Sample records for null mutant cells

  1. Transforming Growth Factor Beta (TGFβ1, TGFβ2 and TGFβ3) Null-Mutant Phenotypes in Embryonic Gonadal Development

    PubMed Central

    Memon, Mushtaq A.; Anway, Matthew D.; Covert, Trevor R.; Uzumcu, Mehmet; Skinner, Michael K.

    2008-01-01

    The role transforming growth factor beta (TGFb) isoforms TGFb1, TGFb2 and TGFb3 have in the regulation of embryonic gonadal development was investigated with the use of null-mutant (i.e. knockout) mice for each of the TGFb isoforms. Late embryonic gonadal development was investigated because homozygote TGFb null-mutant mice generally die around birth, with some embryonic loss as well. In the testis, the TGFb1 null-mutant mice had a decrease in the number of germ cells at birth, postnatal day 0 (P0). In the testis, the TGFb2 null-mutant mice had a decrease in the number of seminiferous cords at embryonic day 15 (E15). In the ovary, the TGFb2 null-mutant mice had an increase in the number of germ cells at P0. TGFb isoforms appear to have a role in gonadal development, but interactions between the isoforms is speculated to compensate in the different TGFb isoform null-mutant mice. PMID:18790002

  2. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    PubMed

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  3. Neurogenin 1 Null Mutant Ears Develop Fewer, Morphologically Normal Hair Cells in Smaller Sensory Epithelia Devoid of Innervation

    PubMed Central

    Ma, Qiufu; Anderson, David J.

    2000-01-01

    The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141

  4. Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Signore, M.; Simeone, A.

    2001-01-01

    We investigated the development of inner ear innervation in Otx1 null mutants, which lack a horizontal canal, between embryonic day 12 (E12) and postnatal day 7 (P7) with DiI and immunostaining for acetylated tubulin. Comparable to control animals, horizontal crista-like fibers were found to cross over the utricle in Otx1 null mice. In mutants these fibers extend toward an area near the endolymphatic duct, not to a horizontal crista. Most Otx1 null mutants had a small patch of sensory hair cells at this position. Measurement of the area of the utricular macula suggested it to be enlarged in Otx1 null mutants. We suggest that parts of the horizontal canal crista remain incorporated in the utricular sensory epithelium in Otx1 null mutants. Other parts of the horizontal crista appear to be variably segregated to form the isolated patch of hair cells identifiable by the unique fiber trajectory as representing the horizontal canal crista. Comparison with lamprey ear innervation reveals similarities in the pattern of innervation with the dorsal macula, a sensory patch of unknown function. SEM data confirm that all foramina are less constricted in Otx1 null mutants. We propose that Otx1 is not directly involved in sensory hair cell formation of the horizontal canal but affects the segregation of the horizontal canal crista from the utricle. It also affects constriction of the two main foramina in the ear, but not their initial formation. Otx1 is thus causally related to horizontal canal morphogenesis as well as morphogenesis of these foramina.

  5. Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.

    PubMed

    Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M

    2007-05-15

    The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.

  6. Differential Radiosensitivity Phenotypes of DNA-PKcs Mutations Affecting NHEJ and HRR Systems following Irradiation with Gamma-Rays or Very Low Fluences of Alpha Particles

    PubMed Central

    Little, John B.; Kato, Takamitsu A.; Shih, Hung-Ying; Xie, Xian-Jin; Wilson Jr., Paul F.; Brogan, John R.; Kurimasa, Akihiro; Chen, David J.; Bedford, Joel S.; Chen, Benjamin P. C.

    2014-01-01

    We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component. PMID:24714417

  7. Yeast Genes Controlling Responses to Topogenic Signals in a Model Transmembrane Protein

    PubMed Central

    Tipper, Donald J.; Harley, Carol A

    2002-01-01

    Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2–3% by a strong charge difference signal. Identified pio mutants increased this to 9–12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca2+ ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins. PMID:11950929

  8. Neural cell adhesion molecule, NCAM, regulates thalamocortical axon pathfinding and the organization of the cortical somatosensory representation in mouse

    PubMed Central

    Enriquez-Barreto, Lilian; Palazzetti, Cecilia; Brennaman, Leann H.; Maness, Patricia F.; Fairén, Alfonso

    2012-01-01

    To study the potential role of neural cell adhesion molecule (NCAM) in the development of thalamocortical (TC) axon topography, wild type, and NCAM null mutant mice were analyzed for NCAM expression, projection, and targeting of TC afferents within the somatosensory area of the neocortex. Here we report that NCAM and its α-2,8-linked polysialic acid (PSA) are expressed in developing TC axons during projection to the neocortex. Pathfinding of TC axons in wild type and null mutant mice was mapped using anterograde DiI labeling. At embryonic day E16.5, null mutant mice displayed misguided TC axons in the dorsal telencephalon, but not in the ventral telencephalon, an intermediate target that initially sorts TC axons toward correct neocortical areas. During the early postnatal period, rostrolateral TC axons within the internal capsule along the ventral telencephalon adopted distorted trajectories in the ventral telencephalon and failed to reach the neocortex in NCAM null mutant animals. NCAM null mutants showed abnormal segregation of layer IV barrels in a restricted portion of the somatosensory cortex. As shown by Nissl and cytochrome oxidase staining, barrels of the anterolateral barrel subfield (ALBSF) and the most distal barrels of the posteromedial barrel subfield (PMBSF) did not segregate properly in null mutant mice. These results indicate a novel role for NCAM in axonal pathfinding and topographic sorting of TC axons, which may be important for the function of specific territories of sensory representation in the somatosensory cortex. PMID:22723769

  9. Mutations associated with base excision repair deficiency and methylation-induced genotoxic stress

    PubMed Central

    Sobol, Robert W.; Watson, David E.; Nakamura, Jun; Yakes, F. Michael; Hou, Esther; Horton, Julie K.; Ladapo, Joseph; Van Houten, Bennett; Swenberg, James A.; Tindall, Kenneth R.; Samson, Leona D.; Wilson, Samuel H.

    2002-01-01

    The long-term effect of exposure to DNA alkylating agents is entwined with the cell's genetic capacity for DNA repair and appropriate DNA damage responses. A unique combination of environmental exposure and deficiency in these responses can lead to genomic instability; this “gene–environment interaction” paradigm is a theme for research on chronic disease etiology. In the present study, we used mouse embryonic fibroblasts with a gene deletion in the base excision repair (BER) enzymes DNA β-polymerase (β-pol) and alkyladenine DNA glycosylase (AAG), along with exposure to methyl methanesulfonate (MMS) to study mutagenesis as a function of a particular gene–environment interaction. The β-pol null cells, defective in BER, exhibit a modest increase in spontaneous mutagenesis compared with wild-type cells. MMS exposure increases mutant frequency in β-pol null cells, but not in isogenic wild-type cells; UV light exposure or N-methyl-N′-nitro-N-nitrosoguanidine exposure increases mutant frequency similarly in both cell lines. The MMS-induced increase in mutant frequency in β-pol null cells appears to be caused by DNA lesions that are AAG substrates, because overexpression of AAG in β-pol null cells eliminates the effect. In contrast, β-pol/AAG double null cells are slightly more mutable than the β-pol null cells after MMS exposure. These results illustrate that BER plays a role in protecting mouse embryonic fibroblast cells against methylation-induced mutations and characterize the effect of a particular combination of BER gene defect and environmental exposure. PMID:11983862

  10. Six post-implantation lethal knockouts of genes for lipophilic MAPK pathway proteins are expressed in preimplantation mouse embryos and trophoblast stem cells.

    PubMed

    Xie, Yufen; Wang, Yingchun; Sun, Tong; Wang, Fangfei; Trostinskaia, Anna; Puscheck, Elizabeth; Rappolee, Daniel A

    2005-05-01

    Mitogen-activated protein kinase (MAPK) signaling pathways play an important role in controlling embryonic proliferation and differentiation. It has been demonstrated that sequential lipophilic signal transduction mediators that participate in the MAPK pathway are null post-implantation lethal. It is not clear why the lethality of these null mutants arises after implantation and not before. One hypothesis is that the gene product of these post-implantation lethal null mutants are not present before implantation in normal embryos and do not have function until after implantation. To test this hypothesis, we selected a set of lipophilic genes mediating MAPK signal transduction pathways whose null mutants result in early peri-implantation or placental lethality. These included FRS2alpha, GAB1, GRB2, SOS1, Raf-B, and Raf1. Products of these selected genes were detected and their locations and functions indicated by indirect immunocytochemistry and Western blotting for proteins and RT-polymerase chain reaction (PCR) for mRNA transcription. We report here that all six signal mediators are detected at the protein level in preimplantation mouse embryo, placental trophoblasts, and in cultured trophoblast stem cells (TSC). Proteins are all detected in E3.5 embryos at a time when the first known mitogenic intercellular communication has been documented. mRNA transcripts of two post-implantation null mutant genes are expressed in mouse preimplantation embryos and unfertilized eggs. These mRNA transcripts were detected as maternal mRNA in unfertilized eggs that could delay the lethality of null mutants. All of the proteins were detected in the cytoplasm or in the cell membrane. This study of spatial and temporal expression revealed that all of these six null mutants post-implantation genes in MAPK pathway are expressed and, where tested, phosphorylated/activated proteins are detected in the blastocyst. Studies on RNA expression using RT-PCR suggest that maternal RNA could play an important role in delaying the presence of the lethal phenotype of null mutations. Copyright (c) 2005 Wiley-Liss, Inc.

  11. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions

    PubMed Central

    Liu, Xiuju; Huang, Henry; Wilkinson, Scott C.; Zhong, Diansheng; Khuri, Fadlo R.; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-01

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells. PMID:26506235

  12. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions.

    PubMed

    Liu, Fakeng; Jin, Rui; Liu, Xiuju; Huang, Henry; Wilkinson, Scott C; Zhong, Diansheng; Khuri, Fadlo R; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-19

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.

  13. Csf2 null mutation alters placental gene expression and trophoblast glycogen cell and giant cell abundance in mice.

    PubMed

    Sferruzzi-Perri, Amanda N; Macpherson, Anne M; Roberts, Claire T; Robertson, Sarah A

    2009-07-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be associated with placental development, including Mid1, Cd24a, Tnfrsf11b, and Wdfy1. Genes controlling trophoblast differentiation (Ascl2, Tcfeb, Itgav, and Socs3) were also differentially expressed. The CSF2 ligand and the CSF2 receptor alpha subunit were predominantly synthesized in the placental junctional zone. Altered placental structure in Csf2 null mice at E15 was characterized by an expanded junctional zone and by increased Cx31(+) glycogen cells and cyclin-dependent kinase inhibitor 1C (CDKN1C(+), P57(Kip2+)) giant cells, accompanied by elevated junctional zone transcription of genes controlling spongiotrophoblast and giant cell differentiation and secretory function (Ascl2, Hand1, Prl3d1, and Prl2c2). Granzyme genes implicated in tissue remodeling and potentially in trophoblast invasion (Gzmc, Gzme, and Gzmf) were downregulated in the junctional zone of Csf2 null mutant placentae. These data demonstrate aberrant placental gene expression in Csf2 null mutant mice that is associated with altered differentiation and/or functional maturation of junctional zone trophoblast lineages, glycogen cells, and giant cells. We conclude that CSF2 is a regulator of trophoblast differentiation and placental development, which potentially influences the functional capacity of the placenta to support optimal fetal growth in pregnancy.

  14. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718.

    PubMed

    Li, Jihong; Sayeed, Sameera; Robertson, Susan; Chen, Jianming; McClane, Bruce A

    2011-12-01

    Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action.

  15. Analysis of the presence of cell proliferation-related molecules in the Tgf-β3 null mutant mouse palate reveals misexpression of EGF and Msx-1.

    PubMed

    del Río, A; Barrio, M C; Murillo, J; Maldonado, E; López-Gordillo, Y; Martínez-Sanz, E; Martínez, M L; Martínez-Álvarez, C

    2011-01-01

    The Tgf-β(3) null mutant mouse palate presents several cellular anomalies that lead to the appearance of cleft palate. One of them concerns the cell proliferation of both the palatal medial edge epithelium and mesenchyme. In this work, our aim was to determine whether there was any variation in the presence/distribution of several cell proliferation-related molecules that could be responsible for the cell proliferation defects observed in these palates. Our results showed no difference in the presence of EGF-R, PDGF-A, TGF-β(2), Bmp-2, and Bmp-4, and differences were minimal for FGF-10 and Shh. However, the expression of EGF and Msx-1 changed substantially. The shift of the EGF protein expression was the one that most correlated with that of cell proliferation. This molecule is regulated by TGF-β(3), and experiments blocking its activity in culture suggest that EGF misexpression in the Tgf-β(3) null mutant mouse palate plays a role in the cell proliferation defect observed. Copyright © 2010 S. Karger AG, Basel.

  16. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

    PubMed

    Lin, Jyun-Liang; Yu, Hui-Chia; Chao, Ju-Lan; Wang, Chung; Cheng, Ming-Yuan

    2012-12-01

    BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Role of Tir and Intimin in the Virulence of Rabbit Enteropathogenic Escherichia coli Serotype O103:H2

    PubMed Central

    Marchès, Olivier; Nougayrède, Jean-Philippe; Boullier, Séverine; Mainil, Jacques; Charlier, Gérard; Raymond, Isabelle; Pohl, Pierre; Boury, Michèle; De Rycke, Jean; Milon, Alain; Oswald, Eric

    2000-01-01

    Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity. PMID:10722617

  18. Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2.

    PubMed

    Marchès, O; Nougayrède, J P; Boullier, S; Mainil, J; Charlier, G; Raymond, I; Pohl, P; Boury, M; De Rycke, J; Milon, A; Oswald, E

    2000-04-01

    Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater for the eae null mutant. In conclusion, we have confirmed the role of intimin in virulence, and we have shown, for the first time, that Tir is also a key factor in vivo for pathogenicity.

  19. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.

    PubMed Central

    Nakajima, O; Takahashi, S; Harigae, H; Furuyama, K; Hayashi, N; Sassa, S; Yamamoto, M

    1999-01-01

    Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells. PMID:10562540

  20. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers

    PubMed Central

    Cho, Lily Ting-yin; Andrews, Robert; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G.; Fisher, Amanda G.; Skarnes, William C.

    2017-01-01

    Abstract Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC ‘knockout-first’ ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the ‘knockout-first’ allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency ‘2i’ media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. PMID:28981838

  1. Glutamate Dehydrogenase Affects Resistance to Cell Wall Antibiotics in Bacillus subtilis

    PubMed Central

    Lee, Yong Heon; Kingston, Anthony W.

    2012-01-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σW regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σW-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σW-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σW regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics. PMID:22178969

  2. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    PubMed

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  3. Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains

    PubMed Central

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción

    2008-01-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835

  4. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    PubMed

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Expression and function of orphan nuclear receptor TLX in adult neural stem cells.

    PubMed

    Shi, Yanhong; Chichung Lie, D; Taupin, Philippe; Nakashima, Kinichi; Ray, Jasodhara; Yu, Ruth T; Gage, Fred H; Evans, Ronald M

    2004-01-01

    The finding of neurogenesis in the adult brain led to the discovery of adult neural stem cells. TLX was initially identified as an orphan nuclear receptor expressed in vertebrate forebrains and is highly expressed in the adult brain. The brains of TLX-null mice have been reported to have no obvious defects during embryogenesis; however, mature mice suffer from retinopathies, severe limbic defects, aggressiveness, reduced copulation and progressively violent behaviour. Here we show that TLX maintains adult neural stem cells in an undifferentiated, proliferative state. We show that TLX-expressing cells isolated by fluorescence-activated cell sorting (FACS) from adult brains can proliferate, self-renew and differentiate into all neural cell types in vitro. By contrast, TLX-null cells isolated from adult mutant brains fail to proliferate. Reintroducing TLX into FACS-sorted TLX-null cells rescues their ability to proliferate and to self-renew. In vivo, TLX mutant mice show a loss of cell proliferation and reduced labelling of nestin in neurogenic areas in the adult brain. TLX can silence glia-specific expression of the astrocyte marker GFAP in neural stem cells, suggesting that transcriptional repression may be crucial in maintaining the undifferentiated state of these cells.

  6. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli.

    PubMed

    Yamanaka, K; Ogura, T; Niki, H; Hiraga, S

    1996-02-25

    We have previously reported that the MukB protein is essential for chromosome partitioning in Escherichia coli and that mukB mutants produce anucleate cells and are temperature-sensitive for colony formation. The mukB gene maps at 21 min on the E. coli chromosome and smtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report that mukF and mukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in the mukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for the mukF, mukE, and mukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

  7. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  8. Dictyostelium LvsB has a regulatory role in endosomal vesicle fusion

    PubMed Central

    Falkenstein, Kristin; De Lozanne, Arturo

    2014-01-01

    ABSTRACT Defects in human lysosomal-trafficking regulator (Lyst) are associated with the lysosomal disorder Chediak–Higashi syndrome. The absence of Lyst results in the formation of enlarged lysosome-related compartments, but the mechanism for how these compartments arise is not well established. Two opposing models have been proposed to explain Lyst function. The fission model describes Lyst as a positive regulator of fission from lysosomal compartments, whereas the fusion model identifies Lyst as a negative regulator of fusion between lysosomal vesicles. Here, we used assays that can distinguish between defects in vesicle fusion versus fission. We compared the phenotype of Dictyostelium discoideum cells defective in LvsB, the ortholog of Lyst, with that of two known fission defect mutants (μ3- and WASH-null mutants). We found that the temporal localization characteristics of the post-lysosomal marker vacuolin, as well as vesicular acidity and the fusion dynamics of LvsB-null cells are distinct from those of both μ3- and WASH-null fission defect mutants. These distinctions are predicted by the fusion defect model and implicate LvsB as a negative regulator of vesicle fusion. PMID:25086066

  9. Region of Herpes Simplex Virus Type 1 Latency-Associated Transcript Sufficient for Wild-Type Spontaneous Reactivation Promotes Cell Survival in Tissue Culture

    PubMed Central

    Inman, Melissa; Perng, Guey-Chuen; Henderson, Gail; Ghiasi, Homayon; Nesburn, Anthony B.; Wechsler, Steven L.; Jones, Clinton

    2001-01-01

    The latency-associated transcript (LAT) is the only abundant herpes simplex virus type 1 (HSV-1) transcript expressed during latency. In the rabbit eye model, LAT null mutants do not reactivate efficiently from latency. We recently demonstrated that the LAT null mutant dLAT2903 induces increased levels of apoptosis in trigeminal ganglia of infected rabbits compared to LAT+ strains (G.-C. Perng, C. Jones, J. Ciacci-Zarella, M. Stone, G. Henderson, A. Yokht, S. M. Slanina, F. M. Hoffman, H. Ghiasi, A. B. Nesburn, and C. S. Wechsler, Science 287:1500–1503, 2000).The same study also demonstrated that a plasmid expressing LAT nucleotides 301 to 2659 enhanced cell survival of transfected cells after induction of apoptosis. Consequently, we hypothesized that LAT enhances spontaneous reactivation in part, because it promotes survival of infected neurons. Here we report on the ability of plasmids expressing different portions of the 5′ end of LAT to promote cell survival after induction of apoptosis. A plasmid expressing the first 1.5 kb of LAT (LAT nucleotides 1 to 1499) promoted cell survival in neuro-2A (mouse neuronal) and CV-1 (monkey fibroblast) cells. A plasmid expressing just the first 811 nucleotides of LAT promoted cell survival less efficiently. Plasmids expressing the first 661 nucleotides or less of LAT did not promote cell survival. We previously showed that a mutant expressing just the first 1.5 kb of LAT has wild-type spontaneous reactivation in rabbits, and a mutant expressing just the first 811 nucleotides of LAT has a reactivation frequency higher than that of dLAT2903 but lower than that of wild-type virus. In addition, mutants reported here for the first time, expressing just the first 661 or 76 nucleotides of LAT, had spontaneous reactivation indistinguishable from that of the LAT null mutant dLAT2903. In summary, these studies provide evidence that there is a functional relationship between the ability of LAT to promote cell survival and its ability to enhance spontaneous reactivation. PMID:11264353

  10. Regulation of ecmF gene expression and genetic hierarchy among STATa, CudA, and MybC on several prestalk A-specific gene expressions in Dictyostelium.

    PubMed

    Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi

    2016-05-01

    STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.

  11. Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF.

    PubMed

    Hyun, Seogang; Lee, Youngseok; Hong, Sung-Tae; Bang, Sunhoe; Paik, Donggi; Kang, Jongkyun; Shin, Jinwhan; Lee, Jaejung; Jeon, Keunhye; Hwang, Seungyoon; Bae, Eunkyung; Kim, Jaeseob

    2005-10-20

    The pigment-dispersing factor (PDF) is a neuropeptide controlling circadian behavioral rhythms in Drosophila, but its receptor is not yet known. From a large-scale temperature preference behavior screen in Drosophila, we isolated a P insertion mutant that preferred different temperatures during the day and night. This mutation, which we named han, reduced the transcript level of CG13758. We found that Han was expressed specifically in 13 pairs of circadian clock neurons in the adult brain. han null flies showed arrhythmic circadian behavior in constant darkness. The behavioral characteristics of han null mutants were similar to those of pdf null mutants. We also found that PDF binds specifically to S2 cells expressing Han, which results in the elevation of cAMP synthesis. Therefore, we herein propose that Han is a PDF receptor regulating circadian behavioral rhythm through coordination of activities of clock neurons.

  12. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo

    PubMed Central

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-01-01

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting “oncogene addiction” could be a promising strategy for combatting p53 mutant tumors. PMID:27765910

  13. Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo.

    PubMed

    Jung, Chae Lim; Mun, Hyemin; Jo, Se-Young; Oh, Ju-Hee; Lee, ChuHee; Choi, Eun-Kyung; Jang, Se Jin; Suh, Young-Ah

    2016-11-22

    Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.

  14. Epidermal growth factor impairs palatal shelf adhesion and fusion in the Tgf-β 3 null mutant.

    PubMed

    Barrio, M Carmen; Del Río, Aurora; Murillo, Jorge; Maldonado, Estela; López-Gordillo, Yamila; Paradas-Lara, Irene; Hernandes, Luzmarina; Catón, Javier; Martínez-Álvarez, Concepción

    2014-01-01

    The cleft palate presented by transforming growth factor-β3 (Tgf-β3) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 (Tgf-β1) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β1 and Msx-1 in Tgf-β3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal mesenchyme. Inhibition of TGF-β1 does not affect either EGF or Msx-1 expression. © 2014 S. Karger AG, Basel.

  15. A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis.

    PubMed

    Formstone, Alex; Errington, Jeffery

    2005-03-01

    MreB shares a common prokaryotic ancestor with actin and is present in almost all rod-shaped bacteria. MreB proteins have been implicated in a range of important cell processes, including cell morphogenesis, chromosome segregation and cell polarity. The mreB gene frequently lies at the beginning of a cluster of genes, immediately upstream of the conserved mreC and mreD genes. RNA analysis showed that in Bacillus subtilis mreB is co-transcribed with mreC and that these genes form part of an operon under the control of a promoter(s) upstream of mreB. Construction of an in-frame deletion of mreB and its complementation by mreB(+) only, in trans, established that the gene is important for maintenance of cell width and cell viability under normal growth conditions, independent of polar effects on downstream genes. Remarkably, virtually normal growth was restored to the mreB null mutant in the presence of high concentrations of magnesium, especially when high concentrations of the osmoprotectant, sucrose were also present. Under these conditions, cells could be maintained in the complete absence of an mreB gene, with almost normal morphology. No detectable effect on chromosome segregation was evident in the mutant, nor was there an effect on the topology of nascent peptidoglycan insertion. A GFP-MreB fusion was used to look at the localization of MreB in live cells. The pattern of localization was similar to that previously described, but no tight linkage to nucleoid positioning was evident. Propagation of the mreB null mutant in the absence of magnesium and sucrose led to a progressive increase in cell width, culminating in cell lysis. Cell division was also perturbed but this effect may be secondary to the disturbance in cell width. These results suggest that the major role of MreB in B. subtilis lies in the control of cell diameter.

  16. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.

    PubMed

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C

    2007-11-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.

  17. Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe

    PubMed Central

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C.

    2007-01-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. PMID:17947424

  18. Characterization of a Null Allelic Mutant of the Rice NAL1 Gene Reveals Its Role in Regulating Cell Division

    PubMed Central

    Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong

    2015-01-01

    Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704

  19. PiggyBac Transposon-Mediated Mutagenesis in Rats Reveals a Crucial Role of Bbx in Growth and Male Fertility1

    PubMed Central

    Wang, Chieh-Ying; Tang, Ming-Chu; Chang, Wen-Chi; Furushima, Kenryo; Jang, Chuan-Wei; Behringer, Richard R; Chen, Chun-Ming

    2016-01-01

    Bobby sox homolog (Bbx) is an evolutionally conserved gene, but its biological function remains elusive. Here, we characterized defects of Bbx mutant rats that were created by PiggyBac-mediated insertional mutagenesis. Smaller body size and male infertility were the two major phenotypes of homozygous Bbx mutants. Bbx expression profile analysis showed that Bbx was more highly expressed in the testis and pituitary gland than in other organs. Histology and hormonal gene expression analysis of control and Bbx-null pituitary glands showed that loss of Bbx appeared to be dispensable for pituitary histogenesis and the expression of major hormones. BBX was localized in the nuclei of postmeiotic spermatids and Sertoli cells in wild-type testes, but absent in mutant testes. An increased presence of aberrant multinuclear giant cells and apoptotic cells was observed in mutant seminiferous tubules. TUNEL-positive cells costained with CREM (round spermatid marker), but not PLZF (spermatogonia marker), gammaH2Ax (meiotic spermatocyte marker), or GATA4 (Sertoli cell marker). Finally, there were drastically reduced numbers and motility of epididymal sperm from Bbx-null rats. These results suggest that loss of BBX induces apoptosis of postmeiotic spermatids and results in spermiogenesis defects and infertility. PMID:27465138

  20. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway.

    PubMed

    Park, Jin-Ah; Kim, Jung-Mi; Park, Seung-Moon; Kim, Dae-Hyuk

    2012-04-01

    The gene CpSte11 of Cryphonectria parasitica, which encodes a yeast Ste11 homologue, was cloned and characterized. Gene replacement analysis revealed a high frequency of CpSte11 null mutants. When compared with the wild-type parent strain, CpSte11 null mutants showed no difference in terms of growth rate or pigmentation. However, CpSte11 null mutants showed a marked decrease in both the number and size of stromal pustules on chestnut twigs. The virulence test showed that, in comparison with those of the wild-type and virus-infected hypovirulent strains, CpSte11 null mutants produced necrotic areas of intermediate size. Disruption of the CpSte11 gene also resulted in defects in female fertility. Down-regulation of transcripts for the mating pheromone precursor gene, Mf2/2, and mating response transcription factors, such as cpst12 and pro1, was observed in CpSte11 null mutants. The down-regulation of Mf2/2, cpst12 and pro1 was also observed in the mutant phenotype of Cpmk2, a mating response Fus3-like mitogen-activated protein kinase (MAPK) gene, but not in the mutant of Cpmk1, a high-osmolarity glycerol Hog1-like MAPK gene. These results indicate that the cloned CpSte11 gene is functionally involved in the mating response pathway and acts through downstream targets, including Cpmk2, cpst12, pro1 and Mf2/2. However, the characteristics of the CpSte11 null mutant were fully phenocopied only in the cpst12 null mutant, but not in other studied null mutants of components of the putative mating response pathway. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  1. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  2. Redox crisis underlies conditional light–dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA

    PubMed Central

    Diamond, Spencer; Rubin, Benjamin E.; Shultzaberger, Ryan K.; Chen, You; Barber, Chase D.; Golden, Susan S.

    2017-01-01

    Cyanobacteria evolved a robust circadian clock, which has a profound influence on fitness and metabolism under daily light–dark (LD) cycles. In the model cyanobacterium Synechococcus elongatus PCC 7942, a functional clock is not required for diurnal growth, but mutants defective for the response regulator that mediates transcriptional rhythms in the wild-type, regulator of phycobilisome association A (RpaA), cannot be cultured under LD conditions. We found that rpaA-null mutants are inviable after several hours in the dark and compared the metabolomes of wild-type and rpaA-null strains to identify the source of lethality. Here, we show that the wild-type metabolome is very stable throughout the night, and this stability is lost in the absence of RpaA. Additionally, an rpaA mutant accumulates excessive reactive oxygen species (ROS) during the day and is unable to clear it during the night. The rpaA-null metabolome indicates that these cells are reductant-starved in the dark, likely because enzymes of the primary nighttime NADPH-producing pathway are direct targets of RpaA. Because NADPH is required for processes that detoxify ROS, conditional LD lethality likely results from inability of the mutant to activate reductant-requiring pathways that detoxify ROS when photosynthesis is not active. We identified second-site mutations and growth conditions that suppress LD lethality in the mutant background that support these conclusions. These results provide a mechanistic explanation as to why rpaA-null mutants die in the dark, further connect the clock to metabolism under diurnal growth, and indicate that RpaA likely has important unidentified functions during the day. PMID:28074036

  3. Identifying Neurofibromin Specific Regulatory Nodes for Therapeutic Targeting in NF1

    DTIC Science & Technology

    2017-10-01

    neurofibromin depends on the adapter protein SPRED1, to function, and we are utilizing the latest technical innovations including CRISPR technology... CRISPR technology to find genes that regulate neurofibromin SPRED function. Keywords Neurofibromin, Spred1, Spred2, EGFR, mutant EGFR(L858R), Ras...Establish good NF1 and Spred1/2 knockdown protocols for indicated cell lines NF1-Null and Spred1-Null HEK 293T cells have been generated using CRISPR /Cas9

  4. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  5. Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells

    PubMed Central

    Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.

    2015-01-01

    Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881

  6. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence.

    PubMed

    Bates, Steven; de la Rosa, José M; MacCallum, Donna M; Brown, Alistair J P; Gow, Neil A R; Odds, Frank C

    2007-06-01

    The Candida albicans cell wall is the immediate point of contact with the host and is implicated in the host-fungal interaction and virulence. To date, a number of cell wall proteins have been identified and associated with virulence. Analysis of the C. albicans genome has identified the IFF gene family as encoding the largest family of cell wall-related proteins. This family is also conserved in a range of other Candida species. Iff11 differs from other family members in lacking a GPI anchor, and we have demonstrated it to be O glycosylated and secreted in C. albicans. A null mutant lacking IFF11 was hypersensitive to cell wall-damaging agents, suggesting a role in cell wall organization. In a murine model of systemic infection the null mutant was highly attenuated in virulence, and survival-standardized infections suggest it is required to establish an infection. This work provides the first evidence of the importance of this gene family in the host-fungal interaction and virulence.

  7. The dev Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development.

    PubMed

    Rajagopalan, Ramya; Kroos, Lee

    2017-05-15

    Myxococcus xanthus undergoes multicellular development when starved. Thousands of rod-shaped cells coordinate their movements and aggregate into mounds in which cells differentiate into spores. Mutations in the dev operon impair development. The dev operon encompasses a clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) system. Null mutations in devI , a small gene at the beginning of the dev operon, suppress the developmental defects caused by null mutations in the downstream devR and devS genes but failed to suppress defects caused by a small in-frame deletion in devT We provide evidence that the original mutant has a second-site mutation. We show that devT null mutants exhibit developmental defects indistinguishable from devR and devS null mutants, and a null mutation in devI suppresses the defects of a devT null mutation. The similarity of DevTRS proteins to components of the CRISPR-associated complex for antiviral defense (Cascade), together with our molecular characterization of dev mutants, support a model in which DevTRS form a Cascade-like subcomplex that negatively autoregulates dev transcript accumulation and prevents DevI overproduction that would strongly inhibit sporulation. Our results also suggest that DevI transiently inhibits sporulation when regulated normally. The mechanism of transient inhibition may involve MrpC, a key transcription factor, whose translation appears to be weakly inhibited by DevI. Finally, our characterization of a devI devS mutant indicates that very little exo transcript is required for sporulation, which is surprising since Exo proteins help form the polysaccharide spore coat. IMPORTANCE CRISPR-Cas systems typically function as adaptive immune systems in bacteria. The dev CRISPR-Cas system of M. xanthus has been proposed to prevent bacteriophage infection during development, but how dev controls sporulation has been elusive. Recent evidence supported a model in which DevR and DevS prevent overproduction of DevI, a predicted 40-residue inhibitor of sporulation. We provide genetic evidence that DevT functions together with DevR and DevS to prevent DevI overproduction. We also show that spores form about 6 h earlier in mutants lacking devI than in the wild type. Only a minority of natural isolates appear to have a functional dev promoter and devI , suggesting that a functional dev CRISPR-Cas system evolved recently in niches where delayed sporulation and/or protection from bacteriophage infection proved advantageous. Copyright © 2017 American Society for Microbiology.

  8. The dev Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development

    PubMed Central

    Rajagopalan, Ramya

    2017-01-01

    ABSTRACT Myxococcus xanthus undergoes multicellular development when starved. Thousands of rod-shaped cells coordinate their movements and aggregate into mounds in which cells differentiate into spores. Mutations in the dev operon impair development. The dev operon encompasses a clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) system. Null mutations in devI, a small gene at the beginning of the dev operon, suppress the developmental defects caused by null mutations in the downstream devR and devS genes but failed to suppress defects caused by a small in-frame deletion in devT. We provide evidence that the original mutant has a second-site mutation. We show that devT null mutants exhibit developmental defects indistinguishable from devR and devS null mutants, and a null mutation in devI suppresses the defects of a devT null mutation. The similarity of DevTRS proteins to components of the CRISPR-associated complex for antiviral defense (Cascade), together with our molecular characterization of dev mutants, support a model in which DevTRS form a Cascade-like subcomplex that negatively autoregulates dev transcript accumulation and prevents DevI overproduction that would strongly inhibit sporulation. Our results also suggest that DevI transiently inhibits sporulation when regulated normally. The mechanism of transient inhibition may involve MrpC, a key transcription factor, whose translation appears to be weakly inhibited by DevI. Finally, our characterization of a devI devS mutant indicates that very little exo transcript is required for sporulation, which is surprising since Exo proteins help form the polysaccharide spore coat. IMPORTANCE CRISPR-Cas systems typically function as adaptive immune systems in bacteria. The dev CRISPR-Cas system of M. xanthus has been proposed to prevent bacteriophage infection during development, but how dev controls sporulation has been elusive. Recent evidence supported a model in which DevR and DevS prevent overproduction of DevI, a predicted 40-residue inhibitor of sporulation. We provide genetic evidence that DevT functions together with DevR and DevS to prevent DevI overproduction. We also show that spores form about 6 h earlier in mutants lacking devI than in the wild type. Only a minority of natural isolates appear to have a functional dev promoter and devI, suggesting that a functional dev CRISPR-Cas system evolved recently in niches where delayed sporulation and/or protection from bacteriophage infection proved advantageous. PMID:28264995

  9. Proliferation, differentiation and apoptosis in connexin43-null osteoblasts

    NASA Technical Reports Server (NTRS)

    Furlan, F.; Lecanda, F.; Screen, J.; Civitelli, R.

    2001-01-01

    Osteoblasts are highly coupled by gap junctions formed primarily by connexin43 (Cx43). We have shown that interference with Cx43 expression or function disrupts transcriptional regulation of osteoblast genes, and that deletion of Cx43 in the mouse causes skeletal malformations, delayed mineralization, and osteoblast dysfunction. Here, we studied the mechanisms by which genetic deficiency of Cx43 alters osteoblast development. While cell proliferation rates were similar in osteoblastic cells derived from calvaria of Cx43-null and wild type mice, camptothecin-induced apoptosis was 3-fold higher in mutant compared to wild type osteoblasts. When grown in mineralizing medium, Cx43-null cells were able to produce mineralized matrix but it took one week longer to reach the same mineralization levels as in normal cells. Likewise, expression of alkaline phosphatase activity per cell--a marker of osteoblast differentiation--was maximal only 2 weeks later in Cx43-null relative to wild-type cells. These observations suggest that Cx43 is important for a normal and timely development of the osteoblastic phenotype. Delayed differentiation and increase programmed cell death may explain the skeletal phenotype of Cx43-null mice.

  10. Left cardiac isomerism in the Sonic hedgehog null mouse.

    PubMed

    Hildreth, Victoria; Webb, Sandra; Chaudhry, Bill; Peat, Jonathan D; Phillips, Helen M; Brown, Nigel; Anderson, Robert H; Henderson, Deborah J

    2009-06-01

    Sonic hedgehog (Shh) is a secreted morphogen necessary for the production of sidedness in the developing embryo. In this study, we describe the morphology of the atrial chambers and atrioventricular junctions of the Shh null mouse heart. We demonstrate that the essential phenotypic feature is isomerism of the left atrial appendages, in combination with an atrioventricular septal defect and a common atrioventricular junction. These malformations are known to be frequent in humans with left isomerism. To confirm the presence of left isomerism, we show that Pitx2c, a recognized determinant of morphological leftness, is expressed in the Shh null mutants on both the right and left sides of the inflow region, and on both sides of the solitary arterial trunk exiting from the heart. It has been established that derivatives of the second heart field expressing Isl1 are asymmetrically distributed in the developing normal heart. We now show that this population is reduced in the hearts from the Shh null mutants, likely contributing to the defects. To distinguish the consequences of reduced contributions from the second heart field from those of left-right patterning disturbance, we disrupted the movement of second heart field cells into the heart by expressing dominant-negative Rho kinase in the population of cells expressing Isl1. This resulted in absence of the vestibular spine, and presence of atrioventricular septal defects closely resembling those seen in the hearts from the Shh null mutants. The primary atrial septum, however, was well formed, and there was no evidence of isomerism of the atrial appendages, suggesting that these features do not relate to disruption of the contributions made by the second heart field. We demonstrate, therefore, that the Shh null mouse is a model of isomerism of the left atrial appendages, and show that the recognized associated malformations found at the venous pole of the heart in the setting of left isomerism are likely to arise from the loss of the effects of Shh in the establishment of laterality, combined with a reduced contribution made by cells derived from the second heart field.

  11. The UL21 Tegument Protein of Herpes Simplex Virus 1 Is Differentially Required for the Syncytial Phenotype

    PubMed Central

    Starkey, Jason; Mellinger, Erica; Zhang, Dan; Chadha, Pooja; Carmichael, Jillian

    2017-01-01

    ABSTRACT The initial goal of this study was to reexamine the requirement of UL21 for herpes simplex virus 1 (HSV-1) replication. Previous studies suggested that UL21 is dispensable for replication in cell cultures, but a recent report on HSV-2 challenges those findings. As was done for the HSV-2 study, a UL21-null virus was made and propagated on complementing cells to discourage selection of compensating mutations. This HSV-1 mutant was able to replicate in noncomplementing cells, even at a low multiplicity of infection (MOI), though a reduction in titer was observed. Also, increased proportions of empty capsids were observed in the cytoplasm, suggesting a role for UL21 in preventing their exit from the nucleus. Surprisingly, passage of the null mutant resulted in rapid outgrowth of syncytial (Syn) variants. This was unexpected because UL21 has been shown to be required for the Syn phenotype. However, earlier experiments made use of only the A855V syncytial mutant of glycoprotein B (gB), and the Syn phenotype can also be produced by substitutions in glycoprotein K (gK), UL20, and UL24. Sequencing of the syncytial variants revealed mutations in the gK locus, but UL21 was shown to be dispensable for UL20Syn and UL24Syn. To test whether UL21 is needed only for the A855V mutant, additional gBSyn derivatives were examined in the context of the null virus, and all produced lytic rather than syncytial sites of infection. Thus, UL21 is required only for the gBSyn phenotype. This is the first example of a differential requirement for a viral protein across the four syn loci. IMPORTANCE UL21 is conserved among alphaherpesviruses, but its role is poorly understood. This study shows that HSV-1 can replicate without UL21, although the virus titers are greatly reduced. The null virus had greater proportions of empty (DNA-less) capsids in the cytoplasm of infected cells, suggesting that UL21 may play a role in retaining them in the nucleus. This is consistent with reports showing UL21 to be capsid associated and localized to the nuclei of infected cells. UL21 also appears to be needed for viral membrane activities. It was found to be required for virus-mediated cell fusion, but only for mutants that harbor syncytial mutations in gB (not variants of gK, UL20, or UL24). The machinery needed for syncytial formation is similar to that needed for direct spread of the virus through cell junctions, and these studies show that UL21 is required for cell-to-cell spread even in the absence of syncytial mutations. PMID:28794039

  12. Stat1-independent regulation of gene expression in response to IFN-γ

    PubMed Central

    Ramana, Chilakamarti V.; Gil, M. Pilar; Han, Yulong; Ransohoff, Richard M.; Schreiber, Robert D.; Stark, George R.

    2001-01-01

    Although Stat1 is essential for cells to respond fully to IFN-γ, there is substantial evidence that, in the absence of Stat1, IFN-γ can still regulate the expression of some genes, induce an antiviral state and affect cell growth. We have now identified many genes that are regulated by IFN-γ in serum-starved Stat1-null mouse fibroblasts. The proteins induced by IFN-γ in Stat1-null cells can account for the substantial biological responses that remain. Some genes are induced in both wild-type and Stat1-null cells and thus are truly Stat1-independent. Others are subject to more complex regulation in response to IFN-γ, repressed by Stat1 in wild-type cells and activated in Stat1-null cells. Many genes induced by IFN-γ in Stat1-null fibroblasts also are induced by platelet-derived growth factor in wild-type cells and thus are likely to be involved in cell proliferation. In mouse cells expressing the docking site mutant Y440F of human IFN-γ receptor subunit 1, the mouse Stat1 is not phosphorylated in response to human IFN-γ, but c-myc and c-jun are still induced, showing that the Stat1 docking site is not required for Stat1-independent signaling. PMID:11390994

  13. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase

    PubMed Central

    Siller, Saul S.; Broadie, Kendal

    2011-01-01

    SUMMARY Fragile X syndrome (FXS), caused by loss of the fragile X mental retardation 1 (FMR1) product (FMRP), is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP) inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1) null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ), clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP) in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single dfmr1 mutants and controls. These results support minocycline as a promising potential FXS treatment and suggest that it might act via MMP inhibition. We conclude that FMRP and TIMP pathways interact in a reciprocal, bidirectional manner. PMID:21669931

  14. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  15. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola.

    PubMed

    Sanz-Martín, José M; Pacheco-Arjona, José Ramón; Bello-Rico, Víctor; Vargas, Walter A; Monod, Michel; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A

    2016-09-01

    Colletotrichum graminicola causes maize anthracnose, an agronomically important disease with a worldwide distribution. We have identified a fungalysin metalloprotease (Cgfl) with a role in virulence. Transcriptional profiling experiments and live cell imaging show that Cgfl is specifically expressed during the biotrophic stage of infection. To determine whether Cgfl has a role in virulence, we obtained null mutants lacking Cgfl and performed pathogenicity and live microscopy assays. The appressorium morphology of the null mutants is normal, but they exhibit delayed development during the infection process on maize leaves and roots, showing that Cgfl has a role in virulence. In vitro chitinase activity assays of leaves infected with wild-type and null mutant strains show that, in the absence of Cgfl, maize leaves exhibit increased chitinase activity. Phylogenetic analyses show that Cgfl is highly conserved in fungi. Similarity searches, phylogenetic analysis and transcriptional profiling show that C. graminicola encodes two LysM domain-containing homologues of Ecp6, suggesting that this fungus employs both Cgfl-mediated and LysM protein-mediated strategies to control chitin signalling. © 2015 BSPP and John Wiley & Sons Ltd.

  16. Inactivation of Mre11 does not affect VSG gene duplication mediated by homologous recombination in Trypanosoma brucei.

    PubMed

    Robinson, Nicholas P; McCulloch, Richard; Conway, Colin; Browitt, Alison; Barry, J David

    2002-07-19

    We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.

  17. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu.

    PubMed

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-12-01

    Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  18. Loss- and Gain-of-Function Mutations in the F1-HAMP Region of the Escherichia coli Aerotaxis Transducer Aer

    PubMed Central

    del Carmen Burón-Barral, Maria; Gosink, Khoosheh K.; Parkinson, John S.

    2006-01-01

    The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants. PMID:16672601

  19. Interleukin-6 is an essential determinant of on-time parturition in the mouse.

    PubMed

    Robertson, Sarah A; Christiaens, Inge; Dorian, Camilla L; Zaragoza, Dean B; Care, Alison S; Banks, Anke M; Olson, David M

    2010-08-01

    IL-6 abundance in amniotic fluid and uterine tissues increases in late gestation or with infection-associated preterm labor. A role in regulation of labor onset is suggested by observations that IL-6 increases expression of genes controlling prostaglandin synthesis and signaling in isolated uterine cells, but whether IL-6 is essential for normal parturition is unknown. To evaluate the physiological role of IL-6 in parturition in mice, we investigated the effect of Il6 null mutation on the timing of parturition and expression of genes associated with uterine activation. Il6 null mutant mice delivered 24 h later than wild-type mice, although circulating progesterone fell similarly in both genotypes during the prepartal period. Il6 null mutant mice were also refractory to low doses of lipopolysaccharide sufficient to induce preterm delivery in wild-type mice. The characteristic late-gestation elevation in uterine expression of Oxtr mRNA encoding oxytocin receptor, and peripartal increases in Ptgfr and Ptgs2 mRNAs regulating prostaglandin synthesis and signaling were delayed by 24 h in Il6 null mutant mice. Conversely, Ptger4 mRNA encoding the prostaglandin E receptor-4 was abnormally elevated in late-gestation in Il6 null mutant mice. Administration of recombinant IL-6 from d 11.5 postcoitum until term restored the normal timing of delivery and normalized Ptger4 mRNA expression in late gestation. We conclude that IL-6 has a key role in controlling the progression of events culminating in parturition and that it acts downstream of luteolysis in the uterus to regulate genes involved in the prostaglandin-mediated uterine activation cascade.

  20. Impaired proteoglycan glycosylation, elevated TGF-β signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica

    PubMed Central

    Chan, Wing Lee; Steiner, Magdalena; Egerer, Johannes; Mizumoto, Shuji; Pestka, Jan M.; Zhang, Haikuo; Khayal, Layal Abo; Ott, Claus-Eric; Kolanczyk, Mateusz; Schinke, Thorsten; Paganini, Chiara; Rossi, Antonio; Sugahara, Kazuyuki; Amling, Michael; Knaus, Petra; Chan, Danny; Mundlos, Stefan

    2018-01-01

    Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. GORAB, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the GorabNull full knockout, Gorab was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only GorabPrx1 and GorabRunx2 mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of GorabNull mutants and in bone of GorabPrx1 mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from GorabNull mutants. In bone from GorabPrx1 mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured GORAB-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-β in GorabPrx1 bone tissue leading to enhanced downstream signalling, which was reproduced in GORAB-deficient fibroblasts. Our data suggest that the loss of Gorab primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment. PMID:29561836

  1. Integration of Genomic, Biologic, and Chemical Approaches to Target p53 Loss and Gain-of-Function in Triple Negative Breast Cancer

    DTIC Science & Technology

    2016-09-01

    in this progress report: p53 triple-negative breast cancer subtypes gene expression somatic cell genetics CRISPR /Cas 3. ACCOMPLISHMENTS Major...report, we described the creation of an isogenic p53 mutant TNBC cell line panel using CRISPR /Cas-mediated genome editing8 and the resultant...LOF null state. To validate that mutant p53 is directly responsible for this altered transcription, we will use the same CRISPR -mediated genome

  2. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  3. Evidence for a functional link between Dd-STATa and Dd-PIAS, a Dictyostelium PIAS homologue.

    PubMed

    Kawata, Takefumi; Hirano, Tatsunori; Ogasawara, Shun; Aoshima, Ryota; Yachi, Ayako

    2011-09-01

    Several mammalian protein families inhibit the activity of signal transducer and activator of transcription (STAT) proteins. The protein inhibitor of activated STAT (PIAS) was initially identified through its ability to interact with human STAT proteins. We isolated a gene (pisA) encoding a Dictyostelium orthologue of PIAS, Dd-PIAS, which possesses almost all the representative motifs and domains of mammalian PIAS proteins. A Dd-PIAS null mutant strain displays a normal terminal morphology but with accelerated development once cells are aggregated. In contrast, Dd-PIAS overexpressor strains demonstrate delayed aggregation, almost no slug phototaxis, impaired slug motility, and a prolonged slug migration period. This strain is a near phenocopy of the Dd-STATa null mutant, although it eventually forms a fruiting body, albeit inefficiently. The expression of several Dd-STATa-activated genes is upregulated in the Dd-PIAS null mutant and there is ectopic expression of pstAB makers. The concentration of a PIAS-green fluorescent protein (GFP) fusion protein, expressed under the PIAS promoter, is greatest in the pstO cells and gradually decreases with proximity to the tip of the slug and culminant: a pattern diametrically opposite to that of Dd-STATa. Our results suggest a functional interrelationship between Dd-PIAS and Dd-STATa that influences gene expression and development. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.

  4. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low temperatures that stabilizes hyper-negatively supercoiled DNA. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The transcription factor SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis

    PubMed Central

    Hussain, Muzammil; Hamid, M. Imran; Wang, Niuniu; Bin, Lin; Xiang, Meichun; Liu, Xingzhong

    2016-01-01

    The transcription factor SKN7 is a highly conserved protein among fungi and was initially recognized as a response regulator that protects cells from oxidative stress and maintains cell wall integrity in yeast. Orthologs of SKN7 are extensively present in biocontrol agents of plant pathogens, but they had not been functionally characterized. Here, we identified and characterized the transcription factor SKN7 in the nematode endoparasitic fungus Hirsutella minnesotensis. Null mutant lacking HIM-SKN7 (HIM_03620), which was generated by a gene disruption strategy, demonstrated reduced conidiation, increased sensitivity to high temperature, hydrogen peroxide, mannitol and ethanol, and reduced fungal resistance to farnesol. However, over-expression mutant showed increased conidial production, thermotolerance and resistance to farnesol, suggesting that HIM-SKN7 regulates antiapoptotic-like cell death in H. minnesotensis. Moreover, the results showed that in null mutant, H. minnesotensis had decreased endoparasitic ability as compared to wild type and over-expression strain. During the infection process, the relative expression of the HIM-SKN7 gene was significantly induced in the wild type and over-expression strain. The results of the present study advance our understanding of the functions of the SKN7 gene in biocontrol agents, in particular, nematode endoparasitic fungi. PMID:27436205

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, Kazuo, E-mail: knoda@kuhp.kyoto-u.ac.jp; Nakamura, Tomoyuki; Komatsu, Yoshihiro

    Craniofacial sutures govern the shape of the craniofacial skeleton during postnatal development. The differentiation of suture mesenchymal cells to osteoblasts is precisely regulated in part by signaling through cell surface receptors that interact with extracellular proteins. Here we report that fibulin-5, a key extracellular matrix protein, is important for craniofacial skeletal development in mice. Fibulin-5 is deposited as a fibrous matrix in cranial neural crest-derived mesenchymal tissues, including craniofacial sutures. Fibulin-5-null mice show decreased premaxillary bone outgrowth during postnatal stages. While premaxillo-maxillary suture mesenchymal cells in fibulin-5-null mice were capable of differentiating into osteoblasts, suture cells in mutant mice weremore » less proliferative. Our study provides the first evidence that fibulin-5 is indispensable for the regulation of facial suture mesenchymal cell proliferation required for craniofacial skeletal morphogenesis. - Highlights: • Fibulin-5 is deposited in cranial neural crest-derived mesenchymal tissues. • Fibulin-5-null mice show decreased premaxillary bone growth during postnatal stage. • Fibulin-5 is indispensable for facial suture mesenchymal cell proliferation.« less

  7. Expression and function of FGF10 in mammalian inner ear development

    NASA Technical Reports Server (NTRS)

    Pauley, Sarah; Wright, Tracy J.; Pirvola, Ulla; Ornitz, David; Beisel, Kirk; Fritzsch, Bernd

    2003-01-01

    We have investigated the expression of FGF10 during ear development and the effect of an FGF10 null mutation on ear development. Our in situ hybridization data reveal expression of FGF10 in all three canal crista sensory epithelia and the cochlea anlage as well as all sensory neurons at embryonic day 11.5 (E11.5). Older embryos (E18.5) displayed strong graded expression in all sensory epithelia. FGF10 null mutants show complete agenesis of the posterior canal crista and the posterior canal. The posterior canal sensory neurons form initially and project rather normally by E11.5, but they disappear within 2 days. FGF10 null mutants have no posterior canal system at E18.5. In addition, these mutants have deformations of the anterior and horizontal cristae, reduced formation of the anterior and horizontal canals, as well as altered position of the remaining sensory epithelia with respect to the utricle. Hair cells form but some have defects in their cilia formation. No defects were detected in the organ of Corti at the cellular level. Together these data suggest that FGF10 plays a major role in ear morphogenesis. Most of these data are consistent with earlier findings on a null mutation in FGFR2b, one of FGF10's main receptors. Copyright 2003 Wiley-Liss, Inc.

  8. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    PubMed

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.

  9. Effects of hypo-O-GlcNAcylation on Drosophila development.

    PubMed

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  10. Regulation of c–myc expression by IFN–γ through Stat1-dependent and -independent pathways

    PubMed Central

    Ramana, Chilakamarti V.; Grammatikakis, Nicholas; Chernov, Mikhail; Nguyen, Hannah; Goh, Kee Chuan; Williams, Bryan R.G.; Stark, George R.

    2000-01-01

    Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c–myc expression. IFN–γ suppresses c–myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c–myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c–myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c–myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c–myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c–myc mRNA is induced, not suppressed, in response to IFN–γ. A role for Raf–1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50cdc37 that is unable to recruit HSP90 to the Raf–1 complex. Both agents abrogated the IFN–γ-dependent induction of c–myc expression in Stat1-null cells. PMID:10637230

  11. Gα modulates salt-induced cellular senescence and cell division in rice and maize

    DOE PAGES

    Urano, Daisuke; Colaneri, Alejandro; Jones, Alan M.

    2014-09-16

    The plant G-protein network, comprising Gα, Gβ, and Gγ core subunits, regulates development, senses sugar, and mediates biotic and abiotic stress responses. Here in this paper, we report G-protein signalling in the salt stress response using two crop models, rice and maize. Loss-of-function mutations in the corresponding genes encoding the Gα subunit attenuate growth inhibition and cellular senescence caused by sodium chloride (NaCl). Gα null mutations conferred reduced leaf senescence, chlorophyll degradation, and cytoplasm electrolyte leakage under NaCl stress. Sodium accumulated in both wild-type and Gα-mutant shoots to the same levels, suggesting that Gα signalling controls cell death in leavesmore » rather than sodium exclusion in roots. Growth inhibition is probably initiated by osmotic change around root cells, because KCl and MgSO 4 also suppressed seedling growth equally as well as NaCl. NaCl lowered rates of cell division and elongation in the wild-type leaf sheath to the level of the Gα-null mutants; however there was no NaCl-induced decrease in cell division in the Gα mutant, implying that the osmotic phase of salt stress suppresses cell proliferation through the inhibition of Gα-coupled signalling. These results reveal two distinct functions of Gα in NaCl stress in these grasses: attenuation of leaf senescence caused by sodium toxicity in leaves, and cell cycle regulation by osmotic/ionic stress.« less

  12. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.

    PubMed

    Fu, Yanfen; Beck, David A C; Lidstrom, Mary E

    2016-07-19

    Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.

  13. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells.

    PubMed

    Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y

    2013-05-01

    Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.

  14. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion.

    PubMed

    Deuerling, E; Mogk, A; Richter, C; Purucker, M; Schumann, W

    1997-03-01

    The ftsH gene of Bacillus subtilis has been identified as a general stress gene which is transiently induced after thermal or osmotic upshift. The FtsH protein exhibits 70.1% homology to FtsH of Escherichia coli which constitutes an essential ATP- and Zn(2+)-dependent protease anchored in the cytoplasmic membrane via two N-terminal transmembrane domains. This paper describes the isolation and functional characterization of an ftsH null mutant which was obtained by integration of a cat-cassette near the 5' end of ftsH, thereby preventing the synthesis of FtsH protein. In contrast to the situation in E. coli, ftsH is dispensable in B. subtilis but results in a pleiotropic phenotype. While the mutant cells grew mostly as large filaments under physiological conditions, they turned out to be extremely sensitive to heat and salt stress. Although ftsH is necessary for adaptation to heat, it is not involved in the regulation of the heat-shock response. The induction profiles of representative genes of the CIRCE and sigma-B regulon and class III heat-shock genes ion and clpC were identical in the wild type and the ftsH null mutant. Furthermore, the ftsH knockout strain was unable to sporulate, and this failure was probably due to the absence of Spo0A protein which is essential for entry into the sporulation programme. In addition, secretion of bulk exoproteins was severely impaired in the ftsH null mutant after entry into stationary phase. The alpha-amylase and subtilisin activity in the supernatant was specifically tested. Whereas the activity of alpha-amylase increased after entry into stationary phase in both the wild type and the ftsH mutant strain, that of subtilisin encoded by aprE was prevented at the level of transcription in the mutant. Most of these results can be explained by the failure to synthesize appropriate amounts of Spo0A protein in the ftsH null mutant and point to ftsH as a developmental checkpoint.

  15. The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr.

    PubMed

    Varadarajan, Padmapriya; Mahalingam, Sundarasamy; Liu, Peiyun; Ng, Sarah Boon Hsi; Gandotra, Sheetal; Dorairajoo, Desmond Suresh Kumar; Balasundaram, David

    2005-04-01

    We report that the fission yeast nucleoporin Nup124p is required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr. Failure to import Tf1-Gag into the nucleus in a nup124 null mutant resulted in complete loss of Tf1 transposition. Similarly, nuclear import of HIV-1 Vpr was impaired in nup124 null mutant strains and cells became resistant to Vpr's cell-killing activity. On the basis of protein domain similarity, the human nucleoporin Nup153 was identified as a putative homolog of Nup124p. We demonstrate that in vitro-translated Nup124p and Nup153 coimmunoprecipitate Tf1-Gag or HIV-1 Vpr. Though full-length Nup153 was unable to complement the Tf1 transposition defect in a nup124 null mutant, we provide evidence that both nucleoporins share a unique N-terminal domain, Nup124p(AA264-454) and Nup153(AA448-634) that is absolutely essential for Tf1 transposition. Epigenetic overexpression of this domain in a wild-type (nup124(+)) background blocked Tf1 activity implying that sequences from Nup124p and the human Nup153 challenged the same pathway affecting Tf1 transposition. Our results establish a unique relationship between two analogous nucleoporins Nup124p and Nup153 wherein the function of a common domain in retrotransposition is conserved.

  16. Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.

    PubMed

    Wang, Hong; Iguchi, Naoko; Rong, Qi; Zhou, Minliang; Ogunkorode, Martina; Inoue, Masashi; Pribitkin, Edmund A; Bachmanov, Alexander A; Margolskee, Robert F; Pfeifer, Karl; Huang, Liquan

    2009-01-20

    Vertebrate taste buds undergo continual cell turnover. To understand how the gustatory progenitor cells in the stratified lingual epithelium migrate and differentiate into different types of mature taste cells, we sought to identify genes that were selectively expressed in taste cells at different maturation stages. Here we report the expression of the voltage-gated potassium channel KCNQ1 in mammalian taste buds of mouse, rat, and human. Immunohistochemistry and nuclear staining showed that nearly all rodent and human taste cells express this channel. Double immunostaining with antibodies against type II and III taste cell markers validated the presence of KCNQ1 in these two types of cells. Co-localization studies with cytokeratin 14 indicated that KCNQ1 is also expressed in type IV basal precursor cells. Null mutation of the kcnq1 gene in mouse, however, did not alter the gross structure of taste buds or the expression of taste signaling molecules. Behavioral assays showed that the mutant mice display reduced preference to some umami substances, but not to any other taste compounds tested. Gustatory nerve recordings, however, were unable to detect any significant change in the integrated nerve responses of the mutant mice to umami stimuli. These results suggest that although it is expressed in nearly all taste bud cells, the function of KCNQ1 is not required for gross taste bud development or peripheral taste transduction pathways, and the reduced preference of kcnq1-null mice in the behavioral assays may be attributable to the deficiency in the central nervous system or other organs.

  17. A Toxoplasma MORN1 Null Mutant Undergoes Repeated Divisions but Is Defective in Basal Assembly, Apicoplast Division and Cytokinesis

    PubMed Central

    Lorestani, Alexander; Sheiner, Lilach; Yang, Kevin; Robertson, Seth D.; Sahoo, Nivedita; Brooks, Carrie F.; Ferguson, David J. P.; Striepen, Boris; Gubbels, Marc-Jan

    2010-01-01

    The membrane occupation and recognition nexus protein 1 (MORN1) is highly conserved among apicomplexan parasites and is associated with several structures that have a role in cell division. Here we dissected the role of MORN1 using the relatively simple budding process of Toxoplasma gondii as a model. Ablation of MORN1 in a conditional null mutant resulted in pronounced defects suggesting a central role for MORN1 in apicoplast segregation and in daughter cell budding. Lack of MORN1 resulted in double-headed parasites. These Janus-headed parasites form two complete apical complexes but fail to assemble a basal complex. Moreover, these parasites were capable of undergoing several more budding rounds resulting in the formation of up to 16-headed parasites conjoined at the basal end. Despite this segregation defect, the mother's cytoskeleton was completely disassembled in every budding round. Overall this argues that successful completion of the budding is not required for cell cycle progression. None of the known basal complex components, including a set of recently identified inner membrane complex (IMC) proteins, localized correctly in these multi-headed parasites. These data suggest that MORN1 is essential for assembly of the basal complex, and that lack of the basal complex abolishes the contractile capacity assigned to the basal complex late in daughter formation. Consistent with this hypothesis we observe that MORN1 mutants fail to efficiently constrict and divide the apicoplast. We used the null background provided by the mutant to dissect the function of subdomains of the MORN1 protein. This demonstrated that deletion of a single MORN domain already prevented the function of MORN1 whereas a critical role for the short linker between MORN domains 6 and 7 was identified. In conclusion, MORN1 is required for basal complex assembly and loss of MORN1 results in defects in apicoplast division and daughter segregation. PMID:20808817

  18. The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression

    PubMed Central

    Kroken, Abby R.; Chen, Camille K.; Evans, David J.; Yahr, Timothy L.

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. PMID:29717012

  19. Extracellular matrix family proteins that are potential targets of Dd-STATa in Dictyostelium discoideum.

    PubMed

    Shimada, Nao; Nishio, Keiko; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2004-10-01

    Dd-STATa is a functional Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription) proteins, which is activated by cAMP and is thereby translocated into the nuclei of anterior tip cells of the prestalk region of the slug. By using in situ hybridization analyses, we found that the SLF308 cDNA clone, which contains the ecmF gene that encodes a putative extracellular matrix protein and is expressed in the anterior tip cells, was greatly down-regulated in the Dd-STATa-null mutant. Disruption of the ecmF gene, however, resulted in almost no phenotypic change. The absence of any obvious mutant phenotype in the ecmF-null mutant could be due to a redundancy of similar genes. In fact, a search of the Dictyostelium whole genome database demonstrates the existence of an additional 16 homologues, all of which contain a cellulose-binding module. Among these homologues, four genes show Dd-STATa-dependent expression, while the others are Dd-STATa-independent. We discuss the potential role of Dd-STATa in morphogenesis via its effect on the interaction between cellulose and these extracellular matrix family proteins.

  20. Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing

    PubMed Central

    Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.

    2014-01-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075

  1. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.

    PubMed

    Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J

    2014-05-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.

  2. The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types.

    PubMed

    Hersh, Bradley M; Hartwieg, Erika; Horvitz, H Robert

    2002-04-02

    The misregulation of programmed cell death, or apoptosis, contributes to the pathogenesis of many diseases. We used Nomarski microscopy to screen for mutants containing refractile cell corpses in a C. elegans strain in which all programmed cell death is blocked and such corpses are absent. We isolated a mutant strain that accumulates refractile bodies resembling irregular cell corpses. We rescued this mutant phenotype with the C. elegans mucolipidosis type IV (ML-IV) homolog, the recently identified cup-5 (coelomocyte-uptake defective) gene. ML-IV is a human autosomal recessive lysosomal storage disease characterized by psychomotor retardation and ophthalmological abnormalities. Our null mutations in cup-5 cause maternal-effect lethality. In addition, cup-5 mutants contain excess lysosomes in many and possibly all cell types and contain lamellar structures similar to those observed in ML-IV cell lines. The human ML-IV gene is capable of rescuing both the maternal-effect lethality and the lysosome-accumulation abnormality of cup-5 mutants. cup-5 mutants seem to contain excess apoptotic cells as detected by staining with terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. We suggest that the increased apoptosis seen in cup-5 mutants is a secondary consequence of the lysosomal defect, and that abnormalities in apoptosis may be associated with human lysosomal storage disorders.

  3. Genetic Screen in Drosophila Larvae Links ird1 Function to Toll Signaling in the Fat Body and Hemocyte Motility

    PubMed Central

    Schmid, Martin R.; Anderl, Ines; Vo, Hoa T. M.; Valanne, Susanna; Yang, Hairu; Kronhamn, Jesper; Rämet, Mika; Rusten, Tor Erik

    2016-01-01

    To understand how Toll signaling controls the activation of a cellular immune response in Drosophila blood cells (hemocytes), we carried out a genetic modifier screen, looking for deletions that suppress or enhance the mobilization of sessile hemocytes by the gain-of-function mutation Toll10b (Tl10b). Here we describe the results from chromosome arm 3R, where five regions strongly suppressed this phenotype. We identified the specific genes immune response deficient 1 (ird1), headcase (hdc) and possibly Rab23 as suppressors, and we studied the role of ird1 in more detail. An ird1 null mutant and a mutant that truncates the N-terminal kinase domain of the encoded Ird1 protein affected the Tl10b phenotype, unlike mutations that affect the C-terminal part of the protein. The ird1 null mutant suppressed mobilization of sessile hemocytes, but enhanced other Tl10b hemocyte phenotypes, like the formation of melanotic nodules and the increased number of circulating hemocytes. ird1 mutants also had blood cell phenotypes on their own. They lacked crystal cells and showed aberrant formation of lamellocytes. ird1 mutant plasmatocytes had a reduced ability to spread on an artificial substrate by forming protrusions, which may explain why they did not go into circulation in response to Toll signaling. The effect of the ird1 mutation depended mainly on ird1 expression in hemocytes, but ird1-dependent effects in other tissues may contribute. Specifically, the Toll receptor was translocated from the cell membrane to intracellular vesicles in the fat body of the ird1 mutant, and Toll signaling was activated in that tissue, partially explaining the Tl10b-like phenotype. As ird1 is otherwise known to control vesicular transport, we conclude that the vesicular transport system may be of particular importance during an immune response. PMID:27467079

  4. A Novel Ras-interacting Protein Required for Chemotaxis and Cyclic Adenosine Monophosphate Signal Relay in Dictyostelium

    PubMed Central

    Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.

    1999-01-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation. PMID:10473630

  5. Identification of nucleolus-associated chromatin domains reveals the role of the nucleolus in the 3D organisation of the A. thaliana genome

    PubMed Central

    Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Saez-Vasquez, Julio

    2017-01-01

    The nucleolus is the site of ribosomal RNA (rRNA) gene transcription, rRNA processing and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli by Fluorescence Activated Cell Sorting (FACS) and identified Nucleolus-Associated Chromatin Domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein, NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions and mostly inactive protein-coding genes. However, NADs also include active ribosomal RNA genes, and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. PMID:27477271

  6. MIB-1 Is Required for Spermatogenesis and Facilitates LIN-12 and GLP-1 Activity in Caenorhabditis elegans.

    PubMed

    Ratliff, Miriam; Hill-Harfe, Katherine L; Gleason, Elizabeth J; Ling, Huiping; Kroft, Tim L; L'Hernault, Steven W

    2018-05-01

    Covalent attachment of ubiquitin to substrate proteins changes their function or marks them for proteolysis, and the specificity of ubiquitin attachment is mediated by the numerous E3 ligases encoded by animals. Mind Bomb is an essential E3 ligase during Notch pathway signaling in insects and vertebrates. While Caenorhabditis elegans encodes a Mind Bomb homolog ( mib-1 ), it has never been recovered in the extensive Notch suppressor/enhancer screens that have identified numerous pathway components. Here, we show that C. elegans mib-1 null mutants have a spermatogenesis-defective phenotype that results in a heterogeneous mixture of arrested spermatocytes, defective spermatids, and motility-impaired spermatozoa. mib-1 mutants also have chromosome segregation defects during meiosis, molecular null mutants are intrinsically temperature-sensitive, and many mib-1 spermatids contain large amounts of tubulin. These phenotypic features are similar to the endogenous RNA intereference (RNAi) mutants, but mib-1 mutants do not affect RNAi. MIB-1 protein is expressed throughout the germ line with peak expression in spermatocytes followed by segregation into the residual body during spermatid formation. C. elegans mib-1 expression, while upregulated during spermatogenesis, also occurs somatically, including in vulva precursor cells. Here, we show that mib-1 mutants suppress both lin-12 and glp-1 ( C. elegans Notch) gain-of-function mutants, restoring anchor cell formation and a functional vulva to the former and partly restoring oocyte production to the latter. However, suppressed hermaphrodites are only observed when grown at 25°, and they are self-sterile. This probably explains why mib-1 was not previously recovered as a Notch pathway component in suppressor/enhancer selection experiments. Copyright © 2018 by the Genetics Society of America.

  7. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    DOE PAGES

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    2016-07-19

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways.more » Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.« less

  8. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways.more » Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.« less

  9. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.

    PubMed

    Meeske, Alexander J; Rodrigues, Christopher D A; Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G; Rudner, David Z

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.

  10. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression.

    PubMed

    Heuchel, R; Radtke, F; Georgiev, O; Stark, G; Aguet, M; Schaffner, W

    1994-06-15

    We have described and cloned previously a factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in the enhancer/promoter region of metallothionein genes. MTF-1 is a protein of 72.5 kDa that contains six zinc fingers and multiple domains for transcriptional activation. Here we report the disruption of both alleles of the MTF-1 gene in mouse embryonic stem cells by homologous recombination. The resulting null mutant cell line fails to produce detectable amounts of MTF-1. Moreover, due to the loss of MTF-1, the endogenous metallothionein I and II genes are silent, indicating that MTF-1 is required for both their basal and zinc-induced transcription. In addition to zinc, other heavy metals, including cadmium, copper, nickel and lead, also fail to activate metal-responsive promoters in null mutant cells. However, cotransfection of an MTF-1 expression vector and metal-responsive reporter genes yields strong basal transcription that can be further boosted by zinc treatment of cells. These results demonstrate that MTF-1 is essential for metallothionein gene regulation. Finally, we present evidence that MTF-1 itself is a zinc sensor, which exhibits increased DNA binding activity upon zinc treatment.

  11. Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome

    PubMed Central

    van Bueren, Kelly Lammerts; Papangeli, Irinna; Rochais, Francesca; Pearce, Kerra; Roberts, Catherine; Calmont, Amelie; Szumska, Dorota; Kelly, Robert G.; Bhattacharya, Shoumo; Scambler, Peter J.

    2010-01-01

    22q11 deletion syndrome (22q11DS) is characterised by aberrant development of the pharyngeal apparatus and the heart with haploinsufficiency of the transcription factor TBX1 being considered the major underlying cause of the disease. Tbx1 mutations in mouse phenocopy the disorder. In order to identify the transcriptional dysregulation in Tbx1-expressing lineages we optimised fluorescent-activated cell sorting of β-galactosidase expressing cells (FACS-Gal) to compare the expression profile of Df1/Tbx1lacZ (effectively Tbx1 null) and Tbx1 heterozygous cells isolated from mouse embryos. Hes1, a major effector of Notch signalling, was identified as downregulated in Tbx1−/− mutants. Hes1 mutant mice exhibited a partially penetrant range of 22q11DS-like defects including pharyngeal arch artery (PAA), outflow tract, craniofacial and thymic abnormalities. Similar to Tbx1 mice, conditional mutagenesis revealed that Hes1 expression in embryonic pharyngeal ectoderm contributes to thymus and pharyngeal arch artery development. These results suggest that Hes1 acts downstream of Tbx1 in the morphogenesis of pharyngeal-derived structures. PMID:20122914

  12. Both LOV1 and LOV2 domains of phototropin2 function as the photosensory domain for hypocotyl phototropic responses in Arabidopsis thaliana (Brassicaceae).

    PubMed

    Suetsugu, Noriyuki; Kong, Sam-Geun; Kasahara, Masahiro; Wada, Masamitsu

    2013-01-01

    Phototropins (phot) are blue light receptor proteins that mediate phototropism and control photomovement responses, such as chloroplast photorelocation movement and stomatal opening. Arabidopsis thaliana has two phototropins, phot1 and phot2. Although both phot1 and phot2 redundantly mediate photomovement responses, phot2 uniquely regulates phototropism and the chloroplast avoidance response under high-intensity blue light. However, compared to that of phot1, the mechanistic basis of phot2 function is poorly understood, and in particular, the importance of the LOV2 domain in phot2 function has not been clearly demonstrated. Indeed, photocycle-deficient LOV2 transgenic lines expressing phot2 in a phot1phot2 mutant background retained phototropism, although with less sensitivity than wild-type plants. We isolated 11 alleles of phot2 mutants and determined the molecular lesion in each allele. We analyzed hypocotyl phototropism, chloroplast photorelocation movement, and leaf flattening in the phot2 mutant and the respective phot1phot2 double mutant plants. We demonstrated that unlike the phot2 null mutant, the phot2-10 mutant, which has the defective phot2 LOV2 domain, retained the phototropic response and had unusual chloroplast movement. Mutants phot2-2 and phot2-6, which have a missense mutation in the kinase activation loop of phot2, had the phot2-null mutant phenotype. Furthermore, we convincingly demonstrated that the commonly used phot2-1 mutant allele is a phot2-null mutant. The analyses of the multiple phot2 mutant alleles provided strong evidence for the importance of both LOV domains and the kinase activation loop of phot2 in phototropism and other phot-dependent responses and also demonstrated that phot2-1 allele is a null mutant.

  13. The Functionally Conserved Nucleoporins Nup124p from Fission Yeast and the Human Nup153 Mediate Nuclear Import and Activity of the Tf1 Retrotransposon and HIV-1 VprV⃞

    PubMed Central

    Varadarajan, Padmapriya; Mahalingam, Sundarasamy; Liu, Peiyun; Ng, Sarah Boon Hsi; Gandotra, Sheetal; Dorairajoo, Desmond Suresh Kumar; Balasundaram, David

    2005-01-01

    We report that the fission yeast nucleoporin Nup124p is required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr. Failure to import Tf1-Gag into the nucleus in a nup124 null mutant resulted in complete loss of Tf1 transposition. Similarly, nuclear import of HIV-1 Vpr was impaired in nup124 null mutant strains and cells became resistant to Vpr's cell-killing activity. On the basis of protein domain similarity, the human nucleoporin Nup153 was identified as a putative homolog of Nup124p. We demonstrate that in vitro–translated Nup124p and Nup153 coimmunoprecipitate Tf1-Gag or HIV-1 Vpr. Though full-length Nup153 was unable to complement the Tf1 transposition defect in a nup124 null mutant, we provide evidence that both nucleoporins share a unique N-terminal domain, Nup124pAA264–454 and Nup153AA448–634 that is absolutely essential for Tf1 transposition. Epigenetic overexpression of this domain in a wild-type (nup124+) background blocked Tf1 activity implying that sequences from Nup124p and the human Nup153 challenged the same pathway affecting Tf1 transposition. Our results establish a unique relationship between two analogous nucleoporins Nup124p and Nup153 wherein the function of a common domain in retrotransposition is conserved. PMID:15659641

  14. Genetic separation of phototropism and blue light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.

  15. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32▿

    PubMed Central

    Lee, Won-Jae; Banavara, Dattatreya S.; Hughes, Joanne E.; Christiansen, Jason K.; Steele, James L.; Broadbent, Jeffery R.; Rankin, Scott A.

    2007-01-01

    Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine. PMID:17337535

  16. Phosphorylation of p53 modifies sensitivity to ionizing radiation.

    PubMed

    Okaichi, Kumio; Nose, Kanako; Kotake, Takako; Izumi, Nanaka; Kudo, Takashi

    2011-06-01

    Phosphorylation is an important modification involved in the control of p53 activity. We examined the relationship between p53 phosphorylation and cell radiosensitivity. We prepared H1299 cells (p53-null) with various mutations of p53 at three sites (serine 15, 20 and 46) and examined the radiosensitivity of the cells. In three mutant forms of p53--S15A, S20A and S46A--serine was converted to alanine at these sites to prevent phosphorylation, and in two other mutant forms, S15D and S20D, serine was converted to aspartic acid to mimic phosphorylation. H1299 cells were more radioresistant than cells with wild-type p53. Cells with the S15A and S46A mutant forms of p53 were radiosensitive, whereas those with the S15D, S20A and S20D forms showed medium radiosensitivity. Thus the sensitivity of cells to ionizing radiation varies according to the site of phosphorylation of p53.

  17. Decrease in Leaf Sucrose Synthesis Leads to Increased Leaf Starch Turnover and Decreased RuBP-limited Photosynthesis But Not Rubisco-limited Photosynthesis in Arabidopsis Null Mutants of SPSA1

    USDA-ARS?s Scientific Manuscript database

    SPS (Sucrose phosphate synthase) isoforms from dicots cluster into families A, B and C. In this study, we investigated the individual effect of null mutations of each of the four SPS genes in Arabidopsis (spsa1, spsa2, spsb and spsc) on photosynthesis and carbon partitioning. Null mutants spsa1 and ...

  18. Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg.

    PubMed

    van de Vrugt, Henri J; Koomen, Mireille; Bakker, Sietske; Berns, Mariska A D; Cheng, Ngan Ching; van der Valk, Martin A; de Vries, Yne; Rooimans, Martin A; Oostra, Anneke B; Hoatlin, Maureen E; Te Riele, Hein; Joenje, Hans; Arwert, Fré

    2011-12-10

    Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely. 2011 Elsevier B.V. All rights reserved.

  19. In vivo replication of an ICP34.5 second-site suppressor mutant following corneal infection correlates with in vitro regulation of eIF2 alpha phosphorylation.

    PubMed

    Ward, Stephen L; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J; Mohr, Ian; Leib, David A

    2003-04-01

    In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.

  20. In Vivo Replication of an ICP34.5 Second-Site Suppressor Mutant following Corneal Infection Correlates with In Vitro Regulation of eIF2α Phosphorylation

    PubMed Central

    Ward, Stephen L.; Scheuner, Donalyn; Poppers, Jeremy; Kaufman, Randal J.; Mohr, Ian; Leib, David A.

    2003-01-01

    In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2α. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2α following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2α phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2α, while the wild-type virus substantially reduced eIF2α phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation. PMID:12663769

  1. Glucosylceramide is Critical for Cell-Type Differentiation and Organogenesis, but not for Cell Viability in Arabidopsis

    PubMed Central

    Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D.; Bradley, Amanda M.; Mays, Elizabeth S.; Paper, Janet M.; Boyle, Daniel L.; Cahoon, Rebecca E.; Schrick, Kathrin; Cahoon, Edgar B.

    2015-01-01

    Summary Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryote cells. Yet, the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines lacking or deficient in GlcCer by insertional disruption or by RNAi suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated “gcs-1”) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce GlcCer amounts in excess of that required for normal development. PMID:26313010

  2. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans.

    PubMed

    Mellado, Laura; Calcagno-Pizarelli, Ana Maria; Lockington, Robin A; Cortese, Marc S; Kelly, Joan M; Arst, Herbert N; Espeso, Eduardo A

    2015-09-01

    The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to the pezizomycotina subphylum. The relevance of the Slt regulatory pathway to cell structure, intracellular trafficking and cation homeostasis and its restricted phylogenetic distribution makes this pathway of general interest for future investigation and as a source of targets for antifungal drugs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    PubMed

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  4. The lateral mobility of cell adhesion molecules is highly restricted at septate junctions in Drosophila.

    PubMed

    Laval, Monique; Bel, Christophe; Faivre-Sarrailh, Catherine

    2008-07-18

    A complex of three cell adhesion molecules (CAMs) Neurexin IV(Nrx IV), Contactin (Cont) and Neuroglian (Nrg) is implicated in the formation of septate junctions between epithelial cells in Drosophila. These CAMs are interdependent for their localization at septate junctions and e.g. null mutation of nrx IV or cont induces the mislocalization of Nrg to the baso-lateral membrane. These mutations also result in ultrastructural alteration of the strands of septate junctions and breakdown of the paracellular barrier. Varicose (Vari) and Coracle (Cora), that both interact with the cytoplasmic tail of Nrx IV, are scaffolding molecules required for the formation of septate junctions. We conducted photobleaching experiments on whole living Drosophila embryos to analyze the membrane mobility of CAMs at septate junctions between epithelial cells. We show that GFP-tagged Nrg and Nrx IV molecules exhibit very stable association with septate junctions in wild-type embryos. Nrg-GFP is mislocalized to the baso-lateral membrane in nrx IV or cont null mutant embryos, and displays increased mobile fraction. Similarly, Nrx IV-GFP becomes distributed to the baso-lateral membrane in null mutants of vari and cora, and its mobile fraction is strongly increased. The loss of Vari, a MAGUK protein that interacts with the cytoplasmic tail of Nrx IV, has a stronger effect than the null mutation of nrx IV on the lateral mobility of Nrg-GFP. The strands of septate junctions display a stable behavior in vivo that may be correlated with their role of paracellular barrier. The membrane mobility of CAMs is strongly limited when they take part to the multimolecular complex forming septate junctions. This restricted lateral diffusion of CAMs depends on both adhesive interactions and clustering by scaffolding molecules. The lateral mobility of CAMs is strongly increased in embryos presenting alteration of septate junctions. The stronger effect of vari by comparison with nrx IV null mutation supports the hypothesis that this scaffolding molecule may cross-link different types of CAMs and play a crucial role in stabilizing the strands of septate junctions.

  5. Loss of Atg16 delays the alcohol-induced sedation response via regulation of Corazonin neuropeptide production in Drosophila.

    PubMed

    Varga, Kata; Nagy, Péter; Arsikin Csordás, Katarina; Kovács, Attila L; Hegedűs, Krisztina; Juhász, Gábor

    2016-10-06

    Autophagy defects lead to the buildup of damaged proteins and organelles, reduced survival during starvation and infections, hypersensitivity to stress and toxic substances, and progressive neurodegeneration. Here we show that, surprisingly, Drosophila mutants lacking the core autophagy gene Atg16 are not only defective in autophagy but also exhibit increased resistance to the sedative effects of ethanol, unlike Atg7 or Atg3 null mutant flies. This mutant phenotype is rescued by the re-expression of Atg16 in Corazonin (Crz)-producing neurosecretory cells that are known to promote the sedation response during ethanol exposure, and RNAi knockdown of Atg16 specifically in these cells also delays the onset of ethanol-induced coma. We find that Atg16 and Crz colocalize within these neurosecretory cells, and both Crz protein and mRNA levels are decreased in Atg16 mutant flies. Thus, Atg16 promotes Crz production to ensure a proper organismal sedation response to ethanol.

  6. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients

    PubMed Central

    Arnold, Jelena S.; Braunstein, Evan M.; Ohyama, Takahiro; Groves, Andrew K.; Adams, Joe C.; Brown, M. Christian; Morrow, Bernice E.

    2007-01-01

    Most 22q11.2 deletion syndrome (22q11DS) patients have middle and outer ear anomalies, whereas some have inner ear malformations. Tbx1, a gene hemizygously deleted in 22q11DS patients and required for ear development, is expressed in multiple tissues during embryogenesis. To determine the role of Tbx1 in the first pharyngeal pouch (PPI) in forming outer and middle ears, we tissue-specifically inactivated the gene using Foxg1-Cre. In the conditional mutants, PPI failed to outgrow, preventing the middle ear bone condensations from forming. Tbx1 was also inactivated in the otic vesicle (OV), resulting in the failure of inner ear sensory organ formation, and in duplication of the cochleovestibular ganglion (CVG). Consistent with the anatomical defects, the sensory genes, Otx1 and Bmp4 were downregulated, whereas the CVG genes, Fgf3 and NeuroD, were upregulated. To delineate Tbx1 cell-autonomous roles, a more selective ablation, exclusively in the OV, was performed using Pax2-Cre. In contrast to the Foxg1-Cre mutants, Pax2-Cre conditional mutant mice survived to adulthood and had normal outer and middle ears but had the same inner ear defects as the Tbx1 null mice, with the same gene expression changes. These results demonstrate that Tbx1 has non-cell autonomous roles in PPI in the formation of outer and middle ears and cell-autonomous roles in the OV. Periotic mesenchymal markers, Prx2 and Brn4 were normal in both conditional mutants, whereas they were diminished in Tbx1−/− embryos. Thus, Tbx1 in the surrounding mesenchyme in both sets of conditional mutants cannot suppress the defects in the OV that occur in the null mutants. PMID:16600992

  7. Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype.

    PubMed

    Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M

    2002-08-01

    mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.

  8. Chromosomal Translocations in the Parasite Leishmania by a MRE11/RAD50-Independent Microhomology-Mediated End Joining Mechanism

    PubMed Central

    Laffitte, Marie-Claude N.; Leprohon, Philippe; Hainse, Maripier; Légaré, Danielle; Masson, Jean-Yves; Ouellette, Marc

    2016-01-01

    The parasite Leishmania often relies on gene rearrangements to survive stressful environments. However, safeguarding a minimum level of genome integrity is important for cell survival. We hypothesized that maintenance of genomic integrity in Leishmania would imply a leading role of the MRE11 and RAD50 proteins considering their role in DNA repair, chromosomal organization and protection of chromosomes ends in other organisms. Attempts to generate RAD50 null mutants in a wild-type background failed and we provide evidence that this gene is essential. Remarkably, inactivation of RAD50 was possible in a MRE11 null mutant that we had previously generated, providing good evidence that RAD50 may be dispensable in the absence of MRE11. Inactivation of the MRE11 and RAD50 genes led to a decreased frequency of homologous recombination and analysis of the null mutants by whole genome sequencing revealed several chromosomal translocations. Sequencing of the junction between translocated chromosomes highlighted microhomology sequences at the level of breakpoint regions. Sequencing data also showed a decreased coverage at subtelomeric locations in many chromosomes in the MRE11-/-RAD50-/- parasites. This study demonstrates an MRE11-independent microhomology-mediated end-joining mechanism and a prominent role for MRE11 and RAD50 in the maintenance of genomic integrity. Moreover, we suggest the possible involvement of RAD50 in subtelomeric regions stability. PMID:27314941

  9. The mitochondrial SIR2 related protein 2 (SIR2RP2) impacts Leishmania donovani growth and infectivity

    PubMed Central

    Mittal, Nimisha; Muthuswami, Rohini

    2017-01-01

    Background Leishmania donovani, a protozoan parasite is the major causative agent of visceral leishmaniasis. Increased toxicity and resistance to the existing repertoire of drugs has been reported. Hence, an urgent need exists for identifying newer drugs and drug targets. Previous reports have shown sirtuins (Silent Information Regulator) from kinetoplastids as promising drug targets. Leishmania species code for three SIR2 (Silent Information Regulator) related proteins. Here, we for the first time report the functional characterization of SIR2 related protein 2 (SIR2RP2) of L. donovani. Methodology Recombinant L. donovani SIR2RP2 was expressed in E. coli and purified. The enzymatic functions of SIR2RP2 were determined. The subcellular localization of LdSIR2RP2 was done by constructing C-terminal GFP-tagged full-length LdSIR2RP2. Deletion mutants of LdSIR2RP2 were generated in Leishmania by double targeted gene replacement methodology. These null mutants were tested for their proliferation, virulence, cell cycle defects, mitochondrial functioning and sensitivity to known SIR2 inhibitors. Conclusion Our data suggests that LdSIR2RP2 possesses NAD+-dependent ADP-ribosyltransferase activity. However, NAD+-dependent deacetylase and desuccinylase activities were not detected. The protein localises to the mitochondrion of the promastigotes. Gene deletion studies showed that ΔLdSIR2RP2 null mutants had restrictive growth phenotype associated with accumulation of cells in the G2/M phase and compromised mitochondrial functioning. The null mutants had attenuated infectivity. Deletion of LdSIR2RP2 resulted in increased sensitivity of the parasites to the known SIR2 inhibitors. The sirtuin inhibitors inhibited the ADP-ribosyltransferase activity of recombinant LdSIR2RP2. In conclusion, sirtuins could be used as potential new drug targets for visceral leishmaniasis. PMID:28493888

  10. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts

    PubMed Central

    Jette, Cicely A.

    2016-01-01

    The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC diseases. PMID:28005909

  11. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN

    PubMed Central

    Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.

    2016-01-01

    We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331

  12. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    PubMed Central

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  13. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: The importance of assessing the amount of running in transgenic mice studies

    PubMed Central

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.

    2014-01-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600

  14. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome.

    PubMed

    Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Sáez-Vásquez, Julio

    2016-08-09

    The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. An essential role for Ink4 and Cip/Kip cell-cycle inhibitors in preventing replicative stress.

    PubMed

    Quereda, V; Porlan, E; Cañamero, M; Dubus, P; Malumbres, M

    2016-03-01

    Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.

  16. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility

    PubMed Central

    1993-01-01

    Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174

  17. STRIP1, a core component of STRIPAK complexes, is essential for normal mesoderm migration in the mouse embryo.

    PubMed

    Bazzi, Hisham; Soroka, Ekaterina; Alcorn, Heather L; Anderson, Kathryn V

    2017-12-19

    Regulated mesoderm migration is necessary for the proper morphogenesis and organ formation during embryonic development. Cell migration and its dependence on the cytoskeleton and signaling machines have been studied extensively in cultured cells; in contrast, remarkably little is known about the mechanisms that regulate mesoderm cell migration in vivo. Here, we report the identification and characterization of a mouse mutation in striatin-interacting protein 1 ( Strip1 ) that disrupts migration of the mesoderm after the gastrulation epithelial-to-mesenchymal transition (EMT). STRIP1 is a core component of the biochemically defined mammalian striatin-interacting phosphatases and kinase (STRIPAK) complexes that appear to act through regulation of protein phosphatase 2A (PP2A), but their functions in mammals in vivo have not been examined. Strip1 -null mutants arrest development at midgestation with profound disruptions in the organization of the mesoderm and its derivatives, including a complete failure of the anterior extension of axial mesoderm. Analysis of cultured mesoderm explants and mouse embryonic fibroblasts from null mutants shows that the mesoderm migration defect is correlated with decreased cell spreading, abnormal focal adhesions, changes in the organization of the actin cytoskeleton, and decreased velocity of cell migration. The results show that STRIPAK complexes are essential for cell migration and tissue morphogenesis in vivo. Copyright © 2017 the Author(s). Published by PNAS.

  18. The mir-279/996 cluster represses receptor tyrosine kinase signaling to determine cell fates in the Drosophila eye.

    PubMed

    Duan, Hong; de Navas, Luis F; Hu, Fuqu; Sun, Kailiang; Mavromatakis, Yannis E; Viets, Kayla; Zhou, Cyrus; Kavaler, Joshua; Johnston, Robert J; Tomlinson, Andrew; Lai, Eric C

    2018-04-09

    Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal growth factor receptor (EGFR) and the Sevenless (Sev) receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye. Moreover, mir-279/996 mutants exhibit substantial numbers of ectopic photoreceptors, particularly of R7, and cone cell loss. These miRNAs restrict RTK signaling in the eye, since mir-279/996 nulls are dominantly suppressed by positive components of the EGFR pathway and enhanced by heterozygosity for an EGFR repressor. miR-279/996 limit photoreceptor recruitment by targeting multiple positive RTK/Ras signaling components that promote photoreceptor/R7 specification. Strikingly, deletion of mir-279/996 sufficiently derepresses RTK/Ras signaling so as to rescue a population of R7 cells in R7-specific RTK null mutants boss and sev , which otherwise completely lack this cell fate. Altogether, we reveal a rare setting of developmental cell specification that involves substantial miRNA control. © 2018. Published by The Company of Biologists Ltd.

  19. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana.

    PubMed

    Mottram, J C; McCready, B P; Brown, K G; Grant, K M

    1996-11-01

    The generation of homozygous null mutants for the crk1 Cdc2-Related Kinase of Leishmania mexicana was attempted using targeted gene disruption. Promastigote mutants heterozygous for crk1 were readily isolated with a hyg-targeting fragment, but attempts to create null mutants by second-round transfections with a bie-targeting fragment yielded two classes of mutant, neither of which was null. First, the transfected fragment formed an episome; second, the cloned transfectants were found to contain wild-type crk1 alleles as well as hyg and ble integrations. DNA-content analysis revealed that these mutants were triploid or tetraploid. Plasticity in chromosome number following targeting has been proposed as a means by which Leishmania avoids deletion of essential genes. These data support this theory and implicate crk1 as an essential gene, validating CRK1 as a potential drug target. L mexicana transfected with a Trypanosoma brucel homologue, tbcrk1, was shown to be viable in an immcrk1 null background, thus showing complementation of function between these trypanosomatid genes. The expression of crk1 was further manipulated by engineering a six-histidine tag at the C-terminus of the kinase, allowing purification of the active complex by affinity selection on Nl(2+)-nitriloacetic acid (NTA) agarose.

  20. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    PubMed

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  1. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF5-deficient mice

    PubMed Central

    Maier, Jennifer A.; Harfe, Brian D.

    2011-01-01

    Study Design The transition of the mouse embryonic notochord into nuclei pulposi was determined (“fate mapped”) in vivo in GDF-5 null mice using the Shhcre and R26R alleles. Objective To determine if abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5 null mice. Summary of Background Data The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5 null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5 null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or resulted from progressive postnatal degeneration of nuclei pulposi. Methods Gdf-5 mRNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5 null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24 week old mice. Results Our Gdf-5 mRNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate mapping experiments revealed that notochord cells in Gdf-5 null mice correctly form nuclei pulposi. Conclusion Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5 null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects. PMID:21278629

  2. Analysis of a homologue of the adducin head gene which is a potential target for the Dictyostelium STAT protein Dd-STATa.

    PubMed

    Aoshima, Ryota; Hiraoka, Rieko; Shimada, Nao; Kawata, Takefumi

    2006-01-01

    A Dd-STATa-null mutant, which is defective in expression of a Dictyostelium homologue of the metazoan STAT (signal transducers and activators of transcription) proteins, fails to culminate and this phenotype correlates with the loss of expression of various prestalk (pst) genes. An EST clone, SSK395, encodes a close homologue of the adducin amino-terminal head domain and harbors a putative actin-binding domain. We fused promoter fragments of the cognate gene, ahhA (adducin head homologue A), to a lacZ reporter and determined their expression pattern. The proximal promoter region is necessary for the expression of ahhA at an early (pre-aggregative) stage of development and this expression is Dd-STATa independent. The distal promoter region is necessary for expression at later stages of development in pstA cells, of the slug and in upper cup and pstAB cells during culmination. The distal region is partly Dd-STATa-dependent. The ahhA-null mutant develops almost normally until culmination, but it forms slanting culminants that tend to collapse on to the substratum. The mutant also occasionally forms fruiting bodies with swollen papillae and with constrictions in the prestalk region. The AhhA protein localizes to the stalk tube entrance and also to the upper cup cells and in cells at or near to the constricted region where an F-actin ring is localized. These findings suggest that Dd-STATa regulates culmination and may be necessary for straight downward elongation of the stalk, via the putative actin-binding protein AhhA.

  3. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis

    PubMed Central

    Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940

  4. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures

    PubMed Central

    Kho, Eun-Young; Wang, Hsu-Kun; Banerjee, N. Sanjib; Broker, Thomas R.; Chow, Louise T.

    2013-01-01

    Human papillomaviruses (HPVs) amplify in differentiated strata of a squamous epithelium. The HPV E7 protein destabilizes the p130/retinoblastoma susceptibility protein family of tumor suppressors and reactivates S-phase reentry, thereby facilitating viral DNA amplification. The high-risk HPV E6 protein destabilizes the p53 tumor suppressor and many other host proteins. However, the critical E6 targets relevant to viral DNA amplification have not been identified, because functionally significant E6 mutants are not stably maintained in transfected cells. Using Cre-loxP recombination, which efficiently generates HPV genomic plasmids in transfected primary human keratinocytes, we have recapitulated a highly productive infection of HPV-18 in organotypic epithelial cultures. By using this system, we now report the characterization of four HPV-18 E6 mutations. An E6 null mutant accumulated high levels of p53 and amplified very poorly. p53 siRNA or ectopic WT E6 partially restored amplification, whereas three missense E6 mutations that did not effectively destabilize p53 complemented the null mutant poorly. Unexpectedly, in cis, two of the missense mutants amplified, albeit to a lower extent than the WT and only in cells with undetectable p53. These observations and others implicate p53 and additional host proteins in regulating viral DNA amplification and also suggest an inhibitory effect of E6 overexpression. We show that high levels of viral DNA amplification are critical for late protein expression and report several previously undescribed viral RNAs, including bicistronic transcripts predicted to encode E5 and L2 or an alternative form of E1^E4 and L1. PMID:23572574

  5. The α Glycerophosphate Cycle in Drosophila melanogaster V. Molecular Analysis of α Glycerophosphate Dehydrogenase and α Glycerophosphate Oxidase Mutants

    PubMed Central

    Carmon, Amber; Chien, Jeff; Sullivan, David

    2010-01-01

    Two enzymes, α glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and α glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene. PMID:19995806

  6. The alpha glycerophosphate cycle in Drosophila melanogaster V. molecular analysis of alpha glycerophosphate dehydrogenase and alpha glycerophosphate oxidase mutants.

    PubMed

    Carmon, Amber; Chien, Jeff; Sullivan, David; MacIntyre, Ross

    2010-01-01

    Two enzymes, alpha glycerophosphate dehydrogenase (GPDH-1) in the cytoplasm and alpha glycerophosphate oxidase (GPO-1) in the mitochondrion cooperate in Drosophila flight muscles to generate the ATP needed for muscle contraction. Null mutants for either enzyme cannot fly. Here, we characterize 15 ethyl methane sulfonate (EMS)-induced mutants in GPDH-1 at the molecular level and assess their effects on structural and evolutionarily conserved domains of this enzyme. In addition, we molecularly characterize 3 EMS-induced GPO-1 mutants and excisions of a P element insertion in the GPO-1 gene. The latter represent the best candidate for null or amorphic mutants in this gene.

  7. Dictyostelium RasG Is Required for Normal Motility and Cytokinesis, But Not Growth

    PubMed Central

    Tuxworth, Richard I.; Cheetham, Janet L.; Machesky, Laura M.; Spiegelmann, George B.; Weeks, Gerald; Insall, Robert H.

    1997-01-01

    RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG − cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG − cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton. PMID:9245789

  8. Identification of new modes of Dd-STATa regulation of gene expression in Dictyostelium by in situ hybridisation.

    PubMed

    Shimada, Nao; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2004-09-01

    Signal Transducers and Activators of Transcription (STATs) are transcription factors which lie at the end of cytokine and growth signal transduction pathways. Dictyostelium Dd-STATa is a functional homologue of metazoan STATs. It is activated by cAMP and, at the slug stage, it translocates into the nuclei of the tip cells, which are a subset of the anterior, prestalk A (pstA) cells. Here we searched for novel Dd-STATa regulated genes by in situ hybridisation. A set of 54 cDNA clones whose gene expression patterns are known to be prestalk-specific (Maeda et al., 2003), were chosen as probes and we compared their expression patterns in parental and Dd-STATa-null strains. We identified 13 genes which are candidates for direct induction by Dd-STATa. In the parental strain, most of these genes are expressed in the cone shaped mass of pstAB cells which is located within the prestalk region. These cDNAs show little or no expression in the Dd-STATa-null strain. This contrasts markedly with the paradigmatic ecmB gene which is expressed in pstAB cells in parental cells, but which is expressed throughout the prestalk zone in the Dd-STATa-null strain. We also identified several genes which are normally expressed in pstA cells, or throughout the prestalk region, but whose expression is markedly down-regulated in the null mutant. Again, this contrasts with markers derived from the paradigmatic, ecmA gene which are expressed normally in the Dd-STATa-null strain. The identification of these novel genes provides valuable tools to investigate the role of Dd-STATa.

  9. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis

    PubMed Central

    Lionakis, Michail S.; Nickerson, Kenneth W.

    2016-01-01

    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment. PMID:27727302

  10. Inactivation of retinoblastoma protein does not overcome the requirement for human cytomegalovirus UL97 in lamina disruption and nuclear egress.

    PubMed

    Reim, Natalia I; Kamil, Jeremy P; Wang, Depeng; Lin, Alison; Sharma, Mayuri; Ericsson, Maria; Pesola, Jean M; Golan, David E; Coen, Donald M

    2013-05-01

    Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild-type but not UL97-null virus infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.

  11. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J; Baluska, Frantisek

    2016-11-01

    Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum-plasma membrane (ER-PM) contact sites in leaf and root cells. The ER-PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER-PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER-PM contact sites. The VAP27-1-enriched ER-PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER-PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER-PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Proliferation of smooth muscle cells stimulated by Porphyromonas gingivalis is inhibited by apple polyphenol.

    PubMed

    Inaba, Hiroaki; Tagashira, Motoyuki; Kanda, Tomomasa; Amano, Atsuo

    2011-11-01

    Porphyromonas gingivalis (Pg) is thought to be involved in the progression of occlusive arterial lesions, whereas vascular smooth muscle cell (SMC) proliferation is considered to be involved in occlusive arterial disease. We previously showed that bacteremia caused by Pg infection induced proliferation of mouse aortic SMCs. Furthermore, human SMCs stimulated with human plasma incubated with Pg showed a marked transformation from the contractile to proliferative phenotype. In the present study, we examine the involvement of Pg gingipains and fimbriae in induction of the SMC transformation and proliferation, and effective inhibitors. Pg strains including gingipain- and fimbria-null mutants were incubated in human plasma, after which the bacteria were removed and the supernatants were added to cultured SMCs. To evaluate the effects of inhibitors, Pg organisms were incubated in plasma in the presence of apple polyphenol (AP), epigallocatechin gallate, KYT-1 (Arg-gingipain inhibitor), and KYT-36 (Lys-gingipain inhibitor). Plasma supernatants from wild-type and fimbria-mutant cultures markedly stimulated cellular proliferation, whereas those containing gingipain-null mutants showed negligible effects. SMC proliferation was also induced by plasma treated with trypsin. Furthermore, plasma supernatants cultured in the presence of KYT-1/KYT-36 and AP showed significant inhibitory effects on SMC proliferation, whereas cultures with epigallocatechin gallate did not. Our results suggest that Pg gingipains are involved in the induction of SMC transformation and proliferation, whereas this was inhibited by AP.

  13. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  14. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.

    PubMed

    Yan, C; Wang, P; DeMayo, J; DeMayo, F J; Elvin, J A; Carino, C; Prasad, S V; Skinner, S S; Dunbar, B S; Dube, J L; Celeste, A J; Matzuk, M M

    2001-06-01

    Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.

  15. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production.

    PubMed

    Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami

    2015-08-01

    Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  17. The anthracenedione compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae.

    PubMed

    Xu, Chunling; Wang, Jiafeng; Gao, Ye; Lin, Huangyu; Du, Lin; Yang, Shanshan; Long, Simei; She, Zhigang; Cai, Xiaoling; Zhou, Shining; Lu, Yongjun

    2010-05-01

    Bostrycin is an anthracenedione with phytotoxic and antibacterial activity that belongs to the large family of quinones. We have isolated bostrycin from the secondary metabolites of a mangrove endophytic fungus, no. 1403, collected from the South China Sea. Using the yeast Saccharomyces cerevisiae as a model, we show that bostrycin inhibits cell proliferation by blocking the cell cycle at G1 phase and ultimately leads to cell death in a time- and dose-dependent manner. Bostrycin-induced lethal cytotoxicity is accompanied with increased levels of intracellular reactive oxygen species and hallmarks of apoptosis such as chromatin condensation, DNA fragmentation and externalization of phosphatidylserine. We further show that bostrycin decreases mitochondrial membrane electric potential and causes mitochondrial destruction during the progression of cell death. Bostrycin-induced cell death was promoted in YCA1 null yeast strain but was partially rescued in AIF1 null mutant both in fermentative and respiratory media, strongly indicating that bostrycin induces apoptosis in yeast cells through a mitochondria-mediated but caspase-independent pathway.

  18. Involvement of MoVMA11, a Putative Vacuolar ATPase c’ Subunit, in Vacuolar Acidification and Infection-Related Morphogenesis of Magnaporthe oryzae

    PubMed Central

    Chen, Guoqing; Liu, Xiaohong; Zhang, Lilin; Cao, Huijuan; Lu, Jianping; Lin, Fucheng

    2013-01-01

    Many functions of vacuole depend on the activity of vacuolar ATPase which is essential to maintain an acidic lumen and create the driving forces for massive fluxes of ions and metabolites through vacuolar membrane. In filamentous fungus Magnaporthe oryzae , subcellular colocalization and quinacrine staining suggested that the V1V0 domains of V-ATPase were fully assembled and the vacuoles were kept acidic during infection-related developments. Targeted gene disruption of MoVMA11 gene, encoding the putative c’ subunit of V-ATPase, impaired vacuolar acidification and mimicked the phenotypes of yeast V-ATPase mutants in the poor colony morphology, abolished asexual and sexual reproductions, selective carbon source utilization, and increased calcium and heavy metals sensitivities, however, not in the typical pH conditional lethality. Strikingly, aerial hyphae of the MoVMA11 null mutant intertwined with each other to form extremely thick filamentous structures. The results also implicated that MoVMA11 was involved in cell wall integrity and appressorium formation. Abundant non-melanized swollen structures and rare, small appressoria without penetration ability were produced at the hyphal tips of the ΔMovma11 mutant on onion epidermal cells. Finally, the MoVMA11 null mutant lost pathogenicity on both intact and wounded host leaves. Overall, our data indicated that MoVMA11, like other fungal VMA genes, is associated with numerous cellular functions and highlighted that V-ATPase is essential for infection-related morphogenesis and pathogenesis in M . oryzae . PMID:23826342

  19. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies.

    PubMed

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J

    2013-11-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Antigen Presentation by Individually Transferred HLA Class I Genes in HLA-A, HLA-B, HLA-C Null Human Cell Line Generated Using the Multiplex CRISPR-Cas9 System.

    PubMed

    Hong, Cheol-Hwa; Sohn, Hyun-Jung; Lee, Hyun-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    Human leukocyte antigens (HLAs) are essential immune molecules that affect transplantation and adoptive immunotherapy. When hematopoietic stem cells or organs are transplanted with HLA-mismatched recipients, graft-versus-host disease or graft rejection can be induced by allogeneic immune responses. The function of each HLA allele has been studied using HLA-deficient cells generated from mutant cell lines or by RNA interference, zinc finger nuclease, and the CRISPR/Cas9 system. To improve HLA gene editing, we attempted to generate an HLA class I null cell line using the multiplex CRISPR/Cas9 system by targeting exons 2 and 3 of HLA-A, HLA-B, and HLA-C genes simultaneously. Multiplex HLA editing could induce the complete elimination of HLA class I genes by bi-allelic gene disruption on target sites which was defined by flow cytometry and target-specific polymerase chain reaction. Furthermore, artificial antigen-presenting cells were generated by transfer of a single HLA class I allele and co-stimulatory molecules into this novel HLA class I null cell line. Artificial antigen-presenting cells showed HLA-restricted antigen presentation following antigen processing and were successfully used for the efficient generation of tumor antigen-specific cytotoxic T cells in vitro. The efficient editing of HLA genes may provide a basis for universal cellular therapies and transplantation.

  1. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks

    PubMed Central

    Stante, Maria; Minopoli, Giuseppina; Passaro, Fabiana; Raia, Maddalena; Vecchio, Luigi Del; Russo, Tommaso

    2009-01-01

    Fe65 is a binding partner of the Alzheimer's β-amyloid precursor protein APP. The possible involvement of this protein in the cellular response to DNA damage was suggested by the observation that Fe65 null mice are more sensitive to genotoxic stress than WT counterpart. Fe65 associated with chromatin under basal conditions and its involvement in DNA damage repair requires this association. A known partner of Fe65 is the histone acetyltransferase Tip60. Considering the crucial role of Tip60 in DNA repair, we explored the hypothesis that the phenotype of Fe65 null cells depended on its interaction with Tip60. We demonstrated that Fe65 knockdown impaired recruitment of Tip60-TRRAP complex to DNA double strand breaks and decreased histone H4 acetylation. Accordingly, the efficiency of DNA repair was decreased upon Fe65 suppression. To explore whether APP has a role in this mechanism, we analyzed a Fe65 mutant unable to bind to APP. This mutant failed to rescue the phenotypes of Fe65 null cells; furthermore, APP/APLP2 suppression results in the impairment of recruitment of Tip60-TRRAP complex to DNA double strand breaks, decreased histone H4 acetylation and repair efficiency. On these bases, we propose that Fe65 and its interaction with APP play an important role in the response to DNA damage by assisting the recruitment of Tip60-TRRAP to DNA damage sites. PMID:19282473

  2. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans.

    PubMed

    Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T

    2007-12-12

    The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell-cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the alpha-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration.

  3. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells.

    PubMed

    Cotmore, S F; D'Abramo, A M; Carbonell, L F; Bratton, J; Tattersall, P

    1997-05-12

    Mutants of minute virus of mice (MVM) which express truncated forms of the NS2 polypeptide are known to exhibit a host range defect, replicating productively in transformed human cells but not in cells from their normal murine host. To explore this deficiency we generated viruses with translation termination codons at various positions in the second exon of NS2. In human cells these mutants were viable, but showed a late defect in progeny virion release which put them at a selective disadvantage compared to the wildtype. In murine cells, however, duplex viral DNA amplification was reduced to 5% of wildtype levels and single-strand DNA synthesis was undetectable. These deficiencies could not be attributed to a failure to initiate infection or to a generalized defect in viral gene expression, since the viral replicator protein NS1 was expressed to normal or elevated levels early in infection. In contrast, truncated NS2 gene products failed to accumulate, so that each mutant exhibited a similar NS2-null phenotype. Expression of the capsid polypeptides VP1 and VP2 and their subsequent assembly into intact particles were examined in detail. Synchronized infected cell populations labeled under pulse-chase conditions were analyzed by differential immunoprecipitation of native or denatured extracts using antibodies which discriminated between intact particles and isolated polypeptide chains. These analyses showed that at early times in infection, capsid protein synthesis and stability were normal, but particle assembly was impaired. Unassembled VP proteins were retained in the cell for several hours, but as the unprocessed material accumulated, capsid protein synthesis progressively diminished, so that at later times relatively few VP molecules were synthesized. Thus in NS2-null infections of mouse cells there is a major primary defect in the folding or assembly processes required for effective capsid production.

  4. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  5. The engulfment receptor Draper is required for autophagy during cell death.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2010-11-01

    Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction: during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.

  6. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism

    PubMed Central

    2012-01-01

    Background B cell lymphoma 2 (Bcl-2) proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor) signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K) signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an important non-apoptotic role to promote survival of the whole organism in a stressful situation. PMID:22824239

  7. Retinoic acid from the meninges regulates cortical neuron generation.

    PubMed

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  8. Investigating the Role of Helicobacter pylori PriA Protein.

    PubMed

    Singh, Aparna; Blaskovic, Dusan; Joo, Jungsoo; Yang, Zhen; Jackson, Sharon H; Coleman, William G; Yan, Ming

    2016-08-01

    In bacteria, PriA protein, a conserved DEXH-type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA binding property allows it to recognize and stabilize stalled forks and the structures derived from them. PriA plays a very critical role in replication fork stabilization and DNA repair in E. coli and N. gonorrhoeae. In our in vivo expression technology screen, priA gene was induced in vivo when Helicobacter pylori infects mouse stomach. We decided to elucidate the role of H. pylori PriA protein in survival in mouse stomach, survival in gastric epithelial cells and macrophage cells, DNA repair, acid stress, and oxidative stress. The priA null mutant strain was unable to colonize mice stomach mucosa after long-term infections. Mouse colonization was observed after 1 week of infection, but the levels were much lower than the wild-type HpSS1 strain. PriA protein was found to be important for intracellular survival of epithelial cell-/macrophage cell-ingested H. pylori. Also, a priA null mutant was more sensitive to DNA-damaging agents and was much more sensitive to acid and oxidative stress as compared to the wild-type strain. These data suggest that the PriA protein is needed for survival and persistence of H. pylori in mice stomach mucosa. © 2016 John Wiley & Sons Ltd.

  9. Mice That Lack Thrombospondin 2 Display Connective Tissue Abnormalities That Are Associated with Disordered Collagen Fibrillogenesis, an Increased Vascular Density, and a Bleeding Diathesis

    PubMed Central

    Kyriakides, Themis R.; Zhu, Yu-Hong; Smith, Lynne T.; Bain, Steven D.; Yang, Zhantao; Lin, Ming T.; Danielson, Keith G.; Iozzo, Renato V.; LaMarca, Mary; McKinney, Cindy E.; Ginns, Edward I.; Bornstein, Paul

    1998-01-01

    Thrombospondin (TSP) 2, and its close relative TSP1, are extracellular proteins whose functions are complex, poorly understood, and controversial. In an attempt to determine the function of TSP2, we disrupted the Thbs2 gene by homologous recombination in embryonic stem cells, and generated TSP2-null mice by blastocyst injection and appropriate breeding of mutant animals. Thbs2−/− mice were produced with the expected Mendelian frequency, appeared overtly normal, and were fertile. However, on closer examination, these mice displayed a wide variety of abnormalities. Collagen fiber patterns in skin were disordered, and abnormally large fibrils with irregular contours were observed by electron microscopy in both skin and tendon. As a functional correlate of these findings, the skin was fragile and had reduced tensile strength, and the tail was unusually flexible. Mutant skin fibroblasts were defective in attachment to a substratum. An increase in total density and in cortical thickness of long bones was documented by histology and quantitative computer tomography. Mutant mice also manifested an abnormal bleeding time, and histologic surveys of mouse tissues, stained with an antibody to von Willebrand factor, showed a significant increase in blood vessels. The basis for the unusual phenotype of the TSP2-null mouse could derive from the structural role that TSP2 might play in collagen fibrillogenesis in skin and tendon. However, it seems likely that some of the diverse manifestations of this genetic disorder result from the ability of TSP2 to modulate the cell surface properties of mesenchymal cells, and thus, to affect cell functions such as adhesion and migration. PMID:9442117

  10. Zn2+ Uptake in Streptococcus pyogenes: Characterization of adcA and lmb Null Mutants.

    PubMed

    Tedde, Vittorio; Rosini, Roberto; Galeotti, Cesira L

    2016-01-01

    An effective regulation of metal ion homeostasis is essential for the growth of microorganisms in any environment and in pathogenic bacteria is strongly associated with their ability to invade and colonise their hosts. To gain a better insight into zinc acquisition in Group A Streptococcus (GAS) we characterized null deletion mutants of the adcA and lmb genes of Streptococcus pyogenes strain MGAS5005 encoding the orthologues of AdcA and AdcAII, the two surface lipoproteins with partly redundant roles in zinc homeostasis in Streptococcus pneumoniae. Null adcA and lmb mutants were analysed for their capability to grow in zinc-depleted conditions and were found to be more susceptible to zinc starvation, a phenotype that could be rescued by the addition of Zn2+ ions to the growth medium. Expression of AdcA, Lmb and HtpA, the polyhistidine triad protein encoded by the gene adjacent to lmb, during growth under conditions of limited zinc availability was examined by Western blot analysis in wild type and null mutant strains. In the wild type strain, AdcA was always present with little variation in expression levels between conditions of excess or limited zinc availability. In contrast, Lmb and HtpA were expressed at detectable levels only during growth in the presence of low zinc concentrations or in the null adcA mutant, when expression of lmb is required to compensate for the lack of adcA expression. In the latter case, Lmb and HtpA were overexpressed by several fold, thus indicating that also in GAS AdcA is a zinc-specific importer and, although it shares this function with Lmb, the two substrate-binding proteins do not show fully overlapping roles in zinc homeostasis.

  11. GRANULOCYTE INFILTRATION AND EXPRESSION OF THE PRO-ANGIOGENIC BV8 PROTEIN IN EXPERIMENTAL EL4 AND LEWIS LUNG CARCINOMA TUMORS.

    PubMed

    Jiang, Kan; Kwak, Hyeongil; Tosato, Giovanna

    2013-01-18

    Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth.

  12. GRANULOCYTE INFILTRATION AND EXPRESSION OF THE PRO-ANGIOGENIC BV8 PROTEIN IN EXPERIMENTAL EL4 AND LEWIS LUNG CARCINOMA TUMORS

    PubMed Central

    Jiang, Kan; Kwak, Hyeongil; Tosato, Giovanna

    2014-01-01

    Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth. PMID:25493215

  13. Putrescine importer PlaP contributes to swarming motility and urothelial cell invasion in Proteus mirabilis.

    PubMed

    Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N

    2013-05-31

    Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.

  14. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    PubMed

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  15. Metabotropic glutamate receptor-mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein.

    PubMed

    Repicky, Sarah; Broadie, Kendal

    2009-02-01

    Loss of the mRNA-binding protein FMRP results in the most common inherited form of both mental retardation and autism spectrum disorders: fragile X syndrome (FXS). The leading FXS hypothesis proposes that metabotropic glutamate receptor (mGluR) signaling at the synapse controls FMRP function in the regulation of local protein translation to modulate synaptic transmission strength. In this study, we use the Drosophila FXS disease model to test the relationship between Drosophila FMRP (dFMRP) and the sole Drosophila mGluR (dmGluRA) in regulation of synaptic function, using two-electrode voltage-clamp recording at the glutamatergic neuromuscular junction (NMJ). Null dmGluRA mutants show minimal changes in basal synapse properties but pronounced defects during sustained high-frequency stimulation (HFS). The double null dfmr1;dmGluRA mutant shows repression of enhanced augmentation and delayed onset of premature long-term facilitation (LTF) and strongly reduces grossly elevated post-tetanic potentiation (PTP) phenotypes present in dmGluRA-null animals. Null dfmr1 mutants show features of synaptic hyperexcitability, including multiple transmission events in response to a single stimulus and cyclic modulation of transmission amplitude during prolonged HFS. The double null dfmr1;dmGluRA mutant shows amelioration of these defects but does not fully restore wildtype properties in dfmr1-null animals. These data suggest that dmGluRA functions in a negative feedback loop in which excess glutamate released during high-frequency transmission binds the glutamate receptor to dampen synaptic excitability, and dFMRP functions to suppress the translation of proteins regulating this synaptic excitability. Removal of the translational regulator partially compensates for loss of the receptor and, similarly, loss of the receptor weakly compensates for loss of the translational regulator.

  16. Evidence that the Dictyostelium STAT protein Dd-STATa plays a role in the differentiation of inner basal disc cells and identification of a promoter element essential for expression in these cells.

    PubMed

    Shimada, Nao; Maruo, Toshinari; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2005-02-01

    Dd-STATa, a Dictyostelium homolog of the metazoan STAT (signal transducers and activators of transcription) proteins, is necessary in the slug for correct entry into culmination. Dd-STATa-null mutant fails to culminate and its phenotype correlates with the loss of a funnel-shaped core region, the pstAB core region, which expresses both the ecmA and ecmB genes. To understand how the differentiation of pstAB core cells is regulated, we identified an EST that is expressed in the core cells of normal slugs but down-regulated in the Dd-STATa-null mutant. This EST, SSK348, encodes a close homolog of the Dictyostelium acetyl-CoA synthetase (ACS). A promoter fragment of the cognate gene, aslA (acetyl-CoA synthetase-like A), was fused to a lacZ reporter and the expression pattern determined. As expected from the behavior of the endogenous aslA gene, the aslA::lacZ fusion gene is not expressed in Dd-STATa-null slugs. In parental cells, the aslA promoter is first activated in the funnel-shaped core cells located at the slug anterior, the "pstAB core." During culmination, the pstAB core cells move down, through the prespore cells, to form the inner part of the basal disc. As the spore mass climbs the stalk, the aslA gene comes to be expressed in cells of the upper and lower cups, structures that cradle the spore head. Deletion and point mutation analyses of the promoter identified an AT-rich sequence that is necessary for expression in the pstAB core. This acts in combination with repressor regions that prevent ectopic aslA expression in the pre-stalk regions of slugs and the stalks of culminants. Thus, this study confirms that Dd-STATa is necessary for the differentiation of pstAB core cells, by showing that it is needed for the activation of the aslA gene. It also identifies aslA promoter elements that are likely to be regulated, directly or indirectly, by Dd-STATa.

  17. Different CHD chromatin remodelers are required for expression of distinct gene sets and specific stages during development of Dictyostelium discoideum

    PubMed Central

    Platt, James L.; Rogers, Benjamin J.; Rogers, Kelley C.; Harwood, Adrian J.; Kimmel, Alan R.

    2013-01-01

    Control of chromatin structure is crucial for multicellular development and regulation of cell differentiation. The CHD (chromodomain-helicase-DNA binding) protein family is one of the major ATP-dependent, chromatin remodeling factors that regulate nucleosome positioning and access of transcription factors and RNA polymerase to the eukaryotic genome. There are three mammalian CHD subfamilies and their impaired functions are associated with several human diseases. Here, we identify three CHD orthologs (ChdA, ChdB and ChdC) in Dictyostelium discoideum. These CHDs are expressed throughout development, but with unique patterns. Null mutants lacking each CHD have distinct phenotypes that reflect their expression patterns and suggest functional specificity. Accordingly, using genome-wide (RNA-seq) transcriptome profiling for each null strain, we show that the different CHDs regulate distinct gene sets during both growth and development. ChdC is an apparent ortholog of the mammalian Class III CHD group that is associated with the human CHARGE syndrome, and GO analyses of aberrant gene expression in chdC nulls suggest defects in both cell-autonomous and non-autonomous signaling, which have been confirmed through analyses of chdC nulls developed in pure populations or with low levels of wild-type cells. This study provides novel insight into the broad function of CHDs in the regulation development and disease, through chromatin-mediated changes in directed gene expression. PMID:24301467

  18. Role of urease in megasome formation and Helicobacter pylori survival in macrophages

    PubMed Central

    Schwartz, Justin T.; Allen, Lee-Ann H.

    2007-01-01

    Previous studies have demonstrated that Helicobacter pylori (Hp) delays its entry into macrophages and persists inside megasomes, which are poorly acidified and accumulate early endosome autoantigen 1. Herein, we explored the role of Hp urease in bacterial survival in murine peritoneal macrophages and J774 cells. Plasmid-free mutagenesis was used to replace ureA and ureB with cat in Hp Strains 11637 and 11916. ureAB null Hp lacked detectable urease activity and did not express UreA or UreB as judged by immunoblotting. Deletion of ureAB had no effect on Hp binding to macrophages or the rate or extent of phagocytosis. However, intracellular survival of mutant organisms was impaired significantly. Immunofluorescence microscopy demonstrated that (in contrast to parental organisms) mutant Hp resided in single phagosomes, which were acidic and accumulated the lysosome marker lysosome-associated membrane protein-1 but not early endosome autoantigen 1. A similar phenotype was observed for spontaneous urease mutants derived from Hp Strain 60190. Treatment of macrophages with bafilomycin A1, NH4Cl, or chloroquine prevented acidification of phagosomes containing mutant Hp. However, only ammonium chloride enhanced bacterial viability significantly. Rescue of ureAB null organisms was also achieved by surface adsorption of active urease. Altogether, our data indicate a role for urease and urease-derived ammonia in megasome formation and Hp survival. PMID:16543403

  19. RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans

    PubMed Central

    Frische, Ester W; Pellis-van Berkel, Wendy; van Haaften, Gijs; Cuppen, Edwin; Plasterk, Ronald H A; Tijsterman, Marcel; Bos, Johannes L; Zwartkruis, Fried J T

    2007-01-01

    The small Ras-like GTPase Rap1 has been identified as a regulator of integrin activation and cadherin-mediated cell–cell contacts. Surprisingly, null mutants of RAP-1 in Caenorhabditis elegans are viable and fertile. In a synthetic lethal RNAi screen with C. elegans rap-1 mutants, the Ras-like GTPase ral-1 emerged as one of seven genes specifically required for viability. Depletion of exoc-8 and sec-5, encoding two putative RAL-1 effectors and members of the exocyst complex, also caused lethality of rap-1 mutants, but did not affect wild-type worms. The RAP-1 and the RAL-1/exocyst pathway appear to coordinate hypodermal cell movement and elongation during embryonic development. They mediate their effect in part through targeting the α-catenin homologue HMP-1 to the lateral membrane. Genetic interactions show that the RAP-1 and RAL-1/exocyst pathway also act in parallel during larval stages. Together these data provide in vivo evidence for the exocyst complex as a downstream RAL-1 effector in cell migration. PMID:17989692

  20. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.

    PubMed

    Feyerabend, Thorsten B; Li, Jin-Ping; Lindahl, Ulf; Rodewald, Hans-Reimer

    2006-04-01

    Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.

  1. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  2. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577

  3. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated through distinct biochemical mechanisms

    PubMed Central

    Huang, Chuanxin; Hatzi, Katerina; Melnick, Ari

    2013-01-01

    The transcription factor Bcl-6 orchestrates the germinal center reaction through its actions in B and T cells, and regulates inflammatory signaling in macrophages. We report that genetic replacement by mutant Bcl-6, which cannot bind corepressors to its BTB domain, disrupted germinal center formation and immunoglobulin affinity maturation, due to a defect in B cell proliferation and survival. In contrast, BTB loss of function had no effect on T follicular helper cell differentiation and function, nor other T helper subsets. Bcl6 null mice displayed a lethal inflammatory phenotype, whereas BTB mutant mice experienced normal healthy lives with no inflammation. Bcl-6 repression of inflammatory responses in macrophages was accordingly independent of the BTB domain repressor function. Bcl-6 thus mediates its actions through lineage-specific biochemical functions. PMID:23455674

  4. Impairment of Infectivity and Immunoprotective Effect of a LYT1 Null Mutant of Trypanosoma cruzi▿

    PubMed Central

    Zago, M. Paola; Barrio, Alejandra B.; Cardozo, Rubén M.; Duffy, Tomás; Schijman, Alejandro G.; Basombrío, Miguel A.

    2008-01-01

    Trypanosoma cruzi infection of host cells is a complex process in which many proteins participate but only a few of these proteins have been identified experimentally. One parasite factor likely to be involved is the protein product of LYT1, a single-copy gene cloned, sequenced, and characterized by Manning-Cela et al. (Infect. Immun. 69:3916-3923, 2001). This gene was potentially associated with infectivity, since the deletion of both LYT1 alleles in the CL Brenner strain (the wild type [WT]) resulted in a null mutant T. cruzi clone (L16) that shows an attenuated phenotype in cell culture models. The aim of this work was to characterize the infective behavior of L16 in the insect vector and murine models. The infection of adult Swiss mice with 103 trypomastigotes of both clones revealed a significant reduction in infective behavior of L16, as shown by direct parasitemia, spleen index, and quantitation of tissue parasite burden, suggesting the loss of virulence in the null mutant clone. Although L16 blood counts were almost undetectable, blood-based PCRs indicated the presence of latent and persistent infection during all of the study period and epimastigotes were reisolated from hemocultures until 12 months postinfection. Nevertheless, virulence was not restored in L16 by serial passages in mice, and reisolated parasites lacking the LYT1 gene and bearing the antibiotic resistance genes revealed the stability of the genetic manipulation. Histopathological studies showed a strong diminution in the muscle inflammatory response triggered by L16 compared to that triggered by the WT group, consistent with a lower tissue parasite load. A strong protection against a virulent challenge in both L16- and WT-infected mice was observed; however, the immunizing infection by the genetically modified parasite was highly attenuated. PMID:17938222

  5. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2).

    PubMed

    Molle, V; Palframan, W J; Findlay, K C; Buttner, M J

    2000-03-01

    The whiD locus, which is required for the differentiation of Streptomyces coelicolor aerial hyphae into mature spore chains, was localized by map-based cloning to the overlap between cosmids 6G4 and D63 of the minimal ordered library of Redenbach et al. (M. Redenbach et al., Mol. Microbiol. 21:77-96, 1996). Subcloning and sequencing showed that whiD encodes a homologue of WhiB, a protein required for the initiation of sporulation septation in S. coelicolor. WhiD and WhiB belong to a growing family of small (76- to 112-residue) proteins of unknown biochemical function in which four cysteines are absolutely conserved; all known members of this family are found in the actinomycetes. A constructed whiD null mutant showed reduced levels of sporulation, and those spores that did form were heat sensitive, lysed extensively, and were highly irregular in size, arising at least in part from irregularity in septum placement. The whiD null mutant showed extreme variation in spore cell wall deposition; most spores had uniformly thin (20- to 30-nm) walls, but spore chains were frequently observed in which there was irregular but very pronounced (up to 170 nm) cell wall thickening at the junctions between spores. whiD null mutant spores were frequently partitioned into irregular smaller units through the deposition of additional septa, which were often laid down in several different planes, very close to the spore poles. These "minicompartments" appeared to be devoid of chromosomal DNA. Two whiD promoters, whiDp1 and whiDp2, were identified, and their activities were analyzed during development of wild-type S. coelicolor on solid medium. Both promoters were developmentally regulated; whiDp1 and whiDp2 transcripts were detected transiently, approximately at the time when sporulation septa were observed in the aerial hyphae.

  6. Probing transcription-specific outputs of β-catenin in vivo

    PubMed Central

    Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad

    2011-01-01

    β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. PMID:22190459

  7. Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin

    PubMed Central

    Fu, Chenglai; Xu, Jing; Li, Ruo-Jing; Crawford, Joshua A.; Khan, A. Basit; Ma, Ting Martin; Cha, Jiyoung Y.; Snowman, Adele M.; Pletnikov, Mikhail V.

    2015-01-01

    The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function. PMID:26245967

  8. c-Type Cytochrome Assembly Is a Key Target of Copper Toxicity within the Bacterial Periplasm

    PubMed Central

    Durand, Anne; Azzouzi, Asma; Bourbon, Marie-Line; Steunou, Anne-Soisig; Liotenberg, Sylviane; Maeshima, Akinori; Astier, Chantal; Argentini, Manuela; Saito, Shingo

    2015-01-01

    ABSTRACT In the absence of a tight control of copper entrance into cells, bacteria have evolved different systems to control copper concentration within the cytoplasm and the periplasm. Central to these systems, the Cu+ ATPase CopA plays a major role in copper tolerance and translocates copper from the cytoplasm to the periplasm. The fate of copper in the periplasm varies among species. Copper can be sequestered, oxidized, or released outside the cells. Here we describe the identification of CopI, a periplasmic protein present in many proteobacteria, and show its requirement for copper tolerance in Rubrivivax gelatinosus. The ΔcopI mutant is more susceptible to copper than the Cu+ ATPase copA mutant. CopI is induced by copper, localized in the periplasm and could bind copper. Interestingly, copper affects cytochrome c membrane complexes (cbb3 oxidase and photosystem) in both ΔcopI and copA-null mutants, but the causes are different. In the copA mutant, heme and chlorophyll synthesis are affected, whereas in ΔcopI mutant, the decrease is a consequence of impaired cytochrome c assembly. This impact on c-type cytochromes would contribute also to the copper toxicity in the periplasm of the wild-type cells when they are exposed to high copper concentrations. PMID:26396241

  9. ESCRT-Dependent Cell Death in a Caenorhabditis elegans Model of the Lysosomal Storage Disorder Mucolipidosis Type IV

    PubMed Central

    Huynh, Julie M.; Dang, Hope; Munoz-Tucker, Isabel A.; O’Ketch, Marvin; Liu, Ian T.; Perno, Savannah; Bhuyan, Natasha; Crain, Allison; Borbon, Ivan; Fares, Hanna

    2016-01-01

    Mutations in MCOLN1, which encodes the cation channel protein TRPML1, result in the neurodegenerative lysosomal storage disorder Mucolipidosis type IV. Mucolipidosis type IV patients show lysosomal dysfunction in many tissues and neuronal cell death. The ortholog of TRPML1 in Caenorhabditis elegans is CUP-5; loss of CUP-5 results in lysosomal dysfunction in many tissues and death of developing intestinal cells that results in embryonic lethality. We previously showed that a null mutation in the ATP-Binding Cassette transporter MRP-4 rescues the lysosomal defect and embryonic lethality of cup-5(null) worms. Here we show that reducing levels of the Endosomal Sorting Complex Required for Transport (ESCRT)-associated proteins DID-2, USP-50, and ALX-1/EGO-2, which mediate the final de-ubiquitination step of integral membrane proteins being sequestered into late endosomes, also almost fully suppresses cup-5(null) mutant lysosomal defects and embryonic lethality. Indeed, we show that MRP-4 protein is hypo-ubiquitinated in the absence of CUP-5 and that reducing levels of ESCRT-associated proteins suppresses this hypo-ubiquitination. Thus, increased ESCRT-associated de-ubiquitinating activity mediates the lysosomal defects and corresponding cell death phenotypes in the absence of CUP-5. PMID:26596346

  10. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    EPA Science Inventory

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...

  11. Drug discrimination and neurochemical studies in alpha7 null mutant mice: tests for the role of nicotinic alpha7 receptors in dopamine release.

    PubMed

    Quarta, Davide; Naylor, Christopher G; Barik, Jacques; Fernandes, Cathy; Wonnacott, Susan; Stolerman, Ian P

    2009-04-01

    The nicotine discriminative stimulus has been linked to beta2-containing (beta2*) nicotinic receptors, with little evidence of a role for alpha7 nicotinic receptors, because nicotine discrimination was very weak in beta2 null mutant mice but normal in alpha7 mutants. As both alpha7 and beta2* nicotinic receptors have been implicated in nicotine-stimulated dopamine overflow, this study focused on the dopamine-mediated element in the nicotine stimulus by examining cross-generalisation between amphetamine and nicotine. Male alpha7 nicotinic receptor null mutant mice and wild-type controls were bred in-house and trained to discriminate nicotine (0.8 mg/kg) or (+)-amphetamine (0.6 mg/kg) from saline in a two-lever procedure with a tandem VI-30 FR-10 schedule of food reinforcement. Dopamine release from striatal slices was determined in parallel experiments. An alpha7 nicotinic receptor-mediated component of dopamine release was demonstrated in tissue from wild-type mice using choline as a selective agonist. This response was absent in tissue from null mutant animals. The mutation did not influence acquisition of drug discriminations but subtly affected the results of cross-generalisation tests. In mice trained to discriminate nicotine or amphetamine, there was partial cross-generalisation in wild-type mice and, at certain doses, these effects were attenuated in mutants. Further support for an alpha7 nicotinic receptor-mediated component was provided by the ability of the alpha7 nicotinic receptor antagonist methyllycaconitine to attenuate responses to nicotine and amphetamine in wild-type mice. These findings support the concept of an alpha7 nicotinic receptor-mediated dopaminergic element in nicotine discrimination, warranting further tests with selective dopamine agonists.

  12. Brucella abortus Cyclic β-1,2-Glucan Mutants Have Reduced Virulence in Mice and Are Defective in Intracellular Replication in HeLa Cells

    PubMed Central

    Briones, Gabriel; Iñón de Iannino, Nora; Roset, Mara; Vigliocco, Ana; Paulo, Patricia Silva; Ugalde, Rodolfo A.

    2001-01-01

    Null cyclic β-1,2-glucan synthetase mutants (cgs mutants) were obtained from Brucella abortus virulent strain 2308 and from B. abortus attenuated vaccinal strain S19. Both mutants show greater sensitivity to surfactants like deoxycholic acid, sodium dodecyl sulfate, and Zwittergent than the parental strains, suggesting cell surface alterations. Although not to the same extent, both mutants display reduced virulence in mice and defective intracellular multiplication in HeLa cells. The B. abortus S19 cgs mutant was completely cleared from the spleens of mice after 4 weeks, while the 2308 mutant showed a 1.5-log reduction of the number of brucellae isolated from the spleens after 12 weeks. These results suggest that cyclic β-1,2-glucan plays an important role in the residual virulence of the attenuated B. abortus S19 strain. Although the cgs mutant was cleared from the spleens earlier than the wild-type parental strain (B. abortus S19) and produced less inflammatory response, its ability to confer protection against the virulent strain B. abortus 2308 was fully retained. Equivalent levels of induction of spleen gamma interferon mRNA and anti-lipopolysaccharide (LPS) of immunoglobulin G2a (IgG2a) subtype antibodies were observed in mice injected with B. abortus S19 or the cgs mutant. However, the titer of anti-LPS antibodies of the IgG1 subtype induced by the cgs mutant was lower than that observed with the parental S19 strain, thus suggesting that the cgs mutant induces a relatively exclusive Th1 response. PMID:11401996

  13. Dependence of paranodal junctional gap width on transverse bands.

    PubMed

    Rosenbluth, Jack; Petzold, Chris; Peles, Elior

    2012-08-15

    Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. Copyright © 2012 Wiley Periodicals, Inc.

  14. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21.

    PubMed

    Jabbur, James R; Tabor, Amy D; Cheng, Xiaodong; Wang, Hua; Uesugi, Motonari; Lozano, Guillermina; Zhang, Wei

    2002-10-10

    Analyses of five wild-type p53 containing cell lines revealed lineage specific differences in phosphorylation of Thr18 after treatment with ionizing (IR) or ultraviolet (UV) radiation. Importantly, Thr18 phosphorylation correlated with induction of the p53 downstream targets p21(Waf1/Cip1) (p21) and Mdm-2, suggesting a transactivation enhancing role. Thr18 phosphorylation has been shown to abolish side-chain hydrogen bonding between Thr18 and Asp21, an interaction necessary for stabilizing alpha-helical conformation within the transactivation domain. Mutagenesis-derived hydrogen bond disruption attenuated the interaction of p53 with the transactivation repressor Mdm-2 but had no direct effect on the interaction of p53 with the basal transcription factor TAF(II)31. However, prior incubation of p53 mutants with Mdm-2 modulated TAF(II)31 interaction with p53, suggesting Mdm-2 blocks the accessibility of p53 to TAF(II)31. Consistently, p53-null cells transfected with hydrogen bond disrupting p53 mutants demonstrated enhanced endogenous p21 expression, whereas p53/Mdm-2-double null cells exhibited no discernible differences in p21 expression. We conclude disruption of intramolecular hydrogen bonding between Thr18 and Asp21 enhances p53 transactivation by modulating Mdm-2 binding, facilitating TAF(II)31 recruitment.

  15. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models

    PubMed Central

    Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María

    2017-01-01

    Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  17. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  18. MyTH4-FERM myosins have an ancient and conserved role in filopod formation

    PubMed Central

    Goodson, Holly V.; Arthur, Ashley L.; Luxton, G. W. Gant; Houdusse, Anne; Titus, Margaret A.

    2016-01-01

    The formation of filopodia in Metazoa and Amoebozoa requires the activity of myosin 10 (Myo10) in mammalian cells and of Dictyostelium unconventional myosin 7 (DdMyo7) in the social amoeba Dictyostelium. However, the exact roles of these MyTH4-FERM myosins (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in the initiation and elongation of filopodia are not well defined and may reflect conserved functions among phylogenetically diverse MF myosins. Phylogenetic analysis of MF myosin domains suggests that a single ancestral MF myosin existed with a structure similar to DdMyo7, which has two MF domains, and that subsequent duplications in the metazoan lineage produced its functional homolog Myo10. The essential functional features of the DdMyo7 myosin were identified using quantitative live-cell imaging to characterize the ability of various mutants to rescue filopod formation in myo7-null cells. The two MF domains were found to function redundantly in filopod formation with the C-terminal FERM domain regulating both the number of filopodia and their elongation velocity. DdMyo7 mutants consisting solely of the motor plus a single MyTH4 domain were found to be capable of rescuing the formation of filopodia, establishing the minimal elements necessary for the function of this myosin. Interestingly, a chimeric myosin with the Myo10 MF domain fused to the DdMyo7 motor also was capable of rescuing filopod formation in the myo7-null mutant, supporting fundamental functional conservation between these two distant myosins. Together, these findings reveal that MF myosins have an ancient and conserved role in filopod formation. PMID:27911821

  19. Loss of virulence in Ustilago maydis by Umchs6 gene disruption.

    PubMed

    Garcerá-Teruel, Ana; Xoconostle-Cázares, Beatriz; Rosas-Quijano, Raymundo; Ortiz, Lucila; León-Ramírez, Claudia; Specht, Charles A; Sentandreu, Rafael; Ruiz-Herrera, José

    2004-03-01

    A gene encoding a sixth chitin synthase (Umchs6, sequence GenBank accession No. ) from the plant pathogenic hemibasidiomycete Ustilago maydis (DC.) Cda. was isolated and characterized. The predicted protein is 1103 amino acids in length with a calculated molecular mass of 123.5 kDa. a2b2 null mutants were obtained by substitution of a central fragment of the Umchs6 gene with the hygromycin resistance cassette, and a1b1 null mutants were obtained by genetic recombination in plants of an a2b2deltach6 and a wild-type a1b1 strain. The mutation had no effect on the dimorphic transition in vitro or on mating, and growth rate of the mutants was only slightly reduced. On the other hand, they displayed important alterations in cell morphology, particularly at the mycelial stage, and in the staining pattern with calcofluor white. Levels of chitin synthase activity in vitro and chitin content were reduced. The most noticeable characteristic of the mutants was their almost complete loss of virulence to maize (Zea mays L.). This was a recessive character. Microscopic observations during the infectious process suggest that chitin synthase 6 activity is very important for growth of the fungus into the plant. Transformation of a2b2deltach6 mutants with an autonomous replicating plasmid carrying the full Umchs6 gene restored their normal morphological phenotype and virulence. These results are evidence that the mutation in the Umchs6 gene was solely responsible for the phenotypic alterations observed.

  20. Brassinosteroid-Insensitive Dwarf Mutants of Arabidopsis Accumulate Brassinosteroids1

    PubMed Central

    Noguchi, Takahiro; Fujioka, Shozo; Choe, Sunghwa; Takatsuto, Suguru; Yoshida, Shigeo; Yuan, Heng; Feldmann, Kenneth A.; Tax, Frans E.

    1999-01-01

    Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels. PMID:10557222

  1. MreB is important for cell shape but not for chromosome segregation of the filamentous cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Hu, Bin; Yang, Guohua; Zhao, Weixing; Zhang, Yingjiao; Zhao, Jindong

    2007-03-01

    MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.

  2. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    PubMed Central

    Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.

    2014-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice. PMID:25147297

  3. Constitutively active follicle-stimulating hormone receptor enables androgen-independent spermatogenesis.

    PubMed

    Oduwole, Olayiwola O; Peltoketo, Hellevi; Poliandri, Ariel; Vengadabady, Laura; Chrusciel, Marcin; Doroszko, Milena; Samanta, Luna; Owen, Laura; Keevil, Brian; Rahman, Nafis A; Huhtaniemi, Ilpo T

    2018-05-01

    Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.

  4. Cerebellar Ataxia, Seizures, Premature Death, and Cardiac Abnormalities in Mice with Targeted Disruption of the Cacna2d2 Gene

    PubMed Central

    Ivanov, Sergey V.; Ward, Jerrold M.; Tessarollo, Lino; McAreavey, Dorothea; Sachdev, Vandana; Fananapazir, Lameh; Banks, Melissa K.; Morris, Nicole; Djurickovic, Draginja; Devor-Henneman, Deborah E.; Wei, Ming-Hui; Alvord, Gregory W.; Gao, Boning; Richardson, James A.; Minna, John D.; Rogawski, Michael A.; Lerman, Michael I.

    2004-01-01

    CACNA2D2 is a putative tumor suppressor gene located in the human chromosome 3p21.3 region that shows frequent allelic imbalances in lung, breast, and other cancers. The α2δ-2 protein encoded by the gene is a regulatory subunit of voltage-dependent calcium channels and is expressed in brain, heart, and other tissues. Here we report that mice homozygous for targeted disruption of the Cacna2d2 gene exhibit growth retardation, reduced life span, ataxic gait with apoptosis of cerebellar granule cells followed by Purkinje cell depletion, enhanced susceptibility to seizures, and cardiac abnormalities. The Cacna2d2tm1NCIF null phenotype has much in common with that of Cacna1a mutants, such as cerebellar neuro-degeneration associated with ataxia, seizures, and premature death. A tendency to bradycardia and limited response of null mutants to isoflurane implicate α2δ-2 in sympathetic regulation of cardiac function. In summary, our findings provide genetic evidence that the α2δ-2 subunit serves in vivo as a component of P/Q-type calcium channels, is indispensable for the central nervous system function, and may be involved in hereditary cerebellar ataxias and epileptic disorders in humans. PMID:15331424

  5. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans.

    PubMed

    Iwamoto, Ryo; Mine, Naoki; Kawaguchi, Taichiro; Minami, Seigo; Saeki, Kazuko; Mekada, Eisuke

    2010-07-01

    HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.

  6. The tumor suppressor functions of p27(kip1) include control of the mesenchymal/amoeboid transition.

    PubMed

    Berton, Stefania; Belletti, Barbara; Wolf, Katarina; Canzonieri, Vincenzo; Lovat, Francesca; Vecchione, Andrea; Colombatti, Alfonso; Friedl, Peter; Baldassarre, Gustavo

    2009-09-01

    In many human cancers, p27 downregulation correlates with a worse prognosis, suggesting that p27 levels could represent an important determinant in cell transformation and cancer development. Using a mouse model system based on v-src-induced transformation, we show here that p27 absence is always linked to a more aggressive phenotype. When cultured in three-dimensional contexts, v-src-transformed p27-null fibroblasts undergo a morphological switch from an elongated to a rounded cell shape, accompanied by amoeboid-like morphology and motility. Importantly, the acquisition of the amoeboid motility is associated with a greater ability to move and colonize distant sites in vivo. The reintroduction of different p27 mutants in v-src-transformed p27-null cells demonstrates that the control of cell proliferation and motility represents two distinct functions of p27, both necessary for it to fully act as a tumor suppressor. Thus, we highlight here a new p27 function in driving cell plasticity that is associated with its C-terminal portion and does not depend on the control of cyclin-dependent kinase activity.

  7. Retinoic acid from the meninges regulates cortical neuron generation

    PubMed Central

    Siegenthaler, Julie A.; Ashique, Amir M.; Zarbalis, Konstantinos; Patterson, Katelin P.; Hecht, Jonathan H.; Kane, Maureen A.; Folias, Alexandra E.; Choe, Youngshik; May, Scott R.; Kume, Tsutomu; Napoli, Joseph L.; Peterson, Andrew S.; Pleasure, Samuel J.

    2009-01-01

    Summary Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10 and Raldh2 expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants and Rdh10 mutants had a cortical phenotype similar to the Foxc1-null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis. PMID:19879845

  8. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  9. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    PubMed

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD.

    PubMed

    Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P

    2018-05-09

    Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.

  11. The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression.

    PubMed

    Kroken, Abby R; Chen, Camille K; Evans, David J; Yahr, Timothy L; Fleiszig, Suzanne M J

    2018-05-01

    Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103Δ exoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen. Copyright © 2018 Kroken et al.

  12. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    PubMed Central

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  13. Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4

    PubMed Central

    Ocampo, J.; McCormack, B.; Navarro, E.; Moreno, S.; Garre, V.

    2012-01-01

    The protein kinase A (PKA) signaling pathway plays a role in regulating growth and differentiation in the dimorphic fungus Mucor circinelloides. PKA holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits. In M. circinelloides, four genes encode the PKAR1, PKAR2, PKAR3, and PKAR4 isoforms of R subunits. We have constructed null mutants and demonstrate that each isoform has a different role in growth and differentiation. The most striking finding is that pkaR4 is an essential gene, because only heterokaryons were obtained in knockout experiments. Heterokaryons with low levels of wild-type nuclei showed an impediment in the emission of the germ tube, suggesting a pivotal role of this gene in germ tube emergence. The remaining null strains showed different alterations in germ tube emergence, sporulation, and volume of the mother cell. The pkaR2 null mutant showed an accelerated germ tube emission and was the only mutant that germinated under anaerobic conditions when glycine was used as a nitrogen source, suggesting that pkaR2 participates in germ tube emergence by repressing it. From the measurement of the mRNA and protein levels of each isoform in the wild-type and knockout strains, it can be concluded that the expression of each subunit has its own mechanism of differential regulation. The PKAR1 and PKAR2 isoforms are posttranslationally modified by ubiquitylation, suggesting another regulation point in the specificity of the signal transduction. The results indicate that each R isoform has a different role in M. circinelloides physiology, controlling the dimorphism and contributing to the specificity of cyclic AMP (cAMP)-PKA pathway. PMID:22635921

  14. Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster

    PubMed Central

    Bilen, Julide; Atallah, Jade; Azanchi, Reza; Levine, Joel D.; Riddiford, Lynn M.

    2013-01-01

    Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met27 females delayed the onset of mating, whereas lack of Gce had little effect. The Met27 females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met27 null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce2.5k null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating. PMID:24145432

  15. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry.

    PubMed

    Doll, Caleb A; Broadie, Kendal

    2016-05-01

    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    NASA Technical Reports Server (NTRS)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  17. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    PubMed

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  18. Annealing of Complementary DNA Sequences During Double-Strand Break Repair in Drosophila Is Mediated by the Ortholog of SMARCAL1.

    PubMed

    Holsclaw, Julie Korda; Sekelsky, Jeff

    2017-05-01

    DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. We hypothesized that annealing during SDSA is performed by the annealing helicase SMARCAL1, which can anneal RPA-coated single DNA strands during replication-associated DNA damage repair. We used unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP-binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP-binding defect mutant showed reduced end joining, shedding light on the interaction between SDSA and end-joining pathways. Copyright © 2017 by the Genetics Society of America.

  19. Mutants in the Candida glabrata Glycerol Channels Are Sensitized to Cell Wall Stress

    PubMed Central

    Beese-Sims, Sara E.; Pan, Shih-Jung; Lee, Jongmin; Hwang-Wong, Elizabeth; Cormack, Brendan P.

    2012-01-01

    Many fungal species use glycerol as a compatible solute with which to maintain osmotic homeostasis in response to changes in external osmolarity. In Saccharomyces cerevisiae, intracellular glycerol concentrations are regulated largely by the high osmolarity glycerol (HOG) response pathway, both through induction of glycerol biosynthesis and control of its flux through the plasma membrane Fps1 glycerol channel. The channel activity of Fps1 is also controlled by a pair of positive regulators, Rgc1 and Rgc2. In this study, we demonstrate that Candida glabrata, a fungal pathogen that possesses two Fps1 orthologs and two Rgc1/-2 orthologs, accumulates glycerol in response to hyperosmotic stress. We present an initial characterization of mutants with deletions in the C. glabrata FPS1 (CAGL0C03267 [www.candidagenome.org]) and FPS2 (CAGL0E03894) genes and find that a double mutant accumulates glycerol, experiences constitutive cell wall stress, and is hypersensitive to treatment by caspofungin, an antifungal agent that targets the cell wall. This mutant is cleared more efficiently in mouse infections than is wild-type C. glabrata by caspofungin treatment. Finally, we demonstrate that one of the C. glabrata RGC orthologs complements an S. cerevisiae rgc1 rgc2 null mutant, supporting the conclusion that this regulatory assembly is conserved between these species. PMID:23087370

  20. Drosophila Rolling Blackout Displays Lipase Domain-Dependent and Independent Endocytic Functions Downstream of Dynamin

    PubMed Central

    Vijayakrishnan, Niranjana; Phillips, Scott E.; Broadie, Kendal

    2010-01-01

    Drosophila temperature-sensitive rolling blackout (rbots) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rboS358A mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase-domain is critical for RBO essential function. Likewise, the rboS358A mutant cannot provide any rescue of endocytic blockade in rbots Garland cells, demonstrating that the lipase-domain is indispensable for non-neuronal endocytosis. In contrast, rbots conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rboS358A mutant, showing that the RBO lipase-domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbots and the well-characterized dynamin GTPase conditional shibire (shits1) mutant. In both non-neuronal cells and neuronal synapses, shits1;rbots phenocopies shits1 endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase-domain dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. PMID:21029287

  1. Seven functional classes of Barth syndrome mutation.

    PubMed

    Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M

    2013-02-01

    Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.

  2. The Herpes Simplex Virus Latency-Associated Transcript Gene Is Associated with a Broader Repertoire of Virus-Specific Exhausted CD8+ T Cells Retained within the Trigeminal Ganglia of Latently Infected HLA Transgenic Rabbits

    PubMed Central

    Srivastava, Ruchi; Dervillez, Xavier; Khan, Arif A.; Chentoufi, Aziz A.; Chilukuri, Sravya; Shukr, Nora; Fazli, Yasmin; Ong, Nicolas N.; Afifi, Rasha E.; Osorio, Nelson; Geertsema, Roger; Nesburn, Anthony B.

    2016-01-01

    ABSTRACT Persistent pathogens, such as herpes simplex virus 1 (HSV-1), have evolved a variety of immune evasion strategies to avoid being detected and destroyed by the host's immune system. A dynamic cross talk appears to occur between the HSV-1 latency-associated transcript (LAT), the only viral gene that is abundantly transcribed during latency, and the CD8+ T cells that reside in HSV-1 latently infected human and rabbit trigeminal ganglia (TG). The reactivation phenotype of TG that are latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) is significantly higher than TG latently infected with LAT-null mutant (i.e., LAT− TG). Whether LAT promotes virus reactivation by selectively shaping a unique repertoire of HSV-specific CD8+ T cells in LAT+ TG is unknown. In the present study, we assessed the frequency, function, and exhaustion status of TG-resident CD8+ T cells specific to 40 epitopes derived from HSV-1 gB, gD, VP11/12, and VP13/14 proteins, in human leukocyte antigen (HLA-A*0201) transgenic rabbits infected ocularly with LAT+ versus LAT– virus. Compared to CD8+ T cells from LAT– TG, CD8+ T cells from LAT+ TG (i) recognized a broader selection of nonoverlapping HSV-1 epitopes, (ii) expressed higher levels of PD-1, TIM-3, and CTLA-4 markers of exhaustion, and (iii) produced less tumor necrosis factor alpha, gamma interferon, and granzyme B. These results suggest a novel immune evasion mechanism by which the HSV-1 LAT may contribute to the shaping of a broader repertoire of exhausted HSV-specific CD8+ T cells in latently infected TG, thus allowing for increased viral reactivation. IMPORTANCE A significantly larger repertoire of dysfunctional (exhausted) HSV-specific CD8+ T cells were found in the TG of HLA transgenic rabbits latently infected with wild-type HSV-1 or with LAT-rescued mutant (i.e., LAT+ TG) than in a more restricted repertoire of functional HSV-specific CD8+ T cells in the TG of HLA transgenic rabbits latently infected with LAT-null mutant (i.e., LAT– TG). These findings suggest that the HSV-1 LAT locus interferes with the host cellular immune response by shaping a broader repertoire of exhausted HSV-specific CD8+ T cells within the latency/reactivation TG site. PMID:26842468

  3. Probing transcription-specific outputs of β-catenin in vivo.

    PubMed

    Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad

    2011-12-15

    β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. © 2011 by Cold Spring Harbor Laboratory Press

  4. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix.

    PubMed

    Kawai, Yoshikazu; Daniel, Richard A; Errington, Jeffery

    2009-03-01

    The bacterial actin homologue MreB plays a key role in cell morphogenesis. In Bacillus subtilis MreB is essential under normal growth conditions and mreB mutants are defective in the control of cell diameter. However, the precise role of MreB is still unclear. Analysis of the lethal phenotypic consequences of mreB disruption revealed an unusual bulging phenotype that precedes cell death. A similar phenotype was seen in wild-type cells at very low Mg(2+) concentrations. We found that inactivation of the major bi-functional penicillin-binding protein (PBP) PBP1 of B. subtilis restored the viability of an mreB null mutant as well as preventing bulging in both mutant and wild-type backgrounds. Bulging was associated with delocalization of PBP1. We show that the normal pattern of localization of PBP1 is dependent on MreB and that the proteins can physically interact using in vivo pull-down and bacterial two-hybrid approaches. Interactions between MreB and several other PBPs were also detected. Our results suggest that MreB filaments associate directly with the peptidoglycan biosynthetic machinery in B. subtilis as part of the mechanism that brings about controlled cell elongation.

  5. NUA Activities at the Plant Nuclear Pore

    PubMed Central

    Xu, Xianfeng Morgan; Rose, Annkatrin

    2007-01-01

    NUA (Nuclear Pore Anchor), the Arabidopsis homolog of Tpr (Translocated Promoter Region), is one of the few nuclear pore proteins conserved between animals, yeast and plants. In the May issue of Plant Cell, we report that null mutants of NUA show a pleiotropic, early flowering phenotype accompanied by changes in SUMo and RNA homeostasis. We have shown that the early flowering phenotype is caused by changed abundances of flowering time regulators involved in several pathways. Arabidopsis nua mutants phenocopy mutants lacking the ESD4 (EARlY IN ShoRT DAYS 4) SUMo protease, similar to mutants of their respective yeast homologs. however, in contrast to the comparable yeast mutants, ESD4 does not appear to be delocalized from the nuclear pore in nua mutants. Taken together, our experimental data suggests a role for NUA in controlling mRNA export from the nucleus as well as SUMo protease activity at the nuclear pore, comparable but not identical to its homologs in other eukaryotes. Furthermore, characterization of NUA illustrates a potential link at the nuclear pore between SUMo modification, RNA homeostasis and plant developmental control. PMID:19704557

  6. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway.

    PubMed

    Nishio, Miki; Maehama, Tomohiko; Goto, Hiroki; Nakatani, Keisuke; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-01-01

    The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic. © 2017 The Authors Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  7. NanI Sialidase, CcpA, and CodY Work Together To Regulate Epsilon Toxin Production by Clostridium perfringens Type D Strain CN3718.

    PubMed

    Li, Jihong; Freedman, John C; McClane, Bruce A

    2015-10-01

    Clostridium perfringens type D strains are usually associated with diseases of livestock, and their virulence requires the production of epsilon toxin (ETX). We previously showed (J. Li, S. Sayeed, S. Robertson, J. Chen, and B. A. McClane, PLoS Pathog 7:e1002429, 2011, http://dx.doi.org/10.1371/journal.ppat.1002429) that BMC202, a nanI null mutant of type D strain CN3718, produces less ETX than wild-type CN3718 does. The current study proved that the lower ETX production by strain BMC202 is due to nanI gene disruption, since both genetic and physical (NanI or sialic acid) complementation increased ETX production by BMC202. Furthermore, a sialidase inhibitor that interfered with NanI activity also reduced ETX production by wild-type CN3718. The NanI effect on ETX production was shown to involve reductions in codY and ccpA gene transcription levels in BMC202 versus wild-type CN3718. Similar to CodY, CcpA was found to positively control ETX production. A double codY ccpA null mutant produced even less ETX than a codY or ccpA single null mutant. CcpA bound directly to sequences upstream of the etx or codY start codon, and bioinformatics identified putative CcpA-binding cre sites immediately upstream of both the codY and etx start codons, suggesting possible direct CcpA regulatory effects. A ccpA mutation also decreased codY transcription, suggesting that CcpA effects on ETX production can be both direct and indirect, including effects on codY transcription. Collectively, these results suggest that NanI, CcpA, and CodY work together to regulate ETX production, with NanI-generated sialic acid from the intestines possibly signaling type D strains to upregulate their ETX production and induce disease. Clostridium perfringens NanI was previously shown to increase ETX binding to, and cytotoxicity for, MDCK host cells. The current study demonstrates that NanI also regulates ETX production via increased transcription of genes encoding the CodY and CcpA global regulators. Results obtained using single ccpA or codY null mutants and a ccpA codY double null mutant showed that codY and ccpA regulate ETX production independently of one another but that ccpA also affects codY transcription. Electrophoretic mobility shift assays and bioinformatic analyses suggest that both CodY and CcpA may directly regulate etx transcription. Collectively, results of this study suggest that sialic acid generated by NanI from intestinal sources signals ETX-producing C. perfringens strains, via CcpA and CodY, to upregulate ETX production and cause disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport.

    PubMed

    Boubakri, Meriam; Chaya, Taro; Hirata, Hiromi; Kajimura, Naoko; Kuwahara, Ryusuke; Ueno, Akiko; Malicki, Jarema; Furukawa, Takahisa; Omori, Yoshihiro

    2016-11-18

    In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport*

    PubMed Central

    Boubakri, Meriam; Chaya, Taro; Hirata, Hiromi; Kajimura, Naoko; Kuwahara, Ryusuke; Ueno, Akiko; Malicki, Jarema; Furukawa, Takahisa; Omori, Yoshihiro

    2016-01-01

    In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases. PMID:27681595

  10. Drosophila Growth and Development in the Absence of dMyc and dMnt

    PubMed Central

    Pierce, Sarah B.; Yost, Cynthia; Anderson, Sarah A. R.; Flynn, Erin M.; Delrow, Jeffrey; Eisenman, Robert N.

    2008-01-01

    Myc oncoproteins are essential regulators of the growth and proliferation of mammalian cells. In Drosophila the single ortholog of Myc (dMyc), encoded by the dm gene, influences organismal size and the growth of both mitotic and endoreplicating cells. A null mutation in dm results in attenuated endoreplication and growth arrest early in larval development. Drosophila also contains a single ortholog of the mammalian Mad/Mnt transcriptional repressor proteins (dMnt), which is thought to antagonize dMyc function. Here we show that animals lacking both dMyc and dMnt display increased viability and grow significantly larger and develop further than dMyc single mutants. We observe increased endoreplication and growth of larval tissues in these double mutants and disproportionate growth of the imaginal discs. Gene expression analysis indicates that loss of dMyc leads to decreased expression of genes required for ribosome biogenesis and protein synthesis. The additional loss of dMnt partially rescues expression of a small number of dMyc and dMnt genes that are primarily involved in rRNA synthesis and processing. Our results indicate that dMnt repression is normally overridden by dMyc activation during larval development. Therefore the severity of the dm null phenotype is likely due to unopposed repression by dMnt on a subset of genes critical for cell and organismal growth. Surprisingly, considerable growth and development can occur in the absence of both dMyc and dMnt. PMID:18241851

  11. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ.

    PubMed

    Nakatomi, M; Ida-Yonemochi, H; Nakatomi, C; Saito, K; Kenmotsu, S; Maas, R L; Ohshima, H

    2018-06-01

    Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.

  12. Cell surface fucosylation does not affect development of colon tumors in mice with germline Smad3 mutation

    PubMed Central

    Domino, Steven E.; Karnak, David M.; Hurd, Elizabeth A.

    2006-01-01

    Background/Aims: Neoplasia-related alterations in cell surface α(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung, and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-β signaling gene Smad3 (Madh3) were tested for α(1,2)fucosylated glycan expression. Methods: Ulex Europaeus Agglutinin-I lectin staining, fucosyltransferase gene northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. Results: Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express α(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of α(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3 targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knock-out mice, UEA-I lectin staining was eliminated from colon and colon tumors, however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. Conclusions: In this model of colorectal cancer, cell surface α(1,2)fucosylation does not affect development of colon tumors. PMID:17264540

  13. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide.

    PubMed

    Chaves, Guilherme Maranhão; da Silva, Walicyranison Plinio

    2012-12-01

    To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  14. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

  15. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  16. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  17. Kinesin-related KIP3 of Saccharomyces cerevisiae Is Required for a Distinct Step in Nuclear Migration

    PubMed Central

    DeZwaan, Todd M.; Ellingson, Eric; Pellman, David; Roof, David M.

    1997-01-01

    Spindle orientation and nuclear migration are crucial events in cell growth and differentiation of many eukaryotes. Here we show that KIP3, the sixth and final kinesin-related gene in Saccharomyces cerevisiae, is required for migration of the nucleus to the bud site in preparation for mitosis. The position of the nucleus in the cell and the orientation of the mitotic spindle was examined by microscopy of fixed cells and by time-lapse microscopy of individual live cells. Mutations in KIP3 and in the dynein heavy chain gene defined two distinct phases of nuclear migration: a KIP3-dependent movement of the nucleus toward the incipient bud site and a dynein-dependent translocation of the nucleus through the bud neck during anaphase. Loss of KIP3 function disrupts the unidirectional movement of the nucleus toward the bud and mitotic spindle orientation, causing large oscillations in nuclear position. The oscillatory motions sometimes brought the nucleus in close proximity to the bud neck, possibly accounting for the viability of a kip3 null mutant. The kip3 null mutant exhibits normal translocation of the nucleus through the neck and normal spindle pole separation kinetics during anaphase. Simultaneous loss of KIP3 and kinesin-related KAR3 function, or of KIP3 and dynein function, is lethal but does not block any additional detectable movement. This suggests that the lethality is due to the combination of sequential and possibly overlapping defects. Epitope-tagged Kip3p localizes to astral and central spindle microtubules and is also present throughout the cytoplasm and nucleus. PMID:9281581

  18. Sf29 Gene of Spodoptera frugiperda Multiple Nucleopolyhedrovirus Is a Viral Factor That Determines the Number of Virions in Occlusion Bodies▿

    PubMed Central

    Simón, Oihane; Williams, Trevor; Asensio, Aaron C.; Ros, Sarhay; Gaya, Andrea; Caballero, Primitivo; Possee, Robert D.

    2008-01-01

    The genome of Spodoptera frugiperda multiple nucleopolyhedrovirus (NPV) was inserted into a bacmid (Sfbac) and used to produce a mutant lacking open reading frame 29 (Sf29null). Sf29null bacmid DNA was able to generate an infection in S. frugiperda. Approximately six times less DNA was present in occlusion bodies (OBs) produced by the Sf29null bacmid in comparison to viruses containing this gene. This reduction in DNA content was consistent with fewer virus particles being packaged within Sf29null bacmid OBs, as determined by fractionation of dissolved polyhedra and comparison of occlusion-derived virus (ODV) infectivity in cell culture. DNA from Sfbac, Sf29null, or Sf29null-repair, in which the gene deletion had been repaired, were equally infectious when used to transfect S. frugiperda. All three viruses produced similar numbers of OBs, although those from Sf29null were 10-fold less infectious than viruses with the gene. Insects infected with Sf29null bacmid died ∼24 h later than positive controls, consistent with the reduced virus particle content of Sf29null OBs. Transcripts from Sf29 were detected in infected insects 12 h prior to those from the polyhedrin gene. Homologs to Sf29 were present in other group II NPVs, and similar sequences were present in entomopoxviruses. Analysis of the Sf29 predicted protein sequence revealed signal peptide and transmembrane domains, but the presence of 12 potential N-glycosylation sites suggest that it is not an ODV envelope protein. Other motifs, including zinc-binding and threonine-rich regions, suggest degradation and adhesion functions. We conclude that Sf29 is a viral factor that determines the number of ODVs occluded in each OB. PMID:18550678

  19. The antiandrogenic effect of finasteride against a mutant androgen receptor

    PubMed Central

    Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement

    2011-01-01

    Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657

  20. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. © 2015. Published by The Company of Biologists Ltd.

  1. Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth.

    PubMed

    Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O

    2011-05-01

    The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.

  2. ICBP90 Regulation of DNA Methylation, Histone Ubiquitination, and Tumor Suppressor Gene Expression in Breast Cancer Cells

    DTIC Science & Technology

    2013-09-01

    accomplishments include creation of relevant plant lines, development of in vitro assays, and profiling of mRNA expression in null mutants. 15. SUBJECT TERMS...DNA methylation, UHRF1, VIM1, ubiquitination, epigenetics, chromatin 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...Molecular Basis of Human Disease ,” which covered several weeks’ worth of material specifically related to the molecular and epigenetic basis of cancer

  3. Trio’s Rho-specific GEF domain is the missing Gαq effector in C. elegans

    PubMed Central

    Williams, Stacey L.; Lutz, Susanne; Charlie, Nicole K.; Vettel, Christiane; Ailion, Michael; Coco, Cassandra; Tesmer, John J.G.; Jorgensen, Erik M.; Wieland, Thomas; Miller, Kenneth G.

    2007-01-01

    The Gαq pathway is essential for animal life and is a central pathway for driving locomotion, egg laying, and growth in Caenorhabditis elegans, where it exerts its effects through EGL-8 (phospholipase Cβ [PLCβ]) and at least one other effector. To find the missing effector, we performed forward genetic screens to suppress the slow growth and hyperactive behaviors of mutants with an overactive Gαq pathway. Four suppressor mutations disrupted the Rho-specific guanine-nucleotide exchange factor (GEF) domain of UNC-73 (Trio). The mutations produce defects in neuronal function, but not neuronal development, that cause sluggish locomotion similar to animals lacking EGL-8 (PLCβ). Strains containing null mutations in both EGL-8 (PLCβ) and UNC-73 (Trio RhoGEF) have strong synthetic phenotypes that phenocopy the arrested growth and near-complete paralysis of Gαq-null mutants. Using cell-based and biochemical assays, we show that activated C. elegans Gαq synergizes with Trio RhoGEF to activate RhoA. Activated Gαq and Trio RhoGEF appear to be part of a signaling complex, because they coimmunoprecipitate when expressed together in cells. Our results show that Trio’s Rho-specific GEF domain is a major Gαq effector that, together with PLCβ, mediates the Gαq signaling that drives the locomotion, egg laying, and growth of the animal. PMID:17942708

  4. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, M.C.; Deschenes, S.P.; Roberts, E.J.

    Nonsense and frameshift mutations, which predict premature termination of translation, often cause a dramatic reduction in the amount of transcript from the mutant allele (nonsense-mediated mRNA decay). In some genes, these mutations also influence RNA splicing and induce skipping of the exon that contains the nonsense codon. To begin to dissect how premature termination alters the metabolism of RNA from the COL1A1 gene, we studied nonsense and frameshift mutations distributed over exons 11-49 of the gene. These mutations were originally identified in 10 unrelated families with osteogenesis imperfecta (OI) type I. We observed marked reduction in steady-state amounts of mRNAmore » from the mutant allele in both total cellular and nuclear RNA extracts of cells from affected individuals, suggesting that nonsense-mediated decay of COL1A1 RNA is a nuclear phenomenon. Position of the mutation within the gene did not influence this observation. None of the mutations induced skipping of either the exon containing the mutation or, for the frameshifts, the downstream exons with the new termination sites. Our data suggest that nonsense and frameshift mutations throughout most of the COL1A1 gene result in a null allele, which is associated with the predictable mild clinical phenotype, OI type I. 42 refs., 6 figs., 1 tab.« less

  5. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    PubMed

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  6. Cloning of soluble alkaline phosphatase cDNA and molecular basis of the polymorphic nature in alkaline phosphatase isozymes of Bombyx mori midgut.

    PubMed

    Itoh, M; Kanamori, Y; Takao, M; Eguchi, M

    1999-02-01

    A cDNA coding for soluble type alkaline phosphatase (sALP) of Bombyx mori was isolated. Deduced amino acid sequence showed high identities to various ALPs and partial similarities to ATPase of Manduca sexta. Using this cDNA sequence as a probe, the molecular basis of electrophoretic polymorphism in sALP and membrane-bound type ALP (mALP) was studied. As for mALP, the result suggested that post-translational modification was important for the proteins to express activity and to represent their extensive polymorphic nature, whereas the magnitude of activities was mainly regulated by transcription. On the other hand, sALP zymogram showed poor polymorphism, but one exception was the null mutant, in which the sALP gene was largely lost. Interestingly, the sALP gene was shown to be transcribed into two mRNAs of different sizes, 2.0 and 2.4 Kb. In addition to the null mutant of sALP, we found a null mutant for mALP. Both of these mutants seem phenotypically silent, suggesting that the functional differentiation between these isozymes is not perfect, so that they can still work mutually and complement each other as an indispensable enzyme for B. mori.

  7. Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila

    PubMed Central

    Radyuk, Svetlana N.; Michalak, Katarzyna; Klichko, Vladimir I.; Benes, Judith; Rebrin, Igor; Sohal, Rajindar S.; Orr, William C.

    2010-01-01

    Peroxiredoxin 5 is a distinct isoform of the peroxiredoxin gene family. The antioxidative and anti-apoptotic functions of peroxiredoxin 5 have been extensively demonstrated in cell culture experiments. In the present paper, we provide the first functional analysis of peroxiredoxin 5 in a multicellular organism, Drosophila melanogaster. Similar to its mammalian, yeast or human counterparts, dPrx5 (Drosophila peroxiredoxin 5) is expressed in several cellular compartments, including the cytosol, nucleus and the mitochondrion. Global overexpression of dPrx5 in flies increased resistance to oxidative stress and extended their life span by up to 30% under normal conditions. The dprx5−/− null flies were comparatively more susceptible to oxidative stress, had higher incidence of apoptosis, and a shortened life span. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) analysis revealed that the dprx5−/− null mutant had discernible tissue-specific apoptotic patterns, similar to those observed in control flies exposed to paraquat. In addition, apoptosis was particularly notable in oenocytes. During development the dPrx5 levels co-varied with ecdysone pulses, suggesting inter-relationship between ecdystreroids and dPrx5 expression. The importance of dPrx5 for development was further underscored by the embryonic lethal phenotype of progeny derived from the dprx5−/− null mutant. Results from the present study suggest that the antioxidant and anti-apoptotic activities of dPrx5 play a critical role in development and aging of the fly. PMID:19128239

  8. Essential roles for Cdx in murine primitive hematopoiesis.

    PubMed

    Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David

    2017-02-15

    The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of Genes from the Fungal Pathogen Cryptococcus neoformans Related to Transmigration into the Central Nervous System

    PubMed Central

    Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.

    2012-01-01

    Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773

  10. Drosophila rolling blackout displays lipase domain-dependent and -independent endocytic functions downstream of dynamin.

    PubMed

    Vijayakrishnan, Niranjana; Phillips, Scott E; Broadie, Kendal

    2010-12-01

    Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. © 2010 John Wiley & Sons A/S.

  11. acn-1, a C. elegans homologue of ACE, genetically interacts with the let-7 microRNA and other heterochronic genes.

    PubMed

    Metheetrairut, Chanatip; Ahuja, Yuri; Slack, Frank J

    2017-10-02

    The heterochronic pathway in C. elegans controls the relative timing of cell fate decisions during post-embryonic development. It includes a network of microRNAs (miRNAs), such as let-7, and protein-coding genes, such as the stemness factors, LIN-28 and LIN-41. Here we identified the acn-1 gene, a homologue of mammalian angiotensin-converting enzyme (ACE), as a new suppressor of the stem cell developmental defects of let-7 mutants. Since acn-1 null mutants die during early larval development, we used RNAi to characterize the role of acn-1 in C. elegans seam cell development, and determined its interaction with heterochronic factors, including let-7 and its downstream interactors - lin-41, hbl-1, and apl-1. We demonstrate that although RNAi knockdown of acn-1 is insufficient to cause heterochronic defects on its own, loss of acn-1 suppresses the retarded phenotypes of let-7 mutants and enhances the precocious phenotypes of hbl-1, though not lin-41, mutants. Conversely, the pattern of acn-1 expression, which oscillates during larval development, is disrupted by lin-41 mutants but not by hbl-1 mutants. Finally, we show that acn-1(RNAi) enhances the let-7-suppressing phenotypes caused by loss of apl-1, a homologue of the Alzheimer's disease-causing amyloid precursor protein (APP), while significantly disrupting the expression of apl-1 during the L4 larval stage. In conclusion, acn-1 interacts with heterochronic genes and appears to function downstream of let-7 and its target genes, including lin-41 and apl-1.

  12. EMK protein kinase-null mice: dwarfism and hypofertility associated with alterations in the somatotrope and prolactin pathways.

    PubMed

    Bessone, S; Vidal, F; Le Bouc, Y; Epelbaum, J; Bluet-Pajot, M T; Darmon, M

    1999-10-01

    Gene trapping was used in embryonic stem (ES) cells in an attempt to inactivate genes involved in development. The Emk (ELKL motif kinase) gene has been disrupted and a mutant mouse line derived. Previous work had shown that EMK kinases, called MARK in the rat, exert a major control on microtubule stability by phosphorylating microtubule-associated proteins and that genes homologous to Emk in yeast or Caenorhabditis elegans are essential for cell and embryonic polarity. Although we found the Emk gene to be active in the preimplantation mouse embryo and then to show a widespread expression, Emk-null mice had no embryonic defect and were viable. They show an overall proportionate dwarfism and a peculiar hypofertility: homozygotes are not fertile when intercrossed, but are fertile in other types of crosses. Insulin-like growth factor I (IGF I) and IGF-binding protein 3 (IGFBP3) were reduced in the plasma of homozygotes of both sexes. A direct implication of the EMK kinase in IGF I plasmatic production is unlikely because the Emk gene does not seem to be expressed in hepatocytes. Nevertheless, GH assayed at arbitrary times in plasma did not show differences between genotypes and GH concentrations in pituitary extracts were not found to be altered in homozygotes. Our results, though, do not exclude the possibility that in the mutants the overall quantity of GH secreted daily is reduced. Our observation of a smaller size of the pituitaries of the mutants is in favor of this hypothesis. The prolactin concentration in the pituitaries was much lowered in homozygous females, but it was normal in males. The possible involvement of EMK protein kinase in hormone secretion in the pituitary and/or the hypothalamus, via the microtubule network, is discussed. Copyright 1999 Academic Press.

  13. The Epithelial Cell Adhesion Molecule EpCAM Is Required for Epithelial Morphogenesis and Integrity during Zebrafish Epiboly and Skin Development

    PubMed Central

    Slanchev, Krasimir; Carney, Thomas J.; Stemmler, Marc P.; Koschorz, Birgit; Amsterdam, Adam; Schwarz, Heinz; Hammerschmidt, Matthias

    2009-01-01

    The aberrant expression of the transmembrane protein EpCAM is associated with tumor progression, affecting different cellular processes such as cell–cell adhesion, migration, proliferation, differentiation, signaling, and invasion. However, the in vivo function of EpCAM still remains elusive due to the lack of genetic loss-of-function studies. Here, we describe epcam (tacstd) null mutants in zebrafish. Maternal-zygotic mutants display compromised basal protrusive activity and epithelial morphogenesis in cells of the enveloping layer (EVL) during epiboly. In partial redundancy with E-cadherin (Ecad), EpCAM made by EVL cells is further required for cell–cell adhesion within the EVL and, possibly, for proper attachment of underlying deep cells to the inner surface of the EVL, thereby also affecting deep cell epiboly movements. During later development, EpCAM per se becomes indispensable for epithelial integrity within the periderm of the skin, secondarily leading to disrupted morphology of the underlying basal epidermis and moderate hyper-proliferation of skin cells. On the molecular level, EVL cells of epcam mutant embryos display reduced levels of membranous Ecad, accompanied by an enrichment of tight junction proteins and a basal extension of apical junction complexes (AJCs). Our data suggest that EpCAM acts as a partner of E-cadherin to control adhesiveness and integrity as well as plasticity and morphogenesis within simple epithelia. In addition, EpCAM is required for the interaction of the epithelia with underlying cell layers. PMID:19609345

  14. Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines.

    PubMed

    Wasielewski, Marijke; Hanifi-Moghaddam, Pejman; Hollestelle, Antoinette; Merajver, Sofia D; van den Ouweland, Ans; Klijn, Jan G M; Ethier, Stephen P; Schutte, Mieke

    2009-01-01

    The CHEK2 protein plays a major role in the regulation of DNA damage response pathways. Mutations in the CHEK2 gene, in particular 1100delC, have been associated with increased cancer risks, but the precise function of CHEK2 mutations in carcinogenesis is not known. Human cancer cell lines with CHEK2 mutations are therefore of main interest. Here, we have sequenced 38 breast cancer cell lines for mutations in the CHEK2 gene and identified two cell lines with deleterious CHEK2 mutations. Cell line UACC812 has a nonsense truncating mutation in the CHEK2 kinase domain (L303X) and cell line SUM102PT has the well-known oncogenic CHEK2 1100delC founder mutation. Immunohistochemical analysis revealed that the two CHEK2 mutant cell lines expressed neither CHEK2 nor P-Thr(68) CHEK2 proteins, implying abrogation of normal CHEK2 DNA repair functions. Cell lines UACC812 and SUM102PT thus are the first human CHEK2 null cell lines reported and should therefore be a major help in further unraveling the function of CHEK2 mutations in carcinogenesis.

  15. Saccharomyces Cerevisiae Cho2 Mutants Are Deficient in Phospholipid Methylation and Cross-Pathway Regulation of Inositol Synthesis

    PubMed Central

    Summers, E. F.; Letts, V. A.; McGraw, P.; Henry, S. A.

    1988-01-01

    Five allelic Saccharomyces cerevisiae mutants deficient in the methylation of phosphatidylethanolamine (PE) have been isolated, using two different screening techniques. Biochemical analysis suggested that these mutants define a locus, designated CHO2, that may encode a methyltransferase. Membranes of cho2 mutant cells grown in defined medium contain approximately 10% phosphatidylcholine (PC) and 40-50% PE as compared to wild-type levels of 40-45% PC and 15-20% PE. In spite of this greatly altered phospholipid composition, cho2 mutant cells are viable in defined medium and are not auxotrophic for choline or other phospholipid precursors such as monomethylethanolamine (MME). However, analysis of yeast strains carrying more than one mutation affecting phospholipid biosynthesis indicated that some level of methylated phospholipid is essential for viability. The cho2 locus was shown by tetrad analysis to be unlinked to other loci affecting phospholipid synthesis. Interestingly, cho2 mutants and other mutant strains that produce reduced levels of methylated phospholipids are unable to properly repress synthesis of the cytoplasmic enzyme inositol-1-phosphate synthase. This enzyme was previously shown to be regulated at the level of mRNA abundance in response to inositol and choline in the growth medium. We cloned the CHO2 gene on a 3.6-kb genomic DNA fragment and created a null allele of cho2 by disrupting the CHO2 gene in vivo. The cho2 disruptant, like all other cho2 mutants, is viable, exhibits altered regulation of inositol biosynthesis and is not auxotrophic for choline or MME. PMID:3066687

  16. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  17. DSCAM Localization and Function at the Mouse Cone Synapse

    PubMed Central

    de Andrade, Gabriel Belem; Long, Samuel S.; Fleming, Harrison; Li, Wei; Fuerst, Peter G.

    2014-01-01

    The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for regulation of cell number, soma spacing and cell type specific dendrite avoidance in many types of retinal ganglion and amacrine cells. In this study we assay the organization of cells making up the outer plexiform layer of the retina in the absence of Dscam. Some types of OFF bipolar cells, type 3b and type 4 bipolar cells, had defects in dendrite arborization in the Dscam mutant retina, while other cell types appeared similar to wild type. The cone synapses that these cells project their dendrites to were intact, as visualized by electron microscopy, and had a distribution and density that was not significantly different than wild type. The spacing of type 3b bipolar cell dendrites was further analyzed by Voronoi domain analysis, Density Recovery Profiling (DRP) analysis and Nearest Neighbor Analysis (NNA). Spacing was found to be significantly different when comparing wild type and mutant type 3b bipolar cell dendrites. Defects in arborization of these bipolar cells could not be attributed to the disorganization of inner plexiform layer cells that occurs in the Dscam mutant retina or an increase in cell number, as they arborized when Dscam was targeted in retinal ganglion cells only or in the bax null retina. Localization of DSCAM was assayed and the protein was localized near to cone synapses in mouse, macaque and ground squirrel retinas. DSCAM protein was detected in several types of bipolar cells, including type 3b and type 4 bipolar cells. PMID:24477985

  18. Requirement for the Murine Zinc Finger Protein ZFR in Perigastrulation Growth and Survival

    PubMed Central

    Meagher, Madeleine J.; Braun, Robert E.

    2001-01-01

    The transition from preimplantation to postimplantation development leads to the initiation of complex cellular differentiation and morphogenetic movements, a dramatic decrease in cell cycle length, and a commensurate increase in the size of the embryo. Accompanying these changes is the need for the transfer of nutrients from the mother to the embryo and the elaboration of sophisticated genetic networks that monitor genomic integrity and the homeostatic control of cellular growth, differentiation, and programmed cell death. To determine the function of the murine zinc finger protein ZFR in these events, we generated mice carrying a null mutation in the gene encoding it. Homozygous mutant embryos form normal-appearing blastocysts that implant and initiate the process of gastrulation. Mutant embryos form mesoderm but they are delayed in their development and fail to form normal anterior embryonic structures. Loss of ZFR function leads to both an increase in programmed cell death and a decrease in mitotic index, especially in the region of the distal tip of the embryonic ectoderm. Mutant embryos also have an apparent reduction in apical vacuoles in the columnar visceral endoderm cells in the extraembryonic region. Together, these cellular phenotypes lead to a dramatic development delay and embryonic death by 8 to 9 days of gestation, which are independent of p53 function. PMID:11283266

  19. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres.

    PubMed

    Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo

    2013-09-01

    The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.

  20. A mutant of the Arabidopsis thaliana Toc159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that a null mutant of Arabidopsis that lacks Toc159 receptor is impaired in chloroplast biogenesis and incapable of importing photosynthetic proteins. The mutant is referred to as plastid protein import 2 or ppi2, and has an albino phenotype. In this study, we measured ...

  1. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae

    PubMed Central

    Peng, Eric D.; Wyckoff, Elizabeth E.; Mey, Alexandra R.; Fisher, Carolyn R.

    2015-01-01

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine. PMID:26644383

  2. Paranodal permeability in `myelin mutants'

    PubMed Central

    Shroff, S.; Mierzwa, A.; Scherer, S.S.; Peles, E.; Arevalo, J.C.; Chao, M.V.; Rosenbluth, J.

    2011-01-01

    Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three `myelin mutant' mice, Caspr-null, cst-null and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3kDa, 10kDa), which penetrate most fibers, and to larger tracers (40kDa, 70kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of transverse bands in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of transverse bands. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of transverse bands but does depend on the length of the paranode and, in turn, on the length of `pathway 3', the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. PMID:21618613

  3. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells.

    PubMed

    Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter

    2006-06-05

    The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.

  4. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 ( kras G12D/wt /p53 -/- /lkb1 wt/wt ) and t2 ( kras G12D/wt /p53 -/- / lkb1 -/- ) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  5. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.

    PubMed

    He, Cuiwen H; Xie, Letian X; Allan, Christopher M; Tran, Uyenphuong C; Clarke, Catherine F

    2014-04-04

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants*

    PubMed Central

    He, Cuiwen H.; Xie, Letian X.; Allan, Christopher M.; Tran, UyenPhuong C.; Clarke, Catherine F.

    2014-01-01

    Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. PMID:24406904

  7. Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis.

    PubMed

    Lee, Gyunghee; Wang, Zixing; Sehgal, Ritika; Chen, Chun-Hong; Kikuno, Keiko; Hay, Bruce; Park, Jae H

    2011-01-01

    A great number of obsolete larval neurons in the Drosophila central nervous system are eliminated by developmentally programmed cell death (PCD) during early metamorphosis. To elucidate the mechanisms of neuronal PCD occurring during this period, we undertook genetic dissection of seven currently known Drosophila caspases in the PCD of a group of interneurons (vCrz) that produce corazonin (Crz) neuropeptide in the ventral nerve cord. The molecular death program in the vCrz neurons initiates within 1 hour after pupariation, as demonstrated by the cytological signs of cell death and caspase activation. PCD was significantly suppressed in dronc-null mutants, but not in null mutants of either dredd or strica. A double mutation lacking both dronc and strica impaired PCD phenotype more severely than did a dronc mutation alone, but comparably to a triple dredd/strica/dronc mutation, indicating that dronc is a main initiator caspase, while strica plays a minor role that overlaps with dronc's. As for effector caspases, vCrz PCD requires both ice and dcp-1 functions, as they work cooperatively for a timely removal of the vCrz neurons. Interestingly, the activation of the Ice and Dcp-1 is not solely dependent on Dronc and Strica, implying an alternative pathway to activate the effectors. Two remaining effector caspase genes, decay and damm, found no apparent functions in the neuronal PCD, at least during early metamorphosis. Overall, our work revealed that vCrz PCD utilizes dronc, strica, dcp-1, and ice wherein the activation of Ice and Dcp-1 requires a novel pathway in addition to the initiator caspases.

  8. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis.

    PubMed

    Frees, D; Varmanen, P; Ingmer, H

    2001-07-01

    Exposure of cells to elevated temperatures triggers the synthesis of chaperones and proteases including components of the conserved Clp protease complex. We demonstrated previously that the proteolytic subunit, ClpP, plays a major role in stress tolerance and in the degradation of non-native proteins in the Gram-positive bacterium Lactococcus lactis. Here, we used transposon mutagenesis to generate mutants in which the temperature- and puromycin-sensitive phenotype of a lactococcal clpP null mutant was partly alleviated. In all mutants obtained, the transposon was inserted in the L. lactis trmA gene. When analysing a clpP, trmA double mutant, we found that the expression normally induced from the clpP and dnaK promoters in the clpP mutant was reduced to wild-type level upon introduction of the trmA disruption. Additionally, the degradation of puromycyl-containing polypeptides was increased, suggesting that inactivation of trmA compensates for the absence of ClpP by stimulating an as yet unidentified protease that degrades misfolded proteins. When trmA was disrupted in wild-type cells, both stress tolerance and proteolysis of puromycyl peptides was enhanced above wild-type level. Based on our results, we propose that TrmA, which is well conserved in several Gram-positive bacteria, affects the degradation of non-native proteins and thereby controls stress tolerance.

  9. Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.

    2012-01-01

    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897

  10. Fur-dependent detoxification of organic acids by rpoS mutants during prolonged incubation under aerobic, phosphate starvation conditions.

    PubMed

    Guillemet, Mélanie L; Moreau, Patrice L

    2008-08-01

    The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.

  11. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  12. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation

    PubMed Central

    Blake, Sophia M; Stricker, Stefan H; Halavach, Hanna; Poetsch, Anna R; Cresswell, George; Kelly, Gavin; Kanu, Nnennaya; Marino, Silvia; Luscombe, Nicholas M; Pollard, Steven M; Behrens, Axel

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer. Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary glioma cells from murine and human tumors, while normal neural stem cells were unaffected. Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors. DOI: http://dx.doi.org/10.7554/eLife.08711.001 PMID:26984279

  13. Otoconin-90 deletion leads to imbalance but normal hearing: a comparison with other otoconia mutants.

    PubMed

    Zhao, X; Jones, S M; Yamoah, E N; Lundberg, Y Wang

    2008-04-22

    Our sense of gravitation and linear acceleration is mediated by stimulation of vestibular hair cells through displacement of otoconia in the utricle and saccule (the gravity receptor organ). We recently showed that otoconin-90 (Oc90) deletion led to formation of giant otoconia. In the present study, we determined the extent to which the giant otoconia affected balance and gravity receptor sensory input and compared the findings with other otoconia mutants. We employed a wide spectrum of balance behavioral tests, including reaching and air-righting reflexes, gait, swimming, beam-crossing, rotorod latencies, and a direct measure of gravity receptor input, vestibular evoked potentials (VsEPs). All tests on homozygous adult mutants consistently ranked the order of imbalance as (from worst to best) Nox3(het)

  14. The replication defect of ICP0-null mutant herpes simplex virus 1 can be largely complemented by the combined activities of human cytomegalovirus proteins IE1 and pp71.

    PubMed

    Everett, Roger D; Bell, Adam J; Lu, Yongxu; Orr, Anne

    2013-01-01

    Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0.

  15. The Replication Defect of ICP0-Null Mutant Herpes Simplex Virus 1 Can Be Largely Complemented by the Combined Activities of Human Cytomegalovirus Proteins IE1 and pp71

    PubMed Central

    Bell, Adam J.; Lu, Yongxu; Orr, Anne

    2013-01-01

    Herpes simplex virus 1 (HSV-1) immediate-early protein ICP0 is required for efficient lytic infection and productive reactivation from latency and induces derepression of quiescent viral genomes. Despite being unrelated at the sequence level, ICP0 and human cytomegalovirus proteins IE1 and pp71 share some functional similarities in their abilities to counteract antiviral restriction mediated by components of cellular nuclear structures known as ND10. To investigate the extent to which IE1 and pp71 might substitute for ICP0, cell lines were developed that express either IE1 or pp71, or both together, in an inducible manner. We found that pp71 dissociated the hDaxx-ATRX complex and inhibited accumulation of these proteins at sites juxtaposed to HSV-1 genomes but had no effect on the promyelocytic leukemia protein (PML) or Sp100. IE1 caused loss of the small ubiquitin-like modifier (SUMO)-conjugated forms of PML and Sp100 and inhibited the recruitment of these proteins to HSV-1 genome foci but had little effect on hDaxx or ATRX in these assays. Both IE1 and pp71 stimulated ICP0-null mutant plaque formation, but neither to the extent achieved by ICP0. The combination of IE1 and pp71, however, inhibited recruitment of all ND10 proteins to viral genome foci, stimulated ICP0-null mutant HSV-1 plaque formation to near wild-type levels, and efficiently induced derepression of quiescent HSV-1 genomes. These results suggest that ND10-related intrinsic resistance results from the additive effects of several ND10 components and that the effects of IE1 and pp71 on subsets of these components combine to mirror the overall activities of ICP0. PMID:23135716

  16. Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2

    PubMed Central

    Kume, Tsutomu; Deng, Keyu; Hogan, Brigid L. M.

    2000-01-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2lacZ) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes. PMID:10648626

  17. Minimal phenotype of mice homozygous for a null mutation in the forkhead/winged helix gene, Mf2.

    PubMed

    Kume, T; Deng, K; Hogan, B L

    2000-02-01

    Mf2 (mesoderm/mesenchyme forkhead 2) encodes a forkhead/winged helix transcription factor expressed in numerous tissues of the mouse embryo, including paraxial mesoderm, somites, branchial arches, vibrissae, developing central nervous system, and developing kidney. We have generated mice homozygous for a null mutation in the Mf2 gene (Mf2(lacZ)) to examine its role during embryonic development. The lacZ allele also allows monitoring of Mf2 gene expression. Homozygous null mutants are viable and fertile and have no major developmental defects. Some mutants show renal abnormalities, including kidney hypoplasia and hydroureter, but the penetrance of this phenotype is only 40% or lower, depending on the genetic background. These data suggest that Mf2 can play a unique role in kidney development, but there is functional redundancy in this organ and other tissues with other forkhead/winged helix genes.

  18. Prolonged Stationary-Phase Incubation Selects for lrp Mutations in Escherichia coli K-12

    PubMed Central

    Zinser, Erik R.; Kolter, Roberto

    2000-01-01

    Evolution by natural selection occurs in cultures of Escherichia coli maintained under carbon starvation stress. Mutants of increased fitness express a growth advantage in stationary phase (GASP) phenotype, enabling them to grow and displace the parent as the majority population. The first GASP mutation was identified as a loss-of-function allele of rpoS, encoding the stationary-phase global regulator, ςS (M. M. Zambrano, D. A. Siegele, M. A. Almirón, A. Tormo, and R. Kolter, Science 259:1757–1760, 1993). We now report that a second global regulator, Lrp, can also play a role in stationary-phase competition. We found that a mutant that took over an aged culture of an rpoS strain had acquired a GASP mutation in lrp. This GASP allele, lrp-1141, encodes a mutant protein lacking the critical glycine in the turn of the helix-turn-helix DNA-binding domain. The lrp-1141 allele behaves as a null mutation when in single copy and is dominant negative when overexpressed. Hence, the mutant protein appears to retain stability and the ability to dimerize but lacks DNA-binding activity. We also demonstrated that a lrp null allele generated by a transposon insertion has a fitness gain identical to that of the lrp-1141 allele, verifying that cells lacking Lrp activity have a competitive advantage during prolonged starvation. Finally, we tested by genetic analysis the hypothesis that the lrp-1141 GASP mutation confers a fitness gain by enhancing amino acid catabolism during carbon starvation. We found that while amino acid catabolism may play a role, it is not necessary for the lrp GASP phenotype, and hence the lrp GASP phenotype is due to more global physiological changes. PMID:10894750

  19. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed Central

    Blednov, Yuri A.; Walker, Danielle; Martinez, Marni; Harris., R. Adron

    2007-01-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the κ-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 hours) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest thath this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability). PMID:17307643

  20. Reduced alcohol consumption in mice lacking preprodynorphin.

    PubMed

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  1. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40

    PubMed Central

    McNees, Adrienne L.; Harrigal, Lindsay J.; Kelly, Aoife; Minard, Charles G.; Wong, Connie

    2018-01-01

    Background Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40–human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. Results SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. Conclusion These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. Significance Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes. PMID:29432481

  2. Methionine biosynthesis is essential for infection in the rice blast fungus Magnaporthe oryzae.

    PubMed

    Saint-Macary, Marie Emmanuelle; Barbisan, Crystel; Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection.

  3. Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways.

    PubMed

    Hernández, Nahúm V; López-Ramírez, Luz A; Díaz-Jiménez, Diana F; Mellado-Mojica, Erika; Martínez-Duncker, Iván; López, Mercedes G; Mora-Montes, Héctor M

    2017-10-01

    Saccharomyces cerevisiae is a model to understand basic aspects of protein glycosylation pathways. Although these metabolic routes have been thoroughly studied, there are still knowledge gaps; among them, the role of the MNT1/KRE2 gene family. This family is composed of nine members, with only six functionally characterized. The enzymes Ktr1, Ktr3, and Mnt1/Kre2 have overlapping activities in both O-linked and N-linked glycan synthesis; while Ktr2 and Yur1 participate exclusively in the elongation of the N-linked glycan outer chain. KTR6 encodes for a phosphomannosyltransferase that synthesizes the cell wall phosphomannan. Here, we aimed to establish the functional role of KTR4, KTR5 and KTR7 in the protein glycosylation pathways, by using heterologous complementation in Candida albicans null mutants lacking members of the MNT1/KRE2 gene family. The three S. cerevisiae genes restored defects in the C. albicans N-linked glycosylation pathway. KTR5 and KTR7 partially complemented a C. albicans null mutant with defects in the synthesis of O-linked glycans, and only KTR4 fully elongated the O-linked glycans like wild-type cells. Therefore, our results suggest that the three genes have a redundant activity in the S. cerevisiae N-linked glycosylation pathway, but KTR4 plays a major role in O-linked glycan synthesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Mixed Neurodevelopmental and Neurodegenerative Pathology in Nhe6-Null Mouse Model of Christianson Syndrome

    PubMed Central

    Xu, Meiyu; Ouyang, Qing; Gong, Jingyi; Pescosolido, Matthew F.; Mishra, Sasmita; Schmidt, Michael; Jones, Richard N.; Gamsiz Uzun, Ece D.; Lizarraga, Sofia B.

    2017-01-01

    Abstract Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). Symptoms include early developmental delay, seizures, intellectual disability, nonverbal status, autistic features, postnatal microcephaly, and progressive ataxia. Neuronal development is impaired in CS, involving defects in neuronal arborization and synaptogenesis, likely underlying diminished brain growth postnatally. In addition to neurodevelopmental defects, some reports have supported neurodegenerative pathology in CS with age. The objective of this study was to determine the nature of progressive changes in the postnatal brain in Nhe6-null mice. We examined the trajectories of brain growth and atrophy in mutant mice from birth until very old age (2 yr). We report trajectories of volume changes in the mutant that likely reflect both brain undergrowth as well as tissue loss. Reductions in volume are first apparent at 2 mo, particularly in the cerebellum, which demonstrates progressive loss of Purkinje cells (PCs). We report PC loss in two distinct Nhe6-null mouse models. More widespread reductions in tissue volumes, namely, in the hippocampus, striatum, and cortex, become apparent after 2 mo, largely reflecting delays in growth with more limited tissue losses with aging. Also, we identify pronounced glial responses, particularly in major fiber tracts such as the corpus callosum, where the density of activated astrocytes and microglia are substantially increased. The prominence of the glial response in axonal tracts suggests a primary axonopathy. Importantly, therefore, our data support both neurodevelopmental and degenerative mechanisms in the pathobiology of CS. PMID:29349289

  5. Functional Rescue of Trafficking-Impaired ABCB4 Mutants by Chemical Chaperones

    PubMed Central

    Gordo-Gilart, Raquel; Andueza, Sara; Hierro, Loreto; Jara, Paloma; Alvarez, Luis

    2016-01-01

    Multidrug resistance protein 3 (MDR3, ABCB4) is a hepatocellular membrane protein that mediates biliary secretion of phosphatidylcholine. Null mutations in ABCB4 gene give rise to severe early-onset cholestatic liver disease. We have previously shown that the disease-associated mutations p.G68R, p.G228R, p.D459H, and p.A934T resulted in retention of ABCB4 in the endoplasmic reticulum, thus failing to target the plasma membrane. In the present study, we tested the ability of two compounds with chaperone-like activity, 4-phenylbutyrate and curcumin, to rescue these ABCB4 mutants by assessing their effects on subcellular localization, protein maturation, and phospholipid efflux capability. Incubation of transfected cells at a reduced temperature (30°C) or exposure to pharmacological doses of either 4-PBA or curcumin restored cell surface expression of mutants G228R and A934T. The delivery of these mutants to the plasma membrane was accompanied by a switch in the ratio of mature to inmature protein forms, leading to a predominant expression of the mature protein. This effect was due to an improvement in the maturation rate and not to the stabilization of the mature forms. Both mutants were also functionally rescued, displaying bile salt-dependent phospholipid efflux activity after addition of 4-PBA or curcumin. Drug-induced rescue was mutant specific, given neither 4-PBA nor curcumin had an effect on the ABCB4 mutants G68R and A934T. Collectively, these data indicate that the functionality of selected trafficking-defective ABCB4 mutants can be recovered by chemical chaperones through restoration of membrane localization, suggesting a potential treatment for patients carrying such mutations. PMID:26900700

  6. Involvement of arginine-specific cysteine proteinase (Arg-gingipain) in fimbriation of Porphyromonas gingivalis.

    PubMed Central

    Nakayama, K; Yoshimura, F; Kadowaki, T; Yamamoto, K

    1996-01-01

    Arginine-specific cysteine proteinase (Arg-gingipain [RGP], a major proteinase secreted from the oral anaerobic bacterium Porphyromonas gingivalis, is encoded by two separate genes (rgpA and rgpB) on the P. gingivalis chromosome and widely implicated as an important virulence factor in the pathogenesis of periodontal disease (K. Nakayama, T. Kadowaki, K. Okamoto, and K. Yamamoto, J. Biol. Chem. 270:23619-23626, 1995). In this study, we investigated the role of RGP in the formation of P. gingivalis fimbriae which are thought to mediate adhesion of the organism to the oral surface by use of the rgp mutants. Electron microscopic observation revealed that the rgpA rgpB double (RGP-null) mutant possessed very few fimbriae on the cell surface, whereas the number of fimbriae of the rgpA or rgpB mutant was similar to that of the wild-type parent strain. The rgpB+ revertants that were isolated from the double mutant and recovered 20 to 40% of RGP activity of the wild-type parent possessed as many fimbriae as the wild-type parent, indicating that RGP significantly contributes to the fimbriation of P. gingivalis as well as to the degradation of various host proteins, disturbance of host defense mechanisms, and hemagglutination. Immunoblot analysis of cell extracts of these mutants with antifimbrilin antiserum revealed that the rgpA rgpB double mutant produced small amounts of two immunoreactive proteins with molecular masses of 45 and 43 kDa, corresponding to those of the precursor and mature forms of fimbrilin, respectively. The result suggests that RGP may function as a processing proteinase for fimbrilin maturation. In addition, a precursor form of the 75-kDa protein, one of the major outer membrane proteins of P. gingivalis, was accumulated in the rgpA rgpB double mutant but not in the single mutants and the revertants, suggesting an extensive role for RGP in the maturation of some of the cell surface proteins. PMID:8631669

  7. Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity

    PubMed Central

    Kyriakides, Themis R.; Leach, Kathleen J.; Hoffman, Allan S.; Ratner, Buddy D.; Bornstein, Paul

    1999-01-01

    Disruption of the thrombospondin 2 gene (Thbs2) in mice results in a complex phenotype characterized chiefly by abnormalities in fibroblasts, connective tissues, and blood vessels. Consideration of this phenotype suggested to us that the foreign body reaction (FBR) might be altered in thrombospondin 2 (TSP2)-null mice. To investigate the participation of TSP2 in the FBR, polydimethylsiloxane (PDMS) and oxidized PDMS (ox-PDMS) disks were implanted in TSP2-null and control mice. Growth of TSP2-null and control skin fibroblasts in vitro also was evaluated on both types of disks. Normal fibroblasts grew as a monolayer on both surfaces, but attachment of the cells to ox-PDMS was weak and sensitive to movement. TSP2-null fibroblasts grew as aggregates on both surfaces, and their attachment was further compromised on ox-PDMS. After a 4-week implantation period, both types of PDMS elicited a similar FBR with a collagenous capsule in both TSP2-null and control mice. However, strikingly, the collagenous capsule that formed in TSP2-null mice was highly vascularized and thicker than that formed in normal mice. In addition, abnormally shaped collagen fibers were observed in capsules from mutant mice. These observations indicate that the presence or absence of an extracellular matrix component, TSP2, can influence the nature of the FBR, in particular its vascularity. The expression of TSP2 therefore could represent a molecular target for local inhibitory measures when vascularization of the tissue surrounding an implanted device is desired. PMID:10200282

  8. Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism

    PubMed Central

    Hughes, James; Piltz, Sandra; Rogers, Nicholas; McAninch, Dale; Rowley, Lynn; Thomas, Paul

    2013-01-01

    Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele. PMID:23505376

  9. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.

    PubMed

    Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2008-07-01

    We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.

  10. Protein tyrosine phosphatase PTP1 negatively regulates Dictyostelium STATa and is required for proper cell-type proportioning.

    PubMed

    Early, A; Gamper, M; Moniakis, J; Kim, E; Hunter, T; Williams, J G; Firtel, R A

    2001-04-01

    The protein tyrosine phosphatase PTP1, which mediates reversible phosphorylation on tyrosine, has been shown to play an important regulatory role during Dictyostelium development. Mutants lacking PTP1 develop more rapidly than normal, while strains that overexpress PTP1 display aberrant morphology. However, the signalling pathways involved have not been characterised. In reexamining these strains, we have found that there is an inverse correlation between levels of PTP1 activity, the extent of tyrosine phosphorylation on Dictyostelium STATa after treatment with cAMP, and the proportion of the slug population exhibiting STATa nuclear enrichment in vivo. This suggests that PTP1 acts to attenuate the tyrosine phosphorylation of STATa and downstream STATa-mediated pathways. Consistent with this, we show that when PTP1 is overexpressed, there is increased expression of a prestalk cell marker at the slug posterior, a phenocopy of STATa null slugs. In ptp1 null strains, STATa tyrosine phosphorylation and nuclear enrichment in the slug anterior is increased. There is also a change in the prestalk to prespore cell ratio. Synergy experiments suggest that this is due to a cell-autonomous defect in forming the subset of prespore cells that are located in the anterior prespore region. Copyright 2001 Academic Press.

  11. Recruitment of DNA Replication and Damage Response Proteins to Viral Replication Centers during Infection with NS2 Mutants of Minute Virus of Mice (MVM)

    PubMed Central

    Ruiz, Zandra; Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2010-01-01

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA32, which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins. PMID:21193212

  12. Recruitment of DNA replication and damage response proteins to viral replication centers during infection with NS2 mutants of Minute Virus of Mice (MVM).

    PubMed

    Ruiz, Zandra; Mihaylov, Ivailo S; Cotmore, Susan F; Tattersall, Peter

    2011-02-20

    MVM NS2 is essential for viral DNA amplification, but its mechanism of action is unknown. A classification scheme for autonomous parvovirus-associated replication (APAR) center development, based on NS1 distribution, was used to characterize abnormal APAR body maturation in NS2null mutant infections, and their organization examined for defects in host protein recruitment. Since acquisition of known replication factors appeared normal, we looked for differences in invoked DNA damage responses. We observed widespread association of H2AX/MDC1 damage response foci with viral replication centers, and sequestration and complex hyperphosphorylation of RPA(32), which occurred in wildtype and mutant infections. Quantifying these responses by western transfer indicated that both wildtype and NS2 mutant MVM elicited ATM activation, while phosphorylation of ATR, already basally activated in asynchronous A9 cells, was downregulated. We conclude that MVM infection invokes multiple damage responses that influence the APAR environment, but that NS2 does not modify the recruitment of cellular proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Plastidic Phosphoglucose Isomerase Is an Important Determinant of Starch Accumulation in Mesophyll Cells, Growth, Photosynthetic Capacity, and Biosynthesis of Plastidic Cytokinins in Arabidopsis

    PubMed Central

    De Diego, Nuria; Muñoz, Francisco J.; Baroja-Fernández, Edurne; Li, Jun; Ricarte-Bermejo, Adriana; Baslam, Marouane; Aranjuelo, Iker; Almagro, Goizeder; Humplík, Jan F.; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Pozueta-Romero, Javier

    2015-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs. PMID:25811607

  14. The JNM1 gene in the yeast Saccharomyces cerevisiae is required for nuclear migration and spindle orientation during the mitotic cell cycle

    PubMed Central

    1994-01-01

    JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein. PMID:8138567

  15. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice.

    PubMed

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-11-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/- mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2-/- mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2-/- roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context.

  16. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication.

    PubMed

    Guan, Guohua; Pinochet-Barros, Azul; Gaballa, Ahmed; Patel, Sarju J; Argüello, José M; Helmann, John D

    2015-11-01

    Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4 -type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild-type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini-ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4 -type ATPases previously implicated in bacterial pathogenesis. © 2015 John Wiley & Sons Ltd.

  17. Endoplasmic reticulum polymers impair luminal protein mobility and sensitise to cellular stress in α1-antitrypsin deficiency

    PubMed Central

    Ordóñez, Adriana; Snapp, Erik L; Tan, Lu; Miranda, Elena; Marciniak, Stefan J; Lomas, David A

    2013-01-01

    Point mutants of α1-antitrypsin form ordered polymers that are retained as inclusions within the endoplasmic reticulum (ER) of hepatocytes in association with neonatal hepatitis, cirrhosis and hepatocellular carcinoma. These inclusions cause cell damage and predispose to ER stress in the absence of the classical unfolded protein response (UPR). The pathophysiology underlying this ER stress was explored by generating cell models that conditionally express wildtype α1-antitrypsin, two mutants that cause polymer-mediated inclusions and liver disease (E342K [the Z allele] and H334D) and a truncated mutant (Null Hong Kong, NHK) that induces classical ER stress and is removed by ER associated degradation. Expression of the polymeric mutants resulted in gross changes in the ER luminal environment that recapitulated the changes seen in liver sections from individuals with PI*ZZ α1-antitrypsin deficiency. In contrast expression of NHK α1-antitrypsin caused electron lucent dilatation and expansion of the ER throughout the cell. Photobleaching microscopy in live cells demonstrated a decrease in the mobility of soluble luminal proteins in cells that express E342K and H334D α1-antitrypsin when compared to those that express wildtype and NHK α1-antitrypsin (0.34±0.05, 0.22±0.03, 2.83±0.30 and 2.84±0.55 μm2/s respectively). There was no effect on protein mobility within ER membranes indicating that cisternal connectivity was not disrupted. Polymer expression alone was insufficient to induce the UPR but the resulting protein overload rendered cells hypersensitive to ER stress induced by either tunicamycin or glucose depletion. Conclusion Changes in protein diffusion provide an explanation for the cellular consequences of ER protein overload in mutants that cause inclusion body formation and α1-antitrypsin deficiency. PMID:23197448

  18. p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less

  19. On the cellular site of two-pore channel TPC1 action in the Poaceae.

    PubMed

    Dadacz-Narloch, Beata; Kimura, Sachie; Kurusu, Takamitsu; Farmer, Edward E; Becker, Dirk; Kuchitsu, Kazuyuki; Hedrich, Rainer

    2013-11-01

    The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    PubMed Central

    2011-01-01

    Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588

  1. Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate γ-Secretase Activities.

    PubMed

    Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke

    2016-01-01

    γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy

    PubMed Central

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-01-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) – a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. PMID:23980694

  3. Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer

    PubMed Central

    Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta

    2006-01-01

    Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443

  4. Structural and functional characterizations of SsgB, a conserved activator of developmental cell division in morphologically complex actinomycetes.

    PubMed

    Xu, Qingping; Traag, Bjørn A; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Grzechnik, Slawomir K; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Krishna, S Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A Mieke; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L; Sefcovic, Natasha; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O; Wooley, John; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A; van Wezel, Gilles P

    2009-09-11

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.

  5. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster.

    PubMed

    Wei, Youheng; Reveal, Brad; Cai, Weili; Lilly, Mary A

    2016-12-07

    TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila. Copyright © 2016 Wei et al.

  6. Human Cytomegalovirus UL50 and UL53 Recruit Viral Protein Kinase UL97, Not Protein Kinase C, for Disruption of Nuclear Lamina and Nuclear Egress in Infected Cells

    PubMed Central

    Sharma, Mayuri; Kamil, Jeremy P.; Coughlin, Margaret; Reim, Natalia I.

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them. PMID:24155370

  7. Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells.

    PubMed

    Sharma, Mayuri; Kamil, Jeremy P; Coughlin, Margaret; Reim, Natalia I; Coen, Donald M

    2014-01-01

    Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.

  8. PTEN induces apoptosis and cavitation via HIF-2-dependent Bnip3 upregulation during epithelial lumen formation.

    PubMed

    Qi, Y; Liu, J; Saadat, S; Tian, X; Han, Y; Fong, G-H; Pandolfi, P P; Lee, L Y; Li, S

    2015-05-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) dephosphorylates PIP3 and antagonizes the prosurvival PI3K-Akt pathway. Targeted deletion of PTEN in mice led to early embryonic lethality. To elucidate its role in embryonic epithelial morphogenesis and the underlying mechanisms, we used embryonic stem cell-derived embryoid body (EB), an epithelial cyst structurally similar to the periimplantation embryo. PTEN is upregulated during EB morphogenesis in parallel with apoptosis of core cells, which mediates EB cavitation. Genetic ablation of PTEN causes Akt overactivation, apoptosis resistance and cavitation blockade. However, rescue experiments using mutant PTEN and pharmacological inhibition of Akt suggest that the phosphatase activity of PTEN and Akt are not involved in apoptosis-mediated cavitation. Instead, hypoxia-induced upregulation of Bnip3, a proapoptotic BH3-only protein, mediates PTEN-dependent apoptosis and cavitation. PTEN inactivation inhibits hypoxia- and reactive oxygen species-induced Bnip3 elevation. Overexpression of Bnip3 in PTEN-null EBs rescues apoptosis of the core cells. Mechanistically, suppression of Bnip3 following PTEN loss is likely due to reduction of hypoxia-inducible factor-2α (HIF-2α) because forced expression of an oxygen-stable HIF-2α mutant rescues Bnip3 expression and apoptosis. Lastly, we show that HIF-2α is upregulated by PTEN at both transcriptional and posttranscriptional levels. Ablation of prolyl hydroxylase domain-containing protein 2 (PHD2) in normal EBs or inhibition of PHD activities in PTEN-null EBs stabilizes HIF-2α and induces Bnip3 and caspase-3 activation. Altogether, these results suggest that PTEN is required for apoptosis-mediated cavitation during epithelial morphogenesis by regulating the expression of HIF-2α and Bnip3.

  9. Characterisation of a DNA sequence element that directs Dictyostelium stalk cell-specific gene expression.

    PubMed

    Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J

    2000-12-01

    The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.

  10. The Pseudomonas aeruginosa Periplasmic Protease CtpA Can Affect Systems That Impact Its Ability To Mount Both Acute and Chronic Infections

    PubMed Central

    Seo, Jin

    2013-01-01

    Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence. PMID:24082078

  11. Ubiquitin orchestrates proteasome dynamics between proliferation and quiescence in yeast

    PubMed Central

    Gu, Zhu Chao; Wu, Edwin; Sailer, Carolin; Jando, Julia; Styles, Erin; Eisenkolb, Ina; Kuschel, Maike; Bitschar, Katharina; Wang, Xiaorong; Huang, Lan; Vissa, Adriano; Yip, Christopher M.; Yedidi, Ravikiran S.; Friesen, Helena; Enenkel, Cordula

    2017-01-01

    Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation. PMID:28768827

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas themore » COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.« less

  13. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence

    PubMed Central

    Alves de Castro, Patrícia; dos Reis, Thaila Fernanda; Dolan, Stephen K.; Manfiolli, Adriana Oliveira; Brown, Neil Andrew; Jones, Gary W.; Doyle, Sean; Riaño-Pachón, Diego M.; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H.

    2016-01-01

    Summary The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways. PMID:27538790

  14. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence.

    PubMed

    Alves de Castro, Patrícia; Dos Reis, Thaila Fernanda; Dolan, Stephen K; Oliveira Manfiolli, Adriana; Brown, Neil Andrew; Jones, Gary W; Doyle, Sean; Riaño-Pachón, Diego M; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H

    2016-11-01

    The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways. © 2016 John Wiley & Sons Ltd.

  15. Haplo-Insufficiency of MPK3 in MPK6 Mutant Background Uncovers a Novel Function of These Two MAPKs in Arabidopsis Ovule Development[W

    PubMed Central

    Wang, Huachun; Liu, Yidong; Bruffett, Kristin; Lee, Justin; Hause, Gerd; Walker, John C.; Zhang, Shuqun

    2008-01-01

    The plant life cycle includes diploid sporophytic and haploid gametophytic generations. Female gametophytes (embryo sacs) in higher plants are embedded in specialized sporophytic structures (ovules). Here, we report that two closely related mitogen-activated protein kinases in Arabidopsis thaliana, MPK3 and MPK6, share a novel function in ovule development: in the MPK6 mutant background, MPK3 is haplo-insufficient, giving female sterility when heterozygous. By contrast, in the MPK3 mutant background, MPK6 does not show haplo-insufficiency. Using wounding treatment, we discovered gene dosage–dependent activation of MPK3 and MPK6. In addition, MPK6 activation is enhanced when MPK3 is null, which may help explain why mpk3−/− mpk6+/− plants are fertile. Genetic analysis revealed that the female sterility of mpk3+/− mpk6−/− plants is a sporophytic effect. In mpk3+/− mpk6−/− mutant plants, megasporogenesis and megagametogenesis are normal and the female gametophyte identity is correctly established. Further analysis demonstrates that the mpk3+/− mpk6−/− ovules have abnormal integument development with arrested cell divisions at later stages. The mutant integuments fail to accommodate the developing embryo sac, resulting in the embryo sacs being physically restricted and female reproductive failure. Our results highlight an essential function of MPK3 and MPK6 in promoting cell division in the integument specifically during ovule development. PMID:18364464

  16. The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain.

    PubMed

    Pilatti, Livia; Boldrin de Paiva, Jacqueline; Rojas, Thaís Cabrera Galvão; Leite, Janaína Luisa; Conceição, Rogério Arcuri; Nakazato, Gerson; Dias da Silveira, Wanderley

    2016-03-10

    Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66% were downregulated in the mutant, including membrane proteins and metabolism genes. The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.

  17. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1

    PubMed Central

    Robert-Moreno, Àlex; Guiu, Jordi; Ruiz-Herguido, Cristina; López, M Eugenia; Inglés-Esteve, Julia; Riera, Lluis; Tipping, Alex; Enver, Tariq; Dzierzak, Elaine; Gridley, Thomas; Espinosa, Lluis; Bigas, Anna

    2008-01-01

    Specific deletion of Notch1 and RBPjκ in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1-null AGM cells was obtained by culturing them with Jagged1-expressing stromal cells or by lentiviral-mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1-mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse. PMID:18528438

  18. Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus

    PubMed Central

    Matas-Rico, Elisa; García-Diaz, Beatriz; Llebrez-Zayas, Pedro; López-Barroso, Diana; Santín, Luis; Pedraza, Carmen; Smith-Fernández, Anibal; Fernández-Llebrez, Pedro; Tellez, Teresa; Redondo; Chun, Jerold; De Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo

    2013-01-01

    Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA1-5. LPA1 is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA1-null mutant mouse, termed the Malaga variant or “maLPA1-null,” which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA1 in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA1 under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA1-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA1 signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors. PMID:18708146

  19. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.

    PubMed

    Kim, Jung-Hoon; Yang, Yoon-Mo; Ji, Chang-Jun; Ryu, Su-Hyun; Won, Young-Bin; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2017-06-01

    PerR, a member of Fur family protein, is a metal-dependent H 2 O 2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerR BL , PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerR BL . PerR BL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerR BS . However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H 2 O 2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerR BL and PerR BS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletionmore » in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.« less

  1. The β‐1,3‐glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium‐mediated plant infection

    PubMed Central

    Samalova, Marketa; Mélida, Hugo; Vilaplana, Francisco; Bulone, Vincent; Soanes, Darren M.; Talbot, Nicholas J.

    2016-01-01

    Abstract The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzae GH72 + GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection. PMID:27568483

  2. New Class of Precision Antimicrobials Redefines Role of Clostridium difficile S-layer in Virulence and Viability

    PubMed Central

    Kirk, Joseph A.; Gebhart, Dana; Buckley, Anthony M.; Lok, Stephen; Scholl, Dean; Douce, Gillian R.; Govoni, Gregory R.; Fagan, Robert P.

    2017-01-01

    Avidocin-CDs are a new class of precision bactericidal agents that do not damage resident gut microbiota and are unlikely to promote the spread of antibiotic resistance. The precision killing properties result from the fusion of bacteriophage receptor binding proteins (RBPs) to a lethal contractile scaffold from an R-type bacteriocin. We recently described the prototypic Avidocin-CD, Av-CD291.2, that specifically kills C. difficile ribotype 027 strains and prevents colonization of mice. We have since selected two rare Av-CD291.2 resistant mutants of strain R20291 (RT027; S-layer cassette type-4, SCLT-4). These mutants have distinct point mutations in the slpA gene that result in an S-layer null phenotype. Reversion of the mutations to wild-type restored normal SLCT-4 S-layer formation and Av-CD291.2 sensitivity; however, complementation with other SCLT alleles did not restore Av-CD291.2 sensitivity despite restoring S-layer formation. Using newly identified phage RBPs, we constructed a panel of new Avidocin-CDs that kill C. difficile isolates in an SLCT-dependent manner, confirming the S-layer as the receptor in every case. In addition to bacteriophage adsorption, characterization of the S-layer null mutant also uncovered important roles for SlpA in sporulation, resistance to lysozyme and LL-37, and toxin production. Surprisingly, the S-layer-null mutant was found to persist in the hamster gut despite its completely attenuated virulence. Avidocin-CDs have significant therapeutic potential for the treatment and prevention of C. difficile Infection (CDI) given their exquisite specificity for the pathogen. Furthermore, the emergence of resistance forces mutants to trade virulence for continued viability and, therefore, greatly reduce their potential clinical impact. PMID:28878013

  3. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162

  4. A Drosophila SNAP-25 null mutant reveals context-dependent redundancy with SNAP-24 in neurotransmission.

    PubMed Central

    Vilinsky, Ilya; Stewart, Bryan A; Drummond, James; Robinson, Iain; Deitcher, David L

    2002-01-01

    The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution. PMID:12242238

  5. Distinct Brca1 Mutations Differentially Reduce Hematopoietic Stem Cell Function.

    PubMed

    Mgbemena, Victoria E; Signer, Robert A J; Wijayatunge, Ranjula; Laxson, Travis; Morrison, Sean J; Ross, Theodora S

    2017-01-24

    BRCA1 is a well-known DNA repair pathway component and a tissue-specific tumor suppressor. However, its role in hematopoiesis is uncertain. Here, we report that a cohort of patients heterozygous for BRCA1 mutations experienced more hematopoietic toxicity from chemotherapy than those with BRCA2 mutations. To test whether this reflects a requirement for BRCA1 in hematopoiesis, we generated mice with Brca1 mutations in hematopoietic cells. Mice homozygous for a null Brca1 mutation in the embryonic hematopoietic system (Vav1-iCre;Brca1 F22-24/F22-24 ) developed hematopoietic defects in early adulthood that included reduced hematopoietic stem cells (HSCs). Although mice homozygous for a huBRCA1 knockin allele (Brca1 BRCA1/BRCA1 ) were normal, mice with a mutant huBRCA1/5382insC allele and a null allele (Mx1-Cre;Brca1 F22-24/5382insC ) had severe hematopoietic defects marked by a complete loss of hematopoietic stem and progenitor cells. Our data show that Brca1 is necessary for HSC maintenance and normal hematopoiesis and that distinct mutations lead to different degrees of hematopoietic dysfunction. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Hormone treatment enhances WT1 activation of Renilla luciferase constructs in LNCaP cells.

    PubMed

    Hanson, Julie; Reese, Jennifer; Gorman, Jacquelyn; Cash, Jennifer; Fraizer, Gail

    2007-01-01

    The zinc finger transcription factor, WT1, regulates many growth control genes, repressing or activating transcription depending on the gene and cell type. Based on earlier analyses of the effect of WT1 on androgen responsive genes, we hypothesized that there may be an interaction between the androgen signaling pathway and WT1, such that the commonly used Renilla luciferase control vectors were activated in LNCaP prostate cancer cells. Using cotransfection assays we tested the effects of WT1 and/or the androgen analog, R1881, on two Renilla luciferase vectors, pRL-SV40 and the promoter-less pRL-null. To determine whether the zinc finger DNA binding domain was required, the zinc finger mutant DDS-WT1 (R394W) was tested; but it had no significant effect on the Renilla luciferase vectors. To determine whether the androgen signaling pathway was required, WT1 was co-transfected with Renilla vectors in cells with varied hormone responsiveness. The WT1 effect on pRL-null varied from no significant effect in 293 and PC3 cells to very strong enhancement in LNCaP cells treated with 5 nM R1881. Overall, these results suggest that hormone enhanced WT1 mediated activation of Renilla luciferase and that these interactions require an intact WT1 zinc finger DNA binding domain.

  7. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    1998-06-09

    Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.

  8. Disruption of insulin-like growth factor-II imprinting during embryonic development rescues the dwarf phenotype of mice null for pregnancy-associated plasma protein-A.

    PubMed

    Bale, Laurie K; Conover, Cheryl A

    2005-08-01

    Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.

  9. Roles of HAUSP-mediated p53 regulation in central nervous system development.

    PubMed

    Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W

    2011-08-01

    The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.

  10. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.

    PubMed

    Li, Jihong; Freedman, John C; Evans, Daniel R; McClane, Bruce A

    2017-03-01

    Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY -null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY -null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY -null mutant strain but significantly increased in the SM101 codY -null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. Copyright © 2017 American Society for Microbiology.

  11. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101

    PubMed Central

    Li, Jihong; Freedman, John C.; Evans, Daniel R.

    2017-01-01

    ABSTRACT Clostridium perfringens type D strains cause enterotoxemia and enteritis in livestock via epsilon toxin production. In type D strain CN3718, CodY was previously shown to increase the level of epsilon toxin production and repress sporulation. C. perfringens type A strains producing C. perfringens enterotoxin (CPE) cause human food poisoning and antibiotic-associated diarrhea. Sporulation is critical for C. perfringens type A food poisoning since spores contribute to transmission and resistance in the harsh food environment and sporulation is essential for CPE production. Therefore, the current study asked whether CodY also regulates sporulation and CPE production in SM101, a derivative of C. perfringens type A food-poisoning strain NCTC8798. An isogenic codY-null mutant of SM101 showed decreased levels of spore formation, along with lower levels of CPE production. A complemented strain recovered wild-type levels of both sporulation and CPE production. When this result was coupled with the earlier results obtained with CN3718, it became apparent that CodY regulation of sporulation varies among different C. perfringens strains. Results from quantitative reverse transcriptase PCR analysis clearly demonstrated that, during sporulation, codY transcript levels remained high in SM101 but rapidly declined in CN3718. In addition, abrB gene expression patterns varied significantly between codY-null mutants of SM101 and CN3718. Compared to the levels in their wild-type parents, the level of abrB gene expression decreased in the CN3718 codY-null mutant strain but significantly increased in the SM101 codY-null mutant strain, demonstrating CodY-dependent regulation differences in abrB expression between these two strains. This difference appears to be important since overexpression of the abrB gene in SM101 reduced the levels of sporulation and enterotoxin production, supporting the involvement of AbrB repression in regulating C. perfringens sporulation. PMID:28052992

  12. Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses.

    PubMed

    Pan, Luyuan; Broadie, Kendal S

    2007-11-07

    A current hypothesis proposes that fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, acts downstream of glutamatergic transmission, via metabotropic glutamate receptor (mGluR) G(q)-dependent signaling, to modulate protein synthesis critical for trafficking ionotropic glutamate receptors (iGluRs) at synapses. However, direct evidence linking FMRP and mGluR function with iGluR synaptic expression is limited. In this study, we use the Drosophila fragile X model to test this hypothesis at the well characterized glutamatergic neuromuscular junction (NMJ). Two iGluR classes reside at this synapse, each containing common GluRIIC (III), IID and IIE subunits, and variable GluRIIA (A-class) or GluRIIB (B-class) subunits. In Drosophila fragile X mental retardation 1 (dfmr1) null mutants, A-class GluRs accumulate and B-class GluRs are lost, whereas total GluR levels do not change, resulting in a striking change in GluR subclass ratio at individual synapses. The sole Drosophila mGluR, DmGluRA, is also expressed at the NMJ. In dmGluRA null mutants, both iGluR classes increase, resulting in an increase in total synaptic GluR content at individual synapses. Targeted postsynaptic dmGluRA overexpression causes the exact opposite GluR phenotype to the dfmr1 null, confirming postsynaptic GluR subtype-specific regulation. In dfmr1; dmGluRA double null mutants, there is an additive increase in A-class GluRs, and a similar additive impact on B-class GluRs, toward normal levels in the double mutants. These results show that both dFMRP and DmGluRA differentially regulate the abundance of different GluR subclasses in a convergent mechanism within individual postsynaptic domains.

  13. Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects

    PubMed Central

    Nie, Xuguang; Deng, Chu-xia; Wang, Qin; Jiao, Kai

    2008-01-01

    TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development. PMID:18334251

  14. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  15. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    PubMed

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-07-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity.

  16. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    PubMed Central

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-01-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity. PMID:9649516

  17. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status

    PubMed Central

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G.; Wong, Kwok-Kin; Khuri, Fadlo R.; Zhou, Wei; Shin, Dong M.

    2017-01-01

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 (krasG12D/wt/p53-/-/lkb1wt/wt) and t2 (krasG12D/wt/p53-/-/lkb1-/-) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer. PMID:28938614

  18. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  19. A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary.

    PubMed

    Lun, K; Brand, M

    1998-08-01

    Generation of cell diversity in the vertebrate central nervous system starts during gastrulation stages in the ectodermal germ layer and involves specialized cell groups, such as the organizer located at the midbrain-hindbrain boundary (MHB). Mutations in the zebrafish no isthmus (noi) gene alter development of the MHB, and affect the pax2.1 gene (formerly pax(zf-b)). Analysis of the structure of pax2.1 reveals at least 12 normal splice variants. The noi alleles can be arranged, by molecular and phenotypic criteria, into a series of five alleles of differing strength, ranging from a null allele to weak alleles. In keeping with a role in development of the MHB organizer, gene expression is already affected in the MHB primordium of the gastrula neural ectoderm in noi mutants. eng3 activation is completely and eng2 activation is strongly dependent on noi function. In contrast, onset of wnt1, fgf8 and her5 expression occurs normally in the null mutants, but is eliminated later on. Our observations suggest that three signaling pathways, involving pax2.1, wnt1 and fgf8, are activated independently in early anterior-posterior patterning of this area. In addition, analysis of the allelic series unexpectedly suggests that noi activity is also required during dorsal-ventral patterning of the MHB in somitogenesis stages, and possibly in a later eng expression phase. We propose that noi/pax2.1 participates in sequential signaling processes as a key integrator of midbrain-hindbrain boundary development.

  20. Cysteine shotgun–mass spectrometry (CS-MS) reveals dynamic sequence of protein structure changes within mutant and stressed cells

    PubMed Central

    Krieger, Christine C.; An, Xiuli; Tang, Hsin-Yao; Mohandas, Narla; Speicher, David W.; Discher, Dennis E.

    2011-01-01

    Questions of if and when protein structures change within cells pervade biology and include questions of how the cytoskeleton sustains stresses on cells—particularly in mutant versus normal cells. Cysteine shotgun labeling with fluorophores is analyzed here with mass spectrometry of the spectrin–actin membrane skeleton in sheared red blood cell ghosts from normal and diseased mice. Sheared samples are compared to static samples at 37 °C in terms of cell membrane intensity in fluorescence microscopy, separated protein fluorescence, and tryptic peptide modification in liquid chromatography–tandem mass spectrometry (LC-MS/MS). Spectrin labeling proves to be the most sensitive to shear, whereas binding partners ankyrin and actin exhibit shear thresholds in labeling and both the ankyrin-binding membrane protein band 3 and the spectrin–actin stabilizer 4.1R show minimal differential labeling. Cells from 4.1R-null mice differ significantly from normal in the shear-dependent labeling of spectrin, ankyrin, and band 3: Decreased labeling of spectrin reveals less stress on the mutant network as spectrin dissociates from actin. Mapping the stress-dependent labeling kinetics of α- and β-spectrin by LC-MS/MS identifies Cys in these antiparallel chains that are either force-enhanced or force-independent in labeling, with structural analyses indicating the force-enhanced sites are sequestered either in spectrin’s triple-helical domains or in interactions with actin or ankyrin. Shear-sensitive sites identified comprehensively here in both spectrin and ankyrin appear consistent with stress relief through forced unfolding followed by cytoskeletal disruption. PMID:21527722

  1. D-Serine Metabolism and Its Importance in Development of Dictyostelium discoideum

    PubMed Central

    Ito, Tomokazu; Hamauchi, Natsuki; Hagi, Taisuke; Morohashi, Naoya; Hemmi, Hisashi; Sato, Yukie G.; Saito, Tamao; Yoshimura, Tohru

    2018-01-01

    In mammals, D-Ser is synthesized by serine racemase (SR) and degraded by D-amino acid oxidase (DAO). D-Ser acts as an endogenous ligand for N-methyl-D-aspartate (NMDA)- and δ2 glutamate receptors, and is involved in brain functions such as learning and memory. Although SR homologs are highly conserved in eukaryotes, little is known about the significance of D-Ser in non-mammals. In contrast to mammals, the slime mold Dictyostelium discoideum genome encodes SR, DAO, and additionally D-Ser specific degradation enzyme D-Ser dehydratase (DSD), but not NMDA- and δ2 glutamate receptors. Here, we studied the significances of D-Ser and DSD in D. discoideum. Enzymatic assays demonstrated that DSD is 460- and 1,700-fold more active than DAO and SR, respectively, in degrading D-Ser. Moreover, in dsd-null cells D-Ser degradation activity is completely abolished. In fact, while in wild-type D. discoideum intracellular D-Ser levels were considerably low, dsd-null cells accumulated D-Ser. These results indicated that DSD but not DAO is the primary enzyme responsible for D-Ser decomposition in D. discoideum. We found that dsd-null cells exhibit delay in development and arrest at the early culmination stage. The efficiency of spore formation was considerably reduced in the mutant cells. These phenotypes were further pronounced by exogenous D-Ser but rescued by plasmid-borne expression of dsd. qRT-PCR analysis demonstrated that mRNA expression of key genes in the cAMP signaling relay is perturbed in the dsd knockout. Our data indicate novel roles for D-Ser and/or DSD in the regulation of cAMP signaling in the development processes of D. discoideum. PMID:29740415

  2. GABAergic circuit dysfunction in the Drosophila Fragile X syndrome model.

    PubMed

    Gatto, Cheryl L; Pereira, Daniel; Broadie, Kendal

    2014-05-01

    Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic α/β Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and Is Modulated by Phosphorylation1[OPEN

    PubMed Central

    Bush, Maxwell S.; Pierrat, Olivier; Nibau, Candida; Mikitova, Veronika; Zheng, Tao; Corke, Fiona M. K.; Mayberry, Laura K.; Browning, Karen S.

    2016-01-01

    Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5′-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation. PMID:27388680

  4. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development

    PubMed Central

    Mitchell, Karen; Al-Anbaki, Ali; Shaikh Qureshi, Wasay Mohiuddin; Tenin, Gennadiy; Lu, Yinhui; Clowes, Christopher; Robertson, Abigail; Barnes, Emma; Wright, Jayne A.; Keavney, Bernard; Lovell, Simon C.

    2017-01-01

    The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival. PMID:29084269

  5. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    PubMed

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  6. Glutamine Deprivation Causes Enhanced Plating Efficiency of a Herpes Simplex Virus Type 1 ICP0-Null Mutant ▿

    PubMed Central

    Bringhurst, Ryan M.; Dominguez, Antonia A.; Schaffer, Priscilla A.

    2008-01-01

    Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0−) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0− virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0− virus. PMID:18768961

  7. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients

    PubMed Central

    Lord, Allegra; Stevenson, Kristen; Bar-Natan, Michal; Pérez-Ladaga, Albert; Zaneveld, Jacques; Wang, Hui; Caughey, Bennett; Stojanov, Petar; Getz, Gad; Garcia-Manero, Guillermo; Kantarjian, Hagop; Chen, Rui; Stone, Richard M.; Neuberg, Donna; Steensma, David P.; Ebert, Benjamin L.

    2014-01-01

    Only a minority of myelodysplastic syndrome (MDS) patients respond to hypomethylating agents (HMAs), but strong predictors of response are unknown. We sequenced 40 recurrently mutated myeloid malignancy genes in tumor DNA from 213 MDS patients collected before treatment with azacitidine (AZA) or decitabine (DEC). Mutations were examined for association with response and overall survival. The overall response rate of 47% was not different between agents. Clonal TET2 mutations predicted response (odds ratio [OR] 1.99, P = .036) when subclones unlikely to be detected by Sanger sequencing (allele fraction <10%) were treated as wild-type (WT). Response rates were highest in the subset of TET2 mutant patients without clonal ASXL1 mutations (OR 3.65, P = .009). Mutations of TP53 (hazard ratio [HR] 2.01, P = .002) and PTPN11 (HR 3.26, P = .006) were associated with shorter overall survival but not drug response. Murine-competitive bone marrow transplantation followed by treatment with AZA demonstrated that Tet2-null cells have an engraftment advantage over Tet2-WT cells. AZA significantly decreased this advantage for Tet2-null cells (P = .002) but not Tet2-WT cells (P = .212). Overall, Tet2 loss appears to sensitize cells to treatment with AZA in vivo, and TET2 mutations can identify patients more likely to respond to HMAs. PMID:25224413

  8. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients.

    PubMed

    Bejar, Rafael; Lord, Allegra; Stevenson, Kristen; Bar-Natan, Michal; Pérez-Ladaga, Albert; Zaneveld, Jacques; Wang, Hui; Caughey, Bennett; Stojanov, Petar; Getz, Gad; Garcia-Manero, Guillermo; Kantarjian, Hagop; Chen, Rui; Stone, Richard M; Neuberg, Donna; Steensma, David P; Ebert, Benjamin L

    2014-10-23

    Only a minority of myelodysplastic syndrome (MDS) patients respond to hypomethylating agents (HMAs), but strong predictors of response are unknown. We sequenced 40 recurrently mutated myeloid malignancy genes in tumor DNA from 213 MDS patients collected before treatment with azacitidine (AZA) or decitabine (DEC). Mutations were examined for association with response and overall survival. The overall response rate of 47% was not different between agents. Clonal TET2 mutations predicted response (odds ratio [OR] 1.99, P = .036) when subclones unlikely to be detected by Sanger sequencing (allele fraction <10%) were treated as wild-type (WT). Response rates were highest in the subset of TET2 mutant patients without clonal ASXL1 mutations (OR 3.65, P = .009). Mutations of TP53 (hazard ratio [HR] 2.01, P = .002) and PTPN11 (HR 3.26, P = .006) were associated with shorter overall survival but not drug response. Murine-competitive bone marrow transplantation followed by treatment with AZA demonstrated that Tet2-null cells have an engraftment advantage over Tet2-WT cells. AZA significantly decreased this advantage for Tet2-null cells (P = .002) but not Tet2-WT cells (P = .212). Overall, Tet2 loss appears to sensitize cells to treatment with AZA in vivo, and TET2 mutations can identify patients more likely to respond to HMAs. © 2014 by The American Society of Hematology.

  9. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to amore » single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.« less

  10. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    PubMed

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila.

    PubMed

    Erdi, Balázs; Nagy, Péter; Zvara, Agnes; Varga, Agnes; Pircs, Karolina; Ménesi, Dalma; Puskás, László G; Juhász, Gábor

    2012-07-01

    Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.

  12. Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice

    PubMed Central

    Molla, Muriel; Descroix, Vianney; Aïoub, Muhanad; Simon, Stéphane; Castañeda, Beatriz; Hotton, Dominique; Bolaños, Alba; Simon, Yohann; Lezot, Frédéric; Goubin, Gérard; Berdal, Ariane

    2010-01-01

    Signaling pathways that underlie postnatal dental and periodontal physiopathology are less studied than those of early tooth development. Members of the muscle segment homeobox gene (Msx) family encode homeoproteins that show functional redundancy during development and are known to be involved in epithelial-mesenchymal interactions that lead to crown morphogenesis and ameloblast cell differentiation. This study analyzed the MSX2 protein during mouse postnatal growth as well as in the adult. The analysis focused on enamel and periodontal defects and enamel proteins in Msx2-null mutant mice. In the epithelial lifecycle, the levels of MSX2 expression and enamel protein secretion were inversely related. Msx2+/− mice showed increased amelogenin expression, enamel thickness, and rod size. Msx2−/− mice displayed compound phenotypic characteristics of enamel defects, related to both enamel-specific gene mutations (amelogenin and enamelin) in isolated amelogenesis imperfecta, and cell-cell junction elements (laminin 5 and cytokeratin 5) in other syndromes. These effects were also related to ameloblast disappearance, which differed between incisors and molars. In Msx2−/− roots, Malassez cells formed giant islands that overexpressed amelogenin and ameloblastin that grew over months. Aberrant expression of enamel proteins is proposed to underlie the regional osteopetrosis and hyperproduction of cellular cementum. These enamel and periodontal phenotypes of Msx2 mutants constitute the first case report of structural and signaling defects associated with enamel protein overexpression in a postnatal context. PMID:20934968

  13. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  14. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice.

    PubMed

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-05-07

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.

  15. Fission yeast dam1-A8 mutant is resistant to and rescued by an anti-microtubule agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Karen; Masuda, Hirohisa; Dhut, Susheela

    2008-04-11

    The Dam1/DASH outer kinetochore complex is required for high-fidelity chromosome segregation in budding and fission yeast. Unlike budding yeast, the fission yeast complex is non-essential, however it promotes bipolar microtubule attachment in conjunction with microtubule-depolymerising kinesin-8 Klp5 and Klp6. Here, we screened for dam1 temperature sensitive mutants in a klp5 null background and identified dam1-A8 that contains two amino acid substitutions in the C-terminus (H126R and E149G). dam1-A8klp5 mutant cells display massive chromosome missegregation with lagging chromosomes and monopolar attachment of sister chromatids to one SPB (spindle pole body). Unexpectedly contrary to a deletion mutant that is hypersensitive to microtubule-destabilisingmore » drugs, dam1-A8 is resistant and furthermore the temperature sensitivity of dam1-A8klp5 is rescued by addition of these drugs. This indicates that the hyper-stabilised rigidity of kinetochore-spindle mal-attachments is the primary cause of lethality. Our result shows that fine-tuning of Dam1 activity is essential for chromosome bi-orientation.« less

  16. Generation and characterization of Kctd15 mutations in zebrafish

    PubMed Central

    Heffer, Alison; Marquart, Gregory D.; Aquilina-Beck, Allisan; Saleem, Nabil; Burgess, Harold A.

    2017-01-01

    Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates. PMID:29216270

  17. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    PubMed

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    PubMed

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  19. Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis.

    PubMed

    She, Xiaodong; Khamooshi, Kasra; Gao, Yin; Shen, Yongnian; Lv, Yuxia; Calderone, Richard; Fonzi, William; Liu, Weida; Li, Dongmei

    2015-09-01

    Our published research has focused on the role of Goa1p, an apparent regulator of the Candida albicans mitochondrial complex I (CI). Lack of Goa1p affects optimum cell growth, CI activity and virulence. Eukaryotic CI is composed of a core of 14 alpha-proteobacterial subunit proteins and a variable number of supernumerary subunit proteins. Of the latter group of proteins, one (NUZM) is fungal specific and the other (NUXM) is found in fungi, algae and plants, but is not a mammalian CI subunit protein. We have established that NUXM is orf19.6607 and NUZM is orf19.287 in C. albicans. Herein, we validate both subunit proteins as NADH:ubiquinone oxidoreductases (NUO) and annotate their gene functions. To accomplish these objectives, we compared null mutants of each with wild type (WT) and gene-reconstituted strains. Genetic mutants of genes NUO1 (orf19.6607) and NUO2 (orf19.287), not surprisingly, each had reduced oxygen consumption, decreased mitochondrial redox potential, decreased CI activity, increased reactive oxidant species (ROS) and decreased chronological ageing in vitro. Loss of either gene results in disassembly of CI. Transcriptional profiling of both mutants indicated significant down-regulation of genes of carbon metabolism, as well as up-regulation of mitochondrial-associated gene families that may occur to compensate for the loss of CI activity. Profiling of both mutants also demonstrated a loss of cell wall β-mannosylation but not in a conserved CI subunit (ndh51Δ). The profiling data may indicate specific functions driven by the enzymatic activity of Nuo1p and Nuo2p. Of importance, each mutant is also avirulent in a murine blood-borne, invasive model of candidiasis associated with their reduced colonization of tissues. Based on their fungal specificity and roles in virulence, we suggest both as drug targets for antifungal drug discovery. © 2015 John Wiley & Sons Ltd.

  20. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein.

    PubMed

    Escudero, Viviana; Jordá, Lucía; Sopeña-Torres, Sara; Mélida, Hugo; Miedes, Eva; Muñoz-Barrios, Antonio; Swami, Sanjay; Alexander, Danny; McKee, Lauren S; Sánchez-Vallet, Andrea; Bulone, Vincent; Jones, Alan M; Molina, Antonio

    2017-11-01

    Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  1. Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania.

    PubMed

    Guo, Hongjie; Novozhilova, Natalia M; Bandini, Giulia; Turco, Salvatore J; Ferguson, Michael A J; Beverley, Stephen M

    2017-06-23

    To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Ara p ) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes ( FKP40 and AFKP80 ) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Ara p into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Ara p from exogenous d-Ara p , both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δ afkp80 - null mutants ablated d-Ara p modifications of LPG as predicted, whereas Δ fkp40 - null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major , but unexpectedly, we were unable to generate fkp40 - / afkp80 - double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed "genetic metabolite complementation." First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δ fkp40 - /Δ afkp80 - double mutant was now readily obtained. As expected, the Δ fkp40 - /Δ afkp80 - /+ TbGMD-GMER line lacked the capacity to generate GDP-Ara p , while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s). © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Genetic metabolic complementation establishes a requirement for GDP-fucose in Leishmania

    PubMed Central

    Novozhilova, Natalia M.; Turco, Salvatore J.

    2017-01-01

    To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eventually it must detach for transmission by the next bite. In Leishmania major strain Friedlin, this is controlled by modifications of the stage-specific adhesin lipophosphoglycan (LPG). During differentiation to infective metacyclics, d-arabinopyranose (d-Arap) caps the LPG side-chain galactose residues, blocking interaction with the midgut lectin PpGalec, thereby leading to parasite detachment and transmission. Previously, we characterized two closely related L. major genes (FKP40 and AFKP80) encoding bifunctional proteins with kinase/pyrophosphorylase activities required for salvage and conversion of l-fucose and/or d-Arap into the nucleotide-sugar substrates required by glycosyltransferases. Whereas only AFKP80 yielded GDP-d-Arap from exogenous d-Arap, both proteins were able to salvage l-fucose to GDP-fucose. We now show that Δafkp80− null mutants ablated d-Arap modifications of LPG as predicted, whereas Δfkp40− null mutants resembled wild type (WT). Fucoconjugates had not been reported previously in L. major, but unexpectedly, we were unable to generate fkp40−/afkp80− double mutants, unless one of the A/FKPs was expressed ectopically. To test whether GDP-fucose itself was essential for Leishmania viability, we employed “genetic metabolite complementation.” First, the trypanosome de novo pathway enzymes GDP-mannose dehydratase (GMD) and GDP-fucose synthetase (GMER) were expressed ectopically; from these cells, the Δfkp40−/Δafkp80− double mutant was now readily obtained. As expected, the Δfkp40−/Δafkp80−/+TbGMD-GMER line lacked the capacity to generate GDP-Arap, while synthesizing abundant GDP-fucose. These results establish a requirement for GDP-fucose for L. major viability and predict the existence of an essential fucoconjugate(s). PMID:28465349

  3. Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB

    PubMed Central

    Villarino, María; Mendizabal, Gorka; Garzia, Aitor; Ugalde, Unai

    2017-01-01

    Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA− mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties. PMID:28753996

  4. Plant perception and response to the signal in gravity resistance

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro; Zhang, Yan; Otomi, Yasuhiro; Hashimoto, Takashi; Iida, Hidetoshi

    2012-07-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, distinct from gravitropism. Plants increase the rigidity of their cell walls in the final step of gravity resistance. We studied cellular events leading to or related to the cell wall changes under hypergravity conditions produced by centrifugation and under microgravity conditions in space. The involvement of mechanosensitive ion channels (mechanoreceptors) in signal perception in gravity resistance has been suggested by experiments with inhibitors. As a candidate for the mechanoreceptor, we identified MCA1 and MCA2 in Arabidopsis. mca-null and MCA-overexpressing seedlings were normal in growth in the dark at 1 g. However, suppression by hypergravity of elongation growth was reduced in hypocotyls of mca-null seedlings. On the contrary, MCA-overexpressing seedlings were hypersensitive to hypergravity. These results suggest that MCAs act as the mechanoreceptor in signal perception of gravity resistance. Cortical microtubules play an essential role in maintenance of normal growth phenotype under hypergravity conditions. In Space Seed experiment in the Kibo Module (PI: S. Kamisaka), we examined the effects of microgravity on growth phenotypes of Arabidopsis tubulin mutant, tua6. Inflorescences of the mutant emerged earlier and elongated rapidly under microgravity conditions than under on-orbit or ground 1 g conditions. Also, the inflorescences grown under microgravity conditions showed higher cell wall extensibilities than the controls. The tubulin mutant thus grew and developed more or less normally under microgravity conditions, supporting the principal role of microtubules also in plant resistance to 1 g gravity. On the other hand, the cellular osmotic properties, as well as the cell wall properties, are important factors determining the rigidity of plant body. Azuki bean epicotyls were capable of maintaining osmoregulation even under hypergravity conditions for a short period. By long-term hypergravity treatment, the increase in level of total osmotic solutes was suppressed, which was accounted by suppression of translocation of organic solutes, such as sugars and amino acids, from seed to epicotyl. Nevertheless, the ATP content per epicotyl or fresh weight was kept constant even under hypergravity conditions for a long period. The maintenance of osmoregulation may contribute to plant resistance to hypergravity. Space experiments on the International Space Station will further clarify the mechanism of gravity resistance.

  5. Trypanosoma brucei (UMP synthase null mutants) are avirulent in mice, but recover virulence upon prolonged culture in vitro while retaining pyrimidine auxotrophy.

    PubMed

    Ong, Han B; Sienkiewicz, Natasha; Wyllie, Susan; Patterson, Stephen; Fairlamb, Alan H

    2013-10-01

    African trypanosomes are capable of both de novo synthesis and salvage of pyrimidines. The last two steps in de novo synthesis are catalysed by UMP synthase (UMPS) - a bifunctional enzyme comprising orotate phosphoribosyl transferase (OPRT) and orotidine monophosphate decarboxylase (OMPDC). To investigate the essentiality of pyrimidine biosynthesis in Trypanosoma brucei, we generated a umps double knockout (DKO) line by gene replacement. The DKO was unable to grow in pyrimidine-depleted medium in vitro, unless supplemented with uracil, uridine, deoxyuridine or UMP. DKO parasites were completely resistant to 5-fluoroorotate and hypersensitive to 5-fluorouracil, consistent with loss of UMPS, but remained sensitive to pyrazofurin indicating that, unlike mammalian cells, the primary target of pyrazofurin is not OMPDC. The null mutant was unable to infect mice indicating that salvage of host pyrimidines is insufficient to support growth. However, following prolonged culture in vitro, parasites regained virulence in mice despite retaining pyrimidine auxotrophy. Unlike the wild-type, both pyrimidine auxotrophs secreted substantial quantities of orotate, significantly higher in the virulent DKO line. We propose that this may be responsible for the recovery of virulence in mice, due to host metabolism converting orotate to uridine, thereby bypassing the loss of UMPS in the parasite. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  6. Perception of sweet taste is important for voluntary alcohol consumption in mice.

    PubMed

    Blednov, Y A; Walker, D; Martinez, M; Levine, M; Damak, S; Margolskee, R F

    2008-02-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: alpha-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol.

  7. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    PubMed Central

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2012-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild type mice, whereas Tas1r3 null mice were not different from wild-type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in conditioned taste aversion to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. PMID:17376151

  8. Maternal nicotine exposure effects on adolescent learning and memory are abolished in alpha(α)2* nicotinic acetylcholine receptor-null mutant mice.

    PubMed

    Mojica, Celina; Bai, Yu; Lotfipour, Shahrdad

    2018-06-01

    The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Aldose reductase mediates retinal microglia activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migrationmore » in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.« less

  10. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells

    PubMed Central

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka

    2017-01-01

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next. PMID:28906251

  11. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells.

    PubMed

    Wang, Jennifer T; Kong, Dong; Hoerner, Christian R; Loncarek, Jadranka; Stearns, Tim

    2017-09-14

    Centrioles are composed of long-lived microtubules arranged in nine triplets. However, the contribution of triplet microtubules to mammalian centriole formation and stability is unknown. Little is known of the mechanism of triplet microtubule formation, but experiments in unicellular eukaryotes indicate that delta-tubulin and epsilon-tubulin, two less-studied tubulin family members, are required. Here, we report that centrioles in delta-tubulin and epsilon-tubulin null mutant human cells lack triplet microtubules and fail to undergo centriole maturation. These aberrant centrioles are formed de novo each cell cycle, but are unstable and do not persist to the next cell cycle, leading to a futile cycle of centriole formation and disintegration. Disintegration can be suppressed by paclitaxel treatment. Delta-tubulin and epsilon-tubulin physically interact, indicating that these tubulins act together to maintain triplet microtubules and that these are necessary for inheritance of centrioles from one cell cycle to the next.

  12. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  13. Reduced cell number in the hindgut epithelium disrupts hindgut left-right asymmetry in a mutant of pebble, encoding a RhoGEF, in Drosophila embryos.

    PubMed

    Nakamura, Mitsutoshi; Matsumoto, Kenjiroo; Iwamoto, Yuta; Muguruma, Takeshi; Nakazawa, Naotaka; Hatori, Ryo; Taniguchi, Kiichiro; Maeda, Reo; Matsuno, Kenji

    2013-02-01

    Animals often show left-right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl's role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    PubMed

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  15. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis

    PubMed Central

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F.; Ramroop, Johnny; Kellner, Stefanie M.; Benton, Matthew A.; Govind, Shubha; Dedon, Peter C.; Sternglanz, Rolf; Lai, Eric C.

    2015-01-01

    N6-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon–codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease. PMID:26516084

  16. Knocking off the suppressors of cytokine signaling (SOCS): their roles in mammalian pregnancy.

    PubMed

    Fitzgerald, Justine S; Toth, Bettina; Jeschke, Udo; Schleussner, Ekkehard; Markert, Udo R

    2009-12-01

    This review discusses the possible role of the suppressor of cytokine signaling (SOCS) proteins in mammalian reproduction. SOCS are regulatory proteins that are rapidly transcribed in response to intracellular Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling, a cascade governing biological functions including cytokine-induced immunological responses and reproductive processes. For instance STAT3 appears to mediate trophoblast invasion induced by LIF. The SOCS family includes 8 members (cytokine-inducible SH2 protein [CIS] and SOCS1-7) that orchestrate distinct reactions by antagonizing STAT activation. Emerging evidence points to a role of some family members in synchronizing Th1/Th2 cell profiles, the balance in which is considered vital to pregnancy maintenance. The reproductive phenotypes of mutant mice harboring targeted disruption of SOCS gene isoforms offer insights for reproductive immunology, trophoblast function and human pregnancy. CIS transgenic mice display impaired responses to IL-2 and resemble STAT5 deficient mice, except they are fertile. SOCS1 deficiency leads to an overabundance of IFNgamma signaling, yet SOCS1 null mutant mice are able to reproduce. Lack of SOCS3 is embryonically lethal due to placental insufficiency, while SOCS3 over-expression leads to elevated Th2 responses. SOCS3 seems to be vital for reproduction by regulating LIF-driven trophoblast differentiation. SOCS5 inhibits IL-4 signaling, yet the SOCS5 transgenic mouse has no conspicuous reproductive phenotype. SOCS-6 and SOCS-7 null mutant mice display growth retardation. In summary, SOCS proteins are avidly involved in fine regulation of immunological and other vital cellular responses. Many of the above phenotypes present contradictions to accepted reproductive immunological paradigms.

  17. Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB.

    PubMed

    Wright, Catherine C; Wisner, Todd W; Hannah, Brian P; Eisenberg, Roselyn J; Cohen, Gary H; Johnson, David C

    2009-11-01

    Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.

  18. Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3β.

    PubMed

    Wu, Xiaoyang; Shen, Qing-Tao; Oristian, Daniel S; Lu, Catherine P; Zheng, Qinsi; Wang, Hong-Wei; Fuchs, Elaine

    2011-02-04

    Homeostasis and wound healing rely on stem cells (SCs) whose activity and directed migration are often governed by Wnt signaling. In dissecting how this pathway integrates with the necessary downstream cytoskeletal dynamics, we discovered that GSK3β, a kinase inhibited by Wnt signaling, directly phosphorylates ACF7, a > 500 kDa microtubule-actin crosslinking protein abundant in hair follicle stem cells (HF-SCs). We map ACF7's GSK3β sites to the microtubule-binding domain and show that phosphorylation uncouples ACF7 from microtubules. Phosphorylation-refractile ACF7 rescues overall microtubule architecture, but phosphorylation-constitutive mutants do not. Neither mutant rescues polarized movement, revealing that phospho-regulation must be dynamic. This circuitry is physiologically relevant and depends upon polarized GSK3β inhibition at the migrating front of SCs/progeny streaming from HFs during wound repair. Moreover, only ACF7 and not GSKβ-refractile-ACF7 restore polarized microtubule-growth and SC-migration to ACF7 null skin. Our findings provide insights into how this conserved spectraplakin integrates signaling, cytoskeletal dynamics, and polarized locomotion of somatic SCs. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes*

    PubMed Central

    Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.

    2009-01-01

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 Å resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic “whirly” single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners. PMID:19567872

  20. The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization.

    PubMed

    Bouley, M; Tian, M Z; Paisley, K; Shen, Y C; Malhotra, J D; Hortsch, M

    2000-06-15

    Ankyrins are linker proteins, which connect various membrane proteins, including members of the L1 family of neural cell adhesion molecules, with the submembranous actin-spectrin skeleton. Here we report the cloning and characterization of a second, novel Drosophila ankyrin gene (Dank2) that appears to be the result of a gene duplication event during arthropod evolution. The Drosophila L1-type protein neuroglian interacts with products from both Drosophila ankyrin genes. Whereas the previously described ankyrin gene is ubiquitously expressed during embryogenesis, the expression of Dank2 is restricted to the nervous system in the Drosophila embryo. The absence of neuroglian protein in a neuroglian null mutant line causes decreased levels of Dank2 protein in most neuronal cells. This suggests that neuroglian is important for the stability of Dank2 protein. However, neuroglian is not required for Dank2 axonal localization. In temperature-sensitive neuroglian mutants in which neuroglian protein is mislocated at the restrictive temperature to an intracellular location in the neuronal soma, Dank2 protein can still be detected along embryonic nerve tracts.

  1. Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts

    NASA Technical Reports Server (NTRS)

    Wang, Vincent Y.; Hassan, Bassem A.; Bellen, Hugo J.; Zoghbi, Huda Y.

    2002-01-01

    Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.

  2. An essential role for IGF2 in cartilage development and glucose metabolism during postnatal long bone growth.

    PubMed

    Uchimura, Tomoya; Hollander, Judith M; Nakamura, Daisy S; Liu, Zhiyi; Rosen, Clifford J; Georgakoudi, Irene; Zeng, Li

    2017-10-01

    Postnatal bone growth involves a dramatic increase in length and girth. Intriguingly, this period of growth is independent of growth hormone and the underlying mechanism is poorly understood. Recently, an IGF2 mutation was identified in humans with early postnatal growth restriction. Here, we show that IGF2 is essential for longitudinal and appositional murine postnatal bone development, which involves proper timing of chondrocyte maturation and perichondrial cell differentiation and survival. Importantly, the Igf2 null mouse model does not represent a simple delay of growth but instead uncoordinated growth plate development. Furthermore, biochemical and two-photon imaging analyses identified elevated and imbalanced glucose metabolism in the Igf2 null mouse. Attenuation of glycolysis rescued the mutant phenotype of premature cartilage maturation, thereby indicating that IGF2 controls bone growth by regulating glucose metabolism in chondrocytes. This work links glucose metabolism with cartilage development and provides insight into the fundamental understanding of human growth abnormalities. © 2017. Published by The Company of Biologists Ltd.

  3. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis.

    PubMed

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-02-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes.

  4. Development of an adenoviral vector with robust expression driven by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajgelman, Marcio C.; Biotechnology Program, Biomedical Sciences Institute, University of Sao Paulo; Millennium Institute-Gene Therapy Network, Ministry of Science and Technology

    2008-02-05

    Here we introduce a new adenoviral vector where transgene expression is driven by p53. We first developed a synthetic promoter, referred to as PGTx{beta}, containing a p53-responsive element, a minimal promoter and the first intron of the rabbit {beta}-globin gene. Initial assays using plasmid-based vectors indicated that expression was tightly controlled by p53 and was 5-fold stronger than the constitutive CMV immediate early promoter/enhancer. The adenoviral vector, AdPG, was also shown to offer p53-responsive expression in prostate carcinoma cells LNCaP (wt p53), DU-145 (temperature sensitive mutant of p53) and PC3 (p53-null, but engineered to express temperature-sensitive p53 mutants). AdPG servedmore » as a sensor of p53 activity in LNCaP cells treated with chemotherapeutic agents. Since p53 can be induced by radiotherapy and chemotherapy, this new vector could be further developed for use in combination with conventional therapies to bring about cooperation between the genetic and pharmacologic treatment modalities.« less

  5. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration.

    PubMed

    Schaffer, Ashleigh E; Eggens, Veerle R C; Caglayan, Ahmet Okay; Reuter, Miriam S; Scott, Eric; Coufal, Nicole G; Silhavy, Jennifer L; Xue, Yuanchao; Kayserili, Hulya; Yasuno, Katsuhito; Rosti, Rasim Ozgur; Abdellateef, Mostafa; Caglar, Caner; Kasher, Paul R; Cazemier, J Leonie; Weterman, Marian A; Cantagrel, Vincent; Cai, Na; Zweier, Christiane; Altunoglu, Umut; Satkin, N Bilge; Aktar, Fesih; Tuysuz, Beyhan; Yalcinkaya, Cengiz; Caksen, Huseyin; Bilguvar, Kaya; Fu, Xiang-Dong; Trotta, Christopher R; Gabriel, Stacey; Reis, André; Gunel, Murat; Baas, Frank; Gleeson, Joseph G

    2014-04-24

    Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis.

    PubMed

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A

    1999-08-01

    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.

  7. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins

    PubMed Central

    Prasad, Tuhina; Weiner, Joshua A.

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γdel/del null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs. PMID:22275881

  8. Direct and Indirect Regulation of Spinal Cord Ia Afferent Terminal Formation by the γ-Protocadherins.

    PubMed

    Prasad, Tuhina; Weiner, Joshua A

    2011-01-01

    The Pcdh-γ gene cluster encodes 22 protocadherin adhesion molecules that interact as homophilic multimers and critically regulate synaptogenesis and apoptosis of interneurons in the developing spinal cord. Unlike interneurons, the two primary components of the monosynaptic stretch reflex circuit, dorsal root ganglion sensory neurons and ventral motor neurons (MNs), do not undergo excessive apoptosis in Pcdh-γ(del/del) null mutants, which die shortly after birth. However, as we show here, mutants exhibit severely disorganized Ia proprioceptive afferent terminals in the ventral horn. In contrast to the fine net-like pattern observed in wild-type mice, central Ia terminals in Pcdh-γ mutants appear clumped, and fill the space between individual MNs; quantitative analysis shows a ~2.5-fold increase in the area of terminals. Concomitant with this, there is a 70% loss of the collaterals that Ia afferents extend to ventral interneurons (vINs), many of which undergo apoptosis in the mutants. The Ia afferent phenotype is ameliorated, though not entirely rescued, when apoptosis is blocked in Pcdh-γ null mice by introduction of a Bax null allele. This indicates that loss of vINs, which act as collateral Ia afferent targets, contributes to the disorganization of terminals on motor pools. Restricted mutation of the Pcdh-γ cluster using conditional mutants and multiple Cre transgenic lines (Wnt1-Cre for sensory neurons; Pax2-Cre for vINs; Hb9-Cre for MNs) also revealed a direct requirement for the γ-Pcdhs in Ia neurons and vINs, but not in MNs themselves. Together, these genetic manipulations indicate that the γ-Pcdhs are required for the formation of the Ia afferent circuit in two ways: First, they control the survival of vINs that act as collateral Ia targets; and second, they provide a homophilic molecular cue between Ia afferents and target vINs.

  9. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling.

    PubMed

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf 0 mutants. The Pdf 0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf 0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.

  10. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling

    PubMed Central

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M.; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational. PMID:29615925

  11. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults.

    PubMed

    Wilson, Carole L; Gough, Peter J; Chang, Cindy A; Chan, Christina K; Frey, Jeremy M; Liu, Yonggang; Braun, Kathleen R; Chin, Michael T; Wight, Thomas N; Raines, Elaine W

    2013-01-01

    Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf(-/-) valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  13. PTBP1 Is Required for Embryonic Development before Gastrulation

    PubMed Central

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A. Francis; Solimena, Michele

    2011-01-01

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures. PMID:21423341

  14. PTBP1 is required for embryonic development before gastrulation.

    PubMed

    Suckale, Jakob; Wendling, Olivia; Masjkur, Jimmy; Jäger, Melanie; Münster, Carla; Anastassiadis, Konstantinos; Stewart, A Francis; Solimena, Michele

    2011-02-17

    Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.

  15. Icm/Dot-Independent Entry of Legionella pneumophila into Amoeba and Macrophage Hosts

    PubMed Central

    Bandyopadhyay, Purnima; Xiao, Huifang; Coleman, Hope A.; Price-Whelan, Alexa; Steinman, Howard M.

    2004-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, expresses a type IVB secretion apparatus that translocates bacterial proteins into amoeba and macrophage hosts. When stationary-phase cultures are used to infect hosts, the type IVB apparatus encoded by the icm/dot genes is required for entry, delay of phagosome-lysosome fusion, and intracellular multiplication within host cells. Null mutants with mutations in icm/dot genes are defective in these phenotypes. Here a new model is described in which hosts are infected with stationary-phase cultures that have been incubated overnight in pH 6.5 buffer. This model is called Ers treatment because it enhances the resistance to acid, hydrogen peroxide, and antibiotic stress beyond that of stationary-phase cultures. Following Ers treatment entry into amoeba and macrophage hosts does not require dotA, which is essential for Legionella virulence phenotypes when hosts are infected with stationary-phase cultures, dotB, icmF, icmV, or icmX. Defective host entry is also suppressed for null mutants with mutations in the KatA and KatB catalase-peroxidase enzymes, which are required for proper intracellular growth in amoeba and macrophage hosts. Ers treatment-induced suppression of defective entry is not associated with increased bacterial adhesion to host cells or with morphological changes in the bacterial envelope but is dependent on protein expression during Ers treatment. By using proteomic analysis, Ers treatment was shown to induce a protein predicted to contain eight tetratricopeptide repeats, a motif previously implicated in enhanced entry of L. pneumophila. Characterization of Ers treatment-dependent changes in expression is proposed as an avenue for identifying icm/dot-independent factors that function in the entry of Legionella into amoeba and macrophage hosts. PMID:15271914

  16. Epidermal expression of a sterol biosynthesis gene regulates root growth by a non-cell-autonomous mechanism in Arabidopsis.

    PubMed

    Short, Eleri; Leighton, Margaret; Imriz, Gul; Liu, Dongbin; Cope-Selby, Naomi; Hetherington, Flora; Smertenko, Andrei; Hussey, Patrick J; Topping, Jennifer F; Lindsey, Keith

    2018-05-15

    The epidermis is hypothesized to play a signalling role during plant development. One class of mutants showing defects in signal transduction and radial patterning are those in sterol biosynthesis. The expectation is that living cells require sterols, but it is not clear that all cell types express sterol biosynthesis genes. The HYDRA1 ( HYD1 ) gene of Arabidopsis encodes sterol Δ8-Δ7 isomerase, and although hyd1 seedlings are defective in radial patterning across several tissues, we show that the HYD1 gene is expressed most strongly in the root epidermis. Transgenic activation of HYD1 transcription in the epidermis of hyd1 null mutants reveals a major role in root patterning and growth. HYD1 expression in the vascular tissues and root meristem, though not endodermis or pericycle, also leads to some phenotypic rescue. Phenotypic rescue is associated with rescued patterning of the PIN1 and PIN2 auxin efflux carriers. The importance of the epidermis in controlling root growth and development is proposed to be, in part, due to its role as a site for sterol biosynthesis, and auxin is a candidate for the non-cell-autonomous signal. © 2018. Published by The Company of Biologists Ltd.

  17. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.

    PubMed

    Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki

    2013-01-01

    The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.

  18. The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase.

    PubMed Central

    Ma, H; Gamper, M; Parent, C; Firtel, R A

    1997-01-01

    We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium. PMID:9250676

  19. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication

    PubMed Central

    Singh, Shilpa; Vaughan, Catherine A.; Frum, Rebecca A.; Grossman, Steven R.; Deb, Sumitra

    2017-01-01

    Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles. PMID:28394262

  20. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles.

    PubMed

    Itoh, Kazuyoshi; Akimoto, Yoshihiro; Kondo, Shu; Ichimiya, Tomomi; Aoki, Kazuhiro; Tiemeyer, Michael; Nishihara, Shoko

    2018-04-15

    T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. SpxA1 Involved in Hydrogen Peroxide Production, Stress Tolerance and Endocarditis Virulence in Streptococcus sanguinis

    PubMed Central

    Chen, Lei; Ge, Xiuchun; Wang, Xiaojing; Patel, Jenishkumar R.; Xu, Ping

    2012-01-01

    Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H2O2) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΔspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΔspxA1 also exhibited a ∼5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΔspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΔspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H2O2 production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses. PMID:22768210

  2. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis.

    PubMed

    Chen, Lei; Ge, Xiuchun; Wang, Xiaojing; Patel, Jenishkumar R; Xu, Ping

    2012-01-01

    Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H(2)O(2)) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΔspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΔspxA1 also exhibited a ∼5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΔspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΔspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H(2)O(2) production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses.

  3. Methylation of Gibberellins by Arabidopsis GAMT1 and GAMT2[W

    PubMed Central

    Varbanova, Marina; Yamaguchi, Shinjiro; Yang, Yue; McKelvey, Katherine; Hanada, Atsushi; Borochov, Roy; Yu, Fei; Jikumaru, Yusuke; Ross, Jeannine; Cortes, Diego; Ma, Choong Je; Noel, Joseph P.; Mander, Lew; Shulaev, Vladimir; Kamiya, Yuji; Rodermel, Steve; Weiss, David; Pichersky, Eran

    2007-01-01

    Arabidopsis thaliana GAMT1 and GAMT2 encode enzymes that catalyze formation of the methyl esters of gibberellins (GAs). Ectopic expression of GAMT1 or GAMT2 in Arabidopsis, tobacco (Nicotiana tabacum), and petunia (Petunia hybrida) resulted in plants with GA deficiency and typical GA deficiency phenotypes, such as dwarfism and reduced fertility. GAMT1 and GAMT2 are both expressed mainly in whole siliques (including seeds), with peak transcript levels from the middle until the end of silique development. Within whole siliques, GAMT2 was previously shown to be expressed mostly in developing seeds, and we show here that GAMT1 expression is also localized mostly to seed, suggesting a role in seed development. Siliques of null single GAMT1 and GAMT2 mutants accumulated high levels of various GAs, with particularly high levels of GA1 in the double mutant. Methylated GAs were not detected in wild-type siliques, suggesting that methylation of GAs by GAMT1 and GAMT2 serves to deactivate GAs and initiate their degradation as the seeds mature. Seeds of homozygous GAMT1 and GAMT2 null mutants showed reduced inhibition of germination, compared with the wild type, when placed on plates containing the GA biosynthesis inhibitor ancymidol, with the double mutant showing the least inhibition. These results suggest that the mature mutant seeds contained higher levels of active GAs than wild-type seeds. PMID:17220201

  4. The effects of gene disruption of Kre6-like proteins on the phenotype of β-glucan-producing Aureobasidium pullulans.

    PubMed

    Uchiyama, Hirofumi; Iwai, Atsushi; Dohra, Hideo; Ohnishi, Toshiyuki; Kato, Tatsuya; Park, Enoch Y

    2018-05-01

    Killer toxin resistant 6 (Kre6) and its paralog, suppressor of Kre null 1 (Skn1), are thought to be involved in the biosynthesis of cell wall β-(1 → 6)-D-glucan in baker's yeast, Saccharomyces cerevisiae. The Δkre6Δskn1 mutant of S. cerevisiae and other fungi shows severe growth defects due to the failure to synthesize normal cell walls. In this study, two homologs of Kre6, namely, K6LP1 (Kre6-like protein 1) and K6LP2 (Kre6-like protein 2), were identified in Aureobasidium pullulans M-2 by draft genome analysis. The Δk6lp1, Δk6lp2, and Δk6lp1Δk6lp2 mutants were generated in order to confirm the functions of the Kre6-like proteins in A. pullulans M-2. The cell morphologies of Δk6lp1 and Δk6lp1Δk6lp2 appeared to be different from those of wild type and Δk6lp2 in both their yeast and hyphal forms. The productivity of the extracellular polysaccharides, mainly composed of β-(1 → 3),(1 → 6)-D-glucan (β-glucan), of the mutants was 5.1-17.3% less than that of wild type, and the degree of branching in the extracellular β-glucan of mutants was 14.5-16.8% lower than that of wild type. This study showed that the gene disruption of Kre6-like proteins affected the cell morphology, the productivity of extracellular polysaccharides, and the structure of extracellular β-glucan, but it did not have a definite effect on the cell viability even in Δk6lp1Δk6lp2, unlike in the Δkre6Δskn1 of S. cerevisiae.

  5. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    PubMed Central

    2010-01-01

    Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes with Notch112f in combination with a Notch1 null allele (Notch1tm1Con) were capable of surviving to birth. Conclusions Notch1 signaling in Notch112f/lbd compound heterozygous embryos is more defective than in compound heterozygotes expressing a hypomorphic Notch112f allele and a Notch1 null allele. The data suggest that the gene products Notch1lbd and Notch112f interact to reduce the activity of Notch112f. PMID:20346184

  6. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability.

    PubMed

    Dietrich, Charles R; Han, Gongshe; Chen, Ming; Berg, R Howard; Dunn, Teresa M; Cahoon, Edgar B

    2008-04-01

    Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis, and downregulation of this enzyme provides a means for exploring sphingolipid function in cells. We have previously demonstrated that Arabidopsis SPT requires LCB1 and LCB2 subunits for activity, as is the case in other eukaryotes. In this study, we show that Arabidopsis has two genes (AtLCB2a and AtLCB2b) that encode functional isoforms of the LCB2 subunit. No alterations in sphingolipid content or growth were observed in T-DNA mutants for either gene, but homozygous double mutants were not recoverable, suggesting that these genes are functionally redundant. Reciprocal crosses conducted with Atlcb2a and Atlcb2b mutants indicated that lethality is associated primarily with the inability to transmit the lcb2 null genotype through the haploid pollen. Consistent with this, approximately 50% of the pollen obtained from plants homozygous for a mutation in one gene and heterozygous for a mutation in the second gene arrested during transition from uni-nucleate microspore to bicellular pollen. Ultrastructural analyses revealed that these pollen grains contained aberrant endomembranes and lacked an intine layer. To examine sphingolipid function in sporophytic cells, Arabidopsis lines were generated that allowed inducible RNAi silencing of AtLCB2b in an Atlcb2a mutant background. Studies conducted with these lines demonstrated that sphingolipids are essential throughout plant development, and that lethality resulting from LCB2 silencing in seedlings could be partially rescued by supplying exogenous long-chain bases. Overall, these studies provide insights into the genetic and biochemical properties of SPT and sphingolipid function in Arabidopsis.

  7. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    PubMed

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  8. Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke

    PubMed Central

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio

    2015-01-01

    Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different peripheral frequency of CD28 null cells in relation of each TOAST subtype of stroke. PMID:25997053

  9. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature

    PubMed Central

    Cheng, Zhaokang; Sundberg-Smith, Liisa J.; Mangiante, Lee E.; Sayers, Rebecca L.; Hakim, Zeenat S.; Musunuri, Srilaxmi; Maguire, Colin T.; Majesky, Mark W.; Zhou, Zhigang; Mack, Christopher P.; Taylor, Joan M.

    2011-01-01

    Objective The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. Methods and Results We crossed fakloxp targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAKwnt and FAKnk) or coronary SMC (FAKcSMC). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with post-natal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC, but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, PDGFBB. FAK depletion resulted in un-stable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1 and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in PDGF-stimulated extracellular matrix degradation. Conclusions FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus. PMID:21757658

  10. Constitutive expression of ftsZ overrides the whi developmental genes to initiate sporulation of Streptomyces coelicolor.

    PubMed

    Willemse, Joost; Mommaas, A Mieke; van Wezel, Gilles P

    2012-03-01

    The filamentous soil bacteria Streptomyces undergo a highly complex developmental programme. Before streptomycetes commit themselves to sporulation, distinct morphological checkpoints are passed in the aerial hyphae that are subject to multi-level control by the whi sporulation genes. Here we show that whi-independent expression of FtsZ restores sporulation to the early sporulation mutants whiA, whiB, whiG, whiH, whiI and whiJ. Viability, stress resistance and high-resolution electron microscopy underlined that viable spores were formed. However, spores from sporulation-restored whiA and whiG mutants showed defects in DNA segregation/condensation, while spores from the complemented whiB mutant had increased stress sensitivity, perhaps as a result of changes in the spore sheath. In contrast to the whi mutants, normal sporulation of ssgB null mutants-which fail to properly localise FtsZ-could not be restored by enhancing FtsZ protein levels, forming spore-like bodies that lack spore walls. Our data strongly suggest that the whi genes control a decisive event towards sporulation of streptomycetes, namely the correct timing of developmental ftsZ transcription. The biological significance may be to ensure that sporulation-specific cell division will only start once sufficient aerial mycelium biomass has been generated. Our data shed new light on the longstanding question as to how whi genes control sporulation, which has intrigued scientists for four decades.

  11. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis.

    PubMed

    Fang, Xian Zhi; Tian, Wen Hao; Liu, Xing Xing; Lin, Xian Yong; Jin, Chong Wei; Zheng, Shao Jian

    2016-07-01

    Protons in acid soil are highly rhizotoxic to plants, but the mechanism of tolerance of plants to protons is largely unknown. Nitrate uptake by root cells is accompanied by the uptake of protons. Therefore, nitrate uptake transporters (NRTs) may be involved in plant tolerance to proton toxicity. We investigated the root nitrate uptake response to proton stress in Arabidopsis and its association with proton tolerance using NRT-related mutants and pharmacological methods. Lack of NRT1.1 in knockout nrt1.1 mutants led to impaired proton tolerance in nitrate-sufficient growth medium, whereas no difference was seen between wild-type plants and NRT1.2-, NRT2.1-, NRT2.2-, and NRT2.4-null mutants. Another nrt1.1 point mutant, which is defective in nitrate uptake but has a normal nitrate-sensing function, also had impaired proton tolerance compared with the wild-type plant. Furthermore, proton stress induced NRT1.1-mediated nitrate uptake. These results indicate that NRT1.1-conferred proton tolerance depends on nitrate uptake activity. In addition, the rooting medium was alkalified by wild-type plants, but not by knockout nrt1.1 mutants, and in pH-buffered medium, there were no differences in proton tolerance between wild-type plants and knockout nrt1.1 mutants. We conclude that NRT1.1-mediated nitrate uptake plays a crucial role in plant proton tolerance by alkalifying the rhizosphere. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. A non-Mendelian MAPK-generated hereditary unit controlled by a second MAPK pathway in Podospora anserina.

    PubMed

    Lalucque, Hervé; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sébastien; Silar, Philippe

    2012-06-01

    The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.

  13. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    PubMed

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  14. A Non-Mendelian MAPK-Generated Hereditary Unit Controlled by a Second MAPK Pathway in Podospora anserina

    PubMed Central

    Lalucque, Hervé; Malagnac, Fabienne; Brun, Sylvain; Kicka, Sébastien; Silar, Philippe

    2012-01-01

    The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism. PMID:22426880

  15. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis.

    PubMed

    Kumar, Manoj; Mishra, Laxmi; Carr, Paul; Pilling, Michael; Gardner, Peter; Mansfield, Shawn D; Turner, Simon

    2018-05-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis ( Arabidopsis thaliana ) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  16. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis1[OPEN

    PubMed Central

    Mishra, Laxmi; Carr, Paul; Gardner, Peter

    2018-01-01

    Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophysical techniques, including solid-state nuclear magnetic resonance and Fourier transform infrared microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. PMID:29523715

  17. Seizure susceptibility of neuropeptide-Y null mutant mice in amygdala kindling and chemical-induced seizure models.

    PubMed

    Shannon, Harlan E; Yang, Lijuan

    2004-01-01

    Neuropeptide Y (NPY) administered exogenously is anticonvulsant, and, NPY null mutant mice are more susceptible to kainate-induced seizures. In order to better understand the potential role of NPY in epileptogenesis, the present studies investigated the development of amygdala kindling, post-kindling seizure thresholds, and anticonvulsant effects of carbamazepine and levetiracetam in 129S6/SvEv NPY(+/+) and NPY(-/-) mice. In addition, susceptibility to pilocarpine- and kainate-induced seizures was compared in NPY(+/+) and (-/-) mice. The rate of amygdala kindling development did not differ in the NPY(-/-) and NPY(+/+) mice either when kindling stimuli were presented once daily for at least 20 days, or, 12 times daily for 2 days. However, during kindling development, the NPY(-/-) mice had higher seizure severity scores and longer afterdischarge durations than the NPY(+/+) mice. Post-kindling, the NPY(-/-) mice had markedly lower afterdischarge thresholds and longer afterdischarge durations than NPY (+/+) mice. Carbamazepine and levetiracetam increased the seizure thresholds of both NPY (-/-) and (+/+) mice. In addition, NPY (-/-) mice had lower thresholds for both kainate- and pilocarpine-induced seizures. The present results in amygdala kindling and chemical seizure models suggest that NPY may play a more prominent role in determining seizure thresholds and severity of seizures than in events leading to epileptogenesis. In addition, a lack of NPY does not appear to confer drug-resistance in that carbamazepine and levetiracetam were anticonvulsant in both wild type (WT) and NPY null mutant mice.

  18. Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

    PubMed Central

    González-Siso, María Isabel; Touriño, Alba; Vizoso, Ángel; Pereira-Rodríguez, Ángel; Rodríguez-Belmonte, Esther; Becerra, Manuel; Cerdán, María Esperanza

    2015-01-01

    In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p is the only internal NADH dehydrogenase in K. lactis mitochondria. Permeabilized cells of the Δklndi1 mutant do not show oxidation of matrix NADH, which suggests that shuttle systems to transfer the NADH from mitochondrial matrix to cytosol, for being oxidized by external dehydrogenases, are not functional. The Δklndi1 mutation decreases the chronological life span in absence of nutrients. The expression of KlNDI1 is increased by glutathione reductase depletion. The Δklndi1 mutation shifts the K. lactis metabolism from respiratory to fermentative: the Δklndi1 strain shows reduced respiration rate and increased ethanol production from glucose, while it does not grow in non-fermentable carbon sources such as lactate. The biotechnological benefit of the Δklndi1 mutant for bioethanol production from waste cheese whey lactose was proved. PMID:25186243

  19. Abnormal Labyrinthine Zone in the Hectd1-null Placenta

    PubMed Central

    Sarkar, Anjali A.; Sabatino, Julia A.; Sugrue, Kelsey F.; Zohn, Irene E.

    2016-01-01

    Introduction The labyrinthine zone of the placenta is where exchange of nutrients and waste occurs between maternal and fetal circulations. Proper development of the placental labyrinth is essential for successful growth of the developing fetus and abnormalities in placental development are associated with intrauterine growth restriction (IUGR), preeclampsia and fetal demise. Our previous studies demonstrate that Hectd1 is essential for development of the junctional and labyrinthine zones of the placenta. Here we further characterize labyrinthine zone defects in the Hectd1 mutant placenta. Methods The structure of the mutant placenta was compared to wildtype littermates using histological methods. The expression of cell type specific markers was examined by immunohistochemistry and in situ hybridization. Results Hectd1 is expressed in the labyrinthine zone throughout development and the protein is enriched in syncytiotrophoblast layer type I cells (SynT-I) and Sinusoidal Trophoblast Giant cells (S-TGCs) in the mature placenta. Mutation of Hectd1 results in pale placentas with frequent hemorrhages along with gross abnormalities in the structure of the labyrinthine zone including a smaller overall volume and a poorly elaborated fetal vasculature that contain fewer fetal blood cells. Examination of molecular markers of labyrinthine trophoblast cell types reveals increased Dlx3 positive cells and Syna positive SynT-I cells, along with decreased Hand1 and Ctsq positive sinusoidal trophoblast giant cells (S-TGCs). Discussion Together these defects indicate that Hectd1 is required for development of the labyrinthine zone or the mouse placenta. PMID:26907377

  20. Abnormal labyrinthine zone in the Hectd1-null placenta.

    PubMed

    Sarkar, Anjali A; Sabatino, Julia A; Sugrue, Kelsey F; Zohn, Irene E

    2016-02-01

    The labyrinthine zone of the placenta is where exchange of nutrients and waste occurs between maternal and fetal circulations. Proper development of the placental labyrinth is essential for successful growth of the developing fetus and abnormalities in placental development are associated with intrauterine growth restriction (IUGR), preeclampsia and fetal demise. Our previous studies demonstrate that Hectd1 is essential for development of the junctional and labyrinthine zones of the placenta. Here we further characterize labyrinthine zone defects in the Hectd1 mutant placenta. The structure of the mutant placenta was compared to wildtype littermates using histological methods. The expression of cell type specific markers was examined by immunohistochemistry and in situ hybridization. Hectd1 is expressed in the labyrinthine zone throughout development and the protein is enriched in syncytiotrophoblast layer type I cells (SynT-I) and Sinusoidal Trophoblast Giant cells (S-TGCs) in the mature placenta. Mutation of Hectd1 results in pale placentas with frequent hemorrhages along with gross abnormalities in the structure of the labyrinthine zone including a smaller overall volume and a poorly elaborated fetal vasculature that contain fewer fetal blood cells. Examination of molecular markers of labyrinthine trophoblast cell types reveals increased Dlx3 positive cells and Syna positive SynT-I cells, along with decreased Hand1 and Ctsq positive sinusoidal trophoblast giant cells (S-TGCs). Together these defects indicate that Hectd1 is required for development of the labyrinthine zonethe mouse placenta. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  2. Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome

    PubMed Central

    McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.

    2013-01-01

    Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313

  3. A ‘synthetic-sickness’ screen for senescence re-engagement targets in mutant cancer backgrounds

    PubMed Central

    Godwin, Lauren S.; Bilsland, Alan E.; Stevenson, Katrina H.; Moore, Jon D.; Wiggins, Ceri M.; Collinson, Rebecca S.; Mudd, Clare; Sadaie, Mahito; Bennett, Dorothy C.; Torrance, Christopher J.; Keith, W. Nicol

    2017-01-01

    Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments. PMID:28806777

  4. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.

    PubMed

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-05-17

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.

  5. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or themore » donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.« less

  6. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    PubMed Central

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  7. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies

    PubMed Central

    Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.

    2002-01-01

    Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201

  8. Cloning and Sequencing of a Candida albicans Catalase Gene and Effects of Disruption of This Gene†

    PubMed Central

    Wysong, Deborah R.; Christin, Laurent; Sugar, Alan M.; Robbins, Phillips W.; Diamond, Richard D.

    1998-01-01

    Catalase plays a key role as an antioxidant, protecting aerobic organisms from the toxic effects of hydrogen peroxide, and in some cases has been postulated to be a virulence factor. To help elucidate the function of catalase in Candida albicans, a single C. albicans-derived catalase gene, designated CAT1, was isolated and cloned. Degenerate PCR primers based on highly conserved areas of other fungal catalase genes were used to amplify a 411-bp product from genomic DNA of C. albicans ATCC 10261. By using this product as a probe, catalase clones were isolated from genomic libraries of C. albicans. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 487 amino acid residues. Construction of a CAT1-deficient mutant was achieved by using the Ura-blaster technique for sequential disruption of multiple alleles by integrative transformation using URA3 as a selectable marker. Resulting mutants exhibited normal morphology and comparable growth rates of both yeast and mycelial forms. Enzymatic analysis revealed an abundance of catalase in the wild-type strain but decreasing catalase activity in heterozygous mutants and no detectable catalase in a homozygous null mutant. In vitro assays showed the mutant strains to be more sensitive to damage by both neutrophils and concentrations of exogenous peroxide that were sublethal for the parental strain. Compared to the parental strain, the homozygous null mutant strain was far less virulent for mice in an intravenous infection model of disseminated candidiasis. Definitive linkage of CAT1 with virulence would require restoration of activity by reintroduction of the gene into mutants. However, initial results in mice, taken together with the enhanced susceptibility of catalase-deficient hyphae to damage by human neutrophils, suggest that catalase may enhance the pathogenicity of C. albicans. PMID:9573075

  9. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection

    PubMed Central

    Minandri, Fabrizia; Imperi, Francesco; Frangipani, Emanuela; Bonchi, Carlo; Visaggio, Daniela; Facchini, Marcella; Pasquali, Paolo; Bragonzi, Alessandra

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe3+ uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe2+ acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe3+ transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities. PMID:27271740

  10. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    PubMed

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  11. Toxoplasma gondii Relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin

    PubMed Central

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N. J.

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. PMID:24146616

  12. Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin.

    PubMed

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N J

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites.

  13. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  14. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  15. Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.

    PubMed

    Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K

    2014-06-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.

  16. Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila

    PubMed Central

    Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.

    2014-01-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158

  17. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR.

    PubMed

    Liu, Niankun; Han, Hong; Lasko, Paul

    2009-12-01

    Vasa (Vas) is a DEAD-box RNA-binding protein required in Drosophila at several steps of oogenesis and for primordial germ cell (PGC) specification. Vas associates with eukaryotic initiation factor 5B (eIF5B), and this interaction has been implicated in translational activation of gurken mRNA in the oocyte. Vas is expressed in all ovarian germline cells, and aspects of the vas-null phenotype suggest a function in regulating the balance between germline stem cells (GSCs) and their fate-restricted descendants. We used a biochemical approach to recover Vas-associated mRNAs and obtained mei-P26, whose product represses microRNA activity and promotes GSC differentiation. We found that vas and mei-P26 mutants interact, and that mei-P26 translation is substantially reduced in vas mutant cells. In vitro, Vas protein bound specifically to a (U)-rich motif in the mei-P26 3' untranslated region (UTR), and Vas-dependent regulation of GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 3' UTR domain. The ability of Vas to activate mei-P26 expression in vivo was abrogated by a mutation that greatly reduces its interaction with eIF5B. Taken together, our data support the conclusion that Vas promotes germ cell differentiation by directly activating mei-P26 translation in early-stage committed cells.

  18. Role of an expansin-like molecule in Dictyostelium morphogenesis and regulation of its gene expression by the signal transducer and activator of transcription protein Dd-STATa.

    PubMed

    Ogasawara, Shun; Shimada, Nao; Kawata, Takefumi

    2009-02-01

    Expansins are proteins involved in plant morphogenesis, exerting their effects on cellulose to extend cell walls. Dictyostelium is an organism that possesses expansin-like molecules, but their functions are not known. In this study, we analyzed the expL7 (expansin-like 7) gene, which has been identified as a putative target of Dd-STATa, a Dictyostelium homolog of the metazoan signal transducer and activator of transcription (STAT) proteins. Promoter fragments of the expL7 were fused to a lacZ reporter and the expression patterns determined. As expected from the behavior of the endogenous expL7 gene, the expL7/lacZ fusion gene was downregulated in Dd-STATa null slugs. In the parental strain, the expL7 promoter was activated in the anterior tip region. Mutational analysis of the promoter identified a sequence that was necessary for expression in tip cells. In addition, an activator sequence for pstAB cells was identified. These sequences act in combination with the repressor region to prevent ectopic expL7 expression in the prespore and prestalk regions of the slug and culminant. Although the expL7 null mutant showed no phenotypic change, the expL7 overexpressor showed aberrant stalk formation. These results indicate that the expansin-like molecule is important for morphogenesis in Dictyostelium.

  19. A Novel and Multivalent Role of Pax6 in Cerebellar Development

    PubMed Central

    Yeung, Joanna; Ha, Thomas J.; Swanson, Douglas J.

    2016-01-01

    Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons. SIGNIFICANCE STATEMENT Pax6 is a key molecule in development. Pax6 is best known as the master control gene in eye development with mutations causing aniridia in humans. Pax6 also plays important developmental roles in the cortex and olfactory bulb. During cerebellar development, Pax6 is robustly expressed in the germinal zone of all glutamatergic neurons [cerebellar nuclear (CN) neurons, granule cells, and unipolar brush cells (UBCs)]. Past work has not found abnormalities in the CN and UBC populations. Our study reveals that the Pax6-null mutation dramatically affects these cells and identifies Pax6 as a key regulator of cell survival in CN neurons and of cell production in UBCs. The present study shows how Pax6 is key to the development of glutamatergic cells in the cerebellum. PMID:27581449

  20. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation

    PubMed Central

    Coffee, R. Lane; Williamson, Ashley J.; Adkins, Christopher M.; Gray, Marisa C.; Page, Terry L.; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior. PMID:22080836

  1. THE α-GLYCEROPHOSPHATE CYCLE IN DROSOPHILA MELANOGASTER

    PubMed Central

    O'Brien, Stephen J.; Shimada, Yoshio

    1974-01-01

    "Null" mutations previously isolated at the αGpdh-1 locus of Drosophila melanogaster, because of disruption of the energy-producing α-glycerophosphate cycle, severely restrict the flight ability and relative viability of affected individuals. Two "null" alleles, αGpdh-1 BO-1-4, and αGpdh-1 BO-1-5, when made hemizygous with a deficiency of the αGpdh-1 locus, Df(2L)GdhA, were rendered homozygous by recombination with and selective elimination of the Df(2L)GdhA chromosome. After over 25 generations, a homozygous αGpdh-1 BO-1-4 stock regained the ability to fly despite the continued absence of measurable αGPDH activity. Inter se heterozygotes of three noncomplementing αGpdh-1 "null" alleles and the "adapted" αGpdh-1 BO-1-4 homozygotes were examined for metabolic enzymatic activities related to the energy-producing and pyridine nucleotide-regulating functions of the α-glycerophosphate cycle in Drosophila. The enzyme functions tested included glyceraldehyde-3-phosphate dehydrogenase, cytoplasmic and soluble malate dehydrogenase, lactate dehydrogenase, mitochondrial NADH oxidation, oxidative phosphorylation, and respiratory control with the substrates α-glycerophosphate, succinate, and pyruvate. These activities in any of the mutant genotypes in early adult life were indistinguishable from those in the wild type. There was, however, a premature deterioration and atrophy of the ultrastructural integrity of flight muscle sarcosomes observed by electron microscopy in the "null" mutants. These observations were correlated with a decrease in state 3 mitochondrial oxidation with α-glycerophosphate, succinate, and pyruvate, as well as with loss of respiratory control in adults as early as 2 wk after eclosion. Such observations, which normally are seen in aged dipterans, were accompanied by premature mortality of the mutant heterozygotes. The adapted αGpdh-1 BO-1-4 was identical with wild type in each of the aging characters with the single exception of lowered rates of mitochondrial oxidative phosphorylation. PMID:4154945

  2. A Novel CCR5 Mutation Common in Sooty Mangabeys Reveals SIVsmm Infection of CCR5-Null Natural Hosts and Efficient Alternative Coreceptor Use In Vivo

    PubMed Central

    Riddick, Nadeene E.; Hermann, Emilia A.; Loftin, Lamorris M.; Elliott, Sarah T.; Wey, Winston C.; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C.; Li, Bing; Else, James G.; Li, Yingying; Hahn, Beatrice H.; Derdeyn, Cynthia A.; Sodora, Donald L.; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G.

    2010-01-01

    In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species. PMID:20865163

  3. A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor use in vivo.

    PubMed

    Riddick, Nadeene E; Hermann, Emilia A; Loftin, Lamorris M; Elliott, Sarah T; Wey, Winston C; Cervasi, Barbara; Taaffe, Jessica; Engram, Jessica C; Li, Bing; Else, James G; Li, Yingying; Hahn, Beatrice H; Derdeyn, Cynthia A; Sodora, Donald L; Apetrei, Cristian; Paiardini, Mirko; Silvestri, Guido; Collman, Ronald G

    2010-08-26

    In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species.

  4. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration.

    PubMed

    Zampol, Mariana A; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H

    2010-11-05

    COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q(2). Rescue of respiration by Q(2) is a characteristic of mutants blocked in coenzyme Q(6) synthesis. Unlike Q(6) deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q(6). The physiological significance of earlier observations that purified Coq10p contains bound Q(6) was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q(2). This suggests that in vivo binding of Q(6) by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development

    PubMed Central

    Akhter, Shamima; Lam, Yung C.; Chang, Sandy; Legerski, Randy J.

    2013-01-01

    Summary Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. PMID:20854421

  6. Functional Analysis of Human NF1 in Drosophila

    DTIC Science & Technology

    2008-12-01

    also have learning problem. Such learning phenotypes have been recapitulated in animal models, including in mouse and Drosophila mutants. This proposal...by examining the phenotypes of mutated human genes expressed in Drosophila NF1 null mutants. We also propose that Gsα/NF1 activated AC pathway...in both Drosophila and mouse NF1 models. Our previous work has shown that defective cAMP signaling leads to the learning phenotype in Drosophila Nf1

  7. A missense mutation in Grm6 reduces but does not eliminate mGluR6 expression or rod depolarizing bipolar cell function.

    PubMed

    Peachey, Neal S; Hasan, Nazarul; FitzMaurice, Bernard; Burrill, Samantha; Pangeni, Gobinda; Karst, Son Yong; Reinholdt, Laura; Berry, Melissa L; Strobel, Marge; Gregg, Ronald G; McCall, Maureen A; Chang, Bo

    2017-08-01

    GRM6 encodes the metabotropic glutamate receptor 6 (mGluR6) used by retinal depolarizing bipolar cells (DBCs). Mutations in GRM6 lead to DBC dysfunction and underlie the human condition autosomal recessive complete congenital stationary night blindness. Mouse mutants for Grm6 are important models for this condition. Here we report a new Grm6 mutant, identified in an electroretinogram (ERG) screen of mice maintained at The Jackson Laboratory. The Grm6 nob8 mouse has a reduced-amplitude b-wave component of the ERG, which reflects light-evoked DBC activity. Sequencing identified a missense mutation that converts a highly conserved methionine within the ligand binding domain to leucine (p.Met66Leu). Consistent with prior studies of Grm6 mutant mice, the laminar size and structure in the Grm6 nob8 retina were comparable to control. The Grm6 nob8 phenotype is distinguished from other Grm6 mutants that carry a null allele by a reduced but not absent ERG b-wave, decreased but present expression of mGluR6 at DBC dendritic tips, and mislocalization of mGluR6 to DBC somas. Consistent with a reduced but not absent b-wave, there were a subset of retinal ganglion cells whose responses to light onset have times to peak within the range of those in control retinas. These data indicate that the p.Met66Leu mutant mGluR6 is trafficked less than control. However, the mGluR6 that is localized to the DBC dendritic tips is able to initiate DBC signal transduction. The Grm6 nob8 mouse extends the Grm6 allelic series and will be useful for elucidating the role of mGluR6 in DBC signal transduction and in human disease. NEW & NOTEWORTHY This article describes a mouse model of the human disease complete congenital stationary night blindness in which the mutation reduces but does not eliminate GRM6 expression and bipolar cell function, a distinct phenotype from that seen in other Grm6 mouse models.

  8. Analysis of Pax6 contiguous gene deletions in the mouse, Mus musculus, identifies regions distinct from Pax6 responsible for extreme small-eye and belly-spotting phenotypes.

    PubMed

    Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard

    2009-08-01

    In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.

  9. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    PubMed

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  10. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    PubMed Central

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  11. NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.

    PubMed

    Brandewiede, J; Stork, O; Schachner, M

    2014-06-01

    The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    PubMed

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.

  13. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis

    PubMed Central

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J. P. L.; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M.

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  14. Regulation of eIF2alpha phosphorylation by different functions that act during discrete phases in the herpes simplex virus type 1 life cycle.

    PubMed

    Mulvey, Matthew; Poppers, Jeremy; Sternberg, David; Mohr, Ian

    2003-10-01

    Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.

  15. Regulation of eIF2α Phosphorylation by Different Functions That Act during Discrete Phases in the Herpes Simplex Virus Type 1 Life Cycle

    PubMed Central

    Mulvey, Matthew; Poppers, Jeremy; Sternberg, David; Mohr, Ian

    2003-01-01

    Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the γ134.5 and Us11 gene products, are produced late in the viral life cycle, although the γ134.5 gene is expressed prior to the γ2 Us11 gene, as γ2 genes require viral DNA replication for their expression while γ1 genes do not. The γ134.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1α), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a γ134.5 mutant virus results in the accumulation of phosphorylated eIF2α and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2α phosphorylation and the inhibition of translation observed in cells infected with a γ134.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2α; however, a requirement for the Us11 protein, produced in its natural context as a γ2 polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2α were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a γ134.5 mutant virus, previously ascribed solely to the γ134.5 mutation, actually results from the combined loss of γ134.5 and Us11 functions, as the γ2 Us11 mRNA is not translated in cells infected with a γ134.5 mutant. PMID:14512542

  16. Binding to Gangliosides Containing N-Acetylneuraminic Acid Is Sufficient To Mediate the Immunomodulatory Properties of the Nontoxic Mucosal Adjuvant LT-IIb(T13I) ▿

    PubMed Central

    Nawar, Hesham F.; Berenson, Charles S.; Hajishengallis, George; Takematsu, Hiromu; Mandell, Lorrie; Clare, Ragina L.; Connell, Terry D.

    2010-01-01

    By use of a mouse mucosal immunization model, LT-IIb(T13I), a nontoxic mutant type II heat-labile enterotoxin, was shown to have potent mucosal and systemic adjuvant properties. In contrast to LT-IIb, which binds strongly to ganglioside receptors decorated with either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc), LT-IIb(T13I) binds NeuAc gangliosides much less well. Rather, LT-IIb(T13I) binds preferentially to NeuGc gangliosides. To determine if the adjuvant properties of LT-IIb(T13I) are altered in the absence of NeuGc ganglioside receptors, experiments were conducted using a Cmah-null mouse line which is deficient in the synthesis of NeuGc gangliosides. Several immunomodulatory properties of LT-IIb(T13I) were shown to be dependent on NeuGc gangliosides. LT-IIb(T13I) had reduced binding activity for NeuGc-deficient B cells and macrophages; binding to NeuGc-deficient T cells and dendritic cells (DC) was essentially undetectable. Treatment of Cmah-null macrophages with LT-IIb(T13I), however, upregulated the transcription of interleukin-4 (IL-4), IL-6, IL-17, and gamma interferon (IFN-γ), four cytokines important for promoting immune responses. The production of mucosal IgA and serum IgG against an immunizing antigen was augmented in NeuGc-deficient mice administered LT-IIb(T13I) as a mucosal adjuvant. Notably, NeuGc gangliosides are not expressed in humans. Still, treatment of human monocytes with LT-IIb(T13I) induced the secretion of IL-6, an inflammatory cytokine that mediates differential control of leukocyte activation. These results suggested that NeuAc gangliosides are sufficient to mediate the immunomodulatory properties of LT-IIb(T13I) in mice and in human cells. The nontoxic mutant enterotoxin LT-IIb(T13I), therefore, is potentially a new and safe human mucosal adjuvant. PMID:20392887

  17. Loss of the ciliary kinase Nek8 causes left-right asymmetry defects.

    PubMed

    Manning, Danielle K; Sergeev, Mikhail; van Heesbeen, Roy G; Wong, Michael D; Oh, Jin-Hee; Liu, Yan; Henkelman, R Mark; Drummond, Iain; Shah, Jagesh V; Beier, David R

    2013-01-01

    A missense mutation in mouse Nek8, which encodes a ciliary kinase, produces the juvenile cystic kidneys (jck) model of polycystic kidney disease, but the functions of Nek8 are incompletely understood. Here, we generated a Nek8-null allele and found that homozygous mutant mice die at birth and exhibit randomization of left-right asymmetry, cardiac anomalies, and glomerular kidney cysts. The requirement for Nek8 in left-right patterning is conserved, as knockdown of the zebrafish ortholog caused randomized heart looping. Ciliogenesis was intact in Nek8-deficient embryos and cells, but we observed misexpression of left-sided marker genes early in development, suggesting that nodal ciliary signaling was perturbed. We also generated jck/Nek8 compound heterozygotes; these mutants developed less severe cystic disease than jck homozygotes and provided genetic evidence that the jck allele may encode a gain-of-function protein. Notably, NEK8 and polycystin-2 (PC2) proteins interact, and we found that Nek8(-/-) and Pkd2(-/-) embryonic phenotypes are strikingly similar. Nek8-deficient embryos and cells did express PC2 normally, which localized properly to the cilia. However, similar to cells lacking PC2, NEK8-depleted inner medullary collecting duct cells exhibited a defective response to fluid shear, suggesting that NEK8 may play a role in mediating PC2-dependent signaling.

  18. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  19. staggerer phenotype in retinoid-related orphan receptor α-deficient mice

    PubMed Central

    Steinmayr, Markus; André, Elisabeth; Conquet, François; Rondi-Reig, Laure; Delhaye-Bouchaud, Nicole; Auclair, Nathalie; Daniel, Hervé; Crépel, Francis; Mariani, Jean; Sotelo, Constantino; Becker-André, Michael

    1998-01-01

    Retinoid-related orphan receptor α (RORα) is a member of the nuclear receptor superfamily. To study its physiological role we generated null-mutant mice by targeted insertion of a lacZ reporter gene encoding the enzyme β-galactosidase. In heterozygous RORα+/− mice we found β-galactosidase activity, indicative of RORα protein expression, confined to the central nervous system, skin and testis. In the central nervous system, the RORα gene is expressed in cerebellar Purkinje cells, the thalamus, the suprachiasmatic nuclei, and retinal ganglion cells. In skin, RORα is strongly expressed in the hair follicle, the epidermis, and the sebaceous gland. Finally, the peritubular cells of the testis and the epithelial cells of the epididymis also strongly express RORα. Recently, it was reported that the ataxic mouse mutant staggerer (sg/sg) is caused by a deletion in the RORα gene. The analysis of the cerebellar and the behavioral phenotype of homozygous RORα−/− mice proves identity to sg/sg mice. Although the absence of RORα causes dramatic developmental effects in the cerebellum, it has no apparent morphological effect on thalamus, hypothalamus, and retina. Similarly, testis and skin of RORα−/− mice display a normal phenotype. However, the pelage hair of both sg/sg and RORα−/− is significantly less dense and when shaved shows reluctance to regrow. PMID:9520475

  20. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients

    PubMed Central

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H.; Mills, Jason A.; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M.; Podsakoff, Gregory M.; Gadue, Paul; French, Deborah L.; Mason, Philip J.; Bessler, Monica

    2013-01-01

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the “safe harbor” AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells. PMID:23744582

  1. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients.

    PubMed

    Garçon, Loïc; Ge, Jingping; Manjunath, Shwetha H; Mills, Jason A; Apicella, Marisa; Parikh, Shefali; Sullivan, Lisa M; Podsakoff, Gregory M; Gadue, Paul; French, Deborah L; Mason, Philip J; Bessler, Monica; Weiss, Mitchell J

    2013-08-08

    Diamond Blackfan anemia (DBA) is a congenital disorder with erythroid (Ery) hypoplasia and tissue morphogenic abnormalities. Most DBA cases are caused by heterozygous null mutations in genes encoding ribosomal proteins. Understanding how haploinsufficiency of these ubiquitous proteins causes DBA is hampered by limited availability of tissues from affected patients. We generated induced pluripotent stem cells (iPSCs) from fibroblasts of DBA patients carrying mutations in RPS19 and RPL5. Compared with controls, DBA fibroblasts formed iPSCs inefficiently, although we obtained 1 stable clone from each fibroblast line. RPS19-mutated iPSCs exhibited defects in 40S (small) ribosomal subunit assembly and production of 18S ribosomal RNA (rRNA). Upon induced differentiation, the mutant clone exhibited globally impaired hematopoiesis, with the Ery lineage affected most profoundly. RPL5-mutated iPSCs exhibited defective 60S (large) ribosomal subunit assembly, accumulation of 12S pre-rRNA, and impaired erythropoiesis. In both mutant iPSC lines, genetic correction of ribosomal protein deficiency via complementary DNA transfer into the "safe harbor" AAVS1 locus alleviated abnormalities in ribosome biogenesis and hematopoiesis. Our studies show that pathological features of DBA are recapitulated by iPSCs, provide a renewable source of cells to model various tissue defects, and demonstrate proof of principle for genetic correction strategies in patient stem cells.

  2. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development.

    PubMed

    Akhter, Shamima; Lam, Yung C; Chang, Sandy; Legerski, Randy J

    2010-12-01

    Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  3. Spry1 and Spry2 Are Necessary for Lens Vesicle Separation and Corneal Differentiation

    PubMed Central

    Kuracha, Murali R.; Burgess, Daniel; Siefker, Ed; Cooper, Jake T.; Licht, Jonathan D.; Robinson, Michael L.

    2011-01-01

    Purpose. The studies reported here were performed to analyze the roles of Sproutys (Sprys), downstream targets and negative feedback regulators of the fibroblast growth factor (FGF) signaling pathway, in lens and corneal differentiation. Methods. Spry1 and -2 were conditionally deleted in the lens and corneal epithelial precursors using the Le-Cre transgene and floxed alleles of Spry1 and -2. Alterations in lens and corneal development were assessed by hematoxylin and eosin staining, in situ hybridization, and immunohistochemistry. Results. Spry1 and -2 were upregulated in the lens fibers at the onset of fiber differentiation. FGF signaling was both necessary and sufficient for induction of Spry1 and -2 in the lens fiber cells. Spry1 and -2 single- or double-null lenses failed to separate from the overlying ectoderm and showed persistent keratolenticular stalks. Apoptosis of stalk cells, normally seen during lens vesicle detachment from the ectoderm, was inhibited in Spry mutant lenses, with concomitant ERK activation. Prox1 and p57KIP2, normally upregulated at the onset of fiber differentiation were prematurely induced in the Spry mutant lens epithelial cells. However, terminal differentiation markers such as β- or γ-crystallin were not induced. Corneal epithelial precursors in Spry1 and -2 double mutants showed increased proliferation with elevated expression of Erm and DUSP6 and decreased expression of the corneal differentiation marker K12. Conclusions. Collectively, the results indicate that Spry1 and -2 (1) through negative modulation of ERKs allow lens vesicle separation, (2) are targets of FGF signaling in the lens during initiation of fiber differentiation and (3) function redundantly in the corneal epithelial cells to suppress proliferation. PMID:21743007

  4. Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism

    PubMed Central

    Wittkopp, Tyler M.; Warakanont, Jaruswan; Dubini, Alexandra; Catalanotti, Claudia; Kim, Rick G.; Nowack, Eva C. M.; Mackinder, Luke C. M.; Aksoy, Munevver; Page, Mark Dudley; D’Adamo, Sarah; Saroussi, Shai; Heinnickel, Mark; Johnson, Xenie; Richaud, Pierre; Alric, Jean; Boehm, Marko; Jonikas, Martin C.; Benning, Christoph; Merchant, Sabeeha S.; Posewitz, Matthew C.; Grossman, Arthur R.

    2015-01-01

    Photosynthetic microorganisms typically have multiple isoforms of the electron transfer protein ferredoxin, although we know little about their exact functions. Surprisingly, a Chlamydomonas reinhardtii mutant null for the ferredoxin-5 gene (FDX5) completely ceased growth in the dark, with both photosynthetic and respiratory functions severely compromised; growth in the light was unaffected. Thylakoid membranes in dark-maintained fdx5 mutant cells became severely disorganized concomitant with a marked decrease in the ratio of monogalactosyldiacylglycerol to digalactosyldiacylglycerol, major lipids in photosynthetic membranes, and the accumulation of triacylglycerol. Furthermore, FDX5 was shown to physically interact with the fatty acid desaturases CrΔ4FAD and CrFAD6, likely donating electrons for the desaturation of fatty acids that stabilize monogalactosyldiacylglycerol. Our results suggest that in photosynthetic organisms, specific redox reactions sustain dark metabolism, with little impact on daytime growth, likely reflecting the tailoring of electron carriers to unique intracellular metabolic circuits under these two very distinct redox conditions. PMID:26627249

  5. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    PubMed

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  6. A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans.

    PubMed

    Wang, Shaohe; Tang, Ngang Heok; Lara-Gonzalez, Pablo; Zhao, Zhiling; Cheerambathur, Dhanya K; Prevo, Bram; Chisholm, Andrew D; Desai, Arshad; Oegema, Karen

    2017-07-15

    Proteins that are essential for embryo production, cell division and early embryonic events are frequently reused later in embryogenesis, during organismal development or in the adult. Examining protein function across these different biological contexts requires tissue-specific perturbation. Here, we describe a method that uses expression of a fusion between a GFP-targeting nanobody and a SOCS-box containing ubiquitin ligase adaptor to target GFP-tagged proteins for degradation. When combined with endogenous locus GFP tagging by CRISPR-Cas9 or with rescue of a null mutant with a GFP fusion, this approach enables routine and efficient tissue-specific protein ablation. We show that this approach works in multiple tissues - the epidermis, intestine, body wall muscle, ciliated sensory neurons and touch receptor neurons - where it recapitulates expected loss-of-function mutant phenotypes. The transgene toolkit and the strain set described here will complement existing approaches to enable routine analysis of the tissue-specific roles of C. elegans proteins. © 2017. Published by The Company of Biologists Ltd.

  7. Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿

    PubMed Central

    Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.

    2009-01-01

    Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321

  8. IGFBP4 Is Required for Adipogenesis and Influences the Distribution of Adipose Depots.

    PubMed

    Maridas, David E; DeMambro, Victoria E; Le, Phuong T; Mohan, Subburaman; Rosen, Clifford J

    2017-10-01

    Insulinlike growth factor (IGF) I induces adipogenesis in vitro. IGF-binding protein 4 (IGFBP4) is highly expressed in adipocytes and osteoblasts and is inhibitory of IGFs in vitro. We previously reported that Igfbp4 null mice (Igfbp4-/-) had decreased fat proportions at 8 and 16 weeks of age. However, the mechanism leading to the reduced adiposity remains unknown. The purpose of this study was to elucidate how IGFBP4 mediates adipose tissue development in vivo. Our results showed that inguinal and gonadal white adipose tissue (gWAT) from Igfbp4-/- mice had decreased weights and Pparγ expression. Cultures of primary bone marrow stromal cells (BMSCs) and ear mesenchymal stem cells (eMSCs) from mutant mice showed reduced adipogenesis. Both BMSCs and eMSC had a strong induction of Igfbp4 expression during adipogenesis. Furthermore, the increase in phosphorylated Akt (p-Akt), a downstream target of IGF-I signaling, in wild-type cells, was blunted in mutant eMSCs. On a high-fat diet (HFD) there were sexual differences in adipocyte expansion of Igfbp4-/- mice. Mutant males gained weight by expanding their white fat depots. However, Igfbp4-/- female mice were protected against diet-induced obesity. Ovariectomized Igfbp4-/- female mice gained weight in a manner similar to that seen in ovariectomized controls. Thus, Igfbp4 is required for inguinal fat expansion in female mice but not in male mice. However, gWAT expansion, which is prevented by estrogen during HFD, does not require Igfbp4. Copyright © 2017 Endocrine Society.

  9. In Candida parapsilosis the ATC1 Gene Encodes for an Acid Trehalase Involved in Trehalose Hydrolysis, Stress Resistance and Virulence

    PubMed Central

    Sánchez-Fresneda, Ruth; Martínez-Esparza, María; Maicas, Sergi; Argüelles, Juan-Carlos; Valentín, Eulogio

    2014-01-01

    An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence. PMID:24922533

  10. Lack of formylated methionyl-tRNA has pleiotropic effects on Bacillus subtilis

    PubMed Central

    Cai, Yanfei; Chandrangsu, Pete; Gaballa, Ahmed; Helmann, John D

    2017-01-01

    Bacteria initiate translation using a modified amino acid, N-formylmethionine (fMet), adapted specifically for this function. Most proteins are processed co-translationally by peptide deformylase (PDF) to remove this modification. Although PDF activity is essential in WT cells and is the target of the antibiotic actinonin, bypass mutations in the fmt gene that eliminate the formylation of Met-tRNAMet render PDF dispensable. The extent to which the emergence of fmt bypass mutations might compromise the therapeutic utility of actinonin is determined, in part, by the effects of these bypass mutations on fitness. Here, we characterize the phenotypic consequences of an fmt null mutation in the model organism Bacillus subtilis. An fmt null mutant is defective for several post-exponential phase adaptive programmes including antibiotic resistance, biofilm formation, swarming and swimming motility and sporulation. In addition, a survey of well-characterized stress responses reveals an increased sensitivity to metal ion excess and oxidative stress. These diverse phenotypes presumably reflect altered synthesis or stability of key proteins involved in these processes. PMID:27983482

  11. Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice.

    PubMed

    Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher; Berdal, Ariane; Lézot, Frédéric

    2013-01-01

    The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.

  12. Analysis of Poly(ADP-Ribose) Polymerases in Arabidopsis Telomere Biology

    PubMed Central

    Townley, Jennifer M.; Shippen, Dorothy E.

    2014-01-01

    Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one. PMID:24551184

  13. Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation

    PubMed Central

    Muramatsu, Matthew K.; Brothwell, Julie A.; Stein, Barry D.; Putman, Timothy E.; Rockey, Daniel D.

    2016-01-01

    Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells. PMID:27430273

  14. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies

    PubMed Central

    Brydges, Susannah D.; Broderick, Lori; McGeough, Matthew D.; Pena, Carla A.; Mueller, James L.; Hoffman, Hal M.

    2013-01-01

    The inflammasome is a cytoplasmic multiprotein complex that promotes proinflammatory cytokine maturation in response to host- and pathogen-derived signals. Missense mutations in cryopyrin (NLRP3) result in a hyperactive inflammasome that drives overproduction of the proinflammatory cytokines IL-1β and IL-18, leading to the cryopyrin-associated periodic syndromes (CAPS) disease spectrum. Mouse lines harboring CAPS-associated mutations in Nlrp3 have elevated levels of IL-1β and IL-18 and closely mimic human disease. To examine the role of inflammasome-driven IL-18 in murine CAPS, we bred Nlrp3 mutations onto an Il18r-null background. Deletion of Il18r resulted in partial phenotypic rescue that abolished skin and visceral disease in young mice and normalized serum cytokines to a greater extent than breeding to Il1r-null mice. Significant systemic inflammation developed in aging Nlrp3 mutant Il18r-null mice, indicating that IL-1 and IL-18 drive pathology at different stages of the disease process. Ongoing inflammation in double-cytokine knockout CAPS mice implicated a role for caspase-1–mediated pyroptosis and confirmed that CAPS is inflammasome dependent. Our results have important implications for patients with CAPS and residual disease, emphasizing the need to explore other NLRP3-mediated pathways and the potential for inflammasome-targeted therapy. PMID:24084736

  15. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease

    PubMed Central

    Westbroek, Wendy; Nguyen, Matthew; Siebert, Marina; Lindstrom, Taylor; Burnett, Robert A.; Aflaki, Elma; Jung, Olive; Tamargo, Rafael; Rodriguez-Gil, Jorge L.; Acosta, Walter; Hendrix, An; Behre, Bahafta; Tayebi, Nahid; Fujiwara, Hideji; Sidhu, Rohini; Renvoise, Benoit; Ginns, Edward I.; Dutra, Amalia; Pak, Evgenia; Cramer, Carole; Ory, Daniel S.; Pavan, William J.

    2016-01-01

    ABSTRACT Glucocerebrosidase is a lysosomal hydrolase involved in the breakdown of glucosylceramide. Gaucher disease, a recessive lysosomal storage disorder, is caused by mutations in the gene GBA1. Dysfunctional glucocerebrosidase leads to accumulation of glucosylceramide and glycosylsphingosine in various cell types and organs. Mutations in GBA1 are also a common genetic risk factor for Parkinson disease and related synucleinopathies. In recent years, research on the pathophysiology of Gaucher disease, the molecular link between Gaucher and Parkinson disease, and novel therapeutics, have accelerated the need for relevant cell models with GBA1 mutations. Although induced pluripotent stem cells, primary rodent neurons, and transfected neuroblastoma cell lines have been used to study the effect of glucocerebrosidase deficiency on neuronal function, these models have limitations because of challenges in culturing and propagating the cells, low yield, and the introduction of exogenous mutant GBA1. To address some of these difficulties, we established a high yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease. We successfully immortalized cortical neurons from embryonic null allele gba−/− mice and the control littermate (gba+/+) by infecting differentiated primary cortical neurons in culture with an EF1α-SV40T lentivirus. Immortalized gba−/− neurons lack glucocerebrosidase protein and enzyme activity, and exhibit a dramatic increase in glucosylceramide and glucosylsphingosine accumulation, enlarged lysosomes, and an impaired ATP-dependent calcium-influx response; these phenotypical characteristics were absent in gba+/+ neurons. This null allele gba−/− mouse neuronal model provides a much-needed tool to study the pathophysiology of Gaucher disease and to evaluate new therapies. PMID:27482815

  16. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels

    PubMed Central

    2011-01-01

    Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins) in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner. PMID:21418559

  17. Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice

    PubMed Central

    Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2016-01-01

    PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150

  18. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    PubMed

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Drosophila Spastin Regulates Synaptic Microtubule Networks and Is Required for Normal Motor Function

    PubMed Central

    Sherwood, Nina Tang; Sun, Qi; Xue, Mingshan; Zhang, Bing

    2004-01-01

    The most common form of human autosomal dominant hereditary spastic paraplegia (AD-HSP) is caused by mutations in the SPG4 (spastin) gene, which encodes an AAA ATPase closely related in sequence to the microtubule-severing protein Katanin. Patients with AD-HSP exhibit degeneration of the distal regions of the longest axons in the spinal cord. Loss-of-function mutations in the Drosophila spastin gene produce larval neuromuscular junction (NMJ) phenotypes. NMJ synaptic boutons in spastin mutants are more numerous and more clustered than in wild-type, and transmitter release is impaired. spastin-null adult flies have severe movement defects. They do not fly or jump, they climb poorly, and they have short lifespans. spastin hypomorphs have weaker behavioral phenotypes. Overexpression of Spastin erases the muscle microtubule network. This gain-of-function phenotype is consistent with the hypothesis that Spastin has microtubule-severing activity, and implies that spastin loss-of-function mutants should have an increased number of microtubules. Surprisingly, however, we observed the opposite phenotype: in spastin-null mutants, there are fewer microtubule bundles within the NMJ, especially in its distal boutons. The Drosophila NMJ is a glutamatergic synapse that resembles excitatory synapses in the mammalian spinal cord, so the reduction of organized presynaptic microtubules that we observe in spastin mutants may be relevant to an understanding of human Spastin's role in maintenance of axon terminals in the spinal cord. PMID:15562320

  20. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    PubMed

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  1. Molecular basis for the catalytic inactivity of a naturally occurring near-null variant of human ALOX15.

    PubMed

    Horn, Thomas; Ivanov, Igor; Di Venere, Almerinda; Kakularam, Kumar Reddy; Reddanna, Pallu; Conrad, Melanie L; Richter, Constanze; Scheerer, Patrick; Kuhn, Hartmut

    2013-12-01

    Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays. In silico mutagenesis experiments suggest that most mutations at hGly422 have the potential to induce sterical clash, which might be considered a reason for protein misfolding. hGly422 is conserved among ALOX5, ALOX12 and ALOX15 isoforms and corresponding hALOX12 and hALOX5 mutants also exhibited a reduced catalytic activity. Interestingly, in the hALOX5 Gly429Glu mutants the reaction specificity of arachidonic acid oxygenation was shifted from 5S- to 8S- and 12R-H(p)ETE formation. Taken together, our data indicate that the conserved glycine is of functional importance for these enzyme variants and most mutants at this position lose catalytic activity. © 2013.

  2. Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant Fanconi Anemia Genes

    PubMed Central

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. PMID:24200853

  3. Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in NEUROG3

    PubMed Central

    Rubio-Cabezas, Oscar; Jensen, Jan N.; Hodgson, Maria I.; Codner, Ethel; Ellard, Sian; Serup, Palle; Hattersley, Andrew T.

    2011-01-01

    OBJECTIVE NEUROG3 plays a central role in the development of both pancreatic islets and enteroendocrine cells. Homozygous hypomorphic missense mutations in NEUROG3 have been recently associated with a rare form of congenital malabsorptive diarrhea secondary to enteroendocrine cell dysgenesis. Interestingly, the patients did not develop neonatal diabetes but childhood-onset diabetes. We hypothesized that null mutations in NEUROG3 might be responsible for the disease in a patient with permanent neonatal diabetes and severe congenital malabsorptive diarrhea. RESEARCH DESIGN AND METHODS The single coding exon of NEUROG3 was amplified and sequenced from genomic DNA. The mutant protein isoforms were functionally characterized by measuring their ability to bind to an E-box element in the NEUROD1 promoter in vitro and to induce ectopic endocrine cell formation and cell delamination after in ovo chicken endoderm electroporation. RESULTS Two different heterozygous point mutations in NEUROG3 were identified in the proband [c.82G>T (p.E28X) and c.404T>C (p.L135P)], each being inherited from an unaffected parent. Both in vitro and in vivo functional studies indicated that the mutant isoforms are biologically inactive. In keeping with this, no enteroendocrine cells were detected in intestinal biopsy samples from the patient. CONCLUSIONS Severe deficiency of neurogenin 3 causes a rare novel subtype of permanent neonatal diabetes. This finding confirms the essential role of NEUROG3 in islet development and function in humans. PMID:21378176

  4. Absence of Colony Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain Development and Olfactory Deficits

    PubMed Central

    Etgen, Anne M.; Dobrenis, Kostantin; Pollard, Jeffrey W.

    2011-01-01

    The brain contains numerous mononuclear phagocytes called microglia. These cells express the transmembrane tyrosine kinase receptor for the macrophage growth factor colony stimulating factor-1 (CSF-1R). Using a CSF-1R-GFP reporter mouse strain combined with lineage defining antibody staining we show in the postnatal mouse brain that CSF-1R is expressed only in microglia and not neurons, astrocytes or glial cells. To study CSF-1R function we used mice homozygous for a null mutation in the Csflr gene. In these mice microglia are >99% depleted at embryonic day 16 and day 1 post-partum brain. At three weeks of age this microglial depletion continues in most regions of the brain although some contain clusters of rounded microglia. Despite the loss of microglia, embryonic brain development appears normal but during the post-natal period the brain architecture becomes perturbed with enlarged ventricles and regionally compressed parenchyma, phenotypes most prominent in the olfactory bulb and cortex. In the cortex there is increased neuronal density, elevated numbers of astrocytes but reduced numbers of oligodendrocytes. Csf1r nulls rarely survive to adulthood and therefore to study the role of CSF-1R in olfaction we used the viable null mutants in the Csf1 (Csf1op) gene that encodes one of the two known CSF-1R ligands. Food-finding experiments indicate that olfactory capacity is significantly impaired in the absence of CSF-1. CSF-1R is therefore required for the development of microglia, for a fully functional olfactory system and the maintenance of normal brain structure. PMID:22046273

  5. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II

    PubMed Central

    Long, Melissa C.; Leong, Vivian; Schaffer, Priscilla A.; Spencer, Charlotte A.; Rice, Stephen A.

    1999-01-01

    Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550–5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13 or ICP22 mutants led to significantly reduced amounts of viral genome transcription at late times after infection. Together, our results suggest that ICP22 and UL13 are involved in a common pathway that alters RNAP II phosphorylation and that in some cell lines this change promotes viral late transcription. PMID:10364308

  6. Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects.

    PubMed

    Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro

    2013-01-01

    Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Immunological role of CD4+CD28null T lymphocytes, natural killer cells, and interferon-gamma in pediatric patients with sickle cell disease: relation to disease severity and response to therapy.

    PubMed

    ElAlfy, Mohsen Saleh; Adly, Amira Abdel Moneam; Ebeid, Fatma Soliman ElSayed; Eissa, Deena Samir; Ismail, Eman Abdel Rahman; Mohammed, Yasser Hassan; Ahmed, Manar Elsayed; Saad, Aya Sayed

    2018-06-20

    Sickle cell disease (SCD) is associated with alterations in immune phenotypes. CD4 + CD28 null T lymphocytes have pro-inflammatory functions and are linked to vascular diseases. To assess the percentage of CD4 + CD28 null T lymphocytes, natural killer cells (NK), and IFN-gamma levels, we compared 40 children and adolescents with SCD with 40 healthy controls and evaluated their relation to disease severity and response to therapy. Patients with SCD steady state were studied, focusing on history of frequent vaso-occlusive crisis, hydroxyurea therapy, and IFN-gamma levels. Analysis of CD4 + CD28 null T lymphocytes and NK cells was done by flow cytometry. Liver and cardiac iron overload were assessed. CD4 + CD28 null T lymphocytes, NK cells, and IFN-gamma levels were significantly higher in patients than controls. Patients with history of frequent vaso-occlusive crisis and those with vascular complications had higher percentage of CD4 + CD28 null T lymphocytes and IFN-gamma while levels were significantly lower among hydroxyurea-treated patients. CD4 + CD28 null T lymphocytes were positively correlated to transfusional iron input while these cells and IFN-gamma were negatively correlated to cardiac T2* and duration of hydroxyurea therapy. NK cells were correlated to HbS and indirect bilirubin. Increased expression of CD4 + CD28 null T lymphocytes highlights their role in immune dysfunction and pathophysiology of SCD complications.

  8. Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs

    PubMed Central

    Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.

    2010-01-01

    Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144

  9. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Kons

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealedmore » that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.« less

  10. Juvenile manifestation of ultrasound communication deficits in the neuroligin-4 null mutant mouse model of autism.

    PubMed

    Ju, Anes; Hammerschmidt, Kurt; Tantra, Martesa; Krueger, Dilja; Brose, Nils; Ehrenreich, Hannelore

    2014-08-15

    Neuroligin-4 (Nlgn4) is a member of the neuroligin family of postsynaptic cell adhesion molecules. Loss-of-function mutations of NLGN4 are among the most frequent, known genetic causes of heritable autism. Adult Nlgn4 null mutant (Nlgn4(-/-)) mice are a construct valid model of human autism, with both genders displaying a remarkable autistic phenotype, including deficits in social interaction and communication as well as restricted and repetitive behaviors. In contrast to adults, autism-related abnormalities in neonatal and juvenile Nlgn4(-/-) mice have not been reported yet. The present study has been designed to systematically investigate in male and female Nlgn4(-/-) pups versus wildtype littermates (WT, Nlgn4(+/+)) developmental milestones and stimulus-induced ultrasound vocalization (USV). Neonatal development, followed daily from postnatal days (PND) 4 to 21, including physical development, neurological reflexes and neuromotor coordination, did not yield any differences between Nlgn4(-/-) and their WT littermates. USV in pups (PND8-9) in response to brief separation from their mothers revealed remarkable gender effects, and a genotype influence in females regarding latency to first call. In juveniles (PND22-23), USV monitoring upon exposure to an anesthetized female intruder mouse uncovered a clear genotype effect with reduced USV in Nlgn4(-/-) mice, and again a more prominent phenotype in females. Together, these data support an early manifestation of communication deficits in Nlgn4(-/-) mice that appear more pronounced in immature females with their overall stronger USV as compared to males. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes.

    PubMed

    Maneu, V; Roig, P; Gozalbo, D

    2000-11-01

    We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.

  12. The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice.

    PubMed

    Barberi, Theresa J; Dunkle, Alexis; He, You-Wen; Racioppi, Luigi; Means, Anthony R

    2012-01-01

    Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.

  13. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana

    PubMed Central

    2017-01-01

    The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) system is widely used as a tool for genome engineering in various organisms. A complex consisting of Cas9 and single guide RNA (sgRNA) induces a DNA double-strand break in a sequence-specific manner, resulting in knockout. Some binary vectors for CRISPR/Cas9 in plants have been reported, but there is a problem with low efficiency. Here, we present a newly developed, highly efficient CRISPR/Cas9 vector for Arabidopsis thaliana, pKAMA-ITACHI Red (pKIR), harboring the RIBOSOMAL PROTEIN S5 A (RPS5A) promoter to drive Cas9. The RPS5A promoter maintains high constitutive expression at all developmental stages starting from the egg cell and including meristematic cells. Even in the T1 generation, pKIR induced null phenotypes in some genes: PHYTOENE DESATURASE 3 (PDS3), AGAMOUS (AG) and DUO POLLEN 1 (DUO1). Mutations induced by pKIR were carried in the germ cell line of the T1 generation. Surprisingly, in some lines, 100% of the T2 plants had the adh1 (ALCOHOL DEHYDROGENASE 1) null phenotype, indicating that pKIR strongly induced heritable mutations. Cas9-free T2 mutant plants were obtained by removing T2 seeds expressing a fluorescent marker in pKIR. Our results suggest that the pKIR system is a powerful molecular tool for genome engineering in Arabidopsis. PMID:27856772

  14. Alterations in the cholinergic system of brain stem neurons in a mouse model of Rett syndrome.

    PubMed

    Oginsky, Max F; Cui, Ningren; Zhong, Weiwei; Johnson, Christopher M; Jiang, Chun

    2014-09-15

    Rett syndrome is an autism-spectrum disorder resulting from mutations to the X-linked gene, methyl-CpG binding protein 2 (MeCP2), which causes abnormalities in many systems. It is possible that the body may develop certain compensatory mechanisms to alleviate the abnormalities. The norepinephrine system originating mainly in the locus coeruleus (LC) is defective in Rett syndrome and Mecp2-null mice. LC neurons are subject to modulation by GABA, glutamate, and acetylcholine (ACh), providing an ideal system to test the compensatory hypothesis. Here we show evidence for potential compensatory modulation of LC neurons by post- and presynaptic ACh inputs. We found that the postsynaptic currents of nicotinic ACh receptors (nAChR) were smaller in amplitude and longer in decay time in the Mecp2-null mice than in the wild type. Single-cell PCR analysis showed a decrease in the expression of α3-, α4-, α7-, and β3-subunits and an increase in the α5- and α6-subunits in the mutant mice. The α5-subunit was present in many of the LC neurons with slow-decay nAChR currents. The nicotinic modulation of spontaneous GABAA-ergic inhibitory postsynaptic currents in LC neurons was enhanced in Mecp2-null mice. In contrast, the nAChR manipulation of glutamatergic input to LC neurons was unaffected in both groups of mice. Our current-clamp studies showed that the modulation of LC neurons by ACh input was reduced moderately in Mecp2-null mice, despite the major decrease in nAChR currents, suggesting possible compensatory processes may take place, thus reducing the defects to a lesser extent in LC neurons. Copyright © 2014 the American Physiological Society.

  15. Hypersensitivities for acetaldehyde and other agents among cancer cells null for clinically relevant Fanconi anemia genes.

    PubMed

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. A human DAZ transgene confers partial rescue of the mouse Dazl null phenotype

    PubMed Central

    Slee, R.; Grimes, B.; Speed, R. M.; Taggart, M.; Maguire, S. M.; Ross, A.; McGill, N. I.; Saunders, P. T. K.; Cooke, H. J.

    1999-01-01

    In a subset of infertile men, a spectrum of spermatogenic defects ranging from a complete absence of germ cells (sertoli cell only) to oligozoospermia is associated with microdeletions of the DAZ (deleted in azoospermia) gene cluster on human distal Yq. DAZ encodes a testis-specific protein with RNA-binding potential recently derived from a single-copy gene DAZL1 (DAZ-like) on chromosome 3. Y chromosomal DAZ homologues are confined to humans and higher primates. It remains unclear which function unique to higher primate spermatogenesis DAZ may serve, and the functional status of the gene recently has been questioned. To assess the extent of functional conservation we have tested the capacity of a human DAZ gene contained in a 225-kb yeast artificial chromosome to complement the sterile phenotype of the Dazl null mouse (Dazl−/−), which is characterized by severe germ-cell depletion and meiotic failure. Although Dazl−/− mice remained infertile when the DAZ transgene was introduced, histological examination revealed a partial and variable rescue of the mutant phenotype, manifest as a pronounced increase in the germ cell population of the seminiferous tubules and survival to the pachytene stage of meiosis. As well as constituting definitive proof of the spermatogenic role of the DAZ gene product, these findings confirm the high degree of functional conservation between the DAZ and DAZL1 genes, suggesting they may constitute a single target for contraceptive intervention and raising the possibility of therapeutic up-regulation of the DAZL1 gene in infertile men. PMID:10393944

  17. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells

    PubMed Central

    Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc

    2017-01-01

    Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations. PMID:28125727

  18. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells.

    PubMed

    Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc; Tajsharghi, Homa

    2017-01-01

    Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations.

  19. Potential role of alpha-synuclein and metallothionein in lead-induced inclusion body formation.

    PubMed

    Zuo, Peijun; Qu, Wei; Cooper, Ryan N; Goyer, Robert A; Diwan, Bhalchandra A; Waalkes, Michael P

    2009-09-01

    Lead (Pb) produces aggresome-like inclusion bodies (IBs) in target cells as a toxic response. Our prior work shows metallothionein (MT) is required for this process. We used MT-I/II double knockout (MT-null) and parental wild-type (WT) cell lines to further explore the formation process of Pb-induced IBs. Unlike WT cells, MT-null cells did not form IBs after Pb exposure. Western blot of cytosol showed soluble MT protein in WT cells was lost during Pb exposure as IBs formed. Transfection of MT-I into MT-null cells allowed IBs formation after Pb exposure. Considering Pb-induced IBs may be like disease-related aggresomes, which often contain alpha-synuclein (Scna), we investigated Scna expression in cells capable (WT) and incapable (MT-null) of producing IBs after Pb exposure. Scna protein showed poor basal expression in MT-null cells. Pb exposure increased Scna expression only in WT cells. MT transfection increased Scna transcript to WT levels. In WT or MT-transfected MT-null cells, Pb-induced Scna expression rapidly increased and then decreased over 48 h as Pb-induced IBs were formed. A direct interaction between Scna and MT was confirmed ex vivo by antibody pulldown assay where the proteins coprecipitated with an antibody to MT. Pb exposure caused increased colocalization of MT and Scna proteins with time only in WT cells. In WT mice after chronic Pb exposure Scna was localized in renal cells containing forming IBs, whereas MT-null mice did not form IBs. Thus, Scna could be component of Pb-induced IBs and, with MT, may play a role in IBs formation.

  20. Induction of CaSR expression circumvents the molecular features of malignant CaSR null colon cancer cells.

    PubMed

    Singh, Navneet; Chakrabarty, Subhas

    2013-11-15

    We recently reported on the isolation and characterization of calcium sensing receptor (CaSR) null human colon cancer cells (Singh et al., Int J Cancer 2013; 132: 1996-2005). CaSR null cells possess a myriad of molecular features that are linked to a highly malignant and drug resistant phenotype of colon cancer. The CaSR null phenotype can be maintained in defined human embryonic stem cell culture medium. We now show that the CaSR null cells can be induced to differentiate in conventional culture medium, regained the expression of CaSR with a concurrent reversal of the cellular and molecular features associated with the null phenotype. These features include cellular morphology, expression of colon cancer stem cell markers, expression of survivin and thymidylate synthase and sensitivity to fluorouracil. Other features include the expression of epithelial mesenchymal transition linked molecules and transcription factors, oncogenic miRNAs and tumor suppressive molecule and miRNA. With the exception of cancer stem cell markers, the reversal of molecular features, upon the induction of CaSR expression, is directly linked to the expression and function of CaSR because blocking CaSR induction by shRNA circumvented such reversal. We further report that methylation and demethylation of the CaSR gene promoter underlie CaSR expression. Due to the malignant nature of the CaSR null cells, inclusion of the CaSR null phenotype in disease management may improve on the mortality of this disease. Because CaSR is a robust promoter of differentiation and mediates its action through diverse mechanisms and pathways, inactivation of CaSR may serve as a new paradigm in colon carcinogenesis. Copyright © 2013 UICC.

  1. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. PMID:27144312

  2. The Sterol Methyltransferases SMT1, SMT2, and SMT3 Influence Arabidopsis Development through Nonbrassinosteroid Products1[W][OA

    PubMed Central

    Carland, Francine; Fujioka, Shozo; Nelson, Timothy

    2010-01-01

    Plant sterols are structural components of cell membranes that provide rigidity, permeability, and regional identity to membranes. Sterols are also the precursors to the brassinosteroid signaling molecules. Evidence is accumulating that specific sterols have roles in pattern formation during development. COTYLEDON VASCULAR PATTERNING1 (CVP1) encodes C-24 STEROL METHYLTRANSFERASE2 (SMT2), one of three SMTs in Arabidopsis (Arabidopsis thaliana). SMT2 and SMT3, which also encodes a C-24 SMT, catalyze the reaction that distinguishes the synthesis of structural sterols from signaling brassinosteroid derivatives and are highly regulated. The deficiency of SMT2 in the cvp1 mutant results in moderate developmental defects, including aberrant cotyledon vein patterning, serrated floral organs, and reduced stature, but plants are viable, suggesting that SMT3 activity can substitute for the loss of SMT2. To test the distinct developmental roles of SMT2 and SMT3, we identified a transcript null smt3 mutant. Although smt3 single mutants appear wild type, cvp1 smt3 double mutants show enhanced defects relative to cvp1 mutants, such as discontinuous cotyledon vein pattern, and produce novel phenotypes, including defective root growth, loss of apical dominance, sterility, and homeotic floral transformations. These phenotypes are correlated with major alterations in the profiles of specific sterols but without significant alterations to brassinosteroid profiles. The alterations to sterol profiles in cvp1 mutants affect auxin response, demonstrated by weak auxin insensitivity, enhanced axr1 auxin resistance, ectopically expressed DR5:β-glucuronidase in developing embryos, and defective response to auxin-inhibited PIN2-green fluorescent protein endocytosis. We discuss the developmental roles of sterols implied by these results. PMID:20421456

  3. Suppression of calbindin-D28k expression exacerbates SCA1 phenotype in a disease mouse model.

    PubMed

    Vig, Parminder J S; Wei, Jinrong; Shao, Qingmei; Lopez, Maripar E; Halperin, Rebecca; Gerber, Jill

    2012-09-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a polyglutamine tract in the mutant protein ataxin-1. The cerebellar Purkinje cells (PCs) are the major targets of mutant ataxin-1. The mechanism of PC death in SCA1 is not known; however, previous work indicates that downregulation of specific proteins involved in calcium homeostasis and signaling by mutant ataxin-1 is the probable cause of PC degeneration in SCA1. In this study, we explored if targeted deprivation of PC specific calcium-binding protein calbindin-D28k (CaB) exacerbates ataxin-1 mediated toxicity in SCA1 transgenic (Tg) mice. Using behavioral tests, we found that though both SCA1/+ and SCA1/+: CaB null (-/+) double mutants exhibited progressive impaired performance on the rotating rod, a simultaneous enhancement of exploratory activity, and absence of deficits in coordination, the double mutants were more severely impaired than SCA1/+ mice. With increasing age, SCA1/+ mice showed a progressive loss in the expression and localization of CaB and other PC specific calcium-binding and signaling proteins. In double mutants, these changes were more pronounced and had an earlier onset. Gene expression profiling of young mice exhibiting no behavior or biochemical deficits revealed a differential expression of many genes common to SCA1/+ and CaB-/+ lines, and unique to SCA1/+: CaB-/+ phenotype. Our study provides further evidence for a critical role of CaB in SCA1 pathogenesis, which may help identify new therapeutic targets to treat SCA1 or other cerebellar ataxias.

  4. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    NASA Technical Reports Server (NTRS)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  5. Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1, a novel anticancer small-molecule

    PubMed Central

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A.L.; Monteiro, Ângelo; Gomes, Sara; Bessa, Cláudia; Pereira, Clara; Queiroz, Glória; Bisio, Alessandra; Fernandes, João; Gomes, Célia; Reis, Flávio; Gonçalves, Jorge; Inga, Alberto; Santos, Maria M.M.; Saraiva, Lucília

    2016-01-01

    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs. PMID:26735173

  6. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon.

    PubMed Central

    Bosher, J M; Dufourcq, P; Sookhareea, S; Labouesse, M

    1999-01-01

    In nematodes, flies, trypanosomes, and planarians, introduction of double-stranded RNA results in sequence-specific inactivation of gene function, a process termed RNA interference (RNAi). We demonstrate that RNAi against the Caenorhabditis elegans gene lir-1, which is part of the lir-1/lin-26 operon, induced phenotypes very different from a newly isolated lir-1 null mutation. Specifically, lir-1(RNAi) induced embryonic lethality reminiscent of moderately strong lin-26 alleles, whereas the lir-1 null mutant was viable. We show that the lir-1(RNAi) phenotypes resulted from a severe loss of lin-26 gene expression. In addition, we found that RNAi directed against lir-1 or lin-26 introns induced similar phenotypes, so we conclude that lir-1(RNAi) targets the lir-1/lin-26 pre-mRNA. This provides direct evidence that RNA interference can prevent gene expression by targeting nuclear transcripts. Our results highlight that caution may be necessary when interpreting RNA interference without the benefit of mutant alleles. PMID:10545456

  7. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  8. Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janoudi, A.K.; Gordon, W.R.; Poff, K.L.

    1997-03-01

    The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Arabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two responses in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast,more » the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indicate that phyA is necessary for the very-low-to-low but not the high-fluence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by a phytochrome other than phyA or phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in unpreditable fashion. 25 refs., 3 figs.« less

  9. The Agr-Like Quorum Sensing System Is Required for Pathogenesis of Necrotic Enteritis Caused by Clostridium perfringens in Poultry.

    PubMed

    Yu, Qiang; Lepp, Dion; Mehdizadeh Gohari, Iman; Wu, Tao; Zhou, Hongzhuan; Yin, Xianhua; Yu, Hai; Prescott, John F; Nie, Shao-Ping; Xie, Ming-Yong; Gong, Joshua

    2017-06-01

    Clostridium perfringens encodes at least two different quorum sensing (QS) systems, the Agr-like and LuxS, and recent studies have highlighted their importance in the regulation of toxin production and virulence. The role of QS in the pathogenesis of necrotic enteritis (NE) in poultry and the regulation of NetB, the key toxin involved, has not yet been investigated. We have generated isogenic agrB -null and complemented strains from parent strain CP1 and demonstrated that the virulence of the agrB -null mutant was strongly attenuated in a chicken NE model system and restored by complementation. The production of NetB, a key NE-associated toxin, was dramatically reduced in the agrB mutant at both the transcriptional and protein levels, though not in a luxS mutant. Transwell assays confirmed that the Agr-like QS system controls NetB production through a diffusible signal. Global gene expression analysis of the agrB mutant identified additional genes modulated by Agr-like QS, including operons related to phospholipid metabolism and adherence, which may also play a role in NE pathogenesis. This study provides the first evidence that the Agr-like QS system is critical for NE pathogenesis and identifies a number of Agr-regulated genes, most notably netB , that are potentially involved in mediating its effects. The Agr-like QS system thus may serve as a target for developing novel interventions to prevent NE in chickens. © Crown copyright 2017.

  10. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan.

    PubMed Central

    Mengin-Lecreulx, D; van Heijenoort, J; Park, J T

    1996-01-01

    A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth. PMID:8808921

  11. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.

    PubMed

    Soni, Shivani; Bala, Shashi; Hanspal, Manjit

    2008-01-01

    Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.

  12. Roles of Heparan Sulfate Sulfation in Dentinogenesis*

    PubMed Central

    Hayano, Satoru; Kurosaka, Hiroshi; Yanagita, Takeshi; Kalus, Ina; Milz, Fabian; Ishihara, Yoshihito; Islam, Md. Nurul; Kawanabe, Noriaki; Saito, Masahiro; Kamioka, Hiroshi; Adachi, Taiji; Dierks, Thomas; Yamashiro, Takashi

    2012-01-01

    Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix. PMID:22351753

  13. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53

    PubMed Central

    Gadhikar, Mayur A.; Sciuto, Maria Rita; Alves, Marcus Vinicius Ortega; Pickering, Curtis R.; Osman, Abdullah A.; Neskey, David M.; Zhao, Mei; Fitzgerald, Alison L.; Myers, Jeffrey N.; Frederick, Mitchell J

    2014-01-01

    Despite the use of multimodality therapy employing cisplatin to treat patients with advanced stage head and neck squamous cell carcinoma (HNSCC), there is an unacceptably high rate of treatment failure. TP53 is the most commonly mutated gene in HNSCC, and the impact of p53 mutation on response to cisplatin treatment is poorly understood. Here we show unambiguously that wild type TP53 (wtp53) is associated with sensitivity of HNSCC cells to cisplatin treatment while mutation or loss of TP53 is associated with cisplatin resistance. We also demonstrate that senescence is the major cellular response to cisplatin in wtp53 HNSCC cells and that cisplatin resistance in p53 null or mutant TP53 cells is due to their lack of senescence. Given the dependence on Chk1/2 kinases to mediate the DNA damage response in p53 deficient cells, there is potential to exploit this to therapeutic advantage through targeted inhibition of the Chk1/2 kinases. Treatment of p53 deficient HNSCC cells with the Chk inhibitor AZD7762 sensitizes them to cisplatin through induction of mitotic cell death. This is the first report demonstrating the ability of a Chk kinase inhibitor to sensitize TP53-deficient HNSCC to cisplatin in a synthetic lethal manner, which has significance given the frequency of TP53 mutations in this disease and because cisplatin has become part of standard therapy for aggressive HNSCC tumors. These pre-clinical data provide evidence that a personalized approach to the treatment of HNSCC based on Chk inhibition in p53 mutant tumors may be feasible. PMID:23839309

  14. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus.

    PubMed

    Wang, Q; Liu, Q; Ma, Y; Rui, H; Zhang, Y

    2007-11-01

    To characterize the luxO gene in fish pathogen Vibrio alginolyticus MVP01 and investigate its roles in regulation of extracellular products (ECP) and siderophore production. The luxO gene was cloned from V. alginolyticus MVP01. Genetic analysis revealed that it encoded a protein with high similarity to other LuxO homologues. The luxO in-frame deletion mutant and rpoN null mutant were constructed with suicide plasmids. We demonstrated that sole deletion in LuxO increased the secretion of extracellular protease and haemolytic products, but decreased siderophore production for V. alginolyticus MVP01. Mutants with null rpoN displayed significantly enhanced protease level and siderophore production while notable reduction in haemolytic activities of ECP. Vibrio alginolyticus harbours functional luxO gene that regulates the secretion of extracellular protease and haemolytic materials as well as siderophore production in either sigma(54) dependent or independent manners. The current study demonstrated that V. alginolyticus MVP01 produces extracellular protease and haemolytic activity material as well as siderophore, which may be characteristics of the virulence of the strain. Revelations that secretion of these products is under the regulation of LuxO and sigma(54) as well as the potential quorum sensing systems in V. alginolyticus MVP01 will expedite the understanding of vibriosis pathogenesis.

  15. Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum

    PubMed Central

    Livermore, Thomas Miles; Chubb, Jonathan Robert; Saiardi, Adolfo

    2016-01-01

    Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP. PMID:26755590

  16. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium

    PubMed Central

    Chen, Mei-Yu; Long, Yu; Devreotes, Peter N.

    1997-01-01

    Genetic analysis was applied to identify novel genes involved in G protein-linked pathways controlling development. Using restriction enzyme-mediated integration (REMI), we have identified a new gene, Pianissimo (PiaA), involved in cAMP signaling in Dictyostelium discoideum. PiaA encodes a 130-kD cytosolic protein required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase. In piaA− null mutants, neither chemoattractant stimulation of intact cells nor GTPγS treatment of lysates activates the enzyme; constitutive expression of PiaA reverses these defects. Cytosols of wild-type cells that contain Pia protein reconstitute the GTPγS stimulation of adenylyl cyclase activity in piaA− lysates, indicating that Pia is directly involved in the activation. Pia and CRAC, a previously identified cytosolic regulator, are both essential for activation of the enzyme as lysates of crac− piaA− double mutants require both proteins for reconstitution. Homologs of PiaA are found in Saccharomyces cerevisiae and Schizosaccaromyces pombe; disruption of the S. cerevisiae homolog results in lethality. We propose that homologs of Pia and similar modes of regulation of these ubiquitous G protein-linked pathways are likely to exist in higher eukaryotes. PMID:9389653

  17. AtCHX13 is a plasma membrane K+ transporter.

    PubMed

    Zhao, Jian; Cheng, Ning-Hui; Motes, Christy M; Blancaflor, Elison B; Moore, Miranda; Gonzales, Naomi; Padmanaban, Senthilkumar; Sze, Heven; Ward, John M; Hirschi, Kendal D

    2008-10-01

    Potassium (K+) homeostasis is essential for diverse cellular processes, although how various cation transporters collaborate to maintain a suitable K+ required for growth and development is poorly understood. The Arabidopsis (Arabidopsis thaliana) genome contains numerous cation:proton antiporters (CHX), which may mediate K+ transport; however, the vast majority of these transporters remain uncharacterized. Here, we show that AtCHX13 (At2g30240) has a role in K+ acquisition. AtCHX13 suppressed the sensitivity of yeast (Saccharomyces cerevisiae) mutant cells defective in K+ uptake. Uptake experiments using (86)Rb+ as a tracer for K+ demonstrated that AtCHX13 mediated high-affinity K+ uptake in yeast and in plant cells with a K(m) of 136 and 196 microm, respectively. Functional green fluorescent protein-tagged versions localized to the plasma membrane of both yeast and plant. Seedlings of null chx13 mutants were sensitive to K+ deficiency conditions, whereas overexpression of AtCHX13 reduced the sensitivity to K+ deficiency. Collectively, these results suggest that AtCHX13 mediates relatively high-affinity K+ uptake, although the mode of transport is unclear at present. AtCHX13 expression is induced in roots during K+-deficient conditions. These results indicate that one role of AtCHX13 is to promote K+ uptake into plants when K+ is limiting in the environment.

  18. Role of Fanconi Anemia FANCG in Preventing Double-Strand Breakage and Chromosomal Rearrangement during DNA Replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tebbs, R S; Hinz, J M; Yamada, N A

    The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are unknown. By constructing and characterizing a null fancg mutant of hamster CHO cells, we present several new insights for FA. The fancg cells show a broad sensitivity to genotoxic agents, not supporting the conventional concept of sensitivity to only DNA crosslinking agents. The aprt mutation rate is normal, but hprt mutations are reduced, which we ascribe to the lethality of large deletions. CAD and dhfr gene amplification rates are increased, implying excess chromosomal breakage during DNA replication, andmore » suggesting amplification as a contributing factor to cancer-proneness in FA patients. In S-phase cells, both spontaneous and mutagen-induced Rad51 nuclear foci are elevated. These results support a model in which FancG protein helps to prevent collapse of replication forks by allowing translesion synthesis or lesion bypass through homologous recombination.« less

  19. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability.

    PubMed

    Schapire, Arnaldo L; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A

    2008-12-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca(2+)-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca(2+)-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness.

  20. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.

    PubMed

    Conforti, Paola; Camnasio, Stefano; Mutti, Cesare; Valenza, Marta; Thompson, Morgan; Fossale, Elisa; Zeitlin, Scott; MacDonald, Marcy E; Zuccato, Chiara; Cattaneo, Elena

    2013-02-01

    Huntington's disease (HD) is a neurodegenerative disorder that affects muscle coordination and diminishes cognitive abilities. The genetic basis of the disease is an expansion of CAG repeats in the Huntingtin (Htt) gene. Here we aimed to generate a series of mouse neural stem (NS) cell lines that carried varying numbers of CAG repeats in the mouse Htt gene (Hdh CAG knock-in NS cells) or that had Hdh null alleles (Hdh knock-out NS cells). Towards this end, Hdh CAG knock-in mouse ES cell lines that carried an Htt gene with 20, 50, 111, or 140 CAG repeats or that were Htt null were neuralized and converted into self-renewing NS cells. The resulting NS cell lines were immunopositive for the neural stem cell markers NESTIN, SOX2, and BLBP and had similar proliferative rates and cell cycle distributions. After 14 days in vitro, wild-type NS cells gave rise to cultures composed of 70% MAP2(+) neurons and 30% GFAP(+) astrocytes. In contrast, NS cells with expanded CAG repeats underwent neuronal cell death, with only 38%±15% of the MAP2(+) cells remaining at the end of the differentiation period. Cell death was verified by increased caspase 3/7 activity on day 14 of the neuronal differentiation protocol. Interestingly, Hdh knock-out NS cells treated using the same neuronal differentiation protocol showed a dramatic increase in the number of GFAP(+) cells on day 14 (61%±20% versus 24%±10% in controls), and a massive decrease of MAP2(+) neurons (30%±11% versus 64%±17% in controls). Both Hdh CAG knock-in NS cells and Hdh knock-out NS cells showed reduced levels of Bdnf mRNA during neuronal differentiation, in agreement with data obtained previously in HD mouse models and in post-mortem brain samples from HD patients. We concluded that Hdh CAG knock-in and Hdh knock-out NS cells have potential as tools for investigating the roles of normal and mutant HTT in differentiated neurons and glial cells of the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

Top