurons in the superior salivatory nucleus (SSN) that regulate choroidal blood flow (ChBF) via projections to the pterygopalatine ganglion (PPG). In the present study, we used higher order transneuronal retrograde labeling following intrachoroidal PRV injection to identify central neuronal cell groups involved in parasympathetic regulation of ChBF via input to the SSN. These prominently included the hypothalamic paraventricular nucleus (PVN) and the nucleus of the solitary tract (NTS), both of which are responsive to systemic BP, and are involved in systemic sympathetic vasoconstriction. Conventional pathway tracing methods were then used to determine if the PVN and/or NTS project directly to the choroidal subdivision of the SSN. Following retrograde tracer injection into SSN (biotinylated dextran amine 3K or Fluorogold), labeled perikarya were found in PVN and NTS. Injection of the anterograde tracer, biotinylated dextran amine 10K (BDA10K) into PVN or NTS resulted in densely packed BDA10K+ terminals in prechoroidal SSN (as defined by its enrichment in nitric oxide synthase-containing perikarya). Double-label studies showed these inputs ended directly on prechoroidal nitric oxide synthase-containing neurons of SSN. Our study thus establishes that PVN and NTS project directly to the part of SSN involved in parasympathetic vasodilatory control of the choroid via the PPG. These results suggest that control of ChBF may be linked to systemic blood pressure and central control of the systemic vasculature. PMID:20801105

  12. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus.

    PubMed

    Geerling, Joel C; Kim, Minjee; Mahoney, Carrie E; Abbott, Stephen B G; Agostinelli, Lindsay J; Garfield, Alastair S; Krashes, Michael J; Lowell, Bradford B; Scammell, Thomas E

    2016-01-01

    The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.

  13. MCT2 Expression and Lactate Influx in Anorexigenic and Orexigenic Neurons of the Arcuate Nucleus

    PubMed Central

    Cortes-Campos, Christian; Elizondo, Roberto; Carril, Claudio; Martínez, Fernando; Boric, Katica; Nualart, Francisco; Garcia-Robles, Maria Angeles

    2013-01-01

    Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels. PMID:23638108

  14. Development of chemosensitivity in neurons from the nucleus tractus solitarii (NTS) of neonatal rats.

    PubMed

    Conrad, Susan C; Nichols, Nicole L; Ritucci, Nick A; Dean, Jay B; Putnam, Robert W

    2009-03-31

    We studied the development of chemosensitivity during the neonatal period in rat nucleus tractus solitarii (NTS) neurons. We determined the percentage of neurons activated by hypercapnia (15% CO(2)) and assessed the magnitude of the response by calculating the chemosensitivity index (CI). There were no differences in the percentage of neurons that were inhibited (9%) or activated (44.8%) by hypercapnia or in the magnitude of the activated response (CI 164+/-4.9%) in NTS neurons from neonatal rats of all ages. To assess the degree of intrinsic chemosensitivity in these neurons we used chemical synaptic block medium and the gap junction blocker carbenoxolone. Chemical synaptic block medium slightly decreased basal firing rate but did not affect the percentage of NTS neurons that responded to hypercapnia at any neonatal age. However, in neonates aged neurons activated by hypercapnia in neonatal rats of any age. In summary, the response of NTS neurons from neonatal rats appears to be intrinsic and largely unchanged throughout early development. In young neonates (neurons that respond to hypercapnia or the magnitude of that response.

  15. Multi-source inputs converge on the superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2010-08-25

    Activation of parasympathetic nerves innervating salivary glands evokes not only salivation but also vascular responses. These parasympathetic nerves may have cardiac and/or respiratory-related activity as well as the cardiovascular sympathetic nerves that control vascular bed of salivary glands. Therefore, we investigated whether preganglionic superior salivatory nucleus (SSN) neurons projecting to the submandibular and intra-lingual ganglia exhibit pulse-related and/or respiratory-related activity, and whether they can be excited by electrical stimulation of the lingual nerve. 25% of SSN neurons were found to have pulse-related and tracheal pressure-related activities, implying that they receive cardiac and respiratory inputs. 44% of neurons exhibited only pulse-related activity, whereas 31% of the neurons had neither pulse-related nor tracheal pressure-related activity. Neurons with pulse and tracheal pressure-related activities, and those only with pulse-related activity, had B and C fibre range axons. 53% of SSN neurons received both cardiac and lingual nerve inputs. 16% of neurons recorded were found to receive only cardiac inputs, and 26% only lingual nerve inputs; whereas 5% received neither cardiac nor lingual nerve inputs. We conclude that the inputs from diverse sources converge on the SSN neurons, and they can cooperate to modulate SSN neuronal activity.

  16. Muscarinic receptor immunoreactivity in the superior salivatory nucleus neurons innervating the salivary glands of the rat.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji

    2011-07-15

    The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors.

  17. Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    PubMed Central

    Typlt, Marei; Englitz, Bernhard; Sonntag, Mandy; Dehmel, Susanne; Kopp-Scheinpflug, Cornelia; Ruebsamen, Rudolf

    2012-01-01

    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies. PMID:22253838

  18. Estradiol-induced synaptic remodeling of tyrosine hydroxylase immunopositive neurons in the rat arcuate nucleus.

    PubMed

    Csakvari, Eszter; Kurunczi, Anita; Hoyk, Zsofia; Gyenes, Andrea; Naftolin, Frederick; Parducz, Arpad

    2008-08-01

    Gonadal steroids induce synaptic plasticity in several areas of the adult nervous system. In the arcuate nucleus of adult female rats, 17beta-estradiol triggers synaptic remodeling, resulting in a decrease in the number of inhibitory synaptic inputs, an increase in the number of excitatory synapses, and an enhancement of the frequency of neuronal firing. In the present paper, we studied the specificity of hormonal effects by determining the changes in synaptic connectivity of tyrosine hydroxylase (TH) immunoreactive (IR) neurons in the arcuate nucleus. We combined pre-embedding TH and post-embedding gamma-aminobutyric acid (GABA) immunostaining, and performed unbiased stereological measurements in gonadectomized and 17beta-estradiol-treated rats. We conclude that the synaptic connectivity of the TH-IR neurons is different from the other, nonlabeled population, and the response to estradiol is not uniform. TH-IR (dopaminergic) arcuate neurons of both male and female rats have more GABAergic (inhibitory) axosomatic inputs than the nondopaminergic population. Our study shows that the effect of 17beta-estradiol is sex and cell specific in the sense that not all arcuate neurons are affected by the structural synaptic remodeling. In ovariectomized females hormone treatment decreased the numerical density of GABAergic axosomatic synapses on TH-IR, but not on nondopaminergic, neurons, whereas in orchidectomized males, 17beta-estradiol treatment increased inhibitory synapses onto nondopaminergic neurons but did not affect the number of inhibitory terminals onto TH-IR neurons. The hormone-induced plastic changes in synaptic connectivity of TH-IR neurons may serve as the morphological basis for the cyclical regulation of the anterior pituitary.

  19. A cluster analysis of the neurons of the rat interpeduncular nucleus.

    PubMed Central

    Gioia, M; Vizzotto, L; Bianchi, R

    1994-01-01

    The morphometric characteristics of the neurons of the interpeduncular nucleus (IPN) in the rat were investigated by cluster analysis in order to identify neuronal groups which are morphometrically homogeneous, and to define their position and density in the IPN subnuclei. Two clusters of cells were detected. Cluster 1 neurons had a larger perikaryal size with a mean cross-sectional area of 170 microns2 and a high nuclear/cytoplasmic ratio. They were located mainly in the pars dorsalis (37%) and pars medialis (34%) rather than in the pars lateralis (29%). Cluster 1 neurons were also more frequent at the rostral (31%) and caudal (57%) poles than in the central part of the IPN. Cluster 2 cells showed a smaller mean perikaryal area (110 microns2), a small nucleus and abundant cytoplasm. They were equally distributed throughout the whole IPN. These findings suggest the existence of a magnocellular region at the rostral pole of the IPN which has not been described previously. The presence of IPN regions endowed with specific cytoarchitectural characteristics is discussed with respect to the complex neurochemical organisation of the nucleus. Images Fig. 1 Fig. 2 Fig. 4 PMID:7649781

  20. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii.

    PubMed

    Boychuk, Carie R; Gyarmati, Peter; Xu, Hong; Smith, Bret N

    2015-08-01

    Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907

  1. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii

    PubMed Central

    Boychuk, Carie R.; Gyarmati, Peter; Xu, Hong

    2015-01-01

    Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907

  2. On the classification of normally distributed neurons: an application to human dentate nucleus.

    PubMed

    Ristanović, Dušan; Milošević, Nebojša T; Marić, Dušica L

    2011-03-01

    One of the major goals in cellular neurobiology is the meaningful cell classification. However, in cell classification there are many unresolved issues that need to be addressed. Neuronal classification usually starts with grouping cells into classes according to their main morphological features. If one tries to test quantitatively such a qualitative classification, a considerable overlap in cell types often appears. There is little published information on it. In order to remove the above-mentioned shortcoming, we undertook the present study with the aim to offer a novel method for solving the class overlapping problem. To illustrate our method, we analyzed a sample of 124 neurons from adult human dentate nucleus. Among them we qualitatively selected 55 neurons with small dendritic fields (the small neurons), and 69 asymmetrical neurons with large dendritic fields (the large neurons). We showed that these two samples are normally and independently distributed. By measuring the neuronal soma areas of both samples, we observed that the corresponding normal curves cut each other. We proved that the abscissa of the point of intersection of the curves could represent the boundary between the two adjacent overlapping neuronal classes, since the error done by such division is minimal. Statistical evaluation of the division was also performed.

  3. Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken

    PubMed Central

    Fukui, Iwao; Ohmori, Harunori

    2003-01-01

    In order to understand how sound intensity information is extracted and processed in the auditory nuclei, we investigated the neuronal excitability in the nucleus angularis (NA) of the chicken (P0–5) and the chicken embryo (E16–21). In embryos, neurons fired basically in three patterns in response to current injections: the onset pattern (19 %), the tonic pattern (52 %) and the pause pattern (29 %). After hatching, neurons fired either in the tonic pattern (83 %) or in the onset pattern (17 %). In both pre- and post-hatch periods, multiple firing neurons (tonic and pause) increased the maximum rate of rise of the action potential 2.6-fold, the fall 3.9-fold, and the maximum firing frequency 4-fold, and shifted the threshold potential to be more negative. After hatching, the firing frequency of tonic neurons reached a maximum at about 650 Hz. Application of TEA (1 mm) reduced the firing frequency, broadened action potentials and reduced the maximum rate of fall, but the threshold current was not changed. Dendrotoxin-I (DTX, 100 nm) reduced the threshold current. Application of DTX induced the onset neuron to fire repetitively. Branching patterns of auditory nerve fibres (ANFs) in NA were visualized by labelling with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Di-I) placed within the cochlea. Di-I placed near the apex of the cochlea labelled the ventral part of the NA, and Di-I placed in the base labelled the dorso-lateral part. Tonic neurons labelled with biocytin extended dendrites in parallel with the projection of ANFs in the nucleus after hatching. ANF activity of a limited range of characteristic sound frequencies is thought to be extracted by tonic neurons and encoded into firing frequencies proportional to the strength of the input. PMID:12576492

  4. Thyrotropin-releasing hormone-containing axons innervate histaminergic neurons in the tuberomammillary nucleus.

    PubMed

    Sárvári, Anna; Farkas, Erzsébet; Kádár, Andrea; Zséli, Györgyi; Füzesi, Tamás; Lechan, Ronald M; Fekete, Csaba

    2012-12-01

    Recent studies indicate that the effect of thyrotropin-releasing hormone (TRH) on the regulation of food intake may be mediated by histaminergic neurons. To elucidate the anatomical basis for a functional relationship between TRH- and histamine-synthesizing neuronal systems, double-labeling immunocytochemistry was performed on the tuberomammillary nucleus (TMN) of rats, the exclusive location of histaminergic neurons. TRH-immunoreactive (IR) innervation of the histaminergic neurons were detected in all five subnuclei (E1-5) of the TMN, but was most prominent in the E4 and E5 subnuclei where 100% of the histamine-IR neurons were contacted. The number of TRH-IR varicosities in contact with histamine-IR neurons was also greatest in the E4 and E5 subnuclei, averaging 27.0±1.2 in E4 and 7.9±0.5 in E5. Somewhat fewer histamine-IR neurons were juxtaposed by TRH-IR varicosities in E2 and E3 and contacted by 6.3±0.2 and 6.8±0.2 varicosities/innervated cell, respectively. The number of juxtapositions of TRH-IR axon varicosities with histamine-IR neurons was the lowest in the E1 subnucleus (85.7±0.9%; 4.0±0.2 varicosities/innervated cell). Ultrastructural analysis demonstrated that TRH-IR axons established both asymmetric and symmetric type synapses on the perikaryon and dendrites of the histamine-IR neurons, although the majority of synapses were asymmetric type. These data demonstrate that TRH neurons heavily innervate histaminergic neurons in all subdivisions of the TMN, with the densest innervation in the E4 and E5 subdivisions, and are likely to exert activating effects.

  5. Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus

    PubMed Central

    Hoyda, Ted D; Fry, Mark; Ahima, Rexford S; Ferguson, Alastair V

    2007-01-01

    Adiponectin is an adipocyte derived hormone which acts in the brain to modulate energy homeostasis and autonomic function. The paraventricular nucleus of the hypothalamus (PVN) which plays a key role in controlling pituitary hormone secretion has been suggested to be a central target for adiponectin actions. A number of hormones produced by PVN neurons have been implicated in the regulation of energy homeostasis including oxytocin, corticotropin releasing hormone and thyrotropin releasing hormone. In the present study we investigated the role of adiponectin in controlling the excitability of magnocellular (MNC – oxytocin or vasopressin secreting) neurons within the PVN. Using RT-PCR techniques we have shown expression of both adiponectin receptors in the PVN. Patch clamp recordings from MNC neurons in hypothalamic slices have also identified mixed (27% hyperpolarization, 42% depolarization) effects of adiponectin in modulating the excitability of the majority of MNC neurons tested. These effects are maintained when cells are placed in synaptic isolation using tetrodotoxin. Additionally we combined electrophysiological recordings with single cell RT-PCR to examine the actions of adiponectin on MNC neurons which expressed oxytocin only, vasopressin only, or both oxytocin and vasopressin mRNA and assess the profile of receptor expression in these subgroups. Adiponectin was found to hyperpolarize 100% of oxytocin neurons tested (n = 6), while vasopressin cells, while all affected (n = 6), showed mixed responses. Further analysis indicates oxytocin neurons express both receptors (6/7) while vasopressin neurons express either both receptors (3/8) or one receptor (5/8). In contrast 6/6 oxytocin/vasopressin neurons were unaffected by adiponectin. Co-expressing oxytocin and vasopressin neurons express neither receptor (4/6). The results presented in this study suggest that adiponectin plays specific roles in controlling the excitability oxytocin secreting neurons, actions

  6. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro.

    PubMed

    Lavian, Hagar; Korngreen, Alon

    2016-04-01

    The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing.

  7. Neurons in the Nucleus Accumbens Promote Selection Bias for Nearer Objects

    PubMed Central

    Morrison, Sara E.

    2014-01-01

    Both animals and humans often prefer rewarding options that are nearby over those that are distant, but the neural mechanisms underlying this bias are unclear. Here we present evidence that a proximity signal encoded by neurons in the nucleus accumbens drives proximate reward bias by promoting impulsive approach to nearby reward-associated objects. On a novel decision-making task, rats chose the nearer option even when it resulted in greater effort expenditure and delay to reward; therefore, proximate reward bias was unlikely to be caused by effort or delay discounting. The activity of individual neurons in the nucleus accumbens did not consistently encode the reward or effort associated with specific alternatives, suggesting that it does not participate in weighing the values of options. In contrast, proximity encoding was consistent and did not depend on the subsequent choice, implying that accumbens activity drives approach to the nearest rewarding option regardless of its specific associated reward size or effort level. PMID:25319709

  8. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.

    PubMed

    Sakai, K

    2011-12-01

    We have recorded, for the first time, in non-anesthetized, head-restrained mice, a total of 407 single units throughout the dorsal raphe nucleus (DR), which contains serotonin (5-hydroxytryptamine, 5-HT) neurons, during the complete wake-sleep cycle. The mouse DR was found to contain a large proportion (52.0%) of waking (W)-active neurons, together with many sleep-active (24.8%) and W/paradoxical sleep (PS)-active (18.4%) neurons and a few state-unrelated neurons (4.7%). The W-active, W/PS-active, and sleep-active neurons displayed a biphasic narrow or triphasic broad action potential. Of the 212 W-active neurons, 194 were judged serotonergic (5-HT W-active neurons) because of their triphasic long-duration action potential and low rate of spontaneous discharge, while the remaining 18 were judged non-serotonergic (non-5-HT W-active neurons) because of their biphasic narrow action potential and higher rate of spontaneous discharge. The 5-HT W-active neurons were subdivided into four groups, types I, II, III, and IV, on the basis of differences in firing pattern during wake-sleep states, their waking selectivity of discharge being in the order type I>type II>type III>type IV. During the transition from sleep to waking, the vast majority of waking-specific or waking-selective type I and II neurons discharged after onset of waking, as seen with non-5-HT W-specific neurons. Triphasic DR W/PS-active neurons were characterized by a low rate of spontaneous discharge and a similar distribution to that of tyrosine hydroxylase-immunoreactive, dopaminergic neurons. Triphasic DR slow-wave sleep (SWS)-active and SWS/PS neurons were also characterized by slow firing. At the transition from sleep to waking, sleep-selective neurons with no discharge activity during waking ceased firing before onset of waking, while, at the transition from waking to sleep, they fired after onset of sleep. The present study shows a marked heterogeneity and functional topographic organization of both

  9. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.

    PubMed

    Sakai, K

    2011-12-01

    We have recorded, for the first time, in non-anesthetized, head-restrained mice, a total of 407 single units throughout the dorsal raphe nucleus (DR), which contains serotonin (5-hydroxytryptamine, 5-HT) neurons, during the complete wake-sleep cycle. The mouse DR was found to contain a large proportion (52.0%) of waking (W)-active neurons, together with many sleep-active (24.8%) and W/paradoxical sleep (PS)-active (18.4%) neurons and a few state-unrelated neurons (4.7%). The W-active, W/PS-active, and sleep-active neurons displayed a biphasic narrow or triphasic broad action potential. Of the 212 W-active neurons, 194 were judged serotonergic (5-HT W-active neurons) because of their triphasic long-duration action potential and low rate of spontaneous discharge, while the remaining 18 were judged non-serotonergic (non-5-HT W-active neurons) because of their biphasic narrow action potential and higher rate of spontaneous discharge. The 5-HT W-active neurons were subdivided into four groups, types I, II, III, and IV, on the basis of differences in firing pattern during wake-sleep states, their waking selectivity of discharge being in the order type I>type II>type III>type IV. During the transition from sleep to waking, the vast majority of waking-specific or waking-selective type I and II neurons discharged after onset of waking, as seen with non-5-HT W-specific neurons. Triphasic DR W/PS-active neurons were characterized by a low rate of spontaneous discharge and a similar distribution to that of tyrosine hydroxylase-immunoreactive, dopaminergic neurons. Triphasic DR slow-wave sleep (SWS)-active and SWS/PS neurons were also characterized by slow firing. At the transition from sleep to waking, sleep-selective neurons with no discharge activity during waking ceased firing before onset of waking, while, at the transition from waking to sleep, they fired after onset of sleep. The present study shows a marked heterogeneity and functional topographic organization of both

  10. Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats

    PubMed Central

    Takakura, Ana Carolina Thomaz; Moreira, Thiago Santos; Colombari, Eduardo; West, Gavin H; Stornetta, Ruth L; Guyenet, Patrice G

    2006-01-01

    The rat retrotrapezoid nucleus (RTN) contains pH-sensitive neurons that are putative central chemoreceptors. Here, we examined whether these neurons respond to peripheral chemoreceptor stimulation and whether the input is direct from the solitary tract nucleus (NTS) or indirect via the respiratory network. A dense neuronal projection from commissural NTS (commNTS) to RTN was revealed using the anterograde tracer biotinylated dextran amine (BDA). Within RTN, 51% of BDA-labelled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2) but only 5% contained glutamic acid decarboxylase-67 (GAD67). Awake rats were exposed to hypoxia (n = 6) or normoxia (n = 5) 1 week after injection of the retrograde tracer cholera toxin B (CTB) into RTN. Hypoxia-activated neurons were identified by the presence of Fos-immunoreactive nuclei. CommNTS neurons immunoreactive for both Fos and CTB were found only in hypoxia-treated rats. VGLUT2 mRNA was detected in 92 ± 13% of these neurons whereas only 12 ± 9% contained GAD67 mRNA. In urethane–chloralose-anaesthetized rats, bilateral inhibition of the RTN with muscimol eliminated the phrenic nerve discharge (PND) at rest, during hyperoxic hypercapnia (10% CO2), and during peripheral chemoreceptor stimulation (hypoxia and/or i.v. sodium cyanide, NaCN). RTN CO2-activated neurons were recorded extracellularly in anaesthetized intact or vagotomized rats. These neurons were strongly activated by hypoxia (10–15% O2; 30 s) or by NaCN. Hypoxia and NaCN were ineffective in rats with carotid chemoreceptor denervation. Bilateral injection of muscimol into the ventral respiratory column 1.5 mm caudal to RTN eliminated PND and the respiratory modulation of RTN neurons. Muscimol did not change the threshold and sensitivity of RTN neurons to hyperoxic hypercapnia nor their activation by peripheral chemoreceptor stimulation. In conclusion, RTN neurons respond to brain PCO2 presumably via their intrinsic

  11. Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus.

    PubMed

    Riediger, Thomas; Traebert, Martin; Schmid, Herbert A; Scheel, Caroline; Lutz, Thomas A; Scharrer, Erwin

    2003-05-01

    The recently discovered hormone ghrelin, which is secreted from the stomach during fasting and hypoglycemia opposes the homeostatic functions of leptin by increasing food intake and decreasing energy expenditure. The hypothalamic arcuate nucleus (Arc) mediates the effects of leptin and contains a high density of ghrelin receptors. The leptin- and ghrelin-responsive network involves the hypothalamic neuropeptide Y/alpha-melanocyte stimulating hormone (NPY/alpha-MSH) system. In the rat, neurons expressing the orexigenic peptide NPY are mainly located in the ventromedial Arc (ArcM), while pro-opiomelanocortin (POMC) neurons, synthesizing the anorectic peptide alpha-MSH, predominate in the ventrolateral Arc (ArcL). In extracellular single unit recordings from in vitro slice preparations of the Arc, superfusion of ghrelin (10(-8) M) exerted predominantly excitatory effects on ArcM neurons (73%, n=93), while a high number ArcL neurons were inhibited in response to ghrelin (42%, n=43). The excitatory effect of ghrelin on neuronal activity was postsynaptic since it was unaffected by synaptic blockade (low Ca(2+)/high Mg(2+) solution). In contrast, the inhibitory response in the ArcL was abolished by the blockade of synaptic interactions indicating a presynaptic mechanism. These results indicate that circulating ghrelin may oppose the actions of leptin by directly activating NPY-neurons of the ArcM and by indirectly inhibiting POMC neurons of the ArcL.

  12. Depletion of cholinergic neurons of the medullary arcuate nucleus in multiple system atrophy.

    PubMed

    Benarroch, E E; Schmeichel, A M; Parisi, J E

    2001-03-23

    The human arcuate nucleus (ArcN) has been considered akin to the pontine precerebellar nuclei. However, there is anatomical, functional, and clinical evidence that the ArcN may be the homologue of chemosensitive areas of the ventral medullary surface involved in ventilatory responses to hypercarbia and cerebrospinal fluid acidosis. Acetylcholine has been involved in mechanisms of central chemosensitivity. Loss of ArcN neurons has been reported in patients with multiple system atrophy (MSA), a disorder characterized by disturbed automatic ventilation, but the neurochemical identity of these neurons is undetermined. We sought to determine whether the ArcN contains cholinergic neurons and whether these neurons are depleted in patients with MSA. Medullae were obtained from six patients with MSA, five patients with Parkinson's disease (PD) and six sex- and age-matched controls. Fifty-micron transverse sections obtained through the mid-olivary levels were processed for acetylcholinesterase (AchE), choline acetyltransferase (CAT), and alpha-synuclein immunoreactivity. We found that the ArcN contained CAT-positive neurons. There was a significant decrease in density of cholinergic ArcN neurons in MSA but not in PD patients. alpha-Synuclein-containing inclusions were present in the ArcN of MSA patients. Depletion of cholinergic neurons may provide a substrate for disturbances in automatic respiration in MSA patients.

  13. Dendritic geometry shapes neuronal cAMP signalling to the nucleus

    PubMed Central

    Li, Lu; Gervasi, Nicolas; Girault, Jean-Antoine

    2015-01-01

    Neurons have complex dendritic trees, receiving numerous inputs at various distances from the cell body. Yet the rules of molecular signal propagation from dendrites to nuclei are unknown. DARPP-32 is a phosphorylation-regulated signalling hub in striatal output neurons. We combine diffusion-reaction modelling and live imaging to investigate cAMP-activated DARPP-32 signalling to the nucleus. The model predicts maximal effects on the nucleus of cAMP production in secondary dendrites, due to segmental decrease of dendrite diameter. Variations in branching, perikaryon size or spines have less pronounced effects. Biosensor kinase activity measurement following cAMP or dopamine uncaging confirms these predictions. Histone 3 phosphorylation, regulated by this pathway, is best stimulated by cAMP released in secondary-like dendrites. Thus, unexpectedly, the efficacy of diffusion-based signalling from dendrites to nucleus is not inversely proportional to the distance. We suggest a general mechanism by which dendritic geometry counterbalances the effect of dendritic distance for signalling to the nucleus. PMID:25692798

  14. Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS).

    PubMed

    Singru, Praful S; Wittmann, Gábor; Farkas, Erzsébet; Zséli, Györgyi; Fekete, Csaba; Lechan, Ronald M

    2012-08-01

    We previously demonstrated that refeeding after a prolonged fast activates a subset of neurons in the ventral parvocellular subdivision of the paraventricular nucleus (PVNv) as a result of increased melanocortin signaling. To determine whether these neurons contribute to satiety by projecting to the nucleus tractus solitarius (NTS), the retrogradely transported marker substance, cholera toxin-β (CTB), was injected into the dorsal vagal complex of rats that were subsequently fasted and refed for 2 h. By double-labeling immunohistochemistry, CTB accumulation was found in the cytoplasm of the majority of refeeding-activated c-Fos neurons in the ventral parvocellular subdivision of the hypothalamic paraventricular nucleus (PVNv). In addition, a large number of refeeding-activated c-Fos-expressing neurons were observed in the lateral parvocellular subdivision (PVNl) that also contained CTB and were innervated by axon terminals of proopiomelanocortin neurons. To visualize the location of neuronal activation within the NTS by melanocortin-activated PVN neurons, α-MSH was focally injected into the PVN, resulting in an increased number of c-Fos-containing neurons in the PVN and in the NTS, primarily in the medial and commissural parts. All refeeding-activated neurons in the PVNv and PVNl expressed the mRNA of the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), indicating their glutamatergic phenotype, but only rare neurons contained oxytocin. These data suggest that melanocortin-activated neurons in the PVNv and PVNl may contribute to refeeding-induced satiety through effects on the NTS and may alter the sensitivity of NTS neurons to vagal satiety inputs via glutamate excitation.

  15. Signaling from the Cytoplasm to the Nucleus in Striatal Medium-Sized Spiny Neurons

    PubMed Central

    Matamales, Miriam; Girault, Jean-Antoine

    2011-01-01

    Striatal medium-sized spiny neurons (MSNs) receive massive glutamate inputs from the cerebral cortex and thalamus and are a major target of dopamine projections. Interaction between glutamate and dopamine signaling is crucial for the control of movement and reward-driven learning, and its alterations are implicated in several neuropsychiatric disorders including Parkinson’s disease and drug addiction. Long-lasting forms of synaptic plasticity are thought to depend on transcription of gene products that alter the structure and/or function of neurons. Although multiple signal transduction pathways regulate transcription, little is known about signal transmission between the cytoplasm and the nucleus of striatal neurons and its regulation. Here we review the current knowledge of the signaling cascades that target the nucleus of MSNs, most of which are activated by cAMP and/or Ca2+. We outline the mechanisms by which signals originating at the plasma membrane and amplified in the cytoplasm are relayed to the nucleus, through the regulation of several protein kinases and phosphatases and transport through the nuclear pore. We also summarize the identified mechanisms of transcription regulation and chromatin remodeling in MSNs that appear to be important for behavioral adaptations, and discuss their relationships with epigenetic regulation. PMID:21779236

  16. Ionotropic NMDA receptor evokes an excitatory response in superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Oskutyte, Diana; Ishizuka, Ken'Ichi; Satoh, Yoshihide; Murakami, Toshiki

    2004-02-27

    Extracellular recordings were taken from preganglionic superior salivatory nucleus (SSN) neurons projecting to submandibular and intra-lingual ganglia, in order to study the action of SSN neurons resulting from ionophoretic application of ionotropic NMDA receptor agonist in urethane-chloralose anaesthetized rats. Single SSN neurons were identified by their antidromic spike responses following stimulation of the chorda-lingual nerve (CLN), chorda tympani branches (CTBs) and the lingual nerve (LN). About one-third (33%, 10/30) of the identified SSN neurons were induced to fire by ionophoretic application of the NMDA receptor agonists used, dl-homocysteic acid (DLH) and N-methyl-D-aspartic acid (NMDA). More than half exhibited firing at high frequencies, often exceeding 40 Hz. About one-fifth (20%; 6/30) of the identified SSN neurons exhibited orthodromic spike responses to the combination of NMDA receptor agonist application and sensory nerve (CLN or LN) stimulus. These excitatory responses evoked by application of NMDA receptor agonist were attenuated (n = 4) by ionophoretic application of DL-2-amino-5-phosphonovaleric acid (AP5; NMDA receptor antagonist). About half (47%) of the neurons did not respond to any combination of NMDA receptor agonist and sensory nerve stimuli. No differences were observed between SSN neurons with B fibre axons and those with C fibre axons in response to ionophoresis of the NMDA receptor agonists. The NMDA-sensitive neurons, which exhibited high frequency firing, were predominantly found in the rostral part of the SSN. In summary, activation of ionotropic NMDA receptors exerts an excitatory effect on about half of the SSN neurons. These data support the view that NMDA receptors are involved in information processing and transmission on SSN neurons.

  17. Spatially selective reward site responses in tonically active neurons of the nucleus accumbens in behaving rats.

    PubMed

    Mulder, A B; Shibata, R; Trullier, O; Wiener, S I

    2005-05-01

    To study how hippocampal output signals conveying spatial and other contextual information might be integrated in the nucleus accumbens, tonically active accumbens neurons were recorded in three unrestrained rats as they performed spatial orientation tasks on an elevated round rotatable platform with four identical reward boxes symmetrically placed around the edge. The partially water-deprived rats were required to shuttle either between the pair of reward boxes indicated by beacon cues (lights in the boxes) or between the pair of boxes occupying particular locations in relation to environmental landmark cues. In 43/82 neurons, behaviorally correlated phasic modulations in discharge activity occurred, primarily prior to or after water was provided at the reward boxes. Twenty-two had inhibitory modulation, 12 excitatory, and nine were mixed excitatory and inhibitory. Although tonically active neurons (TANs) have rarely been reported in the rodent, the inhibitory and mixed responses correspond to previously reports in the macaque accumbens of tonically active neurons with activity correlated with reward delivery and, following conditioning, to sensory stimuli associated with rewards. Eighteen of the 43 tonically active accumbens neurons showed spatial selectivity, i.e., behaviorally correlated increases or decreases in firing rate were of different magnitudes at the respective reward boxes. This is the first demonstration that the configuration of environmental sensory cues associated with reward sites are also an effective stimulus for these neurons and that different neurons are selective for different places. These results are consistent with a role for the nucleus accumbens in the initiation of goal-directed displacement behaviors.

  18. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat.

    PubMed

    Giannoni, Patrizia; Passani, Maria-Beatrice; Nosi, Daniele; Chazot, Paul L; Shenton, Fiona C; Medhurst, Andrew D; Munari, Leonardo; Blandina, Patrizio

    2009-06-01

    Histaminergic neurons of the hypothalamic tuberomammillary nuclei (TMN) send projections to the whole brain. Early anatomical studies described histaminergic neurons as a homogeneous cell group, but recent evidence indicates that histaminergic neurons are heterogeneous and organized into distinct circuits. We addressed this issue using the double-probe microdialysis in freely moving rats to investigate if two compounds acting directly onto histaminergic neurons to augment cell firing [thioperamide and bicuculline, histamine H(3)- and gamma-aminobutyric acid (GABA)(A)-receptor (R) antagonists, respectively] may discriminate groups of histaminergic neurons impinging on different brain regions. Intra-hypothalamic perfusion of either drug increased histamine release from the TMN and cortex, but not from the striatum. Thioperamide, but not bicuculline, increased histamine release from the nucleus basalis magnocellularis (NBM), bicuculline but not thioperamide increased histamine release from the nucleus accumbens (NAcc). Intra-hypothalamic perfusion with thioperamide increased the time spent in wakefulness. To explore the local effects of H(3)-R blockade in the histaminergic projection areas, each rat was implanted with a single probe to simultaneously administer thioperamide and monitor local changes in histamine release. Thioperamide increased histamine release from the NBM and cortex significantly, but not from the NAcc or striatum. The presence of H(3)-Rs on histaminergic neurons was assessed using double-immunofluorescence with anti-histidine decarboxylase antibodies to identify histaminergic cells and anti-H(3)-R antibodies. Confocal analysis revealed that all histaminergic somata were immunopositive for the H(3)-R. This is the first evidence that histaminergic neurons are organized into functionally distinct circuits that influence different brain regions, and display selective control mechanisms.

  19. Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate.

    PubMed

    Claussen, Catherine M; Chong, Samuel L; Dafny, Nachum

    2014-04-22

    Acute and chronic methylphenidate (MPD) exposure was recorded simultaneously for the rat's locomotor activity and the nucleus accumbens (NAc) neuronal activity. The evaluation of the neuronal events was based on the animal's behavior response to chronic MPD administration: 1) Animals exhibiting behavioral sensitization, 2) Animals exhibiting behavioral tolerance. The experiment lasted for 10days with four groups of animals; saline, 0.6, 2.5, and 10.0mg/kg MPD. For the main behavioral findings, about half of the animals exhibited behavioral sensitization or behavioral tolerance to 0.6, 2.5, and/or 10mg/kg MPD respectively. Three hundred and forty one NAc neuronal units were evaluated. Approximately 80% of NAc units responded to 0.6, 2.5, and 10.0mg/kg MPD. When the neuronal activity was analyzed based on the animals' behavioral response to chronic MPD exposure, significant differences were seen between the neuronal population responses recorded from animals that expressed behavioral sensitization when compared to the NAc neuronal responses recorded from animals exhibiting behavioral tolerance. Three types of neurophysiological sensitization and neurophysiological tolerance can be recognized following chronic MPD administration to the neuronal populations. Collectively, these findings show that the same dose of chronic MPD can elicit either behavioral tolerance or behavioral sensitization. Differential statistical analyses were used to verify our hypothesis that the neuronal activity recorded from animals exhibiting behavioral sensitization will respond differently to MPD compared to those animals exhibiting behavioral tolerance, thus, suggesting that it is essential to record the animal's behavior concomitantly with neuronal recordings.

  20. Preservation of Neurons of the Nucleus Basalis in Subcortical Ischemic Vascular Disease

    PubMed Central

    Jung, San; Zarow, Chris; Mack, Wendy J.; Zheng, Ling; Vinters, Harrry V.; Ellis, William G.; Lyness, Scott A.; Chui, Helena C.

    2014-01-01

    Object To compare loss of neurons in the nucleus basalis of Meynert (NB) in subcortical ischemic vascular disease (SIVD) to normal controls, Alzheimer’s disease (AD), and cases with mixed AD/SIVD pathology. Design Autopsied cases drawn from a longitudinal observational study with SIVD, AD and normal aging. Subjects Pathologically defined SIVD (n = 16), AD (n = 20), mixed pathology (n = 10), and age- and education-matched normal control (n = 17) groups were studied. Main Outcome measures NB neuronal cell counts in each group and their correlation with the extent of MRI white matter lesions (WML) and Clinical Dementia Rating (CDR) scores closest to death. Results No significant loss of neurons was found in SIVD compared to age-matched controls in contrast to AD and mixed groups, where there was significant neuronal loss. A significant inverse correlation between NB neurons and CDR scores was found in AD, but not in the SIVD and mixed groups. NB cell counts were not correlated with either the extent of white matter lesions or cortical gray matter volume in SIVD or AD groups. Conclusions These findings inveigh against primary loss of cholinergic neurons in SIVD, but do not rule out the possibility of secondary cholinergic deficits due to disruptions of cholinergic projections to cerebral cortex. PMID:22393167

  1. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input.

    PubMed

    Dean, J B; Bayliss, D A; Erickson, J T; Lawing, W L; Millhorn, D E

    1990-01-01

    The effects of elevated CO2 (i.e. hypercapnia) on neurons in the nucleus tractus solitarii were studied using extracellular (n = 82) and intracellular (n = 33) recording techniques in transverse brain slices prepared from rat. Synaptic connections from putative chemosensitive neurons in the ventrolateral medulla were removed by bisecting each transverse slice and discarding the ventral half. In addition, the response to hypercapnia in 20 neurons was studied during high magnesium-low calcium synaptic blockade. Sixty-five per cent of the neurons (n = 75) tested were either insensitive or inhibited by hypercapnia. However, 35% (n = 40) were depolarized and/or increased their firing rate during hypercapnia. Nine out of 10 CO2-excited neurons retained their chemosensitivity to CO2 in the presence of high magnesium-low calcium synaptic blockade medium. Our findings demonstrate that many neurons in the nucleus tractus solitarii were depolarized and/or increased their firing rate during hypercapnia. These neurons were not driven synaptically by putative chemosensitive neurons of the ventrolateral medulla since this region was removed from the slice. Furthermore, because chemosensitivity persisted in most neurons tested during synaptic blockade, we conclude that some neurons in the nucleus tractus solitarii are inherently CO2-chemosensitive. Although the function of dorsal medullary chemosensitive neurons cannot be determined in vitro, their location and their inherent chemosensitivity suggest a role in cardiorespiratory central chemoreception. PMID:2120613

  2. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus

    PubMed Central

    Cui, Ran Ji; Roberts, Brandon L.; Zhao, Huan; Andresen, Michael C.; Appleyard, Suzanne M.

    2014-01-01

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract evoked EPSCs (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor specific antagonist, CTOP. Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP positive neurons than EGFP negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids

  3. Nociceptin/orphanin FQ suppresses the excitability of neurons in the ventromedial nucleus of the hypothalamus.

    PubMed

    Chee, Melissa J; Price, Christopher J; Statnick, Michael A; Colmers, William F

    2011-07-01

    Nociceptin or orphanin FQ (N/OFQ) stimulates food intake when injected into the ventromedial nucleus of the hypothalamus (VMN). The VMN negatively regulates energy balance in part by tonically activating proopiomelanocortin arcuate neurons, thereby suppressing food intake. However, it is not clear how orexigenic neurotransmission within the VMN can stimulate food intake. We tested the hypothesis that the orexigenic action of N/OFQ results from its inhibition of anorexigenic VMN neurons. We studied the effects of N/OFQ on the electrical properties of anorexigenic VMN neurons in acute brain slices. Ionic mechanisms underlying the actions of N/OFQ were studied using whole cell patch-clamp recordings from VMN neurons expressing the anorexigenic leptin receptor (LepRb). Bath application of N/OFQ to LepRb-expressing VMN neurons elicited a robust, reversible membrane hyperpolarization that suppressed neuronal excitability by raising the action potential firing threshold and cell rheobase. N/OFQ activated a postsynaptic, G-protein coupled, inwardly rectifying potassium (GIRK) current that was sensitive to G-protein inactivation, blocked by the GIRK blocker SCH23390, and occluded by the GABAB agonist and potent GIRK activator, baclofen. Application of the selective N/OFQ receptor antagonist SB-612111 blocked the inhibitory effects of N/OFQ. We concluded that N/OFQ directly inhibited VMN neurons by activating a GIRK. These results implicate the site-specific contributions of orexigenic neuropeptides at VMN neurons to suppress anorexigenic output. This study thus advances our understanding regarding the contributions of the VMN to hypothalamic regulation of energy balance.

  4. TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons.

    PubMed

    Wang, Sheng; Benamer, Najate; Zanella, Sébastien; Kumar, Natasha N; Shi, Yingtang; Bévengut, Michelle; Penton, David; Guyenet, Patrice G; Lesage, Florian; Gestreau, Christian; Barhanin, Jacques; Bayliss, Douglas A

    2013-10-01

    Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H(+) via an unidentified pH-sensitive background K(+) channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K(+) channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2(-/-) mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2(-/-) mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K(+) currents were reduced in amplitude in RTN neurons from TASK-2(-/-) mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart-brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2(-/-) mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold.

  5. [Neuronal mechanisms of motor signal transmission in thalamic Voi nucleus in spasmodic torticollis patients].

    PubMed

    Sedov, A S; Raeva, S N; Pavlenko, V B

    2014-01-01

    Neural mechanisms of motor signal transmission in ventrooral (Voi) nucleus of motor thalamus during the realization-of voluntary and involuntary abnormal (dystonic) movements in patients with spasmodic torticollis were investigated by means of microelectrode technique. The high reactivity of the cellular Voi elements to various functional (mainly motor) tests was proved. Analysis of neuronal activity showed: (1) the difference of neural mechanisms of motor signal transmission in the realization of voluntary movement with and without the involvement of the pathological axial neck muscles, as well as passive and abnormal involuntary dystonic movements; (2) significance of sensory component in the mechanisms of sensorimotor interactions during realization of voluntary and involuntary dystonic head and neck movements, causing the activation of the axial neck muscles; (3) important role of the rhythmic and synchronized neuronal activity in motor signal transmission during the realization of active and passive movements. Participation of Voi nucleus in pathological mechanisms of spasmodic torticollis was shown. The data obtained can be used for identificatiori of Voi thalamic nucleus during stereotactic neurosurgical operations in patients with spasmodic torticollis for selection the optimum destruction (stimulation) target and reduction of postoperative effects.

  6. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    PubMed

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.

  7. Tuberculoventral neurons project to the multipolar cell area but not to the octopus cell area of the posteroventral cochlear nucleus.

    PubMed

    Wickesberg, R E; Whitlon, D; Oertel, D

    1991-11-15

    Tuberculoventral neurons in the deep layer of the dorsal cochlear nucleus (DCN) provide frequency-specific inhibition to neurons in the anteroventral cochlear nucleus (AVCN) of the mouse (Wickesberg and Oertel, '88, '90). The present experiments examine the projection from the deep DCN to the posteroventral cochlear nucleus (PVCN). Horseradish peroxidase (HRP) injections into the PVCN reveal that the multipolar cell area, but not the octopus cell area, is innervated by neurons in the deep layer of the DCN. Injections into the multipolar cell area, in the rostral and ventral PVCN, labeled neurons across the entire rostrocaudal extent of the deep DCN. The labeled tuberculoventral neurons generally lay within the band of labeled auditory nerve terminals in the DCN. Injections of HRP into the octopus cell area, in the dorsal caudal PVCN, labeled almost no cells within the band of auditory nerve fiber terminals that were labeled by the same injection. The inhibition from tuberculoventral neurons onto ventral cochlear nucleus (VCN) neurons is likely to be mediated by glycine (Wickesberg and Oertel, '90). Slices of the cochlear nuclear complex were immunolabeled by an antibody against glycine conjugated with glutaraldehyde to bovine serum albumin (Wenthold et al., '87). Glycine-like immunoreactivity was found throughout the DCN, the AVCN and the multipolar cell area, but there was little labeling in the octopus cell area. This finding provides independent evidence that tuberculoventral neurons do not innervate the octopus cell area and indicates that the octopus cell area is anatomically and functionally distinct.

  8. CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii.

    PubMed

    Dean, J B; Lawing, W L; Millhorn, D E

    1989-01-01

    To identify central sites of potential CO2/H+-chemoreceptive neurons, and the mechanism responsible for neuronal chemosensitivity, intracellular recordings were made in rat tissue slices in two cardiopulmonary-related regions (i.e., nucleus tractus solitarii, NTS; nucleus ambiguus, AMBc) during exposure to high CO2. When the NTS was explored slices were bisected and the ventral half discarded. Utilizing such "dorsal" medullary slices removed any impinging synaptic input from putative chemoreceptors in the ventrolateral medulla. In the NTS, CO2-induced changes in firing rate were associated with membrane depolarizations ranging from 2-25 mV (n = 15). In some cases increased e.p.s.p. activity was observed during CO2 exposure. The CO2-induced depolarization occurred concomitantly with an increased input resistance ranging from 19-23 M omega (n = 5). The lower membrane conductance during hypercapnia suggests that CO2-induced depolarization is due to a decreased outward potassium conductance. Unlike neurons in the NTS, AMBc neurons were not spontaneously active and were rarely depolarized by hypercapnia. Eleven of 12 cells tested were either hyperpolarized by or insensitive to CO2. Only 1 neuron in the AMBc was depolarized and it also showed an increased input resistance during CO2 exposure. Our findings suggest that CO2/H+-related stimuli decrease potassium conductance which depolarizes the cell and increases firing rate. Although our in vitro studies cannot guarantee the specific function of these cells, we believe they may be involved with brain pH homeostasis and cardiopulmonary regulation. PMID:2507342

  9. Soluble guanylate cyclase and neuronal nitric oxide synthase colocalize in rat nucleus tractus solitarii.

    PubMed

    Lin, L H; Talman, W T

    2005-03-01

    Nitric oxide has been implicated in transmission of cardiovascular signals in the nucleus tractus solitarii (NTS). Pharmacological studies suggest that activation of neurons by nitric oxide in the NTS may involve soluble guanylate cyclase (sGC). However, anatomical data supporting this suggestion have not been available. In this study, we tested the hypothesis that neurons and fibers containing neuronal nitric oxide synthase (nNOS) lie in close proximity to those containing sGC and the two enzymes colocalize in some neurons and fibers in the NTS. We perfused six rats and obtained brain stem sections for double immunofluorescent staining utilizing antibodies selective for sGC and for nNOS combined with confocal microscopy. The distribution and staining intensity of nNOS-immunoreactivity (IR) was similar to our earlier reports. IR of sGC was present in cell bodies, proximal dendrites and fibers of many brain stem regions. Strong sGC-IR was noted in the hypoglossal, dorsal motor nucleus of vagus and gracilis nuclei. The NTS exhibited moderate sGC-IR. Superimposed images showed that many NTS neurons contained both nNOS-IR and sGC-IR. The percentage of sGC-IR positive cells that were also nNOS-IR positive differed among NTS subnuclei. Similarly, the percentage of nNOS-IR positive cells that were also sGC positive differed among NTS subnuclei. Fibers stained for both nNOS-IR and sGC-IR were also present in NTS subnuclei. In addition, we identified fibers that were stained for nNOS-IR or sGC-IR alone and often found such singly labeled fibers apposed to each other. These data support our hypothesis and provide anatomical support for the suggestion that nitroxidergic activation of the NTS involves sGC.

  10. Role of G-proteins in the effects of leptin on pedunculopontine nucleus neurons.

    PubMed

    Beck, Paige; Mahaffey, Susan; Urbano, Francisco J; Garcia-Rill, Edgar

    2013-09-01

    The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole-cell patch clamp recordings were performed in rat brainstem slices from 9 to 17 day old pups. Previous results showed that leptin caused a partial blockade of sodium (I(Na)) and h-current (I(H)) in PPN neurons. TA (100 nM) reduced the blockade of I(Na) (~ 50% reduction) and I(H) (~ 93% reduction) caused by leptin. Intracellular guanosine 5'-[β-thio]diphosphate trilithium salt (a G-protein inhibitor) significantly reduced the effect of leptin on I(Na) (~ 60% reduction) but not on I(H) (~ 25% reduction). Intracellular GTPγS (a G-protein activator) reduced the effect of leptin on both I(Na) (~ 80% reduction) and I(H) (~ 90% reduction). These results suggest that the effects of leptin on the intrinsic properties of PPN neurons are leptin receptor- and G-protein dependent. We also found that leptin enhanced NMDA receptor-mediated responses in single neurons and in the PPN population as a whole, an effect blocked by TA. These experiments further strengthen the association between leptin dysregulation and sleep disturbances. Beck et al. investigated the effects of leptin on the intrinsic properties of neurons from the pedunculopontine nucleus (PPN). Leptin reduced the amplitude of voltage-gated sodium (I(Na)) and hyperpolarization-activated cyclic nucleotide-gated HCN (I(H)) channels. These effects were antagonized by a leptin receptor (OB-R) antagonist and by the G-protein antagonist GDPβ.

  11. A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties.

    PubMed

    Ostapoff, E M; Feng, J J; Morest, D K

    1994-08-01

    The present study examined the morphological cell types of neurons labeled with intracellular horseradish peroxidase injections, many of them following electrophysiological recordings in the cochlear nucleus of gerbils and chinchillas. Most of the subdivisions and neuronal types previously described in the cat were identified in the present material, including spherical and globular bushy cells, stellate, bushy multipolar, elongate, octopus, and giant cells in the ventral cochlear nucleus, and a cartwheel cell in the dorsal cochlear nucleus. In many cases these structurally distinct neurons were correlated with their characteristic responses to stimulation by sound or intracellular injection of depolarizing current. The dendritic terminals of the elongate, antenniform, and clavate cells of the posteroventral cochlear nucleus link each of these cell types with neighboring structures in distinct patterns, which may provide a basis for differences in synaptic organization. These cell types differ from each other and from the stellate cells of the anteroventral cochlear nucleus. Despite their heterogeneous morphology, most of these neurons had a regular discharge in response to stimulation (choppers). Irregularly firing neurons (primary-like) had very different structures, e.g., the spherical and globular bushy cells and the bushy multipolar neuron. They, too, represent a heterogeneous population. An onset neuron was identified as an octopus cell. This paper compares the morphological observations with the electrophysiological properties of different cell types reported in a companion paper (Feng et al. [1994] J. Comp. Neurol.). Together, these findings imply that response properties may be partially independent of neuronal structure. Morphologically distinct neurons can generate similar temporal patterns in response to simple acoustic stimuli. Nevertheless, the synaptic organization of these different neuron types, including their connections, would be expected to

  12. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice.

    PubMed

    Jones, Kelly A; Han, Ji Eun; DeBruyne, Jason P; Philpot, Benjamin D

    2016-01-01

    Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3a(m-/p+)) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting. PMID:27306933

  13. Effect of sex steroid hormones on the number of serotonergic neurons in rat dorsal raphe nucleus.

    PubMed

    Kunimura, Yuyu; Iwata, Kinuyo; Iijima, Norio; Kobayashi, Makito; Ozawa, Hitoshi

    2015-05-01

    Disorders caused by the malfunction of the serotonergic system in the central nervous system show sex-specific prevalence. Many studies have reported a relationship between sex steroid hormones and the brain serotonergic system; however, the interaction between sex steroid hormones and the number of brain neurons expressing serotonin has not yet been elucidated. In the present study, we determined whether sex steroid hormones altered the number of serotonergic neurons in the dorsal raphe nucleus (DR) of adult rat brains. Animals were divided into five groups: ovariectomized (OVX), OVX+low estradiol (E2), OVX+high E2, castrated males, and intact males. Antibodies against 5-hydroxytryptamine (5-HT, serotonin) and tryptophan hydroxylase (Tph), an enzyme for 5-HT synthesis, were used as markers of 5-HT neurons, and the number of 5-HT-immunoreactive (ir) or Tph-ir cells was counted. We detected no significant differences in the number of 5-HT-ir or Tph-ir cells in the DR among the five groups. By contrast, the intensity of 5-HT-ir showed significant sex differences in specific subregions of the DR independent of sex steroid levels, suggesting that the manipulation of sex steroid hormones after maturation does not affect the number and intensive immunostaining of serotonergic neurons in rat brain. Our results suggest that, the sexual dimorphism observed in the serotonergic system is due to factors such as 5-HT synthesis, transportation, and degradation but not to the number of serotonergic neurons.

  14. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice

    PubMed Central

    Jones, Kelly A.; Han, Ji Eun; DeBruyne, Jason P.; Philpot, Benjamin D.

    2016-01-01

    Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3am–/p+) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting. PMID:27306933

  15. Activity of Caudate Nucleus Neurons in a Visual Fixation Paradigm in Behaving Cats

    PubMed Central

    Nagypál, Tamás; Gombkötő, Péter; Barkóczi, Balázs; Benedek, György; Nagy, Attila

    2015-01-01

    Beside its motor functions, the caudate nucleus (CN), the main input structure of the basal ganglia, is also sensitive to various sensory modalities. The goal of the present study was to investigate the effects of visual stimulation on the CN by using a behaving, head-restrained, eye movement-controlled feline model developed recently for this purpose. Extracellular multielectrode recordings were made from the CN of two cats in a visual fixation paradigm applying static and dynamic stimuli. The recorded neurons were classified in three groups according to their electrophysiological properties: phasically active (PAN), tonically active (TAN) and high-firing (HFN) neurons. The response characteristics were investigated according to this classification. The PAN and TAN neurons were sensitive primarily to static stimuli, while the HFN neurons responded primarily to changes in the visual environment i.e. to optic flow and the offset of the stimuli. The HFNs were the most sensitive to visual stimulation; their responses were stronger than those of the PANs and TANs. The majority of the recorded units were insensitive to the direction of the optic flow, regardless of group, but a small number of direction-sensitive neurons were also found. Our results demonstrate that both the static and the dynamic components of the visual information are represented in the CN. Furthermore, these results provide the first piece of evidence on optic flow processing in the CN, which, in more general terms, indicates the possible role of this structure in dynamic visual information processing. PMID:26544604

  16. Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders.

    PubMed

    Kovacs, Gabor G; Klöppel, Stefan; Fischer, Ingeborg; Dorner, Suzanne; Lindeck-Pozza, Elisabeth; Birner, Peter; Bötefür, Ingolf C; Pilz, Peter; Volk, Benedikt; Budka, Herbert

    2003-01-20

    Neurodegenerative diseases share symptoms suggested to be related to the serotonergic system. To evaluate the involvement of serotonergic raphe nuclei, we compared the percentage of neurons synthesizing serotonin in the nucleus centralis superior (NCS), raphe obscurus and pallidus (NROP) in Alzheimer's disease (AD), progressive supranuclear palsy (PSP), Parkinson's disease (PD), multiple system atrophy (MSA), and control brains. We used immunohistochemistry for tryptophan hydroxylase (TpOH), phosphorylated tau, and alpha-synuclein. We observed a significant decrease in the NCS in the NROP in AD, but a significant increase in PSP and MSA. Cytoskeletal pathology was present in the NCS and NROP to a variable degree. We conclude that there is disease- and nucleus-specific alteration of serotonin synthesis in the raphe.

  17. Neuronal activity of the cat supraoptic nucleus is influenced by muscle small-diameter afferent (groups III and IV) receptors.

    PubMed

    Kannan, H; Yamashita, H; Koizumi, K; Brooks, C M

    1988-08-01

    In anesthetized cats, responses of single neurosecretory neurons of the supraoptic nucleus to activation of muscle receptors were investigated. Electrical stimulation (1-3 pulses at 200 Hz) of group III and IV pure muscle afferents (gastrocnemius nerve) evoked excitation of greater than 50% of supraoptic nucleus neurons (n = 50), whereas stimulation of group Ia or Ib fibers was ineffective. Baroreceptor stimulation inhibited 95% of these supraoptic nucleus neurons that responded to activation of muscle afferents. Excitation of receptors in the gastrocnemius muscle by intra-arterial injection of chemicals (NaCl, KCl, and bradykinin) increased firing rates of most (84%, 74%, and 80%, respectively) neurosecretary neurons. The magnitude of the excitatory response was dose dependent--bradykinin being the most effective. The response disappeared after muscle denervation. When the gastrocnemius muscle alone was contracted phasically by ventral root stimulation, discharges of the supraoptic nucleus neurons increased, whereas quick stretch of the muscle had no effect. We conclude that activation of muscle receptors by chemical or mechanical stimulus can directly excite neurosecretory neurons in the supraoptic nucleus and that afferent impulses are carried by polymodal fibers of small diameter but not by the largest afferents (group I) from the muscle. The results may relate to increased concentrations of plasma vasopressin during exercise.

  18. Organization and properties of GABAergic neurons in solitary tract nucleus (NTS).

    PubMed

    Bailey, Timothy W; Appleyard, Suzanne M; Jin, Young-Ho; Andresen, Michael C

    2008-04-01

    Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS). GABAergic neurons are scattered throughout the NTS, but their relation to solitary tract (ST) afferent pathways is imprecisely known. We hypothesized that most GABAergic NTS neurons would be connected only indirectly to the ST. We identified GABAergic neurons in brain stem horizontal slices using transgenic mice in which enhanced green fluorescent protein (EGFP) expression was linked to glutamic acid decarboxylase expression (GAD(+)). Finely graded electrical shocks to ST recruit ST-synchronized synaptic events with all-or-none thresholds and individual waveforms did not change with greater suprathreshold intensities--evidence consistent with initiation by single afferent axons. Most (approximately 70%) GAD(+) neurons received ST-evoked excitatory postsynaptic currents (EPSCs) that had minimally variant latencies (jitter, SD of latency <200 micros) and waveforms consistent with single, direct ST connections (i.e., monosynaptic). Increasing stimulus intensity evoked additional ST-synchronized synaptic responses with jitters >200 micros including inhibitory postsynaptic currents (IPSCs), indicating indirect connections (polysynaptic). Shocks of suprathreshold intensity delivered adjacent (50-300 microm) to the ST failed to excite non-ST inputs to second-order neurons, suggesting a paucity of axons passing near to ST that connected to these neurons. Despite expectations, we found similar ST synaptic patterns in GAD(+) and unlabeled neurons. Generally, ST information that arrived indirectly had small amplitudes (EPSCs and IPSCs) and frequency-dependent failures that reached >50% for IPSCs to bursts of stimuli. This ST afferent pathway organization is strongly use-dependent--a property that may tune signal propagation within and beyond NTS.

  19. Activation of metabotropic glutamate receptors regulates ribosomes of cochlear nucleus neurons.

    PubMed

    Carzoli, Kathryn L; Hyson, Richard L

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity.

  20. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus.

    PubMed

    Tattersall, Timothy L; Stratton, Peter G; Coyne, Terry J; Cook, Raymond; Silberstein, Paul; Silburn, Peter A; Windels, François; Sah, Pankaj

    2014-03-01

    The pedunculopontine nucleus (PPN) is a part of the mesencephalic locomotor region and is thought to be important for the initiation and maintenance of gait. Lesions of the PPN induce gait deficits, and the PPN has therefore emerged as a target for deep brain stimulation for the control of gait and postural disability. However, the role of the PPN in gait control is not understood. Using extracellular single-unit recordings in awake patients, we found that neurons in the PPN discharged as synchronous functional networks whose activity was phase locked to alpha oscillations. Neurons in the PPN responded to limb movement and imagined gait by dynamically changing network activity and decreasing alpha phase locking. Our results indicate that different synchronous networks are activated during initial motor planning and actual motion, and suggest that changes in gait initiation in Parkinson's disease may result from disrupted network activity in the PPN.

  1. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  2. Learning-related neuronal activity in the ventral lateral geniculate nucleus during associative cerebellar learning

    PubMed Central

    Kashef, Alireza; Campolattaro, Matthew M.

    2014-01-01

    During delay eyeblink conditioning, rats learn to produce an eyelid-closure conditioned response (CR) to a conditioned stimulus (CS), such as a light, which precedes and coterminates with an unconditioned stimulus (US). Previous studies have suggested that the ventral lateral geniculate nucleus (LGNv) might play an important role in visual eyeblink conditioning by supplying visual sensory input to the pontine nuclei (PN) and also receiving feedback from the cerebellum. No prior study has investigated LGNv neuronal activity during eyeblink conditioning. The present study used multiple tetrodes to monitor single-unit activity in the rat LGNv during pre-exposure (CS only), unpaired CS/US, and paired CS-US training conditions. This behavioral-training sequence was used to investigate nonassociative- and associative-driven neuronal activity in the LGNv during training. LGNv neuronal activity habituated during unpaired training and then recovered from habituation during subsequent paired training, which may indicate that the LGNv plays a role in attention to the CS. The amplitude of LGNv neuronal activity correlated with CR production during paired but not unpaired CS/US training. Cerebellar feedback to the LGNv may play a role in modulating LGNv activity and attention to the CS during paired training. Based on the present findings, we hypothesize that the role of LGNv in visual eyeblink conditioning goes beyond simply routing visual CS information to the PN and involves modulation of attention. PMID:25122718

  3. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons.

    PubMed

    Jin, Zhenhua; Choi, Myung-Jin; Park, Cheung-Seog; Park, Young Seek; Jin, Young-Ho

    2012-01-13

    Propofol, an intravenous anesthetic, is broadly used for general anesthesia and diagnostic sedations due to its fast onset and recovery. Propofol depresses respiratory and cardiovascular reflex responses, however, their underlying mechanisms are not well known. Cardiorespiratory information from visceral afferent vagus nerves is integrated in the nucleus tractus solitarii (NTS). Cardiac and respiratory signals transducing vagal afferent neurons release the excitatory neurotransmitter glutamate onto NTS neurons in an activity dependent manner and trigger negative feedback reflex responses. In this experiment, the effects of propofol on glutamatergic synaptic responses at NTS neurons was tested using patch clamp methods. Glutamatergic excitatory postsynaptic currents (EPSC) were recorded at chloride reversal potential (-49mV) without γ-aminobutyric acid type A (GABA(A)) receptor antagonists. Propofol (≥3μM) facilitated frequency of the spontaneous EPSCs in a concentration dependent manner without altering amplitude and decay time. The GABA(A) receptor selective antagonist, gabazine (6μM), attenuated propofol effects on glutamate release. Propofol (10μM) evoked glutamate release was also blocked in the presence of the voltage dependent Na(+) and Ca(2+) channel blockers TTX (0.3μM) and Cd(2+) (0.2mM), respectively. In addition, the Na(+)-K(+)-Cl(-) cotransporter type 1 antagonist bumetanide (10μM) also inhibited propofol evoked increase in sEPSC frequency. These results suggest that propofol evoked glutamate release onto NTS neurons by GABA(A) receptor-mediated depolarization of the presynaptic excitatory terminals.

  4. Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations?

    PubMed Central

    Blandina, Patrizio; Munari, Leonardo; Provensi, Gustavo; Passani, Maria B.

    2012-01-01

    Histamine axons originate from a single source, the tuberomamillary nucleus (TMN) of the posterior hypothalamus, to innervate almost all central nervous system (CNS) regions. This feature, a compact cell group with widely distributed fibers, resembles that of other amine systems, such as noradrenaline or serotonin, and is consistent with a function for histamine over a host of physiological processes, including the regulation of the sleep-wake cycle, appetite, endocrine homeostasis, body temperature, pain perception, learning, memory, and emotion. An important question is whether these diverse physiological roles are served by different histamine neuronal subpopulation. While the histamine system is generally regarded as one single functional unit that provides histamine throughout the brain, evidence is beginning to accumulate in favor of heterogeneity of histamine neurons. The aim of this review is to summarize experimental evidence demonstrating that histamine neurons are heterogeneous, organized into functionally distinct circuits, impinging on different brain regions, and displaying selective control mechanisms. This could imply independent functions of subsets of histamine neurons according to their respective origin and terminal projections. PMID:22586376

  5. Neuropeptide FF receptors exhibit direct and anti-opioid effects on mice dorsal raphe nucleus neurons.

    PubMed

    Ding, Zhong; Zajac, Jean-Marie

    2014-10-01

    By using acutely dissociated dorsal raphe nucleus neurons (DRN) from young mice, direct and anti-opioid effects of Neuropeptide FF (NPFF) receptors were measured. The NPFF analog 1 DMe (10 µM) had no effect on resting Ca2+ channels but reduced the magnitude of Ca2+ transients induced by depolarization in 83.3% neurons tested, of which the inhibition rate is 45.4±2.9%. Pertussis toxin treatment reduced to 18.9% the number of responding neurons and attenuated by 47% the response of 1 DMe. In contrast, cholera toxin treatment had no significant effect. Eighteen minute perfusion with 1 DMe at a very low 10 nM concentration, that did not directly inhibit Ca2+ transients triggered by depolarization in every neuron, attenuated by 78% the inhibitory effect of Nociceptin/orphanin FQ (N/OFQ) on Ca2+ transients, but not that of by serotonin. These results demonstrated for the first time that NPFF receptors on mice DRN inhibit Ca2+ transients induced by depolarization via Gi/o protein and also exhibit a specific anti-opioid activity on nociceptin receptors, and that their specific anti-opioid activity is not a direct consequence of their activity on Ca2+ transients.

  6. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus.

    PubMed

    Chen, Jian; Gomez-Sanchez, Celso E; Penman, Alan; May, Paul J; Gomez-Sanchez, Elise

    2014-03-01

    Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP(+) from NADPH and may increase MR gene expression under physiological conditions. PMID:24381176

  7. Exposure to Cocaine Dynamically Regulates the Intrinsic Membrane Excitability of Nucleus Accumbens Neurons

    PubMed Central

    Mu, Ping; Moyer, Jason T.; Ishikawa, Masago; Zhang, Yonghong; Panksepp, Jaak; Sorg, Barbara A.; Schlüter, Oliver M.; Dong, Yan

    2010-01-01

    Drug-induced malfunction of nucleus accumbens (NAc) neurons underlies a key pathophysiology of drug addiction. Drug-induced changes in intrinsic membrane excitability of NAc neurons are thought to be critical for producing behavioral alterations. Previous studies demonstrate that following short-term (2d) or long-term (21d) withdrawal from non-contingent cocaine injection, the intrinsic membrane excitability of NAc shell (NAcSh) neurons is decreased, and decreased membrane excitability of NAcSh neurons increases the acute locomotor response to cocaine. However, animals exhibit distinct cellular and behavioral alterations at different stages of cocaine exposure, suggesting that the decreased membrane excitability of NAc neurons may not be a persistent change. Here, we demonstrate that the membrane excitability of NAcSh neurons is differentially regulated depending on whether cocaine is administered contingently or non-contingently. Specifically, the membrane excitability of NAcSh MSNs was decreased at 2d after withdrawal from either 5-day intraperitoneal (i.p.) injections (15 mg/kg) or cocaine self-administration (SA). At 21d of withdrawal, the membrane excitability of NAcSh MSNs, which remained low in i.p.-pretreated rats, returned to a normal level in SA-pretreated rats. Furthermore, upon a re-exposure to cocaine after long-term withdrawal, the membrane excitability of NAcSh MSNs instantly returned to a normal level in i.p.-pretreated rats. On the other hand, in SA-pretreated rats, the re-exposure elevated the membrane excitability of NAcSh MSMs beyond the normal level. These results suggest that the dynamic alterations in membrane excitability of NAcSh MSNs, together with the dynamic changes in synaptic input, contribute differentially to the behavioral consequences of contingent and non-contingent cocaine administration. PMID:20220002

  8. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus

    PubMed Central

    Kay, Rachel B.; Brunjes, Peter C.

    2014-01-01

    Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic connections with other brain areas. The present work used targeted whole-cell patch clamping to investigate the morphological and electrophysiological properties of the AON's two main neuronal populations: excitatory projection neurons and inhibitory interneurons. Retrograde fluorescent tracers placed into either the OB or PC identified projection neurons. Two classes were observed with different physiological signatures and locations (superficial and deep pyramidal neurons), suggesting the AON contains independent efferent channels. Transgenic mice in which GABA-containing cells expressed green fluorescent protein were used to assess inhibitory neurons. These cells were further identified as containing one or more of seven molecular markers including three calcium-binding proteins (calbindin, calretinin, parvalbumin) or four neuropeptides (somatostatin, vasoactive intestinal peptide, neuropeptide Y, cholecystokinin). The proportion of GABAergic cells containing these markers varied across subregions reinforcing notions that the AON has local functional subunits. At least five classes of inhibitory cells were observed: fast-spiking multipolar, regular-spiking multipolar, superficial neurogliaform, deep neurogliaform, and horizontal neurons. While some of these cell types are similar to those reported in the PC and other cortical regions, the AON also has unique populations. These studies provide the first examination of the cellular components of this simple cortical system

  9. Inhibitory effects of propofol on excitatory synaptic transmission in supraoptic nucleus neurons in vitro.

    PubMed

    Zhang, Huan-Huan; Zheng, Chao; Wang, Bang-An; Wang, Meng-Ya

    2015-12-25

    The present study was designed to investigate the inhibitory effects of intravenous general anesthetic propofol (0.1-3.0 mmol/L) on excitatory synaptic transmission in supraoptic nucleus (SON) neurons of rats, and to explore the underlying mechanisms by using intracellular recording technique and hypothalamic slice preparation. It was observed that stimulation of the dorsolateral region of SON could elicit the postsynaptic potentials (PSPs) in SON neurons. Of the 8 tested SON neurons, the PSPs of 7 (88%, 7/8) neurons were decreased by propofol in a concentration-dependent manner, in terms of the PSPs' amplitude (P < 0.01), area under curve, duration, half-width and 10%-90% decay time (P < 0.05). The PSPs were completely and reversibly abolished by 1.0 mmol/L propofol at 2 out of 7 tested cells. The depolarization responses induced by pressure ejection of exogenous glutamate were reversibly and concentration-dependently decreased by bath application of propofol. The PSPs and glutamate-induced responses recorded simultaneously were reversibly and concentration-dependently decreased by propofol, but 0.3 mmol/L propofol only abolished PSPs. The excitatory postsynaptic potentials (EPSPs) of 7 cells increased in the condition of picrotoxin (30 µmol/L, a GABA(A) receptor antagonist) pretreatment. On this basis, the inhibitory effects of propofol on EPSPs were decreased. These data indicate that the presynaptic and postsynaptic mechanisms may be both involved in the inhibitory effects of propofol on excitatory synaptic transmission in SON neurons. The inhibitory effects of propofol on excitatory synaptic transmission of SON neurons may be related to the activation of GABA(A) receptors, but at a high concentration, propofol may also act directly on glutamate receptors.

  10. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus.

    PubMed

    Kay, Rachel B; Brunjes, Peter C

    2014-01-01

    Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic connections with other brain areas. The present work used targeted whole-cell patch clamping to investigate the morphological and electrophysiological properties of the AON's two main neuronal populations: excitatory projection neurons and inhibitory interneurons. Retrograde fluorescent tracers placed into either the OB or PC identified projection neurons. Two classes were observed with different physiological signatures and locations (superficial and deep pyramidal neurons), suggesting the AON contains independent efferent channels. Transgenic mice in which GABA-containing cells expressed green fluorescent protein were used to assess inhibitory neurons. These cells were further identified as containing one or more of seven molecular markers including three calcium-binding proteins (calbindin, calretinin, parvalbumin) or four neuropeptides (somatostatin, vasoactive intestinal peptide, neuropeptide Y, cholecystokinin). The proportion of GABAergic cells containing these markers varied across subregions reinforcing notions that the AON has local functional subunits. At least five classes of inhibitory cells were observed: fast-spiking multipolar, regular-spiking multipolar, superficial neurogliaform, deep neurogliaform, and horizontal neurons. While some of these cell types are similar to those reported in the PC and other cortical regions, the AON also has unique populations. These studies provide the first examination of the cellular components of this simple cortical system.

  11. Electrophysiological characteristics of inhibitory neurons of the prepositus hypoglossi nucleus as analyzed in Venus-expressing transgenic rats.

    PubMed

    Shino, M; Kaneko, R; Yanagawa, Y; Kawaguchi, Y; Saito, Y

    2011-12-01

    The identification and characterization of excitatory and inhibitory neurons are significant steps in understanding neural network functions. In this study, we investigated the intrinsic electrophysiological properties of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure that is involved in gaze holding, using whole-cell recordings in brainstem slices from vesicular GABA transporter (VGAT)-Venus transgenic rats, in which inhibitory neurons express the fluorescent protein Venus. To characterize the intrinsic properties of these neurons, we recorded afterhyperpolarization (AHP) profiles and firing patterns from Venus-expressing [Venus⁺] and Venus-non-expressing [Venus⁻] PHN neurons. Although both types of neurons showed a wide variety of AHP profiles and firing patterns, oscillatory firing was specific to Venus⁺ neurons, while a firing pattern showing only a few spikes was specific to Venus⁻ neurons. In addition, AHPs without a slow component and delayed spike generation were preferentially displayed by Venus⁺ neurons, whereas a firing pattern with constant interspike intervals was preferentially displayed by Venus⁻ neurons. We evaluated the mRNAs expression of glutamate decarboxylase (GAD65, GAD67) and glycine transporter 2 (GlyT2) to determine whether the recorded Venus⁺ neurons were GABAergic or glycinergic. Of the 67 Venus⁺ neurons tested, GlyT2 expression alone was detected in only one neuron. Approximately 40% (28/67) expressed GAD65 and/or GAD67 (GABAergic neuron), and the remainder (38/67) expressed both GAD(s) and GlyT2 (GABA&GLY neuron). These results suggest that most inhibitory PHN neurons use either GABA or both GABA and glycine as neurotransmitters. Although the overall distribution of firing patterns in GABAergic neurons was similar to that of GABA&GLY neurons, only GABA&GLY neurons exhibited a firing pattern with a long first interspike interval. These differential electrophysiological properties will be useful

  12. Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission.

    PubMed

    Perez-Rosello, Tamara; Anderson, Charles T; Ling, Cindy; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-09-01

    In many synapses of the CNS, mobile zinc is packaged into glutamatergic vesicles and co-released with glutamate during neurotransmission. Following synaptic release, the mobilized zinc modulates ligand- and voltage-gated channels and receptors, functioning as an inhibitory neuromodulator. However, the origin and role of tonic, as opposed to phasically released, zinc are less well understood. We investigated tonic zinc in the dorsal cochlear nucleus (DCN), a zinc-rich, auditory brainstem nucleus. Our results show that application of a high-affinity, extracellular zinc chelator (ZX1) enhances spontaneous firing in DCN principal neurons (fusiform cells), consistent with inhibition of this neuronal property by tonic zinc. The enhancing effect was prevented by prior application of strychnine, a glycine receptor antagonist, suggesting that ZX1 interferes with zinc-mediated modulation of spontaneous glycinergic inhibition. In particular, ZX1 decreased the amplitude and the frequency of glycinergic miniature inhibitory postsynaptic currents in fusiform cells, from which we conclude that tonic zinc enhances glycinergic inhibitory neurotransmission. The observed zinc-mediated inhibition in spontaneous firing is present in mice lacking the vesicular zinc transporter (ZnT3), indicating that non-vesicular zinc inhibits spontaneous firing. Noise-induced increase in the spontaneous firing of fusiform cells is crucial for the induction of tinnitus. In this context, tonic zinc provides a powerful break of spontaneous firing that may protect against pathological run-up of spontaneous activity in the DCN.

  13. Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission

    PubMed Central

    Perez-Rosello, Tamara; Anderson, Charles T.; Ling, Cindy; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    In many synapses of the CNS, mobile zinc is packaged into glutamatergic vesicles and co-released with glutamate during neurotransmission. Following synaptic release, the mobilized zinc modulates ligand- and voltage-gated channels and receptors, functioning as an inhibitory neuromodulator. However, the origin and role of tonic, as opposed to phasically released, zinc are less well understood. We investigated tonic zinc in the dorsal cochlear nucleus (DCN), a zinc-rich, auditory brainstem nucleus. Our results show that application of a high-affinity, extracellular zinc chelator (ZX1) enhances spontaneous firing in DCN principal neurons (fusiform cells), consistent with inhibition of this neuronal property by tonic zinc. The enhancing effect was prevented by prior application of strychnine, a glycine receptor antagonist, suggesting that ZX1 interferes with zinc-mediated modulation of spontaneous glycinergic inhibition. In particular, ZX1 decreased the amplitude and the frequency of glycinergic miniature inhibitory postsynaptic currents in fusiform cells, from which we conclude that tonic zinc enhances glycinergic inhibitory neurotransmission. The observed zinc-mediated inhibition in spontaneous firing is present in mice lacking the vesicular zinc transporter (ZnT3), indicating that non-vesicular zinc inhibits spontaneous firing. Noise-induced increase in the spontaneous firing of fusiform cells is crucial for the induction of tinnitus. In this context, tonic zinc provides a powerful break of spontaneous firing that may protect against pathological run-up of spontaneous activity in the DCN. PMID:25796568

  14. Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

    PubMed

    Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K

    2015-06-01

    The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway.

  15. Activity of neurons of the subthalamic nucleus in relation to motor performance in the cat.

    PubMed

    Cheruel, F; Dormont, J F; Farin, D

    1996-03-01

    The activity of subthalamic nucleus neurons related to motor performance was studied in three unrestrained cats operantly conditioned to perform a lever-release movement. The movement was initiated either rapidly after the trigger stimulus (a brief sound) in a simple reaction-time paradigm or after a delay in trials identified by a tone cue. These paradigms were randomly presented. The activity of 171 neurons was recorded in the contralateral and in the ipsilateral subthalamic nucleus, with respect to the performing limb. The mean spontaneous activity of cells in the ipsilateral side (18.5 +/- 13.8 imp/s, mean +/- SD) was higher than that in the contralateral side (8.5 +/- 8.1 imp/s). A total of 145 cells (85%) presented significant changes in activity in relation to the lever-release movement (task-related cells). The remaining 26 cells were either related to other events of the task (n = 15; lever-press or reinforcement occurrence) or not related at all to the task performance (n = 11). The majority of changes of activity of task-related cells were initial increases in discharge, which started on average, 127 ms before movement onset and lasted several hundreds of milliseconds. These increases in discharge were more frequent in the contralateral side (75 of 80 task-related cells, 94%) than in the ipsilateral side (43 of 65 task-related cells, 66%). The changes in activity, either increases or decreases, occurred early after the trigger stimulus, since 62% of them had a latency of less than 100 ms. Although the mean latency of initial increases was rather similar in both sides (97 ms contralateral versus 104 ms ipsilateral), the contralateral side was characterized by a high proportion of very early responses (less than 20 ms). For most neurons, the early changes in activity described above were absent after the trigger stimulus in the delayed condition. For certain neurons, the changes in activity prior to movement were different in reaction-time condition and in

  16. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    PubMed Central

    Li, Xiao-ting; Wang, Ning-yu; Wang, Yan-jun; Xu, Zhi-qing; Liu, Jin-feng; Bai, Yun-fei; Dai, Jin-sheng; Zhao, Jing-yi

    2016-01-01

    The γ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4) and sustained-adapting firing patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies. PMID:27335563

  17. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus

    PubMed Central

    Adidharma, Widya; Leach, Greg; Yan, Lily

    2012-01-01

    Seasonal affective disorder (SAD), a major depressive disorder recurring in the fall and winter, is caused by the reduction of light in the environment, and its depressive symptoms can be alleviated by bright light therapy. Both circadian and monoaminergic systems have been implicated in the etiology of SAD. However, the underlying neural pathways through which light regulates mood are not well understood. The present study utilized a diurnal rodent model, Arvicanthis niloticus, to explore the neural pathways mediating the effects of light on brain regions involved in mood regulation. Animals kept in constant darkness received light exposure in early subjective day, the time when light therapy is usually applied. The time course of neural activity following light exposure was assessed using Fos as a marker in the following brain regions/cells: the suprachiasmatic nucleus (SCN), orexin neurons in the perifornical-lateral hypothalamic area (PF-LHA) and the dorsal raphe nucleus (DRN). A light-induced increase in Fos expression was observed in orexin neurons and the DRN, but not in the SCN. As the DRN is densely innervated by orexinergic inputs, the involvement of orexinergic signaling in mediating the effects of light on the DRN was tested in the second experiment. The animals were injected with the selective orexin receptor type 1 (OXR1) antagonist SB-334867 prior to the light exposure. The treatment of SB-334867 significantly inhibited the Fos induction in the DRN. The results collectively point to the role of orexin neurons in mediating the effects of light on the mood-regulating monoaminergic areas, suggesting an orexinergic pathway that underlies light-dependent mood fluctuation and the beneficial effects of light therapy. PMID:22710065

  18. Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat.

    PubMed

    Malik, Rishi; Ferguson, Alastair V

    2016-02-15

    Hydrogen sulfide (H2S) is a gasotransmitter that has been described to affect the membrane potential of neurons in a number of brain areas. Using whole cell patch-clamp electrophysiological techniques, we investigated the effects of H2S on the membrane potential of neurons in the nucleus of the solitary tract (NTS). Whole cell patch clamp recordings were obtained from 300 µm coronal NTS brain slices and bath application of the H2S donor, sodium hydrosulfide (NaHS)(1mM, 5mM and 10mM) was shown to have clear concentration-dependent, reversible, depolarizing effects on the membrane potential of 95% of neurons tested (72/76), an effect which in 64% (46/72) of these responding neurons was followed by a hyperpolarization. In the presence of the voltage-gated sodium channel blocker tetrodotoxin (TTX) and the glutamate receptor antagonist kynurenic acid (KA), these depolarizing effects of 5 mM NaHS (5.0 ± 2.2 mV (n=7)) were still observed, although they were significantly reduced compared to regular aCSF (7.7 ± 2.0 mV (n=7), p*<0.05, paired t-test). We also demonstrated that hyperpolarizations in response to 5mM NaHS resulted from modulation of the KATP channel with recordings showing that following KATP channel block with glibenclamide these hyperpolarizing effects were abolished (Control -7.9 ± 1.2 mV, Glibenclamide -1.9 ± 0.9 mV (n=8) p<0.05, paired t-test). This study has for the first time described post-synaptic effects of this gasotransmitter on the membrane potential of NTS neurons and thus implicates this transmitter in regulating the diverse autonomic systems controlled by the NTS.

  19. Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons.

    PubMed

    Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2011-01-01

    Homeostatic response is an endowed self-correcting/maintaining property for living units, ranging from subcellular domains, single cells, and organs to the whole organism. Homeostatic responses maintain stable function through the ever-changing internal and external environments. In central neurons, several forms of homeostatic regulation have been identified, all of which tend to stabilize the functional output of neurons toward their prior "set-point." Medium spiny neurons (MSNs) within the forebrain region the nucleus accumbens (NAc) play a central role in gating/regulating emotional and motivational behaviors including craving and seeking drugs of abuse. Exposure to highly salient stimuli such as cocaine administration not only acutely activates a certain population of NAc MSNs, but also induces long-lasting changes in these neurons. It is these long-lasting cellular alterations that are speculated to mediate the increasingly strong cocaine-craving and cocaine-seeking behaviors. Why do the potentially powerful homeostatic mechanisms fail to correct or compensate for these drug-induced maladaptations in neurons? Based on recent experimental results, this review proposes a hypothesis of homeostatic dysregulation induced by exposure to cocaine. Specifically, we hypothesize that exposure to cocaine generates false molecular signals which misleads the homeostatic regulation process, resulting in maladaptive changes in NAc MSNs. Thus, many molecular and cellular alterations observed in the addicted brain may indeed result from homeostatic dysregulation. This review is among the first to introduce the concept of homeostatic neuroplasticity to understanding the molecular and cellular maladaptations following exposure to drugs of abuse. PMID:20708038

  20. Presence of a dynorphin-like peptide in a restricted subpopulation of catecholaminergic neurons in rat nucleus tractus solitarii.

    PubMed

    Ceccatelli, S; Seroogy, K B; Millhorn, D E; Terenius, L

    1992-09-01

    Immunofluorescence colocalization techniques were used to examine the extent of coexistence of the endogenous opioid peptide dynorphin with catecholamines and the related opioid peptide enkephalin within neurons of the rat medulla oblongata. Immunoreactivities for dynorphin and the catecholamine-synthesizing enzyme tyrosine hydroxylase were found to coexist within a limited subpopulation of A2 catecholamine cells, localized to the medial nucleus of the nucleus tractus solitarii. Colocalization of the two opioid peptides was found mainly within perikarya situated in the medial and ventrolateral nuclei of the nucleus tractus solitarii. Triple-labeling studies revealed only rare cases of catecholamine/dynorphin/enkephalin coexistence. These data demonstrate that dynorphin is present within a restricted subpopulation of catecholamine neurons in the dorsal medulla oblongata. In addition, the content of either of the opioids enkephalin or dynorphin appears to distinguish subsets of medullary catecholamine neurons. PMID:1356595

  1. Ovarian regulation of kisspeptin neurones in the arcuate nucleus of the rhesus monkey (Macaca mulatta)

    PubMed Central

    Alçin, E.; Sahu, A.; Ramaswamy, S.; Hutz, E.D.; Keen, K.L.; Terasawa, E.; Bethea, C.L.; Plant, T.M.

    2014-01-01

    Tonic gonadotrophin secretion throughout the menstrual cycle is regulated by the negative feedback actions of ovarian oestradiol (E2) and progesterone (P). While kisspeptin neurones in the arcuate nucleus (ARC) of the hypothalamus appear to play a major role in mediating these feedback actions of the steroids in non-primate species, this issue has been less well studied in the monkey. Here, we used immunohistochemistry (IHC) and in situ hybridization (ISH) to examine kisspeptin and KISS1 expression, respectively, in the mediobasal hypothalamus (MBH) of adult ovariectomised (OVX) rhesus monkeys. We also examined kisspeptin expression in the MBH of ovarian intact females, and the effect of E2, P and E2+P replacement on KISS1 expression in OVX animals. Kisspeptin or KISS1 expressing neurons and pronounced kisspeptin fibres were readily identified throughout the ARC of ovariectomised monkeys, but in intact animals on the other hand kisspeptin cell bodies were small in size and number and only fine fibers were observed. Replacement of OVX monkeys with physiologic levels of E2, either alone or with luteal phase levels of P, abolished KISS1 expression in the ARC. Interestingly, P replacement alone for 14 days also resulted in a significant downregulation of KISS1 expression. These findings support the view that, in primates, as in rodents and sheep, kisspeptin signaling in ARC neurones appears to play an important role in mediating the negative feedback action of E2 on gonadotrophin secretion, and indicate a need to further study their regulation by P. PMID:23331967

  2. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion.

  3. Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors.

    PubMed

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-04-01

    Orexins/hypocretins are two neuropeptides that influence many behaviours, such as feeding, sleep or arousal. Orexin A/hypocretin-1 (OXA) and orexin B/hypocretin-2 (OXB) bind to two metabotropic receptors, named the OX1 and OX2 receptors. The lateral geniculate complex of the thalamus is one of the many targets of orexinergic fibres derived from the lateral hypothalamus, although the impact of orexins on the ventrolateral geniculate nucleus (VLG) is poorly understood. The VLG, an important relay station of the subcortical visual system, is implicated in visuomotor and/or circadian processes. Therefore, in this study we evaluated the effects of orexins on single VLG neurons using a patch-clamp technique in vitro. Surprisingly, orexins depolarised the majority of the recorded neurons regardless of their localisation in the borders of the VLG. In addition, data presented in this article show that neurons synthesising NO were also affected by OXA. Moreover, immunohistochemical staining of OXB revealed the moderate density of orexinergic fibbers in the VLG. Our study using specific orexin receptor antagonists suggests that the OX2 receptor has a dominant role in the observed effects of OXA. To our knowledge, this article is the first to show orexinergic modulation of the VLG. These findings strengthen the postulated link between orexins and the circadian system, and propose a new role of these neuropeptides in the modulation of visuomotor functions.

  4. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion. PMID:24388924

  5. Projections of medullary and pontine noradrenergic neurons to the horizontal limb of the nucleus of diagonal band in the rat.

    PubMed

    Senatorov, V V; Renaud, L P

    1999-01-01

    Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.

  6. Pallial origin of basal forebrain cholinergic neurons in the nucleus basalis of Meynert and horizontal limb of the diagonal band nucleus.

    PubMed

    Pombero, Ana; Bueno, Carlos; Saglietti, Laura; Rodenas, Monica; Guimera, Jordi; Bulfone, Alexandro; Martinez, Salvador

    2011-10-01

    The majority of the cortical cholinergic innervation implicated in attention and memory originates in the nucleus basalis of Meynert and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system give rise to neuropsychiatric disorders as well as to the cognitive alterations described in Parkinson and Alzheimer's diseases. Despite the functional importance of these basal forebrain cholinergic neurons very little is known about their origin and development. Previous studies suggest that they originate in the medial ganglionic eminence of the telencephalic subpallium; however, our results identified Tbr1-expressing, reelin-positive neurons migrating from the ventral pallium to the subpallium that differentiate into cholinergic neurons in the basal forebrain nuclei projecting to the cortex. Experiments with Tbr1 knockout mice, which lack ventropallial structures, confirmed the pallial origin of cholinergic neurons in Meynert and horizontal diagonal band nuclei. Also, we demonstrate that Fgf8 signaling in the telencephalic midline attracts these neurons from the pallium to follow a tangential migratory route towards the basal forebrain.

  7. Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis

    PubMed Central

    Dabrowska, Joanna; Hazra, Rimi; Guo, Ji-Dong; DeWitt, Sarah; Rainnie, Donald G.

    2013-01-01

    Corticotrophin-releasing factor (CRF) plays a key role in initiating many of the endocrine, autonomic, and behavioral responses to stress. CRF-containing neurons of the paraventricular nucleus of the hypothalamus (PVN) are classically involved in regulating endocrine function through activation of the stress axis. However, CRF is also thought to play a critical role in mediating anxiety-like responses to environmental stressors, and dysfunction of the CRF system in extra-hypothalamic brain regions, like the bed nucleus of stria terminalis (BNST), has been linked to the etiology of many psychiatric disorders including anxiety and depression. Thus, although CRF neurons of the PVN and BNST share a common neuropeptide phenotype, they may represent two functionally diverse neuronal populations. Here, we employed dual-immunofluorescence, single-cell RT-PCR, and electrophysiological techniques to further examine this question and report that CRF neurons of the PVN and BNST are fundamentally different such that PVN CRF neurons are glutamatergic, whereas BNST CRF neurons are GABAergic. Moreover, these two neuronal populations can be further distinguished based on their electrophysiological properties, their co-expression of peptide neurotransmitters such as oxytocin and arginine-vasopressin, and their cognate receptors. Our results suggest that CRF neurons in the PVN and the BNST would not only differ in their response to local neurotransmitter release, but also in their action on downstream target structures. PMID:24009552

  8. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Affleck, V S; Coote, J H; Pyner, S

    2012-09-01

    Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine - BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold - FG or cholera toxin B subunit - CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS-PVN pathways.

  9. State-dependency of neuronal slow dynamics during sleep observed in cat lateral geniculate nucleus.

    PubMed

    Nakamura, K; Yamamoto, M; Takahashi, K; Nakao, M; Mizutani, Y; Katayama, N; Kodama, T

    2000-01-01

    From the accumulated results, we hypothesize that neurons in the central processor systems of the brain generally exhibit a common state-dependency in slow dynamics of their spontaneous activities during sleep. In this paper, activities of relay cells in the cat's lateral geniculate nucleus (LGN) were studied to see if our hypothesis can be applied in this thalamic region. Data segments in polygraphically steady states were strictly extracted in order to sample the activities whose stationarity was guaranteed in a statistical sense. During slow wave sleep (SWS), the discharge pattern was characterized by short bursts. In contrast, the rather tonic discharge pattern was observed to prevail during rapid eye movement (REM) sleep. Spectral analyses showed white noise-like spectra in the low frequency range of 0.04-1.0 Hz during SWS, and 1/f noise-like spectra in the same frequency range during REM sleep. This state-dependency of the slow dynamics was consistently characterized by the other statistical parameters concerning the second-order moment as well. In contrast, the fast dynamics over 1.0 Hz tended to exhibit neuron-specific changes associated with the sleep state in terms of the Markovian dependency analysis. Consequently, our working hypothesis was not rejected for the LGN relay cells. The result here extends the possibility that the state-dependency of the slow dynamics we found is a general rule concerning single neuronal dynamics in widespread areas of the brain during sleep. The state-dependency of the slow dynamics of the LGN relay cells could be understood according to the proposed mechanism that a state-associated alteration in the global biasing input to a neural network during sleep induces the phenomenon with which we are concerned. The slow dynamics of neuronal activities might provide a novel framework defining SWS and REM sleep states instead of the polygraphic characteristics. PMID:11382913

  10. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  11. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus.

    PubMed

    Kuo, Fu-Shan; Falquetto, Bárbara; Chen, Dawei; Oliveira, Luiz M; Takakura, Ana C; Mulkey, Daniel K

    2016-09-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to characterize effects of NE on RTN chemoreception. All neurons included in this study responded similarly to CO2/H(+) but showed differential sensitivity to NE; we found that NE activated (79%), inhibited (7%), or had no effect on activity (14%) of RTN chemoreceptors. The excitatory effect of NE on RTN chemoreceptors was dose dependent, retained in the presence of neurotransmitter receptor blockers, and could be mimicked and blocked by pharmacological manipulation of α1-adrenergic receptors (ARs). In addition, NE-activation was blunted by XE991 (KCNQ channel blocker), and partially occluded the firing response to serotonin, suggesting involvement of KCNQ channels. However, in whole cell voltage clamp, activation of α1-ARs decreased outward current and conductance by what appears to be a mixed effect on multiple channels. The inhibitory effect of NE on RTN chemoreceptors was blunted by an α2-AR antagonist. A third group of RTN chemoreceptors was insensitive to NE. We also found that chemosensitive RTN astrocytes do not respond to NE with a change in voltage or by releasing ATP to enhance activity of chemosensitive neurons. These results indicate NE modulates subsets of RTN chemoreceptors by mechanisms involving α1- and α2-ARs. PMID:27306669

  12. Early developmental stress negatively affects neuronal recruitment to avian song system nucleus HVC.

    PubMed

    Honarmand, Mariam; Thompson, Christopher K; Schatton, Adriana; Kipper, Silke; Scharff, Constance

    2016-01-01

    Adverse environmental conditions can impact the life history trajectory of animals. Adaptive responses enable individuals to cope with unfavorable conditions, but altered metabolism and resource allocation can bear long-term costs. In songbirds, early developmental stress can cause lifelong changes in learned song, a culturally transmitted trait, and nestlings experiencing developmental stress develop smaller song control nucleus HVCs. We investigated whether nutrition-related developmental stress impacts neurogenesis in HVC, which may explain how poor nutrition leads to smaller HVC volume. We provided different quality diets (LOW and HIGH) by varying the husks-to-seeds ratio to zebra finch families for the first 35 days after the young hatched (PHD). At PHD14-18 and again at nutritional independence (PHD35), juveniles were injected with different cell division markers. To monitor growth, we took body measures at PHD10, 17, and 35. At PHD35 the number of newly recruited neurons in HVC and the rate of proliferation in the adjacent ventricular zone (VZ) were counted. Males raised on the LOW diet for their first weeks of life had significantly fewer new neurons in HVC than males raised on the HIGH diet. At the time when these new HVC neurons were born and labeled in the VZ (PHD17) the birds exposed to the LOW diet had significantly lower body mass. At PHD35 body mass or neuronal proliferation no longer differed. Our study shows that even transitory developmental stress can have negative consequences on the cellular processes underlying the development of neural circuits.

  13. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.

    PubMed

    Ciriello, John

    2013-08-01

    Leptin receptors have been identified within the nucleus of the solitary tract (NTS) and leptin injections into the caudal NTS inhibit the baroreceptor reflex. However, whether plasma leptin alters the discharge of NTS neurons mediating aortic baroreceptor reflex activity is not known. A series of electrophysiological single unit recording experiments was done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar and Zucker obese rat with either their neuroaxis intact or with mid-collicular transections. Single units in NTS antidromically activated by electrical stimulation of depressor sites in the caudal ventrolateral medulla (CVLM) were found to display a cardiac cycle-related rhythmicity. These units were tested for their responses to stimulation of the aortic depressor nerve (ADN) and intra-carotid injections of leptin (50-200ng/0.1ml). Of 63 single units tested in NTS, 33 were antidromically activated by stimulation of CVLM depressor sites and 18 of these single units responded with a decrease in discharge rate after intracarotid injections of leptin. Thirteen of these leptin responsive neurons (∼72%) were excited by ADN stimulation. Furthermore, the excitatory response of these single units to ADN stimulation was attenuated by about 50% after the intracarotid leptin injection. Intracarotid injections of leptin (200ng/0.1ml) in the Zucker obese rat did not alter the discharge rate of NTS-CVLM projecting neurons. These data suggest that leptin exerts a modulatory effect on brainstem neuronal circuits that control cardiovascular responses elicited during the reflex activation of arterial baroreceptors. PMID:23792336

  14. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.

    PubMed

    Ciriello, John

    2013-08-01

    Leptin receptors have been identified within the nucleus of the solitary tract (NTS) and leptin injections into the caudal NTS inhibit the baroreceptor reflex. However, whether plasma leptin alters the discharge of NTS neurons mediating aortic baroreceptor reflex activity is not known. A series of electrophysiological single unit recording experiments was done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar and Zucker obese rat with either their neuroaxis intact or with mid-collicular transections. Single units in NTS antidromically activated by electrical stimulation of depressor sites in the caudal ventrolateral medulla (CVLM) were found to display a cardiac cycle-related rhythmicity. These units were tested for their responses to stimulation of the aortic depressor nerve (ADN) and intra-carotid injections of leptin (50-200ng/0.1ml). Of 63 single units tested in NTS, 33 were antidromically activated by stimulation of CVLM depressor sites and 18 of these single units responded with a decrease in discharge rate after intracarotid injections of leptin. Thirteen of these leptin responsive neurons (∼72%) were excited by ADN stimulation. Furthermore, the excitatory response of these single units to ADN stimulation was attenuated by about 50% after the intracarotid leptin injection. Intracarotid injections of leptin (200ng/0.1ml) in the Zucker obese rat did not alter the discharge rate of NTS-CVLM projecting neurons. These data suggest that leptin exerts a modulatory effect on brainstem neuronal circuits that control cardiovascular responses elicited during the reflex activation of arterial baroreceptors.

  15. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour.

    PubMed

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-05-15

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that 'cell cycle'-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9-10 LVR(non-run) rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9-10 HVR counterparts. However, voluntary running wheel access in our G9-10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats.

  16. Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward

    PubMed Central

    Al-Hasani, Ream; McCall, Jordan G.; Shin, Gunchul; Gomez, Adrian M.; Schmitz, Gavin P.; Bernardi, Julio M.; Pyo, Chang-O.; Park, Sung Il; Marcinkiewcz, Catherine M.; Crowley, Nicole A.; Krashes, Michael J.; Lowell, Bradford B.; Kash, Thomas L.; Rogers, John A.; Bruchas, Michael R.

    2015-01-01

    SUMMARY The nucleus accumbens (NAc) and the dynorphinergic system are widely implicated in motivated behaviors. Prior studies have shown that activation of the dynorphin-kappa opioid receptor (KOR) system leads to aversive, dysphoria-like behavior. However, the endogenous sources of dynorphin in these circuits remain unknown. We investigated whether dynorphinergic neuronal firing in the NAc is sufficient to induce aversive behaviors. We found that photostimulation of dynorphinergic cells in the ventral NAc shell elicits robust conditioned and real-time aversive behavior via KOR activation, and in contrast, photostimulation of dorsal NAc shell dynorphin cells induced a KOR-mediated place preference and were positively reinforcing. These results show previously unknown discrete subregions of dynorphin-containing cells in the NAc shell that selectively drive opposing behaviors. Understanding the discrete regional specificity by which NAc dynorphinerigic cells regulate preference and aversion provides insight into motivated behaviors that are dysregulated in stress, reward, and psychiatric disease. PMID:26335648

  17. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study.

    PubMed

    Xi, M; Fung, S J; Sampogna, S; Chase, M H

    2011-12-01

    There is a consensus that active (REM) sleep (AS) is controlled by cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT) to neurons in the nucleus pontis oralis (NPO) that generate AS (i.e. AS-Generator neurons). The present study was designed to provide evidence that other projections to the NPO, such as those from the amygdala, are also capable of inducing AS. Accordingly, the responses of neurons, recorded intracellularly in the NPO, were examined following stimulation of the ipsilateral central nucleus of the amygdala (CNA) in urethane-anesthetized rats. Single pulse stimulation in the CNA produced an early, fast depolarizing potential (EPSP) in neurons within the NPO. The mean latency to the onset of these excitatory postsynaptic potentials (EPSPs) was 3.6±0.2 ms. A late, small-amplitude inhibitory synaptic potential (IPSP) was present following EPSPs in a portion of the NPO neurons. Following stimulation of the CNA with a train of 8-10 pulses, NPO neurons exhibited a sustained depolarization (5-10 mV) of their resting membrane potential. When single subthreshold intracellular depolarizing current pulses were delivered to NPO neurons, CNA-induced EPSPs were sufficient to promote the discharge of these cells. Stimulation of the CNA with a short train of stimuli induced potent temporal facilitation of EPSPs in NPO neurons. Two forms of synaptic plasticity were revealed by the patterns of response of NPO neurons following stimulation of the CNA: paired-pulse facilitation (PPF) and post-tetanic potentiation (PTP). Six of recorded NPO neurons were identified morphologically with neurobiotin. They were medium to large, multipolar cells with diameters >20 μM, which resemble AS-on cells in the NPO. The present results demonstrate that amygdalar projections are capable of exerting a powerful excitatory postsynaptic drive that activates NPO neurons. Therefore, we suggest that the amygdala is capable of inducing AS via direct

  18. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    PubMed Central

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  19. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset.

    PubMed

    Boissard, Romuald; Fort, Patrice; Gervasoni, Damien; Barbagli, Bruno; Luppi, Pierre-Hervé

    2003-09-01

    We recently determined in rats that iontophoretic application of bicuculline or gabazine [two GABAa antagonists] and kainic acid (a glutamate agonist) in the sublaterodorsal nucleus (SLD) induces with a very short latency a paradoxical sleep-like state. From these results, we proposed that GABAergic and glutamatergic inputs to the SLD paradoxical sleep (PS)-executive neurons gate the onset of PS [R. Boissard et al. (2002) Eur. J. Neurosci., 16, 1959-1973]. We therefore decided to determine the origin of the GABAergic and non-GABAergic inputs to the SLD combining ejection of a retrograde tracer [cholera-toxin B subunit (CTb)] with glutamate decarboxylase (GAD) immunohistochemistry. The presence of GAD-immunoreactive neurons in the SLD was confirmed. Then, following CTb ejections centred on the SLD, combined with GAD and CTb immunohistochemistry, double-labelled cells were observed in the mesencephalic and pontine reticular nuclei and to a lesser extent the parvicellular reticular nucleus. A large number of GAD-negative retrogradely labelled cells was also seen in these structures as well as in the primary motor area of the frontal cortex, the central nucleus of the amygdala, the ventral and lateral bed nucleus of the stria terminalis, the lateral hypothalamic area, the lateral and ventrolateral periaqueductal grey and the lateral paragigantocellular reticular nucleus. From these results, we propose that the activation of PS-executive neurons from the SLD is due to the removal of a tonic inhibition from GABAergic neurons localized in the SLD, and the mesencephalic and pontine reticular nuclei. Strong non-GABAergic inputs to the SLD could be excitatory and responsible for the tonic glutamatergic input on the PS-on neurons we have previously described. They could also terminate on SLD GABAergic interneurons and be indirectly responsible for the inhibition of the PS-on neurons during waking and slow-wave sleep.

  20. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms.

    PubMed

    Silva, M P da; Cedraz-Mercez, P L; Varanda, W A

    2014-02-01

    Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  1. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    PubMed Central

    da Silva, M.P.; Cedraz-Mercez, P.L.; Varanda, W.A.

    2014-01-01

    Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON. PMID:24519124

  2. Fast synchronous oscillations of firing rate in cultured rat suprachiasmatic nucleus neurons: possible role in circadian synchronization in the intact nucleus.

    PubMed

    Kononenko, Nikolai I; Honma, Sato; Honma, Ken-Ichi

    2013-03-01

    The coherent circadian rhythm of the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN), is a result of synchronization of electrical activity of many SCN neurons possessing their own circadian oscillators. However, how the activity of these neurons is synchronized is not precisely known. By plotting the electrical firing rates of dispersed rat SCN neurons in multi-electrode array dishes with 20-s averaging of action-potential activity, we have investigated a novel phenomenon: fast (relative to the circadian cycle) oscillations of firing rate (FOFR) with duration of bursts ∼10min and interburst interval varying in a range from 20 to 60min in different cells, remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1mm recording area of an array exhibited correlated FOFR. FOFR of individual cells were positively or negatively correlated with those of other cells in a functioning neural network. Intriguingly, in occasional neuron pairs, transformation of their irregular firing to circadian peaks was accompanied by appearance of FOFR and an increase in the magnitude of firing correlation. We hypothesize that this FOFR observed in cultured SCN neurons contribute to synchronization of the circadian rhythm in the intact SCN.

  3. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset

    PubMed Central

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku

    2015-01-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system. PMID:26203112

  4. Collective behaviors of suprachiasm nucleus neurons under different light—dark cycles

    NASA Astrophysics Data System (ADS)

    Gu, Chang-Gui; Zhang, Xin-Hua; Liu, Zong-Hua

    2014-07-01

    The principal circadian clock in the suprachiasm nucleus (SCN) regulates the circadian rhythm of physiological and behavioral activities of mammals. Except for the normal function of the circadian rhythm, the ensemble of SCN neurons may show two collective behaviors, i.e., a free running period in the absence of a light—dark cycle and an entrainment ability to an external T cycle. Experiments show that both the free running periods and the entrainment ranges may vary from one species to another and can be seriously influenced by the coupling among the SCN neurons. We here review the recent progress on how the heterogeneous couplings influence these two collective behaviors. We will show that in the case of homogeneous coupling, the free running period increases monotonically while the entrainment range decreases monotonically with the increase of the coupling strength. While in the case of heterogenous coupling, the dispersion of the coupling strength plays a crucial role. It has been found that the free running period decreases with the increase of the dispersion while the entrainment ability is enhanced by the dispersion. These findings provide new insights into the mechanism of the circadian clock in the SCN.

  5. HIV-1 Transgenic Female Rat: Synaptodendritic Alterations of Medium Spiny Neurons in the Nucleus Accumbens

    PubMed Central

    Roscoe, Robert F.; Mactutus, Charles F.

    2015-01-01

    HIV-1 associated neurocognitive deficits are increasing in prevalence, although the neuronal basis for these deficits is unclear. HIV-1 Tg rats constitutively express 7 of 9 HIV-associated proteins, and may be useful for studying the neuropathological substrates of HIV-1 associated neurocognitive disorders (HAND). In this study, adult female HIV-1 Tg rats and F344 control rats had similar growth rates, estrous cyclicity and startle reflex inhibition to a visual prepulse stimulus. Medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) were ballistically-labeled utilizing the indocarbocyanine dye DiI. The branching complexity of MSNs in the NAcc was significantly decreased in HIV-1 Tg rats, relative to controls; moreover, the shorter length and decreased volume of dendritic spines, but unchanged head diameter, in HIV-1 Tg rats suggested a reduction of longer spines and an increase in shorter, less projected spines, indicating a population shift to a more immature spine phenotype. Collectively, these results from HIV-1 Tg female rats indicated significant synaptodendritic alterations of MSNs in the NAcc occur as a consequence of chronic, low-level, exposure to HIV-1 associated proteins. PMID:25037595

  6. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset.

    PubMed

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku; Nabekura, Junichi

    2015-09-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system.

  7. Neuropeptide Y and α-melanocyte-stimulating hormone reciprocally regulate nesfatin-1 neurons in the paraventricular nucleus of the hypothalamus.

    PubMed

    Sedbazar, Udval; Ayush, Enkh-Amar; Maejima, Yuko; Yada, Toshihiko

    2014-12-17

    Nesfatin-1 is an 82 amino acids peptide processed from its precursor nucleobindin-2 (NUCB2). Accumulating evidences have shown that the nesfatin-1/NUCB2 localized in the paraventricular nucleus (PVN) of the hypothalamus regulates food intake and energy metabolism. However, the factors that regulate nesfatin-1/NUCB2 neurons in PVN are less defined. In the hypothalamic feeding center, the second-order neurons in PVN are extensively projected by the first-order neurons in the arcuate nucleus (ARC), the representatives of which are orexigenic neuropeptide Y (NPY) and anorexigenic α-melanocyte-stimulating hormone (α-MSH) neurons. The present study explored whether NPY and α-MSH regulate the PVN nesfatin-1/NUCB2 neurons. This was achieved by cytosolic Ca ([Ca]i) imaging, followed by nesfatin-1/NUCB2 immunostaining in single neurons isolated from PVN. The moderate increase in [Ca]i with 5 mM glucose was suppressed by NPY, but further increased by α-MSH in the PVN neurons that were shown to be immunoreactive to nesfatin-1/NUCB2. The majority (60%) of nesfatin-1/NUCB2 neurons in PVN responded to NPY and/or α-MSH. Confocal immunohistochemical images showed that both NPY and α-MSH neuronal terminals contacted nesfatin-1/NUCB2 neurons in PVN. These data show that NPY inhibits and α-MSH activates PVN nesfatin-1/NUCB2 neurons, presenting dual and reciprocal neuro-circuits from ARC to PVN, possibly contributing toward the balanced regulation of feeding.

  8. Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment.

    PubMed Central

    Bicknell, R J; Leng, G; Lincoln, D W; Russell, J A

    1988-01-01

    1. Lactating rats were implanted with a cannula in a lateral cerebral ventricle to deliver morphine (up to 50 micrograms/h) chronically from a subcutaneous osmotically driven mini-pump. After infusion of morphine for 5 days the rats were anaesthetized with urethane and prepared with ventral surgery for recording the electrical activity of single, antidromically identified neurones in the supraoptic nucleus. 2. A single I.V. injection of naloxone (5 mg/kg) in these rats provoked a long-lasting, large increase in intramammary pressure, but in control rats had negligible effects. Concentrations in plasma of oxytocin, measured by radioimmunoassay in samples of femoral arterial blood, rose from 44.7 +/- 2.5 to 1072.1 +/- 89.5 pg/ml (means +/- S.E.M.) 6 min after naloxone in the morphine-treated rats. In control rats, the concentration of oxytocin in plasma rose only from 42.1 +/- 2.9 to 125.1 +/- 28.2 pg/ml after naloxone. 3. Naloxone produced a transient increase in arterial blood pressure in morphine-treated but not control rats. Concentrations in plasma of vasopressin, measured by radioimmunoassay in samples of femoral arterial blood, rose in morphine-treated rats from 7.4 +/- 2.4 to 29.2 +/- 3.7 pg/ml after naloxone, but did not rise significantly in control rats. 4. Naloxone (1-5 mg/kg) produced a prompt and prolonged increase in the discharge rate of each of ten continuously active (putative oxytocin) cells recorded from ten morphine-treated rats. The discharge rate of the six cells tested at the highest dose (5 mg/kg) increased by an average of 6.3 Hz (360%) within 5 min, and the firing rate remained elevated for at least 30 min; the discharge rate of six continuously active supraoptic neurones recorded in control rats was not affected by naloxone. 5. The firing activity of five phasic (putative vasopressin) supraoptic neurones in morphine-treated rats was increased for at least 30 min by the injection of naloxone; these increases were the result of a raised

  9. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats

    PubMed Central

    Zhang, Xiao-Yang; Yu, Lei; Zhuang, Qian-Xing; Peng, Shi-Yu; Zhu, Jing-Ning; Wang, Jian-Jun

    2013-01-01

    Background and Purpose Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. Experimental Approach Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H1, H2 and H4 receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H1, H2 and H4 receptors and for subtypes of Na+–Ca2+ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. Key Results A marked postsynaptic excitatory effect, co-mediated by histamine H1 and H2 receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H1 and H2 rather than H4 receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H1 receptors, whereas HCN channels were responsible for excitation induced by activation of H2 receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. Conclusion and Implications NCXs coupled to H1 receptors and HCN channels linked to H2 receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23713466

  10. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity.

    PubMed

    Zhang, Yu; Yu, Tian; Yuan, Jie; Yu, Bu-Wei

    2015-12-01

    The mechanisms underlying the unconsciousness of general anesthesia are not completely understood. Accumulating evidence indicates the ventrolateral preoptic nucleus (VLPO) in the endogenous sleep circuits may contribute to loss of consciousness (LOC) induced by GABA-enhancing anesthetics. However, there are few studies that look into distinct sleep pathway in the sleep-wake system. In the neural pathway from VLPO to the locus coeruleus (LC), we compared the inhibition effect of propofol on the LC activity before and after VLPO lesion in vivo rats. Systemic administration of propofol (20 mg/kg, i.p.) in normal rats caused a fast and obvious inhibition of LC neurons spontaneous firing (from 0.24 ± 0.06 to 0.12 ± 0.03 Hz). The LC neuronal firing rate of VLPO lesion rats only decreased to 0.18 ± 0.05 Hz (P = 0.021 vs. non-VLPO rats) after the propofol injection, and the time to reach the maximal inhibition level was also prolonged in VLPO lesion rats (2.3 ± 0.7 vs. 5.8 ± 1.2 min, P = 0.037). Microinjections of a selective GABAA receptor antagonist (SR95531) into the LC fully reversed the inhibitory effect of propofol on the LC neuronal activity, but did not significantly affect the latency to loss of righting reflex of rats after propofol administration (3.4 ± 0.9 vs. 3.7 ± 1.2 min, P = 0.639). Our results indicated that VLPO is necessary for the propofol-induced inhibition of LC activity, but the LC may not play an important role in the propofol-induced LOC.

  11. Distribution of Hypophysiotropic Thyrotropin-Releasing Hormone (TRH)-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus of the Mouse

    PubMed Central

    Kádár, Andrea; Sánchez, Edith; Wittmann, Gábor; Singru, Praful S.; Füzesi, Tamás; Marsili, Alessandro; Larsen, P. Reed; Liposits, Zsolt; Lechan, Ronald M.; Fekete, Csaba

    2010-01-01

    Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central regulators of the hypothalamus-pituitary-thyroid axis, are located in the hypothalamic paraventricular nucleus (PVN) in a partly overlapping distribution with non-hypophysiotropic TRH neurons. The distribution of hypophysiotropic TRH neurons in the rat PVN is well understood, but the localization of these neurons is unknown in mice. To determine the distribution and phenotype of hypophysiotropic TRH neurons in mice, double- and triple-labeling experiments were performed on sections of intact mice, and mice treated intravenously and intraperitonially with the retrograde tracer Fluoro-Gold. TRH neurons were located in all parts of the PVN except the periventricular zone. Hypophysiotropic TRH neurons were observed only at the mid level of the PVN, primarily in the compact part. In the this part of the PVN, TRH-neurons were intermingled with oxytocin and vasopressin neurons, but based on their size, the TRH neurons were parvocellular and did not contain magnocellular neuropeptides. Co-localization of TRH and CART were observed only in areas where hypophysiotropic TRH neurons were located. In accordance with the morphological observations, hypothyroidism increased TRH mRNA content of neurons only at the mid level of the PVN. These data demonstrate that the distribution of hypophysiotropic TRH neurons in mice is vastly different from the pattern in rats, with a dominant occurrence of these neurosecretory cells in the compact part and adjacent regions at the mid level of the PVN. Furthermore, our data demonstrate that the organization of the PVN is markedly different in mice and rats. PMID:20737594

  12. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro.

    PubMed Central

    Khateb, A; Fort, P; Serafin, M; Jones, B E; Mühlethaler, M

    1995-01-01

    1. Intracellular recordings were performed in neurones within the basal forebrain of guinea-pig brain slices. Following injection of biocytin (or biotinamide), a subset of recorded neurones which displayed distinct intrinsic membrane properties were confirmed as being cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). They were all located within the nucleus basalis magnocellularis. The response of the cholinergic cells to NMDA and to the agonists of the other glutamate receptors was tested by bath application of NMDA, t-ACPD, AMPA and kainate. 2. When depolarized from a hyperpolarized level, cholinergic basalis neurones display the intrinsic ability to discharge in rhythmic bursts that are generated by low-threshold Ca2+ spikes. In control solution, these rhythmic bursts were not sustained for more than 5-6 cycles. However, in the presence of NMDA when the membrane was held at a hyperpolarized level, low-threshold bursting activity was sustained for prolonged periods of time. This activity could be reversibly eliminated by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), showing that it depended upon specific activation of NMDA receptors. 3. NMDA-induced, voltage-dependent, rhythmic depolarizations persisted in the presence of tetrodotoxin (TTX), indicating that they did not depend upon a TTX-sensitive Na+ current and were generated postsynaptically. The rhythmic depolarizations were, however, eliminated by the partial replacement of Na+ with choline, demonstrating that they did depend upon Na+, the major carrier of the NMDA current. 4. In the presence of TTX, the NMDA-induced rhythmic depolarizations were also eliminated by removal of Ca2+ from or addition of Ni2+ to the bath, indicating that they also depended upon Ca2+, which is carried by both the NMDA current and the low-threshold Ca2+ current. The duration of the rhythmic depolarizations was increased in the presence of apamin, suggesting that the repolarization of the cells

  13. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.

  14. Effects of the neurotrophic factors BDNF, NT-3, and FGF2 on dissociated neurons of the cochlear nucleus.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Radeloff, Andreas; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2014-08-20

    The cochlear nucleus is the first relay station for acoustic information in the auditory pathway and its cellular integrity is affected by hearing loss. Neurotrophic factors, which are known to regulate fundamental processes in the brain, are expressed in the cochlear nucleus and are regulated by the changes in the stimulation. The aim of this study was to evaluate the effect of the neurotrophins Brain derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) and the neurotrophic factor Fibroblast growth factor 2 (FGF2) on primary cultured cells of the mouse cochlear nucleus. No effect on overall cell growth was detected after 8 days in culture by the factors applied. NT-3 had a strong impact on enhancement of neuronal survival, whereas BDNF stimulated neuronal survival and axonal outgrowth. Axonal branching was negatively affected by the administration of BDNF. FGF2 did not show any effect. The results presented represent fundamental research on auditory neurons, but might be one step toward defining novel therapeutic strategies in the future to prevent cochlear nucleus degeneration induced by hearing loss. PMID:24978398

  15. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder. PMID:23365104

  16. Activity of red nucleus neurons in the cat during postural corrections

    PubMed Central

    Zelenin, P. V.; Beloozerova, I. N.; Sirota, M. G.; Orlovsky, G. N.; Deliagina, T. G.

    2010-01-01

    The dorsal-side-up body posture in standing quadrupeds is maintained by the postural system, which includes spinal and supraspinal mechanisms driven by somatosensory inputs from the limbs. A number of descending tracts can transmit suprasinal commands for postural corrections. The first aim of this study was to understand whether the rubrospinal tract participates in their transmission. We recorded activity of red nucleus neurons (RNNs) in the cat maintaining balance on the periodically tilting platform. Most neurons were identified as rubrospinal ones. It was found that many RNNs were profoundly modulated by tilts, suggesting that they transmit postural commands. The second aim of this study was to examine the contribution of sensory inputs from individual limbs to posture-related RNNs modulation. Each RNN was recorded during standing on all four limbs, as well as when two or three limbs were lifted from the platform and could not signal platform displacements. By comparing RNN responses in different tests, we found that the amplitude and phase of responses in the majority of RNNs were determined primarily by sensory input from the corresponding (fore or hind) contralateral limb, whereas inputs from other limbs made a much smaller contribution to RNNs modulation. These findings suggest that the rubrospinal system is primarily involved in the intra-limb postural coordination, i.e., in the feedback control of the corresponding limb and, to a lesser extent, in the inter-limb coordination. This study provides a new insight into the formation of supraspinal motor commands for postural corrections. PMID:20980611

  17. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice.

    PubMed

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan; Rehfeld, Jens F; Friis-Hansen, Lennart

    2010-09-01

    The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei.

  18. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.

    PubMed

    Sakai, K

    2014-02-28

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms, such as the cycle of sleep and wakefulness. Using extracellular single unit recordings, we have determined, for the first time, the discharge activity of individual SCN neurons during the complete wake-sleep cycle in non-anesthetized, head restrained mice. SCN neurons (n=79) were divided into three types according to their regular (type I; n=38) or irregular (type II; n=19) discharge activity throughout the wake-sleep cycle or their quiescent activity during waking and irregular discharge activity during sleep (type III; n=22). The type I and II neurons displayed a long-duration action potential, while the type III neurons displayed either a short-duration or long-duration action potential. The type I neurons discharged exclusively as single isolated spikes, whereas the type II and III neurons fired as single isolated spikes, clusters, or bursts. The type I and II neurons showed wake-active, wake/paradoxical (or rapid eye movement) sleep-active, or state-unrelated activity profiles and were, respectively, mainly located in the ventral or dorsal region of the SCN. In contrast, the type III neurons displayed sleep-active discharge profiles and were mainly located in the lateral region of the SCN. The majority of type I and II neurons tested showed an increase in discharge rate following application of light to the animal's eyes. Of the 289 extra-SCN neurons recorded, those displaying sleep-active discharge profiles were mainly located dorsal to the SCN, whereas those displaying wake-active discharge profiles were mainly located lateral or dorsolateral to the SCN. This study shows heterogeneity of mouse SCN and surrounding anterior hypothalamic neurons and suggests differences in their topographic organization and roles in mammalian circadian rhythms and the regulation of sleep and wakefulness.

  19. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    PubMed

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway.

  20. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    PubMed

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  1. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    PubMed Central

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  2. Firing properties and dye coupling of neurons in the pigeon nucleus semilunaris.

    PubMed

    Tang, Zong-Xiang; Wang, Shu-Rong

    2003-01-01

    Our previous study indicated that the nucleus semilunaris in birds is a visual center. The present study using pigeon brain slices shows that 84 semilunar cells examined could be grouped into five types according to responses to depolarizing current injections. Type I cells (early bursting, 44%) fire a single burst followed by regular spiking. Type II cells (regular spiking, 13%) regularly produce spikes, the rates of which are enhanced as currents are increased. Type III cells (bursting, 17%) discharge a series of bursts each consisting of 2-4 spikes. Type IV cells (dual spiking, 15%) evoke both spikes and spikelets. Type V cells (inhibition-following, 11%) are characterized by regular spiking followed by an inhibitory period after current cessation. Morphologically, semilunar neurons have piriform, round, or fusiform somata of 12-23 mum in diameter, which give rise to 2-4 primary dendrites with sparse branches. Dual spiking activity is invariably correlated with dye coupling, and bursting cells have a tendency to be fusiform in shape. Other types of semilunar cells do not show a correlation between their firing patterns and morphological features.

  3. Role of Per1-interacting protein of the suprachiasmatic nucleus in NGF mediated neuronal survival

    SciTech Connect

    Kiyama, Atsuko . E-mail: kiyama@pu-hiroshima.ac.jp; Isojima, Yasushi; Nagai, Katsuya

    2006-01-13

    We previously identified Per1-interacting protein of the suprachiasmatic nucleus (PIPS) in rats. To reveal its role, its tissue distribution was examined by immunoblotting. PIPS-like immunoreactive substance (PIPSLS) was observed in Brain, adrenal gland, and PC12 cells. Since PIPS, which has no nuclear localization signal (NLS), is translocated into nuclei of COS-7 cells in the presence of mPer1, the effect of NGF on nuclear localization of PIPS was examined using PC12 cells. NGF caused nuclear translocation of either PIPSLS or GFP-PIPS. NGF mediated nuclear translocation of PIPSLS was blocked by K252a, a TrkA-inhibitor, or wortmannin, a PI3K-inhibitor. Gab1, which is implicated in TrkA signaling and has NLS, co-immunoprecipitated with PIPSLS from PC12 cells using an anti-PIPS antibody. Inhibition of PIPS expression by RNAi increased levels of apoptosis in PC12 cells. These findings suggest that nuclear translocation of PIPS is involved in NGF mediated neuronal survival via TrkA, PI3K, and Gab1 signaling pathway.

  4. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus

    PubMed Central

    Chakraborty, Subhojit; Schultz, Simon R.

    2016-01-01

    The lateral geniculate nucleus (LGN) is increasingly regarded as a “smart-gating” operator for processing visual information. Therefore, characterizing the response properties of LGN neurons will enable us to better understand how neurons encode and transfer visual signals. Efforts have been devoted to study its anatomical and functional features, and recent advances have highlighted the existence in rodents of complex features such as direction/orientation selectivity. However, unlike well-researched higher-order mammals such as primates, the full array of response characteristics vis-à-vis its morphological features have remained relatively unexplored in the mouse LGN. To address the issue, we recorded from mouse LGN neurons using multisite-electrode-arrays (MEAs) and analysed their discharge patterns in relation to their location under a series of visual stimulation paradigms. Several response properties paralleled results from earlier studies in the field and these include centre-surround organization, size of receptive field, spontaneous firing rate and linearity of spatial summation. However, our results also revealed “high-pass” and “low-pass” features in the temporal frequency tuning of some cells, and greater average contrast gain than reported by earlier studies. In addition, a small proportion of cells had direction/orientation selectivity. Both “high-pass” and “low-pass” cells, as well as direction and orientation selective cells, were found only in small numbers, supporting the notion that these properties emerge in the cortex. ON- and OFF-cells showed distinct contrast sensitivity and temporal frequency tuning properties, suggesting parallel projections from the retina. Incorporating a novel histological technique, we created a 3-D LGN volume model explicitly capturing the morphological features of mouse LGN and localising individual cells into anterior/middle/posterior LGN. Based on this categorization, we show that the ON

  5. GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep.

    PubMed

    Torterolo, P; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2000-11-24

    Serotonergic neurons of the dorsal raphe nucleus (DRN) cease firing during active sleep (AS, also called rapid-eye-movement sleep). This cessation of electrical activity is believed to play a 'permissive' role in the generation of AS. In the present study we explored the possibility that GABAergic cells in the DRN are involved in the suppression of serotonergic activity during AS. Accordingly, we examined whether immunocytochemically identified GABAergic neurons in the DRN were activated, as indicated by their expression of c-fos, during carbachol-induced AS (AS-carbachol). Three chronically-prepared cats were euthanized after prolonged episodes of AS that was induced by microinjections of carbachol into the nucleus pontis oralis. Another four cats (controls) were maintained 2 h in quiet wakefulness before being euthanized. Thereafter, immunocytochemical studies were performed on brainstem sections utilizing antibodies against Fos, GABA and serotonin. When compared with identically prepared tissue from awake cats, the number of Fos+ neurons was larger in the DRN during AS-carbachol (35.9+/-5.6 vs. 13.9+/-4.4, P<0.05). Furthermore, a larger number of GABA+ Fos+ neurons were observed during AS-carbachol than during wakefulness (24.8+/-3.3 vs. 4.0+/-1.0, P<0.001). These GABA+ Fos+ neurons were distributed asymmetrically with a larger number located ipsilaterally to the site of injection. There was no significant difference between control and experimental animals in the number of non-GABAergic neurons that expressed c-fos in the DRN. We therefore suggest that activated GABAergic neurons of the DRN are responsible for the inhibition of serotonergic neurons that occurs during natural AS. PMID:11082488

  6. Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.

    PubMed

    Ikeda, Masayuki; Ikeda, Masaaki

    2014-09-01

    The hypothalamic suprachiasmatic nucleus (SCN) plays a pivotal role in the mammalian circadian clock system. Bmal1 is a clock gene that drives transcriptional-translational feedback loops (TTFLs) for itself and other genes, and is expressed in nearly all SCN neurons. Despite strong evidence that Bmal1-null mutant mice display arrhythmic behavior under constant darkness, the function of Bmal1 in neuronal activity is unknown. Recently, periodic changes in the levels of intracellular signaling messengers, such as cytosolic Ca(2+) and cAMP, were suggested to regulate TTFLs. However, the opposite aspect of how clock gene TTFLs regulate cytosolic signaling remains unclear. To investigate intracellular Ca(2+) dynamics under Bmal1 perturbations, we cotransfected some SCN neurons with yellow cameleon together with wild-type or dominant-negative Bmal1 using a gene-gun applied for mouse organotypic cultures. Immunofluorescence staining for a tag protein linked to BMAL1 showed nuclear expression of wild-type BMAL1 and its degradation within 1 week after transfection in SCN neurons. However, dominant-negative BMAL1 did not translocate into the nucleus and the cytosolic signals persisted beyond 1 week. Consistently, circadian Ca(2+) rhythms in SCN neurons were inhibited for longer periods by dominant-negative Bmal1 overexpression. Furthermore, SCN neurons transfected with a Bmal1 shRNA lengthened, whereas those overexpressing wild-type Bmal1 shortened, the periods of Ca(2+) rhythms, with a significant reduction in their amplitude. BMAL1 expression was intact in the majority of neighboring neurons in organotypic cultures. Therefore, we conclude that proper intrinsic Bmal1 expression, but not passive signaling via cell-to-cell interactions, is the determinant of circadian Ca(2+) rhythms in SCN neurons. PMID:25186748

  7. [Quantitative analysis of the isthmo-optic nucleus and projection neurons to the retina in adult fowl (Gallus gallus domesticus)].

    PubMed

    Sugita, S; Yamada, M

    1992-08-01

    Quantitative analysis of the isthmo-optic nucleus (IO) and centrifugal projection to the retina in the fowl was made using Nissl preparation and retrograde horseradish peroxidase (HRP) methods. Seven adult fowls (Gallus gallus domesticus) were used for Nissl stain. Serial sections were cut on a freezing microtome at 60 microns and stained with cresyl violet. IO was situated just medial to the caudal part of the tectum and laterodorsal surface of the brain stem. Rostrocaudal extension of IO was about 800-1,000 microns. The average total volume and neuronal population of the IO was 280 x 10(-3) mm3 and 5,600 neurons, respectively. Eight animals were used for HRP study. One hundred microliters of 30% HRP solution in physiological saline was injected into the vitreous body of one eye of each hen. Serial transverse sections of 60 microns were treated with tetramethyl benzidine (TMB). Many labeled neurons were found in contralateral brain stem. Average total number of contralateral HRP-labeled cells in IO and peri-IO were 5,268 and 1,492, respectively. Labeled neurons peri-IO were mainly distributed ventrally and rostrally to IO. No labeled neurons in IO, and only a few labeled neurons peri-IO were found ipsilaterally. The number of HRP-labeled neurons in IO corresponded to the neuronal population of IO in Nissl preparation, which suggested that most of isthmo-optic neurons might be projecting to the contralateral retina. In contrast to the round and small IO neurons (long axis 15-20 microns, short axis 10-20 microns), peri-IO neurons were multipolar and longer (long axis 15-30 microns, short axis 10-25 microns).

  8. Ethanol inhibits histaminergic neurons in mouse tuberomammillary nucleus slices via potentiating GABAergic transmission onto the neurons at both pre- and postsynaptic sites

    PubMed Central

    Sun, Yu; Jiang, Shi-yu; Ni, Jian; Luo, Yan-jia; Chen, Chang-rui; Hong, Zong-yuan; Yanagawa, Yuchio; Qu, Wei-min; Wang, Lu; Huang, Zhi-li

    2016-01-01

    Aim: Ethanol, one of the most frequently used and abused substances in our society, has a profound impact on sedation. However, the neuronal mechanisms underlying its sedative effect remain unclear. In this study, we investigated the effects of ethanol on histaminergic neurons in the tuberomammillary nucleus (TMN), a brain region thought to be critical for wakefulness. Methods: Coronal brain slices (250 μm thick) containing the TMN were prepared from GAD67-GFP knock-in mice. GAD67-GFP was used to identify histaminergic neurons in the TMN. The spontaneous firing and membrane potential of histaminergic neurons, and GABAergic transmission onto these neurons were recorded using whole-cell patch-clamp recordings. Drugs were applied through superfusion. Results: Histaminergic and GAD67-expressing neurons in the TMN of GAD67-GFP mice were highly co-localized. TMN GFP-positive neurons exhibited a regular spontaneous discharge at a rate of 2–4 Hz without burst firing. Brief superfusion of ethanol (64, 190, and 560 mmol/L) dose-dependently and reversibly suppressed the spontaneous firing of the neurons in the TMN; when synaptic transmission was blocked by tetrodotoxin (1 μmol/L), ethanol caused hyperpolarization of the membrane potential. Furthermore, superfusion of ethanol markedly increased the frequency and amplitude of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs), which were abolished in the presence of the GABAA receptor antagonist bicuculline (20 μmol/L). Finally, ethanol-mediated enhancement of sIPSCs and mIPSCs was significantly attenuated when the slices were pretreated with the GABAB agonist baclofen (30 μmol/L). Conclusion: Ethanol inhibits the excitability of histaminergic neurons in mouse TMN slices, possibly via potentiating GABAergic transmission onto the neurons at both pre- and postsynaptic sites. PMID:27498778

  9. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  10. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  11. Lack of response of serotonergic neurons in the dorsal raphe nucleus of freely moving cats to stressful stimuli.

    PubMed

    Wilkinson, L O; Jacobs, B L

    1988-09-01

    Changes in brain serotonin (5-HT) neurotransmission have been implicated in the mammalian response to stressful stimuli. The purpose of this study was to examine the extracellular single-unit activity of 5-HT neurons in cats exposed to three stressors: loud (100 dB) white noise, restraint, and confrontation with a dog. Serotonergic neurons were recorded in the dorsal raphe nucleus (DRN) and were identified by (i) slow and regular spontaneous activity, (ii) long duration (approximately 2 ms) waveform, (iii) complete suppression of activity during REM sleep and after systemic administration of 5-methoxy-N-N-dimethyltryptamine (250 micrograms/kg i.m.), and (iv) histological localization in the DRN. Despite behavioral and physiological evidence that all three manipulations induced a stress response, the maximal firing rate of 5-HT neurons was not significantly different from that observed under unstressed conditions. These data are consistent with previous studies from our laboratory which have indicated that very few manipulations are able to perturb the slow and regular activity of these neurons. In contrast, previous work has shown that the firing rate of noradrenergic neurons in the locus ceruleus is dramatically increased by these stressors. The relative imbalance in the activity of these two neuronal groups observed during stress may affect postsynaptic neuronal processing patterns and have adaptive significance during stressful conditions.

  12. Evidence for Role of Acid-Sensing Ion Channels in Nucleus Ambiguus Neurons: Essential Differences in Anesthetized versus Awake Rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Altmann, Joseph B.; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-01-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely-labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats. PMID:24752669

  13. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to amplitude-modulated tones.

    PubMed

    Zhang, Huiming; Kelly, Jack B

    2006-12-01

    Recordings were made from single neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL) to determine responses to amplitude-modulated (AM) tones. The neurons were first characterized on the basis of their response to tone bursts presented to the contralateral ear and a distinction was made between those with transient onset responses and those with sustained responses. Sinusoidal AM tones were then presented to the contralateral ear with a carrier that matched the neuron's characteristic frequency (CF). Modulation transfer functions were generated on the basis of firing rate (MTF(FR)) and vector strength (MTF(VS)). Ninety-two percent of onset neurons that responded continuously to AM tones had band-pass MTF(FR)s with best modulation frequencies from 10 to 300 Hz. Fifty-four percent of sustained neurons had band-pass MTF(FR)s with best modulation frequencies from 10 to 500 Hz; other neurons had band-suppressed, all-pass, low-pass, or high-pass functions. Most neurons showed either band-pass or low-pass MTF(VS). Responses were well synchronized to the modulation cycle with maximum vector strengths ranging from 0.37 to 0.98 for sustained neurons and 0.78 to 0.99 for onset neurons. The upper frequency limit for response synchrony was higher than that reported for inferior colliculus, but lower than that seen in more peripheral structures. Results suggest that VNLL neurons, especially those with onset responses to tone bursts, are sensitive to temporal features of sounds and narrowly tuned to different modulation rates. However, there was no evidence of a topographic relation between dorsoventral position along the length of VNLL and best modulation frequency as determined by either firing rate or vector strength. PMID:16928797

  14. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex

    PubMed Central

    Piché, Marilyse; Thomas, Sébastien

    2015-01-01

    The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex. PMID:26289469

  15. Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats.

    PubMed

    Nichols, Nicole L; Hartzler, Lynn K; Conrad, Susan C; Dean, Jay B; Putnam, Robert W

    2008-01-01

    Chemosensitive (CS) neurons are found in discrete brainstem regions, but whether the CS response of these neurons is due to intrinsic chemosensitivity of individual neurons or is mediated by changes in chemical and/or electrical synaptic input is largely unknown. We studied the effect of synaptic blockade (11.4 mM Mg2+/0.2mM Ca2+) solution (SNB) and a gap junction uncoupling agent carbenoxolone (CAR--100 microM) on the response of neurons from two CS brainstem regions, the NTS and the LC. In NTS neurons, SNB decreased spontaneous firing rate (FR). We calculated the magnitude of the FR response to hypercapnic acidosis (HA; 15% CO2) using the Chemosensitivity Index (CI). The percentage of NTS neurons activated and CI were the same in the absence and presence of SNB. Blocking gap junctions with CAR did not significantly alter spontaneous FR. CAR did not alter the CI in NTS neurons and resulted in a small decrease in the percentage of activated neurons, which was most evident in NTS neurons from rats younger than postnatal day 10. In LC neurons, SNB resulted in an increase in spontaneous FR. As with NTS neurons, SNB did not alter the percentage of activated neurons or the CI in LC neurons. CAR resulted in a small increase in spontaneous FR in LC neurons. In contrast, CAR had a marked effect on the response of LC neurons to HA: a reduced percentage of CS LC neurons and decreased CI. In summary, both NTS and LC neurons appear to contain intrinsically CS neurons. CS neurons from the two regions receive different tonic input in slices (excitatory for NTS and inhibitory for LC); however, blocking chemical synaptic input does not affect the CS response in either region. In NTS neurons, gap junction coupling plays a small role in the CS response, but gap junctions play a major role in the chemosensitivity of many LC neurons.

  16. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice.

    PubMed

    Roa, Juan; Herbison, Allan E

    2012-11-01

    Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons act to sense and coordinate the brain's responses to metabolic cues. One neuronal network that is very sensitive to metabolic status is that controlling fertility. In this study, we investigated the impact of neuropeptides released by NPY and POMC neurons on the cellular excitability of GnRH neurons, the final output cells of the brain controlling fertility. The majority (∼70%) of GnRH neurons were activated by α-melanocyte-stimulating hormone, and this resulted from the direct postsynaptic activation of melanocortin receptor 3 and melanocortin receptor 4. A small population of GnRH neurons (∼15%) was excited by cocaine and amphetamine-regulated transcript or inhibited by β-endorphin. Agouti-related peptide, released by NPY neurons, was found to have variable inhibitory (∼10%) and stimulatory (∼25%) effects upon subpopulations of GnRH neurons. A variety of NPY and pancreatic polypeptide analogs was used to examine potential NPY interactions with GnRH neurons. Although porcine NPY (Y1/Y2/Y5 agonist) directly inhibited the firing of approximately 45% of GnRH neurons, [Leu(31),Pro(34)]-NPY (Y1/Y4/Y5 agonist) could excite (56%) or inhibit (19%). Experiments with further agonists indicated that Y1 receptors were responsible for suppressing GnRH neuron activity, whereas postsynaptic Y4 receptors were stimulatory. These results show that the activity of GnRH neurons is regulated in a complex manner by neuropeptides released by POMC and NPY neurons. This provides a direct route through which different metabolic cues can regulate fertility.

  17. Functional Compensation between Cholecystokinin-1 and -2 Receptors in Murine Paraventricular Nucleus Neurons*

    PubMed Central

    Mohammad, Shahid; Ozaki, Tomoya; Takeuchi, Kouhei; Unno, Katsuya; Yamoto, Kurumi; Morioka, Eri; Takiguchi, Soichi; Ikeda, Masayuki

    2012-01-01

    Cholecystokinin (CCK) and its receptor subtypes CCK-1 and -2 have diverse homeostatic functions. CCK-1 and -2 receptors share a common phosphatidylinositol signaling pathway, yet little is known regarding their possible functional coupling. We focused on CCK-mediated Ca2+ signaling in parvocellular paraventricular nucleus (PVN) cells, which control satiety and other autonomic functions. Analysis of mouse hypothalamic slices demonstrated that the general CCK receptor agonist CCK-8s (10 nm) triggered Ca2+ transients most significantly in the posterior subregion of the PVN (PaPo). This 10 nm CCK-8s-induced response was absent in CCK-1 receptor knock-out (CCK1R−/−) slices, showing that the response is mediated by CCK-1 receptors. CCK-8s concentrations higher than 30 nm triggered a Ca2+ rise similarly in wild-type and CCK1R−/− slices. The large CCK-8s (100 nm)-induced Ca2+ responses in CCK1R−/− slices were blocked by a CCK-2 receptor antagonist (CI-988), whereas those in wild-type slices required a mixture of CI-988 and lorglumide (a CCK-1 receptor antagonist) for complete antagonism. Therefore, CCK-1 and -2 receptors may function synergistically in single PaPo neurons and deletion of CCK-1 receptors may facilitate CCK-2 receptor signaling. This hypothesis was supported by results of real-time RT-PCR, immunofluorescence double labeling and Western blotting assays, which indicated CCK-2 receptor overexpression in PaPo neurons of CCK1R−/− mice. Furthermore, behavioral studies showed that intraperitoneal injections of lorglumide up-regulated food accesses in wild-type but not in CCK1R−/− mice, whereas CI-988 injections up-regulated food accesses in CCK1R−/− but not in wild-type mice. Compensatory CCK signaling via CCK-2 receptors in CCK1R−/− mice shed light on currently controversial satiety-controlling mechanisms. PMID:23038256

  18. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features.

    PubMed

    Vaingankar, Vishal; Soto-Sanchez, Cristina; Wang, Xin; Sommer, Friedrich T; Hirsch, Judith A

    2012-01-01

    All visual signals the cortex receives are influenced by the perigeniculate sector (PGN) of the thalamic reticular nucleus, which receives input from relay cells in the lateral geniculate and provides feedback inhibition in return. Relay cells have been studied in quantitative depth; they behave in a roughly linear fashion and have receptive fields with a stereotyped center-surround structure. We know far less about reticular neurons. Qualitative studies indicate they simply pool ascending input to generate non-selective gain control. Yet the perigeniculate is complicated; local cells are densely interconnected and fire lengthy bursts. Thus, we employed quantitative methods to explore the perigeniculate using relay cells as controls. By adapting methods of spike-triggered averaging and covariance analysis for bursts, we identified both first and second order features that build reticular receptive fields. The shapes of these spatiotemporal subunits varied widely; no stereotyped pattern emerged. Companion experiments showed that the shape of the first but not second order features could be explained by the overlap of On and Off inputs to a given cell. Moreover, we assessed the predictive power of the receptive field and how much information each component subunit conveyed. Linear-non-linear (LN) models including multiple subunits performed better than those made with just one; further each subunit encoded different visual information. Model performance for reticular cells was always lesser than for relay cells, however, indicating that reticular cells process inputs non-linearly. All told, our results suggest that the perigeniculate encodes diverse visual features to selectively modulate activity transmitted downstream. PMID:23269915

  19. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    PubMed

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine.

  20. GAD67-GFP+ Neurons in the Nucleus of Roller. II. Subthreshold and Firing Resonance Properties

    PubMed Central

    Berger, A. J.

    2011-01-01

    In the companion paper we show that GAD67-GFP+ (GFP+) inhibitory neurons located in the Nucleus of Roller of the mouse brain stem can be classified into two main groups (tonic and phasic) based on their firing patterns in responses to injected depolarizing current steps. In this study we examined the responses of GFP+ cells to fluctuating sinusoidal (“chirp”) current stimuli. Membrane impedance profiles in response to chirp stimulation showed that nearly all phasic cells exhibited subthreshold resonance, whereas the majority of tonic GFP+ cells were nonresonant. In general, subthreshold resonance was associated with a relatively fast passive membrane time constant and low input resistance. In response to suprathreshold chirp current stimulation at a holding potential just below spike threshold the majority of tonic GFP+ cells fired multiple action potentials per cycle at low input frequencies (<5 Hz) and either stopped firing or were not entrained by the chirp at higher input frequencies (= tonic low-pass cells). A smaller group of phasic GFP+ cells did not fire at low input frequency but were able to phase-lock 1:1 at intermediate chirp frequencies (= band-pass cells). Spike timing reliability was tested with repeated chirp stimuli and our results show that phasic cells were able to reliably fire when they phase-locked 1:1 over a relatively broad range of input frequencies. Most tonic low-pass cells showed low reliability and poor phase-locking ability. Computer modeling suggested that these different firing resonance properties among GFP+ cells are due to differences in passive and active membrane properties and spiking mechanisms. This heterogeneity of resonance properties might serve to selectively activate subgroups of interneurons. PMID:21047931

  1. Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit.

    PubMed

    Hachem-Delaunay, Sabira; Fournier, Marie-Line; Cohen, Candie; Bonneau, Nicolas; Cador, Martine; Baunez, Christelle; Le Moine, Catherine

    2015-08-01

    The subthalamic nucleus (STN) is a critical component of a complex network controlling motor, associative and limbic functions. High-frequency stimulation (HFS) of the STN is an effective therapy for motor symptoms in Parkinsonian patients and can also reduce their treatment-induced addictive behaviors. Preclinical studies have shown that STN HFS decreases motivation for cocaine while increasing that for food, highlighting its influence on rewarding and motivational circuits. However, the cellular substrates of these effects remain unknown. Our objectives were to characterize the cellular consequences of STN HFS with a special focus on limbic structures and to elucidate how STN HFS may interfere with acute cocaine effects in these brain areas. Male Long-Evans rats were subjected to STN HFS (130 Hz, 60 μs, 50-150 μA) for 30 min before an acute cocaine injection (15 mg/kg) and sacrificed 10 min following the injection. Neuronal reactivity was analyzed through the expression of two immediate early genes (Arc and c-Fos) to decipher cellular responses to STN HFS and cocaine. STN HFS only activated c-Fos in the globus pallidus and the basolateral amygdala, highlighting a possible role on emotional processes via the amygdala, with a limited effect by itself in other structures. Interestingly, and despite some differential effects on Arc and c-Fos expression, STN HFS diminished the c-Fos response induced by acute cocaine in the striatum. By preventing the cellular effect of cocaine in the striatum, STN HFS might thus decrease the reinforcing properties of the drug, which is in line with the inhibitory effect of STN HFS on the rewarding and reinforcing properties of cocaine. PMID:25982833

  2. Modulation of spike clustering by NMDA receptors and neurotensin in rat supraoptic nucleus neurons.

    PubMed

    Gagnon, Ariane; Walsh, Michael; Okuda, Tika; Choe, Katrina Y; Zaelzer, Cristian; Bourque, Charles W

    2014-10-01

    Magnocellular neurosecretory cells (MNCs) in the rat supraoptic nucleus display clustered firing during hyperosmolality or dehydration. This response is beneficial because this type of activity potentiates vasopressin secretion from axon terminals in the neurohypophysis and thus promotes homoeostatic water reabsorption from the kidney. However, the mechanisms which lead to the generation of clustering activity in MNCs remain unknown. Previous work has shown that clustered firing can be induced in these neurons through the pharmacological activation of NMDA receptors (NMDARs) and that silent pauses observed during this activity are mediated by apamin-sensitive calcium activated potassium (SK) channels. However, it remains unknown if clustered firing can be induced in situ by endogenous glutamate release from axon terminals. Here we show that electrical stimulation of glutamatergic osmosensory afferents in the organum vasculosum lamina terminalis (OVLT) can promote clustering in MNCs via NMDARs and apamin-sensitive channels.We also show that the rate of spike clustering induced by NMDA varies as a bell-shaped function of voltage, and that partial inhibition of SK channels can increase cluster duration and reduce the rate of clustering. Finally,we show that MNCs express neurotensin type 2 receptors, and that activation of these receptors can simultaneously depolarize MNCs and suppress clustered firing induced by bath application of NMDA or by repetitive stimulation of glutamate afferents. These studies reveal that spike clustering can be induced in MNCs by glutamate release from afferent nerve terminals and that that this type of activity can be fine-tuned by neuromodulators such as neurotensin.

  3. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus

    PubMed Central

    Ma, Rui; Cui, He; Lee, Sang-Hun; Anastasio, Thomas J.

    2013-01-01

    Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128–3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets. PMID:23365185

  4. Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques

    PubMed Central

    McCandless, Cyrus H.; Balaban, Carey D.

    2010-01-01

    The caudal aspect of the parabrachial nucleus (PBN) contains neurons responsive to whole body, periodic rotational stimulation in alert monkeys. This study characterizes the angular and linear motion-sensitive response properties of PBN unit responses during off-vertical axis rotation (OVAR) and position trapezoid stimulation. The OVAR responses displayed a constant firing component which varied from the firing rate at rest. Nearly two-thirds of the units also modulated their discharges with respect to head orientation (re: gravity) during constant velocity OVAR stimulation. The modulated response magnitudes were equal during ipsilateral and contralateral OVARs, indicative of a one-dimensional accelerometer. These response orientations during OVAR divided the units into three spatially tuned populations, with peak modulation responses centered in the ipsilateral ear down, contralateral anterior semicircular canal down, and occiput down orientations. Because the orientation of the OVAR modulation response was opposite in polarity to the orientation of the static tilt component of responses to position trapezoids for the majority of units, the linear acceleration responses were divided into colinear dynamic linear and static tilt components. The orientations of these unit responses formed two distinct population response axes: (1) units with an interaural linear response axis and (2) units with an ipsilateral anterior semicircular canal-contralateral posterior semicircular canal plane linear response axis. The angular rotation sensitivity of these units is in a head-vertical plane that either contains the linear acceleration response axis or is perpendicular to the linear acceleration axis. Hence, these units behave like head-based (‘strap-down’) inertial guidance sensors. Because the PBN contributes to sensory and interoceptive processing, it is suggested that vestibulo-recipient caudal PBN units may detect potentially dangerous anomalies in control of postural

  5. Nucleus accumbens neuronal activity correlates to the animal’s behavioral response to acute and chronic methylphenidate

    PubMed Central

    Claussen, Catherine M; Chong, Samuel L; Dafny, Nachum

    2014-01-01

    Acute and chronic Methylphenidate (MPD) exposure was recorded simultaneously for the rat’s locomotor activity and the nucleus accumbens (NAc) neuronal activity. The evaluation of the neuronal events was based on the animal’s behavior response to chronic MPD administration: 1) Animals exhibiting behavioral sensitization 2) Animals exhibiting behavioral tolerance. The experiment lasted for 10 days with four groups of animals; saline, 0.6, 2.5, and 10.0mg/kg MPD. For the main behavioral findings, about half of the animals exhibited behavioral sensitization or behavioral tolerance to 0.6, 2.5, and/or 10 mg/kg MPD respectively. Three hundred and forty one NAc neuronal units were evaluated. Approximately 80% of NAc units responded to 0.6, 2.5, and 10.0 mg/kg MPD. When the neuronal activity was analyzed based on the animals behavioral response to chronic MPD exposure, significant differences were seen between the neuronal populations responses recorded from animals that expressed behavioral sensitization when compared to the NAc neuronal responses recorded from animals exhibiting behavioral tolerance. Three types of neurophysiological sensitization and neurophysiological tolerance can be recognized following chronic MPD administration to the neuronal populations. Collectively, these findings show that the same dose of chronic MPD can elicit either behavioral tolerance or behavioral sensitization. Differential statistical analysis were used to verify our hypothesis that the neuronal activity recorded from animals exhibiting behavioral sensitization will respond differently to MPD compared to those animals exhibiting behavioral tolerance. Thus, suggesting that it is essential to record the animals behavior concomitantly with neuronal recordings. PMID:24534179

  6. Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-Expressing GABAergic Neurons in the Interpeduncular Nucleus

    PubMed Central

    Hsu, Yun-Wei A.; Tempest, Lynne; Quina, Lely A.; Wei, Aguan D.; Zeng, Hongkui

    2013-01-01

    The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an “accessory” subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5GFP, to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5GFP is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5GFP is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5GFP neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5GFP neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5GFP IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5GFP neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714

  7. Medial habenula output circuit mediated by α5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus.

    PubMed

    Hsu, Yun-Wei A; Tempest, Lynne; Quina, Lely A; Wei, Aguan D; Zeng, Hongkui; Turner, Eric E

    2013-11-13

    The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an "accessory" subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5(GFP), to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5(GFP) is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5(GFP) is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5(GFP) neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5(GFP) neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5(GFP) IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5(GFP) neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine. PMID:24227714

  8. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus.

    PubMed

    Baver, Scott B; Hope, Kevin; Guyot, Shannon; Bjørbaek, Christian; Kaczorowski, Catherine; O'Connell, Kristen M S

    2014-04-16

    The hypothalamic arcuate nucleus (ARH) is a brain region critical for regulation of food intake and a primary area for the action of leptin in the CNS. In lean mice, the adipokine leptin inhibits neuropeptide Y (NPY) and agouti-related peptide (AgRP) neuronal activity, resulting in decreased food intake. Here we show that diet-induced obesity in mice is associated with persistent activation of NPY neurons and a failure of leptin to reduce the firing rate or hyperpolarize the resting membrane potential. However, the molecular mechanism whereby diet uncouples leptin's effect on neuronal excitability remains to be fully elucidated. In NPY neurons from lean mice, the Kv channel blocker 4-aminopyridine inhibited leptin-induced changes in input resistance and spike rate. Consistent with this, we found that ARH NPY neurons have a large, leptin-sensitive delayed rectifier K(+) current and that leptin sensitivity of this current is blunted in neurons from diet-induced obese mice. This current is primarily carried by Kv2-containing channels, as the Kv2 channel inhibitor stromatoxin-1 significantly increased the spontaneous firing rate in NPY neurons from lean mice. In HEK cells, leptin induced a significant hyperpolarizing shift in the voltage dependence of Kv2.1 but had no effect on the function of the closely related channel Kv2.2 when these channels were coexpressed with the long isoform of the leptin receptor LepRb. Our results suggest that dynamic modulation of somatic Kv2.1 channels regulates the intrinsic excitability of NPY neurons to modulate the spontaneous activity and the integration of synaptic input onto these neurons in the ARH.

  9. A subpopulation of dorsal raphe nucleus neurons retrogradely labeled with cholera toxin-B injected into the inner ear.

    PubMed

    Kim, D O; Yang, X M; Ye, Y

    2003-12-01

    Previous studies have shown that: (1) raphe neurons respond to acoustic and vestibular stimuli, some with a latency of 10-15 ms; (2) alterations of the raphe nuclei alter the acoustic startle reflex; (3) the dorsal raphe nucleus (DRN) is the major source of serotonergic neurons; and (4) approximately 57% of the DRN neurons are nonserotonergic. In the present study, cholera toxin subunit-B (CTB) was injected into cat cochleas, and the brain tissue was examined after a survival period of 5-7 days. Aside from neurons which were known to project to the inner ear, i.e., olivocochlear and vestibular efferent neurons, a surprising new finding was made that somata of a subpopulation of DRN neurons were intensely labeled with CTB. These CTB-labeled neurons were densely distributed in a dorsomedian part of the DRN with some in a surrounding area outside the DRN. The present results suggest that a novel raphe-labyrinthine projection may exist. A future study of anterograde labeling with injections of a tracer in the DRN will be needed to establish the existence of a raphe-labyrinthine projection more thoroughly. A raphe-labyrinthine descending input, together with an ascending input from the inner ear to the DRN through intervening neurons, such as the juxta-acousticofloccular raphe neurons (JAFRNs) described by Ye and Kim, may mediate a brain stem reflex whereby a salient multisensory (including auditory and vestibular) stimulus may alter the sensitivity of the inner ear. As a mammal responds to a biologically important auditory-vestibular multisensory event, the raphe projections to the inner ear and other auditory and vestibular structures may enhance the mammal's ability to localize and recognize the sound and respond properly. The raphe-labyrinthine projection may also modulate the inner ear's sensitivity as a function of the sleep-wake arousal state of an organism on a slower time course. PMID:12961055

  10. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  11. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. PMID:27444242

  12. Positive Reinforcement Mediated by Midbrain Dopamine Neurons Requires D1 and D2 Receptor Activation in the Nucleus Accumbens

    PubMed Central

    Steinberg, Elizabeth E.; Boivin, Josiah R.; Saunders, Benjamin T.; Witten, Ilana B.; Deisseroth, Karl; Janak, Patricia H.

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement. PMID:24733061

  13. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens.

    PubMed

    Steinberg, Elizabeth E; Boivin, Josiah R; Saunders, Benjamin T; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2014-01-01

    The neural basis of positive reinforcement is often studied in the laboratory using intracranial self-stimulation (ICSS), a simple behavioral model in which subjects perform an action in order to obtain exogenous stimulation of a specific brain area. Recently we showed that activation of ventral tegmental area (VTA) dopamine neurons supports ICSS behavior, consistent with proposed roles of this neural population in reinforcement learning. However, VTA dopamine neurons make connections with diverse brain regions, and the specific efferent target(s) that mediate the ability of dopamine neuron activation to support ICSS have not been definitively demonstrated. Here, we examine in transgenic rats whether dopamine neuron-specific ICSS relies on the connection between the VTA and the nucleus accumbens (NAc), a brain region also implicated in positive reinforcement. We find that optogenetic activation of dopaminergic terminals innervating the NAc is sufficient to drive ICSS, and that ICSS driven by optical activation of dopamine neuron somata in the VTA is significantly attenuated by intra-NAc injections of D1 or D2 receptor antagonists. These data demonstrate that the NAc is a critical efferent target sustaining dopamine neuron-specific ICSS, identify receptor subtypes through which dopamine acts to promote this behavior, and ultimately help to refine our understanding of the neural circuitry mediating positive reinforcement.

  14. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory.

  15. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC. PMID:26601504

  16. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.

  17. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    PubMed Central

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Using an unbiased conditioned place preference procedure combined with in vivo neuronal recordings, we examined the effects of nicotine reward and aversion conditioning on intra-NAc neuronal sub-population activity patterns. We report that intra-VTA doses of nicotine that differentially produce rewarding or aversive behavioral effects produce opposite effects on sub-populations of fast-spiking interneurons (FSIs) or medium spiny neurons (MSNs) within the shell region of the NAc (NAshell). Thus, while the rewarding effects of intra-VTA nicotine were associated with inhibition of FSI and activation of MSNs, the aversive effects of nicotine produced the opposite pattern of NAshell neuronal population activity. Blockade of DA transmission with a broad-spectrum DA receptor antagonist, α-flupenthixol, strongly inhibited the spontaneous activity of NAshell FSIs, and reversed the conditioning properties of intra-VTA nicotine, switching nicotine-conditioned responses from aversive to rewarding. Remarkably, DA receptor blockade switched intra-NAshell neuronal population activity from an aversion to a reward pattern, concomitant with the observed switch in behavioral conditioning effects. PMID:24896614

  18. Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.).

    PubMed Central

    Zupanc, G K; Zupanc, M M

    1992-01-01

    In contrast to mammals, fish maintain their capacity to generate neurons in the central nervous system even during adulthood for prolonged periods of life. By employing immunohistochemical, autoradiographic, and electron microscopic techniques, we studied such a postnatal neurogenesis within the complex of the central posterior/prepacemaker nucleus (CP/PPn) in knifefish (Eigenmannia sp.), a weakly electric teleost. The CP/PPn is a bilateral cluster of neurons in the thalamus. It controls frequency modulations of the electric organ discharge as they are used during social interactions. In the CP/PPn region adjacent to the wall of the third ventricle ("ventricular zone"), cells are born continuously and at high rates. They undergo multiple cell divisions before differentiating into neurons. Concomitant with this development, the newborn neurons migrate toward lateral regions of the CP/PPn. In the course of this lateral migration, they appear to acquire immunological and morphological characteristics that are typical for mature CP/PPn neurons. We hypothesize that at least some of the newly generated cells develop finally into functional CP/PPn neurons. Images PMID:1409663

  19. Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease.

    PubMed

    Lim, Andrew S P; Ellison, Brian A; Wang, Joshua L; Yu, Lei; Schneider, Julie A; Buchman, Aron S; Bennett, David A; Saper, Clifford B

    2014-10-01

    Fragmented sleep is a common and troubling symptom in ageing and Alzheimer's disease; however, its neurobiological basis in many patients is unknown. In rodents, lesions of the hypothalamic ventrolateral preoptic nucleus cause fragmented sleep. We previously proposed that the intermediate nucleus in the human hypothalamus, which has a similar location and neurotransmitter profile, is the homologue of the ventrolateral preoptic nucleus, but physiological data in humans were lacking. We hypothesized that if the intermediate nucleus is important for human sleep, then intermediate nucleus cell loss may contribute to fragmentation and loss of sleep in ageing and Alzheimer's disease. We studied 45 older adults (mean age at death 89.2 years; 71% female; 12 with Alzheimer's disease) from the Rush Memory and Aging Project, a community-based study of ageing and dementia, who had at least 1 week of wrist actigraphy proximate to death. Upon death a median of 15.5 months later, we used immunohistochemistry and stereology to quantify the number of galanin-immunoreactive intermediate nucleus neurons in each individual, and related this to ante-mortem sleep fragmentation. Individuals with Alzheimer's disease had fewer galaninergic intermediate nucleus neurons than those without (estimate -2872, standard error = 829, P = 0.001). Individuals with more galanin-immunoreactive intermediate nucleus neurons had less fragmented sleep, after adjusting for age and sex, and this association was strongest in those for whom the lag between actigraphy and death was <1 year (estimate -0.0013, standard error = 0.0005, P = 0.023). This association did not differ between individuals with and without Alzheimer's disease, and similar associations were not seen for two other cell populations near the intermediate nucleus. These data are consistent with the intermediate nucleus being the human homologue of the ventrolateral preoptic nucleus. Moreover, they demonstrate that a paucity of galanin

  20. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  1. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates

    SciTech Connect

    Sekizawa, Shin-ichi; Joad, Jesse P.; Pinkerton, Kent E.; Bonham, Ann C.

    2010-01-15

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  2. Secondhand tobacco smoke exposure differentially alters nucleus tractus solitarius neurons at two different ages in developing non-human primates.

    PubMed

    Sekizawa, Shin-Ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C

    2010-01-15

    Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS

  3. A transcriptomic analysis of type I-III neurons in the bed nucleus of the stria terminalis

    PubMed Central

    Hazra, Rimi; Guo, Ji-Dong; Ryan, Steven J; Jasnow, Aaron M; Dabrowska, Joanna; Rainnie, Donald G

    2011-01-01

    The activity of neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG) plays a critical role in anxiety- and stress-related behaviors. Histochemical studies have suggested that multiple distinct neuronal phenotypes exist in the BNSTALG. Consistent with this observation, the physiological properties of BNSTALG neurons are also heterogeneous, and three distinct cell types can be defined (Type I–III) based primarily on their expression of four key membrane currents, namely Ih, IA, IT, and IK(IR). Significantly, all four channels are multimeric proteins and can comprise of more than one pore-forming α subunit. Hence, differential expression of α subunits may further diversify the neuronal population. However, nothing is known about the relative expression of these ion channel α subunits in BNSTALG neurons. We have addressed this lacuna by combining whole cell patch clamp recording together with single cell reverse transcriptase polymerase chain reaction (scRT-PCR) to assess the mRNA transcript expression for each of the subunits for the four key ion channels in Type I-III neurons of the BNSTALG. Here, cytosolic mRNA from single neurons was probed for the expression of transcripts for each of the α subunits of Ih (HCN1- HCN4), IT (Cav3.1- Cav3.3), IA (Kv1.4, Kv3.4, Kv4.1- Kv 4.3) and IK(IR) (Kir2.1-Kir2.4). An unbiased hierarchical cluster analysis followed by discriminant function analysis revealed that a positive correlation exists between the physiological and genetic phenotype of BNSTALG neurons. Thus, the analysis segregated BNSTALG neurons into 3 distinct groups, based on their α subunit mRNA expression profile, which positively correlated with our existing electrophysiological classification (Type I–III). Furthermore, analysis of mRNA transcript expression in Type I –Type III neurons suggested that, whereas Type I and III neurons appear to represent genetically homologous cell populations, Type II neurons may be

  4. Neuronal Expression and Cell-Type-Specific Gene-Silencing of Best1 in Thalamic Reticular Nucleus Neurons Using pSico-Red System

    PubMed Central

    Jung, Jae-Young; Lee, Seung Eun; Hwang, Eun Mi

    2016-01-01

    Assessing the cell-type expression pattern of a certain gene can be achieved by using cell-type-specific gene manipulation. Recently, cre-recombinase-dependent gene-silencing tool, pSico has become popular in neuroscientific research. However, pSico has a critical limitation that gene-silenced cell cannot be identified by fluorescence, due to an excision of the reporter gene for green fluorescence protein (GFP). To overcome this limitation, we newly developed pSico-Red, with mCherry gene as a reporter outside two loxP sites, so that red mCherry signal is detected in all transfected cells. When a cell expresses cre, GFP is excised and shRNA is enabled, resulting in disappearance of GFP. This feature of pSico-Red provides not only cell-type-specific gene-silencing but also identification of cre expressing cells. Using this system, we demonstrated for the first time the neuronal expression of the Bestrophin-1 (Best1) in thalamic reticular nucleus (TRN) and TRN-neuron-specific gene-silencing of Best1. We combined adeno-associated virus (AAV) carrying Best1-shRNA in pSico-Red vector and transgenic mouse expressing cre under the promoter of distal-less homeobox 5/6 (DLX5/6), a marker for inhibitory neurons. Firstly, we found that almost all of inhibitory neurons in TRN express Best1 by immunohistochemistry. Using pSico-Red virus, we found that 80% of infected TRN neurons were DLX5/6-cre positive but parvalbumin negative. Finally, we found that Best1 in DLX5/6-cre positive neurons were significantly reduced by Best1-shRNA. Our study demonstrates that TRN neurons strongly express Best1 and that pSico-Red is a valuable tool for cell-type-specific gene manipulation and identification of specific cell population. PMID:27358580

  5. Neuronal Expression and Cell-Type-Specific Gene-Silencing of Best1 in Thalamic Reticular Nucleus Neurons Using pSico-Red System.

    PubMed

    Jung, Jae-Young; Lee, Seung Eun; Hwang, Eun Mi; Lee, C Justin

    2016-06-01

    Assessing the cell-type expression pattern of a certain gene can be achieved by using cell-type-specific gene manipulation. Recently, cre-recombinase-dependent gene-silencing tool, pSico has become popular in neuroscientific research. However, pSico has a critical limitation that gene-silenced cell cannot be identified by fluorescence, due to an excision of the reporter gene for green fluorescence protein (GFP). To overcome this limitation, we newly developed pSico-Red, with mCherry gene as a reporter outside two loxP sites, so that red mCherry signal is detected in all transfected cells. When a cell expresses cre, GFP is excised and shRNA is enabled, resulting in disappearance of GFP. This feature of pSico-Red provides not only cell-type-specific gene-silencing but also identification of cre expressing cells. Using this system, we demonstrated for the first time the neuronal expression of the Bestrophin-1 (Best1) in thalamic reticular nucleus (TRN) and TRN-neuron-specific gene-silencing of Best1. We combined adeno-associated virus (AAV) carrying Best1-shRNA in pSico-Red vector and transgenic mouse expressing cre under the promoter of distal-less homeobox 5/6 (DLX5/6), a marker for inhibitory neurons. Firstly, we found that almost all of inhibitory neurons in TRN express Best1 by immunohistochemistry. Using pSico-Red virus, we found that 80% of infected TRN neurons were DLX5/6-cre positive but parvalbumin negative. Finally, we found that Best1 in DLX5/6-cre positive neurons were significantly reduced by Best1-shRNA. Our study demonstrates that TRN neurons strongly express Best1 and that pSico-Red is a valuable tool for cell-type-specific gene manipulation and identification of specific cell population. PMID:27358580

  6. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    ERIC Educational Resources Information Center

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  7. Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone.

    PubMed

    McMahon, C M; Brown, D J; Patuzzi, R B

    2004-04-01

    We have measured the compound action potential (CAP) evoked by very brief high-frequency tone-bursts (20 kHz, 1/4 ms) at the round window (RW) and at the surface of the cochlear nucleus (CN) in guinea pigs before, during and after a localised chilling of either the cochlea or CN, with a non-toxic 'freeze spray'. CN chilling almost abolished the negative-going component of the CAP measured in the CN (generated by the CN and here called the cochlear nucleus response or CNR), leaving a positive-going localised response from the cochlear neurones as they leave the internal auditory meatus. Within 3 min, the CNR recovered to control values. During that time, the N(1) component of the RW CAP was slightly increased and the P(1) was larger, even though the CNR was abolished, indicating that the P(1) was not due to electrotonic spread of current from the CN. The N(2) and successive peaks at the RW were also abolished, but returned after 30 s. When the cochlea was chilled, the RW CAP was initially reduced in amplitude, presumably due to a drop in the number of cochlear neurones spiking in response to sound, but recovered within 3 min to be larger than the control waveform, with a more prominent N(1) peak which was delayed slightly, making the CAP more monophasic. At the same time, the CNR was smaller, presumably due to fewer cochlear neurones responding, but overall the CN CAP was altered little in waveshape. These experiments indicate that that RW CAP is generated almost solely by cochlear neurones. We also suggest that some of the changes in the RW CAP during the chills were due to changes in the firing of the lateral olivo-cochlear system of efferent neurons. PMID:15051131

  8. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  9. Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS).

    PubMed

    McDougall, Stuart J; Bailey, Timothy W; Mendelowitz, David; Andresen, Michael C

    2008-03-01

    The anesthetic propofol is thought to induce rapid hypnotic sedation by facilitating a GABAergic tonic current in forebrain neurons. The depression of cardiovascular and respiratory regulation often observed during propofol suggests potential additional actions within the brainstem. Here we determined the impacts of propofol on both GABAergic and glutamatergic synaptic mechanisms in a class of solitary tract nucleus (NTS) neurons common to brainstem reflex pathways. In horizontal brainstem slices, we recorded from NTS neurons directly activated by solitary tract (ST) axons. We identified these second-order NTS neurons by time-invariant ("jitter"<200 micros), "all-or-none" glutamatergic excitatory postsynaptic currents (EPSCs) in response to shocks to the ST. In order to assess propofol actions, we measured ST-evoked, spontaneous and miniature EPSCs and inhibitory postsynaptic currents (IPSCs) during propofol exposure. Propofol prolonged miniature IPSC decay time constants by 50% above control at 1.8 microM. Low concentrations of gabazine (SR-95531) blocked phasic GABA currents. At higher concentrations, propofol (30 microM) induced a gabazine-insensitive tonic current that was blocked by picrotoxin or bicuculline. In contrast, total propofol concentrations up to 30 microM had no effect on EPSCs. Thus, propofol enhanced phasic GABA events in NTS at lower concentrations than tonic current induction, opposite to the relative sensitivity observed in forebrain regions. These data suggest that therapeutic levels of propofol facilitate phasic (synaptic) inhibitory transmission in second-order NTS neurons which likely inhibits autonomic reflex pathways during anesthesia.

  10. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis.

    PubMed

    Nguyen, Amanda Q; Dela Cruz, Julie A D; Sun, Yanjun; Holmes, Todd C; Xu, Xiangmin

    2016-08-15

    The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc. PMID:26718312

  11. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    PubMed

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas.

  12. PAR1-Activated Astrocytes in the Nucleus of the Solitary Tract Stimulate Adjacent Neurons via NMDA Receptors

    PubMed Central

    Vance, Katie M.; Rogers, Richard C.

    2015-01-01

    Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker dl-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist dl-2-amino-5-phosphonopentanoic acid (dl-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals. PMID:25589770

  13. PAR1-activated astrocytes in the nucleus of the solitary tract stimulate adjacent neurons via NMDA receptors.

    PubMed

    Vance, Katie M; Rogers, Richard C; Hermann, Gerlinda E

    2015-01-14

    Severe autonomic dysfunction, including the loss of control of the cardiovascular, respiratory, and gastrointestinal systems, is a common comorbidity of stroke and other bleeding head injuries. Previous studies suggest that this collapse of autonomic control may be caused by thrombin acting on astrocytic protease-activated receptors (PAR1) in the hindbrain. Using calcium imaging and electrophysiological techniques, we evaluated the mechanisms by which astrocytic PAR1s modulate the activity of presynaptic vagal afferent terminals and postsynaptic neurons in the rat nucleus of the solitary tract (NST). Our calcium-imaging data show that astrocytic and neuronal calcium levels increase after brain slices are treated with the PAR1 agonist SFLLRN-NH2. This increase in activity is blocked by pretreating the slices with the glial metabolic blocker fluorocitrate. In addition, PAR1-activated astrocytes communicate directly with NST neurons by releasing glutamate. Calcium responses to SFLLRN-NH2 in the astrocytes and neurons significantly increase after bath application of the excitatory amino acid transporter blocker DL-threo-β-benzyloxyaspartic acid (TBOA) and significantly decrease after bath application of the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (DL-AP5). Furthermore, astrocytic glutamate activates neuronal GluN2B-containing NMDA receptors. Voltage-clamp recordings of miniature EPSCs (mEPSCs) from NST neurons show that astrocytes control presynaptic vagal afferent excitability directly under resting and activated conditions. Fluorocitrate significantly decreases mEPSC frequency and SFLLRN-NH2 significantly increases mEPSC frequency. These data show that astrocytes act within a tripartite synapse in the NST, controlling the excitability of both postsynaptic NST neurons and presynaptic vagal afferent terminals. PMID:25589770

  14. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate

    PubMed Central

    Frolov, Alexander; Reyes-Vasquez, Cruz

    2014-01-01

    The nucleus accumbens (NAc) has been shown to play a key role in the brain's response to methylphenidate (MPD). The present study focuses on neuronal recording from this structure. The study postulates that repetitive exposure to the same dose of MPD will elicit in some rats behavioral sensitization and in others tolerance. Furthermore, the study postulates that NAc neuronal activity recorded from animals expressing behavioral tolerance after repetitive MPD exposure will be significantly different from NAc neuronal activity recorded from animals expressing behavioral sensitization after repetitive MPD exposure at doses of 0.6, 2.5, 5.0, and 10.0 mg/kg. To test this, behavioral and neuronal activity was recorded concomitantly from the NAc of freely behaving adolescent rats (postnatal day 40) before and after acute and repetitive administration of four different MPD doses. Comparing the acute MPD effect to the repetitive MPD effect revealed that the acute response to MPD exhibited dose-response characteristics: an increase in behavioral activity correlated with increasing MPD doses. On the other hand, following repetitive MPD exposure, some animals exhibited attenuated behavior (tolerance), while others exhibited further increases in the recorded behavior (sensitization). Moreover, the neuronal activity following repetitive MPD exposure recorded in animals exhibiting behavioral sensitization was significantly different from neuronal activity recorded in animals exhibiting behavioral tolerance. This implies that when studying the effects of repetitive MPD administration on adolescent rats, it is advisable to simultaneously record both neuronal and behavioral activity and to evaluate all data based on the animals' behavioral response to the repetitive MPD exposure. PMID:25318764

  15. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  16. Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus.

    PubMed

    Asaad, Wael F; Eskandar, Emad N

    2011-12-01

    Learning can be motivated by unanticipated success or unexpected failure. The former encourages us to repeat an action or activity, whereas the latter leads us to find an alternative strategy. Understanding the neural representation of these unexpected events is therefore critical to elucidate learning-related circuits. We examined the activity of neurons in the lateral prefrontal cortex (PFC) and caudate nucleus of monkeys as they performed a trial-and-error learning task. Unexpected outcomes were widely represented in both structures, and neurons driven by unexpectedly negative outcomes were as frequent as those activated by unexpectedly positive outcomes. Moreover, both positive and negative reward prediction errors (RPEs) were represented primarily by increases in firing rate, unlike the manner in which dopamine neurons have been observed to reflect these values. Interestingly, positive RPEs tended to appear with shorter latency than negative RPEs, perhaps reflecting the mechanism of their generation. Last, in the PFC but not the caudate, trial-by-trial variations in outcome-related activity were linked to the animals' subsequent behavioral decisions. More broadly, the robustness of RPE signaling by these neurons suggests that actor-critic models of reinforcement learning in which the PFC and particularly the caudate are considered primarily to be "actors" rather than "critics," should be reconsidered to include a prominent evaluative role for these structures. PMID:22159094

  17. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    PubMed

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  18. The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO₂.

    PubMed

    Ruffault, Pierre-Louis; D'Autréaux, Fabien; Hayes, John A; Nomaksteinsky, Marc; Autran, Sandra; Fujiyama, Tomoyuki; Hoshino, Mikio; Hägglund, Martin; Kiehn, Ole; Brunet, Jean-François; Fortin, Gilles; Goridis, Christo

    2015-04-13

    Maintaining constant CO2 and H(+) concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.

  19. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease.

    PubMed

    Yang, Andrew I; Vanegas, Nora; Lungu, Codrin; Zaghloul, Kareem A

    2014-09-17

    Beta frequency (13-30 Hz) oscillatory activity in the subthalamic nucleus (STN) of Parkinson's disease (PD) has been shown to influence the temporal dynamics of high-frequency oscillations (HFOs; 200-500 Hz) and single neurons, potentially compromising the functional flexibility of the motor circuit. We examined these interactions by simultaneously recording both local field potential and single-unit activity from the basal ganglia of 15 patients with PD during deep brain stimulation (DBS) surgery of the bilateral STN. Phase-amplitude coupling (PAC) in the STN was specific to beta phase and HFO amplitude, and this coupling was strongest at the dorsal STN border. We found higher beta-HFO PAC near DBS lead contacts that were clinically effective compared with the remaining non-effective contacts, indicating that PAC may be predictive of response to STN DBS. Neuronal spiking was locked to the phase of 8-30 Hz oscillations, and the spatial topography of spike-phase locking (SPL) was similar to that of PAC. Comparisons of PAC and SPL showed a lack of spatiotemporal correlations. Beta-coupled HFOs and field-locked neurons had different preferred phase angles and did not co-occur within the same cycle of the modulating oscillation. Our findings provide additional support that beta-HFO PAC may be central to the pathophysiology of PD and suggest that field-locked neurons alone are not sufficient for the emergence of beta-coupled HFOs. PMID:25232117

  20. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  1. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  2. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain

    PubMed Central

    Lake, Blue B.; Ai, Rizi; Kaeser, Gwendolyn E.; Salathia, Neeraj S.; Yung, Yun C.; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-01-01

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from post-mortem brain, generating 3,227 sets of single neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish novel and orthologous neuronal subtypes as well as regional identity within the human brain. PMID:27339989

  3. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain.

    PubMed

    Lake, Blue B; Ai, Rizi; Kaeser, Gwendolyn E; Salathia, Neeraj S; Yung, Yun C; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-06-24

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain. PMID:27339989

  4. CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety.

    PubMed

    Gungor, Nur Zeynep; Pare, Denis

    2014-01-01

    The bed nucleus of the stria terminalis (BNST) is thought to generate anxiety-like states via its projections to autonomic and neuroendocrine regulatory structures of the brain. However, because most BNST cells are GABAergic, they are expected to inhibit target neurons. In contrast with this, infusion of calcitonin gene-related peptide (CGRP) into BNST was reported to potentiate anxiety while activating BNST targets. The present study aimed to shed light on this paradox. The CGRP innervation of BNST originates in the pontine parabrachial nucleus and targets its anterolateral sector (BNST-AL). Thus, we investigated the effects of CGRP on BNST-AL neurons using patch recordings in vitro in male rats. CGRP did not alter the passive properties of BNST-AL cells but increased the amplitude of IPSPs evoked by stimulation of the stria terminalis (ST). However, IPSP paired-pulse ratios were unchanged by CGRP, and there was no correlation between IPSP potentiation and variance, suggesting that CGRP acts postsynaptically. Consistent with this, CGRP hyperpolarized the GABA-A reversal of BNST-AL cells. These results indicate that CGRP increases ST-evoked GABA-A IPSPs and hyperpolarizes their reversal potential through a postsynaptic change in Cl(-) homeostasis. Overall, our findings suggest that CGRP potentiates anxiety-like behaviors and increases neural activity in BNST targets, by inhibiting BNST-AL cells, supporting the conclusion that BNST-AL exerts anxiolytic effects. PMID:24381268

  5. Spatial segregation within the sacral parasympathetic nucleus of neurons innervating the bladder or the penis of the rat as revealed by three-dimensional reconstruction.

    PubMed

    Banrezes, B; Andrey, P; Maschino, E; Schirar, A; Peytevin, J; Rampin, O; Maurin, Y

    2002-01-01

    The purpose of the present investigations was (1) to examine the spatial organization of preganglionic neurons of the sacral parasympathetic nucleus in the lumbosacral spinal cord of male adult rats and (2) to search, in this nucleus, for a possible segregation of sub-populations of neurons innervating the penis or the bladder, respectively. To estimate their spatial organization, neurons of the sacral parasympathetic nucleus were retrogradely labeled by wheat germ agglutinin coupled to horseradish peroxidase applied to the central end of the sectioned pelvic nerve. The sub-populations of lumbosacral neurons innervating the corpus cavernosum of the penis or the dome of the bladder were identified using transsynaptic retrograde labeling by pseudorabies virus injected into these organs in different rats. In both wheat germ agglutinin-labeled and pseudorabies virus-labeled rats, serial coronal sections were cut through the spinal L5-S1 segments. Labeled neurons were revealed by histochemistry (peroxidase experiments) or immunohistochemistry (pseudorabies virus experiments). By means of a three-dimensional reconstruction software developed in our laboratory, three-dimensional models were calculated from each spinal section image series. They revealed the spatial organization of (i) preganglionic neurons and (ii) neurons innervating the bladder or the penis. The different three-dimensional models were subsequently merged into a single one which revealed the segregation, within the sacral parasympathetic nucleus, of the sub-populations of neurons. Neurons labeled by virus injected into the penis extended predominantly from the rostral part of the L6 segment to the rostral part of the S1 segment while those labeled by bladder injections were distributed predominantly from the caudal part of the L6 segment to the caudal part of the S1 segment. These results support the hypothesis of a viscerotopic organization of sacral neurons providing the spinal control of pelvic organs.

  6. Deprivation of anticipated food under scheduled feeding induces c-Fos expression in the caudal part of the arcuate nucleus of hypothalamus through histamine H₁ receptors in rats: potential involvement of E3 subgroup of histaminergic neurons in tuberomammillary nucleus.

    PubMed

    Umehara, Hayato; Mizuguchi, Hiroyuki; Mizukawa, Nami; Matsumoto, Mai; Takeda, Noriaki; Senba, Emiko; Fukui, Hiroyuki

    2011-04-28

    It is well established that histaminergic neurons densely innervate the anterior hypothalamus and regulate several functions through histamine H(1) receptor (H1R). However, functional innervations of histaminergic neurons in the caudal hypothalamus have been poorly investigated. Recently, we have demonstrated that c-Fos, a marker of neuronal activation, was significantly induced by food deprivation under scheduled feeding in H1R-expressing cells in the caudal part of the arcuate nucleus of hypothalamus (cARC) of rats and histaminergic neurons innervating this area. In this study, we have examined the functional involvement of histaminergic neurons in the food deprivation-induced c-Fos expression in the cARC under scheduled feeding. The c-Fos expression in the cARC by food deprivation was significantly suppressed by pretreatment with antihistamines. After food deprivation, the number of c-Fos-histidine decarboxylase (HDC) double-positive neurons was mostly increased in the E3 subdivision of the tuberomammillary nucleus (TM). Under the restricted feeding schedule, significant expressions of c-Fos were detected in the TM and cARC only when rats strongly anticipated feeding, compared with a slight c-Fos induction in both nuclei when they were satiated. These findings suggest that the histaminergic neurons in the E3 subdivision of the TM are selectively activated by deprivation of an anticipated food under scheduled feeding and functionally innervate the H1R-expressing neurons in the cARC.

  7. Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. II. Cochlear nucleus.

    PubMed

    Zaaroor, M; Starr, A

    1991-01-01

    Auditory brain-stem potentials (ABRs) were studied in cats for up to 6 weeks after kainic acid had been injected unilaterally into the cochlear nucleus (CN) producing extensive neuronal destruction. The ABR components were labeled by the polarity at the vertex (P, for positive) and their order of appearance (the arabic numerals 1, 2, etc.). Component P1 can be further subdivided into 2 subcomponents, P1a and P1b. The assumed correspondence between the ABR components in cat and man is indicated by providing human Roman numeral designations in parentheses following the feline notation, e.g., P2 (III). To stimulation of the ear ipsilateral to the injection, the ABR changes consisted of a loss of components P2 (III) and P3 (IV), and an attenuation and prolongation of latency of components P4 (V) and P5 (VI). The sustained potential shift from which the components arose was not affected. Wave P1a (I) was also slightly but significantly attenuated compatible with changes of excitability of nerve VIII in the cochlea secondary to cochlear nucleus destruction. Unexpectedly, to stimulation of the ear contralateral to the injection side, waves P2 (III), P3 (IV), and P4 (V) were also attenuated and delayed in latency but to a lesser degree than to stimulation of the ear ipsilateral to the injection. Changes in binaural interaction of the ABR following cochlear nucleus lesions were similar to those produced in normal animals by introducing a temporal delay of the input to one ear. The results of the present set of studies using kainic acid to induce neuronal loss in auditory pathway when combined with prior lesion and recording experiments suggest that each of the components of the ABR requires the integrity of an anatomically diffuse system comprising a set of neurons, their axons, and the neurons on which they terminate. Disruption of any portion of the system will alter the amplitude and/or the latency of that component. PMID:1716569

  8. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    PubMed

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN.

  9. Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats

    PubMed Central

    Williamson, D J; Shepheard, S L; Cook, D A; Hargreaves, R J; Hill, R G; Cumberbatch, M J

    2001-01-01

    Migraine headache is thought to be caused by a distension of meningeal blood vessels, the activation of trigeminal sensory neurones and the the development of a central sensitization within the trigeminal nucleus caudalis (TNC). It has been proposed that clinically effective 5-HT1B/1D agonists act peripherally to inhibit the release of calcitonin gene-related peptide (CGRP) and neurogenic dural vasodilation, and to attenuate nociceptive neurotransmission within the TNC. Since opioids are also effective anti-migraine agents the present studies investigated the role of opioids within the trigemino-vascular system in anaesthetised rats. Electrical stimulation of the dura mater evoked neurogenic dural vasodilation which was significantly inhibited by morphine (1 mg kg−1) the selective μ-opioid agonist DAGO (10 μg kg−1) and the mixed agonist/antagonist butorphanol (1 mg kg−1) but not by the κ- and δ-opioid agonists (±) U50488H (100 μg kg−1) and DPDPE (1 mg kg−1). Morphine had no effect on CGRP-evoked dural vasodilation. In electrophysiological studies morphine (1 – 10 mg kg−1) significantly attenuated brainstem neuronal activity in response to electrical stimulation of the dura by 65% at 10 mg kg−1. Morphine (3 mg kg−1) also inhibited the TNC neuronal sensitization following CGRP-evoked dilation. The present studies have demonstrated that opioids block the nociceptive neurotransmission within the trigeminal nucleus caudalis and in addition inhibit neurogenic dural vasodilation via an action on μ-opioid receptors located on trigeminal sensory fibres innervating dural blood vessels. These peripheral and central actions are similar to those of the ‘triptan' 5-HT1B/1D agonists and could account for the anti-migraine actions of opioids. PMID:11454653

  10. GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice

    PubMed Central

    Takahashi, Aki; Shimamoto, Akiko; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.

    2010-01-01

    The serotonin (5-HT) system in the brain has been studied more than any other neurotransmitter for its role in the neurobiological basis of aggression. However, which mechanisms modulate the 5-HT system to promote escalated aggression is not clear. We here explore the role of GABAergic modulation in the raphé nuclei, from where most 5-HT in the forebrain originates, on escalated aggression in male mice. Pharmacological activation of GABAB, but not GABAA, receptors in the dorsal raphé nucleus (DRN) escalated aggressive behaviors. In contrast, GABA agonists did not escalate aggressive behaviors after microinjection into the median raphé nucleus (MRN). The aggression-heightening effect of the GABAB agonist baclofen depended on the activation of 5-HT neurons in the DRN because it was blocked by co-administration of the 5-HT1A agonist 8-OH-DPAT, which acts on autoreceptors and inhibits 5-HT neural activity. In vivo microdialysis showed that GABAB activation in the DRN increased extracellular 5-HT level in the medial prefrontal cortex (mPFC). This may be due to an indirect action via presynaptic GABAB receptors. The presynaptic GABAB receptors suppress Ca2+ channel activity and inhibit neurotransmission, and the co-administration of N-type Ca2+ channel blocker facilitated the effect of baclofen. These findings suggest that the indirect disinhibition of 5-HT neuron activity by presynaptic GABAB receptors on non-5-HT neurons in the DRN is one of the neurobiological mechanisms of escalated aggression. PMID:20810897

  11. The response of neurons in the bed nucleus of the stria terminalis to serotonin: Implications for anxiety

    PubMed Central

    Hammack, Sayamwong E.; Guo, JiDong; Hazra, Rimi; Dabrowska, Joanna; Myers, Karyn M.; Rainnie, Donald G.

    2009-01-01

    Substantial evidence has suggested that the activity of the bed nucleus of the stria terminalis (BNST) mediates many forms of anxiety-like behavior in human and non-human animals. These data have led many investigators to suggest that abnormal processing within this nucleus may underlie anxiety disorders in humans, and effective anxiety treatments may restore normal BNST functioning. Currently some of the most effective treatments for anxiety disorders are drugs that modulate serotonin (5-HT) systems, and several decades of research have suggested that the activation of 5-HT can modulate anxiety-like behavior. Despite these facts, relatively few studies have examined how activity within the BNST is modulated by 5-HT. Here we review our own investigations using in vitro whole-cell patch-clamp electrophysiological methods on brain sections containing the BNST to determine the response of BNST neurons to exogenous 5-HT application. Our data suggest that the response of BNST neurons to 5-HT is complex, displaying both inhibitory and excitatory components, which are mediated by 5-HT1A, 5-HT2A, 5-HT2C and 5-HT7 receptors. Moreover, we have shown that the selective activation of the inhibitory response to 5-HT reduces anxiety-like behavior, and we describe data suggesting that the activation of the excitatory response to 5-HT may be anxiogenic. We propose that in the normal state, the function of 5-HT is to dampen activity within the BNST (and consequent anxiety-like behavior) during exposure to threatening stimuli; however, we suggest that changes in the balance of the function of BNST 5-HT receptor subtypes could alter the response of BNST neurons to favor excitation and produce a pathological state of increase anxiety. PMID:19467288

  12. Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats

    PubMed Central

    Sagheddu, Claudia; De Felice, Marta; Casti, Alberto; Madeddu, Camilla; Spiga, Saturnino; Muntoni, Anna Lisa; Mackie, Kenneth; Marsicano, Giovanni; Colombo, Giancarlo; Castelli, Maria Paola; Pistis, Marco

    2014-01-01

    The progressive predominance of rewarding effects of addictive drugs over their aversive properties likely contributes to the transition from drug use to drug dependence. By inhibiting the activity of DA neurons in the VTA, GABA projections from the rostromedial tegmental nucleus (RMTg) are well suited to shift the balance between drug-induced reward and aversion. Since cannabinoids suppress RMTg inputs to DA cells and CB1 receptors affect alcohol intake in rodents, we hypothesized that the endocannabinoid system, by modulating this pathway, might contribute to alcohol preference. Here we found that RMTg afferents onto VTA DA neurons express CB1 receptors and display a 2-arachidonoylglycerol (2-AG)-dependent form of short-term plasticity, that is, depolarization-induced suppression of inhibition (DSI). Next, we compared rodents with innate opposite alcohol preference, the Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. We found that DA cells from alcohol-naive sP rats displayed a decreased probability of GABA release and a larger DSI. This difference was due to the rate of 2-AG degradation. In vivo, we found a reduced RMTg-induced inhibition of putative DA neurons in sP rats that negatively correlated with an increased firing. Finally, alcohol failed to enhance RMTg spontaneous activity and to prolong RMTg-induced silencing of putative DA neurons in sP rats. Our results indicate functional modifications of RMTg projections to DA neurons that might impact the reward/aversion balance of alcohol attributes, which may contribute to the innate preference observed in sP rats and to their elevated alcohol intake. PMID:25232109

  13. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons.

    PubMed

    Silva, Josiane N; Lucena, Elvis V; Silva, Talita M; Damasceno, Rosélia S; Takakura, Ana C; Moreira, Thiago S

    2016-07-22

    The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region. PMID:27126558

  14. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels.

    PubMed

    Yang, Chen; Yan, Zhiqiang; Zhao, Bo; Wang, Julei; Gao, Guodong; Zhu, Junling; Wang, Wenting

    2016-06-01

    The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation.

  15. Inhibition of the pontine Kölliker-Fuse nucleus reduces genioglossal activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons.

    PubMed

    Silva, Josiane N; Lucena, Elvis V; Silva, Talita M; Damasceno, Rosélia S; Takakura, Ana C; Moreira, Thiago S

    2016-07-22

    The Kölliker-Fuse (KF) region, located in the dorsolateral pons, projects to several brainstem areas involved in respiratory regulation, including the chemoreceptor neurons within the retrotrapezoid nucleus (RTN). Several lines of evidence indicate that the pontine KF region plays an important role in the control of the upper airways for the maintenance of appropriate airflow to and from the lungs. Specifically, we hypothesized that the KF region is involved in mediating the response of the hypoglossal motor activity to central respiratory chemoreflex activation and to stimulation of the chemoreceptor neurons within the RTN region. To test this hypothesis, we combined immunohistochemistry and physiological experiments. We found that in the KF, the majority of biotinylated dextran amine (BDA)-labeled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2), but few contained glutamic acid decarboxylase-67 (GAD67). The majority of the RTN neurons that were FluorGold (FG)-immunoreactive (i.e., projected to the KF) contained hypercapnia-induced Fos, but did not express tyrosine hydroxylase. In urethane-anesthetized sino-aortic denervated and vagotomized male Wistar rats, hypercapnia (10% CO2) or N-methyl-d-aspartate (NMDA) injection (0.1mM) in the RTN increased diaphragm (DiaEMG) and genioglossus muscle (GGEMG) activities and elicited abdominal (AbdEMG) activity. Bilateral injection of muscimol (GABA-A agonist; 2mM) into the KF region reduced the increase in DiaEMG and GGEMG produced by hypercapnia or NMDA into the RTN. Our data suggest that activation of chemoreceptor neurons in the RTN produces a significant increase in the genioglossus muscle activity and the excitatory pathway is dependent on the neurons located in the dorsolateral pontine KF region.

  16. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    ERIC Educational Resources Information Center

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  17. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation.

    PubMed

    Thomas, Michael A; Ryu, Vitaly; Bartness, Timothy J

    2016-02-01

    The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 μg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.

  18. Involvement of trigeminal subnucleus caudalis (medullary dorsal horn) in craniofacial nociceptive reflex activity.

    PubMed

    Tsai, C M; Chiang, C Y; Yu, X M; Sessle, B J

    1999-05-01

    We have previously shown that an increase in electromyographic (EMG) activity of digastric (DIG) and masseter (MASS) muscles can be reflexly evoked by injection into the rat's temporomandibular joint (TMJ) region of the small-fibre excitant and inflammatory irritant mustard oil (MO). Since the trigeminal (V) subnucleus caudalis (Vc, i.e. medullary dorsal horn) has traditionally been viewed as an essential brainstem relay site of nociceptive information from craniofacial tissues, an EMG study was carried out in 45 anaesthetized rats to determine if Vc is involved in the MO-evoked increases in jaw muscle EMG activity. The effects of histologically confirmed surgical or chemical lesions of Vc on this evoked EMG activity were tested in different groups of rats. MO injection into the left TMJ region of intact rats evoked bilateral increases in EMG activity of DIG and MASS which could be significantly reduced by surgical transection of the left caudal brainstem at the obex level; MO injection into the right TMJ region in these same rats still readily evoked increases in EMG activity. A sagittal section medial to Vc or transection at the level of the second cervical spinal segment did not produce any significant reduction in the reflexly evoked EMG activity. Neurones in Vc, as opposed to fibres of passage, appear to be important for the MO-evoked EMG activity, since injection into Vc of the neurotoxic chemical ibotenic acid significantly reduced the mustard oil-evoked EMG activity. The Vc also appears to play a role in the activation of contralateral V motoneurons, as evidenced by the activation of the contralateral DIG and MASS muscles by the injection of MO into the left TMJ region of intact rats and by the reduction of this evoked EMG activity in the contralateral DIG and MASS of rats with a surgical transection or ibotenic acid lesion of the left Vc. These findings suggest that Vc may be a critical element in the neural pathways underlying the reflex responses evoked

  19. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.

    PubMed

    Yamada, Rei; Okuda, Hiroko; Kuba, Hiroshi; Nishino, Eri; Ishii, Takahiro M; Ohmori, Harunori

    2013-02-27

    Neurons in the nucleus laminaris (NL) of birds detect the coincidence of binaural excitatory inputs from the nucleus magnocellularis (NM) on both sides and process the interaural time differences (ITDs) for sound localization. Sustained inhibition from the superior olivary nucleus is known to control the gain of coincidence detection, which allows the sensitivity of NL neurons to ITD tolerate strong-intensity sound. Here, we found a phasic inhibition in chicken brain slices that follows the ipsilateral NM inputs after a short time delay, sharpens coincidence detection, and may enhance ITD sensitivity in low-frequency NL neurons. GABA-positive small neurons are distributed in and near the NL. These neurons generate IPSCs in NL neurons when photoactivated by a caged glutamate compound, suggesting that these GABAergic neurons are interneurons that mediate phasic inhibition. These IPSCs have fast decay kinetics that is attributable to the α1-subunit of the GABAA receptor, the expression of which dominates in the low-frequency region of the NL. Model simulations demonstrate that phasic IPSCs narrow the time window of coincidence detection and increase the contrast of ITD-tuning during low-level, low-frequency excitatory input. Furthermore, cooperation of the phasic and sustained inhibitions effectively increases the contrast of ITD-tuning over a wide range of excitatory input levels. We propose that the complementary interaction between phasic and sustained inhibitions is the neural mechanism that regulates ITD sensitivity for low-frequency sound in the NL. PMID:23447603

  20. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats

    PubMed Central

    Gentet, Luc J; Ulrich, Daniel

    2003-01-01

    The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14–20) rats. At 34–36 °C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 ± 1.5 mV (mean ± s.e.m.) and a decay time constant of 15.1 ± 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 ± 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 μm bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly ‘drivers’, while a small subset of cells form closed disynaptic loops. PMID:12563005

  1. The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods

    PubMed Central

    Gu, Changgui; Tang, Ming; Yang, Huijie

    2016-01-01

    The main function of the principal clock located in the suprachiasmatic nucleus (SCN) of mammals is synchronizing the body rhythms to the 24 h light-dark cycle. Additionally, the SCN is able to adapt to the photoperiod of the cycle which varies among seasons. Under the long photoperiod (LP), the synchronization degree of the SCN neurons is lower than that under the photoperiod (SP). In the present study, a potential explanation is given for this phenomenon. We propose that the asymmetrical coupling between the light-signal-sensitive part (the ventralateral part, abbreviation: VL) and the light-signal-insensitive part (the dorsalmedial part, abbreviation: DM) of the SCN plays a role in the synchronization degree, which is reflected by the ratio of the number of the directed links from the VL neurons to the DM neurons to the total links of both directions between the VL and the DM. The ratio is assumed to characterize the directed network structure under different photoperiods, which is larger under the SP and smaller under the LP. We found that with the larger ratio in the situation of the SP, the synchronization degree is higher. Our finding may shed new light on the asymmetrical coupling between the VL and the DM, and the network structure of the SCN. PMID:27358024

  2. Function and Pharmacology of Spinally-Projecting Sympathetic Pre-Autonomic Neurones in the Paraventricular Nucleus of the Hypothalamus

    PubMed Central

    Nunn, Nicolas; Womack, Matthew; Dart, Caroline; Barrett-Jolley, Richard

    2011-01-01

    The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function high-lights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control. PMID:22131936

  3. The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods.

    PubMed

    Gu, Changgui; Tang, Ming; Yang, Huijie

    2016-06-30

    The main function of the principal clock located in the suprachiasmatic nucleus (SCN) of mammals is synchronizing the body rhythms to the 24 h light-dark cycle. Additionally, the SCN is able to adapt to the photoperiod of the cycle which varies among seasons. Under the long photoperiod (LP), the synchronization degree of the SCN neurons is lower than that under the photoperiod (SP). In the present study, a potential explanation is given for this phenomenon. We propose that the asymmetrical coupling between the light-signal-sensitive part (the ventralateral part, abbreviation: VL) and the light-signal-insensitive part (the dorsalmedial part, abbreviation: DM) of the SCN plays a role in the synchronization degree, which is reflected by the ratio of the number of the directed links from the VL neurons to the DM neurons to the total links of both directions between the VL and the DM. The ratio is assumed to characterize the directed network structure under different photoperiods, which is larger under the SP and smaller under the LP. We found that with the larger ratio in the situation of the SP, the synchronization degree is higher. Our finding may shed new light on the asymmetrical coupling between the VL and the DM, and the network structure of the SCN.

  4. The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods.

    PubMed

    Gu, Changgui; Tang, Ming; Yang, Huijie

    2016-01-01

    The main function of the principal clock located in the suprachiasmatic nucleus (SCN) of mammals is synchronizing the body rhythms to the 24 h light-dark cycle. Additionally, the SCN is able to adapt to the photoperiod of the cycle which varies among seasons. Under the long photoperiod (LP), the synchronization degree of the SCN neurons is lower than that under the photoperiod (SP). In the present study, a potential explanation is given for this phenomenon. We propose that the asymmetrical coupling between the light-signal-sensitive part (the ventralateral part, abbreviation: VL) and the light-signal-insensitive part (the dorsalmedial part, abbreviation: DM) of the SCN plays a role in the synchronization degree, which is reflected by the ratio of the number of the directed links from the VL neurons to the DM neurons to the total links of both directions between the VL and the DM. The ratio is assumed to characterize the directed network structure under different photoperiods, which is larger under the SP and smaller under the LP. We found that with the larger ratio in the situation of the SP, the synchronization degree is higher. Our finding may shed new light on the asymmetrical coupling between the VL and the DM, and the network structure of the SCN. PMID:27358024

  5. Nutritional Programming of Accelerated Puberty in Heifers: Involvement of Pro-Opiomelanocortin Neurones in the Arcuate Nucleus.

    PubMed

    Cardoso, R C; Alves, B R C; Sharpton, S M; Williams, G L; Amstalden, M

    2015-08-01

    The timing of puberty and subsequent fertility in female mammals are dependent on the integration of metabolic signals by the hypothalamus. Pro-opiomelanocortin (POMC) neurones in the arcuate nucleus (ARC) comprise a critical metabolic-sensing pathway controlling the reproductive neuroendocrine axis. α-Melanocyte-stimulating hormone (αMSH), a product of the POMC gene, has excitatory effects on gonadotrophin-releasing hormone (GnRH) neurones and fibres containing αMSH project to GnRH and kisspeptin neurones. Because kisspeptin is a potent stimulator of GnRH release, αMSH may also stimulate GnRH secretion indirectly via kisspeptin neurones. In the present work, we report studies conducted in young female cattle (heifers) aiming to determine whether increased nutrient intake during the juvenile period (4-8 months of age), a strategy previously shown to advance puberty, alters POMC and KISS1 mRNA expression, as well as αMSH close contacts on GnRH and kisspeptin neurones. In Experiment 1, POMC mRNA expression, detected by in situ hybridisation, was greater (P < 0.05) in the ARC in heifers that gained 1 kg/day of body weight (high-gain, HG; n = 6) compared to heifers that gained 0.5 kg/day (low-gain, LG; n = 5). The number of KISS1-expressing cells in the middle ARC was reduced (P < 0.05) in HG compared to LG heifers. In Experiment 2, double-immunofluorescence showed limited αMSH-positive close contacts on GnRH neurones, and the magnitude of these inputs was not influenced by nutritional status. Conversely, a large number of kisspeptin-immunoreactive cells in the ARC were observed in close proximity to αMSH-containing varicosities. Furthermore, HG heifers (n = 5) exhibited a greater (P < 0.05) percentage of kisspeptin neurones in direct apposition to αMSH fibres and an increased (P < 0.05) number of αMSH close contacts per kisspeptin cell compared to LG heifers (n = 6). These results indicate that the POMC-kisspeptin pathway may be important

  6. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.

    PubMed

    Kuhlmann, Levin; Burkitt, Anthony N; Paolini, Antonio; Clark, Graeme M

    2002-01-01

    The response of leaky integrate-and-fire neurons is analyzed for periodic inputs whose phases vary with their spatial location. The model gives the relationship between the spatial summation distance and the degree of phase locking of the output spikes (i.e., locking to the periodic stochastic inputs, measured by the synchronization index). The synaptic inputs are modeled as an inhomogeneous Poisson process, and the analysis is carried out in the Gaussian approximation. The model has been applied to globular bushy cells of the cochlear nucleus, which receive converging inputs from auditory nerve fibers that originate at neighboring sites in the cochlea. The model elucidates the roles played by spatial summation and coincidence detection, showing how synchronization decreases with an increase in both frequency and spatial spread of inputs. It also shows under what conditions an enhancement of synchronization of the output relative to the input takes place. PMID:11932560

  7. Heterogeneous responses of nucleus incertus neurons to corticotrophin-releasing factor and coherent activity with hippocampal theta rhythm in the rat

    PubMed Central

    Ma, Sherie; Blasiak, Anna; Olucha-Bordonau, Francisco E; Verberne, Anthony J M; Gundlach, Andrew L

    2013-01-01

    The nucleus incertus (NI) of the rat hindbrain is a putative node in the ascending control of the septohippocampal system and hippocampal theta rhythm and is stress and arousal responsive. NI contains GABA neurons that express multiple neuropeptides, including relaxin-3 (RLN3) and neuropeptide receptors, including corticotrophin-releasing factor receptor-1 (CRF-R1), but the precise anatomical and physiological characteristics of NI neurons are unclear. Therefore, we examined the firing properties of NI neurons and their responses to CRF, the correlation of these responses with occurrence of relaxin-3, and NI neuron morphology in the rat. Most NI neurons excited by intracerebroventricular CRF infusion were RLN3-positive (9 of 10), whereas all inhibited cells were RLN3-negative (8 of 8). The spontaneous firing of RLN3 (n= 6) but not non-RLN3 neurons (n= 6) was strongly modulated and phase-locked with the initial ascending phase of hippocampal theta oscillations. In brain slices, the majority of recorded NI neurons (15 of 19) displayed excitatory responses to CRF, which uniformly increased action potential frequency and membrane potential depolarization in the presence of tetrodotoxin, indicating a direct, postsynaptic action of CRF on NI neurons. This excitation was associated with reduction in the slow component of afterhyperpolarization and a strong depolarization. Quantitative analysis in naïve rats of validated CRF-R1, RLN3 and neuronal nuclear antigen (NeuN) immunoreactivity revealed 52% of NI neurons as CRF-R1 positive, of which 53% were RLN3 positive, while 48% of NI neurons lacked CRF-R1 and RLN3. All RLN3 neurons expressed CRF-R1. CRF neurons that projected to the NI were identified in lateral preoptic hypothalamus, but not in paraventricular hypothalamus, bed nucleus of stria terminalis or central amygdala. Our findings suggest NI is an important site for CRF modulation of hippocampal theta rhythm via effects on GABA/RLN3 transmission. PMID:23671163

  8. Paradoxical effect of gonadotrophin-inhibiting hormone to negatively regulate neuropeptide Y neurones in mouse arcuate nucleus.

    PubMed

    Jacobi, J S; Coleman, H A; Enriori, P J; Parkington, H C; Li, Q; Pereira, A; Cowley, M A; Clarke, I J

    2013-12-01

    Regulation of reproduction and energy homeostasis are linked, although our understanding of the central neural mechanisms subserving this connection is incomplete. Gonadotrophin-inhibiting hormone (GnIH) is a neuropeptide that negatively regulates reproduction and stimulates food intake. Neuropeptide Y (NPY) and products of the pro-opiomelanocortin (POMC) precursor (β-endorphin melanocortins) are appetite regulating peptides produced in the neurones of the arcuate nucleus; these peptides also regulate reproduction. In the present study, we determined the effects of GnIH on NPY and POMC neurones. Using brain slices from mice with transgenes for fluorescent tags in the two types of neurone and patch clamp electrophysiology, a predominant inhibitory effect of GnIH was observed. GnIH (100 nM) inhibited the firing rate in POMC cells, confirming the results of previous studies and consistent with the stimulatory effect of GnIH on food intake. Paradoxically (i.e. because both GnIH and NPY stimulate food intake), GnIH also had a predominantly inhibitory effect on action potential activity in NPY cells. GnIH also inhibited the secretion of NPY and α-melanocyte-stimulating hormone secretion in incubated hypothalamic blocks. GnIH (100 ng) injected into the cerebral ventricles of mice did not increase the number of NPY cells that were positively immunostained for c-Fos. Finally, dual label immunocytochemistry showed that 20% of NPY neurones had close contacts from GnIH fibres/varicosities. In conclusion, we confirm a negative effect of GnIH on POMC cells and demonstrate a paradoxical reduction of electrophysiological and functional activity in NPY cells.

  9. Release of Norepinephrine in the Preoptic Area Activates Anteroventral Periventricular Nucleus Neurons and Stimulates the Surge of Luteinizing Hormone

    PubMed Central

    Poletini, Maristela O.; Leite, Cristiane M.; Bernuci, Marcelo P.; Kalil, Bruna; Mendonça, Leonardo B.D.; Carolino, Ruither O. G.; Helena, Cleyde V. V.; Bertram, Richard; Franci, Celso R.; Anselmo-Franci, Janete A.

    2013-01-01

    The role of norepinephrine (NE) in regulation of LH is still controversial. We investigated the role played by NE in the positive feedback of estradiol and progesterone. Ovarian-steroid control over NE release in the preoptic area (POA) was determined using microdialysis. Compared with ovariectomized (OVX) rats, estradiol-treated OVX (OVX+E) rats displayed lower release of NE in the morning but increased release coincident with the afternoon surge of LH. OVX rats treated with estradiol and progesterone (OVX+EP) exhibited markedly greater NE release than OVX+E rats, and amplification of the LH surge. The effect of NE on LH secretion was confirmed using reverse microdialysis. The LH surge and c-Fos expression in anteroventral periventricular nucleus neurons were significantly increased in OVX+E rats dialyzed with 100 nm NE in the POA. After Fluoro-Gold injection in the POA, c-Fos expression in Fluoro-Gold/tyrosine hydroxylase-immunoreactive neurons increased during the afternoon in the A2 of both OVX+E and OVX+EP rats, in the locus coeruleus (LC) of OVX+EP rats, but was unchanged in the A1. The selective lesion of LC terminals, by intracerebroventricular N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, reduced the surge of LH in OVX+EP but not in OVX+E rats. Thus, estradiol and progesterone activate A2 and LC neurons, respectively, and this is associated with the increased release of NE in the POA and the magnitude of the LH surge. NE stimulates LH secretion, at least in part, through activation of anteroventral periventricular neurons. These findings contribute to elucidation of the role played by NE during the positive feedback of ovarian steroids. PMID:23150494

  10. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain.

    PubMed

    Imai, Satoshi; Saeki, Mai; Yanase, Makoto; Horiuchi, Hiroshi; Abe, Minako; Narita, Michiko; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2011-10-26

    Neuropathic pain is the most difficult type of pain to control, and patients lose their motivation for the purposive pursuit with a decrease in their quality of life. Using a functional magnetic resonance imaging analysis, we demonstrated that blood oxygenation level-dependent signal intensity was increased in the ipsilateral nucleus accumbens (N.Acc.) following peripheral nerve injury. microRNAs are small, noncoding RNA molecules that direct the post-transcriptional suppression of gene expression, and play an important role in regulating synaptic plasticity. In this study, we found that sciatic nerve ligation induced a drastic decrease in the expression of miR200b and miR429 in N.Acc. neurons. The expression of DNA methyltransferase 3a (DNMT3a), which is the one of the predicted targets of miR200b/429, was significantly increased in the limbic forebrain including N.Acc. at 7 d after sciatic nerve ligation. Double-immunolabeling with antibodies specific to DNMT3a and NR1 showed that DNMT3a-immunoreactivity in the N.Acc. was located in NR1-labeled neurons, indicating that increased DNMT3a proteins were dominantly expressed in postsynaptic neurons in the N.Acc. area under a neuropathic pain-like state. The results of these analyses provide new insight into an epigenetic modification that is accompanied by a dramatic decrease in miR200b and miR429 along with the dysfunction of "mesolimbic motivation/valuation circuitry" under a neuropathic pain-like state. These phenomena may result in an increase in DNMT3a in neurons of the N.Acc. under neuropathic pain, which leads to the long-term transcription-silencing of several genes.

  11. Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus.

    PubMed

    Sharpe, Amanda L; Calderon, Alfredo S; Andrade, Mary Ann; Cunningham, J Thomas; Mifflin, Steven W; Toney, Glenn M

    2013-12-01

    Like humans with sleep apnea, rats exposed to chronic intermittent hypoxia (CIH) experience arterial hypoxemias and develop hypertension characterized by exaggerated sympathetic nerve activity (SNA). To gain insights into the poorly understood mechanisms that initiate sleep apnea/CIH-associated hypertension, experiments were performed in rats exposed to CIH for only 7 days. Compared with sham-treated normoxic control rats, CIH-exposed rats (n = 8 rats/group) had significantly increased hematocrit (P < 0.001) and mean arterial pressure (MAP; P < 0.05). Blockade of ganglionic transmission caused a significantly (P < 0.05) greater reduction of MAP in rats exposed to CIH than control rats (n = 8 rats/group), indicating a greater contribution of SNA in the support of MAP even at this early stage of CIH hypertension. Chemical inhibition of neuronal discharge in the hypothalamic paraventricular nucleus (PVN) (100 pmol muscimol) had no effect on renal SNA but reduced lumbar SNA (P < 0.005) and MAP (P < 0.05) more in CIH-exposed rats (n = 8) than control rats (n = 7), indicating that CIH increased the contribution of PVN neuronal activity in the support of lumbar SNA and MAP. Because CIH activates brain regions controlling body fluid homeostasis, the effects of internal carotid artery injection of hypertonic saline were tested and determined to increase lumbar SNA more (P < 0.05) in CIH-exposed rats than in control rats (n = 9 rats/group). We conclude that neurogenic mechanisms are activated early in the development of CIH hypertension such that elevated MAP relies on increased sympathetic tonus and ongoing PVN neuronal activity. The increased sensitivity of Na(+)/osmosensitive circuitry in CIH-exposed rats suggests that early neuroadaptive responses among body fluid regulatory neurons could contribute to the initiation of CIH hypertension. PMID:24097432

  12. Neuronal-Derived Nitric Oxide and Somatodendritically Released Vasopressin Regulate Neurovascular Coupling in the Rat Hypothalamic Supraoptic Nucleus

    PubMed Central

    Du, Wenting; Stern, Javier E.

    2015-01-01

    The classical model of neurovascular coupling (NVC) implies that activity-dependent axonal glutamate release at synapses evokes the production and release of vasoactive signals from both neurons and astrocytes, which dilate arterioles, increasing in turn cerebral blood flow (CBF) to areas with increased metabolic needs. However, whether this model is applicable to brain areas that also use less conventional neurotransmitters, such as neuropeptides, is currently unknown. To this end, we studied NVC in the rat hypothalamic magnocellular neurosecretory system (MNS) of the supraoptic nucleus (SON), in which dendritic release of neuropeptides, including vasopressin (VP), constitutes a key signaling modality influencing neuronal and network activity. Using a multidisciplinary approach, we investigated vasopressin-mediated vascular responses in SON arterioles of hypothalamic brain slices of Wistar or VP-eGFP Wistar rats. Bath-applied VP significantly constricted SON arterioles (Δ−41 ± 7%) via activation of the V1a receptor subtype. Vasoconstrictions were also observed in response to single VP neuronal stimulation (Δ−18 ± 2%), an effect prevented by V1a receptor blockade (V2255), supporting local dendritic VP release as the key signal mediating activity-dependent vasoconstrictions. Conversely, osmotically driven magnocellular neurosecretory neuronal population activity leads to a predominant nitric oxide-mediated vasodilation (Δ19 ± 2%). Activity-dependent vasodilations were followed by a VP-mediated vasoconstriction, which acted to limit the magnitude of the vasodilation and served to reset vascular tone following activity-dependent vasodilation. Together, our results unveiled a unique and complex form of NVC in the MNS, supporting a competitive balance between nitric oxide and activity-dependent dendritic released VP, in the generation of proper NVC responses. PMID:25834057

  13. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus.

    PubMed

    Hong, Su Z; Kim, Haram R; Fiorillo, Christopher D

    2014-01-01

    A general theory views the function of all neurons as prediction, and one component of this theory is that of "predictive homeostasis" or "prediction error." It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. In contrast, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN), T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This "burst mode" would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. Here we have mimicked within rat brain slices the patterns of synaptic conductance that occur naturally during vision. In support of the theory of predictive homeostasis, we found that T-type channels restored excitability toward its homeostatic level during periods of hyperpolarization. Thus, activation of T-type channels allowed two retinal input spikes to cause one output spike on average, and we observed almost no instances in which output count exceeded input count (a "burst"). T-type calcium channels therefore help to maintain a single optimal mode of transmission rather than creating a second mode. More fundamentally our results support the general theory, which seeks to predict the properties of a neuron's ion channels and

  14. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  15. In situ hybridization of nucleus basalis neurons shows increased. beta. -amyloid mRNA in Alzheimer disease

    SciTech Connect

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.; Younkin, L.H.; Younkin, S.G.

    1988-02-01

    To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.

  16. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  17. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  18. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.

    PubMed Central

    Schild, J H; Khushalani, S; Clark, J W; Andresen, M C; Kunze, D L; Yang, M

    1993-01-01

    1. Neurons from a horizontal slice of adult rat brainstem were examined using intracellular recording techniques. Investigations were restricted to a region within the nucleus tractus solitarii, medial to the solitary tract and centred on the obex (mNTS). Previous work has shown this restricted area of the NTS to contain the greatest concentration of aortic afferent baroreceptor terminal fields. Electrical stimulation of the tract elicited short-latency excitatory postsynaptic potentials in all neurons. 2. mNTS neurons were spontaneously active with firing frequencies ranging between 1 and 10 Hz, at resting potentials of -65 to -45 mV. These neurons did not exhibit spontaneous bursting activity. 3. Depolarizing current injection immediately evoked a finite, high-frequency spike discharge which rapidly declined to a lower steady-state level (i.e. spike frequency adaptation, SFA). Increasing depolarizations produced a marked increase in the peak instantaneous frequency but a much smaller increase in the steady-state firing level. 4. Conditioning with a hyperpolarizing prepulse resulted in a prolonged delay of up to 600 ms before the first action potential (i.e. delayed excitation, DE) with an attendant decrease in peak discharge rates. DE was modulated by both the magnitude and duration of the prestimulus hyperpolarization, as well as the magnitude of the depolarizing stimulus. Tetrodotoxin (TTX) eliminated spike discharge but had little effect on the ramp-like membrane depolarization characteristic of DE. 5. We have developed a mathematical model for mNTS neurons to facilitate our understanding of the interplay between the underlying ionic currents. It consists of a comprehensive membrane model of the Hodgkin-Huxley type coupled with a fluid compartment model describing cytoplasmic [Ca2+]i homeostasis. 6. The model suggests that (a) SFA is caused by an increase in [Ca2+]i which activates the outward K+ current, IK,Ca, and (b) DE results from the competitive

  19. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons

    PubMed Central

    Beckley, Jacob T.; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A.

    2016-01-01

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. SIGNIFICANCE STATEMENT Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  20. Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus.

    PubMed

    Varga, V; Kocsis, B; Sharp, T

    2003-01-01

    Neuronal projections to the dorsal raphe nucleus (DRN) from the medial prefrontal cortex (mPFC) and lateral habenula nucleus (LHb) provide the two key routes by which information processed by mood regulatory, cortico-limbic-striatal circuits input into the 5-HT system. These two projections may converge as it appears that both activate local GABAergic neurons to inhibit 5-HT neurons in the DRN. Here we have tested this hypothesis by measuring the effect of stimulation of the mPFC and LHb on the activity of 5-HT and non-5-HT, putative gamma-amino butyric acid (GABA) neurons in the DRN using extracellular recordings in anaesthetized rats. A total of 119 5-HT neurons (regular, slow firing, broad spike width) and 21 non-5-HT, putative GABA neurons (fast-firing, narrow spike width) were tested. Electrical stimulation of the mPFC or LHb caused a poststimulus inhibition (30 ms latency) of 101/119 5-HT neurons, of which 61 (60%) were inhibited by both the mPFC and LHb. Electrical stimulation of the mPFC or LHb also caused a short latency (12-20 ms) poststimulus facilitation of 10/21 non-5-HT neurons, of which 5 (50%) were activated by both the mPFC and LHb. These data indicate that a significant number of 5-HT neurons and non-5-HT neurons in the DRN are influenced by both the mPFC and LHb. Moreover, the data are compatible with the hypothesis and that there is a convergence of mPFC and LHb inputs on local circuit GABAergic neurons in the DRN which in turn inhibit the activity of 5-HT neurons.

  1. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis.

    PubMed

    Erlichman, Joseph S; Hewitt, Amy; Damon, Tracey L; Hart, Michael; Kurascz, Jennifer; Li, Aihua; Leiter, James C

    2008-05-01

    The astrocyte-neuronal lactate-shuttle hypothesis posits that lactate released from astrocytes into the extracellular space is metabolized by neurons. The lactate released should alter extracellular pH (pHe), and changes in pH in central chemosensory regions of the brainstem stimulate ventilation. Therefore, we assessed the impact of disrupting the lactate shuttle by administering 100 microM alpha-cyano-4-hydroxy-cinnamate (4-CIN), a dose that blocks the neuronal monocarboxylate transporter (MCT) 2 but not the astrocytic MCTs (MCT1 and MCT4). Administration of 4-CIN focally in the retrotrapezoid nucleus (RTN), a medullary central chemosensory nucleus, increased ventilation and decreased pHe in intact animals. In medullary brain slices, 4-CIN reduced astrocytic intracellular pH (pHi) slightly but alkalinized neuronal pHi. Nonetheless, pHi fell significantly in both cell types when they were treated with exogenous lactate, although 100 microM 4-CIN significantly reduced the magnitude of the acidosis in neurons but not astrocytes. Finally, 4-CIN treatment increased the uptake of a fluorescent 2-deoxy-D-glucose analog in neurons but did not alter the uptake rate of this 2-deoxy-D-glucose analog in astrocytes. These data confirm the existence of an astrocyte to neuron lactate shuttle in intact animals in the RTN, and lactate derived from astrocytes forms part of the central chemosensory stimulus for ventilation in this nucleus. When the lactate shuttle was disrupted by treatment with 4-CIN, neurons increased the uptake of glucose. Therefore, neurons seem to metabolize a combination of glucose and lactate (and other substances such as pyruvate) depending, in part, on the availability of each of these particular substrates.

  2. Neuroplastic changes in the hypothalamic arcuate nucleus: the estradiol effect is accompanied by increased exoendocytotic activity of neuronal membranes.

    PubMed

    Párducz, A; Szilágyi, T; Hoyk, S; Naftolin, F; Garcia-Segura, L M

    1996-04-01

    1. In the rat hypothalamic arcuate nucleus, estradiol induces coordinated changes in the number of axosomatic synapses, the amount of glial ensheathing, and the ultrastructure of the membrane of neuronal somas. In the present study we used conventional electron microscopy and freeze-fracture to examine cellular mechanisms responsible for the estradiol-induced changes at the membrane level. 2. In freeze-fracture replicas taken 10-60 min and 24 hr after injection of 17 beta-estradiol to adult ovariectomized females, it was found that there was a rapid increase in the number of exoendocytotic images that reached a plateau by 30 min. 3. In thin sections from animals injected 24 hr earlier we demonstrated a significant increase in coated vesicles in the periphery of the neurons and coated pits in the perikaryal membranes and decreased axosomatic synapses. 4. We conclude that these morphological alterations are signaling estrogen-induced transport and/or turnover of perikaryal membrane constituents and extracellular components which may affect interneuronal and neuroglial interactions. PMID:8743973

  3. Ribosomal DNA transcription in dorsal raphe nucleus neurons is increased in residual schizophrenia compared to depressed patients with affective disorders.

    PubMed

    Krzyżanowska, Marta; Steiner, Johann; Brisch, Ralf; Mawrin, Christian; Busse, Stefan; Braun, Katharina; Jankowski, Zbigniew; Bernstein, Hans-Gert; Bogerts, Bernhard; Gos, Tomasz

    2015-12-15

    The central serotonergic system is implicated differentially in the pathogenesis of depression and schizophrenia. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in both disorders. The study was carried out on paraffin-embedded brains from 27 depressed (15 major depressive disorder, MDD and 12 bipolar disorder, BD) and 17 schizophrenia (9 residual and 8 paranoid) patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver staining method. A significant effect of diagnosis on rDNA activity was found in the cumulative analysis of all DRN subnuclei. Further analysis revealed an increase in this activity in residual (but not paranoid) schizophrenia compared to depressed (both MDD and BD) patients. The effect was most probably neither confounded by suicide nor related to antidepressant and antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in residual schizophrenia, related presumably to differentially disturbed inputs to the DRN and/or their local transformation compared with depressive episodes in patients with affective disorders.

  4. Cocaine and Amphetamine Induce Overlapping but Distinct Patterns of AMPAR Plasticity in Nucleus Accumbens Medium Spiny Neurons.

    PubMed

    Jedynak, Jakub; Hearing, Matthew; Ingebretson, Anna; Ebner, Stephanie R; Kelly, Matthew; Fischer, Rachel A; Kourrich, Saïd; Thomas, Mark J

    2016-01-01

    Repeated exposure to psychostimulant drugs such as cocaine or amphetamine can promote drug-seeking and -taking behavior. In rodent addiction models, persistent changes in excitatory glutamatergic neurotransmission in the nucleus accumbens (NAc) appear to drive this drug-induced behavioral plasticity. To study whether changes in glutamatergic signaling are shared between or exclusive to specific psychostimulant drugs, we examined synaptic transmission from mice following repeated amphetamine or cocaine administration. Synaptic transmission mediated by AMPA-type glutamate receptors was potentiated in the NAc shell 10-14 days following repeated amphetamine or cocaine treatment. This synaptic enhancement was depotentiated by re-exposure to amphetamine or cocaine. By contrast, in the NAc core only repeated cocaine exposure enhanced synaptic transmission, which was subsequently depotentiated by an additional cocaine but not amphetamine injection during drug abstinence. To better understand the drug-induced depotentiation, we replicated these in vivo findings using an ex vivo model termed 'challenge in the bath,' and showed that drug-induced decreases in synaptic strength occur rapidly (within 30 min) and require activation of metabotropic glutamate receptor 5 (mGluR5) and protein synthesis in the NAc shell, but not NAc core. Overall, these data demonstrate the specificity of neuronal circuit changes induced by amphetamine, introduce a novel method for studying drug challenge-induced plasticity, and define NAc shell medium spiny neurons as a primary site of persistent AMPA-type glutamate receptor plasticity by two widely used psychostimulant drugs.

  5. A Kv3-like persistent, outwardly rectifying, Cs+-permeable, K+ current in rat subthalamic nucleus neurones

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    2000-01-01

    A persistent outward K+ current (IPO), activated by depolarization from resting potential, has been identified and characterized in rat subthalamic nucleus (SThN) neurones using whole-cell voltage-clamp recording in brain slices.IPO both rapidly activated (τ= 8 ms at +5 mV) and deactivated (τ= 2 ms at −68 mV), while showing little inactivation. Tail current reversal potentials varied with extracellular K+ concentration in a Nernstian manner.Intracellular Cs+ did not alter either IPO amplitude or the voltage dependence of activation, but blocked transient (A-like) outward currents activated by depolarization. When extracellular K+ was replaced with Cs+, IPO tail current reversal potentials were dependent upon the extracellular Cs+ concentration, indicating an ability to conduct Cs+, as well as K+.IPO was blocked by Ba2+ (1 mm), 4-aminopyridine (1 mm) and tetraethylammonium (TEA; 20 mm), with an IC50 for TEA of 0.39 mm.The IPO conductance appeared maximal (38 nS) at around +27 mV, half-maximal at −13 mV, with the threshold for activation at around −38 mV.TEA (1 mm) blocked the action potential after-hyperpolarization and permitted accommodation of action potential firing at frequencies greater than around 200 Hz.We conclude that IPO, which shares many characteristics of currents attributable to Kv3.1 K+ channels, enables high-frequency spike trains in SThN neurones. PMID:10990536

  6. Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder

    PubMed Central

    D'Onofrio, Stasia; Kezunovic, Nebojsa; Hyde, James R.; Luster, Brennon; Messias, Erick; Urbano, Francisco J.

    2014-01-01

    Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients. PMID:25376789

  7. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain.

    PubMed

    Shibuta, Kazuo; Suzuki, Ikuko; Shinoda, Masamichi; Tsuboi, Yoshiyuki; Honda, Kuniya; Shimizu, Noriyoshi; Sessle, Barry J; Iwata, Koichi

    2012-04-27

    The aim of this study was to evaluate spatial organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1), and to clarify the involvement in mechanisms underlying orofacial secondary hyperalgesia following infraorbital nerve injury. We found that the head-withdrawal threshold to non-noxious mechanical stimulation of the maxillary whisker pad skin was significantly reduced in chronic constriction injury of the infraorbital nerve (ION-CCI) rats from day 1 to day 14 after ION-CCI. On day 3 after ION-CCI, mechanical allodynia was obvious in the orofacial skin areas innervated by the 1st and 3rd branches of the trigeminal nerve as well as the 2nd branch area. Hyperactive microglial cells in Vc and C1 were observed on days 3 and 7 after ION-CCI. On day 3 after ION-CCI, a large number of phosphorylated extracellular signal-regulated kinase (pERK)-immunoreactive (IR) cells were observed in Vc and C1. Many hyperactive microglial cells were also distributed over a wide area of Vc and C1 innervated by the trigeminal nerve. The intraperitoneal administration of minocycline significantly reduced the activation of microglial cells and the number of pERK-IR cells in Vc and C1, and also significantly attenuated the development of mechanical allodynia. Furthermore, enhanced background activity and mechanical evoked responses of Vc wide dynamic range neurons in ION-CCI rats were significantly reversed following minocycline administration. These findings suggest that activation of microglial cells over a wide area of Vc and C1 is involved in the enhancement of Vc and C1 neuronal excitability in the early period after ION-CCI, resulting in the neuropathic pain in orofacial areas innervated by the injured as well as uninjured nerves.

  8. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores. PMID:23100436

  9. Regulation of ERα protein expression by 17β-estradiol in cultured neurons of hypothalamic ventromedial nucleus.

    PubMed

    Malikov, V; Madeira, M D

    2013-01-01

    The activation of the subtype α of estrogen receptors (ERα) in the hypothalamic ventromedial nucleus (VMNvl) is required to stimulate female sexual receptivity. Moreover, the hormone was found to govern the expression of the receptor. Its removal due to ovariectomy and subsequent substitution suggest that the hormone down-regulates the expression of ERα. In contrast, in normally cycling animals the expression of the receptor peaks at proestrus, the phase of highest concentration of 17β-estradiol in estrous cycle. Therefore, in this study we examined the influence of the hormone on ERα expression in primary dissociated cultures of neurons isolated from the VMNvl of young adult female rats. Measurements of ERα immunofluorescence revealed that both supraphysiological and physiological concentrations of 17β-estradiol increase the expression of ERα. Analyses with selective agonists showed that both nuclear ERs are able to mediate the action of the hormone. However, the activation of ERα had a stronger effect on the expression of its own receptor than the activation of ERβ. Simultaneous activation of both receptors attenuated the influence of ERα alone. Physiological concentrations of progesterone were found to revoke the effect of 17β-estradiol, whereas the expression of ERα is up-regulated by progesterone alone. These data indicate that the expression of ERα in VMNvl neurons is under the control of both types of nuclear ERs and, in addition, progesterone receptors (PRs). The particular contribution of the receptors is dependent on their level of expression and the hormonal context. In neurons expressing high quantity of ERα, ERβ attenuates the overall expression of the receptor, whereas in cells containing mostly ERβ it contributes to the up-regulation of ERα synthesis. Simultaneous activation of ERs and PRs reverses the influences of the receptors due to inter-inhibition of their transcriptional activities. PMID:22987058

  10. Re-examination of topographic distribution of thalamic neurons projecting to the caudate nucleus. A retrograde labeling study in the cat.

    PubMed

    de las Heras, S; Mengual, E; Velayos, J L; Giménez-Amaya, J M

    1998-08-01

    The distribution of thalamic neurons projecting directly to the caudate nucleus (CN) was examined using the retrograde labeling method. Horseradish peroxidase conjugated with wheat germ agglutinin (HRP-WGA) or a fluorescent tracer (either Fast Blue (FB) or Diamidino Yellow (DY)) was injected into various parts of the CN. The main findings were as follows: (1) labeled neurons were distributed most densely in the intralaminar nuclei, midline thalamic nuclei and centre median-parafascicular complex, and less densely in the ventroanterior (VA), ventrolateral (VL) and ventromedial (VM) nuclei. (2) After injections into the rostral parts of the CN, a moderate number of retrogradely labeled neuronal cell bodies was observed in VA, VL and VM. However, only very few, if any, labeled neurons were found in these nuclei after injections into the caudal parts of the CN. (3) After injections into the most dorsolateral parts of the CN, labeled neurons were seen in the lateralmost part of the VA and VL. (4) Many retrogradely labeled neurons were consistently found in the lateral wing of the rhomboid nucleus after injections into the CN. (5) No clear topography was detected in the arrangement of labeled neurons in the rhomboid, dorsal mediodorsal, centrolateral or paracentral nuclei. (6) After injections into the rostral parts of the CN, the most prominent labeling was observed in the ventral part of the centre médian-parafascicular complex.

  11. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling.

    PubMed

    Hawke, Zoe; Ivanov, Tina R; Bechtold, David A; Dhillon, Harveen; Lowell, Brad B; Luckman, Simon M

    2009-11-25

    The adipose-derived hormone, leptin, was discovered over 10 years ago, but only now are we unmasking its downstream pathways which lead to reduced energy intake (feeding) and increased energy expenditure (thermogenesis). Recent transgenic models have challenged the long-standing supposition that the hypothalamic arcuate nucleus (Arc) is omnipotent in the central response to leptin, and research focus is beginning to shift to examine roles of extra-arcuate sites. Dhillon et al. (2006) demonstrated that targeted knock out of the signaling form of the leptin receptor (lepr-B) in steroidogenic factor 1 (SF-1) cells of the hypothalamic ventromedial nucleus (VMN) produces obesity of a similar magnitude to the pro-opiomelanocortin (POMC)-driven lepr-B deleted mouse, via a functionally distinct mechanism. These findings reveal that SF-1 cells of the VMN could be equally as important as POMC cells in mediating leptin's anti-obesity effects. However, the identification of molecular and cellular correlates of this relationship remains tantalizingly unknown. Here, we have shown that mRNA expression of the VMN-expressed neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated according to energy status and that it exerts catabolic effects when administered centrally to mice. Furthermore, we have shown that SF-1 and PACAP mRNAs are colocalized in the VMN, and that leptin signaling via lepr-B is required for normal PACAP expression in these cells. Finally, blocking endogenous central PACAP signaling with the antagonist PACAP(6-38) markedly attenuates leptin-induced hypophagia and hyperthermia in vivo. Thus, it appears that PACAP is an important mediator of central leptin effects on energy balance.

  12. [Some Features of Sound Signal Envelope by the Frog's Cochlear Nucleus Neurons].

    PubMed

    Bibikov, N G

    2015-01-01

    The responses of single neurons in the medullar auditory center of the grass frog were recorded extracellularly under the action of long tonal signals of the characteristic frequency modulated by repeating fragments of low-frequency (0-15 Hz, 0-50 Hz or 0-150 Hz) noise. Correlation method was used for evaluating the efficacy of different envelope fragments to ensure generation of a neuron pulse discharge. Carrying out these evaluations at different time intervals between a signal and a response the maximum delays were assessed. Two important envelope fragments were revealed. In majority of units the most effective was the time interval of the amplitude rise from mean value to maximum, and the fragment where the amplitude fall from maximum to mean value was the second by the efficacy. This type of response was observed in the vast majority of cells in the range of the envelope frequency bands 0-150 and 0-50 Hz. These cells performed half-wave rectification of such type of the envelope. However, in some neurons we observed more strong preference toward a time interval with growing amplitude, including even those where the amplitude value was smaller than the mean one. These properties were observed mainly for low-frequency (0-15 Hz) modulated signals at high modulation depth. The data show that even in medulla oblongata specialization of neural elements of the auditory pathway occurs with respect to time interval features of sound stimulus. This diversity is most evident for signals with a relatively slowly varying amplitude.

  13. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    PubMed Central

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  14. Bisphenol A enhances kisspeptin neurons in anteroventral periventricular nucleus of female mice.

    PubMed

    Wang, Xiaoli; Chang, Fei; Bai, Yinyang; Chen, Fang; Zhang, Jun; Chen, Ling

    2014-05-01

    Bisphenol-A (BPA), an environmental estrogen, adversely affects female reproductive health. However, the underlying mechanisms remain largely unknown. We found that oral administration (p.o.) of BPA (20  μg/kg) to adult female mice at proestrus, but not at estrus or diestrus, significantly increased the levels of plasma E₂, LH and FSH, and Gnrh mRNA within 6  h. The administration of BPA at proestrus, but not at diestrus, could elevate the levels of Kiss1 mRNA and kisspeptin protein in anteroventral periventricular nucleus (AVPV) within 6  h. In contrast, the level of Kiss1 mRNA in arcuate nucleus (ARC) was hardly altered by BPA administration. In addition, at proestrus, a single injection (i.c.v.) of BPA dose-dependently enhanced the AVPV-kisspeptin expression within 6  h, this was sensitive to E₂ depletion by ovariectomy and an estrogen receptor α (ERα) antagonist. Similarly, the injection of BPA (i.c.v.) at proestrus could elevate the levels of plasma E₂, LH, and Gnrh mRNA within 6  h in a dose-dependent manner, which was blocked by antagonists of GPR54 or ERα. Injection of BPA (i.c.v.) at proestrus failed to alter the timing and peak concentration of LH-surge generation. In ovariectomized mice, the application of E₂ induced a dose-dependent increase in the AVPV-Kiss1 mRNA level, indicating 'E₂-induced positive feedback', which was enhanced by BPA injection (i.c.v.). The levels of Erα (Esr1) and Erβ (Esr2) mRNAs in AVPV and ARC did not differ significantly between vehicle-and BPA-treated groups. This study provides in vivo evidence that exposure of adult female mice to a low dose of BPA disrupts the hypothalamic-pituitary-gonadal reproductive endocrine system through enhancing AVPV-kisspeptin expression and release.

  15. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies.

  16. Organization of the spinal trigeminal nucleus in Star-Nosed Moles

    PubMed Central

    Sawyer, Eva K.; Leitch, Duncan B.; Catania, Kenneth C.

    2014-01-01

    Somatosensory inputs from the face project to multiple regions of the trigeminal nuclear complex in the brainstem. In mice and rats three subdivisions contain visible representations of the mystacial vibrissae: the principal sensory nucleus, the spinal trigeminal subnucleus interpolaris and subnucleus caudalis. These regions are considered important for touch with high spatial acuity, active touch, and pain and temperature sensation, respectively. Like mice and rats, the star-nosed mole (Condylura cristata) is a somatosensory specialist. Given the visible star pattern in preparations of the star-nosed mole cortex and the principal sensory nucleus, we hypothesized there were star patterns in the spinal trigeminal nucleus subnuclei interpolaris and caudalis. In sections processed for cytochrome oxidase we found star-like segmentation consisting of lightly stained septa separating darkly stained patches in subnucleus interpolaris (juvenile tissue) and subnucleus caudalis (juvenile and adult tissue). Subnucleus caudalis represented the face in a three-dimensional map with the most anterior part of the face represented more rostrally than posterior parts of the face. Multi-unit electrophysiological mapping was used to map the ipsilateral face. Ray-specific receptive fields in adults matched the CO-segmentation. The mean areas of multiunit receptive fields in subnucleus interpolaris and caudalis were larger than previously mapped receptive fields in the mole's principal sensory nucleus. The proportion of tissue devoted to each ray's representation differed between subnucleus interpolaris and the principal sensory nucleus. Our finding that different trigeminal brainstem maps can exaggerate different parts of the face could provide new insights for the roles of these different somatosensory stations. PMID:24715542

  17. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis.

    PubMed

    Etxebeste, Oier; Espeso, Eduardo A

    2016-09-01

    Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future. PMID:27587717

  18. Netrin-1 rescues neuron loss by attenuating secondary apoptosis in ipsilateral thalamic nucleus following focal cerebral infarction in hypertensive rats.

    PubMed

    Liao, S-J; Gong, Q; Chen, X-R; Ye, L-X; Ding, Q; Zeng, J-S; Yu, J

    2013-02-12

    Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. The present study is to investigate the role of netrin-1 and its receptors in ipsilateral ventroposterior thalamic nucleus (VPN) injury secondary to stroke in hypertensive rats. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO). Continuous intracerebroventricular infusion of netrin-1 (600 ng/d for 7 days) or vehicle (IgG/Fc) was given 24h after MCAO. Neurological function was evaluated by postural reflex 8 and 14 days after MCAO. Then, immunoreactivity was determined in the ipsilateral VPN for NeuN, glial fibrillary acidic protein, netrin-1 and its receptors (DCC and UNC5H2), apoptosis was detected with Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay, and the expressions of caspase-3, netrin-1, DCC, and UNC5H2 were quantified by western blot analysis. MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the

  19. Nucleus accumbens core neurons encode value-independent associations necessary for sensory preconditioning.

    PubMed

    Cerri, Domenic H; Saddoris, Michael P; Carelli, Regina M

    2014-10-01

    Reinforcement-based learning models predict that the strength of association between cues and outcomes is driven by aspects of outcome value. However, animals routinely make associations between contingent stimuli in the world, even if those associations hold no value to the organism. At the neural level, the nucleus accumbens (NAc) is known to encode associative information, but it is not known whether this encoding is specific for value-based information (consistent with reinforcement-based models) or if the NAc additionally plays a more general role in forming predictive associations, independent of outcome value. To test this, we employed a sensory preconditioning (SPC) task where rats initially (Preconditioning) received either contingent pairings of 2 neutral stimuli (e.g., tone [A] and light [X]; "Paired"), or random noncontingent presentations ("Unpaired"). After cue X was subsequently conditioned with food (First-Order Conditioning), the effect of preconditioning was assessed in Phase 3 (Test) by presentations of cue A alone. Electrophysiological recordings from the NAc core showed significant increases in phasic encoding for the stimuli in the Paired (but not Unpaired) condition as well as during test. Further, these effects were only seen in Paired rats that showed successful behavior during test (Good Learners), but not those who did not (Poor Learners) or Unpaired controls. These findings reveal a role for the NAc in the encoding of associative contingencies independent of value, and suggest that this structure also plays a more general role in forming associations necessary for predictive behavior.

  20. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration.

    PubMed

    Joe, N; Scott, V; Brown, C H

    2014-01-01

    Magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) project to the posterior pituitary gland where they release the hormones, vasopressin and oxytocin into the circulation to maintain plasma osmolality. Hormone release is proportionate to SON MNC action potential (spike) firing rate. When activated by ambient extracellular glutamate, extrasynaptic NMDA receptors (eNMDARs) mediate a tonic (persistent) depolarisation to increase the probability of action potential firing. In the present study, in vivo single-unit electrophysiological recordings were made from urethane-anaesthetised female Sprague-Dawley rats to investigate the impact of tonic eNMDAR activation on MNC activity. Water deprivation (for up to 48 h) caused an increase in the firing rate of SON MNCs that was associated with a general increase in post-spike excitability. To determine whether eNMDAR activation contributes to the increased MNC excitability during water deprivation, memantine, which preferentially blocks eNMDARs, was administered locally into the SON by microdialysis. Memantine significantly decreased the firing rate of MNCs recorded from 48-h water-deprived rats but had no effect on MNCs recorded from euhydrated rats. In the presence of the glial glutamate transporter-1 (GLT-1) blocker, dihydrokainate, memantine also reduced the MNC firing rate in euhydrated rats. Taken together, these observations suggest that GLT-1 clears extracellular glutamate to prevent the activation of eNDMARs under basal conditions and that, during dehydration, eNMDAR activation contributes to the increased firing rate of MNCs.

  1. Nucleus accumbens core neurons encode value-independent associations necessary for sensory preconditioning.

    PubMed

    Cerri, Domenic H; Saddoris, Michael P; Carelli, Regina M

    2014-10-01

    Reinforcement-based learning models predict that the strength of association between cues and outcomes is driven by aspects of outcome value. However, animals routinely make associations between contingent stimuli in the world, even if those associations hold no value to the organism. At the neural level, the nucleus accumbens (NAc) is known to encode associative information, but it is not known whether this encoding is specific for value-based information (consistent with reinforcement-based models) or if the NAc additionally plays a more general role in forming predictive associations, independent of outcome value. To test this, we employed a sensory preconditioning (SPC) task where rats initially (Preconditioning) received either contingent pairings of 2 neutral stimuli (e.g., tone [A] and light [X]; "Paired"), or random noncontingent presentations ("Unpaired"). After cue X was subsequently conditioned with food (First-Order Conditioning), the effect of preconditioning was assessed in Phase 3 (Test) by presentations of cue A alone. Electrophysiological recordings from the NAc core showed significant increases in phasic encoding for the stimuli in the Paired (but not Unpaired) condition as well as during test. Further, these effects were only seen in Paired rats that showed successful behavior during test (Good Learners), but not those who did not (Poor Learners) or Unpaired controls. These findings reveal a role for the NAc in the encoding of associative contingencies independent of value, and suggest that this structure also plays a more general role in forming associations necessary for predictive behavior. PMID:25244086

  2. Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: a retrograde tracer and comparative study.

    PubMed

    Faunes, Macarena; Fernández, Sara; Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Wylie, Douglas R; Mpodozis, Jorge; Karten, Harvey J; Marín, Gonzalo

    2013-06-01

    The isthmic complex is part of a visual midbrain circuit thought to be involved in stimulus selection and spatial attention. In birds, this circuit is composed of the nuclei isthmi pars magnocellularis (Imc), pars parvocellularis (Ipc), and pars semilunaris (SLu), all of them reciprocally connected to the ipsilateral optic tectum (TeO). The Imc conveys heterotopic inhibition to the TeO, Ipc, and SLu via widespread γ-aminobutyric acid (GABA)ergic axons that allow global competitive interactions among simultaneous sensory inputs. Anatomical studies in the chick have described a cytoarchitectonically uniform Imc nucleus containing two intermingled cell types: one projecting to the Ipc and SLu and the other to the TeO. Here we report that in passerine species, the Imc is segregated into an internal division displaying larger, sparsely distributed cells, and an external division displaying smaller, more densely packed cells. In vivo and in vitro injections of neural tracers in the TeO and the Ipc of the zebra finch demonstrated that neurons from the external and internal subdivisions project to the Ipc and the TeO, respectively, indicating that each Imc subdivision contains one of the two cell types hodologically defined in the chick. In an extensive survey across avian orders, we found that, in addition to passerines, only species of Piciformes and Rallidae exhibited a segregated Imc, whereas all other groups exhibited a uniform Imc. These results offer a comparative basis to investigate the functional role played by each Imc neural type in the competitive interactions mediated by this nucleus.

  3. Galanin neurons in the intermediate nucleus (InM) of the human hypothalamus in relation to sex, age, and gender identity.

    PubMed

    Garcia-Falgueras, Alicia; Ligtenberg, Lisette; Kruijver, Frank P M; Swaab, Dick F

    2011-10-15

    The intermediate nucleus (InM) in the preoptic area of the human brain, also known as the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the interstitial nucleus of the anterior hypothalamus-1 (INAH-1) is explored here. We investigated its population of galanin-immunoreactive (Gal-Ir) neurons in relation to sex, age, and gender identity in the postmortem brain of 77 subjects. First we compared the InM volume and number of Gal-Ir neurons of 22 males and 22 females in the course of aging. In a second experiment, we compared for the first time the InM volume and the total and Gal-Ir neuron number in 43 subjects with different gender identities: 14 control males (M), 11 control females (F), 10 male-to-female (MtF) transsexual people, and 5 men who were castrated because of prostate cancer (CAS). In the first experiment we found a sex difference in the younger age group (<45 years of age), i.e., a larger volume and Gal-Ir neuron number in males and an age difference, with a decrease in volume and Gal-Ir neuron number in males > 45 years. In the second experiment the MtF transsexual group presented an intermediate value for the total InM neuron number and volume that did not seem different in males and females. Because the CAS group did not have total neuron numbers that were different from the intact males, the change in adult circulating testosterone levels does not seem to explain the intermediate values in the MtF group. Organizational and activational hormone effects on the InM are discussed.

  4. Acute exercise-induced activation of Phox2b-expressing neurons of the retrotrapezoid nucleus in rats may involve the hypothalamus.

    PubMed

    Barna, B F; Takakura, A C; Moreira, T S

    2014-01-31

    The rat retrotrapezoid nucleus (RTN) contains neurons that have a well-defined phenotype characterized by the presence of vesicular glutamate transporter 2 (VGLUT2) mRNA and a paired-like homeobox 2b (Phox2b)-immunoreactive (ir) nucleus and the absence of tyrosine hydroxylase (TH). These neurons are important to chemoreception. In the present study, we tested the hypothesis that the chemically-coded RTN neurons (ccRTN) (Phox2b(+)/TH(-)) are activated during an acute episode of running exercise. Since most RTN neurons are excited by the activation of perifornical and lateral hypothalamus (PeF/LH), a region that regulates breathing during exercise, we also tested the hypothesis that PeF/LH projections to RTN neurons contribute to their activation during acute exercise. In adult male Wistar rats that underwent an acute episode of treadmill exercise, there was a significant increase in c-Fos immunoreactive (c-Fos-ir) in PeF/LH neurons and RTN neurons that were Phox2b(+)TH(-) (p<0.05) compared to rats that did not exercise. Also the retrograde tracer Fluoro-Gold that was injected into RTN was detected in c-Fos-ir PeF/LH (p<0.05). In summary, the ccRTN neurons (Phox2b(+)TH(-)) are excited by running exercise. Thus, ccRTN neurons may contribute to both the chemical drive to breath and the feed-forward control of breathing associated with exercise.

  5. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus

    SciTech Connect

    Cohen, Samuel M.; Li, Boxing; Tsien, Richard W. Ma, Huan

    2015-04-24

    Reliance on Ca{sup 2+} signaling has been well-preserved through the course of evolution. While the complexity of Ca{sup 2+} signaling pathways has increased, activation of transcription factors including CREB by Ca{sup 2+}/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of a signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca{sup 2+} sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca{sup 2+}/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.

  6. Novel description of ionic currents recorded with the action potential clamp technique: application to excitatory currents in suprachiasmatic nucleus neurons.

    PubMed

    Clay, John R

    2015-07-01

    The traditional method of recording ionic currents in neurons has been with voltage-clamp steps. Other waveforms such as action potentials (APs) can be used. The AP clamp method reveals contributions of ionic currents that underlie excitability during an AP (Bean BP. Nat Rev Neurosci 8: 451-465, 2007). A novel usage of the method is described in this report. An experimental recording of an AP from the literature is digitized and applied computationally to models of ionic currents. These results are compared with experimental AP-clamp recordings for model verification or, if need be, alterations to the model. The method is applied to the tetrodotoxin-sensitive sodium ion current, INa, and the calcium ion current, ICa, from suprachiasmatic nucleus (SCN) neurons (Jackson AC, Yao GL, Bean BP. J Neurosci 24: 7985-7998, 2004). The latter group reported voltage-step and AP-clamp results for both components. A model of INa is constructed from their voltage-step results. The AP clamp computational methodology applied to that model compares favorably with experiment, other than a modest discrepancy close to the peak of the AP that has not yet been resolved. A model of ICa was constructed from both voltage-step and AP-clamp results of this component. The model employs the Goldman-Hodgkin-Katz equation for the current-voltage relation rather than the traditional linear dependence of this aspect of the model on the Ca(2+) driving force. The long-term goal of this work is a mathematical model of the SCN AP. The method is general. It can be applied to any excitable cell.

  7. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus.

    PubMed

    Caspari, Franziska; Baumann, Veronika J; Garcia-Pino, Elisabet; Koch, Ursula

    2015-01-01

    The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing.

  8. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus

    PubMed Central

    Caspari, Franziska; Baumann, Veronika J.; Garcia-Pino, Elisabet; Koch, Ursula

    2015-01-01

    The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing. PMID:26635535

  9. Non-NMDA and NMDA receptor agonists induced excitation and their differential effect in activation of superior salivatory nucleus neurons in anaesthetized rats.

    PubMed

    Ishizuka, Ken'Ichi; Oskutyte, Diana; Satoh, Yoshihide; Murakami, Toshiki

    2008-02-29

    We investigated the effects of the ionophoretic application of ionotropic non-NMDA receptor agonist (AMPA) and NMDA receptor agonist (NMDA) on extracellularly recorded and antidromically identified superior salivatory nucleus (SSN) neurons. A great majority (93%) of SSN neurons was induced to fire by ionophoretic application of AMPA, and they were classified into high firing rate (more than 6 spikes/s), and low firing rate (less than 3 spikes/s) neurons. No clear differences were found between high firing rate and low firing rate neurons according their fibre type and histological locations. Of the SSN neurons that excited by AMPA, 22% (4/18) and 50% (5/9) of the neurons also were induced to fire following ionophoretic application of the NMDA receptor agonist NMDA in different concentrations, 20 mM and 100 mM, respectively. In neurons that induced firing by AMPA and by NMDA, AMPA-evoked firings were induced by the lower intensities of applied current and had higher mean firing rates than NMDA-evoked firing. Neurons that were induced firing by AMPA and by NMDA had B fibre and C fibre axons as well as those that induced firing only by AMPA. Neurons that were fired only by AMPA were found in whole SSN area, whereas neurons that were induced firing by AMPA and by NMDA were mainly found in intermediate SSN area. In conclusion, activation of ionotoropic non-NMDA receptor has a greater excitatory effect on the SSN neurons than that of ionotropic of NMDA receptor. Our data support the view that non-NMDA receptor plays a major role, whereas NMDA receptor plays a minor role, in the activation of SSN neurons.

  10. Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats.

    PubMed

    Minasyan, S M; Grigoryan, G Yu; Saakyan, S G; Akhumyan, A A; Kalantaryan, V P

    2007-02-01

    Acute experiments on white rats anesthetized with Nembutal (40 mg/kg, i.p.) were performed with extracellular recording and analysis of background spike activity from neurons in the supraoptic nucleus of the hypothalamus after exposure to electromagnetic radiation in the millimeter range. The distribution of neurons was determined in terms of the degree of regularity, the nature of the dynamics of neural streams, and the modalities of histograms of interspike intervals; the mean neuron spike frequency was calculated, along with the coefficient of variation of interspike intervals. These studies demonstrated changes in the background spike activity, predominantly affecting the internal structure of the spike streams recorded. The major changes were in the duration of interspike intervals and the degree of regularity of spike activity. Statistically significant changes in the mean spike frequencies of neuron populations in individual frequency ranges were also seen.

  11. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.

    PubMed

    Danjo, Teruko; Yoshimi, Kenji; Funabiki, Kazuo; Yawata, Satoshi; Nakanishi, Shigetada

    2014-04-29

    Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.

  12. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    PubMed

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.

  13. Androgen inhibits, while oestrogen enhances, restraint-induced activation of neuropeptide neurones in the paraventricular nucleus of the hypothalamus.

    PubMed

    Lund, T D; Munson, D J; Haldy, M E; Handa, R J

    2004-03-01

    The hormonal response to stress is enhanced by oestrogen but inhibited by androgens. To determine underlying changes in activity of neuropeptide neurones in the paraventricular nucleus of the hypothalamus (PVN), we examined the effect of oestrogen and androgen treatment on restraint-induced c-fos mRNA, corticotropin-releasing hormone (CRH) heteronuclear RNA, and arginine vasopressin hnRNA expression in the PVN. Male rats were gonadectomized and injected with oestradiol benzoate (EB) or dihydrotestosterone propionate (DHTP; s.c., daily for 4 days). Rats were stressed by restraint for 10 min or 30 min before killing. Other rats were stressed for 30 min and then returned to their home cage for 20 min before killing. Corticosterone and adrenocorticotropic hormone responses to restraint stress were significantly greater in EB-treated rats and lower in DHTP-treated rats at the 30-min timepoint compared to controls. c-fos mRNA increases following stress were augmented by EB but inhibited by DHTP. CRH hnRNA expression increased significantly in the PVN in response to restraint stress, and this increase was augmented by EB treatment, but decreased by DHTP treatment. Vasopressin hnRNA expression was also increased in response to stress, and this increase was attenuated by DHTP. These findings indicate that gonadal hormones influence the reactivity of the hypothalamic-pituitary adrenal axis to stress.

  14. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    PubMed

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. PMID:26738968

  15. Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurones of the rat supraoptic nucleus.

    PubMed

    Prager-Khoutorsky, M; Bourque, C W

    2015-06-01

    Rat magnocellular neurosecretory cells (MNCs) release vasopressin and oxytocin to promote antidiuresis and natriuresis at the kidney. The osmotic control of oxytocin and vasopressin release at the neurohypophysis is required for osmoregulation in these animals, and this release is mediated by a modulation of the action potential firing rate by the MNCs. Under basal (isotonic) conditions, MNCs fire action potentials at a slow rate, and this activity is inhibited by hypo-osmotic conditions and enhanced by hypertonicity. The effects of changes in osmolality on MNCs are mediated by a number of different factors, including the involvement of synaptic inputs, the release of taurine by local glial cells and regulation of ion channels expressed within the neurosecretory neurones themselves. We review recent findings that have clarified our understanding of how osmotic stimuli modulate the activity of nonselective cation channels in MNCs. Previous studies have shown that osmotically-evoked changes in membrane potential and action potential firing rate in acutely isolated MNCs are provoked mainly by a modulation of nonselective cation channels. Notably, the excitation of isolated MNCs during hypertonicity is mediated by the activation of a capsaicin-insensitive cation channel that MNCs express as an N-terminal variant of the transient receptor potential vanilloid 1 (Trpv1) channel. The activation of this channel during hypertonicity is a mechanical process associated with cell shrinking. The effectiveness of this mechanical process depends on the presence of a thin layer of actin filaments (F-actin) beneath the plasma membrane, as well as a densely interweaved network of microtubules (MTs) occupying the bulk of the cytoplasm of MNCs. Although the mechanism by which F-actin contributes to Trpv1 activation remains unknown, recent data have shown that MTs interact with Trpv1 channels via binding sites on the C-terminus, and that the force mediated through this complex is

  16. Intrinsic membrane plasticity via increased persistent sodium conductance of cholinergic neurons in the rat laterodorsal tegmental nucleus contributes to cocaine-induced addictive behavior.

    PubMed

    Kamii, Hironori; Kurosawa, Ryo; Taoka, Naofumi; Shinohara, Fumiya; Minami, Masabumi; Kaneda, Katsuyuki

    2015-05-01

    The laterodorsal tegmental nucleus (LDT) is a brainstem nucleus implicated in reward processing and is one of the main sources of cholinergic afferents to the ventral tegmental area (VTA). Neuroplasticity in this structure may affect the excitability of VTA dopamine neurons and mesocorticolimbic circuitry. Here, we provide evidence that cocaine-induced intrinsic membrane plasticity in LDT cholinergic neurons is involved in addictive behaviors. After repeated experimenter-delivered cocaine exposure, ex vivo whole-cell recordings obtained from LDT cholinergic neurons revealed an induction of intrinsic membrane plasticity in regular- but not burst-type neurons, resulting in increased firing activity. Pharmacological examinations showed that increased riluzole-sensitive persistent sodium currents, but not changes in Ca(2+) -activated BK, SK or voltage-dependent A-type potassium conductance, mediated this plasticity. In addition, bilateral microinjection of riluzole into the LDT immediately before the test session in a cocaine-induced conditioned place preference (CPP) paradigm inhibited the expression of cocaine-induced CPP. These findings suggest that intrinsic membrane plasticity in LDT cholinergic neurons is causally involved in the development of cocaine-induced addictive behaviors.

  17. Swim stress activates serotonergic and nonserotonergic neurons in specific subdivisions of the rat dorsal raphe nucleus in a temperature-dependent manner.

    PubMed

    Kelly, K J; Donner, N C; Hale, M W; Lowry, C A

    2011-12-01

    Physical (exteroceptive) stimuli and emotional (interoceptive) stimuli are thought to influence stress-related physiologic and behavioral responses through different neural mechanisms. Previous studies have demonstrated that stress-induced activation of brainstem serotonergic systems is influenced by environmental factors such as temperature. In order to further investigate the effects of environmental influences on stress-induced activation of serotonergic systems, we exposed adult male Wistar rats to either home cage control conditions or a 15-min swim in water maintained at 19 °C, 25 °C, or 35 °C and conducted dual immunohistochemical staining for c-Fos, a marker of immediate-early nuclear activation, and tryptophan hydroxylase (TPH), a marker of serotonergic neurons. Changes in core body temperature were documented using biotelemetry. As expected, exposure to cold (19 °C) swim, relative to warm (35 °C) swim, increased c-Fos expression in the external lateral part of the parabrachial nucleus (LPBel), an important part of the spinoparabrachial pathway involved in sensation of cold, cutaneous stimuli, and in serotonergic neurons in the raphe pallidus nucleus (RPa), an important part of the efferent mechanisms controlling thermoregulatory warming responses. In addition, exposure to cold (19 °C) swim, relative to 35 °C swim, increased c-Fos expression in the dorsal raphe nucleus, ventrolateral part/periaqueductal gray (DRVL/VLPAG) and dorsal raphe nucleus, interfascicular part (DRI). Both of these subregions of the dorsal raphe nucleus (DR) have previously been implicated in thermoregulatory responses. Altogether, the data are consistent with the hypothesis that midbrain serotonergic neurons, possibly via activation of afferents to the DR by thermosensitive spinoparabrachial pathways, play a role in integration of physiologic and behavioral responses to interoceptive stress-related cues involved in forced swimming and exteroceptive cues related to cold

  18. Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus and nucleus accumbens in old rats after chronic donepezil administration

    PubMed Central

    Alcantara-Gonzalez, Faviola; Juarez, Ismael; Solis, Oscar; Martinez-Tellez, Isaura; Camacho-Abrego, Israel; Masliah, Eliezer; Mena, Raul; Flores, Gonzalo

    2010-01-01

    In Alzheimer's disease brains morphological changes in the dendrites of pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been observed. These changes are particularly reflected in the decrement of both the dendritic tree and spine number. Donepezil is a potent and selective acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease. We have studied the effect of oral administration of this drug on the morphology of neuronal cells from the brain of aged rats. We examined dendrites of pyramidal neurons of the PFC, dorsal or ventral hippocampus and medium spiny neurons of the nucleus accumbens (NAcc). Donepezil (1 mg/Kg, vo) was administrated every day for 60 days to rats aged 10 and 18 months. Dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at 12 and 20 months ages, respectively. In all Donepezil treated-rats a significant increment of the dendritic spines number in pyramidal neurons of the PFC, dorsal hippocampus was observed. However, pyramidal neurons of the ventral hippocampus and medium spiny cells of the NAcc only showed an increase in the number of their spines in 12 months old-rats. Our results suggest that Donepezil prevents the alterations of the neuronal dendrite morphology caused by aging. PMID:20336627

  19. No Evidence for Sex Differences in the Electrophysiological Properties and Excitatory Synaptic Input onto Nucleus Accumbens Shell Medium Spiny Neurons123

    PubMed Central

    Will, Tyler; Hauser, Caitlin A.; Cao, Jinyan

    2016-01-01

    Sex differences exist in how the brain regulates motivated behavior and reward, both in normal and pathological contexts. Investigations into the underlying neural mechanisms have targeted the striatal brain regions, including the dorsal striatum and nucleus accumbens core and shell. These investigations yield accumulating evidence of sexually different electrophysiological properties, excitatory synaptic input, and sensitivity to neuromodulator/hormone action in select striatal regions both before and after puberty. It is unknown whether the electrical properties of neurons in the nucleus accumbens shell differ by sex, and whether sex differences in excitatory synaptic input are present before puberty. To test the hypothesis that these properties differ by sex, we performed whole-cell patch-clamp recordings on male and female medium spiny neurons (MSNs) in acute brain slices obtained from prepubertal rat nucleus accumbens shell. We analyzed passive and active electrophysiological properties, and miniature EPSCs (mEPSCs). No sex differences were detected; this includes those properties, such as intrinsic excitability, action potential afterhyperpolarization, threshold, and mEPSC frequency, that have been found to differ by sex in other striatal regions and/or developmental periods. These findings indicate that, unlike other striatal brain regions, the electrophysiological properties of nucleus accumbens shell MSNs do not differ by sex. Overall, it appears that sex differences in striatal function, including motivated behavior and reward, are likely mediated by other factors and striatal regions. PMID:27022621

  20. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats.

    PubMed

    Miller, R L; Knuepfer, M M; Wang, M H; Denny, G O; Gray, P A; Loewy, A D

    2012-08-30

    The parabrachial nucleus (PB) is a brainstem cell group that receives a strong input from the nucleus tractus solitarius regarding the physiological status of the internal organs and sends efferent projections throughout the forebrain. Since the neuroanatomical organization of the PB remains unclear, our first step was to use specific antibodies against two neural lineage transcription factors: Forkhead box protein2 (FoxP2) and LIM homeodomain transcription factor 1 beta (Lmx1b) to define the PB in adult rats. This allowed us to construct a cytoarchitectonic PB map based on the distribution of neurons that constitutively express these two transcription factors. Second, the in situ hybridization method combined with immunohistochemistry demonstrated that mRNA for glutamate vesicular transporter Vglut2 (Slc17a6) was present in most of the Lmx1b+ and FoxP2+ parabrachial neurons, indicating these neurons use glutamate as a transmitter. Third, conscious rats were maintained in a hypotensive or hypertensive state for 2h, and then, their brainstems were prepared by the standard c-Fos method which is a measure of neuronal activity. Both hypotension and hypertension resulted in c-Fos activation of Lmx1b+ neurons in the external lateral-outer subdivision of the PB (PBel-outer). Hypotension, but not hypertension, caused c-Fos activity in the FoxP2+ neurons of the central lateral PB (PBcl) subnucleus. The Kölliker-Fuse nucleus as well as the lateral crescent PB and rostral-most part of the PBcl contain neurons that co-express FoxP2+ and Lmx1b+, but none of these were activated after blood pressure changes. Salt-sensitive FoxP2 neurons in the pre-locus coeruleus and PBel-inner were not c-Fos activated following blood pressure changes. In summary, the present study shows that the PBel-outer and PBcl subnuclei originate from two different neural progenitors, contain glutamatergic neurons, and are affected by blood pressure changes, with the PBel-outer reacting to both hypo- and

  1. Comparison of somatostatin and corticotrophin releasing hormone immunoreactivity in forebrain neurons projecting to taste responsive and non responsive regions of the parabrachial nucleus in rat

    PubMed Central

    Panguluri, Siva; Saggu, Shalini; Lundy, Robert

    2009-01-01

    Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and seven days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN. PMID:19699720

  2. Hypertonicity increases NO production to modulate the firing rate of magnocellular neurons of the supraoptic nucleus of rats.

    PubMed

    da Silva, M P; Ventura, R R; Varanda, W A

    2013-10-10

    Increases in plasma osmolality enhance nitric oxide (NO) levels in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and modulate the secretion of both vasopressin (VP) and oxytocin (OT). In this paper, we describe the effects of hypertonicity on the electrical properties of MNCs by focusing on the nitrergic modulation of their activity in this condition. Membrane potentials were measured using the patch clamp technique, in the presence of both glutamatergic and GABAergic neurotransmission blockers, in coronal brain slices of male Wistar rats. The recordings were first made under a control condition (295 mosm/kg H2O), then in the presence of a hypertonic stimulus (330 mosm/kg H2O) and, finally, with a hypertonic stimulus plus 500 μM L-Arginine or 100 μM N-nitro-L-Arginine methyl ester hydrochloride (L-NAME). Hypertonicity per se increased the firing frequency of the neurons. L-Arginine prevented the increase in fire frequency induced by hypertonic stimulus, and L-NAME (inhibitor of nitric oxide synthase) induced an additional increase in frequency when applied together with the hypertonic solution. Moreover, L-Arginine hyperpolarizes the resting potential and decreases the peak value of the after-hyperpolarization; both effects were blocked by L-NAME and hypertonicity and/or L-NAME reduced the time constant of the rising phase of the after-depolarization. These results demonstrate that an intrinsic nitrergic system is part of the mechanisms controlling the excitability of MNCs of the SON when the internal fluid homeostasis is disturbed. PMID:23850590

  3. Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.

    PubMed

    Santoso, Putra; Maejima, Yuko; Kumamoto, Kensuke; Takenoshita, Seiichi; Shimomura, Kenju

    2015-09-30

    ELABELA (ELA) is a novel hormone consisting of 32 amino acid peptides found in humans as well as other vertebrates and is considered to play an important role in the circulatory system through the apelin receptor (APJ). However, whether ELA also acts in the central nervous system remains unknown. Here, we show that ELA functions as an anorexigenic hormone in adult mouse brain. An intracerebroventricular injection of ELA reduces food intake and activates arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN), a hypothalamic region that regulates food intake. Cytosolic calcium ([Ca]i) measurement shows that ELA dose dependently increases [Ca]i in single AVP and CRH-immunoreactive neurons isolated from the PVN. Our data suggest that ELA functions as an anorexigenic hormone through activation of AVP and CRH neurons in the PVN.

  4. Gq Protein-Coupled Membrane-Initiated Estrogen Signaling Rapidly Excites Corticotropin-Releasing Hormone Neurons in the Hypothalamic Paraventricular Nucleus in Female Mice.

    PubMed

    Hu, Pu; Liu, Ji; Yasrebi, Ali; Gotthardt, Juliet D; Bello, Nicholas T; Pang, Zhiping P; Roepke, Troy A

    2016-09-01

    CRH neurons in the hypothalamic paraventricular nucleus (PVN) play a central role in regulating the hypothalamus-pituitary-adrenal (HPA) axis and are directly influenced by 17β-estradiol (E2). Although compelling evidence has suggested the existence of membrane-associated estrogen receptors (mERs) in hypothalamic and other central nervous system neurons, it remains unknown whether E2 impacts CRH neuronal excitability through this mechanism. The purpose of the current study is to examine the existence and function of mER signaling in PVN CRH neurons. Whole-cell recordings were made from CRH neurons identified by Alexa Fluor 594 labeling and post hoc immunostaining in ovariectomized female mice. E2 (100nM) rapidly suppressed the M-current (a voltage-dependent K(+) current) and potentiated glutamatergic excitatory postsynaptic currents. The putative Gq-coupled mER (Gq-mER) characterized in hypothalamic proopiomelanocortin neurons initiates a phospholipase C-protein kinase C-protein kinase A pathway; therefore, we examined the involvement of this pathway using selective inhibitors. Indeed, the ER antagonist ICI 182780 and inhibitors of Gq-phospholipase C-protein kinase C-protein kinase A blocked E2's actions, suggesting dependence on the Gq-mER. Furthermore, STX, a selective ligand for the Gq-mER, mimicked E2's actions. Finally, to examine the in vivo effect of Gq-mER activation, E2 or STX injection increased c-fos expression in CRH neurons in the PVN, suggesting CRH neuronal activation. This corresponded to an increase in plasma corticosterone. We conclude that the Gq-mER plays a critical role in the rapid regulation of CRH neuronal activity and the HPA axis. Our findings provide a potential underlying mechanism for E2's involvement in the pathophysiology of HPA-associated mood disorders. PMID:27387482

  5. Protection of signal processing at low temperature in baroreceptive neurons in the nucleus tractus solitarius of Syrian hamsters, a hibernating species

    PubMed Central

    Sekizawa, Shin-Ichi; Horwitz, Barbara A.; Horowitz, John M.

    2013-01-01

    We previously described synaptic currents between baroreceptor fibers and second-order neurons in the nucleus tractus solitarius (NTS) that were larger in Syrian hamsters than in rats. This suggested that although electrical activity throughout the hamster brain decreased as brain temperature declined, the greater synaptic input to its NTS would support continued operation of cardiorespiratory reflexes at low body temperatures. Here, we focused on properties that would protect these neurons against potential damage from the larger synaptic inputs, testing the hypotheses that hamster NTS neurons exhibit: 1) intrinsic N-methyl-d-aspartate receptor (NMDAR) properties that limit Ca2+ influx to a greater degree than do rat NTS neurons and 2) properties that reduce gating signals to NMDARs to a greater degree than in rat NTS neurons. Whole cell patch-clamp recordings on anatomically identified second-order NTS baroreceptive neurons showed that NMDAR-mediated synaptic currents between sensory fibers and second-order NTS neurons were larger in hamsters than in rats at 33°C and 15°C, with no difference in their permeability to Ca2+. However, at 15°C, but not at 33°C, non-NMDAR currents evoked by glutamate released from baroreceptor fibers had significantly shorter durations in hamsters than in rats. Thus, hamster NMDARs did not exhibit lower Ca2+ influx than did rats (negating hypothesis 1), but they did exhibit significant differences in non-NMDAR neuronal properties at low temperature (consistent with hypothesis 2). The latter (shorter duration of non-NMDAR currents) would likely limit NMDAR coincidence gating and may help protect hamster NTS neurons, enabling them to contribute to signal processing at low body temperatures. PMID:24068050

  6. Androgen and estrogen receptor-beta distribution within spinal-projecting and neurosecretory neurons in the paraventricular nucleus of the male rat.

    PubMed

    Bingham, Brenda; Williamson, Martin; Viau, Victor

    2006-12-20

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is initiated by neurosecretory neurons residing within the medial parvicellular part of the hypothalamic paraventricular nucleus (PVN). Despite the potency by which sex steroids operate on HPA and medial parvocellular responses to stress, previous topographic and phenotypic studies suggest that gonadal steroid hormone receptors are scarcely, if at all, expressed by PVN neurons controlling anterior pituitary corticotropes. Guided by the pattern of retrograde accumulation of fluorogold, we used a direct connectional approach to define the distribution of androgen receptors (AR) and estrogen-beta receptors (ER-beta) within populations of neurosecretory vs. nonneurosecretory neurons in the PVN. Juxtaposition of AR-immunoreactivity (ir) and ER-beta mRNA to the pattern of intravenous fluorogold labeling showed these steroid hormone receptors to be concentrated within portions of the PVN devoid of neurosecretory neurons. Superimposing receptor profiles onto the pattern of spinal retrograde labeling confirmed a selective distribution of AR-ir within autonomic-related cells of the medial parvocellular division, including its dorsal, lateral, and ventral medial components. ER-beta mRNA expression was likewise concentrated within regions accumulating spinal tracer, highest within the ventral aspect of the PVN. These results indicate a direct influence of gonadal hormones on preautonomic effector neurons and remain in keeping with an indirect influence of androgens on adrenocorticotropin-regulating neurons in the PVN.

  7. INTERNAL ORGANIZATION OF MEDIAL RECTUS AND INFERIOR RECTUS MUSCLE NEURONS IN THE C-GROUP OF THE OCULOMOTOR NUCLEUS IN MONKEY

    PubMed Central

    Tang, Xiaofang; Büttner-Ennever, Jean A.; Mustari, Michael J.; Horn, Anja K. E.

    2015-01-01

    Summary Mammalian extraocular muscles contain singly-innervated twitch muscle fibers (SIF) and multiply-innervated non-twitch muscle fibers (MIF). In monkey, MIF motoneurons lie around the periphery of oculomotor nuclei and have different premotor inputs from the motoneurons inside the nuclei. The most prominent MIF motoneuron group is the C-group, which innervates the medial rectus (MR) and inferior rectus (IR) muscle. To explore the organization of both cell groups within the C-group we performed small injections of choleratoxin subunit B into the myotendinous junction of MR or IR in monkeys. In three animals the IR and MR myotendinous junction of one eye was injected simultaneously with different tracers (choleratoxin subunit B and wheatgerm agglutinin). It revealed that both muscles were supplied by two different non-overlapping populations in the C-group. The IR neurons lie adjacent to the dorsomedial border of the oculomotor nucleus, whereas MR neurons are located further medially. A striking feature was the differing pattern of dendrite distribution of both cell groups. Whereas the dendrites of IR neurons spread into the supraoculomotor area bilaterally, those of the MR neurons were restricted to the ipsilateral side and sent a focussed bundle dorsally to the preganglionic neurons of the Edinger-Westphal nucleus, which are involved in the ‘near response’. In conclusion, MR and IR are innervated by independent neuron populations from the C-group. Their dendritic branching pattern within the supraoculomotor area indicates a participation in the near response providing vergence, but also reflects their differing functional roles. PMID:25684641

  8. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study.

    PubMed

    Tokita, K; Boughter, J D

    2016-03-01

    The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste

  9. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study.

    PubMed

    Tokita, K; Boughter, J D

    2016-03-01

    The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste

  10. GAD67-GFP+ neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties.

    PubMed

    van Brederode, J F M; Yanagawa, Y; Berger, A J

    2011-01-01

    In this study we examined the electrophysiological and morphological properties of inhibitory neurons located just ventrolateral to the hypoglossal motor (XII) nucleus in the Nucleus of Roller (NR). In vitro experiments were performed on medullary slices derived from postnatal day 5 (P5) to P15 GAD67-GFP knock-in mouse pups. on cell recordings from GFP+ cells in NR in rhythmic slices revealed that these neurons are spontaneously active, although their spiking activity does not exhibit inspiratory phase modulation. Morphologically, GFP+ cells were bi- or multipolar cells with small- to medium-sized cell bodies and small dendritic trees that were often oriented parallel to the border of the XII nucleus. GFP+ cells were classified as either tonic or phasic based on their firing responses to depolarizing step current stimulation in whole cell current clamp. Tonic GFP+ cells fired a regular train of action potentials (APs) throughout the duration of the pulse and often showed rebound spikes after a hyperpolarizing step. In contrast, phasic GFP+ neurons did not fire throughout the depolarizing current step but instead fired fewer than four APs at the onset of the pulse or fired multiple APs, but only after a marked delay. Phasic cells had a significantly smaller input resistance and shorter membrane time constant than tonic GFP+ cells. In addition, phasic GFP+ cells differed from tonic cells in the shape and time course of their spike afterpotentials, the minimum firing frequency at threshold current amplitude, and the slope of their current-frequency relationship. These results suggest that GABAergic neurons in the NR are morphologically and electrophysiologically heterogeneous cells that could provide tonic inhibitory synaptic input to HMs. PMID:21047932

  11. Neural control of left ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals.

    PubMed

    Massari, V J; Dickerson, L W; Gray, A L; Lauenstein, J M; Blinder, K J; Newsome, J T; Rodak, D J; Fleming, T J; Gatti, P J; Gillis, R A

    1998-08-17

    Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by

  12. The human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors.

    PubMed

    Weiss, N; Ohara, S; Johnson, K O; Lenz, F A

    2009-02-01

    Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechanoreceptors. The optimal stimuli for particular mechanoreceptors were defined as follows: Pacinian corpuscles (PC), vibration at 128 Hz; rapidly adapting (RA), vibration at 32 or 64 Hz; slowly adapting type 1 (SA1), edge; slowly adapting type 2 (SA2), skin stretch. Nineteen neurons had a significant response to at least one optimal stimulus, and 17 had a significantly greater response to one stimulus than to the other three, including 7 PC-related, 7 RA-like, 3 SA1-like, and 2 SA2-like neurons. One of each of the SA1- and SA2-like thalamic neurons responded to vibration with firing rates that were lower than those to edge or stretch but not significantly. Except in the case of PC-related neurons, the receptive field (RF) sizes were larger for these thalamic neurons than for the corresponding mechanoreceptor. Von Frey thresholds were higher than those for the corresponding human RA and SA1 mechanoreceptors. These results suggest that there is a convergence of pathways transmitting input from multiple mechanoreceptors of one type on single thalamic neurons via the dorsal columns. They are also consistent with the presence of primate thalamic elements of modality and somatotopic isorepresentation.

  13. A Model for the Fast Synchronous Oscillations of Firing Rate in Rat Suprachiasmatic Nucleus Neurons Cultured in a Multielectrode Array Dish

    PubMed Central

    Stepanyuk, Andrey R.; Belan, Pavel V.; Kononenko, Nikolai I.

    2014-01-01

    When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1 mm recording area of a MED exhibited correlated FOFR. Neither the mechanism of FOFR nor the mechanism of their synchronization among neurons is known. Based on recent data implicating vasoactive intestinal polypeptide (VIP) as a key intercellular synchronizing agent, we built a model in which VIP acts as both a feedback regulator to generate FOFR in individual neurons, and a diffusible synchronizing agent to produce coherent electrical output of a neuronal network. In our model, VIP binding to its (VPAC2) receptors acts through Gs G-proteins to activate adenylyl cyclase (AC), increase intracellular cAMP, and open cyclic-nucleotide-gated (CNG) cation channels, thus depolarizing the cell and generating neuronal firing to release VIP. In parallel, slowly developing homologous desensitization and internalization of VPAC2 receptors terminates elevation of cAMP and thereby provides an interpulse silent interval. Through mathematical modeling, we show that this VIP/VPAC2/AC/cAMP/CNG-channel mechanism is sufficient for generating reliable FOFR in single neurons. When our model for FOFR is combined with a published model of synchronization of circadian rhythms based on VIP/VPAC2 and Per gene regulation synchronization of circadian rhythms is significantly accelerated. These results suggest that (a) auto/paracrine regulation by VIP/VPAC2 and intracellular AC/cAMP/CNG-channels are sufficient to provide robust FOFR and synchrony among neurons in a heterogeneous network, and (b) this system may also participate in synchronization of circadian rhythms. PMID:25192180

  14. Behavioral Flexibility Is Increased by Optogenetic Inhibition of Neurons in the Nucleus Accumbens Shell during Specific Time Segments

    ERIC Educational Resources Information Center

    Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.

    2014-01-01

    Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…

  15. Neuronal mechanisms of active (rapid eye movement) sleep induced by microinjections of hypocretin into the nucleus pontis oralis of the cat.

    PubMed

    Xi, M-C; Chase, M H

    2006-06-19

    Hypocretinergic (orexinergic) neurons in the hypothalamus project to the nucleus pontis oralis, a nucleus which plays a crucial role in the generation of active (rapid eye movement) sleep. We recently reported that the microinjection of hypocretin into the nucleus pontis oralis of chronically-instrumented, unanesthetized cats induces a behavioral state that is comparable to naturally-occurring active sleep. The present study examined the intracellular signaling pathways underlying the active sleep-inducing effects of hypocretin. Accordingly, hypocretin-1, a protein kinase C inhibitor and a protein kinase A inhibitor were injected into the nucleus pontis oralis in selected combinations in order to determine their effects on sleep and waking states of chronically instrumented, unanesthetized cats. Microinjections of hypocretin-1 into the nucleus pontis oralis elicited active sleep with a short latency. However, a pre-injection of bisindolylmaleimide-I, a protein kinase C-specific inhibitor, completely blocked the active sleep-inducing effects of hypocretin-1. The combined injection of bisindolylmaleimide-I and hypocretin-1 significantly increased the latency to active sleep induced by hypocretin-1; it also abolished the increase in the time spent in active sleep induced by hypocretin-1. On the other hand, the injection of 2'5'-dideoxyadenosine, an adenylyl cyclase inhibitor, did not block the occurrence of active sleep by hypocretin-1. We conclude that the active sleep-inducing effect of hypocretin in the nucleus pontis oralis is mediated by intracellular signaling pathways that act via G-protein stimulation of protein kinase C. PMID:16533574

  16. Differential roles of dopamine D1 and D2 receptor-containing neurons of the nucleus accumbens shell in behavioral sensitization.

    PubMed

    Kai, Nobuyuki; Nishizawa, Kayo; Tsutsui, Yuji; Ueda, Shuichi; Kobayashi, Kazuto

    2015-12-01

    The nucleus accumbens (Nac) mediates the reinforcing and motor stimulating properties of psychostimulants. It receives dopaminergic afferents from the ventral midbrain and is divided into two distinct subregions: shell and core. Each of these contains two subtypes of medium spiny neurons, which express either dopamine D1 (D1R) or D2 (D2R) receptors. However, functional dissociation between the two subtypes in psychostimulant response remains to be elucidated. We performed selective ablation of each subtype in the Nac shell in mice, using immunotoxin-mediated cell targeting, and examined the behavioral sensitization evoked by repeated administration of methamphetamine. The D1R cell-ablated mice exhibited delayed induction of sensitized locomotion compared to control mice, whereas the D2R cell-ablated mice showed a mildly enhanced rate of induction of sensitization. In vivo microdialysis revealed a marked blockade of the increase in extracellular dopamine in the Nac of the D1R cell-ablated animals in response to methamphetamine, indicating that the observed delay in behavioral sensitization in these mice involves an impairment in accumbal dopamine release. Our results reveal differential roles of D1R- and D2R-containing accumbal shell neurons in the development of behavioral sensitization to psychostimulants. Behavioral sensitization, enhanced motility by repetitive psychostimulant administration, is a model of drug addiction. Here, we show that the nucleus accumbens (Nac) shell neurons containing dopamine D1 receptor (D1R) or D2 receptor (D2R) play distinct roles in behavioral sensitization triggered by methamphetamine, and that D1R-containing neurons enhance the induction of behavioral sensitization at the early phase, whereas D2R-containing neurons act to suppress the rate of development of the behavior.

  17. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    PubMed

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-01

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation.

  18. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol.

    PubMed

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J; Krumm, Elizabeth A; Yang, Jennifer A; Magby, Jason; Hu, Pu; Roepke, Troy A

    2016-02-15

    Ghrelin's receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner.

  19. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus.

    PubMed

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III.

  20. A painful cutaneous laser stimulus evokes responses from single neurons in the human thalamic principal somatic sensory nucleus ventral caudal (Vc).

    PubMed

    Kobayashi, K; Winberry, J; Liu, C C; Treede, R D; Lenz, F A

    2009-05-01

    Cutaneous application of painful radiant heat laser pulses evokes potentials (laser-evoked potentials) that can be recorded from scalp or intracranial electrodes. We have now tested the hypothesis that the response of thalamic neurons to a cutaneous laser stimulus occurs at latencies predicted by the conduction delay between the periphery and the thalamus. We have carried out recordings from human thalamic neurons in the principal sensory nucleus (ventral caudal) in patients undergoing awake surgery for the treatment of tremor. The results demonstrate that many neurons respond to the laser with early and/or late latency peaks of activity, consistent with conduction of the response to the laser stimulus through pathways from Adelta and C fibers to the thalamus. These peaks were of short duration, perhaps due to the somatotopic- and modality-specific arrangements of afferent pathways to the thalamus. The responses of these thalamic neurons to the laser stimulus sometimes included low-threshold spike (LTS) bursts of action potentials, consistent with previous studies of different painful stimuli. A prior study has demonstrated that spike trains characterized by common LTS bursts such as the intermediate (I) category spontaneously change their category more commonly than do those without LTS bursts (NG: nongrouped category) during changes in the cognitive task. Spike trains of laser-responsive neurons were more common in the I category, whereas those of laser nonresponsive neurons were more common in the NG category. Therefore neuronal spike trains in the I category may mediate shifts in endogenous or cognitive pain-related behavior.

  1. Distinct tachykinin NK1 receptor function in primate nucleus tractus solitarius neurons is dysregulated after second-hand tobacco smoke exposure

    PubMed Central

    Sekizawa, Shin-ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C

    2011-01-01

    BACKGROUND AND PURPOSE Second-hand tobacco smoke (SHS) exposure in children increases the risk of asthma and sudden infant death syndrome. Epidemiological and experimental data have suggested SHS can alter neuroplasticity in the CNS, associated with substance P. We hypothesized that exposure to SHS in young primates changed the effect of substance P on the plasticity of neurons in the nucleus tractus solitarius (NTS), where airway sensory information is first processed in the CNS. EXPERIMENTAL APPROACH Thirteen-month-old rhesus monkeys were exposed to filtered air (FA, n = 5) or SHS (n = 5) for >6 months from 50 days of their fetal age. Whole-cell patch-clamp recordings were performed on NTS neurons in brainstem slices from these animals to record the intrinsic cell excitability in the absence or presence of the NK1 receptor antagonist, SR140333 (3 µM). KEY RESULTS Neurons were electrophysiologically classified based on their spiking onset from a hyperpolarized membrane potential into two phenotypes: rapid-onset spiking (RS) and delayed-onset spiking (DS) types. In RS neurons, SR140333 reduced the spiking response, similarly in both FA- and SHS-exposed animals. In DS neurons, SR140333 almost abolished the spiking response in FA-exposed animals, but had no effect in SHS-exposed animals. CONCLUSIONS AND IMPLICATIONS The contribution of NK1 receptors to cell excitability depended on firing phenotype of primate NTS neurons and was disrupted by SHS exposure, specifically in DS neurons. Our findings reveal a novel NK1 receptor function in the primate brainstem and support the hypothesis that chronic exposure to SHS in children causes tachykinin-related neuroplastic changes in the CNS. PMID:21323902

  2. Involvement of trigeminal transition zone and laminated subnucleus caudalis in masseter muscle hypersensitivity associated with tooth inflammation.

    PubMed

    Shimizu, Kohei; Matsumoto, Kunihito; Noma, Noboru; Matsuura, Shingo; Ohara, Kinuyo; Komiya, Hiroki; Watase, Tetsuro; Ogiso, Bunnai; Tsuboi, Yoshiyuki; Shinoda, Masamichi; Hatori, Keisuke; Nakaya, Yuka; Iwata, Koichi

    2014-01-01

    A rat model of pulpitis/periapical periodontitis was used to study mechanisms underlying extraterritorial enhancement of masseter response associated with tooth inflammation. Periapical bone loss gradually increased and peaked at 6 weeks after complete Freund's adjuvant (CFA) application to the upper molar tooth pulp (M1). On day 3, the number of Fos-immunoreactive (IR) cells was significantly larger in M1 CFA rats compared with M1 vehicle (veh) rats in the trigeminal subnucleus interpolaris/caudalis transition zone (Vi/Vc). The number of Fos-IR cells was significantly larger in M1 CFA and masseter (Mass) capsaicin applied (M1 CFA/Mass cap) rats compared with M1 veh/Mass veh rats in the contralateral Vc and Vi/Vc. The number of phosphorylated extracellular signal-regulated kinase (pERK)-IR cells was significantly larger in M1 CFA/Mass cap and M1 veh/Mass cap rats compared to Mass-vehicle applied rats with M1 vehicle or CFA in the Vi/Vc. Pulpal CFA application caused significant increase in the number of Fos-IR cells in the Vi/Vc but not Vc on week 6. The number of pERK-IR cells was significantly lager in the rats with capsaicin application to the Mass compared to Mass-vehicle treated rats after pulpal CFA- or vehicle-application. However, capsaicin application to the Mass did not further affect the number of Fos-IR cells in the Vi/Vc in pulpal CFA-applied rats. The digastric electromyographic (d-EMG) activity after Mass-capsaicin application was significantly increased on day 3 and lasted longer at 6 weeks after pulpal CFA application, and these increase and duration were significantly attenuated by i.t. PD98059, a MEK1 inhibitor. These findings suggest that Vi/Vc and Vc neuronal excitation is involved in the facilitation of extraterritorial hyperalgesia for Mass primed with periapical periodontitis or acute pulpal-inflammation. Furthermore, phosphorylation of ERK in the Vi/Vc and Vc play pivotal roles in masseter hyperalgesia after pulpitis or periapical

  3. Segregation of short-wavelength sensitive ("blue") cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets.

    PubMed

    Hashemi-Nezhad, Maziar; Blessing, Esther M; Dreher, Bogdan; Martin, Paul R

    2008-11-01

    We measured functional input from short-wavelength selective (S) cones to neurons in the dorsal lateral geniculate nucleus (LGN) and striate cortex (area V1) in anaesthetized marmosets. We found that most magnocellular (MC) and parvocellular (PC) cells receive very little (<5%) functional input from S cones, whereas blue-on cells of the koniocellular (KC) pathway receive dominant input from S cones. Cells dominated by S cone input were not encountered in V1, but V1 cells received more S cone input than PC or MC cells. This suggests that S cone inputs are distributed broadly among neurons in V1. No differences in strength of S cone inputs were seen on comparing dichromatic and trichromatic marmosets, suggesting that the addition of a medium-long wavelength selective cone-opponent ("red-green") channel to a dichromatic visual system does not detectably affect the chromatic properties of the S cone pathways. PMID:18397798

  4. NMDA Receptors of Gastric-Projecting Neurons in the Dorsal Motor Nucleus of the Vagus Mediate the Regulation of Gastric Emptying by EA at Weishu (BL21).

    PubMed

    Zhang, Xin; Cheng, Bin; Jing, Xianghong; Qiao, Yongfa; Gao, Xinyan; Yu, Huijuan; Zhu, Bing; Qiao, Haifa

    2012-01-01

    A large number of studies have been conducted to explore the efficacy of electroacupuncture (EA) for the treatment of gastrointestinal motility. While several lines of evidence addressed the basic mechanism of EA on gastrointestinal motility regarding effects of limb and abdomen points, the mechanism for effects of the back points on gastric motility still remains unclear. Here we report that the NMDA receptor (NMDAR) antagonist kynurenic acid inhibited the gastric emptying increase induced by high-intensity EA at BL21 and agonist NMDA enhanced the effect of the same treatment. EA at BL21 enhanced NMDAR, but not AMPA receptor (AMPAR) component of miniature excitatory postsynaptic current (mEPSC) in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). In sum, our data demonstrate an important role of NMDAR-mediated synaptic transmission of gastric-projecting DMV neurons in mediating EA at BL21-induced enhancement of gastric emptying. PMID:22654955

  5. Physiological temperatures drive glutamate release onto trigeminal superficial dorsal horn neurons

    PubMed Central

    Hegarty, Deborah M.; Aicher, Sue A.; Andresen, Michael C.

    2014-01-01

    Trigeminal sensory afferent fibers terminating in nucleus caudalis (Vc) relay sensory information from craniofacial regions to the brain and are known to express transient receptor potential (TRP) ion channels. TRP channels are activated by H+, thermal, and chemical stimuli. The present study investigated the relationships among the spontaneous release of glutamate, temperature, and TRPV1 localization at synapses in the Vc. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from Vc neurons (n = 151) in horizontal brain-stem slices obtained from Sprague-Dawley rats. Neurons had basal sEPSC rates that fell into two distinct frequency categories: High (≥10 Hz) or Low (<10 Hz) at 35°C. Of all recorded neurons, those with High basal release rates (67%) at near-physiological temperatures greatly reduced their sEPSC rate when cooled to 30°C without amplitude changes. Such responses persisted during blockade of action potentials indicating that the High rate of glutamate release arises from presynaptic thermal mechanisms. Neurons with Low basal frequencies (33%) showed minor thermal changes in sEPSC rate that were abolished after addition of TTX, suggesting these responses were indirect and required local circuits. Activation of TRPV1 with capsaicin (100 nM) increased miniature EPSC (mEPSC) frequency in 70% of neurons, but half of these neurons had Low basal mEPSC rates and no temperature sensitivity. Our evidence indicates that normal temperatures (35–37°C) drive spontaneous excitatory synaptic activity within superficial Vc by a mechanism independent of presynaptic action potentials. Thus thermally sensitive inputs on superficial Vc neurons may tonically activate these neurons without afferent stimulation. PMID:24598529

  6. Altered Neuronal Firing Pattern of the Basal Ganglia Nucleus Plays a Role in Levodopa-Induced Dyskinesia in Patients with Parkinson’s Disease

    PubMed Central

    Li, Xiaoyu; Zhuang, Ping; Li, Yongjie

    2015-01-01

    Background: Levodopa therapy alleviates the symptoms of Parkinson’s disease (PD), but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID). Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1 ± 11.0 years; disease duration, 8.7 ± 5.6 years) were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr (1967) scores ranged from 2–4 and their UPDRS III scores were 28.5 ± 5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7 ± 1.6). Microelectrode recording was performed in the globus pallidus internus (GPi) and subthalamic nucleus (STN) during pallidotomy (n = 12) or STN deep brain stimulation (DBS; bilateral, n = 12; unilateral, n = 6). The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs) and the corresponding coefficient of variation (CV). Results: A total of 295 neurons were identified from the GPi (n = 12) and STN (n = 18). These included 26 (8.8%) highly grouped discharge, 30 (10.2%) low frequency firing, 78 (26.4%) rapid tonic discharge, 103 (34.9%) irregular activity, and 58 (19.7%) tremor-related activity. There were significant differences between the two groups (p < 0.05) for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID. PMID:26635583

  7. Acute pancreatitis decreases the sensitivity of pancreas-projecting dorsal motor nucleus of the vagus neurones to group II metabotropic glutamate receptor agonists in rats

    PubMed Central

    Babic, Tanja; Travagli, R Alberto

    2014-01-01

    Recent studies have shown that pancreatic exocrine secretions (PES) are modulated by dorsal motor nucleus of the vagus (DMV) neurones, whose activity is finely tuned by GABAergic and glutamatergic synaptic inputs. Group II metabotropic glutamate receptors (mGluR) decrease synaptic transmission to pancreas-projecting DMV neurones and increase PES. In the present study, we used a combination of in vivo and in vitro approaches aimed at characterising the effects of caerulein-induced acute pancreatitis (AP) on the vagal neurocircuitry modulating pancreatic functions. In control rats, microinjection of bicuculline into the DMV increased PES, whereas microinjections of kynurenic acid had no effect. Conversely, in AP rats, microinjection of bicuculline had no effect, whereas kynurenic acid decreased PES. DMV microinjections of the group II mGluR agonist APDC and whole cell recordings of excitatory currents in identified pancreas-projecting DMV neurones showed a reduced functional response in AP rats compared to controls. Moreover, these changes persisted up to 3 weeks following the induction of AP. These data demonstrate that AP increases the excitatory input to pancreas-projecting DMV neurones by decreasing the response of excitatory synaptic terminals to group II mGluR agonist. PMID:24445314

  8. Cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator muscle are located in the mesencephalic trigeminal nucleus in rats.

    PubMed

    Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Kawagishi, Kyutaro; Moriizumi, Tetsuji

    2012-12-01

    Since the levator and frontalis muscles lack interior muscle spindles despite being antigravity mixed muscles to involuntarily sustain eyelid opening and eyebrow lifting, this study has proposed a hypothetical mechanism to compensate for this anatomical defect. The voluntary contraction of fast-twitch fibres of the levator muscle stretches the mechanoreceptors in Müller's muscle to evoke proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study confirmed the presence of cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator and frontalis muscles. After confirming that severing the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induced ipsilateral eyelid ptosis, Fluorogold was applied as a tracer to the proximal stump of the trigeminal proprioceptive nerve in rats. Fluorogold labelled the cell bodies of the trigeminal proprioceptive neurons, not in any regions of the rat brain including the trigeminal ganglion, but in the ipsilateral mesencephalic trigeminal nucleus neighbouring the locus ceruleus. Some Fluorogold particles accumulated in the area of the locus ceruleus. The trigeminal proprioceptive neurons could be considered centrally displaced ganglion cells to transmit afferent signal from the mechanoreceptors in Müller's muscle to the mesencephalon, where they may be able to make excitatory synaptic connections with both the oculomotor neurons and the frontalis muscle motoneurons for the involuntary coordination of the eyelid and eyebrow activities, and potentially to the locus ceruleus.

  9. Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell

    PubMed Central

    Klenowski, Paul M.; Shariff, Masroor R.; Belmer, Arnauld; Fogarty, Matthew J.; Mu, Erica W. H.; Bellingham, Mark C.; Bartlett, Selena E.

    2016-01-01

    The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology. PMID:27047355

  10. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease

    PubMed Central

    Callahan, Joshua W; Abercrombie, Elizabeth D

    2015-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder in which impairments in the processing of information between the cortex and basal ganglia are fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a pivotal role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in a hyperkinetic movement syndrome, similar to the HD phenotype. The aim of the present study was to examine the relationship between neuronal activity in the STN and cortex in an animal model of HD. We performed in vivo extracellular recordings in the STN to measure single-unit activity and local field potentials in the R6/2 transgenic mouse model of HD. These recordings were obtained during epochs of simultaneously acquired electrocorticogram (ECoG) in discrete brain states representative of global cortical network synchronization or desynchronization. Cortically patterned STN neuronal activity was less phase-locked in R6/2 mice, which is likely to result in less efficient coding of cortical inputs by the basal ganglia. In R6/2 mice, the power of the ECoG in lower frequencies (0.5–4 Hz) was diminished while the power expressed in higher frequencies (13–100 Hz) was increased. In addition, the spontaneous activity of STN neurons in R6/2 mice was reduced and neurons exhibited a more irregular firing pattern. Glutamatergic STN neurons provide the major excitatory drive to the output nuclei of the basal ganglia and altered discharge patterns could lead to aberrant basal ganglia output and disordered motor control in HD. PMID:25952461

  11. Retrograde study of CART- or NPY-neuronal projection from the hypothalamic arcuate nucleus to the dorsal raphe and/or the locus coeruleus in the rat.

    PubMed

    Yoon, Ye S; Lee, Ji S; Lee, Hyun S

    2013-06-26

    The present study was designed to reveal cocaine- and amphetamine-regulated transcript (CART)- or neuropeptide Y (NPY)-immunoreactive neuronal projections from the hypothalamic arcuate nucleus (Arc) to the dorsal raphe (DR) and/or the locus coeruleus (LC) in the rat. Our results demonstrated that CART or NPY axon terminals formed close appositions to the neuronal profiles in the DR and the LC. Thus, arcuate sections were immunostained for the CART or NPY after the injections of green RetroBeads(™) into the DR and red tracer into the LC (or vice versa). First, retrogradely-labeled CART cells were mainly observed in the lateral Arc without colchicine. Of the total population of arcuate CART neurons, DR- and LC-projecting cells were 5.7% ± 0.9% and 6.6% ± 0.7%, respectively. In addition, a subset (3.3% ± 0.7%) of CART neurons provided divergent axon collaterals to the DR and the LC. Second, retrogradely-labeled NPY cells were observed in lateral or ventral borders of the medial Arc only after colchicine injection. Of the entire NPY cell population, DR- and LC-projecting neurons were 1.5% ± 0.3% and 1.3% ± 0.3%, respectively. Only a scanty proportion (0.1% ± 0.0%) sent axon collaterals to the DR and the LC. These observations suggested that arcuate CART or NPY system might have a potential influence on the brainstem monoaminergic nuclei, modulating their roles in feeding, nociception, emotional behaviors, arousal, and stress responses. Furthermore, a portion of arcuate CART neurons (along with only a few NPY cells) sending divergent axon collaterals to the DR/LC might have a simultaneous (and possibly more efficient) way to exert their specific influences on the monoaminergic nuclei.

  12. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory.

    PubMed

    Wang, Li; Shen, Minjie; Yu, Yongchun; Tao, Yezheng; Zheng, Ping; Wang, Feifei; Ma, Lan

    2014-05-01

    GABAergic medium-sized spiny neurons (MSNs) in the nucleus accumbens (NAc) differentially express D1 and D2 dopamine receptors. Both D2- and D1-MSNs in the NAc form projections into the ventral pallidum, whereas only D1-MSNs directly project into midbrain neurons. They are critical in rewarding and aversive learning, and understanding the function of these NAc efferents and the alteration of their targeted brain regions in responding to a reward-associated context is important. In this study, we activated the GABAergic neurons in the NAc of mice expressing channelrhodopsin-2 under the control of the vesicular GABA transporter promoter by an optogenetic approach, and examined its effects on the expression of cocaine-context-associated memory. In vivo optogenetic activation of the NAc GABAergic neurons inhibited the expression of cocaine-conditioned place preference (CPP). When tested 24 h later, these mice exhibited normal cocaine-induced CPP, indicating that the inhibitory effect on the expression of CPP was transient and reversible. Activation of the NAc GABAergic neurons also attenuated the learning of cocaine-induced reinforcement, as indicated by the results of behavioural sensitization. To explore how the cocaine-context-associated information was processed and integrated, we assessed the activity of NAc MSN-targeted brain nuclei and found that the activation of NAc GABAergic neurons during CPP expression resulted in a decrease of c-Fos+ cells in the ventral palladium. Our data suggested that the NAc GABAergic efferents inhibit the ventral palladium activity and negatively regulate the expression of motivational effects induced by cocaine-context-associated cues.

  13. The spino-bulbar-cerebellar pathway: Activation of neurons projecting to the lateral reticular nucleus in the rat in response to noxious mechanical stimuli.

    PubMed

    Huma, Zilli; Ireland, Kirsty; Maxwell, David J

    2015-03-30

    It is now well established that the cerebellum receives input from nociceptors which may serve to adjust motor programmes in response to pain and injury. In this study, we investigated the possibility that spinoreticular neurons (SRT) which project to a pre-cerebellar nucleus, the lateral reticular nucleus (LRt), respond to noxious mechanical stimulation. Seven adult male rats received stereotaxic injections of the b subunit of cholera toxin in the LRt. Following a 5 day interval, animals were anesthetised with urethane and a noxious mechanical stimulus was applied to the right hind paw. Animals were fixed by perfusion 5min following application of the stimulus. Retrogradely labelled SRT neurons of the lumbar spinal cord were examined for immunoreactivity for phosphorylated ERK (pERK) and the neurokinin-1 (NK-1) receptor. Approximately 15% of SRT cells in deep laminae (IV-VII and X) expressed pERK ipsilateral to the site of the stimulus. Around 60% of SRT cells with the NK-1 receptor expressed pERK but 5% of pERK expressing cells were negatively labelled for NK-1. It is concluded that a significant proportion of SRT cells projecting to the LRt respond to noxious mechanical stimuli and that one of the functions of this pathway may be to provide the cerebellum with nociceptive information.

  14. Responses of neurons in the gracile nucleus of cats to innocuous and noxious stimuli: basic characterization and antidromic activation from the thalamus.

    PubMed

    Cliffer, K D; Hasegawa, T; Willis, W D

    1992-09-01

    1. Responses to innocuous and noxious mechanical and thermal stimuli were recorded from 90 neurons in the gracile nucleus of anesthetized cats. Cells were tested by antidromic activation for projections to the contralateral ventrobasal thalamus. 2. Cells were characterized broadly by their responses to mechanical stimuli as 1) responding only to tapping (16%), 2) fast-adapting to low-intensity mechanical stimuli (33%), or 3) slowly adapting (51%; most with a fast-adapting component to their responses). All fast-adapting cells and those slowly adapting cells that were tested with noxious heat were further categorized on the basis of their patterns of firing and responses to stimuli. These plus the tap-responsive cells comprised a more restricted sample of 76 categorized cells. 3. Many (22) slowly adapting cells responded to noxious heat (69% of tested slowly adapting cells; 29% of all categorized cells), either on the first application (9 cells) or after sensitization (13 cells), indicating input originating in nociceptors. Nearly all of these (21) responded more to intense pressure than to innocuous pressure. The majority of slowly adapting cells not responsive to noxious heat (5 of 8) or not tested with it (8 of 12) also responded more to intense than to innocuous pressure, suggesting possible input originating in nociceptors. Most cells that responded to noxious heat also had both rapidly and slowly adapting responses with low thresholds. Many were recorded in the range of the cluster region of the gracile nucleus. 4. Cells antidromically activated from the thalamus projected to the rostral part of the ventral posterior lateral nucleus, regardless of their physiological category, and included many with nociceptive input. Latencies of antidromic activation were shorter at more caudal locations in the gracile nucleus, indicating higher conduction velocities to the thalamus. Responses of antidromically activated cells to low-intensity phasic stimuli tended to be

  15. Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: a model for Alzheimer's disease.

    PubMed

    Szigeti, Csaba; Bencsik, Norbert; Simonka, Aurel Janos; Legradi, Adam; Kasa, Peter; Gulya, Karoly

    2013-05-01

    Alzheimer's disease is associated with a significant decrease in the cholinergic input to the neocortex. In a rat model of this depletion, we analyzed the subsequent long-term changes in cholinergic fiber density in two well-defined areas of the frontal and parietal cortices: Fr1, the primary motor cortex, and HL, the hindlimb area of the somatosensory (parietal) cortex, two cortical cholinergic fields that receive inputs from the nucleus basalis magnocellularis (nBM). A specific cholinergic lesion was induced by the intraparenchymal injection of 192 IgG-saporin into the nBM. Choline acetyltransferase (ChAT) immunohistochemistry was applied to identify the loss of cholinergic neurons in the nBM, while acetylcholinesterase (AChE) enzyme histochemistry was used to analyze the decreases in the number of cholinoceptive neurons in the nBM and the cholinergic fiber density in the Fr1 and HL cortical areas in response to the nBM lesion. The immunotoxin differentially affected the number of ChAT- and AChE-positive neurons in the nBM. 192 IgG-saporin induced a massive, irreversible depletion of the ChAT-positive (cholinergic) neurons (to 11.7% of the control level), accompanied by a less dramatic, but similarly persistent loss of the AChE-positive (cholinoceptive) neurons (to 59.2% of the control value) in the nBM within 2 weeks after the lesion. The difference seen in the depletion of ChAT- and AChE-positive neurons is due to the specificity of the immunotoxin to cholinergic neurons. The cholinergic fiber densities in cortical areas Fr1 and HL remained similarly decreased (to 62% and 68% of the control values, respectively) up to 20 weeks. No significant rebound in AChE activity occurred either in the nBM or in the cortices during the period investigated. This study therefore demonstrated that, similarly to the very extensive reduction in the number of ChAT-positive neurons in the nBM, cortical areas Fr1 and HL underwent long-lasting reductions in the number of ACh

  16. Age-dependent alterations in the cortical entrainment of subthalamic nucleus neurons in the YAC128 mouse model of Huntington's disease.

    PubMed

    Callahan, Joshua W; Abercrombie, Elizabeth D

    2015-06-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that results in motor, cognitive and psychiatric abnormalities. Dysfunction in neuronal processing between the cortex and the basal ganglia is fundamental to the onset and progression of the HD phenotype. The corticosubthalamic hyperdirect pathway plays a crucial role in motor selection and blockade of neuronal activity in the subthalamic nucleus (STN) results in hyperkinetic movement abnormalities, similar to the motor symptoms associated with HD. The aim of the present study was to examine whether changes in the fidelity of information transmission between the cortex and the STN emerge as a function of phenotypic severity in the YAC128 mouse model of HD. We obtained in vivo extracellular recordings in the STN and concomitant electrocorticogram (ECoG) recordings during discrete brain states that reflected global cortical network synchronization or desynchronization. At early ages in YAC128 mice, both the cortex and the STN exhibited patterns of hyperexcitability. As symptom severity progressed, cortical entrainment of STN activity was disrupted and there was an increase in the proportion of non-oscillating, tonically firing STN neurons that were less phase-locked to cortical activity. Concomitant to the dissipation of STN entrainment, there was a reduction in the evoked response of STN neurons to focal cortical stimulation. The spontaneous discharge of STN neurons in YAC128 mice also decreased with age and symptom severity. These results indicate dysfunction in the flow of information within the corticosubthalamic circuit and demonstrate progressive age-related disconnection of the hyperdirect pathway in a transgenic mouse model of HD.

  17. NMDA currents modulate the synaptic input-output functions of neurons in the dorsal nucleus of the lateral lemniscus in Mongolian gerbils.

    PubMed

    Porres, Christian P; Meyer, Elisabeth M M; Grothe, Benedikt; Felmy, Felix

    2011-03-23

    Neurons in the dorsal nucleus of the lateral lemniscus (DNLL) receive excitatory and inhibitory inputs from the superior olivary complex (SOC) and convey GABAergic inhibition to the contralateral DNLL and the inferior colliculi. Unlike the fast glycinergic inhibition in the SOC, this GABAergic inhibition outlasts auditory stimulation by tens of milliseconds. Two mechanisms have been postulated to explain this persistent inhibition. One, an "integration-based" mechanism, suggests that postsynaptic excitatory integration in DNLL neurons generates prolonged activity, and the other favors the synaptic time course of the DNLL output itself. The feasibility of the integration-based mechanism was tested in vitro in DNLL neurons of Mongolian gerbils by quantifying the cellular excitability and synaptic input-output functions (IO-Fs). All neurons were sustained firing and generated a near monotonic IO-F on current injections. From synaptic stimulations, we estimate that activation of approximately five fibers, each on average liberating ∼18 vesicles, is sufficient to trigger a single postsynaptic action potential. A strong single pulse of afferent fiber stimulation triggered multiple postsynaptic action potentials. The steepness of the synaptic IO-F was dependent on the synaptic NMDA component. The synaptic NMDA receptor current defines the slope of the synaptic IO-F by enhancing the temporal and spatial EPSP summation. Blocking this NMDA-dependent amplification during postsynaptic integration of train stimulations resulted into a ∼20% reduction of the decay time course of the GABAergic inhibition. Thus, our data show that the NMDA-dependent amplification of the postsynaptic activity contributes to the GABAergic persistent inhibition generated by DNLL neurons.

  18. Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX).

    PubMed

    Gańko, Marta; Całka, Jarosław

    2014-01-01

    The main goal of our research was to study the possible alterations of the chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric region following prolonged acetylsalicylic acid supplementation. Fast Blue (FB) was injected into the studied area of the stomach. Since the seventh day following the FB injection, acetylsalicylic acid (ASA) was given orally to the experimental gilts. All animals were euthanized on the 28th day after FB injection. Medulla oblongata sections were then processed for double-labeling immunofluorescence for choline acetyltransferase (ChAT), pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the control DMX, only PACAP was observed in 30.08 ± 1.97 % of the FB-positive neurons, while VIP, NOS, GAL, SP, LENK, and CART were found exclusively in neuronal processes running between FB-labeled perikarya. In the ASA DMX, PACAP was revealed in 49.53 ± 5.73 % of traced vagal perikarya. Moreover, we found de novo expression of VIP in 40.32 ± 7.84 %, NOS in 25.02 ± 6.08 %, and GAL in 3.37 ± 0.85 % of the FB-labeled neurons. Our results suggest that neuronal PACAP, VIP, NOS, and GAL are mediators of neural response to aspirin-induced stomach inflammatory state.

  19. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  20. Neuron-specific specificity protein 4 bigenomically regulates the transcription of all mitochondria- and nucleus-encoded cytochrome c oxidase subunit genes in neurons.

    PubMed

    Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T

    2013-11-01

    Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons.

  1. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    PubMed

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration.

  2. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity.

    PubMed

    Bernstein, Hans-Gert; Trübner, Kurt; Krebs, Philipp; Dobrowolny, Henrik; Bielau, Hendrik; Steiner, Johann; Bogerts, Bernhard

    2014-01-01

    Heroin is one of the most dangerous drugs of abuse, which may exert various neurotoxic actions on the brain (such as gray matter loss, neuronal apoptosis, mitochondrial dysfunction, synaptic defects, depression of adult neurogenensis, as well as development of spongiform leucoencephalopathy). Some of these toxic effects are probably mediated by the gas nitric oxide (NO). We studied by morphometric analysis the numerical density of neurons expressing neuronal nitric oxide synthase (nNOS) in cortical and hypothalamic areas of eight heroin overdose victims and nine matched controls. Heroin addicts showed significantly increased numerical densities of nNOS immunoreactive cells in the right temporal cortex and the left paraventricular nucleus. Remarkably, in heroin abusers, but not in controls, we observed not only immunostained interneurons, but also cortical pyramidal cells. Given that increased cellular expression of nNOS was accompanied by elevated NO generation in brains of heroin addicts, these elevated levels of NO might have contributed to some of the known toxic effects of heroin (for example, reduced adult neurogenesis, mitochondrial pathology or disturbances in synaptic functioning).

  3. Verapamil prevents, in a dose-dependent way, the loss of ChAT-immunoreactive neurons in the cerebral cortex following lesions of the rat nucleus basalis magnocellularis.

    PubMed

    Popović, Miroljub; Caballero-Bleda, Maria; Popović, Natalija; Puelles, Luis; van Groen, Thomas; Witter, Menno P

    2006-04-01

    In the present study we analysed the neuroprotective effect of the L-type voltage-dependent calcium channel antagonist verapamil on cholineacetyltransferase (ChAT)-immunoreactive neurons in the cerebral cortex of rats with bilateral electrolytic lesions of the nucleus basalis magnocellularis (NBM). Treatment with verapamil (1.0, 2.5, 5.0 and 10.0 mg/kg/12 h i.p.) started 24 h after NBM lesions and lasted 8 days. Animals were sacrificed on day 21 after NBM-lesions. The bilateral NBM-lesions produced significant loss of ChAT-immunoreactive neurons in frontal, parietal and temporal cortex. Although the number of ChAT-positive neurons was significantly higher in NBM-lesioned animals treated with verapamil at a dose of 2.5, 5.0 and 10.0 mg/kg than in saline treated ones, the most significant effect was obtained at a dose of 5 mg/kg. This is, to our knowledge, the first report showing an inverted U-shape mode of neuroprotective action of the calcium antagonist verapamil, at morphological level in this particular model of brain damage. The demonstrated beneficial effect of verapamil treatment suggests that the regulation of calcium homeostasis during the early period after NBM lesions might be a possible treatment to prevent neurodegenerative processes in the rat cerebral cortex.

  4. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  5. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.

    PubMed

    Kohlmeier, Kristi A; Soja, Peter J; Kristensen, Morten P

    2006-06-01

    Neurons situated in the principal sensory trigeminal nucleus (PSTN) convey orofacial sensory inputs to thalamic relay regions and higher brain centres, and the excitability of these ascending tract cells is modulated across sleep/wakefulness states and during pain conditions. Moreover, acetylcholine release changes profoundly across sleep/wakefulness states and ascending sensory neurotransmission is altered by cholinergic agonists. An intriguing possibility is, therefore, that cholinergic mechanisms mediate such state-dependent modulation of PSTN tract neurons. We tested the hypotheses that cholinergic agonists can modulate PSTN cell excitability and that such effects are mediated by muscarinic receptor subtypes, using patch-clamp methods in rat and mouse. In all examined cells, carbachol elicited an electrophysiological response that was independent of action potential generation as it persisted in the presence of tetrodotoxin. Responses were of three types: depolarization, hyperpolarization or a biphasic response consisting of hyperpolarization followed by depolarization. In voltage-clamp mode, carbachol evoked corresponding inward, outward or biphasic currents. Moreover, immunostaining for the vesicle-associated choline transporter showed cholinergic innervation of the PSTN. Using muscarinic receptor antagonists, we found that carbachol-elicited PSTN neuron hyperpolarization was mediated by M2 receptors and depolarization, in large part, by M1 receptors. These data suggest that acetylcholine acting on M1 and M2 receptors may contribute to selective excitability enhancement or depression in individual, rostrally projecting sensory neurons. Such selective gating effects via cholinergic input may play a functional role in modulation of ascending sensory transmission, including across behavioral states typified by distinct cholinergic tone, e.g. sleep/wakefulness arousal levels or neuropathic pain conditions. PMID:16820015

  6. L-type calcium channels and MAP kinase contribute to thyrotropin-releasing hormone-induced depolarization in thalamic paraventricular nucleus neurons

    PubMed Central

    Kolaj, Miloslav; Zhang, Li

    2016-01-01

    In rat paraventricular thalamic nucleus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances neuronal excitability via concurrent decrease in a G protein-coupled inwardly rectifying K (GIRK)-like conductance and opening of a cannabinoid receptor-sensitive transient receptor potential canonical (TRPC)-like conductance. Here, we investigated the calcium (Ca2+) contribution to the components of this TRH-induced response. TRH-induced membrane depolarization was reduced in the presence of intracellular BAPTA, also in media containing nominally zero [Ca2+]o, suggesting a critical role for both intracellular Ca2+ release and Ca2+ influx. TRH-induced inward current was unchanged by T-type Ca2+ channel blockade, but was decreased by blockade of high-voltage-activated Ca2+ channels (HVACCs). Both the pharmacologically isolated GIRK-like and the TRPC-like components of the TRH-induced response were decreased by nifedipine and increased by BayK8644, implying Ca2+ influx via L-type Ca2+ channels. Only the TRPC-like conductance was reduced by either thapsigargin or dantrolene, suggesting a role for ryanodine receptors and Ca2+-induced Ca2+ release in this component of the TRH-induced response. In pituitary and other cell lines, TRH stimulates MAPK. In PVT neurons, only the GIRK-like component of the TRH-induced current was selectively decreased in the presence of PD98059, a MAPK inhibitor. Collectively, the data imply that TRH-induced depolarization and inward current in PVT neurons involve both a dependency on extracellular Ca2+ influx via opening of L-type Ca2+ channels, a sensitivity of a TRPC-like component to intracellular Ca2+ release via ryanodine channels, and a modulation by MAPK of a GIRK-like conductance component. PMID:27009047

  7. Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat.

    PubMed

    Ciriello, J; Moreau, J M

    2013-01-15

    Leptin microinjections into the nucleus of the solitary tract (NTS) have been shown to elicit sympathoexcitatory responses, and potentiate the cardiovascular responses to activation of the chemoreflex. In this study, experiments were done in Sprague-Dawley rats initially to provide a detailed mapping within the NTS complex of cells containing immunoreactivity to the long form of the leptin receptor (Ob-Rb). In a second series, this NTS region containing Ob-Rb immunoreactive cells was explored for single units antidromically activated by stimulation of pressor sites in the rostral ventrolateral medulla (RVLM). These antidromically identified neurons were then tested for their response to intra-carotid injections of leptin (50-100 ng/0.1 ml), and to activation of peripheral chemoreceptors following an injection of potassium cyanide (KCN) (80 μg/0.1 ml) into the carotid artery. Cells containing Ob-Rb-like immunoreactivity were found predominantly in the caudal NTS: within the medial, commissural and gelatinous (sub-postremal area) subnuclei of the NTS complex. Of 73 single units tested in these NTS regions, 48 were antidromically activated by stimulation of RVLM pressor sites and 25 of these single units responded with an increase in discharge rate after intra-carotid injections of leptin. In addition, 17 of these leptin responsive neurons were excited by the intra-carotid injections of KCN (80 μg/0.1 ml). Furthermore, the excitatory response of these single units to KCN was potentiated (59-83%) immediately following the leptin injection. These data indicate that leptin responsive neurons in NTS mediate chemoreceptor afferent information to pressor sites in the RVLM, and suggest that leptin may act as a facilitator on neuronal circuits within the NTS that potentiates the sympathoexcitatory responses elicited during the reflex activation of arterial chemoreceptors.

  8. Neuronal nitric oxide synthase expression is lower in areas of the nucleus tractus solitarius excited by skeletal muscle reflexes in hypertensive rats

    PubMed Central

    Mizuno, Masaki; Downey, Ryan M.; Squiers, John J.; Squiers, Kathryn E.; Smith, Scott A.

    2013-01-01

    The functions of the skeletal muscle exercise pressor reflex (EPR) and its mechanically sensitive component are augmented in hypertension producing exaggerated increases in blood pressure during exercise. Afferent information from the EPR is processed in the nucleus tractus solitarius (NTS). Within the NT, nitric oxide (NO), produced via l-arginine oxidation by neuronal nitric oxide synthase (nNOS), buffers the pressor response to EPR activation. Therefore, EPR overactivity may manifest as a decrease in NO production due to reductions in nNOS. We hypothesized that nNOS protein expression is lower in the NTS of spontaneously hypertensive (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. Further, we examined whether nNOS is expressed with FOS, a marker of neuronal excitation induced by EPR activation. The EPR and mechanoreflex were intermittently activated for 1 h via hindlimb static contraction or stretch, respectively. These maneuvers produced significantly greater pressor responses in SHR during the first 25 min of stimulation. Within the NTS, nNOS expression was lower from −14.9 to −13.4 bregma in SHR compared with WKY. For example, at −14.5 bregma the number of NTS nNOS-positive cells in SHR (13 ± 1) was significantly less than WKY (23 ± 2). However, the number of FOS-positive cells after muscle contraction in this area was not different (WKY = 82 ± 18; SHR = 75 ± 8). In both groups, FOS-expressing neurons were located within the same areas of the NTS as neurons containing nNOS. These findings demonstrate that nNOS protein expression is lower within NTS areas excited by skeletal muscle reflexes in hypertensive rats. PMID:23564306

  9. Genetic Labeling of Steroidogenic Factor-1 (SF-1) Neurons in Mice Reveals Ventromedial Nucleus of the Hypothalamus (VMH) Circuitry Beginning at Neurogenesis and Development of a Separate Non-SF-1 Neuronal Cluster in the Ventrolateral VMH

    PubMed Central

    Cheung, Clement C.; Kurrasch, Deborah M.; Liang, Jenna K.; Ingraham, Holly A.

    2015-01-01

    The ventromedial nucleus of the hypothalamus (VMH) influences a wide variety of physiological responses. Here, using two distinct but complementary genetic tracing approaches in mice, we describe the development of VMH efferent projections, as marked by steroidogenic factor-1 (SF-1; NR5A1). SF-1 neurons were visualized by Tau-green fluorescent protein (GFP) expressed from the endogenous Sf-1 locus (Sf-1TauGFP) or by crossing the transgenic Sf1:Cre driver to a GFP reporter strain (Z/EGSf1:Cre). Strikingly, VMH projections were visible early, at embryonic (E) 10.5, when few postmitotic SF1 neurons have been born, suggesting that formation of VMH circuitry begins at the onset of neurogenesis. At E14.5, comparison of these two reporter lines revealed that SF1-positive neurons in the ventrolateral VMH (VMHvl) persist in Z/EGSf1:Cre embryos but are virtually absent in Sf-1TauGFP. Therefore, although the entire VMH including the VMHvl shares a common lineage, the VMHvl further differentiates into a neuronal cluster devoid of SF-1. At birth, extensive VMH projections to broad regions of the brain were observed in both mouse reporter lines, matching well with those previously discovered by injection of axonal anterograde tracers in adult rats. In summary, our genetic tracing studies show that VMH efferent projections are highly conserved in rodents and are established far earlier than previously appreciated. Moreover, our results imply that neurons in the VMHvl adopt a distinct fate early in development, which might underlie the unique physiological functions associated with this VMH subregion. PMID:22987798

  10. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    PubMed

    Steidl, Stephan; Wang, Huiling; Wise, Roy A

    2014-01-01

    Cholinergic input to the ventral tegmental area (VTA) is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg) provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII), the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65)% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  11. Transformation by E1A Oncoprotein Involves Ubiquitin-Mediated Proteolysis of the Neuronal and Tumor Repressor REST in the Nucleus

    PubMed Central

    Guan, Hancheng

    2012-01-01

    The adenovirus early region 1A (E1A) protein promotes cell immortalization and transformation by mediating the activities of key cellular regulators. The repressor element 1-silencing transcription factor (REST), which is a major neuronal and tumor suppressor, was previously found mainly in the cytoplasm rather than in the nuclei of adenovirus-transformed rodent cells (22). We now demonstrate that the loss of REST in the nucleus is due to its rapid degradation by the ubiquitin-proteasome system. Only nuclear REST, but not its cytoplasmic counterpart, was ubiquitinated and degraded. REST degradation was blocked by the ubiquitination inhibitor PYR-41 and the proteasome inhibitor MG-132 but not by the nuclear export inhibitor leptomycin B. REST degradation required both of its two C-terminal degrons that are recognized by the ubiquitin ligase SCFβ-TrCP, since deletion or mutation of either degron eliminated degradation. Importantly, E1A was shown to mediate REST ubiquitination and degradation by upregulating β-TrCP. Knockdown of E1A in virus-transformed cells reduced both β-TrCP and ubiquitination of nuclear REST. In contrast, when expressed in HeLa cells, E1A enhanced the degradation of nuclear REST. Reconstitution of REST in virus-transformed cells negatively affected E1A-mediated cell proliferation and anchorage-independent growth. These data strongly indicate that E1A stimulates ubiquitination and proteolysis of REST in the nucleus, thereby abolishing the tumor suppressor functions of REST. PMID:22419809

  12. Correlation between the cumulative analgesic effect of electroacupuncture intervention and synaptic plasticity of hypothalamic paraventricular nucleus neurons in rats with sciatica☆

    PubMed Central

    Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling

    2013-01-01

    In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanli (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanli and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus. PMID:25206591

  13. Corticotropin-releasing factor-overexpressing mice exhibit reduced neuronal activation in the arcuate nucleus and food intake in response to fasting.

    PubMed

    Stengel, Andreas; Goebel, Miriam; Million, Mulugeta; Stenzel-Poore, Mary P; Kobelt, Peter; Mönnikes, Hubert; Taché, Yvette; Wang, Lixin

    2009-01-01

    Corticotropin-releasing factor (CRF) overexpressing (OE) mice are a genetic model that exhibits features of chronic stress. We investigated whether the adaptive feeding response to a hypocaloric challenge induced by food deprivation is impaired under conditions of chronic CRF overproduction. Food intake response to a 16-h overnight fast and ip injection of gut hormones regulating food intake were compared in CRF-OE and wild type (WT) littermate mice along with brain Fos expression, circulating ghrelin levels, and gastric emptying of a nonnutrient meal. CRF-OE mice injected ip with saline showed a 47 and 44% reduction of 30-min and 4-h cumulative food intake response to an overnight fast, respectively, compared with WT. However, the 30-min food intake decrease induced by ip cholecystokinin (3 microg/kg) and increase by ghrelin (300 microg/kg) were similar in CRF-OE and WT mice. Overnight fasting increased the plasma total ghrelin to similar levels in CRF-OE and WT mice, although CRF-OE mice had a 2-fold reduction of nonfasting ghrelin levels. The number of Fos-immunoreactive cells induced by fasting in the arcuate nucleus was reduced by 5.9-fold in CRF-OE compared with WT mice whereas no significant changes were observed in other hypothalamic nuclei. In contrast, fasted CRF-OE mice displayed a 5.6-fold increase in Fos-immunoreactive cell number in the dorsal motor nucleus of the vagus nerve and a 34% increase in 20-min gastric emptying. These findings indicate that sustained overproduction of hypothalamic CRF in mice interferes with fasting-induced activation of arcuate nucleus neurons and the related hyperphagic response.

  14. Altered taste preference and loss of limbic-projecting serotonergic neurons in the dorsal raphe nucleus of chronically epileptic rats.

    PubMed

    Maia, Gisela H; Soares, Joana I; Andrade, Pedro A; Leite, Juliana F; Luz, Liliana L; Andrade, José P; Lukoyanov, Nikolai V

    2016-01-15

    Mood disorders and major depression are frequently comorbid with epilepsy. While the nature of this comorbidity is not fully understood, multiple lines of evidence suggest that changes in serotonin (5-HT) neurotransmission may be an underlying mechanism. In this study, we tested the hypothesis that chronic epilepsy in rats can be associated with loss of 5-HT neurons in the dorsal raphe (DR) nuclear complex, the main source of 5-HT projections to the cerebral cortex, which would help to explain respective behavioral deficits. Epilepsy was induced using the kainate model of status epilepticus in adult Wistar rats. After a 3-month recovery period, all kainate-treated rats that had experienced status epilepticus showed spontaneous seizures and reduced sucrose preference (anhedonia), a core symptom of depression. No changes in the forced swim test were detected. The total numbers of 5-HT immunoreactive cells were estimated in all DR subdivisions of control and epileptic rats. Interestingly, epilepsy-related loss of 5-HT neurons (approximately 35%) was observed only in the interfascicular part of the DR complex, which is known to innervate brain regions involved in depression. These findings support the notion that mental health impairments observed in epilepsy may be related to loss of a specific population of the DR 5-HT neurons projecting to limbic brain areas.

  15. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    PubMed Central

    Park, Chul-Kyu

    2015-01-01

    In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region. PMID:26617436

  16. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density.

    PubMed

    Gross, Kellie S; Brandner, Dieter D; Martinez, Luis A; Olive, M Foster; Meisel, Robert L; Mermelstein, Paul G

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  17. Nucleus accumbens dopamine D2-receptor expressing neurons control behavioral flexibility in a place discrimination task in the IntelliCage.

    PubMed

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-07-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated group-housing experimental cage apparatus, in combination with a reversible neurotransmission blocking technique to examine the role of NAc D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task. We demonstrated that NAc D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. These results suggest that D2L receptors and NAc D2-MSNs act to suppress the influence of previously correct behavioral strategies allowing transfer of behavioral control to new strategies. PMID:27317196

  18. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density

    PubMed Central

    Gross, Kellie S.; Brandner, Dieter D.; Martinez, Luis A.; Olive, M. Foster; Meisel, Robert L.

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  19. Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus

    PubMed Central

    Yousefpour, Mitra; Naderi, Nima; Motamedi, Fereshteh

    2016-01-01

    Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. Materials and methods: In this study, whole cell patch clamp recording of neurons in rat brain slice was used to investigate the effect of acute morphine and cannabinoid administration on spontaneous inhibitory and excitatory spostsynaptic currents (sIPSCs and sEPSCs) in MCNs. Results: Bath application of morphine produced an increase in sEPSCs frequency and a decrease in sIPSCs frequency. In contrast, bath application of URB597 (fatty acid amide hydrolase (FAAH) inhibitor) produced a decrease in sEPSCs frequency but an increase in sIPSCs frequency. WIN55212-2 (cannabinoid receptor agonist) decreased both sIPSCs and sEPSCs frequencies of MCNs. Co-application of morphine and URB597 attenuated the effect of morphine on MCNs. Conclusion: Taken together, these data indicated that at the cellular level, pharmacological augmentation of endocannabinoids could attenuate morphine effects on MCNs. PMID:27482350

  20. Nitrous oxide-induced NO-dependent neuronal release of β-endorphin from the rat arcuate nucleus and periaqueductal gray.

    PubMed

    Ohgami, Yusuke; Chung, Eunhee; Quock, Raymond M

    2010-12-17

    Nitrous oxide (N(2)O)-induced antinociception is thought to result from nitric oxide (NO)-dependent neuronal release of endogenous opioid peptides in the central nervous system. The present study employed microdialysis to determine whether exposure to N(2)O stimulates proopiomelanocortin (POMC) neurons to release β-endorphin in the arcuate nucleus (ARC) of the hypothalamus and the periaqueductal gray (PAG) of the midbrain. Male Sprague-Dawley rats were stereotaxically implanted with microdialysis probes in the ARC or PAG. Exposure to 70% N(2)O significantly increased dialysate levels of oxidation products of NO as well as β-endorphin, compared to levels in fractions collected under room air. These increases in the ARC and PAG were abolished by systemic pretreatment with L-N(G)-nitro arginine methyl ester (L-NAME). These findings suggest an association between increased NO activity and the stimulated release of β-endorphin during exposure of rats to N(2)O. PMID:20937263

  1. c-FOS-like immunoreactivity in rat brainstem neurons following noxious chemical stimulation of the nasal mucosa.

    PubMed

    Anton, F; Herdegen, T; Peppel, P; Leah, J D

    1991-01-01

    It has previously been shown that noxious and non-noxious peripheral stimuli induce c-fos expression in spinal dorsal horn neurons. In the present study we have examined the expression of c-fos in brainstem neurons following noxious chemical stimulation of the respiratory region of the nasal mucosa. In urethane-anaesthetized rats we injected mustard oil or applied CO2 pulses to the right nasal cavity. In control animals we applied paraffin oil or a continuous flow of air. A further group of control animals was anaesthetized and not subjected to any experimental treatment. Two hours after the first stimulus the rats were perfused with 4% phosphate-buffered paraformaldehyde. Brainstem sections were incubated with primary antiserum against the FOS protein and processed according to the ABC method. Only the mustard oil-treated rats had obvious signs of rhinitis and displayed FOS-positive cells in laminae I and II of the subnucleus caudalis and in the subnucleus interpolaris of the trigeminal brainstem nuclear complex as well as in the medullary lateral reticular nucleus. These areas are known to be involved in the processing of nociceptive information. Although CO2 pulses applied to the nasal mucosa are known to evoke pain sensations in man we did not observe any FOS-positive neurons in trigeminal and reticular brainstem areas of CO2-treated rats. This lack of c-fos expression probably results from the fact that unlike mustard oil, CO2 did not induce any apparent inflammatory reactions. In all animals c-fos expression was found in the nucleus of the solitary tract and in the area postrema. Staining in these areas might partly result from factors related to anaesthesia, changed respiration parameters and stress. Since the mustard oil-treated rats displayed the highest levels of immunoreactivity in the nucleus of the solitary tract and in the area postrema, additional effects specifically related to nociceptive input are very likely.

  2. Nucleus-nucleus potentials

    SciTech Connect

    Satchler, G.R.

    1983-01-01

    The significance of a nucleus-nucleus potential is discussed. Information about such potentials obtained from scattering experiments is reviewed, including recent examples of so-called rainbow scattering that probe the potential at smaller distances. The evidence for interactions involving the nuclear spins is summarized, and their possible origin in couplings to non-elastic channels. Various models of the potentials are discussed.

  3. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    PubMed

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  4. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    PubMed

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia. PMID:27147616

  5. Modulation of glutamatergic transmission by metabotropic glutamate receptor activation in second-order neurons of the guinea pig nucleus tractus solitarius.

    PubMed

    Ohi, Yoshiaki; Kimura, Satoko; Haji, Akira

    2014-09-18

    Activity of second-order relay neurons in the nucleus tractus solitarius (NTS) is regulated by peripheral and intrinsic synaptic inputs, and modulation of those inputs by metabotropic glutamate receptors (mGluRs) has been proposed. This study investigated effects of mGluR activation on glutamatergic transmission in the NTS second-order neurons of guinea pigs. Whole-cell patch-clamp recordings from the brainstem slices revealed that activation of mGluRs exerted its effects on the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) but not on the amplitude. The sEPSC frequency was increased by an agonist of group I mGluRs, and it was decreased by an mGluR1 antagonist but not by an mGluR5 antagonist. The agonists of group II and III mGluRs decreased the sEPSC frequency, while their antagonists alone had no effect. Perfusion of cystine or TBOA, either of which elevates extracellular glutamate concentration, resulted in an increase in the sEPSC frequency, leaving the amplitude unchanged. The increased frequency of sEPSCs was returned to control by an mGluR1 antagonist. The tractus solitarius-evoked EPSCs were not altered by an agonist of group I mGluRs, whereas they were decreased along with an increase in paired-pulse ratio by agonists of group II and III mGluRs. These results suggest that mGluRs are present at the presynaptic sites in the NTS second-order neurons in guinea pigs. The mGluR1s function to facilitate the release of glutamate from axon terminals of intrinsic interneurons and the group II and III mGluRs play an inhibitory role in glutamatergic transmission.

  6. Chronic passive cigarette smoke exposure augments bronchopulmonary C-fibre inputs to nucleus tractus solitarii neurones and reflex output in young guinea-pigs

    PubMed Central

    Mutoh, T; Joad, J P; Bonham, A C

    2000-01-01

    Children chronically exposed to environmental tobacco smoke (passive cigarette smoke) have more wheeze, cough, bronchoconstriction, airway hyper-reactivity and mucous secretion, which may result, in part, from stimulation of the vagal bronchopulmonary C-fibre reflex. Environmental tobacco smoke increases the sensitivity of bronchopulmonary C-fibre endings, but the physiological relevance of this sensitization is unknown. If this exposure augments the reflex responses via a central mechanism, then the responses of higher-order neurones in the reflex pathway and some components of the reflex output should also be augmented. Guinea-pigs were chronically exposed to sidestream tobacco smoke (surrogate for environmental tobacco smoke) or filtered air for 5 days week−1 from age 1 to 6 weeks (age equivalent of human childhood) and were then anaesthetized, paralysed, ventilated and prepared with pneumothoraces. Baseline and left atrial capsaicin (0.5 and 2.0 μg kg−1)- evoked changes in the impulse activity of vagal C-fibre-activated neurones in nucleus tractus solitarii (NTS), phrenic nerve activity, tracheal pressure, arterial blood pressure and heart rate were compared in the two groups. Sidestream smoke exposure significantly augmented the peak (P = 0.02) and duration (P = 0.01) of the NTS neuronal responses and the prolongation of expiratory time (P = 0.003) at the higher capsaicin dose. Thus, the sensitization of the bronchopulmonary C-fibre endings by chronic exposure to sidestream tobacco smoke is transmitted to the NTS and is associated with a prolonged reflexively evoked expiratory apnoea. The findings may help to explain some related respiratory symptoms in children and be a factor in sudden infant death syndrome. PMID:10673557

  7. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    PubMed

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia.

  8. Topography of subnuclei of the hypothalamic paraventricular nucleus in rats and sensitivity of their neurons to insulin defficiency

    SciTech Connect

    Goufman, E.I.

    1985-07-01

    This investigation was undertaken to study the reaction of paraventricular nuclei (PVN) subnuclei to insulin deficiency and to elevation of the blood glucose level under conditions of experimental alloxan diabetes. Experiments were carried out on 15 control and 15 experimental mature male Wistar rats. The state of the carbohydrate metabolism of the diabetic and control animals was judged by the blood glucose and radioimmune insulin levels. The results of these investigations show that both magnocellular and parvocellular neurons of PVN react to alloxan diabetes, which supports the hypothesis that PVN of the hypothalamus participates in the control of carbohydrate metabolism.

  9. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.

    PubMed

    Monti, Jaime M

    2010-10-01

    Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches it is currently accepted that serotonin (5-HT) functions to promote waking (W) and to inhibit rapid-eye movement sleep (REMS). The serotonin-containing neurons of the dorsal raphe nucleus (DRN) provide part of the serotonergic innervation of the telencephalon, diencephalon, mesencephalon and rhombencephalon of laboratory animals and man. The DRN has been subdivided into several clusters on the basis of differences in cellular morphology, expression of other neurotransmitters and afferent and efferent connections. These differences among subpopulations of 5-HT neurons may have important implications for neural mechanisms underlying 5-HT modulation of sleep and waking. The DRN contains 5-HT and non-5-HT neurons. The latter express a variety of substances including dopamine, γ-aminobutyric acid (GABA) and glutamate. In addition, nitric oxide and a number of neuropeptides have been characterized in the DRN. Available evidence tends to indicate that non-5-HT cells contribute to the regulation of the activity of 5-HT neurons during the sleep-wake cycle through local circuits and/or their mediation of the effects of afferent inputs. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type couterparts. 5-HT(2A) and 5-HT(2C) receptor knockout mice show a significant increase of W and a reduction of slow wave sleep that is related, at least in part, to the increased release of norepinephrine and dopamine. A normal circadian sleep pattern is observed in 5-HT(7) receptor knockout mice; however, the mutants spend less time in REMS. Local microinjection of 5-HT(1B), 5-HT(2A/2C), 5-HT(3) and 5-HT(7) receptor agonists into the DRN selectively suppresses REMS in the rat. In contrast, microinjection of 5-HT(1A) receptor agonists promotes REMS. Similarly, local administration of the melanin-concentrating hormone or the GABA(A) receptor

  10. [The neurocytes of the caudal part of the tuberomamillary nucleus in Ovis aries L. (light microscopy and electron microscopy studies)].

    PubMed

    Horáková, A; Horák, J; Tomajková, E

    1985-01-01

    The neurons of the pars caudalis nuclei tuberomammillaris (pc-NTM) were studed light-microscopically and electron-microscopically in sheep and rams of Merino breed. In our study we observed: In the regarded neural nucleus, there is the majority of the great neurons (up to 60 microns in diameter) rich in the NISSL's bodies. When stained with the cresyl violet, the NISSL's substance is apparently stored mainly in peripheral area of the cell body and in the distant parts of numerous protoplasmic processes, what evokes an impression of the "jagged" surface of these cells. After staining with paraldehyde fuchsin, we found purple coloured lumps of irregular shape stored outside the cell bodies, in the neuropil. The less extended cells, usually with lower content of NISSL bodies, are in pc-NTM less frequent. In the electron-microscopic study we identified 3 types of neurons: Cells rich in rough endoplasmic reticulum; "light" cells, "dark" cells. The cells of the 1st type were the most frequent ones. Cisterns of rough endoplasmic reticulum in the 1st type of cells are often dilated. The protoplasmic processes of these cells are frequently stepped over by flat tubuli of endoplasmic reticulum. The 2nd type of cells is characterized by the light cytoplasmic matrix, low quantity of endoplasmic reticulum and frequent occurrence of lipofuscin bodies. The 3rd type of cells are characterized by the high density of cytoplasmic matrix, well developed GOLGI complex, and very broad cisterns of endoplasmic reticulum, forming a labyrinth, and it is bound to a broad perinuclear space. PMID:4065505

  11. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction

    PubMed Central

    Li, Ai-Jun; Dinh, Thu T.; Jansen, Heiko T.; Ritter, Sue

    2013-01-01

    Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues. PMID:23986359

  12. Mode-Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons to Periodic Stimuli

    PubMed Central

    Laudanski, Jonathan; Coombes, Stephen; Palmer, Alan R.

    2010-01-01

    We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN. PMID:20042702

  13. Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction.

    PubMed

    Godsil, B P; Bontempi, B; Mailliet, F; Delagrange, P; Spedding, M; Jay, T M

    2015-11-01

    Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms. PMID:25560759

  14. Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction.

    PubMed

    Godsil, B P; Bontempi, B; Mailliet, F; Delagrange, P; Spedding, M; Jay, T M

    2015-11-01

    Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms.

  15. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    PubMed

    Barr, Jeffrey L; Deliu, Elena; Brailoiu, G Cristina; Zhao, Pingwei; Yan, Guang; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-08-01

    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway

  16. Drug-primed reinstatement of cocaine seeking in mice: increased excitability of medium-sized spiny neurons in the nucleus accumbens

    PubMed Central

    Ma, Yao-Ying; Henley, Sandy M.; Toll, Jeff; Jentsch, James D.; Evans, Christopher J.; Levine, Michael S.; Cepeda, Carlos

    2013-01-01

    To examine the mechanisms of drug relapse, we first established a model for cocaine IVSA (intravenous self-administration) in mice, and subsequently examined electrophysiological alterations of MSNs (medium-sized spiny neurons) in the NAc (nucleus accumbens) before and after acute application of cocaine in slices. Three groups were included: master mice trained by AL (active lever) pressings followed by IV (intravenous) cocaine delivery, yoked mice that received passive IV cocaine administration initiated by paired master mice, and saline controls. MSNs recorded in the NAc shell in master mice exhibited higher membrane input resistances but lower frequencies and smaller amplitudes of sEPSCs (spontaneous excitatory postsynaptic currents) compared with neurons recorded from saline control mice, whereas cells in the NAc core had higher sEPSCs frequencies and larger amplitudes. Furthermore, sEPSCs in MSNs of the shell compartment displayed longer decay times, suggesting that both pre- and postsynaptic mechanisms were involved. After acute re-exposure to a low-dose of cocaine in vitro, an AP (action potential)-dependent, persistent increase in sEPSC frequency was observed in both NAc shell and core MSNs from master, but not yoked or saline control mice. Furthermore, re-exposure to cocaine induced membrane hyperpolarization, but concomitantly increased excitability of MSNs from master mice, as evidenced by increased membrane input resistance, decreased depolarizing current to generate APs, and a more negative Thr (threshold) for firing. These data demonstrate functional differences in NAc MSNs after chronic contingent versus non-contingent IV cocaine administration in mice, as well as synaptic adaptations of MSNs before and after acute re-exposure to cocaine. Reversing these functional alterations in NAc could represent a rational target for the treatment of some reward-related behaviors, including drug addiction. PMID:24000958

  17. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol.

  18. In utero exposure to diesel exhaust particles induces anxiogenic effects on male offspring via chronic activation of serotonergic neuron in dorsal raphe nucleus.

    PubMed

    Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken

    2016-01-01

    Diesel exhaust consists of diesel exhaust particles (DEPs) and gaseous compounds. Because previous research suggested that in utero exposure to DEPs affected spatial learning and memory in male offspring, while epidemiological evidence suggested disturbances in affect after prenatal exposure to particulates, we hypothesized that DEP exposure during pregnancy might also disturb affect. Here, we explored the effects of in utero exposure to DEPs on anxiety in male ICR mice. DEP solutions were administered subcutaneously to pregnant ICR mice at a dose of 0 or 200 μg/kg body weight on gestation days 6, 9, 12, 15, and 18. We assessed anxiety in 6 week-old male offspring using the hole board test and elevated plus maze test. After the behavioral tests, animals were sacrificed and serotonin (5-HT) levels in the dorsal raphe nucleus (DRN) were measured using HPLC. Mice exposed to DEPs in utero demonstrated increased anxiety in both behavioral tests. HPLC analysis revealed a significant increase in 5-HT levels in the DRN. Double immunolabeling of the DRN using anti-5-HT and anti-FosB (a chronic neuronal activation marker) antibodies indicated chronic activation of the DRN might underlie the increased anxiety after prenatal DEP exposure. PMID:27665768

  19. gamma-Hydroxybutyrate (GHB) induces GABA(B) receptor independent intracellular Ca2+ transients in astrocytes, but has no effect on GHB or GABA(B) receptors of medium spiny neurons in the nucleus accumbens.

    PubMed

    Molnár, T; Antal, K; Nyitrai, G; Emri, Z

    2009-08-18

    We report on cellular actions of the illicit recreational drug gamma-hydroxybutyrate (GHB) in the brain reward area nucleus accumbens. First, we compared the effects of GHB and the GABA(B) receptor agonist baclofen. Neither of them affected the membrane currents of medium spiny neurons in rat nucleus accumbens slices. GABAergic and glutamatergic synaptic potentials of medium spiny neurons, however, were reduced by baclofen but not GHB. These results indicate the lack of GHB as well as postsynaptic GABA(B) receptors, and the presence of GHB insensitive presynaptic GABA(B) receptors in medium spiny neurons. In astrocytes GHB induced intracellular Ca(2+) transients, preserved in slices from GABA(B) receptor type 1 subunit knockout mice. The effects of tetrodotoxin, zero added Ca(2+) with/without intracellular Ca(2+) store depletor cyclopiazonic acid or vacuolar H-ATPase inhibitor bafilomycin A1 indicate that GHB-evoked Ca(2+) transients depend on external Ca(2+) and intracellular Ca(2+) stores, but not on vesicular transmitter release. GHB-induced astrocytic Ca(2+) transients were not affected by the GHB receptor-specific antagonist NCS-382, suggesting the presence of a novel NCS-382-insensitive target for GHB in astrocytes. The activation of astrocytes by GHB implies their involvement in physiological actions of GHB. Our findings disclose a novel profile of GHB action in the nucleus accumbens. Here, unlike in other brain areas, GHB does not act on GABA(B) receptors, but activates an NCS-382 insensitive GHB-specific target in a subpopulation of astrocytes. The lack of either post- or presynaptic effects on medium spiny neurons in the nucleus accumbens distinguishes GHB from many drugs and natural rewards with addictive properties and might explain why GHB has only a weak reinforcing capacity.

  20. Prior cold water swim stress alters immobility in the forced swim test and associated activation of serotonergic neurons in the rat dorsal raphe nucleus.

    PubMed

    Drugan, R C; Hibl, P T; Kelly, K J; Dady, K F; Hale, M W; Lowry, C A

    2013-12-01

    Prior adverse experience alters behavioral responses to subsequent stressors. For example, exposure to a brief swim increases immobility in a subsequent swim test 24h later. In order to determine if qualitative differences (e.g. 19°C versus 25°C) in an initial stressor (15-min swim) impact behavioral, physiological, and associated neural responses in a 5-min, 25°C swim test 24h later, rats were surgically implanted with biotelemetry devices 1 week prior to experimentation then randomly assigned to one of six conditions (Day 1 (15 min)/Day 2 (5 min)): (1) home cage (HC)/HC, (2) HC/25°C swim, (3) 19°C swim/HC, (4) 19°C swim/25°C swim, (5) 25°C swim/HC, (6) 25°C swim/25°C swim. Core body temperature (Tb) was measured on Days 1 and 2 using biotelemetry; behavior was measured on Day 2. Rats were transcardially perfused with fixative 2h following the onset of the swim on Day 2 for analysis of c-Fos expression in midbrain serotonergic neurons. Cold water (19°C) swim on Day 1 reduced Tb, compared to both 25°C swim and HC groups on Day 1, and, relative to rats exposed to HC conditions on Day 1, reduced the hypothermic response to the 25°C swim on Day 2. The 19°C swim on Day 1, relative to HC exposure on Day 1, increased immobility during the 5-min swim on Day 2. Also, 19°C swim, relative to HC conditions, on Day 1 reduced swim (25°C)-induced increases in c-Fos expression in serotonergic neurons within the dorsal and interfascicular parts of the dorsal raphe nucleus. These results suggest that exposure to a 5-min 19°C cold water swim, but not exposure to a 5-min 25°C swim alters physiological, behavioral and serotonergic responses to a subsequent stressor.

  1. Influence of the hippocampus on amino acid utilizing and cholinergic neurons within the nucleus accumbens is promoted by histamine via H1 receptors

    PubMed Central

    Kraus, M M; Prast, H; Philippu, A

    2013-01-01

    Background and Purpose The influence of the neurotransmitter histamine on spontaneous and stimulation-evoked release of glutamate, aspartate, GABA and ACh in the nucleus accumbens (NAc) was investigated in vivo. Experimental Approach Using the push–pull superfusion technique, histaminergic compounds were applied to the NAc and neurotransmitter release was assessed. In some experiments, the fornix/fimbria of the hippocampus was electrically stimulated by a microelectrode and evoked potentials were monitored in the NAc. Key Results Superfusion of the NAc with the H1 receptor antagonist triprolidine (50 μM) decreased spontaneous outflow of glutamate, aspartate and ACh, while release of GABA remained unaffected. Superfusion with histamine elevated release of ACh, without influencing that of the amino acids. Electrical stimulation of the fornix/fimbria enhanced the output of amino acids and ACh within the NAc. The evoked outflow of glutamate and ACh was diminished on superfusion with triprolidine, while release of aspartate and GABA was not affected. Superfusion of the NAc with histamine intensified the stimulation-evoked release of glutamate and Ach. Histamine also elevated the stimulation-induced release of aspartate, without influencing that of GABA. Presuperfusion with triprolidine abolished the reinforced effect of histamine on stimulation-evoked transmitter release within the NAc. Conclusion and Implications Neuronal histamine activates H1 receptors and increases spontaneous release of glutamate, aspartate and ACh within the NAc. Stimulation of the hippocampal fornix/fimbria tract also enhances release of glutamate and ACh within the NAc and this effect is intensified by H1 receptor stimulation within the NAc. The latter effects, which are mediated by hippocampal afferences, might play an important role in mnemonic performance and in emotional processes such as anxiety and stress disorders. Linked Articles This article is part of a themed issue on Histamine

  2. Cocaine Withdrawal Impairs mGluR5-Dependent Long-Term Depression in Nucleus Accumbens Shell Neurons of Both Direct and Indirect Pathways.

    PubMed

    Huang, Chiung-Chun; Liang, Ying-Ching; Lee, Cheng-Che; Hsu, Kuei-Sen

    2015-12-01

    We previously reported that animals withdrawn from repeated cocaine exposure exhibited a selective deficit in the ability to elicit metabotropic glutamate receptor 5 (mGluR5)-dependent long-term depression (LTD) in the nucleus accumbens (NAc) shell. To determine whether such impairment occurs in the NAc in a cell-type-specific manner, we used bacterial artificial chromosome (BAC) transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of gene regulatory elements for the dopamine D1 receptor (Drd1) or dopamine D2 receptor (Drd2) to identify distinct subpopulations of medium spiny neurons (MSNs). We found that bath application of group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) reliably induced LTD in both NAc shell and core MSNs of wild-type, hemizygous Drd1-eGFP, and Drd2-eGFP mice. Confirming our previous results, cocaine withdrawal selectively impaired DHPG-LTD in NAc shell Drd1-expressing direct and Drd2-expressing indirect pathway MSNs. We also found that the expression of DHPG-LTD in NAc MSNs was not affected by the Ca(2+)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 1-naphthyl acetyl spermine. Furthermore, systemic administration of mGluR5-negative allosteric modulator fenobam before the daily injection of cocaine preserved mGluR5 function and significantly reduced the expression of cocaine-induced behavioral sensitization. These results reveal that withdrawal from repeated cocaine exposure may result in the impairment of NAc mGluR5-LTD in a subregion- but not cell-type-specific manner and suggests that pharmacological antagonism of mGluR5 may represent a potential strategy for reducing cocaine-induced addictive behaviors.

  3. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence.

    PubMed

    Leibowitz, S F; Akabayashi, A; Wang, J

    1998-04-01

    Previous studies have suggested that the peptide galanin (GAL) in the hypothalamus is related to the preference of an animal for dietary fat. The present report investigates this relationship further to identify the specific GAL-synthesizing cell groups involved and to characterize their association to circulating glucose or hormones and their possible contribution to body fat deposition. Male albino Sprague Dawley rats were tested in different feeding paradigms with diets containing the macronutrients, fat, carbohydrate, or protein. These studies, using multiple techniques, identify a cell group in the hypothalamus that expresses GAL and that shows a shift in peptide activity in close relation to dietary fat, circulating glucose, and body fat. In all paradigms, a rise in fat intake, from 10 to 30%, is associated with reduced levels of insulin and corticosterone and normal glucose levels, whereas a further increase in fat ingestion (>30%) leads to hyperglycemia along with greater adiposity. In the hypothalamus, GAL gene expression, peptide production, and peptide release rise significantly (by 40%) in association with fat ingestion, showing no relation to either carbohydrate or protein ingestion. This change is highly site specific, evident predominantly in GAL-synthesizing neurons in the anterior parvocellular region of the paraventricular nucleus (aPVN) and in GAL-containing terminals in the external zone of the median eminence (ME). Positive correlations detected between mRNA abundance in the aPVN and GAL peptide in the ME support the existence of an aPVN-ME projection system related to fat intake and fat deposition. When activated by dietary fat, the contribution of this projection to body fat is suggested by consistent positive correlations between aPVN-ME GAL and either dietary fat, circulating glucose, or body fat and by significantly higher GAL levels (+30%) in obesity-prone compared with obesity-resistant rats. This evidence supports a role for this

  4. Effects of short-term acetaminophen and celecoxib treatment on orthodontic tooth movement and neuronal activation in rat.

    PubMed

    Stabile, A C; Stuani, M B S; Leite-Panissi, C R A; Rocha, M J A

    2009-08-14

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been used for pain relief in orthodontics, but clinical studies reported that they may reduce tooth movement (TM). By other side, TM seems to activate brain structures related to nociception, but the effects of NSAIDs in this activation have not been studied yet. We analyzed the effect of short-term treatment with acetaminophen or celecoxib in the separation of rat upper incisors, as well as in neuronal activation of the spinal trigeminal nucleus, following tooth movement. Thirty rats (400-420 g) were pretreated through oral gavage (1 ml/dose) with acetaminophen (200mg/kg), celecoxib (50mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance for TM. In controls, this appliance was immediately removed after its introduction. Rats received ground food, and every 12h, one of the drugs or vehicle. After 48 h, they were anesthetized, maxilla was radiographed, and were perfused with 4% paraformaldehyde. Brains were further processed for Fos immunohistochemistry. TM induced incisor distalization (p<0.05) and neuronal activation of the spinal trigeminal nucleus. Treatment with both drugs did not affect tooth movement, but reduced c-fos expression in the caudalis subnucleus. No changes in c-fos expression were seen in the oralis and interpolaris subnuclei. We conclude that neither celecoxib nor acetaminophen seems to affect tooth movement, when used for 2 days, but both drugs are able to reduce the activation of brain structures related to nociception. Short-term treatment with celecoxib, thus, may be a therapeutic alternative to acetaminophen when the latter is contraindicated.

  5. Neurons of the ventral medulla oblongata that contain both somatostatin and enkephalin immunoreactivities project to nucleus tractus solitarii and spinal cord.

    PubMed

    Millhorn, D E; Seroogy, K; Hökfelt, T; Schmued, L C; Terenius, L; Buchan, A; Brown, J C

    1987-10-20

    The ventral aspect of the medulla oblongata of colchicine-treated rats was examined immunohistochemically using mouse monoclonal antibodies raised against somatostatin (SOM) and rabbit polyclonal antibodies to methionine enkephalin (ENK). Numerous perikarya showed positive immunostaining for both antisera. For the most part, the double-labelled cells were located (1) along the ventrolateral surface in a region that corresponds to nucleus paragigantocellularis, (2) in the region of nucleus gigantocellularis-nucleus raphe magnus and (3) in a discrete area just above the inferior olivary nucleus. In an attempt to determine the projection sites of the SOM/ENK somata, the retrogradely transported fluorescent dye Fluoro-Gold was injected into either the nucleus tractus solitarii (NTS) or the upper part of the thoracic spinal cord. SOM/ENK cells in all 3 regions were labelled by dye administered into the spinal cord whereas only those SOM/ENK cells located in nucleus paragigantocellularis were stained by dye microinjected into NTS. This is the first evidence of a SOM/ENK projection from the ventral medulla to either the spinal cord or NTS. PMID:2446706

  6. Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet.

    PubMed

    Blasiak, T; Lewandowski, M H

    2013-01-01

    The intergeniculate leaflet (IGL) of the lateral geniculate body in the rat is a population of GABAergic neurons that can be divided into two, anatomically and neurochemically distinct populations. One population comprises neuropeptide-Y (NPY)-positive neurons that form the geniculohypothalamic tract innervating the suprachiasmatic nuclei (SCN) and the other population comprises enkephalin-positive (ENK) neurons giving rise to the geniculo-geniculate tract innervating the contralateral IGL (cIGL). Previous electrophysiological studies have observed various patterns of firing and different responses to changes in lighting conditions of IGL neurons in vitro and in vivo. The aim of the present study was to determine if these distinct properties could be ascribed to differentially projecting IGL neurons. Neuron activity was recorded extracellularly in the IGL of anaesthetised rats under different lighting conditions (i.e. light/dark). Antidromic activation was used to identify recorded cells as projecting to the SCN or the contralateral IGL. All IGL neurons identified as projecting to the contralateral IGL displayed infra-slow oscillatory activity (ISO; i.e. slow rhythmic bursts of action potentials). ISO of these neurons was sustained in the light and was diminished in the darkness. In contrast, all IGL neurons identified as projecting to the SCN displayed a low level of firing in the light and a majority of these cells increased firing in the darkness. All IGL neurons projecting to the SCN were characterised by an irregular pattern of firing in the light and dark. These data are the first to demonstrate that differentially projecting rat intergeniculate leaflet neurons are characterised by distinct firing patterns and opposite responses to light and dark conditions.

  7. Interleukin-1 beta inhibits the endogenous expression of the early gene c-fos located within the nucleus of LH-RH neurons and interferes with hypothalamic LH-RH release during proestrus in the rat.

    PubMed

    Rivest, S; Rivier, C

    1993-06-01

    The ability of central interleukin-1 beta (IL-1 beta) administration to modulate the hypothalamic LH-RH release as well as the endogenous expression of the c-fos protein located within the nucleus of LH-RH neurons was examined during the afternoon of proestrus in rats. In a first series of experiments, 50 or 100 ng IL-1 beta were infused into the lateral ventricle of the rat brain at either 08.30, 12.00, 14.30, or 17.00 h of proestrus. The animals were then perfused transcardially with a solution of 4% paraformaldehyde from 17.30 and 18.00 h. In a second series of experiments, the rats were equipped with an intracerebroventricular (i.c.v.) cannula in the lateral ventricle and a push-pull cannula into the median eminence (ME), and LH-RH secretion was measured during the afternoon of proestrus. The third experiment investigated the putative role of corticotropin-releasing factor (CRF) in modulating the inhibitory effect of IL-1 beta on LH secretion by infusing CRF antagonists before the i.c.v. administration of the cytokine to gonadectomized male and female rats. The central infusion of 50 or 100 ng IL-1 beta at 12.00 h completely blocked the spontaneous expression of c-fos protein which normally occurs in the nucleus of LH-RH neurons between 17.30 and 18.00 h on proestrus. In contrast, 50 ng IL-1 beta was less effective (P < 0.05) when administered at 08.30 h, and totally without effect when infused at 14.30 h. Infusion of 50 ng IL-1 beta also markedly suppressed the hypothalamic release of LH-RH in proestrus rats bearing a push-pull cannula into the ME, and significantly decreased plasma LH levels in both gonadectomized male and female rats. Finally, we observed that the central administration of CRF antagonists did not modify the inhibitory effects of the cytokine on the activity of the hypothalamic-pituitary-gonadal (HPG) axis. These results provide the first direct evidence that IL-1 beta is a potent inhibitor of LH-RH neuronal activity during the proestrus LH

  8. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  9. Prenatal nicotine exposure alters the nicotinic receptor subtypes that modulate excitation of parasympathetic cardiac neurons in the nucleus ambiguus from primarily alpha3beta2 and/or alpha6betaX to alpha3beta4.

    PubMed

    Kamendi, Harriet; Stephens, Christopher; Dergacheva, Olga; Wang, Xin; Huang, Zheng-Gui; Bouairi, Evguenia; Gorini, Christopher; McIntosh, J Michael; Mendelowitz, David

    2006-07-01

    Nicotinic receptors play an essential role in central cardiorespiratory function, however, the types of nicotinic receptors responsible for activating cardiac vagal neurons in the nucleus ambiguus that control heart rate are unknown. This study tests whether alpha-conotoxin MII and alpha-conotoxin AuIB sensitive nicotinic receptors are involved in augmentation of glutamatergic neurotransmission and changes in holding current in cardiac vagal neurons, and whether exposure to nicotine in the prenatal period alters these responses. The nicotinic agonist cytisine significantly increased the holding current and amplitude of glutamatergic mEPSCs. In unexposed animals alpha-conotoxin MII (100nM) significantly reduced the increase in mEPSC amplitude and change in holding current evoked by cytisine. However, in animals prenatally exposed to nicotine, alpha-conotoxin MII blunted but did not block the increase in mEPSC amplitude but blocked the increase in holding current evoked by cytisine. In unexposed animals, alpha-conotoxin AuIB (10microM) blocked the cytisine evoked increase in mEPSC amplitude and inhibited but did not abolish the increase in holding current. In contrast, in animals exposed to nicotine, alpha-conotoxin AuIB blunted the increase in mEPSC amplitude, and completely abolished the cytisine evoked increase in holding current. These data demonstrate that the prenatal nicotine exposure alters the nicotinic receptors involved in excitation of cardiac vagal neurons.

  10. Photostimulation of retrotrapezoid nucleus Phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats

    PubMed Central

    Abbott, Stephen B.G.; Stornetta, Ruth L.; Fortuna, Michal G.; Depuy, Seth D.; West, Gavin H.; Harris, Thurl E.; Guyenet, Patrice G.

    2009-01-01

    SUMMARY The retrotrapezoid “nucleus” (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of about 1000 glutamatergic non catecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO2 in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study carried out in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the light-activated cationic channel channelrhodopsin-2 (ChR2, H134R mutation, fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 ± 38 Phox2b-expressing neurons per rat consisting of non-catecholaminergic and C1 adrenergic neurons (3/2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO2-sensitive neurons vigorously, produced a long-lasting (t1/2 = 11 s) increase in phrenic nerve activity and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected non-catecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing non-catecholaminergic neurons of the RTN region function as central respiratory chemoreceptors. PMID:19420248

  11. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron.

    PubMed

    Luthman, Johannes; Hoebeek, Freek E; Maex, Reinoud; Davey, Neil; Adams, Rod; De Zeeuw, Chris I; Steuber, Volker

    2011-12-01

    Neurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.

  12. Inter- and intracellular relationship of substance P-containing neurons with serotonin and GABA in the dorsal raphe nucleus: combination of autoradiographic and immunocytochemical techniques

    SciTech Connect

    Magoul, R.; Onteniente, B.; Oblin, A.; Calas, A.

    1986-06-01

    Double-labeling experiments were performed at the electron mic