High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.
2012-01-01
Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.
High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.
2012-01-01
Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.
Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael
2011-01-01
Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.
Vacuum Nuller Testbed Performance, Characterization and Null Control
NASA Technical Reports Server (NTRS)
Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.
2011-01-01
The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.
Terrestrial Planet Finder Interferometer Technology Status and Plans
NASA Technical Reports Server (NTRS)
Lawson, Perter R.; Ahmed, A.; Gappinger, R. O.; Ksendzov, A.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Scharf, D. P.; Wallace, J. K.; Ware, B.
2006-01-01
A viewgraph presentation on the technology status and plans for Terrestrial Planet Finder Interferometer is shown. The topics include: 1) The Navigator Program; 2) TPF-I Project Overview; 3) Project Organization; 4) Technology Plan for TPF-I; 5) TPF-I Testbeds; 6) Nulling Error Budget; 7) Nulling Testbeds; 8) Nulling Requirements; 9) Achromatic Nulling Testbed; 10) Single Mode Spatial Filter Technology; 11) Adaptive Nuller Testbed; 12) TPF-I: Planet Detection Testbed (PDT); 13) Planet Detection Testbed Phase Modulation Experiment; and 14) Formation Control Testbed.
Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew;
2010-01-01
Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.
Technology Advancement of the Visible Nulling Coronagraph
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve
2010-01-01
The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.
Habig, Jeffrey W; Rowland, Aaron; Pence, Matthew G; Zhong, Cathy X
2018-06-01
Resistance genes (R-genes) from wild potato species confer protection against disease and can be introduced into cultivated potato varieties using breeding or biotechnology. The R-gene, Rpi-vnt1, which encodes the VNT1 protein, protects against late blight, caused by Phytophthora infestans. Heterologous expression and purification of active VNT1 in quantities sufficient for regulatory biosafety studies was problematic, making it impractical to generate hazard characterization data. As a case study for R-proteins, a weight-of-evidence, tiered approach was used to evaluate the safety of VNT1. The hazard potential of VNT1 was identified from relevant safety information including history of safe use, bioinformatics, mode of action, expression levels, and dietary intake. From the assessment it was concluded that Tier II hazard characterization was not needed. R-proteins homologous to VNT1 and identified in edible crops, have a history of safe consumption. VNT1 does not share sequence identity with known allergens. Expression levels of R-proteins are generally low, and VNT1 was not detected in potato varieties expressing the Rpi-vnt1 gene. With minimal hazard and negligible exposure, the risks associated with consumption of R-proteins in late blight protected potatoes are exceedingly low. R-proteins introduced into potatoes to confer late blight protection are safe for consumption. Copyright © 2018 Elsevier Inc. All rights reserved.
A novel highly sensitive, rapid and safe Rift Valley fever virus neutralization test.
Wichgers Schreur, Paul J; Paweska, Janusz T; Kant, Jet; Kortekaas, Jeroen
2017-10-01
Antibodies specific for Rift Valley fever virus (RVFV) can be detected by diverse methods, including ezyme-linked immunosortbent assay (ELISA) and virus neutralization test (VNT). The VNT is superior in sensitivity and specificity and is therefore considered the gold standard serological assay. Classical VNTs make use of virulent RVFV and therefore have to be performed in biosafety level 3 laboratories. Here, we report the development of a novel VNT that is based on an avirulent RVFV expressing the enhanced green fluorescent protein (eGFP), which can be performed safely outside level 3 biocontainment facilities. Evaluation with a broad panel of experimental sera and field sera demonstrated that this novel VNT is faster and more sensitive than the classical VNT. Copyright © 2017 Elsevier B.V. All rights reserved.
Integrated Optics Achromatic Nuller for Stellar Interferometry
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander
2012-01-01
This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.
Self-Nulling Beam Combiner Using No External Phase Inverter
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.
2010-01-01
A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.
Development of an Indirect ELISA for Serological Diagnosis of Bovine herpesvirus 5
Campos, Fabrício S.; da Rosa, Matheus C.; Finger, Paula F.; de Oliveira, Patricia D.; Conceição, Fabricio R.; Fischer, Geferson; Roehe, Paulo M.; Leite, Fábio P. L.
2016-01-01
Bovine herpesviruses 1 and 5 (BoHV-1 and BoHV-5) are economically important pathogens, associated with a variety of clinical syndromes, including respiratory and genital disease, reproductive failure and meningoencephalitis. The standard serological assay to diagnose BoHV-1 and BoHV-5 infections is the virus neutralization test (VNT), a time consuming procedure that requires manipulation of infectious virus. In the present study a highly sensitive and specific single dilution indirect ELISA was developed using recombinant glycoprotein D from BoHV-5 as antigen (rgD5ELISA). Bovine serum samples (n = 450) were screened by VNT against BoHV-5a and by rgD5ELISA. Compared with the VNT, the rgD5ELISA demonstrated accuracy of 99.8%, with 100% sensitivity, 96.7% specificity and coefficient of agreement between the tests of 0.954. The rgD5ELISA described here shows excellent agreement with the VNT and is shown to be a simple, convenient, specific and highly sensitive virus-free assay for detection of serum antibodies to BoHV-5. PMID:26866923
Soble, Jason R; Marceaux, Janice C; Galindo, Juliette; Sordahl, Jeffrey A; Highsmith, Jonathan M; O'Rourke, Justin J F; González, David Andrés; Critchfield, Edan A; McCoy, Karin J M
2016-01-01
Confrontation naming tests are a common neuropsychological method of assessing language and a critical diagnostic tool in identifying certain neurodegenerative diseases; however, there is limited literature examining the visual-perceptual demands of these tasks. This study investigated the effect of perceptual reasoning abilities on three confrontation naming tests, the Boston Naming Test (BNT), Neuropsychological Assessment Battery (NAB) Naming Test, and Visual Naming Test (VNT) to elucidate the diverse cognitive functions underlying these tasks to assist with test selection procedures and increase diagnostic accuracy. A mixed clinical sample of 121 veterans were administered the BNT, NAB, VNT, and Wechsler Adult Intelligence Scale-4th Edition (WAIS-IV) Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) as part of a comprehensive neuropsychological evaluation. Multiple regression indicated that PRI accounted for 23%, 13%, and 15% of the variance in BNT, VNT, and NAB scores, respectively, but dropped out as a significant predictor once VCI was added. Follow-up bootstrap mediation analyses revealed that PRI had a significant indirect effect on naming performance after controlling education, primary language, and severity of cognitive impairment, as well as the mediating effect of general verbal abilities for the BNT (B = 0.13; 95% confidence interval, CI [.07, .20]), VNT (B = 0.01; 95% CI [.002, .03]), and NAB (B = 0.03; 95% CI [.01, .06]). Findings revealed a complex relationship between perceptual reasoning abilities and confrontation naming that is mediated by general verbal abilities. However, when verbal abilities were statistically controlled, perceptual reasoning abilities were found to have a significant indirect effect on performance across all three confrontation naming measures with the largest effect noted with the BNT relative to the VNT and NAB Naming Test.
Zhang, Jialin; Liu, Wenxing; Chen, Weiye; Li, Cuicui; Xie, Meimei; Bu, Zhigao
2016-01-01
From 2013 to 2015, peste des petits ruminants (PPR) broke out in more than half of the provinces of China; thus, the application and development of diagnostic methods are very important for the control of PPR. Here, an immunoperoxidase monolayer assay (IPMA) was developed to detect antibodies against PPR. However, during IPMA development, we found that Vero cells were not the appropriate choice because staining results were not easily observed. Therefore, we first established a baby hamster kidney-goat signaling lymphocyte activation molecule (BHK-SLAM) cell line that could stably express goat SLAM for at least 20 generations. Compared with Vero cells, the PPR-mediated cytopathic effect occurred earlier in BHK-SLAM cells, and large syncytia appeared after virus infection. Based on this cell line and recombinant PPR virus expressing the green fluorescent protein (GFP) (rPPRV-GFP), an IPMA for PPR diagnosis was developed. One hundred and ninety-eight PPR serum samples from goats or sheep were tested by the IPMA and virus neutralization test (VNT). Compared with the VNT, the sensitivity and specificity of the IPMA were 91% and 100%, respectively, and the coincidence rate of the two methods was 95.5%. The IPMA assay could be completed in 4 h, compared with more than 6 d for the VNT using rPPRV-GFP, and it is easily performed, as the staining results can be observed under a microscope. Additionally, unlike the VNT, the IPMA does not require antigen purification, which will reduce its cost. In conclusion, the established IPMA will be an alternative method that replaces the VNT for detecting antibodies against PPRV in the field.
Kalaiyarasu, Semmannan; Mishra, Niranjan; Rajukumar, Katherukamem; Nema, Ram Kumar; Behera, Sthita Pragnya
2015-01-01
The aim of this study was to develop an indirect ELISA using the helicase domain of bovine viral diarrhoea virus (BVDV) NS3 protein instead of full-length NS3 protein for detection of BVDV and BDV antibodies in sheep and goats and its validation by comparing its sensitivity and specificity with virus neutralization test (VNT) as the reference test. The purified 50 kDa recombinant NS3 protein was used as the coating antigen in the ELISA. The optimal concentration of antigen was 320 ng/well at a serum dilution of 1:20 and the optimal positive cut-off optical density value was 0.40 based on test results of 418 VNT negative sheep and goat sera samples. When 569 serum samples from sheep (463) and goats (106) were tested, the ELISA showed a sensitivity of 91.71% and specificity of 94.59% with BVDV VNT. A good correlation (93.67%) was observed between the two tests. It showed a sensitivity of 85% and specificity of 86.6% with VNT in detecting BDV antibody positive or negative samples. This study demonstrates the efficacy of truncated recombinant NS3 antigen based ELISA for seroepidemiological study of pestivirus infection in sheep and goats.
Studies of solar flares: Homology and X-ray line broadening
NASA Astrophysics Data System (ADS)
Ranns, Neale David Raymond
This thesis starts with an introduction to the solar atmosphere and the physics that governs its behaviour. The formation processes of spectral lines are presented followed by an explanation of employed plasma diagnostic techniques and line broadening mechanisms. The current understanding on some principle concepts of flare physics are reviewed and the topics of flare homology and non-thermal line broadening are introduced. The many solar satellites and instrumentation that were utilised during this thesis are described. Analysis techniques for some instruments are also presented. A series of solar flares that conform to the literature definition for homologous flares are examined. The apparent homology is shown to be caused by emerging flux rather than continual stressing of a single, or group of, magnetic structure's. The implications for flare homology are discussed. The analysis of a solar flare with a rise and peak in the observed non-thermal X-ray line broadening (Vnt) is then performed. The location of the hot plasma within the flare area is determined and consequently the source of Vnt is located to be within and above the flare loops. The flare footpoints are therefore discarded as a possible source location. Viable source locations are discussed with a view to determining the dominant mechanism for the generation of line broadening. The timing relationships between the hard X-ray (HXR) flux and Vnt in many solar flares are then examined. I show that there is a causal relationship between these two parameters and that the HXR rise time is related to the time delay between the maxima of HXR flux and Vnt. The temporal evolution of Vnt is shown to be dependent upon the shape of the HXR burst. The implications of these results are discussed in terms of determining the line broadening mechanism and the limitations of the data. A summary of the results in this thesis is then presented together with suggestions for future research.
Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities
NASA Astrophysics Data System (ADS)
Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.
2018-04-01
Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.
Pannwitz, Gunter; Haas, Bernd; Hoffmann, Bernd; Fischer, Sebastian
2009-01-01
In a closed pig establishment housing about 18,000 pigs, 2895 gilts were tested pre-export for SVD (swine vesicular disease) antibodies using Ceditest/PrioCHECK SVDV-AB ELISA. 130 gilts (4.5%) tested positive. In addition, 561 animals of this farm were sampled per random for SVD serology. One in 241 weaners (0.4%), eight in 150 gilts (5.3%) and 18 in 170 (10.6%) pregnant sows tested ELISA SVD-antibody positive. Of the ELISA positive samples, 23 tested positive in VNT (virus neutralization test). Of these, 20 VNT-positive animals were re-sampled two weeks later and re-tested via ELISA and VNT in different laboratories, displaying falling titres with one to two animals remaining VNT-positive. Epidemiological investigations and clinical examinations on site did not yield any evidence for SVD. 745 faecal samples taken from individual pigs and collected from pens tested negative in SVDV-RNA-PCR. 40 of these samples tested negative in virus isolation on cell culture. Pathological examinations on fallen pigs did not reveal any evidence for SVD either. After comparing our ELISA results with data recorded in the ELISA validation by Chenard et al. (1998), we propose that the published test performance is perhaps not currently applicable for the commercial test. Provided that SVD-antibody negative pigs were tested, a specificity of 99.6% in weaners, 95.5% in gilts and 89.4% in pregnant sows would appear to be more appropriate for the Ceditest/PrioCHECK SVDV-AB ELISA. Details are provided for all examined pigs regarding husbandry, breed, age, weeks pregnant and previous vaccinations. The results of other serological tests on the same sera are given. Possible clusterings of false-positive SVD-ELISA results are discussed.
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.;
2016-01-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Nulling at the Keck Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.
2006-01-01
The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.
Röthlisberger, Anne; Wiener, Dominique; Schweizer, Matthias; Peterhans, Ernst; Zurbriggen, Andreas; Plattet, Philippe
2010-01-01
Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-α/β)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-α/β-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-α/β-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-α/β-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-α/β-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-α/β-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-α/β evasion among the morbilliviruses. PMID:20427537
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Schefft, Bruce K; Testa, S Marc; Dulay, Mario F; Privitera, Michael D; Yeh, Hwa-Shain
2003-04-01
The present study examined the diagnostic utility of confrontation naming tasks and phonemic paraphasia production in lateralizing the epileptogenic region in patients with temporal lobe epilepsy (TLE). Further, the role of intelligence in moderating the diagnostic utility of confrontation naming tasks was assessed. Eighty patients with medically intractable complex partial seizures (40 left TLE, 40 right TLE) received the Boston Naming Test (BNT) and the Visual Naming subtest (VNT) of the Multilingual Aphasia Examination. The BNT was diagnostically more sensitive than the VNT in identifying left TLE (77.5% vs 17.5%, respectively). The utility of BNT performance and paraphasias was maximal in patients with Full Scale IQs >or=90 who were 6.8 times more likely to have left TLE than patients without paraphasias. Preoperative assessment of confrontation naming ability and phonemic paraphasia production using the BNT provided diagnostically useful information in lateralizing the epileptogenic region in left TLE.
NASA Astrophysics Data System (ADS)
Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.
2016-08-01
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Quantification of the Energy Dissipated by Alfven Waves in a Polar Coronal Hole
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.
2013-12-01
We present a measurement of the energy carried and dissipated by Alfven waves in a polar coronal hole. Alfven waves have been proposed as the energy source that heats the corona and drives the solar wind. Previous work has shown that line widths decrease with height in coronal holes, which is a signature of wave damping, but have been unable to quantify the energy lost by the waves. This is because line widths depend on both the non-thermal velocity vnt and the ion temperature Ti. We have implemented a means to separate the Ti and vnt contributions using the observation that, at low heights, the waves are undamped and the ion temperatures do not change with height. This enables us to determine the amount of energy carried by the waves at low heights, which is proportional to vnt. We find the initial energy flux density present was 6.7×0.7×10^5 erg cm^-2 s^-1, which is sufficient to heat the coronal hole and accelerate the solar wind during the 2007 - 2009 solar minimum. Additionally, we find that about 85% of this energy is dissipated below 1.5 R_sun, sufficiently low that thermal conduction can transport the energy throughout the coronal hole, heating it and driving the fast solar wind. The remaining energy is roughly consistent with what models show is needed to provide the extended heating above the sonic point for the fast solar wind. We have also studied Ti, which we found to be in the range of 1 - 2 MK, depending on the ion species.
Besser, Daniel; Bromberg, Jacqueline F.; Darnell, James E.; Hanafusa, Hidesaburo
1999-01-01
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation. PMID:9891073
Jäckel, S; Eiden, M; Balkema-Buschmann, A; Ziller, M; van Vuren, P Jansen; Paweska, J T; Groschup, M H
2013-10-01
Rift Valley fever virus (RVFV) is an emerging zoonotic pathogen that causes high morbidity and mortality in humans and livestock. In this paper, we describe the cloning, expression and purification of RVFV glycoprotein Gn and its application as a diagnostic antigen in an indirect ELISA for the specific detection of RVF IgG antibodies in sheep and goats. The performance of this Gn based ELISA is validated using a panel of almost 2000 field samples from sheep and goats from Mozambique, Senegal, Uganda and Yemen. All serum samples were also tested by virus neutralization test (VNT), the gold standard method for RVFV serological testing. Compared to the VNT results the Gn based ELISA proved to have an excellent sensitivity (94.56%) and specificity (95.57%). Apart from establishing this new diagnostic assay, these results also demonstrate a close correlation between the presence of RVFV Gn and neutralizing antibodies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine
The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbin...
Takenaka, Chiemi; Miyajima, Hiroshi; Yoda, Yusuke; Imazato, Hideo; Yamamoto, Takako; Gomi, Shinichi; Ohshima, Yasuhiro; Kagawa, Kenichi; Sasaki, Tetsuji; Kawamata, Shin
2015-01-01
Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control. PMID:26115194
Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M
2012-01-11
We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Koresko, Chris D.; Colavita, Mark M.; Serabyn, Eugene; Booth, Andrew; Garcia, Jean I.
2006-01-01
A viewgraph presentation describing the methods, motivation and methods for water vapor measurement with the Keck interferometer near and mid infrared radiation band is shown. The topics include: 1) Motivation: Why measure H2O?; 2) Method: How do we measure H2O?; 3) Data: Phase and Group Delays for the K and N Bands; 4) Predicted and Actual Nband Phase and Dispersion; and 5) Validation of Atmospheric Turbulence Models with KI Data.
Ikeda, Mizuko; Swide, Thomas; Vayl, Alexandra; Lahm, Tim; Anderson, Sharon; Hutchens, Michael P
2015-09-18
There is a sex difference in the risk of ischemic acute kidney injury (AKI), and estrogen mediates the protective effect of female sex. We previously demonstrated that preprocedural chronic restoration of physiologic estrogen to ovariectomized female mice ameliorated AKI after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). In the present study, we hypothesized that male mice and aged female mice would benefit from estrogen administration after CA/CPR. We tested the effect of estrogen in a clinically relevant manner by administrating it after CA/CPR. CA/CPR was performed in young (10-15 weeks), middle-aged (43-48 weeks), and aged (78-87 weeks) C57BL/6 male and female mice. Mice received intravenous 17β-estradiol or vehicle 15 min after resuscitation. Serum chemistries and unbiased stereological assessment of renal injury were completed 24 h after CA. Regional renal cortical blood flow was measured by a laser Doppler, and renal levels of estrogen receptor alpha (ERα) and G protein-coupled estrogen receptor (GPER) were evaluated with immunoblotting. Post-arrest estrogen administration reduced injury in young males without significant changes in renal blood flow (percentage reduction compared with vehicle: serum urea nitrogen, 30 %; serum creatinine (sCr), 41 %; volume of necrotic tubules (VNT), 31 %; P < 0.05). In contrast, estrogen did not affect any outcomes in young females. In aged mice, estrogen significantly reduced sCr (80 %) and VNT (73 %) in males and VNT (51 %) in females. Serum estrogen levels in aged female mice after CA/CPR were the same as levels in male mice. With age, renal ERα was upregulated in females. Estrogen administration after resuscitation from CA ameliorates renal injury in young males and aged mice in both sexes. Because injury was small, young females were not affected. The protective effect of exogenous estrogen may be detectable with loss of endogenous estrogen in aged females and could be mediated by differences in renal ERs. Post-arrest estrogen administration is renoprotective in a sex- and age-dependent manner.
Chen, Tsu-Han; Lee, Fan; Lin, Yeou-Liang; Pan, Chu-Hsiang; Shih, Chia-Ni; Tseng, Chun-Hsien; Tsai, Hsiang-Jung
2016-04-01
Foot-and-mouth disease (FMD) and swine vesicular disease (SVD) are serious vesicular diseases that have devastated swine populations throughout the world. The aim of this study was to develop a multianalyte profiling (xMAP) Luminex assay for the differential detection of antibodies to the FMD virus of structural proteins (SP) and nonstructural proteins (NSP). After the xMAP was optimized, it detected antibodies to SP-VP1 and NSP-3ABC of the FMD virus in a single serum sample. These tests were also compared with 3ABC polypeptide blocking enzyme-linked immunosorbent assay (ELISA) and virus neutralization test (VNT) methods for the differential diagnosis and assessment of immune status, respectively. To detect SP antibodies in 661 sera from infected naïve pigs and vaccinated pigs, the diagnostic sensitivity (DSn) and diagnostic specificity (DSp) of the xMAP were 90.0-98.7% and 93.0-96.5%, respectively. To detect NSP antibodies, the DSn was 90% and the DSp ranged from 93.3% to 99.1%. The xMAP can detect the immune response to SP and NSP as early as 4 days postinfection and 8 days postinfection, respectively. Furthermore, the SP and NSP antibodies in all 15 vaccinated but unprotected pigs were detected by xMAP. A comparison of SP and NSP antibodies detected in the sera of the infected samples indicated that the results from the xMAP had a high positive correlation with results from the VNT and a 3ABC polypeptide blocking ELISA assay. However, simultaneous quantitation detected that xMAP had no relationship with the VNT. Furthermore, the specificity was 93.3-94.9% with 3ABC polypeptide blocking ELISA for the FMDV-NSP antibody. The results indicated that xMAP has the potential to detect antibodies to FMDV-SP-VP1 and NSP-3ABC and to distinguish FMDV-infected pigs from pigs infected with the swine vesicular disease virus. Copyright © 2014. Published by Elsevier B.V.
CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle.
Carr, B Veronica; Lefevre, Eric A; Windsor, Miriam A; Inghese, Cristina; Gubbins, Simon; Prentice, Helen; Juleff, Nicholas D; Charleston, Bryan
2013-01-01
We have performed a series of studies to investigate the role of CD4(+) T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4(+) T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses. FMD vaccination was found to induce T-cell proliferative responses, with CD4(+) T-cells responding specifically to the FMDV antigen. In addition, gamma interferon (IFN-γ) was detected in the supernatant of FMDV antigen-stimulated PBMC and purified CD4(+) T-cells from vaccinated cattle. Similarly, intracellular IFN-γ could be detected specifically in purified CD4(+) T-cells after restimulation. It was not possible to correlate in vitro proliferative responses or IFN-γ production of PBMC with VNT, probably as a consequence of the induction of T-independent and T-dependent antibody responses and antigen non-specific T-cell responses. However, our studies demonstrate the importance of stimulating CD4(+) T-cell responses for the induction of optimum antibody responses to FMD-killed vaccines.
Tamba, Marco; Caminiti, Antonino; Prosperi, Alice; Desprès, Philippe; Lelli, Davide; Galletti, Giorgio; Moreno, Ana; Paternoster, Giulia; Santi, Annalisa; Licata, Elio; Lecollinet, Sylvie; Gelmini, Luca; Rugna, Gianluca; Procopio, Anna; Lavazza, Antonio
2017-10-01
West Nile virus (WNV) and Usutu virus (USUV), genus Flavivirus, are members of the Japanese encephalitis virus antigenic complex, and are maintained primarily in an enzootic cycle between mosquitoes and birds. WNV is zoonotic, and poses a threat to public health, especially in relation to blood transfusion. Serosurveillance of wild birds is suitable for early detection of WNV circulation, although concerns remain to be addressed as regards i) the type of test used, whether ELISA, virus neutralization test (VNT), plaque reduction neutralization test (PRNT), ii) the reagents (antigens, revealing antibodies), iii) the different bird species involved, and iv) potential cross-reactions with other Flaviviruses, such as USUV. The authors developed an indirect IgG ELISA with pan-avian specificity using EDIII protein as antigen and a monoclonal antibody (mAb 1A3) with broad reactivity for avian IgG. A total of 140 serum samples were collected from juvenile European magpies (Pica pica) in areas where both WNV and USUV were co-circulating. The samples were then tested using this in-house ELISA and VNT in parallel. Estimation of test accuracy was performed using different Bayesian two latent class models. At a cut-off set at an optical density percentage (OD%) of 15, the ELISA showed a posterior median of diagnostic sensitivity (DSe) of 88% (95%PCI: 73-99%) and a diagnostic specificity (DSp) of 86% (95%PCI: 68-99%). At this cut-off, ELISA and VNT (cut-off 1/10) performances were comparable: DSe=91% (95%PCI: 79-99%), and DSp=77% (95%PCI: 59-98%). With the cut-off increased to 30 OD%, the ELISA DSe dropped to 78% (95%PCI: 52-99%), and the DSp rose to 94% (95%PCI: 83-100%). In field conditions, the cut-off that yields the best accuracy for the ELISA appears to correspond to 15 OD%. In areas where other Flaviviruses are circulating, however, it might be appropriate to raise the cut-off to 30 OD% in order to achieve higher specificity and reduce the detection of seropositive birds infected by other Flaviviruses, such as USUV. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection of Zaire ebolavirus in swine: Assay development and optimization.
Pickering, B S; Collignon, B; Smith, G; Marszal, P; Kobinger, G; Weingartl, H M
2018-02-01
Ebolaviruses (family Filoviridae, order Mononegavirales) cause often fatal, haemorrhagic fever in primates including humans. Pigs have been identified as a species susceptible to Reston ebolavirus (RESTV) infection, with indicated transmission to humans in the Philippines; however, their role during Ebola outbreaks in Africa needs to be clarified. To perform surveillance studies, detection of ebolavirus requires a prerequisite validation of viral RNA and antibody detection methods in swine samples. These diagnostic tests also need to be suitable for deployment to low-level containment laboratories. In this study, we developed a set of tests for detection of antibodies against Zaire ebolavirus (EBOV) in swine. Recombinant EBOV nucleoprotein was produced using a baculovirus expression system for indirect ELISA development. Evaluation of this assay was performed using laboratory and field samples, achieving a diagnostic specificity of 99%. Importantly, the indirect ELISA was able to detect antibodies to EBOV at 7 dpi, 3 days earlier than virus neutralization tests (VNT). The format of the VNT in this work was modified to a microtitre plaque reduction neutralization assay (miPRNT) complemented with immunostaining to provide a more rapid and highly specific assay. Finally, a confirmatory immunoblot assay was generated to supplement the indirect ELISA results. © 2017 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of Health and Agriculture, Canadian Food Inspection Agency.
Recent New Ideas and Directions for Space-Based Nulling Interferometry
NASA Technical Reports Server (NTRS)
Serabyn, Eugene (Gene)
2004-01-01
This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter.
WFIRST Coronagraph Technology Development Testbeds: Status and Recent Testbed Results
NASA Astrophysics Data System (ADS)
Shi, Fang; An, Xin; Balasubramanian, Kunjithapatham; cady, eric; Gordon, Brian; Greer, Frank; Kasdin, N. Jeremy; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; mejia prada, camilo; Gersh-Range, Jessica; Eldorado Riggs, A. J.; Seo, Byoung-Joon; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John Terry; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying; JPL WFIRST Testbed Team, Princeton University
2018-01-01
As a part of technology development for the WFIRST coronagraph instrument (CGI), dedicated testbeds are built and commissioned at JPL. The coronagraph technology development testbeds include the Occulting Mask Coronagraph (OMC) testbed, the Shaped Pupil Coronagraph/Integral Field Spectrograph (SPC/IFS) testbed, and the Vacuum Surface Gauge (VSG) testbed. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope’s vibration and thermal changes. The SPC/IFS testbed is a dedicated testbed to test the IFS working with a Shaped Pupil Coronagraph while the VSG testbed is for measuring and calibrating the deformable mirrors, a key component used for WFIRST CGI's wavefront control. In this poster, we will describe the testbed functions and status as well as the highlight of the latest testbed results from OMC, SPC/IFS and VSG testbeds.
77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
.... 120322212-2212-01] Spectrum Sharing Innovation Test-Bed Pilot Program AGENCY: National Telecommunications... Innovation Test-Bed pilot program to assess whether devices employing Dynamic Spectrum Access techniques can... Spectrum Sharing Innovation Test-Bed (Test-Bed) pilot program to examine the feasibility of increased...
A mathematical model of compartmentalized neurotransmitter metabolism in the human brain.
Gruetter, R; Seaquist, E R; Ugurbil, K
2001-07-01
After administration of enriched [1-13C]glucose, the rate of 13C label incorporation into glutamate C4, C3, and C2, glutamine C4, C3, and C2, and aspartate C2 and C3 was simultaneously measured in six normal subjects by 13C NMR at 4 Tesla in 45-ml volumes encompassing the visual cortex. The resulting eight time courses were simultaneously fitted to a mathematical model. The rate of (neuronal) tricarboxylic acid cycle flux (V(PDH)), 0.57 +/- 0.06 micromol. g(-1). min(-1), was comparable to the exchange rate between (mitochondrial) 2-oxoglutarate and (cytosolic) glutamate (Vx), 0.57 +/- 0.19 micromol. g(-1). min(-1)), which may reflect to a large extent malate-aspartate shuttle activity. At rest, oxidative glucose consumption [CMR(Glc(ox))] was 0.41 +/- 0.03 miccromol. g(-1). min(-1), and (glial) pyruvate carboxylation (VPC) was 0.09 +/- 0.02 micromol. g(-1). min(-1). The flux through glutamine synthetase (Vsyn) was 0.26 +/- 0.06 micromol. g(-1). min(-1). A fraction of Vsyn was attributed to be from (neuronal) glutamate, and the corresponding rate of apparent glutamatergic neurotransmission (VNT) was 0.17 +/- 0.05 micromol. g(-1). min(-1). The ratio [VNT/CMR(Glcox)] was 0.41 +/- 0.14 and thus clearly different from a 1:1 stoichiometry, consistent with a significant fraction (approximately 90%) of ATP generated in astrocytes being oxidative. The study underlines the importance of assumptions made in modeling 13C labeling data in brain.
Algorithms and software for solving finite element equations on serial and parallel architectures
NASA Technical Reports Server (NTRS)
Chu, Eleanor; George, Alan
1988-01-01
The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the Computational Structural Mechanics (MSC) testbed. One of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A brief overview of the CSM Testbed software and its usage is presented. An overview of the sparse matrix research for the Testbed currently employed in the CSM Testbed is given. An interface which was designed and implemented as a research tool for installing and appraising new matrix processors in the CSM Testbed is described. The results of numerical experiments performed in solving a set of testbed demonstration problems using the processor SPK and other experimental processors are contained.
Sparse matrix methods research using the CSM testbed software system
NASA Technical Reports Server (NTRS)
Chu, Eleanor; George, J. Alan
1989-01-01
Research is described on sparse matrix techniques for the Computational Structural Mechanics (CSM) Testbed. The primary objective was to compare the performance of state-of-the-art techniques for solving sparse systems with those that are currently available in the CSM Testbed. Thus, one of the first tasks was to become familiar with the structure of the testbed, and to install some or all of the SPARSPAK package in the testbed. A suite of subroutines to extract from the data base the relevant structural and numerical information about the matrix equations was written, and all the demonstration problems distributed with the testbed were successfully solved. These codes were documented, and performance studies comparing the SPARSPAK technology to the methods currently in the testbed were completed. In addition, some preliminary studies were done comparing some recently developed out-of-core techniques with the performance of the testbed processor INV.
Network testbed creation and validation
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John
2017-03-21
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.
Network testbed creation and validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.
Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less
Advanced Wavefront Sensing and Control Testbed (AWCT)
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell
2010-01-01
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.
NASA Technical Reports Server (NTRS)
Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.
1982-01-01
The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.
Embedded Data Processor and Portable Computer Technology testbeds
NASA Technical Reports Server (NTRS)
Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.
1993-01-01
Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
A Business-to-Business Interoperability Testbed: An Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Ivezic, Nenad; Monica, Martin
In this paper, we describe a business-to-business (B2B) testbed co-sponsored by the Open Applications Group, Inc. (OAGI) and the National Institute of Standard and Technology (NIST) to advance enterprise e-commerce standards. We describe the business and technical objectives and initial activities within the B2B Testbed. We summarize our initial lessons learned to form the requirements that drive the next generation testbed development. We also give an overview of a promising testing framework architecture in which to drive the testbed developments. We outline the future plans for the testbed development.
1981-06-19
the lower half part, taking advantage of the s)ymetricity. The trans- formation between hoth planes is Figure I also depicts 2 pairs of the nas- 1 U...as Infinite. plane of syatry porliel to the direction of the undisturbed flow). Only one half of the Gravity and viscosity Shall be neglected. flow is... plane (soy) of a bi--" nsieol n--’ Ilm -v , vnt nl v flew, In distribution of the Rai mne singua-04C og C r Itill located in
New Educational Modules Using a Cyber-Distribution System Testbed
Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching; ...
2018-03-30
At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less
New Educational Modules Using a Cyber-Distribution System Testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jing; Bedoya, Juan Carlos; Liu, Chen-Ching
At Washington State University (WSU), a modern cyber-physical system testbed has been implemented based on an industry grade distribution management system (DMS) that is integrated with remote terminal units (RTUs), smart meters, and a solar photovoltaic (PV). In addition, the real model from the Avista Utilities distribution system in Pullman, WA, is modeled in DMS. The proposed testbed environment allows students and instructors to utilize these facilities for innovations in learning and teaching. For power engineering education, this testbed helps students understand the interaction between a cyber system and a physical distribution system through industrial level visualization. The testbed providesmore » a distribution system monitoring and control environment for students. Compared with a simulation based approach, the testbed brings the students' learning environment a step closer to the real world. The educational modules allow students to learn the concepts of a cyber-physical system and an electricity market through an integrated testbed. Furthermore, the testbed provides a platform in the study mode for students to practice working on a real distribution system model. Here, this paper describes the new educational modules based on the testbed environment. Three modules are described together with the underlying educational principles and associated projects.« less
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
De Regge, Nick; van den Berg, Thierry; Georges, Laura; Cay, Brigitte
2013-03-23
Since mid-December 2011, samples from malformed lambs and calves are sent to CODA-CERVA in Belgium for diagnosis of Schmallenberg virus (SBV), a novel Orthobunyavirus that was first detected by researchers of the Friedrich-Loeffler-Institut (FLI, Germany) in German cattle in autumn 2011 and was later shown to be involved in congenital malformations in lambs, goat kids and calves. Surprisingly, by making use of real time RT-PCR (rRT-PCR) assays developed by the FLI, presence of SBV RNA could only be confirmed in part of the SBV suspected newborns examined. To investigate possible causes for non-confirmation by rRT-PCR, a comparative analysis between different organs and tissues (cerebrum, cerebellum, brain stem, spinal cord, thymus, spleen, lymph nodes, meconium) originating from respectively 90 and 81 malformed lambs and calves was undertaken. Furthermore, thoracic fluids of respectively 55 malformed lambs and calves were examined by a virus neutralization test (VNT) to evaluate the presence of neutralizing anti-SBV antibodies in these animals. Our results show that among the different organs tested by rRT-PCR, brain stem material is the most appropriate tissue for SBV detection while it could also be detected in all other tissues but to a more variable degree. The VNT test showed that 95% of the malformed lambs were positive for anti-SBV neutralizing antibodies while this was only the case for 44% of malformed calves. These immunological data suggest that a humoral immune response could assist in the clearance of SBV from the fetus during gestation and that SBV specific antibody testing should be considered together with rRT-PCR analysis for confirmation of SBV infection. Copyright © 2012 Elsevier B.V. All rights reserved.
Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J
2017-05-01
Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Wanhong; Zhang, Zhidong; Nfon, Charles; Yang, Ming
2018-05-15
Foot-and-mouth disease serotype O viruses (FMDV/O) are responsible for the most outbreaks in FMD endemic countries. O1/BFS is one of the recommended FMD/O vaccine strains by World Reference Laboratory for FMD. In the current study, FMDV/O1 BFS vaccine strain and serotype O field isolates (45) were analyzed phylogenetically and antigenically to gain more insight into the genetic and antigenic characteristics of the vaccine strain and field isolates. O1/BFS showed similarity with 89% of the field isolates using a virus neutralization test (VNT). The P1 region encoding the FMDV capsid was sequenced and analysed for 46 strains of FMDV/O. Phylogenetic analysis showed these viruses originated from five continents and covered eight of 11 reported topotypes. Five isolates that demonstrated low antigenic similarities with O1/BFS were analyzed for their antigenic variation at the known neutralizing antigenic sites. Three of the five isolates demonstrated unique amino acid substitutions at various antigenic sites. No unique amino acid substitutions were observed for the other two unmatched isolates. Positively selected residues were identified on the surface of the FMD virus capsid supporting that it is important to continuously monitor field isolates for their antigenic and phenotypic changes. In conclusion, the vaccine strain O1/BFS is likely to confer protection against 89% of the 45 FMDV/O isolates based on VNT. Thus O1/BFS vaccine strain is still suitable for use in global FMD serotype O outbreak control. Combining data from phylogenetic, molecular and antigenic analysis can provide improvements in the process of vaccine selection. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2017-08-01
The primary objective of AMS Testbed project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. Throug...
Advanced turboprop testbed systems study
NASA Technical Reports Server (NTRS)
Goldsmith, I. M.
1982-01-01
The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.
Nulling Stabilization in the Presence of Perturbation
NASA Astrophysics Data System (ADS)
Houairi, K.; Cassaing, F.; Le Duigou, J. M.; Barillot, M.; Coudé du Foresto, V.; Hénault, F.; Jacquinod, S.; Ollivier, M.; Reess, J.-M.; Sorrente, B.
2007-07-01
Nulling interferometry is one of the most promising methods to study habitable extrasolar systems. In this context, several projects have been proposed such as ALADDIN on ground or DARWIN and PEGASE in space. A first step towards these missions will be performed with a laboratory breadboard, named PERSEE, built by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS. Its main goals are the demonstration of a polychromatic null with a 10-4 rejection rate and a 10-5 stability despite the introduction of realistic perturbations, the study of the interfaces with the formation-flying spacecrafts and the joint operation of the cophasing system with the nuller. The broadboard integration should end in 2009, then PERSEE will be open to proposals from the scientific community.
NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware
NASA Astrophysics Data System (ADS)
Johnson, V. L.; Teuben, P. J.; Penprase, B. E.
An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
DOT National Transportation Integrated Search
2017-04-01
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-07-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
DOT National Transportation Integrated Search
2017-06-26
This zip file contains files of data to support FHWA-JPO-16-370, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...
Development of a Scalable Testbed for Mobile Olfaction Verification.
Zakaria, Syed Muhammad Mamduh Syed; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Yeon, Ahmad Shakaff Ali; Md Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah
2015-12-09
The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment.
Development of a Scalable Testbed for Mobile Olfaction Verification
Syed Zakaria, Syed Muhammad Mamduh; Visvanathan, Retnam; Kamarudin, Kamarulzaman; Ali Yeon, Ahmad Shakaff; Md. Shakaff, Ali Yeon; Zakaria, Ammar; Kamarudin, Latifah Munirah
2015-01-01
The lack of information on ground truth gas dispersion and experiment verification information has impeded the development of mobile olfaction systems, especially for real-world conditions. In this paper, an integrated testbed for mobile gas sensing experiments is presented. The integrated 3 m × 6 m testbed was built to provide real-time ground truth information for mobile olfaction system development. The testbed consists of a 72-gas-sensor array, namely Large Gas Sensor Array (LGSA), a localization system based on cameras and a wireless communication backbone for robot communication and integration into the testbed system. Furthermore, the data collected from the testbed may be streamed into a simulation environment to expedite development. Calibration results using ethanol have shown that using a large number of gas sensor in the LGSA is feasible and can produce coherent signals when exposed to the same concentrations. The results have shown that the testbed was able to capture the time varying characteristics and the variability of gas plume in a 2 h experiment thus providing time dependent ground truth concentration maps. The authors have demonstrated the ability of the mobile olfaction testbed to monitor, verify and thus, provide insight to gas distribution mapping experiment. PMID:26690175
Trace explosives sensor testbed (TESTbed)
NASA Astrophysics Data System (ADS)
Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.
2017-03-01
A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Variable Dynamic Testbed Vehicle Dynamics Analysis
DOT National Transportation Integrated Search
1996-03-01
ANTI-ROLL BAR, EMULATION, FOUR-WHEEL-STEERING, LATERAL RESPONSE CHARACTERISTICS, SIMULATION, VARIABLE DYNAMIC TESTBED VEHICLE, INTELLIGENT VEHICLE INITIATIVE OR IVI : THE VARIABLE DYNAMIC TESTBED VEHICLE (VDTV) CONCEPT HAS BEEN PROPOSED AS A TOOL...
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
1990-01-01
The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.
The computational structural mechanics testbed procedures manual
NASA Technical Reports Server (NTRS)
Stewart, Caroline B. (Compiler)
1991-01-01
The purpose of this manual is to document the standard high level command language procedures of the Computational Structural Mechanics (CSM) Testbed software system. A description of each procedure including its function, commands, data interface, and use is presented. This manual is designed to assist users in defining and using command procedures to perform structural analysis in the CSM Testbed User's Manual and the CSM Testbed Data Library Description.
New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George
2006-01-01
A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.
Overview on In-Space Internet Node Testbed (ISINT)
NASA Technical Reports Server (NTRS)
Richard, Alan M.; Kachmar, Brian A.; Fabian, Theodore; Kerczewski, Robert J.
2000-01-01
The Satellite Networks and Architecture Branch has developed the In-Space Internet Node Technology testbed (ISINT) for investigating the use of commercial Internet products for NASA missions. The testbed connects two closed subnets over a tabletop Ka-band transponder by using commercial routers and modems. Since many NASA assets are in low Earth orbits (LEO's), the testbed simulates the varying signal strength, changing propagation delay, and varying connection times that are normally experienced when communicating to the Earth via a geosynchronous orbiting (GEO) communications satellite. Research results from using this testbed will be used to determine which Internet technologies are appropriate for NASA's future communication needs.
The computational structural mechanics testbed generic structural-element processor manual
NASA Technical Reports Server (NTRS)
Stanley, Gary M.; Nour-Omid, Shahram
1990-01-01
The usage and development of structural finite element processors based on the CSM Testbed's Generic Element Processor (GEP) template is documented. By convention, such processors have names of the form ESi, where i is an integer. This manual is therefore intended for both Testbed users who wish to invoke ES processors during the course of a structural analysis, and Testbed developers who wish to construct new element processors (or modify existing ones).
The telerobot testbed: An architecture for remote servicing
NASA Technical Reports Server (NTRS)
Matijevic, J. R.
1990-01-01
The NASA/OAST Telerobot Testbed will reach its next increment in development by the end of FY-89. The testbed will have the capability for: force reflection in teleoperation, shared control, traded control, operator designate and relative update. These five capabilities will be shown in a module release and exchange operation using mockups of Orbital Replacement Units (ORU). This development of the testbed shows examples of the technologies needed for remote servicing, particularly under conditions of delay in transmissions to the servicing site. Here, the following topics are presented: the system architecture of the testbed which incorporates these telerobotic technologies for servicing, the implementation of the five capabilities and the operation of the ORU mockups.
Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring
NASA Technical Reports Server (NTRS)
Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan
2007-01-01
Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).
Technology Developments Integrating a Space Network Communications Testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enable its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions. It can simulate entire networks and can interface with external (testbed) systems. The key technology developments enabling the integration of MACHETE into a distributed testbed are the Monitor and Control module and the QualNet IP Network Emulator module. Specifically, the Monitor and Control module establishes a standard interface mechanism to centralize the management of each testbed component. The QualNet IP Network Emulator module allows externally generated network traffic to be passed through MACHETE to experience simulated network behaviors such as propagation delay, data loss, orbital effects and other communications characteristics, including entire network behaviors. We report a successful integration of MACHETE with a space communication testbed modeling a lunar exploration scenario. This document is the viewgraph slides of the presentation.
Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.;
2005-01-01
The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.
Exploration Systems Health Management Facilities and Testbed Workshop
NASA Technical Reports Server (NTRS)
Wilson, Scott; Waterman, Robert; McCleskey, Carey
2004-01-01
Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds †
Frank, Jared A.; Brill, Anthony; Kapila, Vikram
2016-01-01
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464
Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.
Frank, Jared A; Brill, Anthony; Kapila, Vikram
2016-08-20
Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.
Development and Validation of the Air Force Cyber Intruder Alert Testbed (CIAT)
2016-07-27
Validation of the Air Force Cyber Intruder Alert Testbed (CIAT) 5a. CONTRACT NUMBER FA8650-16-C-6722 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...network analysts. Therefore, a new cyber STE focused on network analysts called the Air Force Cyber Intruder Alert Testbed (CIAT) was developed. This...Prescribed by ANSI Std. Z39-18 Development and Validation of the Air Force Cyber Intruder Alert Testbed (CIAT) Gregory Funke, Gregory Dye, Brett Borghetti
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya
2016-07-01
JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.
Troposcatter Antenna Positioner
1980-08-01
that ’ Z ’ WecT ie(hu1)s n 1) adue h atta t i vnt id() W= 41TRd(O0) (12) Using (10) twice, we get the second moment . 2S(W)e Wdw -21R 10 (0)( Papoulis...tu 4~e~eawd, deu~entpr,, te~ t and Le~ t ~td acqwiU’On Po4au6m in 4uappo’Lt oj Counand, Conto COuusuwi6 m lantettigexce (01) m40tie.6. Ted*tma and...275 - 7 4.] kL L. d TROPOSCATTER ANTENNA POSITIONR Finalechnical Iep t ." 6Sep 7-_Feb _W1 j( W. P /irkemeier F3 16O2 77-CQl48WpA 9. PERFORMING
NASA Astrophysics Data System (ADS)
N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi
2014-08-01
We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.
Hybrid Lyot coronagraph for WFIRST: high-contrast broadband testbed demonstration
NASA Astrophysics Data System (ADS)
Seo, Byoung-Joon; Cady, Eric; Gordon, Brian; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Muller, Richard; Patterson, Keith; Poberezhskiy, Ilya; Mejia Prada, Camilo; Sidick, Erkin; Shi, Fang; Trauger, John; Wilson, Daniel
2017-09-01
Hybrid Lyot Coronagraph (HLC) is one of the two operating modes of the Wide-Field InfraRed Survey Telescope (WFIRST) coronagraph instrument. Since being selected by National Aeronautics and Space Administration (NASA) in December 2013, the coronagraph technology is being matured to Technology Readiness Level (TRL) 6 by 2018. To demonstrate starlight suppression in presence of expecting on-orbit input wavefront disturbances, we have built a dynamic testbed in Jet Propulsion Laboratory (JPL) in 2016. This testbed, named as Occulting Mask Coronagraph (OMC) testbed, is designed analogous to the WFIRST flight instrument architecture: It has both HLC and Shape Pupil Coronagraph (SPC) architectures, and also has the Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to sense and correct the dynamic wavefront disturbances. We present upto-date progress of HLC mode demonstration in the OMC testbed. SPC results will be reported separately. We inject the flight-like Line of Sight (LoS) and Wavefront Error (WFE) perturbation to the OMC testbed and demonstrate wavefront control using two deformable mirrors while the LOWFS/C is correcting those perturbation in our vacuum testbed. As a result, we obtain repeatable convergence below 5 × 10-9 mean contrast with 10% broadband light centered at 550 nm in the 360 degrees dark hole with working angle between 3 λ/D and 9 λ/D. We present the key hardware and software used in the testbed, the performance results and their comparison to model expectations.
The Goddard Space Flight Center (GSFC) robotics technology testbed
NASA Technical Reports Server (NTRS)
Schnurr, Rick; Obrien, Maureen; Cofer, Sue
1989-01-01
Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.
Development of a flexible test-bed for robotics, telemanipulation and servicing research
NASA Technical Reports Server (NTRS)
Davies, Barry F.
1989-01-01
The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space.
Deep Broad-Band Infrared Nulling Using A Single-Mode Fiber Beam Combiner and Baseline Rotation
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Haguenauer, P.; Serabyn, E.; Liewer, K.
2006-01-01
The basic advantage of single-mode fibers for deep nulling applications resides in their spatial filtering ability, and has now long been known. However, and as suggested more recently, a single-mode fiber can also be used for direct coherent recombination of spatially separated beams, i.e. in a 'multi-axial' nulling scheme. After the first successful demonstration of deep (<2e-6) visible LASER nulls using this technique (Haguenauer & Serabyn, Applied Optics 2006), we decided to work on an infrared extension for ground based astronomical observations, e.g. using two or more off-axis sub-apertures of a large ground based telescope. In preparation for such a system, we built and tested a laboratory infrared fiber nuller working in a wavelength regime where atmospheric turbulence can be efficiently corrected, over a pass band (approx.1.5 to 1.8 micron) broad enough to provide reasonable sensitivity. In addition, since no snapshot images are readily accessible with a (single) fiber nuller, we also tested baseline rotation as an approach to detect off-axis companions while keeping a central null. This modulation technique is identical to the baseline rotation envisioned for the TPF-I space mission. Within this context, we report here on early laboratory results showing deep stable broad-band dual polarization infrared nulls <5e-4 (currently limited by detector noise), and visible LASER nulls better than 3e-4 over a 360 degree rotation of the baseline. While further work will take place in the laboratory to achieve deeper stable broad-band nulls and test off-axis sources detection through rotation, the emphasis will be put on bringing such a system to a telescope as soon as possible. Detection capability at the 500:1 contrast ratio in the K band (2.2 microns) seem readily accessible within 50-100 mas of the optical axis, even with a first generation system mounted on a >5m AO equipped telescope such as the Palomar Hale 200 inch, the Keck, Subaru or Gemini telescopes.
DOT National Transportation Integrated Search
2001-11-01
This report documents the design of an on-road testbed vehicle. The purposes of this testbed are twofold: (1) Establish a foundation for estimating lane change collision avoidance effectiveness, and (2) provide information pertinent to setting perfor...
Integrated Network Testbed for Energy Grid Research and Technology
Network Testbed for Energy Grid Research and Technology Experimentation Project Under the Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project, NREL and partners completed five successful technology demonstrations at the ESIF. INTEGRATE is a $6.5-million, cost
Development of a space-systems network testbed
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas
1988-01-01
This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.
New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.
2007-01-01
The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.
DOT National Transportation Integrated Search
2016-04-20
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2017-04-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-04-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
1997-05-01
This report represents the documentation of the design of the testbed. The purposes of the testbed are twofold 1) Establish a foundation for estimating collision avoidance effectiveness and 2) Provide information pertinent to setting performance spec...
DOT National Transportation Integrated Search
2016-06-30
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-06-16
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-06-16
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate theimpacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM)strategies. The outputs (mo...
Response of a 2-story test-bed structure for the seismic evaluation of nonstructural systems
NASA Astrophysics Data System (ADS)
Soroushian, Siavash; Maragakis, E. "Manos"; Zaghi, Arash E.; Rahmanishamsi, Esmaeel; Itani, Ahmad M.; Pekcan, Gokhan
2016-03-01
A full-scale, two-story, two-by-one bay, steel braced-frame was subjected to a number of unidirectional ground motions using three shake tables at the UNR-NEES site. The test-bed frame was designed to study the seismic performance of nonstructural systems including steel-framed gypsum partition walls, suspended ceilings and fire sprinkler systems. The frame can be configured to perform as an elastic or inelastic system to generate large floor accelerations or large inter story drift, respectively. In this study, the dynamic performance of the linear and nonlinear test-beds was comprehensively studied. The seismic performance of nonstructural systems installed in the linear and nonlinear test-beds were assessed during extreme excitations. In addition, the dynamic interactions of the test-bed and installed nonstructural systems are investigated.
The Fizeau Interferometer Testbed
NASA Technical Reports Server (NTRS)
Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory
2003-01-01
The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.
Development of Hardware-in-the-loop Microgrid Testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R
2015-01-01
A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.
Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya
2017-09-01
NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.
Kite: status of the external metrology testbed for SIM
NASA Astrophysics Data System (ADS)
Dekens, Frank G.; Alvarez-Salazar, Oscar S.; Azizi, Alireza; Moser, Steven J.; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel
2004-10-01
Kite is a system level testbed for the External Metrology System of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducials that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to an accuracy of tens of picometers in order to correct for thermal deformations and attitude changes of the spacecraft. Because of the need for such high precision measurements, the Kite testbed was build to test both the metrology gauges and our ability to optically model the system at these levels. The Kite testbed is a redundant metrology truss, in which 6 lengths are measured, but only 5 are needed to define the system. The RMS error between the redundant measurements needs to be less than 140pm for the SIM Wide-Angle observing scenario and less than 8 pm for the Narrow-Angle observing scenario. With our current testbed layout, we have achieved an RMS of 85 pm in the Wide-Angle case, meeting the goal. For the Narrow-Angle case, we have reached 5.8 pm, but only for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more representative of SIM.
A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Gorospe, George E., Jr.; Kulkarni, Chetan S.
2017-01-01
This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.
USDA-ARS?s Scientific Manuscript database
The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...
Application developer's tutorial for the CSM testbed architecture
NASA Technical Reports Server (NTRS)
Underwood, Phillip; Felippa, Carlos A.
1988-01-01
This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.
DOT National Transportation Integrated Search
2016-08-22
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2017-07-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2017-07-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2017-08-01
The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...
DOT National Transportation Integrated Search
2016-06-29
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.
2012-01-01
The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan Gray; Robert Anderson; Julio G. Rodriguez
Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energymore » Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.« less
Performance Evaluation of a Data Validation System
NASA Technical Reports Server (NTRS)
Wong, Edmond (Technical Monitor); Sowers, T. Shane; Santi, L. Michael; Bickford, Randall L.
2005-01-01
Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed.
The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.
2008-01-01
Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.
Starlight suppression from the starshade testbed at NGAS
NASA Astrophysics Data System (ADS)
Samuele, Rocco; Glassman, Tiffany; Johnson, Adam M. J.; Varshneya, Rupal; Shipley, Ann
2009-08-01
We report on progress at the Northrop Grumman Aerospace Systems (NGAS) starshade testbed. The starshade testbed is a 42.8 m, vacuum chamber designed to replicate the Fresnel number of an equivalent full-scale starshade mission, namely the flagship New Worlds Observer (NWO) configuration. Subscale starshades manufactured by the NGAS foundry have shown 10-7 starlight suppression at an equivalent full-mission inner working angle of 85 milliarseconds. In this paper, we present an overview of the experimental set up, scaling relationships to an equivalent full-scale mission, and preliminary results from the testbed. We also discuss potential limitations of the current generation of starshades and improvements for the future.
Development of the CSI phase-3 evolutionary model testbed
NASA Technical Reports Server (NTRS)
Gronet, M. J.; Davis, D. A.; Tan, M. K.
1994-01-01
This report documents the development effort for the reconfiguration of the Controls-Structures Integration (CSI) Evolutionary Model (CEM) Phase-2 testbed into the CEM Phase-3 configuration. This step responds to the need to develop and test CSI technologies associated with typical planned earth science and remote sensing platforms. The primary objective of the CEM Phase-3 ground testbed is to simulate the overall on-orbit dynamic behavior of the EOS AM-1 spacecraft. Key elements of the objective include approximating the low-frequency appendage dynamic interaction of EOS AM-1, allowing for the changeout of components, and simulating the free-free on-orbit environment using an advanced suspension system. The fundamentals of appendage dynamic interaction are reviewed. A new version of the multiple scaling method is used to design the testbed to have the full-scale geometry and dynamics of the EOS AM-1 spacecraft, but at one-tenth the weight. The testbed design is discussed, along with the testing of the solar array, high gain antenna, and strut components. Analytical performance comparisons show that the CEM Phase-3 testbed simulates the EOS AM-1 spacecraft with good fidelity for the important parameters of interest.
Kite: Status of the External Metrology Testbed for SIM
NASA Technical Reports Server (NTRS)
Dekens, Frank G.; Alvarez-Salazar, Oscar; Azizi, Alireza; Moser, Steven; Nemati, Bijan; Negron, John; Neville, Timothy; Ryan, Daniel
2004-01-01
Kite is a system level testbed for the External Metrology system of the Space Interferometry Mission (SIM). The External Metrology System is used to track the fiducial that are located at the centers of the interferometer's siderostats. The relative changes in their positions needs to be tracked to tens of picometers in order to correct for thermal measurements, the Kite testbed was build to test both the metrology gauges and out ability to optically model the system at these levels. The Kite testbed is an over-constraint system where 6 lengths are measured, but only 5 are needed to determine the system. The agreement in the over-constrained length needs to be on the order of 140 pm for the SIM Wide-Angle observing scenario and 8 pm for the Narrow-Angle observing scenario. We demonstrate that we have met the Wide-Angle goal with our current setup. For the Narrow-Angle case, we have only reached the goal for on-axis observations. We describe the testbed improvements that have been made since our initial results, and outline the future Kite changes that will add further effects that SIM faces in order to make the testbed more SIM like.
Experiences with the JPL telerobot testbed: Issues and insights
NASA Technical Reports Server (NTRS)
Stone, Henry W.; Balaram, Bob; Beahan, John
1989-01-01
The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed.
Consortium for Robotics & Unmanned Systems Education & Research (CRUSER)
2012-09-30
as facilities at Camp Roberts, Calif. and frequent experimentation events, the Many vs. Many ( MvM ) Autonomous Systems Testbed provides the...and expediently translate theory to practice. The MvM Testbed is designed to integrate technological advances in hardware (inexpensive, expendable...designed to leverage the MvM Autonomous Systems Testbed to explore practical and operationally relevant avenues to counter these “swarm” opponents, and
HyspIRI Low Latency Concept and Benchmarks
NASA Technical Reports Server (NTRS)
Mandl, Dan
2010-01-01
Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.
DOT National Transportation Integrated Search
2017-07-26
This zip file contains POSTDATA.ATT (.ATT); Print to File (.PRN); Portable Document Format (.PDF); and document (.DOCX) files of data to support FHWA-JPO-16-385, Analysis, modeling, and simulation (AMS) testbed development and evaluation to support d...
DOT National Transportation Integrated Search
2016-06-26
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applica...
Definition study for variable cycle engine testbed engine and associated test program
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.
1978-01-01
The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.
Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development
NASA Technical Reports Server (NTRS)
Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu
2008-01-01
The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
Space Station power system autonomy demonstration
NASA Technical Reports Server (NTRS)
Kish, James A.; Dolce, James L.; Weeks, David J.
1988-01-01
The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.
Description of the control system design for the SSF PMAD DC testbed
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Kimnach, Greg L.
1991-01-01
The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.
Space Software Defined Radio Characterization to Enable Reuse
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel W.; Chelmins, David
2012-01-01
NASA's Space Communication and Navigation Testbed is beginning operations on the International Space Station this year. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System architecture standard. The Space Station payload has three software defined radios onboard that allow for a wide variety of communications applications; however, each radio was only launched with one waveform application. By design the testbed allows new waveform applications to be uploaded and tested by experimenters in and outside of NASA. During the system integration phase of the testbed special waveform test modes and stand-alone test waveforms were used to characterize the SDR platforms for the future experiments. Characterization of the Testbed's JPL SDR using test waveforms and specialized ground test modes is discussed in this paper. One of the test waveforms, a record and playback application, can be utilized in a variety of ways, including new satellite on-orbit checkout as well as independent on-board testbed experiments.
Development and validation of a low-cost mobile robotics testbed
NASA Astrophysics Data System (ADS)
Johnson, Michael; Hayes, Martin J.
2012-03-01
This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.
A Cooperative IDS Approach Against MPTCP Attacks
2017-06-01
physical testbeds in order to present a methodology that allows distributed IDSs (DIDS) to cooperate in a manner that permits effective detection of...reconstruct MPTCP subflows and detect malicious content. Next, we build physical testbeds in order to present a methodology that allows distributed IDSs...hypotheses on a more realistic testbed environment. • Developing a methodology to incorporate multiple IDSs, real and virtual, to be able to detect cross
2015-03-01
for Public Release; Distribution Unlimited Final Report: Acquisition and Development of A Cognitive Radio based Wireless Monitoring and Surveillance...journals: Final Report: Acquisition and Development of A Cognitive Radio based Wireless Monitoring and Surveillance Testbed for Future Battlefield...Opeyemi Oduola, Nan Zou, Xiangfang Li, Husheng Li, Lijun Qian. Distributed Spectrum Monitoring and Surveillance using a Cognitive Radio based Testbed
An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids
NASA Technical Reports Server (NTRS)
Nugent, Richard O.; Tucker, Richard W.
1988-01-01
MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
Integration of advanced teleoperation technologies for control of space robots
NASA Technical Reports Server (NTRS)
Stagnaro, Michael J.
1993-01-01
Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.
1998-01-01
At the Langley Research Center an active mount rotorcraft testbed is being developed for use in the Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelastically scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed and the rotor system are developed in independent analyses, and an impedance-matching approach is used to couple the rotor system to the testbed. The development of the analytical models and the coupling method is examined, and individual and coupled results are presented for the testbed and rotor system. Coupled results are presented with and without applied hub motion, and system loads and displacements are examined. The results show that a closed-loop control system is necessary to achieve desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control system, and that the strain-gauge balance placed in the rotating system of the ARES-II provided the best loads results.
A Testbed for Evaluating Lunar Habitat Autonomy Architectures
NASA Technical Reports Server (NTRS)
Lawler, Dennis G.
2008-01-01
A lunar outpost will involve a habitat with an integrated set of hardware and software that will maintain a safe environment for human activities. There is a desire for a paradigm shift whereby crew will be the primary mission operators, not ground controllers. There will also be significant periods when the outpost is uncrewed. This will require that significant automation software be resident in the habitat to maintain all system functions and respond to faults. JSC is developing a testbed to allow for early testing and evaluation of different autonomy architectures. This will allow evaluation of different software configurations in order to: 1) understand different operational concepts; 2) assess the impact of failures and perturbations on the system; and 3) mitigate software and hardware integration risks. The testbed will provide an environment in which habitat hardware simulations can interact with autonomous control software. Faults can be injected into the simulations and different mission scenarios can be scripted. The testbed allows for logging, replaying and re-initializing mission scenarios. An initial testbed configuration has been developed by combining an existing life support simulation and an existing simulation of the space station power distribution system. Results from this initial configuration will be presented along with suggested requirements and designs for the incremental development of a more sophisticated lunar habitat testbed.
Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder
NASA Astrophysics Data System (ADS)
Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.
2017-11-01
PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.
MIT's interferometer CST testbed
NASA Technical Reports Server (NTRS)
Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard
1990-01-01
The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.
Description of the SSF PMAD DC testbed control system data acquisition function
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Mackin, Michael; Wright, Theodore
1992-01-01
The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.
Crew-integration and Automation Testbed (CAT)Program Overview and RUX06 Introduction
2006-09-20
unlimited Crew-integration and Automation Testbed ( CAT ) Program Overview and RUX06 Introduction 26-27 July 2006 Patrick Nunez, Terry Tierney, Brian Novak...3. DATES COVERED 4. TITLE AND SUBTITLE Crew-integration and Automation Testbed ( CAT )Program Overview and RUX06 Introduction 5a. CONTRACT...Experiment • Capstone CAT experiment – Evaluate effectiveness of CAT program in improving the performance and/or reducing the workload for a mounted
Testbed for Satellite and Terrestrial Interoperability (TSTI)
NASA Technical Reports Server (NTRS)
Gary, J. Patrick
1998-01-01
Various issues associated with the "Testbed for Satellite and Terrestrial Interoperability (TSTI)" are presented in viewgraph form. Specific topics include: 1) General and specific scientific technical objectives; 2) ACTS experiment No. 118: 622 Mbps network tests between ATDNet and MAGIC via ACTS; 3) ATDNet SONET/ATM gigabit network; 4) Testbed infrastructure, collaborations and end sites in TSTI based evaluations; 5) the Trans-Pacific digital library experiment; and 6) ESDCD on-going network projects.
Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed
2012-01-01
Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed Matthew Keeter1, Daniel Moore2,3, Ryan Muller2,3, Eric Nieters1, Jennifer...Many applications for autonomous vehicles involve three-dimensional domains, notably aerial and aquatic environments. Such applications include mon...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Cooperative Search With Autonomous Vehicles In A 3D Aquatic Testbed 5a
Eye/Brain/Task Testbed And Software
NASA Technical Reports Server (NTRS)
Janiszewski, Thomas; Mainland, Nora; Roden, Joseph C.; Rothenheber, Edward H.; Ryan, Arthur M.; Stokes, James M.
1994-01-01
Eye/brain/task (EBT) testbed records electroencephalograms, movements of eyes, and structures of tasks to provide comprehensive data on neurophysiological experiments. Intended to serve continuing effort to develop means for interactions between human brain waves and computers. Software library associated with testbed provides capabilities to recall collected data, to process data on movements of eyes, to correlate eye-movement data with electroencephalographic data, and to present data graphically. Cognitive processes investigated in ways not previously possible.
A Reconfigurable Testbed Environment for Spacecraft Autonomy
NASA Technical Reports Server (NTRS)
Biesiadecki, Jeffrey; Jain, Abhinandan
1996-01-01
A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.
Comparison of two matrix data structures for advanced CSM testbed applications
NASA Technical Reports Server (NTRS)
Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.
1989-01-01
The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.
Adaptive controller for a strength testbed for aircraft structures
NASA Astrophysics Data System (ADS)
Laperdin, A. I.; Yurkevich, V. D.
2017-07-01
The problem of control system design for a strength testbed of aircraft structures is considered. A method for calculating the parameters of a proportional-integral controller (control algorithm) using the time-scale separation method for the testbed taking into account the dead time effect in the control loop is presented. An adaptive control algorithm structure is proposed which limits the amplitude of high-frequency oscillations in the control system with a change in the direction of motion of the rod of the hydraulic cylinders and provides the desired accuracy and quality of transients at all stages of structural loading history. The results of tests of the developed control system with the adaptive control algorithm on an experimental strength testbed for aircraft structures are given.
An Experimental Testbed for Evaluation of Trust and Reputation Systems
NASA Astrophysics Data System (ADS)
Kerr, Reid; Cohen, Robin
To date, trust and reputation systems have often been evaluated using methods of their designers’ own devising. Recently, we demonstrated that a number of noteworthy trust and reputation systems could be readily defeated, revealing limitations in their original evaluations. Efforts in the trust and reputation community to develop a testbed have yielded a successful competition platform, ART. This testbed, however, is less suited to general experimentation and evaluation of individual trust and reputation technologies. In this paper, we propose an experimentation and evaluation testbed based directly on that used in our investigations into security vulnerabilities in trust and reputation systems for marketplaces. We demonstrate the advantages of this design, towards the development of more thorough, objective evaluations of trust and reputation systems.
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Development of a High Strength Isothermally Heat-Treated Nodular Iron Road Wheel Arm
1985-03-31
capacity load cell was calibrated using a Satec Universal Test System and a Hewlett-Packard X,Y Plotter to record the calibrated curve. The load cell...12e 1,3- 0 s0 3 I I r~ I I Il.1660 119 13. 30 1 3,1ý4-514 1 1 o36 1~~ 123 1, d 51 7 4~ 14 ~ 3.• 3I 2k i 7, G 0 se, y 2 es I Q.~ 141/ 14( 13.0130 1B14...LOT BAR QCH YIELD TESS. ELON(. Rc Rc 0HNCARPY LENGTH CaVNT. Nio. No. TIME .000 1O..O % ýMa-crol~licrd IFt Lb INCH~ ES IOU 2-77 •,3~-341.4___ 1 79 7,o
NASA Technical Reports Server (NTRS)
Siamidis, John; Yuko, Jim
2014-01-01
The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).
High-Resolution N-Band Observations of the Nova RS Ophiuchi with the Keck Interferometer Nuller
NASA Technical Reports Server (NTRS)
Barry, R. K.; Danchi, W. C.; Sokoloski, J. L.; Koresko, C.; Wisniewski, J. P.; Serabyn, E.; Traub, W.; Kuchner, M.; Greenhouse, M. A.
2007-01-01
We report new observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nulling Instrument, approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. The Keck Interferometer Nuller (KIN) operates in K-band from 8 to 12.5 pm in a nulling mode, which means that the central broad-band interference fringe is a dark fringe - with an angular width of 25 mas at mid band - rather than the bright fringe used ill a conventional optical interferometer. In this mode the stellar light itself is suppressed by the destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. By subsequently shifting the neighboring bright fringe onto the center of the source brightness distribution and integrating, a second spatial regime dominated by light from the central portion of the source is almost simultaneously sampled. The nulling technique is the sparse aperture equivalent of the conventional corongraphic technique used in filled aperture telescopes. By fitting the unique KIK inner and outer spatial regime data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0. or 5.4 mas for a disk profile, gaussian profile (fwhm), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission located in the inner spatial regime relative to the outer regime. There is also evidence of a 9.7 micron silicate feature seen outside of this region. Importantly, we see spectral lines excited by the nova flash in the outer region before the blast wave reaches these regions. These lines are from neutral, weakly excited atoms which support the following interpretation. We discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.
Research in Wireless Networks and Communications
2008-05-01
TESTBED SETUP AND INITIAL MULTI-HOP EXPERIENCE As a proof of concept, we assembled a testbed platform of nodes based on 400MHz AMD Geode single-board...experi- ments on a testbed network consisting of 400MHz AMD Geode single-board computers made by Thecus Inc. We equipped each of these nodes with two...ground nodes were placed on a line, with about 3 feet of separation between adjacent nodes. The nodes were powered by 400MHz AMD Geode single-board
A Test-Bed of Secure Mobile Cloud Computing for Military Applications
2016-09-13
searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT
Phoenix Missile Hypersonic Testbed (PMHT): System Concept Overview
NASA Technical Reports Server (NTRS)
Jones, Thomas P.
2007-01-01
A viewgraph presentation of the Phoenix Missile Hypersonic Testbed (PMHT) is shown. The contents include: 1) Need and Goals; 2) Phoenix Missile Hypersonic Testbed; 3) PMHT Concept; 4) Development Objectives; 5) Possible Research Payloads; 6) Possible Research Program Participants; 7) PMHT Configuration; 8) AIM-54 Internal Hardware Schematic; 9) PMHT Configuration; 10) New Guidance and Armament Section Profiles; 11) Nomenclature; 12) PMHT Stack; 13) Systems Concept; 14) PMHT Preflight Activities; 15) Notional Ground Path; and 16) Sample Theoretical Trajectories.
Experimental Studies in a Reconfigurable C4 Test-bed for Network Enabled Capability
2006-06-01
Cross1, Dr R. Houghton1, and Mr R. McMaster1 Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of Engineering and Design...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of...studies into NEC by the Human Factors Integration Defence Technology Centre ( HFI -DTC). DEVELOPMENT OF THE TESTBED In brief, the C4 test-bed
Versatile simulation testbed for rotorcraft speech I/O system design
NASA Technical Reports Server (NTRS)
Simpson, Carol A.
1986-01-01
A versatile simulation testbed for the design of a rotorcraft speech I/O system is described in detail. The testbed will be used to evaluate alternative implementations of synthesized speech displays and speech recognition controls for the next generation of Army helicopters including the LHX. The message delivery logic is discussed as well as the message structure, the speech recognizer command structure and features, feedback from the recognizer, and random access to controls via speech command.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS
NASA Technical Reports Server (NTRS)
Hron, Anna B.
1992-01-01
This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.
Optical Design of the Developmental Cryogenic Active Telescope Testbed (DCATT)
NASA Technical Reports Server (NTRS)
Davila, Pam; Wilson, Mark; Young, Eric W.; Lowman, Andrew E.; Redding, David C.
1997-01-01
In the summer of 1996, three Study teams developed conceptual designs and mission architectures for the Next Generation Space Telescope (NGST). Each group highlighted areas of technology development that need to be further advanced to meet the goals of the NGST mission. The most important areas for future study included: deployable structures, lightweight optics, cryogenic optics and mechanisms, passive cooling, and on-orbit closed loop wavefront sensing and control. NASA and industry are currently planning to develop a series of ground testbeds and validation flights to demonstrate many of these technologies. The Deployed Cryogenic Active Telescope Testbed (DCATT) is a system level testbed to be developed at Goddard Space Flight Center in three phases over an extended period of time. This testbed will combine an actively controlled telescope with the hardware and software elements of a closed loop wavefront sensing and control system to achieve diffraction limited imaging at 2 microns. We will present an overview of the system level requirements, a discussion of the optical design, and results of performance analyses for the Phase 1 ambient concept for DCATT,
In-Space Networking On NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.
2002-01-01
Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.
NASA Astrophysics Data System (ADS)
Franck, Charmaine C.; Lee, Dave; Espinola, Richard L.; Murrill, Steven R.; Jacobs, Eddie L.; Griffin, Steve T.; Petkie, Douglas T.; Reynolds, Joe
2007-04-01
This paper describes the design and performance of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's (NVESD), active 0.640-THz imaging testbed, developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. The laboratory measurements and standoff images were acquired during the development of a NVESD and Army Research Laboratory terahertz imaging performance model. The imaging testbed is based on a 12-inch-diameter Off-Axis Elliptical (OAE) mirror designed with one focal length at 1 m and the other at 10 m. This paper will describe the design considerations of the OAE-mirror, dual-capability, active imaging testbed, as well as measurement/imaging results used to further develop the model.
Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.
1989-01-01
The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
NASA Astrophysics Data System (ADS)
Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron
2016-07-01
This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.
Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A
2008-07-02
On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).
2012-07-01
and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general
NASA Technical Reports Server (NTRS)
Mildice, J.; Sundberg, R.
1987-01-01
The object of this program was to design, build, test, and deliver a high frequency (20 kHz) Power System Testbed which would electrically approximate a single, separable power channel of an IOC Space Station. That program is described, including the technical background, and the results are discussed showing that the major assumptions about the characteristics of this class of hardware (size, mass, efficiency, control, etc.) were substantially correct. This testbed equipment was completed and delivered and is being operated as part of the Space Station Power System Test Facility.
Advanced Artificial Intelligence Technology Testbed
NASA Technical Reports Server (NTRS)
Anken, Craig S.
1993-01-01
The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.
McGowen, John; Knoshaug, Eric P.; Laurens, Lieve M. L.; ...
2017-07-01
Well-controlled experiments that directly compare seasonal algal productivities across geographically distinct locations have not been reported before. To fill this gap, six cultivation testbed facilities were chosen across the United States to evaluate different climatic zones with respect to algal biomass productivity potential. The geographical locations and climates were as follows: Southwest, desert; Western, coastal; Southeast, inland; Southeast, coastal; Pacific, tropical; and Midwest, greenhouse. The testbed facilities were equipped with identical systems for inoculum production and open pond operation and methods were standardized across all testbeds to ensure accurate measurement of physical and biological variables. The ability of the testbedmore » sites to culture and analyze the same algal species, Nannochloropsis oceanica KA32, using identical pond operational and data collection procedures was evaluated during the same seasonal timeframe. This manuscript describes the results of a first-of-its-kind coordinated testbed validation field study while providing critical details on how geographical variations in temperature, light, and weather variables influenced algal productivity, nitrate consumption, and biomass composition. We found distinct differences in growth characteristics due to the geographic location and the resulting climatic and seasonal conditions across the sites, with the highest productivities observed at the desert Southwest and tropical Pacific regions, followed by the Western coastal region. The lowest productivities were observed at the Southeast inland and Midwest greenhouse locations. These differences in productivities among the sites correlated with the differences in pond water temperature and available solar radiation. In addition two sites, the tropical Pacific and Southeast inland experienced unusual events, spontaneous flocculation, and unusually cold and wet (rainfall) conditions respectively, that negatively affected outdoor algal growth. In addition, minor variability in productivity was observed between the different experimental treatments at each site, much smaller compared to differences due to geographic location. Finally, the successful demonstration of the coordinated and standardized operation of the testbed sites established a rigorous basis for future validation of algal strains and operational conditions and protocols across a geographically diverse testbed network.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowen, John; Knoshaug, Eric P.; Laurens, Lieve M. L.
Well-controlled experiments that directly compare seasonal algal productivities across geographically distinct locations have not been reported before. To fill this gap, six cultivation testbed facilities were chosen across the United States to evaluate different climatic zones with respect to algal biomass productivity potential. The geographical locations and climates were as follows: Southwest, desert; Western, coastal; Southeast, inland; Southeast, coastal; Pacific, tropical; and Midwest, greenhouse. The testbed facilities were equipped with identical systems for inoculum production and open pond operation and methods were standardized across all testbeds to ensure accurate measurement of physical and biological variables. The ability of the testbedmore » sites to culture and analyze the same algal species, Nannochloropsis oceanica KA32, using identical pond operational and data collection procedures was evaluated during the same seasonal timeframe. This manuscript describes the results of a first-of-its-kind coordinated testbed validation field study while providing critical details on how geographical variations in temperature, light, and weather variables influenced algal productivity, nitrate consumption, and biomass composition. We found distinct differences in growth characteristics due to the geographic location and the resulting climatic and seasonal conditions across the sites, with the highest productivities observed at the desert Southwest and tropical Pacific regions, followed by the Western coastal region. The lowest productivities were observed at the Southeast inland and Midwest greenhouse locations. These differences in productivities among the sites correlated with the differences in pond water temperature and available solar radiation. In addition two sites, the tropical Pacific and Southeast inland experienced unusual events, spontaneous flocculation, and unusually cold and wet (rainfall) conditions respectively, that negatively affected outdoor algal growth. In addition, minor variability in productivity was observed between the different experimental treatments at each site, much smaller compared to differences due to geographic location. Finally, the successful demonstration of the coordinated and standardized operation of the testbed sites established a rigorous basis for future validation of algal strains and operational conditions and protocols across a geographically diverse testbed network.« less
[Surveillance of West Nile fever in horses in the Czech Republic from 2011 to 2013].
Sedlák, K; Zelená, H; Křivda, V; Šatrán, P
2014-11-01
The West Nile virus (WNV) is an important mosquito-borne flavivirus occurring around the world. Occasionally found in Central Europe, the virus spread massively through whole Hungary between 2008 and 2009. The aim of our study was to determine the recent prevalence of the WNV infection in horses in the Czech Republic. Overall, 2349 serum samples, collected from healthy unvaccinated adult horses in the Czech Republic between 2011 and 2013, were tested. A commercially available competitive ELISA kit (cELISA) was used for this purpose and positive samples were confirmed by virus neutralisation tests using WNV and tick-borne encephalitis virus (TBEV). Altogether 271 of 2348 samples (11.5%) were positive by cELISA. Confirmatory VNT revealed 16 WNV positive samples, 11 of which had titres from 8 to 1024; VNTs with TBEV were negative. Three samples had antibodies against both viruses and the WNV antibody titres were less than or equal to the TBEV antibody titres. A cross reactivity of flaviviruses might have had an impact on the results, but in samples with similar WNV and TBEV titres, co-infection with both pathogens cannot be ruled out either. VNT antibody titres in two horses were inconclusive (cut-off titre 4). The place of birth and transfers (if any) were checked for each WNV seropositive horse. Five WNV positive/TBEV negative samples (0.2%) came from five administrative regions (South Bohemian, Karlovy Vary, Central Bohemian, South Moravian, and Moravian-Silesian) and the respective animals were never moved to a foreign country. Four of these horses never left the farm. Other six WNV positive/TBEV negative horses were imported to the Czech Republic from North America or Central and West Europe and therefore, it is not possible to tell unambiguously whether their infection is autochthonous or imported. The results of the present study confirm that WNV antibodies occur sporadically in horses in the Czech Republic. WNV was found to circulate in different parts of the Czech Republic and not only in the South of Moravia.
The computational structural mechanics testbed data library description
NASA Technical Reports Server (NTRS)
Stewart, Caroline B. (Compiler)
1988-01-01
The datasets created and used by the Computational Structural Mechanics Testbed software system are documented by this manual. A description of each dataset including its form, contents, and organization is presented.
The computational structural mechanics testbed data library description
NASA Technical Reports Server (NTRS)
Stewart, Caroline B. (Compiler)
1988-01-01
The datasets created and used by the Computational Structural Mechanics Testbed software system is documented by this manual. A description of each dataset including its form, contents, and organization is presented.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.
2014-01-01
Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.
NASA Workshop on Computational Structural Mechanics 1987, part 2
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Advanced methods and testbed/simulator development topics are discussed. Computational Structural Mechanics (CSM) testbed architecture, engine structures simulation, applications to laminate structures, and a generic element processor are among the topics covered.
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Astrophysics Data System (ADS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-09-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)
NASA Technical Reports Server (NTRS)
Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.
1988-01-01
An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.
VLTI-PRIMA fringe tracking testbed
NASA Astrophysics Data System (ADS)
Abuter, Roberto; Rabien, Sebastian; Eisenhauer, Frank; Sahlmann, Johannes; Di Lieto, Nicola; Haug, Marcus; Wallander, Anders; Lévêque, Samuel; Ménardi, Serge; Delplancke, Françoise; Schuhler, Nicolas; Kellner, Stefan; Frahm, Robert
2006-06-01
One of the key components of the planned VLTI dual feed facility PRIMA is the Fringe Sensor Unit (FSU). Its basic function is the instantaneous measurement of the Optical Path Difference (OPD) between two beams. The FSU acts as the sensor for a complex control system involving optical delay lines and laser metrology with the aim of removing any OPD introduced by the atmosphere and the beam relay. We have initiated a cooperation between ESO and MPE with the purpose of systematically testing this Fringe Tracking Control System in a laboratory environment. This testbed facility is being built at MPE laboratories with the aim to simulate the VLTI and includes FSUs, OPD controller, metrology and in-house built delay lines. In this article we describe this testbed in detail, including the environmental conditions in the laboratory, and present the results of the testbed subsystem characterisation.
Continuation: The EOSDIS testbed data system
NASA Technical Reports Server (NTRS)
Emery, Bill; Kelley, Timothy D.
1995-01-01
The continuation of the EOSDIS testbed ('Testbed') has materialized from a multi-task system to a fully functional stand-alone data archive distribution center that once was only X-Windows driven to a system that is accessible by all types of users and computers via the World Wide Web. Throughout the past months, the Testbed has evolved into a completely new system. The current system is now accessible through Netscape, Mosaic, and all other servers that can contact the World Wide Web. On October 1, 1995 we will open to the public and we expect that the statistics of the type of user, where they are located, and what they are looking for will drastically change. What is the most important change in the Testbed has been the Web interface. This interface will allow more users access to the system and walk them through the data types with more ease than before. All of the callbacks are written in such a way that icons can be used to easily move around in the programs interface. The homepage offers the user the opportunity to go and get more information about each satellite data type and also information on free programs. These programs are grouped into categories for types of computers that the programs are compiled for, along with information on how to FTP the programs back to the end users computer. The heart of the Testbed is still the acquisition of satellite data. From the Testbed homepage, the user selects the 'access to data system' icon, which will take them to the world map and allow them to select an area that they would like coverage on by simply clicking that area of the map. This creates a new map where other similar choices can be made to get the latitude and longitude of the region the satellite data will cover. Once a selection has been made the search parameters page will appear to be filled out. Afterwards, the browse image will be called for once the search is completed and the images for viewing can be selected. There are several other option pages, but once an order has been selected the Testbed will bring up the order list page and the user will then be able to place their order. After the order has been completed, the Testbed will mail the user to notify them of the completed order and how the images can be picked up.
Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas
2012-01-01
National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.
Diffraction-based analysis of tunnel size for a scaled external occulter testbed
NASA Astrophysics Data System (ADS)
Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.
2016-07-01
For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.
James Webb Space Telescope Optical Simulation Testbed I: overview and first results
NASA Astrophysics Data System (ADS)
Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt
2014-08-01
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.
Smart Antenna UKM Testbed for Digital Beamforming System
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin
2009-12-01
A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.
Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15
;Enabling High-Fidelity Closed-Loop Integration of Remotely Accessible Testbeds" at the NSF Sponsored project (2010-2013) "Internet-Distributed Hardware-in-the-Loop Simulation". Sponsored by U.S
2004-01-13
This image, taken in the JPL In-Situ Instruments Laboratory or Testbed, shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit after the rover has backed up and turned 45 degrees counterclockwise.
Delay Tolerant Networking on NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Johnson, Sandra; Eddy, Wesley
2016-01-01
This presentation covers the status of the implementation of an open source software that implements the specifications developed by the CCSDS Working Group. Interplanetary Overlay Network (ION) is open source software and it implements specifications that have been developed by two international working groups through IETF and CCSDS. ION was implemented on the SCaN Testbed, a testbed located on an external pallet on ISS, by the GRC team. The presentation will cover the architecture of the system, high level implementation details, and issues porting ION to VxWorks.
Design and construction of a 76m long-travel laser enclosure for a space occulter testbed
NASA Astrophysics Data System (ADS)
Galvin, Michael; Kim, Yunjong; Kasdin, N. Jeremy; Sirbu, Dan; Vanderbei, Robert; Echeverri, Dan; Sagolla, Giuseppe; Rousing, Andreas; Balasubramanian, Kunjithapatham; Ryan, Daniel; Shaklan, Stuart; Lisman, Doug
2016-07-01
Princeton University is upgrading our space occulter testbed. In particular, we are lengthening it to 76m to achieve flightlike Fresnel numbers. This much longer testbed required an all-new enclosure design. In this design, we prioritized modularity and the use of commercial off-the-shelf (COTS) and semi-COTS components. Several of the technical challenges encountered included an unexpected slow beam drift and black paint selection. Herein we describe the design and construction of this long-travel laser enclosure.
Thermal structure analyses for CSM testbed (COMET)
NASA Technical Reports Server (NTRS)
Xue, David Y.; Mei, Chuh
1994-01-01
This document is the final report for the project entitled 'Thermal Structure Analyses for CSM Testbed (COMET),' for the period of May 16, 1992 - August 15, 1994. The project was focused on the investigation and development of finite element analysis capability of the computational structural mechanics (CSM) testbed (COMET) software system in the field of thermal structural responses. The stages of this project consisted of investigating present capabilities, developing new functions, analysis demonstrations, and research topics. The appendices of this report list the detailed documents of major accomplishments and demonstration runstreams for future references.
Testbeds for Assessing Critical Scenarios in Power Control Systems
NASA Astrophysics Data System (ADS)
Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem
The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.
CSM Testbed Development and Large-Scale Structural Applications
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.
1989-01-01
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
Benefits of Model Updating: A Case Study Using the Micro-Precision Interferometer Testbed
NASA Technical Reports Server (NTRS)
Neat, Gregory W.; Kissil, Andrew; Joshi, Sanjay S.
1997-01-01
This paper presents a case study on the benefits of model updating using the Micro-Precision Interferometer (MPI) testbed, a full-scale model of a future spaceborne optical interferometer located at JPL.
University of Florida Advanced Technologies Campus Testbed
DOT National Transportation Integrated Search
2017-09-21
The University of Florida (UF) and its Transportation Institute (UFTI), the Florida Department of Transportation (FDOT) and the City of Gainesville (CoG) are cooperating to develop a smart transportation testbed on the University of Florida (UF) main...
X-34 Technology Testbed Demonstrator being mated with the L-1011 mothership
1999-03-11
This is the X-34 Technology Testbed Demonstrator being mated with the L-1011 mothership. The X-34 will demonstrate key vehicle and operational technologies applicable to future low-cost resuable launch vehicles.
Advanced traffic technology test-bed.
DOT National Transportation Integrated Search
2004-06-01
The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
Progress on an external occulter testbed at flight Fresnel numbers
NASA Astrophysics Data System (ADS)
Kim, Yunjong; Sirbu, Dan; Galvin, Michael; Kasdin, N. Jeremy; Vanderbei, Robert J.
2016-01-01
An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The occulter testbed uses 78 m optical propagation distance to realize the flight Fresnel numbers. We will use an etched silicon mask as the occulter. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the mechanical design of the testbed. We compare the experimental results with simulations that predict the ultimate contrast performance.
Design of an occulter testbed at flight Fresnel numbers
NASA Astrophysics Data System (ADS)
Sirbu, Dan; Kasdin, N. Jeremy; Kim, Yunjong; Vanderbei, Robert J.
2015-01-01
An external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. Laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we are designing and building a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. Here, we present a sample design operating at a flight Fresnel number and is thus representative of a realistic space mission. We present calculations of experimental limits arising from the finite size and propagation distance available in the testbed, limitations due to manufacturing feature size, and non-ideal input beam. We demonstrate how the testbed is designed to be feature-size limited, and provide an estimation of the expected performance.
Towards an autonomous telescope system: the Test-Bed Telescope project
NASA Astrophysics Data System (ADS)
Racero, E.; Ocaña, F.; Ponz, D.; the TBT Consortium
2015-05-01
In the context of the Space Situational Awareness (SSA) programme of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. It is foreseen that this test-bed environment will be used to validate future prototype software systems as well as to evaluate remote monitoring and control techniques. The test-bed system will be capable to deliver astrometric and photometric data of the observed objects in near real-time. This contribution describes the current status of the project.
Long Term Performance Metrics of the GD SDR on the SCaN Testbed: The First Year on the ISS
NASA Technical Reports Server (NTRS)
Nappier, Jennifer; Wilson, Molly C.
2014-01-01
The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCaN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SCaN Testbed was installed on the ISS in August of 2012. After installation, the initial checkout and commissioning phases were completed and experimental operations commenced. One goal of the SCaN Testbed is to collect long term performance metrics for SDRs operating in space in order to demonstrate long term reliability. These metrics include the time the SDR powered on, the time the power amplifier (PA) is powered on, temperature trends, error detection and correction (EDAC) behavior, and waveform operational usage time. This paper describes the performance of the GD SDR over the first year of operations on the ISS.
Telescience testbed pilot program, volume 2: Program results
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, contains the integrated results. Background is provided of the program and highlights of the program results. The various testbed experiments and the programmatic approach is summarized. The results are summarized on a discipline by discipline basis, highlighting the lessons learned for each discipline. Then the results are integrated across each discipline, summarizing the lessons learned overall.
Application of the Semi-Empirical Force-Limiting Approach for the CoNNeCT SCAN Testbed
NASA Technical Reports Server (NTRS)
Staab, Lucas D.; McNelis, Mark E.; Akers, James C.; Suarez, Vicente J.; Jones, Trevor M.
2012-01-01
The semi-empirical force-limiting vibration method was developed and implemented for payload testing to limit the structural impedance mismatch (high force) that occurs during shaker vibration testing. The method has since been extended for use in analytical models. The Space Communications and Navigation Testbed (SCAN Testbed), known at NASA as, the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT), project utilized force-limiting testing and analysis following the semi-empirical approach. This paper presents the steps in performing a force-limiting analysis and then compares the results to test data recovered during the CoNNeCT force-limiting random vibration qualification test that took place at NASA Glenn Research Center (GRC) in the Structural Dynamics Laboratory (SDL) December 19, 2010 to January 7, 2011. A compilation of lessons learned and considerations for future force-limiting tests is also included.
SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission
NASA Astrophysics Data System (ADS)
Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve
2006-06-01
This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.
SCDU Testbed Automated In-Situ Alignment, Data Acquisition and Analysis
NASA Technical Reports Server (NTRS)
Werne, Thomas A.; Wehmeier, Udo J.; Wu, Janet P.; An, Xin; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Shen, Tsae-Pyng J.; Wang, Xu; Weilert, Mark A.;
2010-01-01
In the course of fulfilling its mandate, the Spectral Calibration Development Unit (SCDU) testbed for SIM-Lite produces copious amounts of raw data. To effectively spend time attempting to understand the science driving the data, the team devised computerized automations to limit the time spent bringing the testbed to a healthy state and commanding it, and instead focus on analyzing the processed results. We developed a multi-layered scripting language that emphasized the scientific experiments we conducted, which drastically shortened our experiment scripts, improved their readability, and all-but-eliminated testbed operator errors. In addition to scientific experiment functions, we also developed a set of automated alignments that bring the testbed up to a well-aligned state with little more than the push of a button. These scripts were written in the scripting language, and in Matlab via an interface library, allowing all members of the team to augment the existing scripting language with complex analysis scripts. To keep track of these results, we created an easily-parseable state log in which we logged both the state of the testbed and relevant metadata. Finally, we designed a distributed processing system that allowed us to farm lengthy analyses to a collection of client computers which reported their results in a central log. Since these logs were parseable, we wrote query scripts that gave us an effortless way to compare results collected under different conditions. This paper serves as a case-study, detailing the motivating requirements for the decisions we made and explaining the implementation process.
Rover Attitude and Pointing System Simulation Testbed
NASA Technical Reports Server (NTRS)
Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam
2009-01-01
The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
Model-Based Diagnosis in a Power Distribution Test-Bed
NASA Technical Reports Server (NTRS)
Scarl, E.; McCall, K.
1998-01-01
The Rodon model-based diagnosis shell was applied to a breadboard test-bed, modeling an automated power distribution system. The constraint-based modeling paradigm and diagnostic algorithm were found to adequately represent the selected set of test scenarios.
Project implementation plan : variable dynamic testbed vehicle
DOT National Transportation Integrated Search
1997-02-01
This document is the project implementation plan for the Variable Dynamic Testbed Vehicle (VDTV) program, sponsored by the Jet Propulsion Laboratory for the Office of Crash Avoidance Research (OCAR) programs in support of Thrust One of the National H...
Precision Mapping of the California Connected Vehicle Testbed Corridor
DOT National Transportation Integrated Search
2015-11-01
In this project the University of California Riverside mapping sensor hardware was successfully mounted on an instrumented vehicle to map a segment of the California Connected Vehicle testbed corridor on State Route 82. After calibrating the sensor p...
The Living With a Star Space Environment Testbed Payload
NASA Technical Reports Server (NTRS)
Xapsos, Mike
2015-01-01
This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.
Variable dynamic testbed vehicle : safety plan
DOT National Transportation Integrated Search
1997-02-01
This safety document covers the entire safety process from inception to delivery of the Variable Dynamic Testbed Vehicle. In addition to addressing the process of safety on the vehicle , it should provide a basis on which to build future safety proce...
A Virtual Laboratory for Aviation and Airspace Prognostics Research
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan; Gorospe, George; Teubert, Christ; Quach, Cuong C.; Hogge, Edward; Darafsheh, Kaveh
2017-01-01
Integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, and other aviation technologies, in the airspace is becoming more and more complicated, and will continue to do so in the future. Inclusion of new technology and complexity into the airspace increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems and systems of systems can be challenging, expensive, and at times unsafe when implementing real life scenarios. The application of prognostics to aviation and airspace management may produce new tools and insight into these problems. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. In our research, we develop a live, distributed, hardware- in-the-loop Prognostics Virtual Laboratory testbed for aviation and airspace prognostics. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. In our earlier work1 we discussed the initial Prognostics Virtual Laboratory testbed development work and related results for milestones 1 & 2. This paper describes the design, development, and testing of the integrated tested which are part of milestone 3, along with our next steps for validation of this work. Through a framework consisting of software/hardware modules and associated interface clients, the distributed testbed enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. The testbed modules can be used cohesively to construct complex and relevant airspace scenarios for research. Four modules are key to this research: the virtual aircraft module which uses the X-Plane simulator and X-PlaneConnect toolbox, the live aircraft module which connects fielded aircraft using onboard cellular communications devices, the hardware in the loop (HITL) module which connects laboratory based bench-top hardware testbeds and the research module which contains diagnostics and prognostics tools for analysis of live air traffic situations and vehicle health conditions. The testbed also features other modules for data recording and playback, information visualization, and air traffic generation. Software reliability, safety, and latency are some of the critical design considerations in development of the testbed.
VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Walker, M. E.; Burns, J. O.; Szafir, D. J.
2018-02-01
Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.
Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Evans, Philip G; Sheets, Gregory S
2017-01-01
Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.
Telescience testbed pilot program, volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.
NASA Technical Reports Server (NTRS)
Gillian, Ronnie E.; Lotts, Christine G.
1988-01-01
The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.
Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications
NASA Technical Reports Server (NTRS)
1996-01-01
NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
MIT Space Engineering Research Center
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Miller, David W.
1990-01-01
The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.
Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly
NASA Technical Reports Server (NTRS)
LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.
2006-01-01
The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.
An adaptable, low cost test-bed for unmanned vehicle systems research
NASA Astrophysics Data System (ADS)
Goppert, James M.
2011-12-01
An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.
INFORM Lab: a testbed for high-level information fusion and resource management
NASA Astrophysics Data System (ADS)
Valin, Pierre; Guitouni, Adel; Bossé, Eloi; Wehn, Hans; Happe, Jens
2011-05-01
DRDC Valcartier and MDA have created an advanced simulation testbed for the purpose of evaluating the effectiveness of Network Enabled Operations in a Coastal Wide Area Surveillance situation, with algorithms provided by several universities. This INFORM Lab testbed allows experimenting with high-level distributed information fusion, dynamic resource management and configuration management, given multiple constraints on the resources and their communications networks. This paper describes the architecture of INFORM Lab, the essential concepts of goals and situation evidence, a selected set of algorithms for distributed information fusion and dynamic resource management, as well as auto-configurable information fusion architectures. The testbed provides general services which include a multilayer plug-and-play architecture, and a general multi-agent framework based on John Boyd's OODA loop. The testbed's performance is demonstrated on 2 types of scenarios/vignettes for 1) cooperative search-and-rescue efforts, and 2) a noncooperative smuggling scenario involving many target ships and various methods of deceit. For each mission, an appropriate subset of Canadian airborne and naval platforms are dispatched to collect situation evidence, which is fused, and then used to modify the platform trajectories for the most efficient collection of further situation evidence. These platforms are fusion nodes which obey a Command and Control node hierarchy.
NASA Astrophysics Data System (ADS)
Bakker, Eric J.; Eiroa, Carlos
2003-10-01
With our minds focussed on the direct detection of planets using the space interferometry mission DARWIN/TPF, we have made an attempt to identify how the set of ESO Very Large Telescope Interferometer instruments available now, and in the near future (VINCI, MIDI, AMBER, GENIE, FINITO and PRIMA) could contribute to the DARWIN/TPF precursory science program. In particular related to the identification of a short list of science stars to be observed with DARWIN/TPF. We have identified two research projects which can be viewed as DARWIN/TPF precursory science and can be embarked upon shortly using the available VLTI instruments: (1) the direct measurement of stellar angular diameters of a statistically meaningful sample of main-sequence stars with AMBER; (2) an interferometric study of those main-sequence stars that exhibit an infrared excess with either AMBER or MIDI. On the longer run, VLTI can obviously make a significant impact through the exploitation of the infrared nuller GENIE and the astrometric facility PRIMA.
NOAA Testbed and Proving Ground Workshop 2012
Goals: Communicate results and future directions for individual testbeds and discuss broader cross theme of "intense precipitation" Identify best practices, understand and discuss improvements . Privacy Policy | FOIA | Information Quality | Disclaimer | Commerce.gov | USA.gov | Ready.gov | Contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
2016-09-01
Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less
DOT National Transportation Integrated Search
2006-10-01
This report summarizes research and development that has been conducted to position the Testbed to support prototype deployment and evaluation of Advanced Transportation Management Systems (ATMS) products and services. The various elements contained ...
Flight Projects Office Information Systems Testbed (FIST)
NASA Technical Reports Server (NTRS)
Liggett, Patricia
1991-01-01
Viewgraphs on the Flight Projects Office Information Systems Testbed (FIST) are presented. The goal is to perform technology evaluation and prototyping of information systems to support SFOC and JPL flight projects in order to reduce risk in the development of operational data systems for such projects.
Telescience Testbed Pilot Program
NASA Technical Reports Server (NTRS)
Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)
1988-01-01
The Telescience Testbed Pilot Program is developing initial recommendations for requirements and design approaches for the information systems of the Space Station era. During this quarter, drafting of the final reports of the various participants was initiated. Several drafts are included in this report as the University technical reports.
Operation Duties on the F-15B Research Testbed
NASA Technical Reports Server (NTRS)
Truong, Samson S.
2010-01-01
This presentation entails what I have done this past summer for my Co-op tour in the Operations Engineering Branch. Activities included supporting the F-15B Research Testbed, supporting the incoming F-15D models, design work, and other operations engineering duties.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
NASA Technical Reports Server (NTRS)
Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick
2015-01-01
During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.
2013-01-01
The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.
Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A
2005-07-11
An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.
The Mini-Mast CSI testbed: Lessons learned
NASA Technical Reports Server (NTRS)
Tanner, Sharon E.; Belvin, W. Keith; Horta, Lucas G.; Pappa, R. S.
1993-01-01
The Mini-Mast testbed was one of the first large scale Controls-Structure-Interaction (CSI) systems used to evaluate state-of-the-art methodology in flexible structure control. Now that all the testing at Langley Research Center has been completed, a look back is warranted to evaluate the program. This paper describes some of the experiences and technology development studies by NASA, university, and industry investigators. Lessons learned are presented from three categories: the testbed development, control methods, and the operation of a guest investigator program. It is shown how structural safety margins provided a realistic environment to simulate on-orbit CSI research, even though they also reduced the research flexibility afforded to investigators. The limited dynamic coupling between the bending and torsion modes of the cantilevered test article resulted in highly successful SISO and MIMO controllers. However, until accurate models were obtained for the torque wheel actuators, sensors, filters, and the structure itself, most controllers were unstable. Controls research from this testbed should be applicable to cantilevered appendages of future large space structures.
Advanced data management system architectures testbed
NASA Technical Reports Server (NTRS)
Grant, Terry
1990-01-01
The objective of the Architecture and Tools Testbed is to provide a working, experimental focus to the evolving automation applications for the Space Station Freedom data management system. Emphasis is on defining and refining real-world applications including the following: the validation of user needs; understanding system requirements and capabilities; and extending capabilities. The approach is to provide an open, distributed system of high performance workstations representing both the standard data processors and networks and advanced RISC-based processors and multiprocessor systems. The system provides a base from which to develop and evaluate new performance and risk management concepts and for sharing the results. Participants are given a common view of requirements and capability via: remote login to the testbed; standard, natural user interfaces to simulations and emulations; special attention to user manuals for all software tools; and E-mail communication. The testbed elements which instantiate the approach are briefly described including the workstations, the software simulation and monitoring tools, and performance and fault tolerance experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.
NASA Technical Reports Server (NTRS)
Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.
2014-01-01
We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.
Design of testbed and emulation tools
NASA Technical Reports Server (NTRS)
Lundstrom, S. F.; Flynn, M. J.
1986-01-01
The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems.
Space Radiation Shielding Studies for Astronaut and Electronic Component Risk Assessment
NASA Technical Reports Server (NTRS)
Fuchs, Jordan Robert
2010-01-01
The dosimetry component of the Center for Radiation Engineering and Science for Space Exploration (CRESSE) will design, develop and characterize the response of a suite of radiation detectors and supporting instrumentation and electronics with three primary goals that will: (1) Use established space radiation detection systems to characterize the primary and secondary radiation fields existing in the experimental test-bed zones during exposures at particle accelerator facilities. (2) Characterize the responses of newly developed space radiation detection systems in the experimental test-bed zones during exposures at particle accelerator facilities, and (3) Provide CRESSE collaborators with detailed dosimetry information in experimental test-bed zones.
Langley's CSI evolutionary model: Phase O
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.
1991-01-01
A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.
Development of Ada language control software for the NASA power management and distribution test bed
NASA Technical Reports Server (NTRS)
Wright, Ted; Mackin, Michael; Gantose, Dave
1989-01-01
The Ada language software developed to control the NASA Lewis Research Center's Power Management and Distribution testbed is described. The testbed is a reduced-scale prototype of the electric power system to be used on space station Freedom. It is designed to develop and test hardware and software for a 20-kHz power distribution system. The distributed, multiprocessor, testbed control system has an easy-to-use operator interface with an understandable English-text format. A simple interface for algorithm writers that uses the same commands as the operator interface is provided, encouraging interactive exploration of the system.
Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft
2006-04-17
Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
Quantification of error associated with stormwater and wastewater flow measurement devices
A novel flow testbed has been designed to evaluate the performance of flumes as flow measurement devices. The newly constructed testbed produces both steady and unsteady flows ranging from 10 to 1500 gpm. Two types of flumes (Parshall and trapezoidal) are evaluated under differen...
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
NASA Astrophysics Data System (ADS)
Kerr, P. C.; Donahue, A.; Westerink, J. J.; Luettich, R.; Zheng, L.; Weisberg, R. H.; Wang, H. V.; Slinn, D. N.; Davis, J. R.; Huang, Y.; Teng, Y.; Forrest, D.; Haase, A.; Kramer, A.; Rhome, J.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Taylor, A.; Hope, M.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.
2012-12-01
The Southeastern Universities Research Association (SURA), in collaboration with the NOAA Integrated Ocean Observing System program and other federal partners, developed a testbed to help accelerate progress in both research and the transition to operational use of models for both coastal and estuarine prediction. This testbed facilitates cyber-based sharing of data and tools, archival of observation data, and the development of cross-platform tools to efficiently access, visualize, skill assess, and evaluate model results. In addition, this testbed enables the modeling community to quantitatively assess the behavior (e.g., skill, robustness, execution speed) and implementation requirements (e.g. resolution, parameterization, computer capacity) that characterize the suitability and performance of selected models from both operational and fundamental science perspectives. This presentation focuses on the tropical coastal inundation component of the testbed and compares a variety of model platforms as well as grids in simulating tides, and the wave and surge environments for two extremely well documented historical hurricanes, Hurricanes Rita (2005) and Ike (2008). Model platforms included are ADCIRC, FVCOM, SELFE, SLOSH, SWAN, and WWMII. Model validation assessments were performed on simulation results using numerous station observation data in the form of decomposed harmonic constituents, water level high water marks and hydrographs of water level and wave data. In addition, execution speed, inundation extents defined by differences in wetting/drying schemes, resolution and parameterization sensitivities are also explored.
NASA Astrophysics Data System (ADS)
Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.
2017-12-01
Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-12-02
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
Liu, Wen; Fu, Xiao; Deng, Zhongliang
2016-01-01
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means. PMID:27918454
A space crane concept for performing on-orbit assembly
NASA Technical Reports Server (NTRS)
Dorsey, John T.
1992-01-01
The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Rakoczy, John; Steincamp, James; Taylor, Jaime
2003-01-01
A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.
An Integration and Evaluation Framework for ESPC Coupled Models
2014-09-30
the CESM-HYCOM coupled system under the OI for ESPC award. This should be simplified by the use of the MCT datatype in ESMF. Make it available to...ESPC Testbed: Basic optimization Implement MCT datatype in ESMF and include in ESMF release. This was not yet started. 5 ESPC Testbed
Remote sensing information sciences research group: Browse in the EOS era
NASA Technical Reports Server (NTRS)
Estes, John E.; Star, Jeffrey L.
1989-01-01
The problem of science data browse was examined. Given the tremendous data volumes that are planned for future space missions, particularly the Earth Observing System in the late 1990's, the need for access to large spatial databases must be understood. Work was continued to refine the concept of data browse. Further, software was developed to provide a testbed of the concepts, both to locate possibly interesting data, as well as view a small portion of the data. Build II was placed on a minicomputer and a PC in the laboratory, and provided accounts for use in the testbed. Consideration of the testbed software as an element of in-house data management plans was begun.
Managing autonomy levels in the SSM/PMAD testbed. [Space Station Power Management and Distribution
NASA Technical Reports Server (NTRS)
Ashworth, Barry R.
1990-01-01
It is pointed out that when autonomous operations are mixed with those of a manual nature, concepts concerning the boundary of operations and responsibility become clouded. The space station module power management and distribution (SSM/PMAD) automation testbed has the need for such mixed-mode capabilities. The concept of managing the SSM/PMAD testbed in the presence of changing levels of autonomy is examined. A knowledge-based approach to implementing autonomy management in the distributed SSM/PMAD utilizing a centralized planning system is presented. Its knowledge relations and system-wide interactions are discussed, along with the operational nature of the currently functioning SSM/PMAD knowledge-based systems.
Robot graphic simulation testbed
NASA Technical Reports Server (NTRS)
Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.
1991-01-01
The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.
Overview of the Telescience Testbed Program
NASA Technical Reports Server (NTRS)
Rasmussen, Daryl N.; Mian, Arshad; Leiner, Barry M.
1991-01-01
The NASA's Telescience Testbed Program (TTP) conducted by the Ames Research Center is described with particular attention to the objectives, the approach used to achieve these objectives, and the expected benefits of the program. The goal of the TTP is to gain operational experience for the Space Station Freedom and the Earth Observing System programs, using ground testbeds, and to define the information and communication systems requirements for the development and operation of these programs. The results of TTP are expected to include the requirements for the remote coaching, command and control, monitoring and maintenance, payload design, and operations management. In addition, requirements for technologies such as workstations, software, video, automation, data management, and networking will be defined.
Phased Array Antenna Testbed Development at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey
2003-01-01
Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.
NASA Technical Reports Server (NTRS)
Kuan, Gary M.; Dekens, Frank G.
2006-01-01
The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.
Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview
NASA Technical Reports Server (NTRS)
Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.
2012-01-01
Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.
Evolution of a Simulation Testbed into an Operational Tool
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Bilimoria, Karl D.; Sridhar, Banavar; Sterenchuk, Mike; Niznik, Tim; O'Neill, Tom; Clymer, Alexis; Gutierrez Nolasco, Sebastian; Edholm, Kaj; Shih, Fu-Tai
2017-01-01
This paper describes the evolution over a 20-year period of the Future ATM (Air Traffic Management) Concepts Evaluation Tool (FACET) from a National Airspace System (NAS) based simulation testbed into an operational tool. FACET was developed as a testbed for assessing futuristic ATM concepts, e.g., automated conflict detection and resolution. NAS Constraint Evaluation and Notification Tool (NASCENT) is an application, within FACET, for alerting airspace users of inefficiencies in flight operations and advising time- and fuel-saving reroutes.It is currently in use at American Airlines Integrated Operations Center in Fort Worth, TX. The concepts assessed,research conducted, and the operational capability developed, along with the NASA support and achievements are presented in this paper.
SAVA 3: A testbed for integration and control of visual processes
NASA Technical Reports Server (NTRS)
Crowley, James L.; Christensen, Henrik
1994-01-01
The development of an experimental test-bed to investigate the integration and control of perception in a continuously operating vision system is described. The test-bed integrates a 12 axis robotic stereo camera head mounted on a mobile robot, dedicated computer boards for real-time image acquisition and processing, and a distributed system for image description. The architecture was designed to: (1) be continuously operating, (2) integrate software contributions from geographically dispersed laboratories, (3) integrate description of the environment with 2D measurements, 3D models, and recognition of objects, (4) capable of supporting diverse experiments in gaze control, visual servoing, navigation, and object surveillance, and (5) dynamically reconfiguarable.
The Fizeau Interferometer Testbed
2003-03-01
Institute, Jay Rajagopal and Ron Allen; and at the CfA, Margarita Karovska , for their contribu- tions to the development of the testbed and the Stellar...2000. [2] K.G. Carpenter, C.J. Schrijver, R.G. Lyon, L.G. Mundy, R.J. Allen, J.T. Armstrong, W.C. Danchi, M. Karovska , J. Marzouk, L.M. Mazzuca, D
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.
2010-01-01
Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement
DOT National Transportation Integrated Search
2016-07-13
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2017-07-04
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Application (DMA) connected vehicle applications and Active Transportation and Demand management (ATDM)...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
DOT National Transportation Integrated Search
2016-10-01
The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
2013-04-03
cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start
DOT National Transportation Integrated Search
2017-07-16
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Applications (DMA) and the Active Transportation and Demand Management (ATDM) strategies. Specifically,...
A Laboratory Testbed for Embedded Fuzzy Control
ERIC Educational Resources Information Center
Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.
2011-01-01
This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…
DOT National Transportation Integrated Search
2017-07-04
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Application (DMA) connected vehicle applications and Active Transportation and Dynamic management (ATDM...
DOT National Transportation Integrated Search
2017-03-01
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active transportation and demand management (ATDM) strategies. The primary pu...
DOT National Transportation Integrated Search
2017-02-02
The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. The outputs (...
A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison
NASA Technical Reports Server (NTRS)
Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.
2017-01-01
This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.
NASA Astrophysics Data System (ADS)
Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.
1995-01-01
The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting
NASA Astrophysics Data System (ADS)
Kurtz, Benjamin Bernard
In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, J.; Schmidt, G. K.
2016-12-01
SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.
Wireless Sensor Networks for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.
2015-12-01
Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.
NASA Astrophysics Data System (ADS)
Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying
2017-09-01
To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
A test harness for accelerating physics parameterization advancements into operations
NASA Astrophysics Data System (ADS)
Firl, G. J.; Bernardet, L.; Harrold, M.; Henderson, J.; Wolff, J.; Zhang, M.
2017-12-01
The process of transitioning advances in parameterization of sub-grid scale processes from initial idea to implementation is often much quicker than the transition from implementation to use in an operational setting. After all, considerable work must be undertaken by operational centers to fully test, evaluate, and implement new physics. The process is complicated by the scarcity of like-to-like comparisons, availability of HPC resources, and the ``tuning problem" whereby advances in physics schemes are difficult to properly evaluate without first undertaking the expensive and time-consuming process of tuning to other schemes within a suite. To address this process shortcoming, the Global Model TestBed (GMTB), supported by the NWS NGGPS project and undertaken by the Developmental Testbed Center, has developed a physics test harness. It implements the concept of hierarchical testing, where the same code can be tested in model configurations of varying complexity from single column models (SCM) to fully coupled, cycled global simulations. Developers and users may choose at which level of complexity to engage. Several components of the physics test harness have been implemented, including a SCM and an end-to-end workflow that expands upon the one used at NOAA/EMC to run the GFS operationally, although the testbed components will necessarily morph to coincide with changes to the operational configuration (FV3-GFS). A standard, relatively user-friendly interface known as the Interoperable Physics Driver (IPD) is available for physics developers to connect their codes. This prerequisite exercise allows access to the testbed tools and removes a technical hurdle for potential inclusion into the Common Community Physics Package (CCPP). The testbed offers users the opportunity to conduct like-to-like comparisons between the operational physics suite and new development as well as among multiple developments. GMTB staff have demonstrated use of the testbed through a comparison between the 2017 operational GFS suite and one containing the Grell-Freitas convective parameterization. An overview of the physics test harness and its early use will be presented.
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward
2016-01-01
The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in the development phases and veri cation/ validation are key elements to this report.
Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed
NASA Astrophysics Data System (ADS)
Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.
2012-12-01
Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006 MILAGRO, 2008 ISDAC, 2008 VOCALS, 2010 CARES, and 2010 CalNex campaigns, have been incorporated into the AMT as testbed cases. Data from operational networks (e.g. air quality, meteorology, satellite) are also included in the testbed cases to supplement the field campaign data. The CARES and CalNex testbed cases are used to demonstrate how the AMT can be used to assess the strengths and weaknesses of simple and complex representations of aerosol processes in relation to computational cost. Anticipated enhancements to the AMT and how this type of testbed can be used by the scientific community to foster collaborations and coordinate aerosol modeling research will also be discussed.
NASA Astrophysics Data System (ADS)
HAN, K.; Hong, U.; Yeum, Y.; Yoon, J.; Lee, J.; Song, K.; Kwon, S.; Kim, Y.
2016-12-01
Permeable block as low impact development (LID) management can reduce storm water runoff, improve surface water quality and increase groundwater recharge. Recently, in Korea, application of the permeable block has growing trend for urban planning. However, few studies have evaluated how infiltrated rainfall through permeable block affect groundwater quality. Therefore, we conducted monitoring and evaluating of contaminants transport from permeable block surface to aquifer at LID installed three test-bed site. Pollutant materials as total nitrogen (T-N), nitrate (NO3-), ammonium (NH4+), total phosphorus (T-P), phosphate (PO42-), total organic carbon (TOC), sodium (Na+) and bromide (Br-) such as nonreactive tracer were sprinkled under permeable block and sprayed artificial precipitation of 100 mm/hr intensity during a 4 hours by rainfall simulator. All the test-bed area is 2 m x 2 m and monitoring wells were drilled a maximum depth of 10 m. Test-bed 1,2 and 3 groundwater level was approximately 1.9 m, 3.6 m and 4.6 m below ground surface, respectively. Test-bed 1 and 2, time to maximum concentration of Br- as tracer were 0.15 day and 1.71 day after simulated rainfall. In the test-bed 1, average normalized concentration (C* = Cmonitoring/C0, C0 is mass of sprinkled pollutant divide by sprayed water volume) of Br-, T-N, NO3-, NH4+, T-P, PO42-, TOC and Na+ were observed 0.26, 0.08, 0.14, N.D(not detected), 0.05, 0.05, 0.13 and 0.11, respectively. C* of tracer and other solutes on test-bed 2 were 0.52, 0.15, 0.25, N.D, 0.02, 0.02, 0.16 and 0.15, respectively. These phenomena that distinctions between C* of Br-and other solutes indicate to occur retardation by physical/chemical and biological process while pollutant containing water permeate from unsaturated soil to saturated aquifer. However, at the test-bed 3 distinct concentration of all solutes were not detected until 40 days. In this study evaluated the effects of groundwater quality by rainfall leachate from permeable block. Infiltration rate of solutes were measured NO3- > TOC > Na+ >>> PO42- > NH4+. Especially, these results suggested that organic N and T-P (PO42-) need not consideration for groundwater quality at permeable LID system.
2006-08-10
NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
The Advanced Photovoltaic Solar Array Program Update
NASA Technical Reports Server (NTRS)
Kurland, R. M.; Stella, P. M.
1993-01-01
The paper continues the status reporting of the development of an ultraweight flexible blanket, flatlpack, fouldout solar array testbed wing that was presented at the First and Second European Space Power Conferences. To date a testbed wing has been built and subjected to a variety of critical functional tests before and after exposrue to simulated launch environments.
DOT National Transportation Integrated Search
2017-05-01
The primary objective of AMS project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. Through this p...
2006-08-16
The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
NASA's F-15B testbed aircraft with Gulfstream Quiet Spike sonic boom mitigator attached
2006-07-06
Gulfstream Aerospace and NASA's Dryden Flight Research Center are testing the structural integrity of a telescopic 'Quiet Spike' sonic boom mitigator on the F-15B testbed. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
Cognitive Medical Wireless Testbed System (COMWITS)
2016-11-01
Number: ...... ...... Sub Contractors (DD882) Names of other research staff Inventions (DD882) Scientific Progress This testbed merges two ARO grants...bit 64 bit CPU Intel Xeon Processor E5-1650v3 (6C, 3.5 GHz, Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon
Aviation Communications Emulation Testbed
NASA Technical Reports Server (NTRS)
Sheehe, Charles; Mulkerin, Tom
2004-01-01
Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing a aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in real time in a sequence similar to what would occur in the NAS.
A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP
NASA Astrophysics Data System (ADS)
Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen
2018-06-01
A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.
Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason
2017-07-18
This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.
NASA Technical Reports Server (NTRS)
Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.
Development of the On-board Aircraft Network
NASA Technical Reports Server (NTRS)
Green, Bryan D. W.; Mezu, Okechukwu A.
2004-01-01
Phase II will focus on the development of the on-board aircraft networking portion of the testbed which includes the subnet and router configuration and investigation of QoS issues. This implementation of the testbed will consist of a workstation, which functions as the end system, connected to a router. The router will service two subnets that provide data to the cockpit and the passenger cabin. During the testing, data will be transferred between the end systems and those on both subnets. QoS issues will be identified and a preliminary scheme will be developed. The router will be configured for the testbed network and initial security studies will be initiated. In addition, architecture studies of both the SITA and Immarsat networks will be conducted.
Testbed-based Performance Evaluation of Attack Resilient Control for AGC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.
The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Jones, Thomas C.; Doggett, W. R.; Brady, Jeffrey S.; Berry, Felecia C.; Ganoe, George G.; Anderson, Eric; King, Bruce D.; Mercer, David C.
2011-01-01
The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge.
TACCDAS Testbed Human Factors Evaluation Methodology,
1980-03-01
3 TEST METHOD Development of performance criteria................... 8 Test participant identification ...................... 8 Control of...major milestones involved in the evaluation process leading up to the evaluation of the complete testbed in the field are identified. Test methods and...inevitably will be different in several ways from the intended system as foreseen by the system designers. The system users provide insights into these
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce
2001-01-01
The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.
Design of a solar array simulator for the NASA EOS testbed
NASA Technical Reports Server (NTRS)
Butler, Steve J.; Sable, Dan M.; Lee, Fred C.; Cho, Bo H.
1992-01-01
The present spacecraft solar array simulator addresses both dc and ac characteristics as well as changes in illumination and temperature and performance degradation over the course of array service life. The computerized control system used allows simulation of a complete orbit cycle, in addition to automated diagnostics. The simulator is currently interfaced with the NASA EOS testbed.
Telescience Testbed Pilot Program
NASA Technical Reports Server (NTRS)
Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)
1988-01-01
The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.
ISWHM: Tools and Techniques for Software and System Health Management
NASA Technical Reports Server (NTRS)
Schumann, Johann; Mengshoel, Ole J.; Darwiche, Adnan
2010-01-01
This presentation presents status and results of research on Software Health Management done within the NRA "ISWHM: Tools and Techniques for Software and System Health Management." Topics include: Ingredients of a Guidance, Navigation, and Control System (GN and C); Selected GN and C Testbed example; Health Management of major ingredients; ISWHM testbed architecture; and Conclusions and next Steps.
Remotely Piloted Vehicles for Experimental Flight Control Testing
NASA Technical Reports Server (NTRS)
Motter, Mark A.; High, James W.
2009-01-01
A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division
Large Scale Data Mining to Improve Usability of Data: An Intelligent Archive Testbed
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram; Isaac, David; Yang, Wenli; Morse, Steve
2005-01-01
Research in certain scientific disciplines - including Earth science, particle physics, and astrophysics - continually faces the challenge that the volume of data needed to perform valid scientific research can at times overwhelm even a sizable research community. The desire to improve utilization of this data gave rise to the Intelligent Archives project, which seeks to make data archives active participants in a knowledge building system capable of discovering events or patterns that represent new information or knowledge. Data mining can automatically discover patterns and events, but it is generally viewed as unsuited for large-scale use in disciplines like Earth science that routinely involve very high data volumes. Dozens of research projects have shown promising uses of data mining in Earth science, but all of these are based on experiments with data subsets of a few gigabytes or less, rather than the terabytes or petabytes typically encountered in operational systems. To bridge this gap, the Intelligent Archives project is establishing a testbed with the goal of demonstrating the use of data mining techniques in an operationally-relevant environment. This paper discusses the goals of the testbed and the design choices surrounding critical issues that arose during testbed implementation.
NASA Astrophysics Data System (ADS)
Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin
2017-08-01
Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture.
Martínez, Ramón; Pastor, Juan Ángel; Álvarez, Bárbara; Iborra, Andrés
2016-11-23
Wireless sensor networks (WSNs) represent one of the most promising technologies for precision farming. Over the next few years, a significant increase in the use of such systems on commercial farms is expected. WSNs present a number of problems, regarding scalability, interoperability, communications, connectivity with databases and data processing. Different Internet of Things middleware is appearing to overcome these challenges. This paper checks whether one of these middleware, FIWARE, is suitable for the development of agricultural applications. To the authors' knowledge, there are no works that show how to use FIWARE in precision agriculture and study its appropriateness, its scalability and its efficiency for this kind of applications. To do this, a testbed has been designed and implemented to simulate different deployments and load conditions. The testbed is a typical FIWARE application, complete, yet simple and comprehensible enough to show the main features and components of FIWARE, as well as the complexity of using this technology. Although the testbed has been deployed in a laboratory environment, its design is based on the analysis of an Internet of Things use case scenario in the domain of precision agriculture.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation
Jeffery, Nicholas D.
2018-01-01
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury. PMID:29670039
A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture
Martínez, Ramón; Pastor, Juan Ángel; Álvarez, Bárbara; Iborra, Andrés
2016-01-01
Wireless sensor networks (WSNs) represent one of the most promising technologies for precision farming. Over the next few years, a significant increase in the use of such systems on commercial farms is expected. WSNs present a number of problems, regarding scalability, interoperability, communications, connectivity with databases and data processing. Different Internet of Things middleware is appearing to overcome these challenges. This paper checks whether one of these middleware, FIWARE, is suitable for the development of agricultural applications. To the authors’ knowledge, there are no works that show how to use FIWARE in precision agriculture and study its appropriateness, its scalability and its efficiency for this kind of applications. To do this, a testbed has been designed and implemented to simulate different deployments and load conditions. The testbed is a typical FIWARE application, complete, yet simple and comprehensible enough to show the main features and components of FIWARE, as well as the complexity of using this technology. Although the testbed has been deployed in a laboratory environment, its design is based on the analysis of an Internet of Things use case scenario in the domain of precision agriculture. PMID:27886091
Recent select Sample Analysis at Mars (SAM) Testbed analog results
NASA Astrophysics Data System (ADS)
Malespin, C.; McAdam, A.; Teinturier, S.; Eigenbrode, J. L.; Freissinet, C.; Knudson, C. A.; Lewis, J. M.; Millan, M.; Steele, A.; Stern, J. C.; Williams, A. J.
2017-12-01
The Sample Analysis at Mars (SAM) testbed (TB) is a high fidelity replica of the flight instrument currently onboard the Curiosity rover in Gale Crater, Mars1. The SAM testbed is housed in a Mars environment chamber at NASA Goddard Space Flight Center (GSFC), which can replicate both thermal and environmental conditions. The testbed is used to validate and test new experimental procedures before they are implemented on Mars, but it is also used to analyze analog samples which assists in the interpretation of results from the surface. Samples are heated using the same experimental protocol as on Mars to allow for direct comparison with Martian sampling conditions. Here we report preliminary results from select samples that were loaded into the SAM TB, including meteorites, an organically rich iron oxide, and a synthetic analog to the Martian Cumberland sample drilled by the rover at Yellowknife Bay. Each of these samples have been analyzed under SAM-like conditions using breadboard and lab instrument systems. By comparing the data from the lab systems and SAM TB, further insight on results from Mars can be gained. References: [1] Mahaffy, P. R., et al. (2013), Science, 341(6143), 263-266, doi:10.1126/science.1237966.
A Wearable Body Controlling Device for Application of Functional Electrical Stimulation.
Taghavi, Nazita; Luecke, Greg R; Jeffery, Nicholas D
2018-04-18
In this research, we describe a new balancing device used to stabilize the rear quarters of a patient dog with spinal cord injuries. Our approach uses inertial measurement sensing and direct leg actuation to lay a foundation for eventual muscle control by means of direct functional electrical stimulation (FES). During this phase of development, we designed and built a mechanical test-bed to develop the control and stimulation algorithms before we use the device on our animal subjects. We designed the bionic test-bed to mimic the typical walking gait of a dog and use it to develop and test the functionality of the balancing device for stabilization of patient dogs with hindquarter paralysis. We present analysis for various muscle stimulation and balancing strategies, and our device can be used by veterinarians to tailor the stimulation strength and temporal distribution for any individual patient dog. We develop stabilizing muscle stimulation strategies using the robotic test-bed to enhance walking stability. We present experimental results using the bionic test-bed to demonstrate that the balancing device can provide an effective sensing strategy and deliver the required motion control commands for stabilizing an actual dog with a spinal cord injury.
51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Traub, Wesley A.
2009-10-01
We present observations of the 51 Ophiuchi circumstellar disk made with the Keck interferometer operating in nulling mode at N band. We model these data simultaneously with VLTI-MIDI visibility data and a Spitzer IRS spectrum using a variety of optically thin dust cloud models and an edge-on optically thick disk model. We find that single-component optically thin disk models and optically thick disk models are inadequate to reproduce the observations, but an optically thin two-component disk model can reproduce all of the major spectral and interferometric features. Our preferred disk model consists of an inner disk of blackbody grains extendingmore » to {approx}4 AU and an outer disk of small silicate grains extending out to {approx}1200 AU. Our model is consistent with an inner 'birth' disk of continually colliding parent bodies producing an extended envelope of ejected small grains. This picture resembles the disks around Vega, AU Microscopii, and beta Pictoris, supporting the idea that 51 Ophiuchius may be a beta Pictoris analog.« less
Fiber-wireless for smart grid: A survey
NASA Astrophysics Data System (ADS)
Radzi, NAM; Ridwan, MA; Din, NM; Abdullah, F.; Mustafa, IS; l-Mansoori, MH
2017-11-01
Smart grid allows two-way communication between power utility companies and their customers while having the ability to sense along the transmission lines. However, the downside is such, when the smart devices are transmitting data simultaneously, it results in network congestion. Fiber wireless (FiWi) network is one of the best congestion solutions for smart grid up to date. In this paper, a survey of current literature on FiWi for smart grid will be reviewed and a testbed to test the protocols and algorithms for FiWi in smart grid will be proposed. The results of number of packets received and delay vs packet transmitted obtained via the testbed are compared with the results obtained via simulation and they show that they are in line with each other, validating the accuracy of the testbed.
NASA Astrophysics Data System (ADS)
Howe, Glenn A.; Mendillo, Christopher B.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya
2017-09-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around three nearby stars from a high-altitude balloon using a vector vortex coronagraph. We present experimental results of the PICTURE-C low-order wavefront control (LOWFC) system utilizing a Shack-Hartmann (SH) sensor in an instrument testbed. The SH sensor drives both the alignment of the telescope secondary mirror using a 6-axis Hexapod and a surface parallel array deformable mirror to remove residual low-order aberrations. The sensor design and actuator calibration methods are discussed and the preliminary LOWFC closed-loop performance is shown to stabilize a reference wavefront to an RMS error of 0.30 +/- 0.29 nm.
Telescience testbed pilot program, volume 3: Experiment summaries
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.
Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration
NASA Astrophysics Data System (ADS)
Cady, Eric; Balasubramanian, Kunjithapatham; Gersh-Range, Jessica; Kasdin, Jeremy; Kern, Brian; Lam, Raymond; Mejia Prada, Camilo; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Seo, Byoung-Joon; Shi, Fang; Tang, Hong; Trauger, John; Zhou, Hanying; Zimmerman, Neil
2017-09-01
The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the WFIRST coronagraph instrument. The SPC provides starlight suppression in a pair of wedge-shaped regions over an 18% bandpass, and is well suited for spectroscopy of known exoplanets. To demonstrate this starlight suppression in the presence of expected onorbit input wavefront disturbances, we have recently built a dynamic testbed at JPL analogous to the WFIRST flight instrument architecture, with both Hybrid Lyot Coronagraph (HLC) and SPC architectures and a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to apply, sense, and correct dynamic wavefront disturbances. We present our best up-to-date results of the SPC mode demonstration from the testbed, in both static and dynamic conditions, along with model comparisons. HLC results will be reported separately.
VCE testbed program planning and definition study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Godston, J.
1978-01-01
The flight definition of the Variable Stream Control Engine (VSCE) was updated to reflect design improvements in the two key components: (1) the low emissions duct burner, and (2) the coannular exhaust nozzle. The testbed design was defined and plans for the overall program were formulated. The effect of these improvements was evaluated for performance, emissions, noise, weight, and length. For experimental large scale testing of the duct burner and coannular nozzle, a design definition of the VCE testbed configuration was made. This included selecting the core engine, determining instrumentation requirements, and selecting the test facilities, in addition to defining control system and assembly requirements. Plans for a comprehensive test program to demonstrate the duct burner and nozzle technologies were formulated. The plans include both aeroacoustic and emissions testing.
The Palomar Testbed Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. M.; Wallace, J. K.; Hines, B. E.; Gursel, Y.; Malbet, F.; Palmer, D. L.; Pan, X. P.; Shao, M.; Yu, J. W.; Boden, A. F.
1999-01-01
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.
Active member vibration control for a 4 meter primary reflector support structure
NASA Technical Reports Server (NTRS)
Umland, J. W.; Chen, G.-S.
1992-01-01
The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.
Spacecraft crew procedures from paper to computers
NASA Technical Reports Server (NTRS)
Oneal, Michael; Manahan, Meera
1991-01-01
Described here is a research project that uses human factors and computer systems knowledge to explore and help guide the design and creation of an effective Human-Computer Interface (HCI) for spacecraft crew procedures. By having a computer system behind the user interface, it is possible to have increased procedure automation, related system monitoring, and personalized annotation and help facilities. The research project includes the development of computer-based procedure system HCI prototypes and a testbed for experiments that measure the effectiveness of HCI alternatives in order to make design recommendations. The testbed will include a system for procedure authoring, editing, training, and execution. Progress on developing HCI prototypes for a middeck experiment performed on Space Shuttle Mission STS-34 and for upcoming medical experiments are discussed. The status of the experimental testbed is also discussed.
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Commissioning Results on the JWST Testbed Telescope
NASA Technical Reports Server (NTRS)
Dean, Bruce H.; Acton, D. Scott
2006-01-01
The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.
2001-03-28
The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight on Dryden's F-15B Research Testbed aircraft
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Idol, T. A.
2015-12-01
Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.
Development of Liquid Propulsion Systems Testbed at MSFC
NASA Technical Reports Server (NTRS)
Alexander, Reginald; Nelson, Graham
2016-01-01
As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the BBE testbed, MSFC propulsion engineering will bring forward a national capability that enables growth of both commercial and government interests.
Remotely Accessible Testbed for Software Defined Radio Development
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2012-01-01
Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.
A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.
The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliabilitymore » and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.« less
Prevalence of Bluetongue virus serotype 4 in cattle in the State of Sao Paulo, Brazil.
Hellmeister de Campos Nogueira, Adriana; De Stefano, Eliana; de Souza Nunes Martins, Maira; Okuda, Liria Hiromi; Dos Santos Lima, Michele; da Silva Garcia, Thais; Heinz Hellwig, Otto; Alves de Lima, José Eduardo; Savini, Giovanni; Pituco, Edviges Maristela
2016-09-30
Bluetongue (BT) is considered endemic in several regions of Brazil. The State of Sao Paulo was divided into 7 cattle production regions (circuits) according the different systems of breeding, operational and logistical capacity of the state veterinary service. At least 1 animal from each property (a total of 1,716 farms) was tested by competitive ELISA for the presence of antibodies against BTV. Sero‑positive sera were subsequently also tested by virus neutralization tests (VNT) using serial dilutions from 1:10 (cutoff) up to 1:640 (in MEM). BTV‑4 neutralizing antibodies were detected in 86% (1,483/1,716) of the animals tested. These results show that BTV‑4 is endemic and widespread in the State of San Paulo and indirectly confirm that in the State there are favourable conditions for the multiplication of competent vectors. However, as no clinical signs have ever been reported in cattle in the region, BTV‑4 infection is likely to occur silently in the State of Sao Paulo.
Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II
NASA Astrophysics Data System (ADS)
Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration
1999-12-01
The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.
Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity
NASA Technical Reports Server (NTRS)
Putman, Philip Travis (Inventor)
2017-01-01
Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.
Application of Model-based Prognostics to a Pneumatic Valves Testbed
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Kulkarni, Chetan S.; Gorospe, George
2014-01-01
Pneumatic-actuated valves play an important role in many applications, including cryogenic propellant loading for space operations. Model-based prognostics emphasizes the importance of a model that describes the nominal and faulty behavior of a system, and how faulty behavior progresses in time, causing the end of useful life of the system. We describe the construction of a testbed consisting of a pneumatic valve that allows the injection of faulty behavior and controllable fault progression. The valve opens discretely, and is controlled through a solenoid valve. Controllable leaks of pneumatic gas in the testbed are introduced through proportional valves, allowing the testing and validation of prognostics algorithms for pneumatic valves. A new valve prognostics approach is developed that estimates fault progression and predicts remaining life based only on valve timing measurements. Simulation experiments demonstrate and validate the approach.
A global spacecraft control network for spacecraft autonomy research
NASA Technical Reports Server (NTRS)
Kitts, Christopher A.
1996-01-01
The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.
Collaboration in a Wireless Grid Innovation Testbed by Virtual Consortium
NASA Astrophysics Data System (ADS)
Treglia, Joseph; Ramnarine-Rieks, Angela; McKnight, Lee
This paper describes the formation of the Wireless Grid Innovation Testbed (WGiT) coordinated by a virtual consortium involving academic and non-academic entities. Syracuse University and Virginia Tech are primary university partners with several other academic, government, and corporate partners. Objectives include: 1) coordinating knowledge sharing, 2) defining key parameters for wireless grids network applications, 3) dynamically connecting wired and wireless devices, content and users, 4) linking to VT-CORNET, Virginia Tech Cognitive Radio Network Testbed, 5) forming ad hoc networks or grids of mobile and fixed devices without a dedicated server, 6) deepening understanding of wireless grid application, device, network, user and market behavior through academic, trade and popular publications including online media, 7) identifying policy that may enable evaluated innovations to enter US and international markets and 8) implementation and evaluation of the international virtual collaborative process.
Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip
2014-10-31
OAM free space coherent communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT...wave (cw) laser centered at 1540 nm, followed by an erbium-doped fiber amplifier (EDFA), an I/Q modulator, and another EDFA. The I/Q modulator was...communication link testbed. ECL: external cavity laser . EDFA: erbium-doped fiber amplifier. PC: polarization controller. ATT: attenuator. BPF: bandpass filter
Realistic Modeling of Wireless Network Environments
2015-03-01
wireless environment, namely vehicular networks. We also made a number of improvements to an emulation-based wireless testbed to improve channel model...and the two wireless devices used in the experiment (bottom). This testbed was used for point-point vehicular wireless experiments that used the...DSRC-based vehicular networks (~5.9 GHz). We were able to meet that goal, as described below. Figure 3: DSP Card 3.3 System design and
Development of nickel hydrogen battery expert system
NASA Technical Reports Server (NTRS)
Shiva, Sajjan G.
1990-01-01
The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.
2012-11-09
CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers are working on the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin
2012-11-09
CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers are working on the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin
2006-08-10
NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
2008-02-27
between the PHY layer and for example a host PC computer . The PC wants to generate and receive a sequence of data packets. The PC may also want to send...the testbed is quite similar. Given the intense computational requirements of SVD and other matrix mode operations needed to support eigen spreading a...platform for real time operation. This task is probably the major challenge in the development of the testbed. All compute intensive tasks will be
2013-09-30
underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at
NASA Technical Reports Server (NTRS)
Kong, Edmund M.; Saenz-Otero, Alvar; Nolet, Simon; Berkovitz, Dustin S.; Miller, David W.; Sell, Steve W.
2004-01-01
The MIT-SSL SPHERES testbed provides a facility for the development of algorithms necessary for the success of Distributed Satellite Systems (DSS). The initial development contemplated formation flight and docking control algorithms; SPHERES now supports the study of metrology, control, autonomy, artificial intelligence, and communications algorithms and their effects on DSS projects. To support this wide range of topics, the SPHERES design contemplated the need to support multiple researchers, as echoed from both the hardware and software designs. The SPHERES operational plan further facilitates the development of algorithms by multiple researchers, while the operational locations incrementally increase the ability of the tests to operate in a representative environment. In this paper, an overview of the SPHERES testbed is first presented. The SPHERES testbed serves as a model of the design philosophies that allow for the various researches being carried out on such a facility. The implementation of these philosophies are further highlighted in the three different programs that are currently scheduled for testing onboard the International Space Station (ISS) and three that are proposed for a re-flight mission: Mass Property Identification, Autonomous Rendezvous and Docking, TPF Multiple Spacecraft Formation Flight in the first flight and Precision Optical Pointing, Tethered Formation Flight and Mars Orbit Sample Retrieval for the re-flight mission.
NASA Astrophysics Data System (ADS)
Rybus, Tomasz; Seweryn, Karol
2016-03-01
All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.
Towards standard testbeds for numerical relativity
NASA Astrophysics Data System (ADS)
Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzmán, F. Siddhartha; Hawke, Ian; Hawley, Scott H.; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilágyi, Béla; Takahashi, Ryoji; Winicour, Jeff
2004-01-01
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.
The Northrop Grumman External Occulter Testbed: Preliminary Results
NASA Astrophysics Data System (ADS)
Lo, Amy; Glassman, T.; Lillie, C.
2007-05-01
We have built a subscale testbed to demonstrate and validate the performance of the New Worlds Observer (NWO), a terrestrial planet finder external-occulter mission concept. The external occulter concept allows observations of nearby exo-Earths using two spacecraft: one carrying an occulter that is tens of meters in diameter and the other carrying a generic space telescope. The occulter is completely opaque, resembling a flower, with petals having a hypergaussian profile that enable 10-10 intensity suppression of stars that potentially harbor terrestrial planets. The baseline flight NWO system has a 30 meter occulter flying 30,000 km in front of a 4 meter class telescope. Testing the flight configuration on the ground is not feasible, so we have matched the Fresnel number of the flight configuration ( 10) using a subscale occulter. Our testbed consists of an 80 meter length evacuated tube, with a high precision occulter in the center of the tube. The occulter is 4 cm in diameter, manufactured with ¼ micron metrological accuracy and less than 2 micron tip truncation. This mimics a 30 meter occulter with millimeter figure accuracy and less than centimeter tip truncation. Our testbed is an evolving experiment, and we report here the first, preliminary, results using a single wavelength laser (532 nm) as the source.
Shifman, Mark A.; Sayward, Frederick G.; Mattie, Mark E.; Miller, Perry L.
2002-01-01
This case study describes a project that explores issues of quality of service (QoS) relevant to the next-generation Internet (NGI), using the PathMaster application in a testbed environment. PathMaster is a prototype computer system that analyzes digitized cell images from cytology specimens and compares those images against an image database, returning a ranked set of “similar” cell images from the database. To perform NGI testbed evaluations, we used a cluster of nine parallel computation workstations configured as three subclusters using Cisco routers. This architecture provides a local “simulated Internet” in which we explored the following QoS strategies: (1) first-in-first-out queuing, (2) priority queuing, (3) weighted fair queuing, (4) weighted random early detection, and (5) traffic shaping. The study describes the results of using these strategies with a distributed version of the PathMaster system in the presence of different amounts of competing network traffic and discusses certain of the issues that arise. The goal of the study is to help introduce NGI QoS issues to the Medical Informatics community and to use the PathMaster NGI testbed to illustrate concretely certain of the QoS issues that arise. PMID:12223501
James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing
NASA Astrophysics Data System (ADS)
Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand
2018-01-01
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.
2006-08-10
Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
Department of Defense In-House RDT&E Activities. FY2000 Management Analysis Report
2000-01-01
Blossom Point, Maryland * White Sands Missile Range (WSMR), WSMR, New Mexico . They are presented in this publication in that location breakout. ADELPHI... MEXICO ULTRA WIDEBAND (UWB) SYNTHETIC-APERTURE RADAR (SAR) TESTBED A mobile UWB SAR testbed, featuring a 150-ft measurement system, is used to...Missile Range (WSMR) in New Mexico , this range performs assembly and live-fire testing of surface-to-air, surface-to-surface weapons, and research rockets
Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition
2017-01-01
004 OFFICE OF NAVAL RESEARCH ATTN JASON STACK MINE WARFARE & OCEAN ENGINEERING PROGRAMS CODE 32, SUITE 1092 875 N RANDOLPH ST ARLINGTON VA 22203 ONR...naval mine countermeasures (MCM) operations by automating a large portion of the data analysis. Successful long-term implementation of ATR requires a...Modular Algorithm Testbed Suite; MATS; Mine Countermeasures Operations U U U SAR 24 Derek R. Kolacinski (850) 230-7218 THIS PAGE INTENTIONALLY LEFT
A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.; Sessions, Alaric M.; Burkhardt, Phillip A.; Ehmann, David W.
2017-01-01
Electric, hybrid-electric, and turbo-electric distributed propulsion technologies and concepts are beginning to gain traction in the aircraft design community, as they can provide improvements in operating costs, noise, fuel consumption, and emissions compared to conventional internal combustion or Brayton-cycle powered vehicles. NASA is building multiple demonstrators and testbeds to buy down airworthiness and flight safety risks for these new technologies, including X-57 Maxwell, HEIST, Airvolt, and NEAT.
Planning and reasoning in the JPL telerobot testbed
NASA Technical Reports Server (NTRS)
Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark
1990-01-01
The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.
Developments at the Advanced Design Technologies Testbed
NASA Technical Reports Server (NTRS)
VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.
2003-01-01
A report presents background and historical information, as of August 1998, on the Advanced Design Technologies Testbed (ADTT) at Ames Research Center. The ADTT is characterized as an activity initiated to facilitate improvements in aerospace design processes; provide a proving ground for product-development methods and computational software and hardware; develop bridging methods, software, and hardware that can facilitate integrated solutions to design problems; and disseminate lessons learned to the aerospace and information technology communities.
Design and Prototyping of a Satellite Antenna Slew Testbed
2013-12-01
polycarbonate plastic PC personal computer PD proportional derivative PDO process data objects PVC polyvinyl chloride PVT position...part. The CAD model of the current design iteration can be exported to 3D printer to produce a plastic prototype of the testbed assembly. The 3D... extruded shaft) and connected by set screws as shown in Figure 8. The set screws translate the force from motor to gears to shaft, thus creating an
Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed
NASA Technical Reports Server (NTRS)
Tian, Ye; Song, Qi; Cattafesta, Louis
2005-01-01
This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.
Demonstration of active vibration control on a stirling-cycle cryocooler testbed
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Flynn, Frederick J.; Gaffney, Monique S.; Johnson, Dean L.; Ross, Ronald G., Jr.
1992-01-01
SatCon Technology Corporation has demonstrated excellent vibration reduction performance using active control on the JPL Stirling-cycle cryocooler testbed. The authors address the use of classical narrowband feedback control to meet the cryocooler vibration specifications using one cryocooler in a self-cancellation configuration. Similar vibration reduction performance was obtained using a cryocooler back-to-back configuration by actively controlling a reaction mass actuator that was used to mimic the second cooler.
2001-03-28
The Aerostructures Test Wing (ATW), which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, was mounted on a special ventral flight test fixture and flown on Dryden's F-15B Research Testbed aircraft
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.; Lo, David C.; Allen, David H.
1998-01-01
A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged damage variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete listing of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occurs during the loading history. Residual strength predictions made with this information compared favorably with experimental measurements.
NASA Technical Reports Server (NTRS)
Lo, David C.; Coats, Timothy W.; Harris, Charles E.; Allen, David H.
1996-01-01
A method for analysis of progressive failure in the Computational Structural Mechanics Testbed is presented in this report. The relationship employed in this analysis describes the matrix crack damage and fiber fracture via kinematics-based volume-averaged variables. Damage accumulation during monotonic and cyclic loads is predicted by damage evolution laws for tensile load conditions. The implementation of this damage model required the development of two testbed processors. While this report concentrates on the theory and usage of these processors, a complete list of all testbed processors and inputs that are required for this analysis are included. Sample calculations for laminates subjected to monotonic and cyclic loads were performed to illustrate the damage accumulation, stress redistribution, and changes to the global response that occur during the load history. Residual strength predictions made with this information compared favorably with experimental measurements.
An advanced wide area chemical sensor testbed
NASA Astrophysics Data System (ADS)
Seeley, Juliette A.; Kelly, Michael; Wack, Edward; Ryan-Howard, Danette; Weidler, Darryl; O'Brien, Peter; Colonero, Curtis; Lakness, John; Patel, Paras
2005-11-01
In order to meet current and emerging needs for remote passive standoff detection of chemical agent threats, MIT Lincoln Laboratory has developed a Wide Area Chemical Sensor (WACS) testbed. A design study helped define the initial concept, guided by current standoff sensor mission requirements. Several variants of this initial design have since been proposed to target other applications within the defense community. The design relies on several enabling technologies required for successful implementation. The primary spectral component is a Wedged Interferometric Spectrometer (WIS) capable of imaging in the LWIR with spectral resolutions as narrow as 4 cm-1. A novel scanning optic will enhance the ability of this sensor to scan over large areas of concern with a compact, rugged design. In this paper, we shall discuss our design, development, and calibration process for this system as well as recent testbed measurements that validate the sensor concept.
Comparative Modal Analysis of Sieve Hardware Designs
NASA Technical Reports Server (NTRS)
Thompson, Nathaniel
2012-01-01
The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.
Watanabe, S; Tanaka, M; Wada, Y; Suzuki, H; Takagi, S; Mori, S; Fukai, K; Kanazawa, Y; Takagi, M; Hirakawa, K; Ogasawara, K; Tsumura, K; Ogawa, K; Matsumoto, K; Nagaoka, S; Suzuki, T; Shimura, D; Yamashita, M; Nishio, S
1994-07-01
The telescience testbed experiments were carried out to test and investigate the tele-manipulation techniques in the intracellular potential recording of amphibian eggs. Implementation of telescience testbed was set up in the two separated laboratories of the Tsukuba Space center of NASDA, which were connected by tele-communication links. Manipulators respective for a microelectrode and a sample stage of microscope were moved by computers, of which command signals were transmitted from a computer in a remote control room. The computer in the control room was operated by an investigator (PI) who controlled the movement of each manipulator remotely. A stereoscopic vision of the microscope image were prepared by using a head mounted display (HMD) and were indispensable to the intracellular single cell recording. The fertilization potential of amphibian eggs was successfully obtained through the remote operating system.
Wolfrum, Ed (ORCID:0000000273618931); Knoshug, Eric (ORCID:000000025709914X); Laurens, Lieve (ORCID:0000000349303267); Harmon, Valerie; Dempster, Thomas (ORCID:000000029550488X); McGowan, John (ORCID:0000000266920518); Rosov, Theresa; Cardello, David; Arrowsmith, Sarah; Kempkes, Sarah; Bautista, Maria; Lundquist, Tryg; Crowe, Brandon; Murawsky, Garrett; Nicolai, Eric; Rowe, Egan; Knurek, Emily; Javar, Reyna; Saracco Alvarez, Marcela; Schlosser, Steve; Riddle, Mary; Withstandley, Chris; Chen, Yongsheng; Van Ginkel, Steven; Igou, Thomas; Xu, Chunyan; Hu, Zixuan
2017-10-20
ATP3 Unified Field Study Data The Algae Testbed Public-Private Partnership (ATP3) was established with the goal of investigating open pond algae cultivation across different geographic, climatic, seasonal, and operational conditions while setting the benchmark for quality data collection, analysis, and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework, the Unified Field Studies (UFS) were designed to characterize the cultivation of different algal strains during all 4 seasons across this testbed network. The dataset presented here is the complete, curated, climatic, cultivation, harvest, and biomass composition data for each season at each site. These data enable others to do in-depth cultivation, harvest, techno-economic, life cycle, resource, and predictive growth modeling analysis, as well as develop crop protection strategies for the nascent algae industry. NREL Sub award Number: DE-AC36-08-GO28308
User interface design principles for the SSM/PMAD automated power system
NASA Technical Reports Server (NTRS)
Jakstas, Laura M.; Myers, Chris J.
1991-01-01
Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Matijevic, J. R.
1987-01-01
Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.
Generalized Nanosatellite Avionics Testbed Lab
NASA Technical Reports Server (NTRS)
Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt
2015-01-01
The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.
Basic Requirements for Systems Software Research and Development
NASA Technical Reports Server (NTRS)
Kuszmaul, Chris; Nitzberg, Bill
1996-01-01
Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.
Mini-mast CSI testbed user's guide
NASA Technical Reports Server (NTRS)
Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.
1992-01-01
The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.
TEXSYS. [a knowledge based system for the Space Station Freedom thermal control system test-bed
NASA Technical Reports Server (NTRS)
Bull, John
1990-01-01
The Systems Autonomy Demonstration Project has recently completed a major test and evaluation of TEXSYS, a knowledge-based system (KBS) which demonstrates real-time control and FDIR for the Space Station Freedom thermal control system test-bed. TEXSYS is the largest KBS ever developed by NASA and offers a unique opportunity for the study of technical issues associated with the use of advanced KBS concepts including: model-based reasoning and diagnosis, quantitative and qualitative reasoning, integrated use of model-based and rule-based representations, temporal reasoning, and scale-up performance issues. TEXSYS represents a major achievement in advanced automation that has the potential to significantly influence Space Station Freedom's design for the thermal control system. An overview of the Systems Autonomy Demonstration Project, the thermal control system test-bed, the TEXSYS architecture, preliminary test results, and thermal domain expert feedback are presented.
NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2016-01-01
As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.
The advanced orbiting systems testbed program: Results to date
NASA Technical Reports Server (NTRS)
Newsome, Penny A.; Otranto, John F.
1993-01-01
The Consultative Committee for Space Data Systems Recommendations for Packet Telemetry and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. Central to the AOST Program are the development of an end-to-end Testbed and its use in a comprehensive testing program. Other Program activities include flight-qualifiable component development, supporting studies, and knowledge dissemination. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations. The results presented in this paper include architectural issues, a draft proposed standardized test suite and flight-qualifiable components.
Open source IPSEC software in manned and unmanned space missions
NASA Astrophysics Data System (ADS)
Edwards, Jacob
Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.
Single link flexible beam testbed project. Thesis
NASA Technical Reports Server (NTRS)
Hughes, Declan
1992-01-01
This thesis describes the single link flexible beam testbed at the CLaMS laboratory in terms of its hardware, software, and linear model, and presents two controllers, each including a hub angle proportional-derivative (PD) feedback compensator and one augmented by a second static gain full state feedback loop, based upon a synthesized strictly positive real (SPR) output, that increases specific flexible mode pole damping ratios w.r.t the PD only case and hence reduces unwanted residual oscillation effects. Restricting full state feedback gains so as to produce a SPR open loop transfer function ensures that the associated compensator has an infinite gain margin and a phase margin of at least (-90, 90) degrees. Both experimental and simulation data are evaluated in order to compare some different observer performance when applied to the real testbed and to the linear model when uncompensated flexible modes are included.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime; Rakoczy, John; Steincamp, James
2003-01-01
Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.
Wavefront tilt feedforward for the formation interferometer testbad (FIT)
NASA Technical Reports Server (NTRS)
Shields, J. F.; Liewer, K.; Wehmeier, U.
2002-01-01
Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.
Formation Algorithms and Simulation Testbed
NASA Technical Reports Server (NTRS)
Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward
2004-01-01
Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.
NASA Technical Reports Server (NTRS)
Nelson, D. P.; Morris, P. M.
1980-01-01
The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.
NASA Technical Reports Server (NTRS)
Burns, Richard D.; Davis, George; Cary, Everett; Higinbotham, John; Hogie, Keith
2003-01-01
A mission simulation prototype for Distributed Space Systems has been constructed using existing developmental hardware and software testbeds at NASA s Goddard Space Flight Center. A locally distributed ensemble of testbeds, connected through the local area network, operates in real time and demonstrates the potential to assess the impact of subsystem level modifications on system level performance and, ultimately, on the quality and quantity of the end product science data.
2012-11-09
CAPE CANAVERAL, Fla. -- At the Neo Liquid Propellant Testbed inside a facility near Kennedy Space Center’s Shuttle Landing Facility in Florida, engineers and Rocket University project leads Kyle Dixon, left, and Evelyn Orozco-Smith check the buildup of the Neo test fixture and an Injector 71 engine that uses super-cooled propellants. NASA engineers are working on the design and assembly of the Neo Liquid Propellant Testbed as part of the Engineering Directorate’s Rocket University training program. Photo credit: NASA/Frankie Martin
Learn on the Fly: Quiescent Routing in Wireless Sensor Networks
2005-02-01
quality solely based on data traf- fic without employing beacons. Using a realistic sensor network traffic trace and an 802.11b testbed of 195 Stargates ...testbed of 195 Stargates [1] with 802.11b radios. For instance, we investigate the validity of geographic uniformity which is assumed in literature [19...Figure 1), we deploy 29 Stargates in a straight line, with a 45-meter separation between any two consecutive Stargates . The Stargates run Linux with
2006-02-01
wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a
Optical interferometer testbed
NASA Technical Reports Server (NTRS)
Blackwood, Gary H.
1991-01-01
Viewgraphs on optical interferometer testbed presented at the MIT Space Research Engineering Center 3rd Annual Symposium are included. Topics covered include: space-based optical interferometer; optical metrology; sensors and actuators; real time control hardware; controlled structures technology (CST) design methodology; identification for MIMO control; FEM/ID correlation for the naked truss; disturbance modeling; disturbance source implementation; structure design: passive damping; low authority control; active isolation of lightweight mirrors on flexible structures; open loop transfer function of mirror; and global/high authority control.
A proposed research program in information processing
NASA Technical Reports Server (NTRS)
Schorr, Herbert
1992-01-01
The goal of the Formalized Software Development (FSD) project was to demonstrate improvements productivity of software development and maintenance through the use of a new software lifecycle paradigm. The paradigm calls for the mechanical, but human-guided, derivation of software implementations from formal specifications of the desired software behavior. It relies on altering a system's specification and rederiving its implementation as the standard technology for software maintenance. A system definition for this paradigm is composed of a behavioral specification together with a body of annotations that control the derivation of executable code from the specification. Annotations generally achieve the selection of certain data representations and/or algorithms that are consistent with, but not mandated by, the behavioral specification. In doing this, they may yield systems which exhibit only certain behaviors among multiple alternatives permitted by the behavioral specification. The FSD project proposed to construct a testbed in which to explore the realization of this new paradigm. The testbed was to provide operational support environment for software design, implementation, and maintenance. The testbed was proposed to provide highly automated support for individual programmers ('programming in the small'), but not to address the additional needs of programming teams ('programming in the large'). The testbed proposed to focus on supporting rapid construction and evolution of useful prototypes of software systems, as opposed to focusing on the problems of achieving production quality performance of systems.
Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W
2014-01-01
New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.
Military application of flat panel displays in the Vetronics Technology Testbed prototype vehicle
NASA Astrophysics Data System (ADS)
Downs, Greg; Roller, Gordon; Brendle, Bruce E., Jr.; Tierney, Terrance
2000-08-01
The ground combat vehicle crew of tomorrow must be able to perform their mission more effectively and efficiently if they are to maintain dominance over ever more lethal enemy forces. Increasing performance, however, becomes even more challenging when the soldier is subject to reduced crew sizes, a never- ending requirement to adapt to ever-evolving technologies and the demand to assimilate an overwhelming array of battlefield data. This, combined with the requirement to fight with equal effectiveness at any time of the day or night in all types of weather conditions, makes it clear that this crew of tomorrow will need timely, innovative solutions to overcome this multitude of barriers if they are to achieve their objectives. To this end, the U.S. Army is pursuing advanced crew stations with human-computer interfaces that will allow the soldier to take full advantage of emerging technologies and make efficient use of the battlefield information available to him in a program entitled 'Vetronics Technology Testbed.' Two critical components of the testbed are a compliment of panoramic indirect vision displays to permit drive-by-wire and multi-function displays for managing lethality, mobility, survivability, situational awareness and command and control of the vehicle. These displays are being developed and built by Computing Devices Canada, Ltd. This paper addresses the objectives of the testbed program and the technical requirements and design of the displays.
NASA Astrophysics Data System (ADS)
Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi
2016-07-01
The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.
NASA Technical Reports Server (NTRS)
Gupta, Kajal (Technical Monitor); Kirby, Kelvin
2004-01-01
The NASA Cooperative Agreement NAG4-210 was granted under the FY2000 Faculty Awards for Research (FAR) Program. The project was proposed to examine the effects of charged particles and neutrons on selected random access memory (RAM) technologies. The concept of the project was to add to the current knowledge of Single Event Effects (SEE) concerning RAM and explore the impact of selected forms of radiation on Error Detection and Correction Systems. The project was established as an extension of a previous FAR awarded to Prairie View A&M University (PVAMU), under the direction of Dr. Richard Wilkins as principal investigator. The NASA sponsored Center for Applied Radiation Research (CARR) at PVAMU developed an electronic test-bed to explore and quantify SEE on RAM from charged particles and neutrons. The test-bed was developed using 486DX microprocessor technology (PC-104) and a custom test board to mount RAM integrated circuits or other electronic devices. The test-bed had two configurations - a bench test version for laboratory experiments and a 400 Hz powered rack version for flight experiments. The objectives of this project were to: 1) Upgrade the Electronic Test-bed (ETB) to a Pentium configuration; 2) Accommodate more than only 8 Mbytes of RAM; 3) Explore Error Detection and Correction Systems for radiation effects; 4) Test modern RAM technologies in radiation environments.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
NASA Astrophysics Data System (ADS)
Seubert, Carl R.
Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina
2016-10-01
The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities, as well as public outreach and education opportunities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crussell, Jonathan; Erickson, Jeremy; Fritz, David
minimega is an emulytics platform for creating testbeds of networked devices. The platoform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. minimega allows experiments to be brought up quickly with almost no configuration. minimega also includes tools for simple cluster, management, as well as tools for creating Linux-based virtual machines. This release of minimega includes new emulated sensors for Android devices to improve the fidelity of testbeds that include mobile devices. Emulated sensors include GPS and
Flight Approach to Adaptive Control Research
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen; Less, James L.; Larson, David Nils
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.
Phoenix Missile Hypersonic Testbed (PMHT): Project Concept Overview
NASA Technical Reports Server (NTRS)
Jones, Thomas P.
2007-01-01
An over view of research into a low cost hypersonic research flight test capability to increase the amount of hypersonic flight data to help bridge the large developmental gap between ground testing/analysis and major flight demonstrator Xplanes is provided. The major objectives included: develop an air launched missile booster research testbed; accurately deliver research payloads through programmable guidance to hypersonic test conditions; low cost; a high flight rate minimum of two flights per year and utilize surplus air launched missiles and NASA aircraft.
2009-01-01
controllers (currently using the Robostix+Gumstix pair ). The interface between the plant simulator and the controller is ‘hard real-time’, and the xPC box... simulation ) on aerobatic maneuver design for the STARMAC quadrotor helicopter testbed. In related work, we have developed a new optimization scheme...for scheduling hybrid systems, and have demonstrated the results on an autonomous car simulation testbed. We are focusing efforts this summer for
Development and experimentation of an eye/brain/task testbed
NASA Technical Reports Server (NTRS)
Harrington, Nora; Villarreal, James
1987-01-01
The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)
KUPSnet: Knowledge-based Ubiquitous and Persistent Sensor Network Testbed for Threat Assessment
2010-09-16
P. Sawant, M.S. Thesis, Wireless Sensor Network Testbed: Measurement and Analysis, August 2007. 2.3 Current Ph.D Students With two new PhD students...Students With two new MS students (Sana Agaskar and Ankit Agarwal) joining us in August 2010, we have seven M.S. students in this group. 1. Ashith...2010. [2] Qilian Liang, Xiuzhen Cheng, Sherwood Samn, “ NEW : Network-enabled Electronic Warfare for Target Recognition,” IEEE Trans on Aerospace and
NASA Technical Reports Server (NTRS)
Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.
1986-01-01
To establish a long-term research facility for experimental investigations of design diversity as a means of achieving fault-tolerant systems, a distributed testbed for multiple-version software was designed. It is part of a local network, which utilizes the Locus distributed operating system to operate a set of 20 VAX 11/750 computers. It is used in experiments to measure the efficacy of design diversity and to investigate reliability increases under large-scale, controlled experimental conditions.
Testbed Environment for Distributed Observation (testbed omgeving voor gedistribueerde waarneming)
2006-05-01
het IP-adres en portnumnmer van de MID halen . Ook de naamn van de XML-file om de NID te beschrijven staat hierin vermeld (in dit geval ’CSD.xmId’) in...DeviceML beschrijving van de NID op te halen . Dit wordt gedaan door een TCP/IP verbinding op te zetten tussen de LUS en de NID (via de DeviceML port...vernisenigvuidigd! enlof openbaar gensaaki door middel van druk, fotokopie, microftinm of op welke andere wijze dan ook, zonder voorafgaande schrifielijke
COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment
NASA Astrophysics Data System (ADS)
Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.
2002-01-01
The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop antenna tracking system employing star sensors enables usability with any other GEO data relay satellite system. In order to be prepared for the upcoming telecom standards for ground distribution of spacecraft generated data, the interface avionics allows for testing ATM-based data formatting and routing. Three testbeds accompany these studies and designs: i)a cable-and-connector testbed measures the signal characteristics for data transfer of up to 200 Mbps through the ii)an avionics &embedded software testbed prepares for data formatting, routing, and storage in CCSDS and ATM; iii)a software testbed tests newly developed S/W man-machine interfaces and simulates bandwidth limitations, on- This makes COLUMBUS a true technology testbed for a variety of engineering topics: - application of terrestrial standard data formats for broadband, near-real-time applications in space - qualification &test of off-the-shelf multimedia equipment in manned spacecraft - secure data transmission in flexible VPNs - in-orbit demonstration of advanced data transmission technology - elaboration of efficient crew and ground operations and training procedures - evaluation of personalized displays (S/W HFI) for long-duration space missions
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
Photonically enabled Ka-band radar and infrared sensor subscale testbed
NASA Astrophysics Data System (ADS)
Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.
2014-10-01
A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.
How Much Higher Can HTCondor Fly?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, E. M.; Dost, J. M.; Holzman, B.
The HTCondor high throughput computing system is heavily used in the high energy physics (HEP) community as the batch system for several Worldwide LHC Computing Grid (WLCG) resources. Moreover, it is the backbone of GlidelnWMS, the pilot system used by the computing organization of the Compact Muon Solenoid (CMS) experiment. To prepare for LHC Run 2, we probed the scalability limits of new versions and configurations of HTCondor with a goal of reaching 200,000 simultaneous running jobs in a single internationally distributed dynamic pool.In this paper, we first describe how we created an opportunistic distributed testbed capable of exercising runsmore » with 200,000 simultaneous jobs without impacting production. This testbed methodology is appropriate not only for scale testing HTCondor, but potentially for many other services. In addition to the test conditions and the testbed topology, we include the suggested configuration options used to obtain the scaling results, and describe some of the changes to HTCondor inspired by our testing that enabled sustained operations at scales well beyond previous limits.« less
Development, Demonstration, and Control of a Testbed for Multiterminal HVDC System
Li, Yalong; Shi, Xiaojie M.; Liu, Bo; ...
2016-10-21
This paper presents the development of a scaled four-terminal high-voltage direct current (HVDC) testbed, including hardware structure, communication architecture, and different control schemes. The developed testbed is capable of emulating typical operation scenarios including system start-up, power variation, line contingency, and converter station failure. Some unique scenarios are also developed and demonstrated, such as online control mode transition and station re-commission. In particular, a dc line current control is proposed, through the regulation of a converter station at one terminal. By controlling a dc line current to zero, the transmission line can be opened by using relatively low-cost HVDC disconnectsmore » with low current interrupting capability, instead of the more expensive dc circuit breaker. Utilizing the dc line current control, an automatic line current limiting scheme is developed. As a result, when a dc line is overloaded, the line current control will be automatically activated to regulate current within the allowable maximum value.« less
NASA Technical Reports Server (NTRS)
Martin, William Campbell
2011-01-01
The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.
NASA Technical Reports Server (NTRS)
Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.
A Battery Certification Testbed for Small Satellite Missions
NASA Technical Reports Server (NTRS)
Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott
2015-01-01
A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.
The solution of linear systems of equations with a structural analysis code on the NAS CRAY-2
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Overman, Andrea L.
1988-01-01
Two methods for solving linear systems of equations on the NAS Cray-2 are described. One is a direct method; the other is an iterative method. Both methods exploit the architecture of the Cray-2, particularly the vectorization, and are aimed at structural analysis applications. To demonstrate and evaluate the methods, they were installed in a finite element structural analysis code denoted the Computational Structural Mechanics (CSM) Testbed. A description of the techniques used to integrate the two solvers into the Testbed is given. Storage schemes, memory requirements, operation counts, and reformatting procedures are discussed. Finally, results from the new methods are compared with results from the initial Testbed sparse Choleski equation solver for three structural analysis problems. The new direct solvers described achieve the highest computational rates of the methods compared. The new iterative methods are not able to achieve as high computation rates as the vectorized direct solvers but are best for well conditioned problems which require fewer iterations to converge to the solution.
Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.
Dynamic Modeling, Controls, and Testing for Electrified Aircraft
NASA Technical Reports Server (NTRS)
Connolly, Joseph; Stalcup, Erik
2017-01-01
Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.
Software-Implemented Fault Tolerance in Communications Systems
NASA Technical Reports Server (NTRS)
Gantenbein, Rex E.
1994-01-01
Software-implemented fault tolerance (SIFT) is used in many computer-based command, control, and communications (C(3)) systems to provide the nearly continuous availability that they require. In the communications subsystem of Space Station Alpha, SIFT algorithms are used to detect and recover from failures in the data and command link between the Station and its ground support. The paper presents a review of these algorithms and discusses how such techniques can be applied to similar systems found in applications such as manufacturing control, military communications, and programmable devices such as pacemakers. With support from the Tracking and Communication Division of NASA's Johnson Space Center, researchers at the University of Wyoming are developing a testbed for evaluating the effectiveness of these algorithms prior to their deployment. This testbed will be capable of simulating a variety of C(3) system failures and recording the response of the Space Station SIFT algorithms to these failures. The design of this testbed and the applicability of the approach in other environments is described.
The Orlando TDWR testbed and airborne wind shear date comparison results
NASA Technical Reports Server (NTRS)
Campbell, Steven; Berke, Anthony; Matthews, Michael
1992-01-01
The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2012-01-01
NASAs Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASAs Space Telecommunications Radio System(STRS) architecture standard. Pre-launch testing with the testbeds software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
STRS Radio Service Software for NASA's SCaN Testbed
NASA Technical Reports Server (NTRS)
Mortensen, Dale J.; Bishop, Daniel Wayne; Chelmins, David T.
2013-01-01
NASA's Space Communication and Navigation(SCaN) Testbed was launched to the International Space Station in 2012. The objective is to promote new software defined radio technologies and associated software application reuse, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. Pre-launch testing with the testbed's software defined radios was performed as part of system integration. Radio services for the JPL SDR were developed during system integration to allow the waveform application to operate properly in the space environment, especially considering thermal effects. These services include receiver gain control, frequency offset, IQ modulator balance, and transmit level control. Development, integration, and environmental testing of the radio services will be described. The added software allows the waveform application to operate properly in the space environment, and can be reused by future experimenters testing different waveform applications. Integrating such services with the platform provided STRS operating environment will attract more users, and these services are candidates for interface standardization via STRS.
Aviation Communications Emulation Testbed
NASA Technical Reports Server (NTRS)
Sheehe, Charles; Mulkerin, Tom
2004-01-01
Aviation related applications that rely upon datalink for information exchange are increasingly being developed and deployed. The increase in the quantity of applications and associated data communications will expose problems and issues to resolve. NASA s Glenn Research Center has prepared to study the communications issues that will arise as datalink applications are employed within the National Airspace System (NAS) by developing an aviation communications emulation testbed. The Testbed is evolving and currently provides the hardware and software needed to study the communications impact of Air Traffic Control (ATC) and surveillance applications in a densely populated environment. The communications load associated with up to 160 aircraft transmitting and receiving ATC and surveillance data can be generated in realtime in a sequence similar to what would occur in the NAS. The ATC applications that can be studied are the Aeronautical Telecommunications Network s (ATN) Context Management (CM) and Controller Pilot Data Link Communications (CPDLC). The Surveillance applications are Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B).
NASA Technical Reports Server (NTRS)
Rosen, Robert; Korsmeyer, David J.
1993-01-01
The Human Exploration Demonstration Project (HEDP) is an ongoing task at the NASA's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment consists of life support systems, physiological monitoring of project crew, a virtual environment work station, and centralized data acquisition and habitat systems health monitoring. The HEDP is an integrated technology demonstrator, as well as an initial operational testbed. There are several robotic systems operational in a simulated planetary landscape external to the habitat environment, to provide representative work loads for the crew. This paper describes the evolution of the HEDP from initial concept to operational project; the status of the HEDP after two years; the final facilities composing the HEDP; the project's role as a NASA Ames Research Center systems technology testbed; and the interim demonstration scenarios that have been run to feature the developing technologies in 1993.
Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed
NASA Technical Reports Server (NTRS)
Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Briones, Janette C.; Tollis, Nicholas
2016-01-01
National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was con- ducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round- trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.
Parallel Navier-Stokes computations on shared and distributed memory architectures
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Jayasimha, D. N.; Pillay, Sasi Kumar
1995-01-01
We study a high order finite difference scheme to solve the time accurate flow field of a jet using the compressible Navier-Stokes equations. As part of our ongoing efforts, we have implemented our numerical model on three parallel computing platforms to study the computational, communication, and scalability characteristics. The platforms chosen for this study are a cluster of workstations connected through fast networks (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and a distributed memory multiprocessor (the IBM SPI). Our focus in this study is on the LACE testbed. We present some results for the Cray YMP and the IBM SP1 mainly for comparison purposes. On the LACE testbed, we study: (1) the communication characteristics of Ethernet, FDDI, and the ALLNODE networks and (2) the overheads induced by the PVM message passing library used for parallelizing the application. We demonstrate that clustering of workstations is effective and has the potential to be computationally competitive with supercomputers at a fraction of the cost.
NASA Technical Reports Server (NTRS)
Jankovsky, Amy L.; Fulton, Christopher E.; Binder, Michael P.; Maul, William A., III; Meyer, Claudia M.
1998-01-01
A real-time system for validating sensor health has been developed in support of the reusable launch vehicle program. This system was designed for use in a propulsion testbed as part of an overall effort to improve the safety, diagnostic capability, and cost of operation of the testbed. The sensor validation system was designed and developed at the NASA Lewis Research Center and integrated into a propulsion checkout and control system as part of an industry-NASA partnership, led by Rockwell International for the Marshall Space Flight Center. The system includes modules for sensor validation, signal reconstruction, and feature detection and was designed to maximize portability to other applications. Review of test data from initial integration testing verified real-time operation and showed the system to perform correctly on both hard and soft sensor failure test cases. This paper discusses the design of the sensor validation and supporting modules developed at LeRC and reviews results obtained from initial test cases.
The Langley Research Center CSI phase-0 evolutionary model testbed-design and experimental results
NASA Technical Reports Server (NTRS)
Belvin, W. K.; Horta, Lucas G.; Elliott, K. B.
1991-01-01
A testbed for the development of Controls Structures Interaction (CSI) technology is described. The design philosophy, capabilities, and early experimental results are presented to introduce some of the ongoing CSI research at NASA-Langley. The testbed, referred to as the Phase 0 version of the CSI Evolutionary model (CEM), is the first stage of model complexity designed to show the benefits of CSI technology and to identify weaknesses in current capabilities. Early closed loop test results have shown non-model based controllers can provide an order of magnitude increase in damping in the first few flexible vibration modes. Model based controllers for higher performance will need to be robust to model uncertainty as verified by System ID tests. Data are presented that show finite element model predictions of frequency differ from those obtained from tests. Plans are also presented for evolution of the CEM to study integrated controller and structure design as well as multiple payload dynamics.
Fading testbed for free-space optical communications
NASA Astrophysics Data System (ADS)
Shrestha, Amita; Giggenbach, Dirk; Mustafa, Ahmad; Pacheco-Labrador, Jorge; Ramirez, Julio; Rein, Fabian
2016-10-01
Free-space optical (FSO) communication is a very attractive technology offering very high throughput without spectral regulation constraints, yet allowing small antennas (telescopes) and tap-proof communication. However, the transmitted signal has to travel through the atmosphere where it gets influenced by atmospheric turbulence, causing scintillation of the received signal. In addition, climatic effects like fogs, clouds and rain also affect the signal significantly. Moreover, FSO being a line of sight communication requires precise pointing and tracking of the telescopes, which otherwise also causes fading. To achieve error-free transmission, various mitigation techniques like aperture averaging, adaptive optics, transmitter diversity, sophisticated coding and modulation schemes are being investigated and implemented. Evaluating the performance of such systems under controlled conditions is very difficult in field trials since the atmospheric situation constantly changes, and the target scenario (e.g. on aircraft or satellites) is not easily accessible for test purposes. Therefore, with the motivation to be able to test and verify a system under laboratory conditions, DLR has developed a fading testbed that can emulate most realistic channel conditions. The main principle of the fading testbed is to control the input current of a variable optical attenuator such that it attenuates the incoming signal according to the loaded power vector. The sampling frequency and mean power of the vector can be optionally changed according to requirements. This paper provides a brief introduction to software and hardware development of the fading testbed and measurement results showing its accuracy and application scenarios.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
Automatic Integration Testbeds validation on Open Science Grid
NASA Astrophysics Data System (ADS)
Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.
2011-12-01
A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schrenkenghost, Debra K.
2001-01-01
The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.
Visually guided grasping to study teleprogrammation within the BAROCO testbed
NASA Technical Reports Server (NTRS)
Devy, M.; Garric, V.; Delpech, M.; Proy, C.
1994-01-01
This paper describes vision functionalities required in future orbital laboratories; in such systems, robots will be needed in order to execute the on-board scientific experiments or servicing and maintenance tasks under the remote control of ground operators. For this sake, ESA has proposed a robotic configuration called EMATS; a testbed has been developed by ESTEC in order to evaluate the potentialities of EMATS-like robot to execute scientific tasks in automatic mode. For the same context, CNES develops the BAROCO testbed to investigate remote control and teleprogrammation, in which high level primitives like 'Pick Object A' are provided as basic primitives. In nominal situations, the system has an a priori knowledge about the position of all objects. These positions are not very accurate, but this knowledge is sufficient in order to predict the position of the object which must be grasped, with respect to the manipulator frame. Vision is required in order to insure a correct grasping and to guarantee a good accuracy for the following operations. We describe our results about a visually guided grasping of static objects. It seems to be a very classical problem, and a lot of results are available. But, in many cases, it lacks a realistic evaluation of the accuracy, because such an evaluation requires tedious experiments. We propose several results about calibration of the experimental testbed, recognition algorithms required to locate a 3D polyhedral object, and the grasping itself.
Control structural interaction testbed: A model for multiple flexible body verification
NASA Technical Reports Server (NTRS)
Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.
1993-01-01
Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.
Elevating crop disease resistance with cloned genes
Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon
2014-01-01
Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Strayer, Richard F.
1997-01-01
A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.
Wavefront Control Testbed (WCT) Experiment Results
NASA Technical Reports Server (NTRS)
Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III
2004-01-01
The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.
PNT Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sands, Obed
2017-01-01
This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.
Demonstration of a High-Efficiency Free-Space Optical Communications Link
NASA Technical Reports Server (NTRS)
Birnbaum, Kevin; Farr, William; Gin, Jonathan; Moision, Bruce; Quirk, Kevin; Wright, Malcolm
2009-01-01
In this paper we discuss recent progress on the implementation of a hardware free-space optical communications test-bed. The test-bed implements an end-to-end communications system comprising a data encoder, modulator, laser-transmitter, telescope, detector, receiver and error-correction-code decoder. Implementation of each of the component systems is discussed, with an emphasis on 'real-world' system performance degradation and limitations. We have demonstrated real-time data rates of 44 Mbps and photon efficiencies of approximately 1.8 bits/photon over a 100m free-space optical link.
A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument
NASA Astrophysics Data System (ADS)
Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.
2016-07-01
We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.
XUNET experimental high-speed network testbed CRADA 1136, DOE TTI No. 92-MULT-020-B2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, R.E.
1996-04-01
XUNET is a research program with AT&T and other partners to study high-speed wide area communication between local area networks over a backbone using Asynchronous Transfer Mode (ATM) switches. Important goals of the project are to develop software techniques for network control and management, and applications for high-speed networks. The project entails building a testbed between member sites to explore performance issues for mixed network traffic such as congestion control, multimedia communications protocols, segmentation and reassembly of ATM cells, and overall data throughput rates.
The Living With a Star Space Environment Testbed Experiments
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.
2014-01-01
The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Bailey, Roger M.
2008-01-01
As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The facility provides all the necessary infrastructure to conduct the research flights in a safe and efficient manner. This paper gives a comprehensive overview of the development of the AirSTAR testbed.
NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-01-01
Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).
MRMS Experimental Testbed for Operational Products (METOP)
NASA Astrophysics Data System (ADS)
Zhang, J.
2016-12-01
Accurate high-resolution quantitative precipitation estimation (QPE) at the continental scale is of critical importance to the nation's weather, water and climate services. To address this need, a Multi-Radar Multi-Sensor (MRMS) system was developed at the National Severe Storms Lab of National Oceanic and Atmospheric Administration that integrates radar, gauge, model and satellite data and provides a suite of QPE products at 1-km and 2-min resolution. MRMS system consists of three components: 1) an operational system; 2) a real-time research system; 3) an archive testbed. The operational system currently provides instantaneous precipitation rate, type and 1- to 72-hr accumulations for conterminous United Stated and southern Canada. The research system has the similar hardware infrastructure and data environment as the operational system, but runs newer and more advanced algorithms. The newer algorithms are tested on the research system for robustness and computational efficiency in a pseudo operational environment before they are transitioned into operations. The archive testbed, also called the MRMS Experimental Testbed for Operational Products (METOP), consists of a large database that encompasses a wide range of hydroclimatological and geographical regimes. METOP is for the testing and refinements of the most advanced radar QPE techniques, which are often developed on specific data from limited times and locations. The archive data includes quality controlled in-situ observations for the validation of the new radar QPE across all seasons and geographic regions. A number of operational QPE products derived from different sensors/models are also included in METOP for the fusion of multiple sources of complementary precipitation information. This paper is an introduction of the METOP system.
Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie
2009-01-01
Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.
CRYOTE (Cryogenic Orbital Testbed) Concept
NASA Technical Reports Server (NTRS)
Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie
2009-01-01
Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.
NASA Technical Reports Server (NTRS)
Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi
1994-01-01
The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.
Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.
2005-01-01
The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.
Development of an automated electrical power subsystem testbed for large spacecraft
NASA Technical Reports Server (NTRS)
Hall, David K.; Lollar, Louis F.
1990-01-01
The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.
NASA Astrophysics Data System (ADS)
Thamvichai, Ratchaneekorn; Huang, Liang-Chih; Ashok, Amit; Gong, Qian; Coccarelli, David; Greenberg, Joel A.; Gehm, Michael E.; Neifeld, Mark A.
2017-05-01
We employ an adaptive measurement system, based on sequential hypotheses testing (SHT) framework, for detecting material-based threats using experimental data acquired on an X-ray experimental testbed system. This testbed employs 45-degree fan-beam geometry and 15 views over a 180-degree span to generate energy sensitive X-ray projection data. Using this testbed system, we acquire multiple view projection data for 200 bags. We consider an adaptive measurement design where the X-ray projection measurements are acquired in a sequential manner and the adaptation occurs through the choice of the optimal "next" source/view system parameter. Our analysis of such an adaptive measurement design using the experimental data demonstrates a 3x-7x reduction in the probability of error relative to a static measurement design. Here the static measurement design refers to the operational system baseline that corresponds to a sequential measurement using all the available sources/views. We also show that by using adaptive measurements it is possible to reduce the number of sources/views by nearly 50% compared a system that relies on static measurements.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
2016-07-14
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
NASA Astrophysics Data System (ADS)
N'Diaye, Mamadou; Choquet, Elodie; Carlotti, Alexis; Pueyo, Laurent; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Wallace, J. Kent; Long, Chris; Lajoie, Rachel; Lajoie, Charles-Philippe; Eldorado Riggs, A. J.; Zimmerman, Neil T.; Groff, Tyler Dean; Kasdin, N. Jeremy; Vanderbei, Robert J.; Mawet, Dimitri; Macintosh, Bruce; Shaklan, Stuart; Soummer, Remi
2015-01-01
HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. Primary mirror segmentation, central obstruction and spiders in the pupil of an on-axis telescope introduces additional diffraction features in the point spread function, which make high-contrast imaging very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms with a 18mm pupil. Two deformable mirrors are to be installed for wavefront control in the fall of 2014. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We have developed novel coronagraph designs combining an Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. We present the results of these new APLC-type solutions with two-dimensional shaped-pupil apodizers for the HiCAT geometry. These solutions render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.
NASA Astrophysics Data System (ADS)
N'Diaye, Mamadou; Mazoyer, Johan; Choquet, Élodie; Pueyo, Laurent; Perrin, Marshall D.; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Carlotti, Alexis; Long, Chris A.; Lajoie, Rachel; Soummer, Rémi
2015-09-01
HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The pupil geometry of such observatories includes primary mirror segmentation, central obstruction, and spider vanes, which make the direct imaging of habitable worlds very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms over a 18mm pupil. The installation of two deformable mirrors for wavefront control is to be completed in the winter of 2015. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We also present the coronagraph design for HiCAT geometry, based on our recent development of Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. These new APLC-type solutions using two-dimensional shaped-pupil apodizer render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.
Development of optical packet and circuit integrated ring network testbed.
Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya
2011-12-12
We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America
Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr
2016-01-01
The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator
NASA Technical Reports Server (NTRS)
Oostdyk, Rebecca L.; Perotti, Jose M.
2011-01-01
The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.
Design of Bi-Directional Hydrofoils for Tidal Current Turbines
NASA Astrophysics Data System (ADS)
Nedyalkov, Ivaylo; Wosnik, Martin
2015-11-01
Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Optical performance of prototype horn-coupled TES bolometer arrays for SAFARI
NASA Astrophysics Data System (ADS)
Audley, Michael D.; de Lange, Gert; Gao, Jian-Rong; Khosropanah, Pourya; Hijmering, Richard; Ridder, Marcel L.
2016-07-01
The SAFARI Detector Test Facility is an ultra-low background optical testbed for characterizing ultra-sensitive prototype horn-coupled TES bolmeters for SAFARI, the grating spectrometer on board the proposed SPICA satellite. The testbed contains internal cold and hot black-body illuminators and a light-pipe for illumination with an external source. We have added reimaging optics to facilitate array optical measurements. The system is now being used for optical testing of prototype detector arrays read out with frequency-domain multiplexing. We present our latest optical measurements of prototype arrays and discuss these in terms of the instrument performance.
Design of a High Resolution Hexapod Positioning Mechanism
NASA Technical Reports Server (NTRS)
Britt, Jamie
2001-01-01
This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.
Design of a High Resolution Hexapod Positioning Mechanism
NASA Technical Reports Server (NTRS)
Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.
The CSM testbed matrix processors internal logic and dataflow descriptions
NASA Technical Reports Server (NTRS)
Regelbrugge, Marc E.; Wright, Mary A.
1988-01-01
This report constitutes the final report for subtask 1 of Task 5 of NASA Contract NAS1-18444, Computational Structural Mechanics (CSM) Research. This report contains a detailed description of the coded workings of selected CSM Testbed matrix processors (i.e., TOPO, K, INV, SSOL) and of the arithmetic utility processor AUS. These processors and the current sparse matrix data structures are studied and documented. Items examined include: details of the data structures, interdependence of data structures, data-blocking logic in the data structures, processor data flow and architecture, and processor algorithmic logic flow.
2000-04-14
Center Director Roy Bridges (left) dons protective apron, gloves and face shield before the "ribbon-breaking" to open the new Cryogenic Testbed Facility. Part of the normal ceremonial ribbon was replaced with plastic tubing and frozen in liquid nitrogen for the event. Bridges hit the tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor
2000-04-14
Center Director Roy Bridges (left), wearing protective apron, gloves and face shield, watches as liquid nitrogen is poured into a container to freeze the plastic tubing for a special "ribbon-breaking" to open the new Cryogenic Testbed Facility. Bridges hit the section of tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor
2000-04-14
A shower of frozen plastic signifies the successful breaking of the ceremonial "ribbon" at the opening of the new Cryogenic Testbed Facility. Part of the normal ribbon was replaced with plastic tubing and frozen in liquid nitrogen for the event. Bridges hit the tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor
2000-04-14
Center Director Roy Bridges (center) is congratulated for the successful breaking of the ceremonial "ribbon" and the opening of the new Cryogenic Testbed Facility. Part of the normal ribbon was replaced with plastic tubing and frozen in liquid nitrogen for the event. Bridges hit the tubing with a small hammer to break it. The Cryogenics Testbed was built to provide cryogenics engineering development and testing services to meet the needs of industry. It will also support commercial, government and academic customers for technology development initiatives on the field of cryogenics. The facility is jointly managed by NASA and Dynacs Engineering Co. , NASA/SC's Engineering Development contractor
The Wide-Field Imaging Interferometry Testbed: Recent Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2006-01-01
We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.
Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Lou, John; Shaklan, Stuart; Levine, Marie
2010-01-01
This slide presentation reviews the sensitivity studies on the Phase-Induced Amplitude Apodization (PIAA), or pupil mapping using the High-Contrast Imaging Testbed (HCIT). PIAA is a promising technique in high-dynamic range stellar coronagraph. This presentation reports on the investigation of the effects of the phase and rigid-body errors of various optics on the narrowband contrast performance of the PIAA/HCIT hybrid system. The results have shown that the 2-step wavefront control method utilizing 2-DMs is quite effective in compensating the effects of realistic phase and rigid-body errors of various optics
Performance Sensitivity Studies on the PIAA Implementation of the High-Contrast Imaging Testbed
NASA Technical Reports Server (NTRS)
Sidick, Erkin; Lou, John Z.; Shaklan, Stuart; Levine, Marie
2009-01-01
We have investigated the dependence of the High Contrast Imaging Testbed (HCIT) Phase Induced Amplitude Apodization (PIAA) coronagraph system performance on the rigid-body perturbations of various optics. The structural design of the optical system as well as the parameters of various optical elements used in the analysis are drawn from those of the PIAA/HCIT system that have been and will be implemented, and the simulation takes into account the surface errors of various optics. In this paper, we report our findings when the input light is a narrowband beam.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John
1991-01-01
Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.
Lightning Warning and Protection for DNA High Explosive Test-Bed.
1986-08-01
begins, personnel should be evacuated from the test-bed and the amonium nitrate fuel oil loading area. A safe distance will depend on the size of the...typically, P = -40 C, N = - 0 C, and D = ’-1O C. and ~whgive observed electric field intensity in the vicintv oa :t thundercloud. (Ref. 4, p. 3.) 4. 2...12 16 2 12 S-P •N=40C N -- • N=-40 C > 14 p= 10 CD z OI- 1 0 - 0 4 8 12 16 20 DISTANCE D (kin) Figure 2. Electric field intensity at the ground versus
SCDU (Spectral Calibration Development Unit) Testbed Narrow Angle Astrometric Performance
NASA Technical Reports Server (NTRS)
Wang, Xu; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Wehmeier, Udo J.; Weilert, Mark A.; Werne, Thomas A.; Wu, Janet P.; Zhai, Chengxing
2010-01-01
The most stringent astrometric performance requirements on NASA's SIM(Space Interferometer Mission)-Lite mission will come from the so-called Narrow-Angle (NA) observing scenario, aimed at finding Earth-like exoplanets, where the interferometer chops between the target star and several nearby reference stars multiple times over the course of a single visit. Previously, about 20 pm NA error with various shifts was reported. Since then, investigation has been under way to understand the mechanisms that give rise to these shifts. In this paper we report our findings, the adopted mitigation strategies, and the resulting testbed performance.
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephen; Absil, Olivier; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Defrere, Denis;
2009-01-01
In recent years, the evolution of technology has led to significant advances in high angular resolution astronomy and the precision of new observations. In particular, the interferometric combination of light from physically separated telescopes has shown both great promise and great challenge. We describe the first scientific results from the Keck Interferometer Nuller an instrument that combines the light of the two largest optical telescopes in the world in the context of the historic development of interferometry from its beginning in the work of Fizeau, Stephan and Michelson. We also describe our efforts to build a space-borne mid-infrared interferometer the Fourier Kelvin Stellar Interferometer (FKSI) - for the characterization of exoplanets. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics, including siderostats, enabling the characterization of exozodiacal debris disks, extrasolar planets and other phenomena requiring extremely high spatial resolution. We are further investigating the possibility of characterizing the atmospheres of several super-Earths and a few Earth twins by a combination of spatial modulation and spectral analysis.
Nulling Data Reduction and On-Sky Performance of the Large Binocular Telescope Interferometer
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P. M.; Mennesson, B.; Hoffman, W. F.; Millan-Gabet, R.; Skemer, A. J.; Bailey, V.; Danchi, W. C.; Downy, E. C.; Durney, O.;
2016-01-01
The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 micrometers). In this paper, we focus on the mid-infrared (8-13 micrometers) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star Beta Leo. This is equivalent to an exozodiacal disk density of 15-30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.
An agent-oriented approach to automated mission operations
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Odubiyi, Jide
1994-01-01
As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.
Increasing the value of geospatial informatics with open approaches for Big Data
NASA Astrophysics Data System (ADS)
Percivall, G.; Bermudez, L. E.
2017-12-01
Open approaches to big data provide geoscientists with new capabilities to address problems of unmatched size and complexity. Consensus approaches for Big Geo Data have been addressed in multiple international workshops and testbeds organized by the Open Geospatial Consortium (OGC) in the past year. Participants came from government (NASA, ESA, USGS, NOAA, DOE); research (ORNL, NCSA, IU, JPL, CRIM, RENCI); industry (ESRI, Digital Globe, IBM, rasdaman); standards (JTC 1/NIST); and open source software communities. Results from the workshops and testbeds are documented in Testbed reports and a White Paper published by the OGC. The White Paper identifies the following set of use cases: Collection and Ingest: Remote sensed data processing; Data stream processing Prepare and Structure: SQL and NoSQL databases; Data linking; Feature identification Analytics and Visualization: Spatial-temporal analytics; Machine Learning; Data Exploration Modeling and Prediction: Integrated environmental models; Urban 4D models. Open implementations were developed in the Arctic Spatial Data Pilot using Discrete Global Grid Systems (DGGS) and in Testbeds using WPS and ESGF to publish climate predictions. Further development activities to advance open implementations of Big Geo Data include the following: Open Cloud Computing: Avoid vendor lock-in through API interoperability and Application portability. Open Source Extensions: Implement geospatial data representations in projects from Apache, Location Tech, and OSGeo. Investigate parallelization strategies for N-Dimensional spatial data. Geospatial Data Representations: Schemas to improve processing and analysis using geospatial concepts: Features, Coverages, DGGS. Use geospatial encodings like NetCDF and GeoPackge. Big Linked Geodata: Use linked data methods scaled to big geodata. Analysis Ready Data: Support "Download as last resort" and "Analytics as a service". Promote elements common to "datacubes."
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
EXPERT: An atmospheric re-entry test-bed
NASA Astrophysics Data System (ADS)
Massobrio, F.; Viotto, R.; Serpico, M.; Sansone, A.; Caporicci, M.; Muylaert, J.-M.
2007-06-01
In recognition of the importance of an independent European access to the International Space Station (ISS) and in preparation for the future needs of exploration missions, ESA is conducting parallel activities to generate flight data using atmospheric re-entry test-beds and to identify vehicle design solutions for human and cargo transportation vehicles serving the ISS and beyond. The EXPERT (European eXPErimental Re-entry Test-bed) vehicle represents the major on-going development in the first class of activities. Its results may also benefit in due time scientific missions to planets with an atmosphere and future reusable launcher programmes. The objective of EXPERT is to provide a test-bed for the validation of aerothermodynamics models, codes and ground test facilities in a representative flight environment, to improve the understanding of issues related to analysis, testing and extrapolation to flight. The vehicle will be launched on a sub-orbital trajectory using a Volna missile. The EXPERT concept is based on a symmetrical re-entry capsule whose shape is composed of simple geometrical elements. The suborbital trajectory will reach 120 km altitude and a re-entry velocity of 5 6km/s. The dimensions of the capsule are 1.6 m high and 1.3 m diameter; the overall mass is in the range of 250 350kg, depending upon the mission parameters and the payload/instrumentation complement. A consistent number of scientific experiments are foreseen on-board, from innovative air data system to shock wave/boundary layer interaction, from sharp hot structures characterisation to natural and induced regime transition. Currently the project is approaching completion of the phase B, with Alenia Spazio leading the industrial team and CIRA coordinating the scientific payload development under ESA contract.
The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.
2017-12-01
The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.
The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems
NASA Astrophysics Data System (ADS)
Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.
2016-12-01
The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.
NASA Astrophysics Data System (ADS)
Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar
2017-04-01
It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.
Design of a nickel-hydrogen battery simulator for the NASA EOS testbed
NASA Technical Reports Server (NTRS)
Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.
1992-01-01
The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.
PubMed on Tap: discovering design principles for online information delivery to handheld computers.
Hauser, Susan E; Demner-Fushman, Dina; Ford, Glenn; Thoma, George R
2004-01-01
Online access to biomedical information from handheld computers will be a valuable adjunct to other popular medical applications if information delivery systems are designed with handheld computers in mind. The goal of this project is to discover design principles to facilitate practitioners' access to online medical information at the point-of-care. A prototype system was developed to serve as a testbed for this research. Using the testbed, an initial evaluation has yielded several user interface design principles. Continued research is expected to discover additional user interface design principles as well as guidelines for results organization and system performance
Benefits of 20 kHz PMAD in a nuclear space station
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1987-01-01
Compared to existing systems, high frequency ac power provides higher efficiency, lower cost, and improved safety benefits. The 20 kHz power system has exceptional flexibility, is inherently user friendly, and is compatible with all types of energy sources; photovoltaic, solar dynamic, rotating machines and nuclear. A 25 kW, 20 kHz ac power distribution system testbed was recently (1986) developed. The testbed possesses maximum flexibility, versatility, and transparency to user technology while maintaining high efficiency, low mass, and reduced volume. Several aspects of the 20 kHz power management and distribution (PMAD) system that have particular benefits for a nuclear power Space Station are discussed.
NASA Technical Reports Server (NTRS)
Watson, Karen
1990-01-01
The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.
CCPP-ARM Parameterization Testbed Model Forecast Data
Klein, Stephen
2008-01-15
Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).
Documentation of the DART/FITT system
1995-05-01
Photographic documentation of the Dextrous Anthropomorphic Robot Testbed (DART)/Full-Immersion Telepresence Testbed (FITT) system. Photos were taken in the Dexterous Robotics Lab, bldg 9N, room 113, and include: DART with upper arm cover removed (08920-1); DART head fully assembled (08922); DART head (08923,08939); DART only official view (08924-5); DART head with shell removed (08926-7); DART/FITT together with operator (08928-9); DART with tools (08930-1,08934); DART with tether hook (08932); DART with rope (08933); DART with Portable Foot Restraint (PFR) (08935); DART pulling out ORU (08936); DART with electronics panel (08937); and DART with automated ball grasp (08938).
Performance of the PARCS Testbed Cesium Fountain Frequency Standard
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Klipstein, William M.
2004-01-01
A cesium fountain frequency standard has been developed as a ground testbed for the PARCS (Primary Atomic Reference Clock in Space) experiment, an experiment intended to fly on the International Space Station. We report on the performance of the fountain and describe some of the implementations motivated in large part by flight considerations, but of relevance for ground fountains. In particular, we report on a new technique for delivering cooling and trapping laser beams to the atom collection region, in which a given beam is recirculated three times effectively providing much more optical power than traditional configurations. Allan deviations down to 10
Large autonomous spacecraft electrical power system (LASEPS)
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, Norma R.; Johnson, Yvette B.
1992-01-01
NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.
BACT Simulation User Guide (Version 7.0)
NASA Technical Reports Server (NTRS)
Waszak, Martin R.
1997-01-01
This report documents the structure and operation of a simulation model of the Benchmark Active Control Technology (BACT) Wind-Tunnel Model. The BACT system was designed, built, and tested at NASA Langley Research Center as part of the Benchmark Models Program and was developed to perform wind-tunnel experiments to obtain benchmark quality data to validate computational fluid dynamics and computational aeroelasticity codes, to verify the accuracy of current aeroservoelasticity design and analysis tools, and to provide an active controls testbed for evaluating new and innovative control algorithms for flutter suppression and gust load alleviation. The BACT system has been especially valuable as a control system testbed.
Autonomous Flying Controls Testbed
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2005-01-01
The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.
The Advanced Orbiting Systems Testbed Program: Results to date
NASA Technical Reports Server (NTRS)
Otranto, John F.; Newsome, Penny A.
1994-01-01
The Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (PT) and Advanced Orbiting Systems (AOS) propose standard solutions to data handling problems common to many types of space missions. The Recommendations address only space/ground and space/space data handling systems. Goddard Space Flight Center's (GSFC's) AOS Testbed (AOST) Program was initiated to better understand the Recommendations and their impact on real-world systems, and to examine the extended domain of ground/ground data handling systems. The results and products of the Program will reduce the uncertainties associated with the development of operational space and ground systems that implement the Recommendations.
Active vibration control activities at the LaRC - Present and future
NASA Technical Reports Server (NTRS)
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies
NASA Astrophysics Data System (ADS)
Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio
2012-04-01
This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.
NASA Technical Reports Server (NTRS)
Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.
1989-01-01
The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.