Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.
Hénault, François
2010-03-01
Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.
Non-null annular subaperture stitching interferometry for aspheric test
NASA Astrophysics Data System (ADS)
Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.
Goldsmith, Harry-Dean Kenchington; Cvetojevic, Nick; Ireland, Michael; Madden, Stephen
2017-02-20
Understanding exoplanet formation and finding potentially habitable exoplanets is vital to an enhanced understanding of the universe. The use of nulling interferometry to strongly attenuate the central star's light provides the opportunity to see objects closer to the star than ever before. Given that exoplanets are usually warm, the 4 µm Mid-Infrared region is advantageous for such observations. The key performance parameters for a nulling interferometer are the extinction ratio it can attain and how well that is maintained across the operational bandwidth. Both parameters depend on the design and fabrication accuracy of the subcomponents and their wavelength dependence. Via detailed simulation it is shown in this paper that a planar chalcogenide photonic chip, consisting of three highly fabrication tolerant multimode interference couplers, can exceed an extinction ratio of 60 dB in double nulling operation and up to 40 dB for a single nulling operation across a wavelength window of 3.9 to 4.2 µm. This provides a beam combiner with sufficient performance, in theory, to image exoplanets.
Interferometry in the Era of Very Large Telescopes
NASA Technical Reports Server (NTRS)
Barry, Richard K.
2010-01-01
Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.
Imaging issues for interferometry with CGH null correctors
NASA Astrophysics Data System (ADS)
Burge, James H.; Zhao, Chunyu; Zhou, Ping
2010-07-01
Aspheric surfaces, such as telescope mirrors, are commonly measured using interferometry with computer generated hologram (CGH) null correctors. The interferometers can be made with high precision and low noise, and CGHs can control wavefront errors to accuracy approaching 1 nm for difficult aspheric surfaces. However, such optical systems are typically poorly suited for high performance imaging. The aspheric surface must be viewed through a CGH that was intentionally designed to introduce many hundreds of waves of aberration. The imaging aberrations create difficulties for the measurements by coupling both geometric and diffraction effects into the measurement. These issues are explored here, and we show how the use of larger holograms can mitigate these effects.
Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun
2017-10-01
Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.
Multi-axial interferometry: demonstration of deep nulling
NASA Astrophysics Data System (ADS)
Buisset, Christophe; Rejeaunier, Xavier; Rabbia, Yves; Ruilier, Cyril; Barillot, Marc; Lierstuen, Lars; Perdigués Armengol, Josep Maria
2017-11-01
The ESA-Darwin mission is devoted to direct detection and spectroscopic characterization of earthlike exoplanets. Starlight rejection is achieved by nulling interferometry from space so as to make detectable the faintly emitting planet in the neighborhood. In that context, Alcatel Alenia Space has developed a nulling breadboard for ESA in order to demonstrate in laboratory conditions the rejection of an on-axis source. This device, the Multi Aperture Imaging Interferometer (MAII) demonstrated high rejection capability at a relevant level for exoplanets, in singlepolarized and mono-chromatic conditions. In this paper we report on the new multi-axial configuration of MAII and we summarize our late nulling results.
Recent New Ideas and Directions for Space-Based Nulling Interferometry
NASA Technical Reports Server (NTRS)
Serabyn, Eugene (Gene)
2004-01-01
This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter.
Integrated Optics Achromatic Nuller for Stellar Interferometry
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander
2012-01-01
This innovation will replace a beam combiner, a phase shifter, and a mode conditioner, thus simplifying the system design and alignment, and saving weight and space in future missions. This nuller is a dielectric-waveguide-based, four-port asymmetric coupler. Its nulling performance is based on the mode-sorting property of adiabatic asymmetric couplers that are intrinsically achromatic. This nuller has been designed, and its performance modeled, in the 6.5-micrometer to 9.25-micrometer spectral interval (36% bandwidth). The calculated suppression of starlight for this 15-cm-long device is 10(exp -5) or better through the whole bandwidth. This is enough to satisfy requirements of a flagship exoplanet-characterization mission. Nulling interferometry is an approach to starlight suppression that will allow the detection and spectral characterization of Earth-like exoplanets. Nulling interferometers separate the light originating from a dim planet from the bright starlight by placing the star at the bottom of a deep, destructive interference fringe, where the starlight is effectively cancelled, or nulled, thus allowing the faint off-axis light to be much more easily seen. This process is referred to as nulling of the starlight. Achromatic nulling technology is a critical component that provides the starlight suppression in interferometer-based observatories. Previously considered space-based interferometers are aimed at approximately 6-to-20-micrometer spectral range. While containing the spectral features of many gases that are considered to be signatures of life, it also offers better planet-to-star brightness ratio than shorter wavelengths. In the Integrated Optics Achromatic Nuller (IOAN) device, the two beams from the interferometer's collecting telescopes pass through the same focusing optic and are incident on the input of the nuller.
Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts
NASA Astrophysics Data System (ADS)
Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno
2010-07-01
While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.
NASA Astrophysics Data System (ADS)
Yang, Zhongming; Dou, Jiantai; Du, Jinyu; Gao, Zhishan
2018-03-01
Non-null interferometry could use to measure the radius of curvature (ROC), we have presented a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method for large ROC measurement (Yang et al., 2016). In this paper, we propose a large ROC measurement method based on the evaluation of the interferogram-quality metric by the non-null interferometer. With the multi-configuration model of the non-null interferometric system in ZEMAX, the retrace errors and the phase introduced by the test surface are reconstructed. The interferogram-quality metric is obtained by the normalized phase-shifted testing Newton rings with the spherical surface model in the non-null interferometric system. The radius curvature of the test spherical surface can be obtained until the minimum of the interferogram-quality metric is found. Simulations and experimental results are verified the feasibility of our proposed method. For a spherical mirror with a ROC of 41,400 mm, the measurement accuracy is better than 0.13%.
Adaptive Nulling for Interferometric Detection of Planets
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Peters, Robert D.
2010-01-01
An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.
ESA to test the smartest technique for detecting extrasolar planets from the ground
NASA Astrophysics Data System (ADS)
2002-03-01
GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal. In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star. GENIE will be able to look for these dust rings and make sure that the dust is not so dense that it will mask the planets from view. GENIE will see failed stars, known as brown dwarfs and, if the instrument performs to expectations, may also see some of the already-discovered giant planets. So far, these worlds have never been seen, only inferred to exist by the effect they have on their parent stars. From Earth, two things handicap nulling interferometry. Firstly, the atmosphere smears out the starlight so that its cancellation is a hundred times less effective than it will be in space. Secondly, planets are most easily seen using infrared wavelengths because they are warm. So, observing from the surface of Earth, itself a planet emitting infrared radiation, is like peering through fog. In space, these two problems disappear and Darwin will be able to see smaller, Earth-like worlds. "We have calculated that with Darwin we could see an 'Earth' if it were ten light-years away with a few hours of observation time. With the VLT, it would be impossible because of the atmosphere. Even if the atmosphere weren't there it would take 450 days because of the infrared background released by the Earth. So we have to go into space," says Fridlund. GENIE is expected to be on-line by 2006.
Nulling Stabilization in the Presence of Perturbation
NASA Astrophysics Data System (ADS)
Houairi, K.; Cassaing, F.; Le Duigou, J. M.; Barillot, M.; Coudé du Foresto, V.; Hénault, F.; Jacquinod, S.; Ollivier, M.; Reess, J.-M.; Sorrente, B.
2007-07-01
Nulling interferometry is one of the most promising methods to study habitable extrasolar systems. In this context, several projects have been proposed such as ALADDIN on ground or DARWIN and PEGASE in space. A first step towards these missions will be performed with a laboratory breadboard, named PERSEE, built by a consortium including CNES, IAS, LESIA, OCA, ONERA and TAS. Its main goals are the demonstration of a polychromatic null with a 10-4 rejection rate and a 10-5 stability despite the introduction of realistic perturbations, the study of the interfaces with the formation-flying spacecrafts and the joint operation of the cophasing system with the nuller. The broadboard integration should end in 2009, then PERSEE will be open to proposals from the scientific community.
NASA Astrophysics Data System (ADS)
Hao, Qun; Li, Tengfei; Hu, Yao
2018-01-01
Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.
High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.
2012-01-01
Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.
Characterization methods of integrated optics for mid-infrared interferometry
NASA Astrophysics Data System (ADS)
Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel
2004-10-01
his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.
Partial null astigmatism-compensated interferometry for a concave freeform Zernike mirror
NASA Astrophysics Data System (ADS)
Dou, Yimeng; Yuan, Qun; Gao, Zhishan; Yin, Huimin; Chen, Lu; Yao, Yanxia; Cheng, Jinlong
2018-06-01
Partial null interferometry without using any null optics is proposed to measure a concave freeform Zernike mirror. Oblique incidence on the freeform mirror is used to compensate for astigmatism as the main component in its figure, and to constrain the divergence of the test beam as well. The phase demodulated from the partial nulled interferograms is divided into low-frequency phase and high-frequency phase by Zernike polynomial fitting. The low-frequency surface figure error of the freeform mirror represented by the coefficients of Zernike polynomials is reconstructed from the low-frequency phase, applying the reverse optimization reconstruction technology in the accurate model of the interferometric system. The high-frequency surface figure error of the freeform mirror is retrieved from the high-frequency phase adopting back propagating technology, according to the updated model in which the low-frequency surface figure error has been superimposed on the sag of the freeform mirror. Simulations verified that this method is capable of testing a wide variety of astigmatism-dominated freeform mirrors due to the high dynamic range. The experimental result using our proposed method for a concave freeform Zernike mirror is consistent with the null test result employing the computer-generated hologram.
PERSEE: a nulling interferometer with dynamic correction of external perturbations
NASA Astrophysics Data System (ADS)
Jacquinod, S.; Houairi, K.; Le Duigou, J.-M.; Barillot, M.; Cassaing, F.; Réess, J.-M.; Hénault, F.; Sorrente, B.; Morinaud, G.; Amans, J.-P.; Coudé du Foresto, V.; Ollivier, M.
2017-11-01
Nulling interferometry is one of the direct detection methods assessed to find and characterize extrasolar planets and particularly telluric ones. Several projects such as Darwin [1;2], TPF-I [3;4], PEGASE [5;6] or FKSI [7], are currently considered. One of the main issues is the feasibility of a stable polychromatic null despite the presence of significant disturbances, induced by vibrations, atmospheric turbulence on the ground or satellite drift. Satisfying all these requirements is a great challenge and a key issue of these missions. In the context of the PEGASE mission, it was decided (in 2006), to build a laboratory demonstrator named PERSEE. It is the first laboratory setup which couples deep nulling interferometry with a free flying GNC simulator [8]. It is developed by a consortium composed of CNES, IAS, LESIA, OCA, ONERA, and TAS. In this paper, we detail the main objectives, the set-up and the function of the bench. We describe all the subsystems and we focus particularly on two key points of PERSEE: the beam combiner and the Fringe tracker.
NASA Astrophysics Data System (ADS)
Barillot, M.; Barthelemy, E.; Bastard, L.; Broquin, J.-E.; Hawkins, G.; Kirschner, V.; Ménard, S.; Parent, G.; Poinsot, C.; Pradel, A.; Vigreux, C.; Zhang, S.; Zhang, X.
2017-11-01
The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively [1]. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering [2] takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.
Qualification of a Null Lens Using Image-Based Phase Retrieval
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.
2012-01-01
In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.
Null Lens Assembly for X-Ray Mirror Segments
NASA Technical Reports Server (NTRS)
Robinson, David W.
2011-01-01
A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.
Measurement Via Optical Near-Nulling and Subaperture Stitching
NASA Technical Reports Server (NTRS)
Forbes, Greg; De Vries, Gary; Murphy, Paul; Brophy, Chris
2012-01-01
A subaperture stitching interferometer system provides near-nulling of a subaperture wavefront reflected from an object of interest over a portion of a surface of the object. A variable optical element located in the radiation path adjustably provides near-nulling to facilitate stitching of subaperture interferograms, creating an interferogram representative of the entire surface of interest. This enables testing of aspheric surfaces without null optics customized for each surface prescription. The surface shapes of objects such as lenses and other precision components are often measured with interferometry. However, interferometers have a limited capture range, and thus the test wavefront cannot be too different from the reference or the interference cannot be analyzed. Furthermore, the performance of the interferometer is usually best when the test and reference wavefronts are nearly identical (referred to as a null condition). Thus, it is necessary when performing such measurements to correct for known variations in shape to ensure that unintended variations are within the capture range of the interferometer and accurately measured. This invention is a system for nearnulling within a subaperture stitching interferometer, although in principle, the concept can be employed by wavefront measuring gauges other than interferometers. The system employs a light source for providing coherent radiation of a subaperture extent. An object of interest is placed to modify the radiation (e.g., to reflect or pass the radiation), and a variable optical element is located to interact with, and nearly null, the affected radiation. A detector or imaging device is situated to obtain interference patterns in the modified radiation. Multiple subaperture interferograms are taken and are stitched, or joined, to provide an interferogram representative of the entire surface of the object of interest. The primary aspect of the invention is the use of adjustable corrective optics in the context of subaperture stitching near-nulling interferometry, wherein a complex surface is analyzed via multiple, separate, overlapping interferograms. For complex surfaces, the problem of managing the identification and placement of corrective optics becomes even more pronounced, to the extent that in most cases the null corrector optics are specific to the particular asphere prescription and no others (i.e. another asphere requires completely different null correction optics). In principle, the near-nulling technique does not require subaperture stitching at all. Building a near-null system that is practically useful relies on two key features: simplicity and universality. If the system is too complex, it will be difficult to calibrate and model its manufacturing errors, rendering it useless as a precision metrology tool and/or prohibitively expensive. If the system is not applicable to a wide range of test parts, then it does not provide significant value over conventional null-correction technology. Subaperture stitching enables simpler and more universal near-null systems to be effective, because a fraction of a surface is necessarily less complex than the whole surface (excepting the extreme case of a fractal surface description). The technique of near-nulling can significantly enhance aspheric subaperture stitching capability by allowing the interferometer to capture a wider range of aspheres. More over, subaperture stitching is essential to a truly effective near-nulling system, since looking at a fraction of the surface keeps the wavefront complexity within the capability of a relatively simple nearnull apparatus. Furthermore, by reducing the subaperture size, the complexity of the measured wavefront can be reduced until it is within the capability of the near-null design.
Terrestrial Planet Finder cryogenic delay line development
NASA Technical Reports Server (NTRS)
Smythe, Robert F.; Swain, Mark R.; Alvarez-Salazar, Oscar; Moore, James D.
2004-01-01
Delay lines provide the path-length compensation that makes the measurement of interference fringes possible. When used for nulling interferometry, the delay line must control path-lengths so that the null is stable and controlled throughout the measurement. We report on a low noise, low disturbance, and high bandwidth optical delay line capable of meeting the TPF interferometer optical path length control requirements at cryogenic temperatures.
Towards a laboratory breadboard for PEGASE, the DARWIN pathfinder
NASA Astrophysics Data System (ADS)
Cassaing, F.; Le Duigou, J.-M.; Sorrente, B.; Fleury, B.; Gorius, N.; Brachet, F.; Buisset, C.; Ollivier, M.; Hénault, F.; Mourard, D.; Rabbia, Y.; Delpech, M.; Guidotti, P.-Y.; Léger, A.; Barillot, M.; Rouan, D.; Rousset, G.
2017-11-01
PEGASE, a spaceborne mission proposed to the CNES, is a 2-aperture interferometer for nulling and interferometric imaging. PEGASE is composed of 3 free-flying satellites (2 siderostats and 1 beam combiner) with baselines from 50 to 500 m. The goals of PEGASE are the spectroscopy of hot Jupiter (Pegasides) and brown dwarves, the exploration of the inner part of protoplanetary disks and the validation in real space conditions of nulling and visibility interferometry with formation flying. During a phase-0 study performed in 2005 at CNES, ONERA and in the laboratories, the critical subsystems of the optical payload have been investigated and a preliminary system integration has been performed. These subsystems are mostly the broadband (2.5-5 μm) nuller and the cophasing system (visible) dedicated to the real-time control of the OPD/tip/tilt inside the payload. A laboratory breadboard of the payload is under definition and should be built in 2007.
Experimental evaluation of achromatic phase shifters for mid-infrared starlight suppression.
Gappinger, Robert O; Diaz, Rosemary T; Ksendzov, Alexander; Lawson, Peter R; Lay, Oliver P; Liewer, Kurt M; Loya, Frank M; Martin, Stefan R; Serabyn, Eugene; Wallace, James K
2009-02-10
Phase shifters are a key component of nulling interferometry, one of the potential routes to enabling the measurement of faint exoplanet spectra. Here, three different achromatic phase shifters are evaluated experimentally in the mid-infrared, where such nulling interferometers may someday operate. The methods evaluated include the use of dispersive glasses, a through-focus field inversion, and field reversals on reflection from antisymmetric flat-mirror periscopes. All three approaches yielded deep, broadband, mid-infrared nulls, but the deepest broadband nulls were obtained with the periscope architecture. In the periscope system, average null depths of 4x10(-5) were obtained with a 25% bandwidth, and 2x10(-5) with a 20% bandwidth, at a central wavelength of 9.5 mum. The best short term nulls at 20% bandwidth were approximately 9x10(-6), in line with error budget predictions and the limits of the current generation of hardware.
Testing of the Gemini secondary mirrors
NASA Astrophysics Data System (ADS)
Otto, Wolfgang
1999-09-01
The first 1-m secondary mirror for the Gemini 8-m telescopes project was delivered by Zeiss in 1998, and 2nd mirror will be delivered in the summer of 1999. For first use during commissioning we produced an extreme lightweight Zerodur solution prefabricated at Schott. To reach the 85 percent weight reduction a novel etching technique was used. INterferometric testing was done performing full aperture measurements using a concave matrix. In progress with the fabrication process of the matrix we applied 3D-mechanical measurements, IR-interferometry, and VIS-interferometry using null lenses to reach the final intrinsic quality of 6 nm rms. For interferometric testing of the secondaries phase shifting interferometry with a tunable laser diode was applied. The optical test results of the secondaries show, that the mirrors are well within specification. The finally achieved intrinsic surface quality is 17 nm rms for Unit 1 and 13 nm rms for Unit 2, dominated by cutting effects which were introduced by removing the oversize at the inner and outer edge of the mirror after the final polishing step.
Overview of LBTI: A Multipurpose Facility for High Spatial Resolution Observations
NASA Technical Reports Server (NTRS)
Hinz, P. M.; Defrere, D.; Skemer, A.; Bailey, V.; Stone, J.; Spalding, E.; Vaz, A.; Pinna, E.; Puglisi, A.; Esposito, S.;
2016-01-01
The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2x8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 micrometer camera (called LMIRCam), and an 8-13 micrometer camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.
Astronomical Optical Interferometry. I. Methods and Instrumentation
NASA Astrophysics Data System (ADS)
Jankov, S.
2010-12-01
Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas) resolution and astrometry with micro-arcsecond (muas) precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are disscused as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers). Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Macdonald, Daniel R.; Diaz, Rosemary T.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission were used to search for locally anisotropic space-time, with a null result at the 10 to the negative tenth power level.
Search for general relativistic effects in table-top displacement metrology
NASA Technical Reports Server (NTRS)
Halverson, Peter G.; Diaz, Rosemary T.; Macdonald, Daniel R.
2004-01-01
As displacement metrology accuracy improves, general relativistic effects will become noticeable. Metrology gauges developed for the Space Interferometry Mission, were used to search for locally anisotropic space-time, with a null result at the 10 to the negative 10th power level.
Space Interferometry Mission: Measuring the Universe
NASA Technical Reports Server (NTRS)
Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey
1991-01-01
The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.
NASA Astrophysics Data System (ADS)
Defrère, D.; Absil, O.; den Hartog, R.; Hanot, C.; Stark, C.
2010-01-01
Context. Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path toward the definition of instruments able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on the amount of exozodiacal dust in the habitable zone of the target stars. Aims: We assess the impact of exozodiacal clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. The first part of the study is dedicated to the effect of the disc brightness on the number of targets that can be surveyed and studied by spectroscopy during the mission lifetime. In the second part, we address the impact of asymmetric structures in the discs such as clumps and offset which can potentially mimic the planetary signal. Methods: We use the DarwinSIM software which was designed and validated to study the performance of space-based nulling interferometers. The software has been adapted to handle images of exozodiacal discs and to compute the corresponding demodulated signal. Results: For the nominal mission architecture with 2-m aperture telescopes, centrally symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that this tolerable dust density goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. Conclusions: Whereas the disc brightness only affects the integration time, the presence of clumps or offset is more problematic and can hamper the planet detection. Based on the worst-case scenario for debris disc structures, the upper limit on the tolerable exozodiacal dust density is approximately 15 times the density of the solar zodiacal cloud. This gives the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions. FNRS Postdoctoral Researcher
Next Generation Instrumentation for the Very Large Telescope Interferometer
NASA Astrophysics Data System (ADS)
Quirrenbach, A.
The scientific capabilities of the VLT Interferometer can be substantially enhanced through new focal-plane instruments. Many interferometric techniques - astrometry, phase-referenced imaging, nulling, and differential phase measurements - require control of the phase to <~ 1 rad; this capability will be provided at the VLTI by the PRIMA facility. Phase-coherent operation of the VLTI will also make it possible to perform interferometry with spectral resolution up to R ~ 100,000 by building fiber links to the high-resolution spectrographs UVES and CRIRES. These developments will open new approaches to fundamental problems in fields as diverse as extrasolar planets, stellar atmospheres, circumstellar matter, and active galactic nuclei.
Adaptive optics based non-null interferometry for optical free form surfaces test
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zhou, Sheng; Li, Jingsong; Yu, Benli
2018-03-01
An adaptive optics based non-null interferometry (ANI) is proposed for optical free form surfaces testing, in which an open-loop deformable mirror (DM) is employed as a reflective compensator, to compensate various low-order aberrations flexibly. The residual wavefront aberration is treated by the multi-configuration ray tracing (MCRT) algorithm. The MCRT algorithm based on the simultaneous ray tracing for multiple system models, in which each model has different DM surface deformation. With the MCRT algorithm, the final figure error can be extracted together with the surface misalignment aberration correction after the initial system calibration. The flexible test for free form surface is achieved with high accuracy, without auxiliary device for DM deformation monitoring. Experiments proving the feasibility, repeatability and high accuracy of the ANI were carried out to test a bi-conic surface and a paraboloidal surface, with a high stable ALPAOTM DM88. The accuracy of the final test result of the paraboloidal surface was better than 1/20 Μ PV value. It is a successful attempt in research of flexible optical free form surface metrology and would have enormous potential in future application with the development of the DM technology.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Dong; Liu, Yu; Liu, Jingxiao; Li, Jingsong; Yu, Benli
2017-11-01
We demonstrate the validity of the simultaneous reverse optimization reconstruction (SROR) algorithm in circular subaperture stitching interferometry (CSSI), which is previously proposed for non-null aspheric annular subaperture stitching interferometry (ASSI). The merits of the modified SROR algorithm in CSSI, such as auto retrace error correction, no need of overlap and even permission of missed coverage, are analyzed in detail in simulations and experiments. Meanwhile, a practical CSSI system is proposed for this demonstration. An optical wedge is employed to deflect the incident beam for subaperture scanning by its rotation and shift instead of the six-axis motion-control system. Also the reference path can provide variable Zernike defocus for each subaperture test, which would decrease the fringe density. Experiments validating the SROR algorithm in this CSSI is implemented with cross validation by testing of paraboloidal mirror, flat mirror and astigmatism mirror. It is an indispensable supplement in SROR application in general subaperture stitching interferometry.
Extreme temperature robust optical sensor designs and fault-tolerant signal processing
Riza, Nabeel Agha [Oviedo, FL; Perez, Frank [Tujunga, CA
2012-01-17
Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.
Improved MRF spot characterization with QIS metrology
NASA Astrophysics Data System (ADS)
Westover, Sandi; Hall, Christopher; DeMarco, Michael
2013-09-01
Careful characterization of the removal function of sub-aperture polishing tools is critical for optimum polishing results. Magnetorheological finishing (MRF®) creates a polishing tool, or "spot", that is unique both for its locally high removal rate and high slope content. For a variety of reasons, which will be discussed, longer duration spots are beneficial to improving MRF performance, but longer spots yield higher slopes rendering them difficult to measure with adequate fidelity. QED's Interferometer for Stitching (QIS™) was designed to measure the high slope content inherent to non-null sub-aperture stitching interferometry of aspheres. Based on this unique capability the QIS was recently used to measure various MRF spots in an attempt to see if there was a corresponding improvement in MRF performance as a result of improved knowledge of these longer duration spots. The results of these tests will be presented and compared with those of a standard general purpose interferometer.
Long Baseline Nulling Interferometry with the Keck Telescopes: A Progress Report
NASA Technical Reports Server (NTRS)
Mennesson, Bertrand; Akeson, R.; Appleby, E.; Bell, J.; Booth, A.; Colavita, M. M.; Crawford, S.; Creech-Eakman, M. J.; Dahl, W.; Fanson, J.;
2005-01-01
The Keck Interferometer Nuller (KIN) is one of the major scientific and technical precursors to the Terrestrial Planet Finder Interferometer (TPF-I) mission. KIN's primary objective is to measure the level of exo-zodiacal mid-infrared emission around nearby main sequence stars, which requires deep broad-band nulling of astronomical sources of a few Janskys at 10 microns. A number of new capabilities are needed in order to reach that goal with the Keck telescopes: mid-infrared coherent recombination, interferometric operation in 'split pupil' mode, N-band optical path stabilization using K-band fringe tracking and internal metrology, and eventually, active atmospheric dispersion correction. We report here on the progress made implementing these new functionalities, and discuss the initial levels of extinction achieved on the sky.
Characterization of the Stabilized Test Bench of Nulling Interferometry PERSÉE
NASA Astrophysics Data System (ADS)
Lozi, Julien; Ollivier, M.; Cassaing, F.; Le Duigou, J.; CNES; Onera/Dota/HRA; IAS; LESIA; OCA; TAS
2013-01-01
There are two problems with the observation of exoplanets: the contrast between the planet and the star and their very low separation. One technique solving these problems is nulling interferometry: two pupils are recombined to make a destructive interference on the star, and their base is adjusted to create a constructive interference on the planet. However, to ensure a sufficient extinction of the star, the optical path difference between the beams must be around the nanometer, and the pointing must be better than one hundredth of Airy disk, despite the external disturbances.To validate the critical points of such a space mission, a laboratory demonstrator, PERSÉE, was defined by a consortium led by the french space agency CNES, including IAS, LESIA, ONERA, OCA and Thales Alenia Space and integrated in Paris Observatory. This bench simulates the entire space mission (interferometer and nanometric cophasing system). Its goal is to deliver and maintain an extinction of 10^-4 stable at better than 10^-5 over a few hours in the presence of typical injected disturbances.My thesis work consisted in integrating the bench in successive stages and to develop calibration procedures. This helped me to characterize the critical elements separately before grouping them. After having implemented the control loops of the cophasing system, their precise analysis helped me to reduce down to 0.3 nm rms the residual OPD, and 0.4 % of the Airy disk the residual tip/tilt, despite disturbances of tens of nanometers, consisting of several tens of vibrational frequencies between 1 and 100 Hz. This has been achieved by the implementation of a linear quadratic Gaussian controller, parameterized by the preliminary measurement of the disturbance to minimize. Thanks to these excellent results, I obtained on the band [1.65 - 2.45] µm a record null rate of 8.8x10^-6 stabilized at 9x10^-7 over a few hours, a decade better than the original specifications. An extrapolation of these results to the case of a space mission shows that the expected performance is achievable if the available flux is sufficiently important. With telescopes of 40 cm and a control frequency around 100 Hz, stars brighter than magnitude 9 should be observable.
Phase closure nulling: Theory and practice
NASA Astrophysics Data System (ADS)
Chelli, A.; Duvert, G.; Malbet, F.; Kern, P.
2009-11-01
We provide a complete theory of the phase closure of a binary system in which a small, feeble, and unresolved companion acts as a perturbing parameter on the spatial frequency spectrum of a dominant, bright, resolved source. We demonstrate that the influence of the companion can be measured with precision by measuring the phase closure of the system near the nulls of the primary visibility function. In these regions of phase closure nulling, frequency intervals always exist where the phase closure signature of the companion is larger than any systematic error and can thus be measured. We show that this technique allows retrieval of many astrophysically relevant properties of faint and close companions such as flux, position, and in favorable cases, spectrum. As a proof of concept, using the AMBER/VLTI instrument with 3 auxiliary telescopes of 1.8 m and only 15 minutes of on-sky integration, we detected the five magnitudes fainter companion of HD 59717 at only 3.5 stellar radii distance from the primary. This is one of the highest contrast detected by interferometry between a companion and its parent star. We conclude by a rapid study of the potentialities of phase closure nulling observations with current interferometers and explore the requirements for a new type of dedicated instrument.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Run; Su, Peng; Burge, James H.
The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.
Optical testing of aspheres based on photochromic computer-generated holograms
NASA Astrophysics Data System (ADS)
Pariani, Giorgio; Bianco, Andrea; Bertarelli, Chiara; Spanó, Paolo; Molinari, Emilio
2010-07-01
Aspherical optics are widely used in modern optical telescopes and instrumentation because of their ability to reduce aberrations with a simple optical system. Testing their optical quality through null interferometry is not trivial as reference optics are not available. Computer-Generated Holograms (CGHs) are efficient devices that allow to generate a well-defined optical wavefront. We developed rewritable Computer Generated Holograms for the interferometric test of aspheres based on photochromic layers. These photochromic holograms are cost-effective and the method of production does not need any post exposure process.
The path towards high-contrast imaging with the VLTI: the Hi-5 project
NASA Astrophysics Data System (ADS)
Defrère, D.; Absil, O.; Berger, J.-P.; Boulet, T.; Danchi, W. C.; Ertel, S.; Gallenne, A.; Hénault, F.; Hinz, P.; Huby, E.; Ireland, M.; Kraus, S.; Labadie, L.; Le Bouquin, J.-B.; Martin, G.; Matter, A.; Mérand, A.; Mennesson, B.; Minardi, S.; Monnier, J. D.; Norris, B.; de Xivry, G. Orban; Pedretti, E.; Pott, J.-U.; Reggiani, M.; Serabyn, E.; Surdej, J.; Tristram, K. R. W.; Woillez, J.
2018-06-01
The development of high-contrast capabilities has long been recognized as one of the top priorities for the VLTI. As of today, the VLTI routinely achieves contrasts of a few 10- 3 in the near-infrared with PIONIER (H band) and GRAVITY (K band). Nulling interferometers in the northern hemisphere and non-redundant aperture masking experiments have, however, demonstrated that contrasts of at least a few 10- 4 are within reach using specific beam combination and data acquisition techniques. In this paper, we explore the possibility to reach similar or higher contrasts on the VLTI. After reviewing the state-of-the-art in high-contrast infrared interferometry, we discuss key features that made the success of other high-contrast interferometric instruments (e.g., integrated optics, nulling, closure phase, and statistical data reduction) and address possible avenues to improve the contrast of the VLTI by at least one order of magnitude. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 μm), a sweet spot to image and characterize young extra-solar planetary systems. Finally, we address the science cases of a high-contrast VLTI imaging instrument and focus particularly on exoplanet science (young exoplanets, planet formation, and exozodiacal disks), stellar physics (fundamental parameters and multiplicity), and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed. This project is called Hi-5 for High-contrast Interferometry up to 5 μm.
Nulling interferometry for the darwin mission: laboratory demonstration experiment
NASA Astrophysics Data System (ADS)
Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy
2017-11-01
The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.
NASA Astrophysics Data System (ADS)
Zhang, Xinmu; Hao, Qun; Hu, Yao; Wang, Shaopu; Ning, Yan; Li, Tengfei; Chen, Shufen
2017-10-01
With no necessity of compensating the whole aberration introduced by the aspheric surfaces, non-null test has the advantage over null test in applicability. However, retrace error, which is brought by the path difference between the rays reflected from the surface under test (SUT) and the incident rays, is introduced into the measurement and makes up of the residual wavefront aberrations (RWAs) along with surface figure error (SFE), misalignment error and other influences. Being difficult to separate from RWAs, the misalignment error may remain after measurement and it is hard to identify whether it is removed or not. It is a primary task to study the removal of misalignment error. A brief demonstration of digital Moiré interferometric technique is presented and a calibration method for misalignment error on the basis of reverse iteration optimization (RIO) algorithm in non-null test method is addressed. The proposed method operates mostly in the virtual system, and requires no accurate adjustment in the real interferometer, which is of significant advantage in reducing the errors brought by repeating complicated manual adjustment, furthermore improving the accuracy of the aspheric surface test. Simulation verification is done in this paper. The calibration accuracy of the position and attitude can achieve at least a magnitude of 10-5 mm and 0.0056×10-6rad, respectively. The simulation demonstrates that the influence of misalignment error can be precisely calculated and removed after calibration.
Infrared Imaging and Characterization of Exoplanets: Can we Detect Earth-Twins on a Budget?
NASA Technical Reports Server (NTRS)
Danchi, William
2010-01-01
During the past decade considerable progress has been made developing techniques that can be used to detect and characterize Earth twins in the mid- infrared (7-20 microns). The principal technique is called nulling interferometry, and it was invented by Bracewell in the late 1970's. The nulling technique is an interferometric equivalent of an optical coronagraph. At the present time most of the technological hurdles have been overcome for a space mission to be able to begin Phase A early in the next decade, and it is possible to detect and characterize Earth-twins on a mid- sized strategic mission budget ($600-800 million). I will review progress on this exciting method of planet detection in the context of recent work on the Exoplanet Community Forum and the US Decadal Survey (Astro2010), including biomarkers, technological progress, mission concepts, the theory of these instruments, and a.comparison of the discovery space of this technique with others also under consideration.
NASA Astrophysics Data System (ADS)
Fischer, Robert E.; Smith, Warren J.; Harvey, James
1986-01-01
Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.
Tolerance analysis of null lenses using an end-use system performance criterion
NASA Astrophysics Data System (ADS)
Rodgers, J. Michael
2000-07-01
An effective method of assigning tolerances to a null lens is to determine the effects of null-lens fabrication and alignment errors on the end-use system itself, not simply the null lens. This paper describes a method to assign null- lens tolerances based on their effect on any performance parameter of the end-use system.
Global astrometry with the space interferometry mission
NASA Technical Reports Server (NTRS)
Boden, A.; Unwin, S.; Shao, M.
1997-01-01
The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.
Broadband Achromatic Phase Shifter for a Nulling Interferometer
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Lyon, Richard G.
2011-01-01
Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with an average error of 5.97 x 10(exp -8) radians and standard deviation of 3.07 x 10(exp -4) radians. To reduce ghost reflections and interference effects from neighboring elements, the glass plates are tilted such that the beam does not strike each plate at normal incidence. Reflections will therefore walk out of the system and not contribute to the intensity when the beams are recombined. Tilting the glass plates, however, introduces several other problems that must be mitigated: (1) the polarization of a beam changes when refracted at an interface at non-normal incidence; (2) the beam experiences lateral chromatic spread as it traverses multiple glass plates; (3) at each surface, wavelength- dependent intensity losses will occur due to reflection. For a fixed angle of incidence, each of these effects must be balanced between each arm of the interferometer in order to ensure a deep null. The solution was found using a nonlinear optimization routine that minimized an objective function relating phase shift, intensity difference, chromatic beam spread, and polarization difference to the desired parameters: glass plate material and thickness. In addition to providing a uniform, broadband phase shift, the configuration achieves an average difference in intensity transmission between the two arms of the interferometer of 0.016 percent with a standard deviation of 3.64 x 10(exp -4) percent, an average difference in polarization between the two arms of the interferometer of 5.47 x 10(exp -5) percent with a standard deviation of 1.57 x 10(exp -6) percent, and an average chromatic beam shift between the two arms of the interferometer of -47.53 microns with a wavelength-by-wavelength spread of 0.389 microns.
Physical and non-physical energy in scattered wave source-receiver interferometry.
Meles, Giovanni Angelo; Curtis, Andrew
2013-06-01
Source-receiver interferometry allows Green's functions between sources and receivers to be estimated by means of convolution and cross-correlation of other wavefields. Source-receiver interferometry has been observed to work surprisingly well in practical applications when theoretical requirements (e.g., complete enclosing boundaries of other sources and receivers) are contravened: this paper contributes to explain why this may be true. Commonly used inter-receiver interferometry requires wavefields to be generated around specific stationary points in space which are controlled purely by medium heterogeneity and receiver locations. By contrast, application of source-receiver interferometry constructs at least kinematic information about physically scattered waves between a source and a receiver by cross-convolution of scattered waves propagating from and to any points on the boundary. This reduces the ambiguity in interpreting wavefields generated using source-receiver interferometry with only partial boundaries (as is standard in practical applications), as it allows spurious or non-physical energy in the constructed Green's function to be identified and ignored. Further, source-receiver interferometry (which includes a step of inter-receiver interferometry) turns all types of non-physical or spurious energy deriving from inter-receiver interferometry into what appears to be physical energy. This explains in part why source-receiver interferometry may perform relatively well compared to inter-receiver interferometry when constructing scattered wavefields.
Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Wendy I.
1994-01-01
The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.
Testing the TPF Interferometry Approach before Launch
NASA Technical Reports Server (NTRS)
Serabyn, Eugene; Mennesson, Bertrand
2006-01-01
One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...
Intellectual property in holographic interferometry
NASA Astrophysics Data System (ADS)
Reingand, Nadya; Hunt, David
2006-08-01
This paper presents an overview of patents and patent applications on holographic interferometry, and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic interferometry were uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, Japanese Patent Office and Korean Patent Office for the time frame from 1971 through May 2006. The patent analysis unveils trends in patent temporal distribution, patent families formation, significant technological coverage within the market of system that employ holographic interferometry and other interesting insights.
Spaceborne Imaging Radar-C instrument
NASA Technical Reports Server (NTRS)
Huneycutt, Bryan L.
1993-01-01
The Spaceborne Imaging Radar-C is the next radar in the series of spaceborne radar experiments, which began with Seasat and continued with SIR-A and SIR-B. The SIR-C instrument has been designed to obtain simultaneous multifrequency and simultaneous multipolarization radar images from a low earth orbit. It is a multiparameter imaging radar that will be flown during at least two different seasons. The instrument operates in the squint alignment mode, the extended aperture mode, the scansar mode, and the interferometry mode. The instrument uses engineering techniques such as beam nulling for echo tracking, pulse repetition frequency hopping for Doppler centroid tracking, generating the frequency step chirp for radar parameter flexibility, block floating-point quantizing for data rate compression, and elevation beamwidth broadening for increasing the swath illumination.
NASA Astrophysics Data System (ADS)
Barry, R. K.; Danchi, W. C.
2008-12-01
We review observations of nova RS Ophiuchi using long-baseline near-infrared and mid-infrared interferometry at three observatories: the Keck Interferometer in the Nulling mode (KIN), the Palomar Testbed Interferometer (PTI), and the Infrared and Optical Telescope Array (IOTA). We discuss these observations in the context of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. We discuss how recent observations using the Spitzer Space Telescope and the VLTI support this proposed model.
Interferometer for measuring the dynamic surface topography of a human tear film
NASA Astrophysics Data System (ADS)
Primeau, Brian C.; Greivenkamp, John E.
2012-03-01
The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.
Theoretical Properties of Acoustical Speckle Interferometry.
1980-09-01
an obvious one , since it was first performed in the acoustical holography. An acoustical speckle interferometry study has been demonstrated to be a...experiments in which pulses were used to study the propagation of the circumferential waves on aluminum cylinders immersed in water. In 1969, Bunney...destructive Testing SB. ABTRACT aCdo as revers. NW ass a" Id by block numb") Acoustical speckle interferometry is based locally on the elastodynamic response
Design and fabrication of a brassboard optical bench structure for space interferometry mission
NASA Technical Reports Server (NTRS)
Buck, Stephanie
2006-01-01
The Space Interferometry Mission (SIM), consisting of an orbiting pair of telescopes, will be used for characterization of extrasolar planetary systems and for associated astrophysics research. To maximize the capabilities of this instrument, extensive technology development has been performed, much of it to understand and verify the performance of precision structures.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
Beam-modulation methods in quantitative and flow visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, A.
1986-01-01
This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Beam-modulation methods in quantitative and flow-visualization holographic interferometry
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1986-01-01
Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.
Digitally enhanced homodyne interferometry.
Sutton, Andrew J; Gerberding, Oliver; Heinzel, Gerhard; Shaddock, Daniel A
2012-09-24
We present two variations of a novel interferometry technique capable of simultaneously measuring multiple targets with high sensitivity. The technique performs a homodyne phase measurement by application of a four point phase shifting algorithm, with pseudo-random switching between points to allow multiplexed measurement based upon propagation delay alone. By multiplexing measurements and shifting complexity into signal processing, both variants realise significant complexity reductions over comparable methods. The first variant performs a typical coherent detection with a dedicated reference field and achieves a displacement noise floor 0.8 pm/√Hz above 50 Hz. The second allows for removal of the dedicated reference, resulting in further simplifications and improved low frequency performance with a 1 pm/√Hz noise floor measured down to 20 Hz. These results represent the most sensitive measurement performed using this style of interferometry whilst simultaneously reducing the electro-optic footprint.
Tunable-optical-filter-based white-light interferometry for sensing.
Yu, Bing; Wang, Anbo; Pickrell, Gary; Xu, Juncheng
2005-06-15
We describe tunable-optical-filter-based white-light interferometry for sensor interrogation. By introducing a tunable optical filter into a white-light interferometry system, one can interrogate an interferometer with either quadrature demodulation or spectral-domain detection at low cost. To demonstrate the feasibility of effectively demodulating various types of interferometric sensor, experiments have been performed using an extrinsic Fabry-Perot tunable filter to interrogate two extrinsic Fabry-Perot interferometric temperature sensors and a diaphragm-based pressure sensor.
ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pu, Hung-Yi; Yun, Kiyun; Yoon, Suk-Jin
General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integrationmore » step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.« less
Adaptive jammer nulling in EHF communications satellites
NASA Astrophysics Data System (ADS)
Bhagwan, Jai; Kavanagh, Stephen; Yen, J. L.
A preliminary investigation is reviewed concerning adaptive null steering multibeam uplink receiving system concepts for future extremely high frequency communications satellites. Primary alternatives in the design of the uplink antenna, the multibeam adaptive nulling receiver, and the processing algorithm and optimization criterion are discussed. The alternatives are phased array, lens or reflector antennas, nulling at radio frequency or an intermediate frequency, wideband versus narrowband nulling, and various adaptive nulling algorithms. A primary determinant of the hardware complexity is the receiving system architecture, which is described for the alternative antenna and nulling concepts. The final concept chosen will be influenced by the nulling performance requirements, cost, and technological readiness.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Mask Design for the Space Interferometry Mission Internal Metrology
NASA Technical Reports Server (NTRS)
Marx, David; Zhao, Feng; Korechoff, Robert
2005-01-01
This slide presentation reviews the mask design used for the internal metrology of the Space Interferometry Mission (SIM). Included is information about the project, the method of measurements with SIM, the internal metrology, numerical model of internal metrology, wavefront examples, performance metrics, and mask design
Simultaneous Dual Species Matter Wave Interferometry
NASA Astrophysics Data System (ADS)
Schlippert, Dennis; Albers, Henning; Richardson, Logan; Meiners, Christian; Hartwig, Jonas; Ertmer, Wolfgang; Rasel, Ernst
2014-05-01
We report on the first realization of a simultaneous 39K-87Rb-dual species matter wave interferometer measuring gravitational acceleration with the aim to test Einstein's Equivalence Principle (EEP). Compared to classical tests such as torsion pendulum experiments and Lunar Laser Ranging, chemical elements suitable for performing matter wave interferometry can provide complementary information. We show the performance of our apparatus and discuss current limitations and future improvements towards highly sensitive matter wave tests of EEP.
NASA Astrophysics Data System (ADS)
Aime, C.; Soummer, R.
This book reports the proceedings of the second Journées d'Imagerie grave{a} Très Haute Dynamique et Détection d'Exoplanètes (Days on High Contrast Imaging and Exoplanets Detection) that were held in Nice in October, 6-10, 2003 with the joint efforts of the Collège de France, the Observatoire de la Côte d'Azur, the CNRS (Centre National de la Recherche Scientifique) and the Laboratoire Universitaire d'Astrophysique de Nice which organized the meeting. The first Journées led to the publication of Volume 8, 2003 EAS Publications Series: Astronomy with High Contrast Imaging: From Planetary Systems to Active Galactic Nuclei that collected 33 papers presented during the session of May, 13-16, 2002. It covered a very large domain of research in high contrast imaging for exoplanet detection: astrophysical science (from protoplanetary disks to AGNs), instruments and techniques (from coronagraphy to nulling), data processing. These Journées took place because of the need of a working session giving enough time to the participants to explain their work and understand that of their colleagues. The second Journées took the form of an École thématique du CNRS. The courses were held in French, but the reports are in English. The present edition reports 29 courses and short presentations given at this occasion. The texts correspond to original presentations, and a few communications, too similar to those of 2002, were not reported here to avoid duplication. This makes the two books complementary. The general theme of the school was similar to that of the former meeting, with a marked teaching objective. The courses and presentations were also more centered in optics and instrumental techniques. The main idea was to study what we could call “exoplanetographs”, instruments using apodisation, coronagraphy, nulling or other techniques to directly record the light of an exoplanet. Fundamental aspects of signal processing were deferred to a third edition of the school. A very short explanation of how the reports are ordered is given here. The Journées of 2003 started with the delocalized lectures (delocalized means here “not in Paris”!) of the Collège de France, of Antoine Labeyrie who wrote a report on Removal of coronagraphy residues with an adaptive hologram. Three invited seminars follow: Olivier Guyon (Pupil remapping techniques), Daniel Rouan (Ultra-nulling interferometers), and Kjetil Dohlen (Phase masks in astronomy). An illustration from Daniel Rouan's talk on the properties of Prouhet-Thué-Morse series was also selected for the cover figure of this edition. These papers are followed by the courses and communications given during the 4 days of the school, in a slightly different order of their presentation. The first two days were on atmospheric turbulence and adaptive optics for coronagraphy, and also coronagraphic space projects. Steve Ridgway gives a general introduction to the problem (Astronomy with high contrast imaging). This is followed by a presentation on Fourier and Statistical Optics: Shaped and Apodized apertures (Claude Aime), The effect of a coronagraph on the statistics of adaptive optics pinned speckles (Claude Aime and Rémi Soummer). A general introduction to the problem of atmospheric turbulence is made by Julien Borgnino. A presentation of the Concordia site with emphasis on its advantages for high contrast imaging is given by Eric Fossat. Several presentations relative to numerical simulations of Adaptive Optics and coronagraphy follow: Marcel Carbillet (AO for very high contrast imaging), Lyu Abe and Anthony Boccaletti share two presentations on Numerical simulations for coronagraphy. These presentations are followed by reports on experiments: Sandrine Thomas (SAM-the SOAR adaptive module), Pierre Baudoz (Cryogenic IR test of the 4QPM coronagraph), Anthony Boccaletti (Coronagraphy with JWST in the thermal IR). Pierre Bourget (Hg-Mask Coronagraph) ends this part with a coronagraph using a mercury drop as a Lyot mask. The next session focused on nulling interferometry and we gather here the corresponding contribution. Two complementary reports on theory and experiment of Bracewell interferometry were made by Yves Rabbia (Theoretical aspects of Darwin) and Marc Ollivier (Experimental aspects of Darwin). Olivier Absil gave a report on the ground based nulling interferometer experiment (Effects of atmospheric turbulence on GENIE) and Valérie Weber on MAII (Nulling interferometric broadbord). A comparison between nulling and different classes of coronagraphs was made by Olivier Guyon (Coronagraphy vs. nulling). A few prospective papers have been regrouped at the end of the book: Interferometric remapped array nulling (Lyu Abe), Multiple-stage apodized Lyot coronagraph (Claude Aime and Rémi Soummer), Piston sensor using dispersed speckles (Virginie Borkowski), Principle of a coaxial achromatic interfero coronagraph (Jean Gay), Coronagraphic imaging on the VLTI with VIDA (Olivier Lardière), Phase contrast apodisation (Frantz Martinache) The last section regroups science aspects and results on sky, using high contrast imaging: Low mass companions searches using high dynamic range imaging (Jean-Luc Beuzit). The last paper by Claire Moutou (Ground-based direct imaging of exoplanets) can be read as a prospective conclusion of the Journées. C. Aime and R. Soummer
A programmable broadband low frequency active vibration isolation system for atom interferometry.
Tang, Biao; Zhou, Lin; Xiong, Zongyuan; Wang, Jin; Zhan, Mingsheng
2014-09-01
Vibration isolation at low frequency is important for some precision measurement experiments that use atom interferometry. To decrease the vibrational noise caused by the reflecting mirror of Raman beams in atom interferometry, we designed and demonstrated a compact stable active low frequency vibration isolation system. In this system, a digital control subsystem is used to process and feedback the vibration measured by a seismometer. A voice coil actuator is used to control and cancel the motion of a commercial passive vibration isolation platform. With the help of field programmable gate array-based control subsystem, the vibration isolation system performed flexibly and accurately. When the feedback is on, the intrinsic resonance frequency of the system will change from 0.8 Hz to about 0.015 Hz. The vertical vibration (0.01-10 Hz) measured by the in-loop seismometer is reduced by an additional factor of up to 500 on the basis of a passive vibration isolation platform, and we have proved the performance by adding an additional seismometer as well as applying it in the atom interferometry experiment.
Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators
NASA Technical Reports Server (NTRS)
Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen
2012-01-01
For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.
An Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy;
2004-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
NULL Convention Floating Point Multiplier
Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069
NULL convention floating point multiplier.
Albert, Anitha Juliette; Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James
2015-08-28
There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.
Digitally Enhanced Heterodyne Interferometry
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge
2010-01-01
Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.
bol'shakov, O P; Kotov, I R; Poliakova, E L
2014-01-01
25 children aged 2 to 5 years were examined orthopedically using the methods of plantometry and holographic interferometry of three-dimensional casts of footprints. The computer maps of the foot arch surface were obtained and the graphic reconstruction of the arch shape was performed in normal cases and in children with flatfoot. Most significant deviations of the foot arch shape, probably associated with the development delay, were detected in 4-5-year-old children under the dynamic load. Some additional advantages of holographic interferometry for the early diagnosis of flatfoot in children were demonstrated.
Defect Depth Measurement Using White Light Interferometry
NASA Technical Reports Server (NTRS)
Parker, Don; Starr, Stan
2009-01-01
The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.
Wideband optical sensing using pulse interferometry.
Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis
2012-08-13
Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.
Wang, Guochao; Tan, Lilong; Yan, Shuhua
2018-02-07
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.
Tan, Lilong; Yan, Shuhua
2018-01-01
We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897
Advanced optical instruments technology
NASA Technical Reports Server (NTRS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-01-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
Silicon Micromachined Sensor for Broadband Vibration Analysis
NASA Technical Reports Server (NTRS)
Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward
1995-01-01
The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.
Advanced optical instruments technology
NASA Astrophysics Data System (ADS)
Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William
1992-08-01
The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.
X-ray grating interferometry at photon energies over 180 keV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Yaniz, M., E-mail: maite.ruiz-yaniz@esrf.fr; Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, James-Franck-Str. 1, 85748 Garching; Koch, F.
2015-04-13
We report on the implementation and characterization of grating interferometry operating at an x-ray energy of 183 keV. With the possibility to use this technique at high x-ray energies, bigger specimens could be studied in a quantitative way. Also, imaging strongly absorbing specimens will benefit from the advantages of the phase and dark-field signals provided by grating interferometry. However, especially at these high photon energies the performance of the absorption grating becomes a key point on the quality of the system, because the grating lines need to keep their small width of a couple of micrometers and exhibit a greater heightmore » of hundreds of micrometers. The performance of high aspect ratio absorption gratings fabricated with different techniques is discussed. Further, a dark-field image of an alkaline multicell battery highlights the potential of high energy x-ray grating based imaging.« less
A Gaussian Mixture Model for Nulling Pulsars
NASA Astrophysics Data System (ADS)
Kaplan, D. L.; Swiggum, J. K.; Fichtenbauer, T. D. J.; Vallisneri, M.
2018-03-01
The phenomenon of pulsar nulling—where pulsars occasionally turn off for one or more pulses—provides insight into pulsar-emission mechanisms and the processes by which pulsars turn off when they cross the “death line.” However, while ever more pulsars are found that exhibit nulling behavior, the statistical techniques used to measure nulling are biased, with limited utility and precision. In this paper, we introduce an improved algorithm, based on Gaussian mixture models, for measuring pulsar nulling behavior. We demonstrate this algorithm on a number of pulsars observed as part of a larger sample of nulling pulsars, and show that it performs considerably better than existing techniques, yielding better precision and no bias. We further validate our algorithm on simulated data. Our algorithm is widely applicable to a large number of pulsars even if they do not show obvious nulls. Moreover, it can be used to derive nulling probabilities of nulling for individual pulses, which can be used for in-depth studies.
Hologram interferometry in automotive component vibration testing
NASA Astrophysics Data System (ADS)
Brown, Gordon M.; Forbes, Jamie W.; Marchi, Mitchell M.; Wales, Raymond R.
1993-02-01
An ever increasing variety of automotive component vibration testing is being pursued at Ford Motor Company, U.S.A. The driving force for use of hologram interferometry in these tests is the continuing need to design component structures to meet more stringent functional performance criteria. Parameters such as noise and vibration, sound quality, and reliability must be optimized for the lightest weight component possible. Continually increasing customer expectations and regulatory pressures on fuel economy and safety mandate that vehicles be built from highly optimized components. This paper includes applications of holographic interferometry for powertrain support structure tuning, body panel noise reduction, wiper system noise and vibration path analysis, and other vehicle component studies.
New Methods of Entanglement with Spatial Modes of Light
2014-02-01
Poincare beam by state nulling. ....................................... 15 Figure 13: Poincare patterns measured by imaging polarimetry ...perform imaging polarimetry . This entails taking six single photon images, pixel by pixel, after the passage through six different polarization filters...state nulling [21,22] and by imaging polarimetry [24]. Figure 12 shows the result of state nulling measurements in diagnosing the mode of a Poincare
MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele
2016-03-01
We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9.more » We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.« less
LISA pathfinder optical interferometry
NASA Astrophysics Data System (ADS)
Braxmaier, Claus; Heinzel, Gerhard; Middleton, Kevin F.; Caldwell, Martin E.; Konrad, W.; Stockburger, H.; Lucarelli, S.; te Plate, Maurice B.; Wand, V.; Garcia, A. C.; Draaisma, F.; Pijnenburg, J.; Robertson, D. I.; Killow, Christian; Ward, Harry; Danzmann, Karsten; Johann, Ulrich A.
2004-09-01
The LISA Technology Package (LTP) aboard of LISA pathfinder mission is dedicated to demonstrate and verify key technologies for LISA, in particular drag free control, ultra-precise laser interferometry and gravitational sensor. Two inertial sensor, the optical interferometry in between combined with the dimensional stable Glass ceramic Zerodur structure are setting up the LTP. The validation of drag free operation of the spacecraft is planned by measuring laser interferometrically the relative displacement and tilt between two test masses (and the optical bench) with a noise levels of 10pm/√Hz and 10 nrad/√Hz between 3mHz and 30mHz. This performance and additionally overall environmental tests was currently verified on EM level. The OB structure is able to support two inertial sensors (≍17kg each) and to withstand 25 g design loads as well as 0...40°C temperature range. Optical functionality was verified successfully after environmental tests. The engineering model development and manufacturing of the optical bench and interferometry hardware and their verification tests will be presented.
Modulation of Polarization for Phase Extraction in Holographic Interferometry with Two References
NASA Astrophysics Data System (ADS)
Rodriguez-Zurita, G.; Vázquez-Castillo, J.-F.; Toto-Arellano, N.-I.; Meneses-Fabian, C.; Jiménez-Montero, L.-E.
2010-04-01
Heterodyne holographic interferometry allows high accuracy for phase-difference extraction between two wave fronts, especially when they are previously recorded in the same recording medium. In part, this is because the wave fronts can be affected by the recording process in a very similar way. The double reconstruction of a double-exposure hologram with two independent references results in a two-beam holographic interferometer with an arm conveying a wave modulated in frequency when using heterodyne techniques. The heterodyne frequency has been usually introduced with a plane mirror attached to a piezo-electric stack driven with a suitable variable power supply. For holographic interferometry, however, less attention has been devoted to alternative phase retrieval variants as, for example, phase-shifting with modulation of polarization or Fourier methods. In this work, we propose and demonstrate the basic capabilities of modulation of polarization performing as a phase-shifting technique for holographic interferometry with two references in a phase-stepping scheme. Experimental results are provided.
Estimating the proportion of true null hypotheses when the statistics are discrete.
Dialsingh, Isaac; Austin, Stefanie R; Altman, Naomi S
2015-07-15
In high-dimensional testing problems π0, the proportion of null hypotheses that are true is an important parameter. For discrete test statistics, the P values come from a discrete distribution with finite support and the null distribution may depend on an ancillary statistic such as a table margin that varies among the test statistics. Methods for estimating π0 developed for continuous test statistics, which depend on a uniform or identical null distribution of P values, may not perform well when applied to discrete testing problems. This article introduces a number of π0 estimators, the regression and 'T' methods that perform well with discrete test statistics and also assesses how well methods developed for or adapted from continuous tests perform with discrete tests. We demonstrate the usefulness of these estimators in the analysis of high-throughput biological RNA-seq and single-nucleotide polymorphism data. implemented in R. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-speed real-time heterodyne interferometry using software-defined radio.
Riobo, L M; Veiras, F E; Gonzalez, M G; Garea, M T; Sorichetti, P A
2018-01-10
This paper describes the design and performance of a phase demodulation scheme based on software-defined radio (SDR), applied in heterodyne interferometry. The phase retrieval is performed in real time by means of a low-cost SDR with a wideband optoelectronic front-end. Compared to other demodulation schemes, the system is quite simpler, versatile, and of lower cost. The performance of the demodulator is demonstrated by measuring the displacement per volt of a thin-film polymeric piezoelectric transducer based on polyvinylidene fluoride for ultrasonic applications. We measured displacements between 3.5 pm and 122 pm with 7% relative uncertainty, in the frequency range from 20 kHz to 1 MHz.
Supermassive black hole binaries and transient radio events: studies in pulsar astronomy
NASA Astrophysics Data System (ADS)
Burke-Spolaor, S.
2011-06-01
The field of pulsar astronomy encompasses a rich breadth of astrophysical topics. The research in this thesis contributes to two particular subjects of pulsar astronomy: gravitational wave science, and identifying celestial sources of pulsed radio emission. We first investigated the detection of supermassive black hole (SMBH) binaries, which are the brightest expected source of gravitational waves for pulsar timing. We considered whether two electromagnetic SMBH tracers, velocity-resolved emission lines in active nuclei, and radio galactic nuclei with spatially-resolved, flat-spectrum cores, can reveal systems emitting gravitational waves in the pulsar timing band. We found that there are systems which may in principle be simultaneously detectable by both an electromagnetic signature and gravitational emission, however the probability of actually identifying such a system is low (they will represent much less than 1% of a randomly selected galactic nucleus sample). This study accents the fact that electromagnetic indicators may be used to explore binary populations down to the 'stalling radii' at which binary inspiral evolution may stall indefinitely at radii exceeding those which produce gravitational radiation in the pulsar timing band. We then performed a search for binary SMBH holes in archival Very Long Baseline Interferometry data for 3114 radio-luminous active galactic nuclei. One source was detected as a double nucleus. This result is interpreted in terms of post-merger timescales for SMBH centralisation, implications for 'stalling', and the relationship of radio activity in nuclei to mergers. Our analysis suggested that binary pair evolution of SMBHs (both of masses >108M circled bullet) spends less than 500Myr in progression from the merging of galactic stellar cores to within the purported stalling radius for SMBH pairs, giving no evidence for an excess of stalled binary systems at small separations. Circumstantial evidence showed that the relative state of radio emission between paired SMBHs is correlated within orbital separations of 2.5 kpc. We then searched for transient radio events in two archival pulsar surveys, and in the new High Time Resolution Universe (HTRU) Survey. We present the methodology employed for these searches, noting the novel addition of methods for single-event recognition, automatic interference mitigation, and data inspection. 27 new neutron stars were discovered. We discuss the relationship between "rotating radio transient" (RRAT) and pulsar populations, finding that the Galactic z-distribution of RRATs closely resembles the distribution of pulsars, and where measurable, RRAT pulse widths are similar to individual pulses from pulsars of similar period, implying a similar beaming fraction. We postulate that many RRATs may simply represent a tail of extreme-nulling pulsars that are "on" for less than a pulse period; this is supported by the fact that nulling pulsars and single-pulse discoveries exhibit a continuous distribution across null/activity timescales and nulling fractions. We found a drop-off in objects with emissivity cycles longer than 300 seconds at intermediate and low nulling fractions which is not readily explained by selection effects. The HTRU deep low-latitude survey (70-min. pointings at galactic latitudes |b| < 3.5 degrees and longitudes -80 degrees < l < 30 degrees) will be capable of exploring whether this deficit is natural or an effect of selection. The intriguing object PSR J0941-39 may represent an evolutionary link between nulling populations; discovered as an sparsely-pulsing RRAT, in follow-up observations it often appeared as a bright (10 mJy) pulsar with a low nulling fraction. It is therefore apparent that a neutron star can oscillate between nulling levels, much like mode-changing pulsars. Crucially, the RRAT and pulsar-mode emission sites are coincident, implying that the two emission mechanisms are linked. We estimate that the full HTRU survey will roughly quadruple the known deep-nulling pulsar population, allowing statistical studies to be made of extreme-nulling populations. HTRU's low-latitude survey will explore the neutron star population with null lengths lasting up to several hours. We lastly reported the discovery of 16 pulses, the bulk of which exhibit a frequency sweep with a shape and magnitude resembling the "Lorimer Burst" (Lorimer et al. 2007), which three years ago was reported as a solitary radio burst that was thought to be the first discovery of a rare, impulsive event of unknown extragalactic origin. However, the new events were of clearly terrestrial origin, with properties unlike any known sources of terrestrial broad-band radio emission. The new detections cast doubt on the extragalactic interpretation of the original burst, and call for further sophistication in radio-pulse survey techniques to identify the origin of the anomalous terrestrial signals and definitively distinguish future extragalactic pulse detections from local signals. The ambiguous origin of these seemingly dispersed, swept-frequency signals suggest that radio-pulse searches using multiple detectors will be the only experiments able to provide definitive information about the origin of new swept-frequency radio burst detections. Finally, we summarise our major findings and suggest future work which would expand on the work in this thesis.
Precision Geodesy via Radio Interferometry.
Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F
1972-10-27
Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.
NASA Astrophysics Data System (ADS)
Wang, Huarui; Shen, Jianqi
2014-05-01
The size of nanoparticles is measured by laser diode self-mixing interferometry, which employs a sensitive, compact, and simple optical setup. However, the signal processing of the interferometry is slow or expensive. In this article, a fast and economic signal processing technique is introduced, in which the self-mixing AC signal is transformed into DC signals with an analog circuit consisting of 16 channels. These DC signals are obtained as a spectrum from which the size of nanoparticles can be retrieved. The technique is examined by measuring the standard nanoparticles. Further experiments are performed to compare the skimmed milk and whole milk, and also the fresh skimmed milk and rotten skimmed milk.
Recent Experiments Conducted with the Wide-Field Imaging Interferometry Testbed (WIIT)
NASA Technical Reports Server (NTRS)
Leisawitz, David T.; Juanola-Parramon, Roser; Bolcar, Matthew; Iacchetta, Alexander S.; Maher, Stephen F.; Rinehart, Stephen A.
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) was developed at NASA's Goddard Space Flight Center to demonstrate and explore the practical limitations inherent in wide field-of-view double Fourier (spatio-spectral) interferometry. The testbed delivers high-quality interferometric data and is capable of observing spatially and spectrally complex hyperspectral test scenes. Although WIIT operates at visible wavelengths, by design the data are representative of those from a space-based far-infrared observatory. We used WIIT to observe a calibrated, independently characterized test scene of modest spatial and spectral complexity, and an astronomically realistic test scene of much greater spatial and spectral complexity. This paper describes the experimental setup, summarizes the performance of the testbed, and presents representative data.
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.; ...
2018-02-02
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less
Laser Development for Gravitational-Wave Interferometry in Space
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
Close Binary Star Speckle Interferometry on the McMath-Pierce 0.8-Meter Solar Telescope
NASA Astrophysics Data System (ADS)
Wiley, Edward; Harshaw, Richard; Jones, Gregory; Branston, Detrick; Boyce, Patrick; Rowe, David; Ridgely, John; Estrada, Reed; Genet, Russell
2015-09-01
Observations were made in April 2014 to assess the utility of the 0.8-meter solar telescope at the McMath-Pierce Solar Observatory at Kitt Peak National Observatory for performing speckle interferometry observations of close binary stars. Several configurations using science cameras, acquisition cameras, eyepieces, and flip mirrors were evaluated. Speckle images were obtained and recommendations for further improvement of the acquisition system are presented.
An omnibus test for the global null hypothesis.
Futschik, Andreas; Taus, Thomas; Zehetmayer, Sonja
2018-01-01
Global hypothesis tests are a useful tool in the context of clinical trials, genetic studies, or meta-analyses, when researchers are not interested in testing individual hypotheses, but in testing whether none of the hypotheses is false. There are several possibilities how to test the global null hypothesis when the individual null hypotheses are independent. If it is assumed that many of the individual null hypotheses are false, combination tests have been recommended to maximize power. If, however, it is assumed that only one or a few null hypotheses are false, global tests based on individual test statistics are more powerful (e.g. Bonferroni or Simes test). However, usually there is no a priori knowledge on the number of false individual null hypotheses. We therefore propose an omnibus test based on cumulative sums of the transformed p-values. We show that this test yields an impressive overall performance. The proposed method is implemented in an R-package called omnibus.
Continuous development of current sheets near and away from magnetic nulls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.
2016-04-15
The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scalingmore » than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.« less
The Importance of Proving the Null
Gallistel, C. R.
2010-01-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? PMID:19348549
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry
Belmonte, Antonella; Nutricato, Raffaele; Nitti, Davide O.; Chiaradia, Maria T.
2018-01-01
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period. PMID:29702588
Performance Analysis of Satellite Missions for Multi-Temporal SAR Interferometry.
Bovenga, Fabio; Belmonte, Antonella; Refice, Alberto; Pasquariello, Guido; Nutricato, Raffaele; Nitti, Davide O; Chiaradia, Maria T
2018-04-27
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, atmospheric artifacts, and visibility problems related to ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new and interesting opportunity is provided by Sentinel-1, which has a spatial resolution comparable to that of previous ESA C-band sensors, and revisit times improved by up to 6 days. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications in terms of ground instability monitoring. Issues related to coherent target detection, mean velocity precision, and product geo-location are addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of a multi-sensor ground instability investigation over Lesina Marina, a village in Southern Italy lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been processed, coming from both legacy ERS and ENVISAT missions, and latest-generation RADARSAT-2, COSMO-SkyMed, and Sentinel-1A sensors. Results confirm the presence of a rather steady uplift process, with limited to null variations throughout the whole monitored time-period.
Implosive Collapse about Magnetic Null Points: A Quantitative Comparison between 2D and 3D Nulls
NASA Astrophysics Data System (ADS)
Thurgood, Jonathan O.; Pontin, David I.; McLaughlin, James A.
2018-03-01
Null collapse is an implosive process whereby MHD waves focus their energy in the vicinity of a null point, forming a current sheet and initiating magnetic reconnection. We consider, for the first time, the case of collapsing 3D magnetic null points in nonlinear, resistive MHD using numerical simulation, exploring key physical aspects of the system as well as performing a detailed parameter study. We find that within a particular plane containing the 3D null, the plasma and current density enhancements resulting from the collapse are quantitatively and qualitatively as per the 2D case in both the linear and nonlinear collapse regimes. However, the scaling with resistivity of the 3D reconnection rate—which is a global quantity—is found to be less favorable when the magnetic null point is more rotationally symmetric, due to the action of increased magnetic back-pressure. Furthermore, we find that, with increasing ambient plasma pressure, the collapse can be throttled, as is the case for 2D nulls. We discuss this pressure-limiting in the context of fast reconnection in the solar atmosphere and suggest mechanisms by which it may be overcome. We also discuss the implications of the results in the context of null collapse as a trigger mechanism of Oscillatory Reconnection, a time-dependent reconnection mechanism, and also within the wider subject of wave–null point interactions. We conclude that, in general, increasingly rotationally asymmetric nulls will be more favorable in terms of magnetic energy release via null collapse than their more symmetric counterparts.
Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry
NASA Astrophysics Data System (ADS)
Minh, Tuan Pham; Hucl, Václav; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Řeřucha, Šimon; Číp, Ondřej; Lazar, Josef
2015-05-01
Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.
Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.
Servin, M; Malacara, D; Rodriguez-Vera, R
1994-05-01
A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.
Initial operation of the Lockheed Martin T4B experiment
NASA Astrophysics Data System (ADS)
Garrett, M. L.; Blinzer, A.; Ebersohn, F.; Gucker, S.; Heinrich, J.; Lohff, C.; McGuire, T.; Montecalvo, N.; Raymond, A.; Rhoads, J.; Ross, P.; Sommers, B.; Strandberg, E.; Sullivan, R.; Walker, J.
2017-10-01
The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta (β 1) machine. The experiment consists of 13 magnetic field coils (11 external, 2 internal), to produce a series of on-axis field nulls surrounded by modest magnetic fields of up to 0.3 T. The primary plasma source used on T4B is a lanthanum hexaboride (LaB6) cathode, capable of coupling over 100 kW into the plasma. Initial testing focused on commissioning of components and integration of diagnostics. Diagnostics include both long and short wavelength interferometry, bolometry, visible and X-ray spectroscopy, Langmuir and B-dot probes, Thomson scattering, flux loops, and fast camera imagery. Low energy discharges were used to begin validation of physics models and simulation efforts. Following the initial machine check-out, neutral beam injection (NBI) was integrated onto the device. Detailed results will be presented. 2017 Lockheed Martin Corporation. All Rights Reserved.
Phase recovery in temporal speckle pattern interferometry using the generalized S-transform.
Federico, Alejandro; Kaufmann, Guillermo H
2008-04-15
We propose a novel approach based on the generalized S-transform to retrieve optical phase distributions in temporal speckle pattern interferometry. The performance of the proposed approach is compared with those given by well-known techniques based on the continuous wavelet, the Hilbert transforms, and a smoothed time-frequency distribution by analyzing interferometric data degraded by noise, nonmodulating pixels, and modulation loss. The advantages and limitations of the proposed phase retrieval approach are discussed.
Flow visualization of acoustic levitation experiment
NASA Technical Reports Server (NTRS)
Baroth, ED
1987-01-01
Acoustic levitation experiments for space applications were performed. Holographic interferometry is being used to study the heat transfer rates on a heated rod enclosed in a 6 cu in chamber. Acoustic waves at levels up to 150 db increased the heating rates to the rod by factors of three to four. High speed real time holographic interferometry was used to measure the boundary layer on the heated rod. Data reduction and digitization of the interferograms are being implemented.
Scanning fiber angle-resolved low coherence interferometry
Zhu, Yizheng; Terry, Neil G.; Wax, Adam
2010-01-01
We present a fiber-optic probe for Fourier-domain angle-resolved low coherence interferometry for the determination of depth-resolved scatterer size. The probe employs a scanning single-mode fiber to collect the angular scattering distribution of the sample, which is analyzed using the Mie theory to obtain the average size of the scatterers. Depth sectioning is achieved with low coherence Mach–Zehnder interferometry. In the sample arm of the interferometer, a fixed fiber illuminates the sample through an imaging lens and a collection fiber samples the backscattered angular distribution by scanning across the Fourier plane image of the sample. We characterize the optical performance of the probe and demonstrate the ability to execute depth-resolved sizing with subwavelength accuracy by using a double-layer phantom containing two sizes of polystyrene microspheres. PMID:19838271
Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects
Deng, Shijie; Wang, Peng; Yu, Xinglong
2017-01-01
Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology. PMID:29206182
Neutron interferometry: The pioneering contributions of Samuel A. Werner
NASA Astrophysics Data System (ADS)
Klein, A. G.
2006-11-01
In 1975, Sam Werner, while on the staff of the Scientific Laboratory of the Ford Motor Company, and his collaborators from Purdue University, Roberto Colella and Albert Overhauser, carried out one of the pioneering experiments in neutron interferometry at the 2 MW University of Michigan research reactor. It was the famous COW Experiment [Colella et al., Phys. Rev. Lett. 34 (1975) 1472] on gravitationally induced quantum interference. Shortly thereafter he moved to the University of Missouri in Columbia, to set up a program of neutron scattering research, including neutron interferometry. In the 25 years until his retirement a large number of beautiful experiments have been performed by Sam, with his group, his numerous students and many international collaborators. This work and its history are briefly reviewed in this paper.
NASA Astrophysics Data System (ADS)
Filatov, Alexei Vladimirovich
2002-09-01
Using electromagnetic forces to suspend rotating objects (rotors) without mechanical contact is often an appealing technical solution. Magnetic suspensions are typically required to have adequate load capacity and stiffness, and low rotational loss. Other desired features include low price, high reliability and manufacturability. With recent advances in permanent-magnet materials, the required forces can often be obtained by simply using the interaction between permanent magnets. While a magnetic bearing based entirely on permanent magnets could be expected to be inexpensive, reliable and easy to manufacture, a fundamental physical principle known as Earnshaw's theorem maintains that this type of suspension cannot be statically stable. Therefore, some other physical mechanisms must be included. One such mechanism employs the interaction between a conductor and a nonuniform magnetic field in relative motion. Its advantages include simplicity, reliability, wide range of operating temperature and system autonomy (no external wiring and power supplies are required). The disadvantages of the earlier embodiments were high rotational loss, low stiffness and load capacity. This dissertation proposes a novel type of magnetic bearing stabilized by the field-conductor interaction. One of the advantages of this bearing is that no electric field, E, develops in the conductor during the rotor rotation when the system is in no-load equilibrium. Because of this we refer to it as the Null-E Bearing. Null-E Bearings have potential for lower rotational loss and higher load capacity and stiffness than other bearings utilizing the field-conductor interaction. Their performance is highly insensitive to manufacturing inaccuracies. The Null-E Bearing in its basic form can be augmented with supplementary electronics to improve its performance. Depending on the degree of the electronics involvement, a variety of magnetic bearings can be developed ranging from a completely passive to an active magnetic bearing of a novel type. This dissertation contains theoretical analysis of the Null-E Bearing operation, including derivation of the stability conditions and estimation of some of the rotational losses. The validity of the theoretical conclusions has been demonstrated by building and testing a prototype in which non-contact suspension of a 3.2-kg rotor is achieved at spin speeds above 18 Hz.
Development of phase detection schemes based on surface plasmon resonance using interferometry.
Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin
2014-08-28
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.
Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry
Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin
2014-01-01
Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117
Development and recent results from the Subaru coronagraphic extreme adaptive optics system
NASA Astrophysics Data System (ADS)
Jovanovic, N.; Guyon, O.; Martinache, F.; Clergeon, C.; Singh, G.; Kudo, T.; Newman, K.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Stewart, P.; Huby, E.; Perrin, G.; Lacour, S.; Vievard, S.; Murakami, N.; Fumika, O.; Minowa, Y.; Hayano, Y.; White, J.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.
2014-07-01
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been successfully tested on-sky. In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems. Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of ~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of 2014.
Electronic speckle pattern interferometry using vortex beams.
Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás
2011-12-01
We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures. © 2011 Optical Society of America
Fabrication and testing of scatter plates for interferometry
NASA Technical Reports Server (NTRS)
Pour, J. J., Sr.; Pitts, J. R.
1972-01-01
Scatter plate interferometry has become a reliable method of measuring surface configurations of telescope mirrors and other optical components. The scatter plate used in an instrument should be of optimum quality if the surface it is being used to measure is to be of high accuracy. Tests were performed and results show that, although many scatter plates would function, few were of the optimum quality necessary. These few were of the 180 grit group, using 35- and 30-s exposures, which are figures derived from calculations.
Manfroi, Silvia; Scarcello, Antonio; Pagliaro, Pasqualepaolo
2015-10-01
Molecular genetic studies on Duffy blood group antigens have identified mutations underlying rare FY*Null and FY*X alleles. FY*Null has a high frequency in Blacks, especially from sub-Saharan Africa, while its frequency is not defined in Caucasians. FY*X allele, associated with Fy(a-b+w) phenotype, has a frequency of 2-3.5% in Caucasian people while it is absent in Blacks. During the project of extensive blood group genotyping in patients affected by hemoglobinopathies, we identified FY*X/FY*Null and FY*A/FY*Null genotypes in a Caucasian thalassemic family from Sardinia. We speculate on the frequency of FY*X and FY*Null alleles in Caucasian and Black people; further, we focused on the association of FY*X allele with weak Fyb antigen expression on red blood cells and its identification performing high sensitivity serological typing methods or genotyping. Copyright © 2015 Elsevier Ltd. All rights reserved.
The importance of proving the null.
Gallistel, C R
2009-04-01
Null hypotheses are simple, precise, and theoretically important. Conventional statistical analysis cannot support them; Bayesian analysis can. The challenge in a Bayesian analysis is to formulate a suitably vague alternative, because the vaguer the alternative is (the more it spreads out the unit mass of prior probability), the more the null is favored. A general solution is a sensitivity analysis: Compute the odds for or against the null as a function of the limit(s) on the vagueness of the alternative. If the odds on the null approach 1 from above as the hypothesized maximum size of the possible effect approaches 0, then the data favor the null over any vaguer alternative to it. The simple computations and the intuitive graphic representation of the analysis are illustrated by the analysis of diverse examples from the current literature. They pose 3 common experimental questions: (a) Are 2 means the same? (b) Is performance at chance? (c) Are factors additive? (c) 2009 APA, all rights reserved
Giovannelli, Gaia; Giacomazzi, Giorgia; Grosemans, Hanne; Sampaolesi, Maurilio
2018-02-24
Limb-girdle muscular dystrophy type 2E (LGMD2E) is caused by mutations in the β-sarcoglycan gene, which is expressed in skeletal, cardiac, and smooth muscles. β-Sarcoglycan-deficient (Sgcb-null) mice develop severe muscular dystrophy and cardiomyopathy with focal areas of necrosis. In this study we performed morphological (histological and cellular characterization) and functional (isometric tetanic force and fatigue) analyses in dystrophic mice. Comparison studies were carried out in 1-month-old (clinical onset of the disease) and 7-month-old control mice (C57Bl/6J, Rag2/γc-null) and immunocompetent and immunodeficient dystrophic mice (Sgcb-null and Sgcb/Rag2/γc-null, respectively). We found that the lack of an immunological system resulted in an increase of calcification in striated muscles without impairing extensor digitorum longus muscle performance. Sgcb/Rag2/γc-null muscles showed a significant reduction of alkaline phosphate-positive mesoangioblasts. The immunological system counteracts skeletal muscle degeneration in the murine model of LGMD2E. Muscle Nerve, 2018. © 2018 The Authors. Muscle & Nerve Published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun
2013-11-21
We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipationmore » performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.« less
NASA Astrophysics Data System (ADS)
Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron
2016-07-01
This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.
Deformations and strains in adhesive joints by moire interferometry
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.
1984-01-01
Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.
NASA Astrophysics Data System (ADS)
Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul
2017-04-01
Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.
Noninvasive evaluation system of fractured bone based on speckle interferometry
NASA Astrophysics Data System (ADS)
Yamanada, Shinya; Murata, Shigeru; Tanaka, Yohsuke
2010-11-01
This paper presents a noninvasive evaluation system of fractured bone based on speckle interferometry using a modified evaluation index for higher performance, and the experiments are carried out to examine the feasibility in evaluating bone fracture healing and the influence of some system parameters on the performance. From experimental results, it is shown that the presence of fractured part of bone and the state of bone fracture healing are successfully estimated by observing fine speckle fringes on the object surface. The proposed evaluation index also can successfully express the difference between the cases with cut and without it. Since most system parameters are found not to affect the performance of the present technique, the present technique is expected to be applied to various patients that have considerable individual variability.
Wideband quad optical sensor for high-speed sub-nanometer interferometry.
Riobo, L M; Veiras, F E; Sorichetti, P A; Garea, M T
2017-01-20
This paper describes the design and performance of a low-noise and high-speed optical sensor that provides two output signals in quadrature from the simultaneous detection of four phase-shifted interferograms. The sensor employs four high-speed photodiodes and high-speed, low-noise transimpedance amplifiers. The optical and electronic design was optimized for high-speed displacement measurement interferometry, over a broad range of operating frequencies. Compared to other experimental schemes, the sensor is simpler and of lower cost. The performance of the sensor is demonstrated by characterizing a piezoelectric transducer for ultrasonic applications. We measured displacements between 38 pm and 32 nm with 6% relative uncertainty, in the frequency range from 1 to 2 MHz.
NASA Technical Reports Server (NTRS)
Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter, III; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina;
2016-01-01
This work presents an overview of the This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes., a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNCs demonstrated wavefront sensing and control system to refine and quantify the end-to-end system performance for high-contrast starlight suppression. This pathfinder system will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth Sarkis
1987-01-01
The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
NASA Astrophysics Data System (ADS)
van der Avoort, Casper
2006-05-01
Optical long baseline stellar interferometry is an observational technique in astronomy that already exists for over a century, but is truly blooming during the last decades. The undoubted value of stellar interferometry as a technique to measure stellar parameters beyond the classical resolution limit is more and more spreading to the regime of synthesis imaging. With optical aperture synthesis imaging, the measurement of parameters is extended to the reconstruction of high resolution stellar images. A number of optical telescope arrays for synthesis imaging are operational on Earth, while space-based telescope arrays are being designed. For all imaging arrays, the combination of the light collected by the telescopes in the array can be performed in a number of ways. In this thesis, methods are introduced to model these methods of beam combination and compare their effectiveness in the generation of data to be used to reconstruct the image of a stellar object. One of these methods of beam combination is to be applied in a future space telescope. The European Space Agency is developing a mission that can valuably be extended with an imaging beam combiner. This mission is labeled Darwin, as its main goal is to provide information on the origin of life. The primary objective is the detection of planets around nearby stars - called exoplanets- and more precisely, Earth-like exoplanets. This detection is based on a signal, rather than an image. With an imaging mode, designed as described in this thesis, Darwin can make images of, for example, the planetary system to which the detected exoplanet belongs or, as another example, of the dust disk around a star out of which planets form. Such images will greatly contribute to the understanding of the formation of our own planetary system and of how and when life became possible on Earth. The comparison of beam combination methods for interferometric imaging occupies most of the pages of this thesis. Additional chapters will treat related subjects, being experimental work on beam combination optics, a description of a novel formalism for aberration retrieval and experimental work on nulling interferometry. The Chapters on interferometric imaging are organized in such a way that not only the physical principles behind a stellar interferometer are clear, but these chapters also form a basis for the method of analysis applied to the interferometers - -or rather beam combination methods- under consideration. The imaging process in a stellar interferometer will be treated as the inversion of a linear system of equations. The definition of interferometric imaging in this thesis can be stated to be the reconstruction of a luminosity distribution function on the sky, that is, in angular measure, larger than the angular diffraction limited spot size -or Point-Spread Function (PSF)- of a single telescope in the array and that contains, again in angular measure, spatial structure that is much smaller than the PSF of a single telescope. This reconstruction has to be based on knowledge of the dimensions of the telescope array and the detector. The detector collects intensity data that is formed by observation of the polychromatic luminosity distribution on the sky and is deteriorated by the quantum-nature of light and an imperfect electronic detection process. Therefore, the imaging study presented in this thesis can be regarded to be a study on the signal characteristics of various interferometers while imaging a polychromatic wide-field stellar source. The collection of beam combination methods under consideration consists of four types. Among these are two well-known types, having either co-axially combined beams as in the Michelson-Morley experiment to demonstrate the existence of ether, or beams that follow optical paths as if an aperture mask were placed in front of a telescope, making the beams combine in the focus of that telescope, as suggested by Fizeau. For separated apertures rather than an aperture mask, these optical paths are stated to be homothetic. In short, these two types will be addressed as the Michelson or the Homothetic type. The other two types are addressed as Densified and Staircase. The first one is short for densified pupil imaging, an imaging technique very similar to the Homothetic type, be it that the natural course of light after the aperture mask is altered. However, the combination of the beams of light is again in focus. The Staircase method is an alternative to the co-axial Michelson method and lends its name from the fact that a staircase-shaped mirror is placed in an intermediate focal plane after each telescope in the array, before combining the beams of light co-axially. This addition allows stellar imaging as with the Michelson type, with the advantage of covering a large field-of-view. The details of these methods will intensively be discussed in this thesis, but the introduction of them at this point allows a short list of results, found by comparing them for equal imaging tasks. Homothetic imagers are best suited for covering a wide field-of-view, considering the information content of the interferometric signals these arrays produce. The large number of detectors does not seem to limit the imaging performance in the presence of noise, due to the high ratio of coherent versus incoherent information in the detector signal. The imaging efficiency of a Michelson type array is also high, although -considering only polychromatic wide-field imaging tasks- the ratio of coherent versus incoherent information in the detected signals is very low. This results in very large observation times needed to produce images comparable to those obtained with a Homothetic array. A detailed presentation of the characteristics of the detected signals in a co-axial Michelson array reveal that such signals, obtained by polychromatic observation of extended sources, have fringe envelope functions that do not allow Fourier-spectroscopy to obtain high-resolution spectroscopic information about such a source. For the Densified case, it is found that this method can indeed provide an interferometric PSF that is more favorable than a homothetic PSF, but only for narrow-angle observations. For polychromatic wide-field observations, the Densified-PSF is field-dependent, for which the image reconstruction process can account. Wide-field imaging using the favorable properties of the Densified-PSF can be performed, by using special settings of the delay or optical path length difference between interferometer arms and including observations with several settings of delay in the observation data. The Staircase method is the second best method for the imaging task under consideration. The discontinuous nature of the staircase-shaped mirrors does not give rise to a discontinuous reconstructed luminosity distribution or non-uniformly covered spatial frequencies. The intrinsic efficiency of the interferometric signal in this type of interferometer is worse than that of the other co-axial method, although the ratio of coherent versus incoherent signal in the data -the length of the fringe packet in one intensity trace-e- is nearly ultimate. The inefficiency is overwhelmingly compensated for by the very short observation time needed. Besides numerical studies of interferometer arrays, one interferometric imager was also studied experimentally. A homothetic imager was built, comprising three telescopes with fully separated beam relay optics. The pointing direction, the location and the optical path length of two of the three beams are electronically controllable. The beams can be focused together to interfere, via a beam combiner consisting of curved surfaces. This set-up allows to measure the required accuracies at which certain optical elements have to be positioned. Moreover, this set-up demonstrates that without knowledge of the initial pointing directions, locations and optical path lengths of the beams, the situation of homothesis can be attained, solely based on information from the focal plane of the set-up. Further experiments show that the approximation of exact homothesis is limited by the optical quality of the beam combiner optics. Parallel to the experiments on homothesis, a study was performed to evaluate the use of the Extended Nijboer-Zernike (ENZ) formalism for analysis of multiple aperture optical systems. It is envisaged that an aberration retrieval algorithm, provided with the common focus of a homothetic array, can be used to detect misalignment of or even aberrations in the sub-apertures of the sparse synthetic aperture. The ENZ formalism is a powerful tool to describe the focal intensity profile in an optical imaging system, imaging a monochromatic point source through a pupil that is allowed to have a certain transmission profile and phase aberration function over the pupil. Moreover, the formalism allows calculation of intensity profiles outside the best-focus plane. With the intensity information of several through-focus planes, enough information is available to reconstruct the pupil function from it. The formalism is described, including the reconstruction algorithm. Although very good results are obtained for general pupil functions, the results for synthetic pupil functions are not very promising. The detailed description of the ENZ-aberration retrieval reveals the origin of the breakdown of the retrieval process. Finally, a description of experiments on nulling interferometry is given, starting with the presentation of an experimental set-up for three-beam nulling. A novel strategy for polychromatic nulling is treated here, with the goal of relieving the tight phase constraint on the spectra in the individual beams. This theoretically allows broad band-nulling with a high rejection ratio without using achromatic phase shifters. The disappointing results led to an investigation of the spectra of the individual beams. The origin of the unsatisfactory level of the rejection ratio is found in the spectral unbalance of the beams. Before branching off, the beams have an equal spectrum. Then, the encounter of different optical elements with individually applied coatings, the control of beam-power per beam and finally the beam coupling into a single-mode fiber, apparently alter the spectra in such a way that the theoretically achievable level of the rejection ratio cannot be reached. The research described in this thesis provides onsets for research in several areas of interest related to aperture synthesis and guidelines concerning the design of synthetic telescopes for imaging. As such, this research contributes to the improvement of instrumentation for observational astronomy, in particular for stellar interferometry. While nulling interferometry is the detection technique that allows a space telescope array such as ESA-Darwin to identify exoplanets, optical aperture synthesis imaging is the technique that can make images of the planetary systems to which these exoplanets belong. Moreover, many objects can be observed that represent earlier versions of our planetary system, our Sun and even our galaxy, the Milky Way. Observing these objects might answer questions about the origins of the Earth itself and the life on it.
Study on a multi-delay spectral interferometry for stellar radial velocity measurement
NASA Astrophysics Data System (ADS)
Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang
2014-08-01
High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by broad band in big optical path difference (OPD).
Beam shaping optics to enhance performance of interferometry techniques in grating manufacture
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2018-02-01
Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.
Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement
NASA Astrophysics Data System (ADS)
Mo, Di; Wang, Ran; Li, Guang-zuo; Wang, Ning; Zhang, Ke-shu; Wu, Yi-rong
2017-11-01
Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.
Federico, Alejandro; Kaufmann, Guillermo H
2009-08-01
We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.
NASA Astrophysics Data System (ADS)
Federico, Alejandro; Kaufmann, Guillermo H.
2004-08-01
We evaluate the application of the Wigner-Ville distribution (WVD) to measure phase gradient maps in digital speckle pattern interferometry (DSPI), when the generated correlation fringes present phase discontinuities. The performance of the WVD method is evaluated using computer-simulated fringes. The influence of the filtering process to smooth DSPI fringes and additional drawbacks that emerge when this method is applied are discussed. A comparison with the conventional method based on the continuous wavelet transform in the stationary phase approximation is also presented.
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David; LeBohec, Stephan
2018-06-01
We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Polar-interferometry: what can be learnt from the IOTA/IONIC experiment
NASA Astrophysics Data System (ADS)
Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley
2008-07-01
We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.
Magnetoacoustic Waves in a Stratified Atmosphere with a Magnetic Null Point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarr, Lucas A.; Linton, Mark; Leake, James, E-mail: lucas.tarr.ctr@nrl.navy.mil
2017-03-01
We perform nonlinear MHD simulations to study the propagation of magnetoacoustic waves from the photosphere to the low corona. We focus on a 2D system with a gravitationally stratified atmosphere and three photospheric concentrations of magnetic flux that produce a magnetic null point with a magnetic dome topology. We find that a single wavepacket introduced at the lower boundary splits into multiple secondary wavepackets. A portion of the packet refracts toward the null owing to the varying Alfvén speed. Waves incident on the equipartition contour surrounding the null, where the sound and Alfvén speeds coincide, partially transmit, reflect, and mode-convertmore » between branches of the local dispersion relation. Approximately 15.5% of the wavepacket’s initial energy ( E {sub input}) converges on the null, mostly as a fast magnetoacoustic wave. Conversion is very efficient: 70% of the energy incident on the null is converted to slow modes propagating away from the null, 7% leaves as a fast wave, and the remaining 23% (0.036 E {sub input}) is locally dissipated. The acoustic energy leaving the null is strongly concentrated along field lines near each of the null’s four separatrices. The portion of the wavepacket that refracts toward the null, and the amount of current accumulation, depends on the vertical and horizontal wavenumbers and the centroid position of the wavepacket as it crosses the photosphere. Regions that refract toward or away from the null do not simply coincide with regions of open versus closed magnetic field or regions of particular field orientation. We also model wavepacket propagation using a WKB method and find that it agrees qualitatively, though not quantitatively, with the results of the numerical simulation.« less
Phase magnification by two-axis countertwisting for detection-noise robust interferometry
NASA Astrophysics Data System (ADS)
Anders, Fabian; Pezzè, Luca; Smerzi, Augusto; Klempt, Carsten
2018-04-01
Entanglement-enhanced atom interferometry has the potential of surpassing the standard quantum limit and eventually reaching the ultimate Heisenberg bound. The experimental progress is, however, hindered by various technical noise sources, including the noise in the detection of the output quantum state. The influence of detection noise can be largely overcome by exploiting echo schemes, where the entanglement-generating interaction is repeated after the interferometer sequence. Here, we propose an echo protocol that uses two-axis countertwisting as the main nonlinear interaction. We demonstrate that the scheme is robust to detection noise and its performance is superior compared to the already demonstrated one-axis twisting echo scheme. In particular, the sensitivity maintains the Heisenberg scaling in the limit of a large particle number. Finally, we show that the protocol can be implemented with spinor Bose-Einstein condensates. Our results thus outline a realistic approach to mitigate the detection noise in quantum-enhanced interferometry.
A decade of innovation with laser speckle metrology
NASA Astrophysics Data System (ADS)
Ettemeyer, Andreas
2003-05-01
Speckle Pattern Interferometry has emerged from the experimental substitution of holographic interferometry to become a powerful problem solving tool in research and industry. The rapid development of computer and digital imaging techniques in combination with minaturization of the optical equipment led to new applications which had not been anticipated before. While classical holographic interferometry had always required careful consideration of the environmental conditions such as vibration, noise, light, etc. and could generally only be performed in the optical laboratory, it is now state of the art, to handle portable speckle measuring equipment at almost any place. During the last decade, the change in design and technique has dramatically influenced the range of applications of speckle metrology and opened new markets. The integration of recent research results into speckle measuring equipment has led to handy equipment, simplified the operation and created high quality data output.
Applications of wavelets in interferometry and artificial vision
NASA Astrophysics Data System (ADS)
Escalona Z., Rafael A.
2001-08-01
In this paper we present a different point of view of phase measurements performed in interferometry, image processing and intelligent vision using Wavelet Transform. In standard and white-light interferometry, the phase function is retrieved by using phase-shifting, Fourier-Transform, cosinus-inversion and other known algorithms. Our novel technique presented here is faster, robust and shows excellent accuracy in phase determinations. Finally, in our second application, fringes are no more generate by some light interaction but result from the observation of adapted strip set patterns directly printed on the target of interest. The moving target is simply observed by a conventional vision system and usual phase computation algorithms are adapted to an image processing by wavelet transform, in order to sense target position and displacements with a high accuracy. In general, we have determined that wavelet transform presents properties of robustness, relative speed of calculus and very high accuracy in phase computations.
Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.
2017-01-01
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice. PMID:28350814
Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S
2017-01-01
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice.
Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej
2012-10-19
We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).
Interferometer Control of Optical Tweezers
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2002-01-01
This paper discusses progress in using spatial light modulators and interferometry to control the beam profile of an optical tweezers. The approach being developed is to use a spatial light modulator (SLM) to control the phase profile of the tweezers beam and to use a combination of the SLM and interferometry to control the intensity profile. The objective is to perform fine and calculable control of the moments and forces on a tip or tool to be used to manipulate and interrogate nanostructures. The performance of the SLM in generating multiple and independently controllable tweezers beams is also reported. Concurrent supporting research projects are mentioned and include tweezers beam scattering and neural-net processing of the interference patterns for control of the tweezers beams.
The data-driven null models for information dissemination tree in social networks
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Wang, Zhenyu
2017-10-01
For the purpose of detecting relatedness and co-occurrence between users, as well as the distribution features of nodes in spreading path of a social network, this paper explores topological characteristics of information dissemination trees (IDT) that can be employed indirectly to probe the information dissemination laws within social networks. Hence, three different null models of IDT are presented in this article, including the statistical-constrained 0-order IDT null model, the random-rewire-broken-edge 0-order IDT null model and the random-rewire-broken-edge 2-order IDT null model. These null models firstly generate the corresponding randomized copy of an actual IDT; then the extended significance profile, which is developed by adding the cascade ratio of information dissemination path, is exploited not only to evaluate degree correlation of two nodes associated with an edge, but also to assess the cascade ratio of different length of information dissemination paths. The experimental correspondences of the empirical analysis for several SinaWeibo IDTs and Twitter IDTs indicate that the IDT null models presented in this paper perform well in terms of degree correlation of nodes and dissemination path cascade ratio, which can be better to reveal the features of information dissemination and to fit the situation of real social networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Ke; Li Yanqiu; Wang Hai
Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
NASA Astrophysics Data System (ADS)
Kurien, Binoy George
Optical interferometry is a technique for obtaining high-resolution imagery of a distant target by interfering light from multiple telescopes. Image restoration from interferometric measurements poses a unique set of challenges. The first challenge is that the measurement set provides only a sparse-sampling of the object's Fourier Transform and hence image formation from these measurements is an inherently ill-posed inverse problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the Fourier samples. We develop array design conditions for unique Fourier phase recovery, as well as a comprehensive algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which together achieve reliable image reconstruction in spite of these challenges. Within this framework, we see that classical interferometric observables such as the bispectrum and closure phase can limit sensitivity, and that generalized notions of these observables can improve both theoretical and empirical performance. Our framework leverages techniques from lattice theory to resolve integer phase ambiguities in the interferometric phase measurements, and from graph theory, to select a reliable set of generalized observables. We analyze the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau interferometric architectures and corroborate this analysis with simulation results. We apply techniques from the field of compressed sensing to perform image reconstruction from the estimates of the object's Fourier coefficients. The end result is a comprehensive strategy to achieve well-posed and easily-predictable reconstruction performance in optical interferometry.
Functional Linear Model with Zero-value Coefficient Function at Sub-regions.
Zhou, Jianhui; Wang, Nae-Yuh; Wang, Naisyin
2013-01-01
We propose a shrinkage method to estimate the coefficient function in a functional linear regression model when the value of the coefficient function is zero within certain sub-regions. Besides identifying the null region in which the coefficient function is zero, we also aim to perform estimation and inferences for the nonparametrically estimated coefficient function without over-shrinking the values. Our proposal consists of two stages. In stage one, the Dantzig selector is employed to provide initial location of the null region. In stage two, we propose a group SCAD approach to refine the estimated location of the null region and to provide the estimation and inference procedures for the coefficient function. Our considerations have certain advantages in this functional setup. One goal is to reduce the number of parameters employed in the model. With a one-stage procedure, it is needed to use a large number of knots in order to precisely identify the zero-coefficient region; however, the variation and estimation difficulties increase with the number of parameters. Owing to the additional refinement stage, we avoid this necessity and our estimator achieves superior numerical performance in practice. We show that our estimator enjoys the Oracle property; it identifies the null region with probability tending to 1, and it achieves the same asymptotic normality for the estimated coefficient function on the non-null region as the functional linear model estimator when the non-null region is known. Numerically, our refined estimator overcomes the shortcomings of the initial Dantzig estimator which tends to under-estimate the absolute scale of non-zero coefficients. The performance of the proposed method is illustrated in simulation studies. We apply the method in an analysis of data collected by the Johns Hopkins Precursors Study, where the primary interests are in estimating the strength of association between body mass index in midlife and the quality of life in physical functioning at old age, and in identifying the effective age ranges where such associations exist.
Peggs, G N; Yacoot, A
2002-05-15
This paper reviews recent work in the field of displacement measurement using optical and X-ray interferometry at the sub-nanometre level of accuracy. The major sources of uncertainty in optical interferometry are discussed and a selection of recent designs of ultra-precise, optical-interferometer-based, displacement measuring transducers presented. The use of X-ray interferometry and its combination with optical interferometry is discussed.
Bibliography of spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
The Bibliography of Spatial Interferometry in Optical Astronomy is a guide to the published literature in applications of spatial interferometry techniques to astronomical observations, theory and instrumentation at visible and infrared wavelengths. The key words spatial and optical define the scope of this discipline, distinguishing it from spatial interferometry at radio wavelengths, interferometry in the frequency domain applied to spectroscopy, or more general electro-optics theoretical and laboratory research. The main bibliography is a listing of all technical articles published in the international scientific literature and presented at the major international meetings and workshops attended by the spatial interferometry community. Section B summarizes publications dealing with the basic theoretical concepts and algorithms proposed and applied to optical spatial interferometry and imaging through a turbulent atmosphere. The section on experimental techniques is divided into twelve categories, representing the most clearly identified major areas of experimental research work. Section D, Observations, identifies publications dealing specifically with observations of astronomical sources, in which optical spatial interferometry techniques have been applied.
Speckle interferometry of asteroids
NASA Technical Reports Server (NTRS)
Drummond, Jack
1988-01-01
This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full.
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.
2014-01-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600
Extending the scanning angle of a phased array antenna by using a null-space medium.
Sun, Fei; He, Sailing
2014-10-30
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463
Fu, Yu; Pedrini, Giancarlo
2014-01-01
In recent years, optical interferometry-based techniques have been widely used to perform noncontact measurement of dynamic deformation in different industrial areas. In these applications, various physical quantities need to be measured in any instant and the Nyquist sampling theorem has to be satisfied along the time axis on each measurement point. Two types of techniques were developed for such measurements: one is based on high-speed cameras and the other uses a single photodetector. The limitation of the measurement range along the time axis in camera-based technology is mainly due to the low capturing rate, while the photodetector-based technology can only do the measurement on a single point. In this paper, several aspects of these two technologies are discussed. For the camera-based interferometry, the discussion includes the introduction of the carrier, the processing of the recorded images, the phase extraction algorithms in various domains, and how to increase the temporal measurement range by using multiwavelength techniques. For the detector-based interferometry, the discussion mainly focuses on the single-point and multipoint laser Doppler vibrometers and their applications for measurement under extreme conditions. The results show the effort done by researchers for the improvement of the measurement capabilities using interferometry-based techniques to cover the requirements needed for the industrial applications. PMID:24963503
Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2012-01-01
A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.
Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej
2012-01-01
We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems). PMID:23202038
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
NASA Astrophysics Data System (ADS)
Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.
2018-05-01
This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.
NASA Astrophysics Data System (ADS)
Baldi, Alfonso; Jacquot, Pierre
2003-05-01
Graphite-epoxy laminates are subjected to the "incremental hole-drilling" technique in order to investigate the residual stresses acting within each layer of the composite samples. In-plane speckle interferometry is used to measure the displacement field created by each drilling increment around the hole. Our approach features two particularities (1) we rely on the precise repositioning of the samples in the optical set-up after each new boring step, performed by means of a high precision, numerically controlled milling machine in the workshop; (2) for each increment, we acquire three displacement fields, along the length, the width of the samples, and at 45°, using a single symmetrical double beam illumination and a rotary stage holding the specimens. The experimental protocol is described in detail and the experimental results are presented, including a comparison with strain gages. Speckle interferometry appears as a suitable method to respond to the increasing demand for residual stress determination in composite samples.
NASA Astrophysics Data System (ADS)
Chen, Shichao; Zhu, Yizheng
2017-02-01
Sensitivity is a critical index to measure the temporal fluctuation of the retrieved optical pathlength in quantitative phase imaging system. However, an accurate and comprehensive analysis for sensitivity evaluation is still lacking in current literature. In particular, previous theoretical studies for fundamental sensitivity based on Gaussian noise models are not applicable to modern cameras and detectors, which are dominated by shot noise. In this paper, we derive two shot noiselimited theoretical sensitivities, Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry, which is a major category of on-axis interferometry techniques in quantitative phase imaging. Based on the derivations, we show that the shot noise-limited model permits accurate estimation of theoretical sensitivities directly from measured data. These results can provide important insights into fundamental constraints in system performance and can be used to guide system design and optimization. The same concepts can be generalized to other quantitative phase imaging techniques as well.
Hydrogen Lines in Mira Stars Through Interferometry and Polarimetry
NASA Astrophysics Data System (ADS)
Fabas, N.; Chiavassa, A.; Millour, F.; Wittkowski, M.
2015-12-01
Balmer lines in emission are the most prominent features in Mira stars spectra and have a strong potential as a proxy to study the lower atmosphere's dynamics. In Fabas et al. ([1]), we accumulated spectropolarimetric observations of Balmer lines in emission. As the shock is propagating outwards, linear polarization rate increases and the angle of this polarization evolves. Assuming that linear polarization arises from anisotropic scattering, it has the potential of telling us about the geometric structure of the shock as it propagates and the study of such atmospheric structures can typically be performed with interferometry. In 2012, AMBER data on the Mira star omicron Ceti were collected in which the Brackett γ line is studied. The data show signatures in the interferometric observables around this line. Olivier Chesneau was in the jury evaluating the PhD thesis of N. Fabas and he was seduced by the idea to study these shock waves with interferometry and use polarimetry as a complementary study.
Studying the inner regions of young stars and their disks with aperture masking interferometry
NASA Astrophysics Data System (ADS)
Greenbaum, Alexandra; Sivaramakrishnan, Anand; GPI Instrument Team; NIRISS Instrument Team
2017-01-01
High resolution aperture masking interferometry complements coronagraphic imagers to provide a unique perspective on star and planet formation at more moderate contrast. By targeting young stars, especially those with disks, we aim to understand complex protoplanetary environments. Ground-based non-redundant masking (NRM) paired with spectrographs and polarimeters probes both thermally emitting young companions, possibly embedded in the disk or gap and scattered light in protoplanetary disks. And soon the community will have access to the most stable NRM conditions yet, with the Near Infrared Imager and Slitless Spectrograph (NIRISS) Aperture Masking Interferometry (AMI) mode on the James Webb Space Telescope. I will present my thesis work commissioning the Gemini Planet Imager’s NRM, highlighting results through both its spectroscopy and polarimetry modes, which set the stage for future space-based imaging. I will also give an overview of NIRISS-AMI capabilities and performance predictions for imaging young low-mass companions and disks, and how it will complement other instruments on JWST.
Trägårdh, Johanna; Gersen, Henkjan
2013-07-15
We show how a combination of near-field scanning optical microscopy with crossed beam spectral interferometry allows a local measurement of the spectral phase and amplitude of light propagating in photonic structures. The method only requires measurement at the single point of interest and at a reference point, to correct for the relative phase of the interferometer branches, to retrieve the dispersion properties of the sample. Furthermore, since the measurement is performed in the spectral domain, the spectral phase and amplitude could be retrieved from a single camera frame, here in 70 ms for a signal power of less than 100 pW limited by the dynamic range of the 8-bit camera. The method is substantially faster than most previous time-resolved NSOM methods that are based on time-domain interferometry, which also reduced problems with drift. We demonstrate how the method can be used to measure the refractive index and group velocity in a waveguide structure.
Jacquin, Olivier; Lacot, Eric; Glastre, Wilfried; Hugon, Olivier; Guillet de Chatellus, Hugues
2011-08-01
Using an Nd:YVO₄ microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performance than heterodyne interferometry for a wide range of laser powers and detection levels of noise. The experimental results are in good agreement with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying
2010-04-01
In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.
NASA Technical Reports Server (NTRS)
Thorpe, James I.
2009-01-01
An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.
Space Interferometry Science Working Group
NASA Astrophysics Data System (ADS)
Ridgway, Stephen T.
1992-12-01
Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.
Robust interferometry against imperfections based on weak value amplification
NASA Astrophysics Data System (ADS)
Fang, Chen; Huang, Jing-Zheng; Zeng, Guihua
2018-06-01
Optical interferometry has been widely used in various high-precision applications. Usually, the minimum precision of an interferometry is limited by various technical noises in practice. To suppress such kinds of noises, we propose a scheme which combines the weak measurement with the standard interferometry. The proposed scheme dramatically outperforms the standard interferometry in the signal-to-noise ratio and the robustness against noises caused by the optical elements' reflections and the offset fluctuation between two paths. A proof-of-principle experiment is demonstrated to validate the amplification theory.
Nulling at the Keck Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. Mark; Serabyn, Gene; Wizinowich, Peter L.; Akeson, Rachel L.
2006-01-01
The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data.
Extending the scanning angle of a phased array antenna by using a null-space medium
Sun, Fei; He, Sailing
2014-01-01
By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198
Active optics null test system based on a liquid crystal programmable spatial light modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ares, Miguel; Royo, Santiago; Sergievskaya, Irina
2010-11-10
We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nmmore » and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below {lambda}/18 for spherical wavefronts with peak-to-valley heights of up to 78.7{lambda}, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.« less
High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.
2012-01-01
Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo
2018-04-01
In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.
Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J
2013-11-01
This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Govindan, R B; Kota, Srinivas; Al-Shargabi, Tareq; Massaro, An N; Chang, Taeun; du Plessis, Adre
2016-09-01
Electroencephalogram (EEG) signals are often contaminated by the electrocardiogram (ECG) interference, which affects quantitative characterization of EEG. We propose null-coherence, a frequency-based approach, to attenuate the ECG interference in EEG using simultaneously recorded ECG as a reference signal. After validating the proposed approach using numerically simulated data, we apply this approach to EEG recorded from six newborns receiving therapeutic hypothermia for neonatal encephalopathy. We compare our approach with an independent component analysis (ICA), a previously proposed approach to attenuate ECG artifacts in the EEG signal. The power spectrum and the cortico-cortical connectivity of the ECG attenuated EEG was compared against the power spectrum and the cortico-cortical connectivity of the raw EEG. The null-coherence approach attenuated the ECG contamination without leaving any residual of the ECG in the EEG. We show that the null-coherence approach performs better than ICA in attenuating the ECG contamination without enhancing cortico-cortical connectivity. Our analysis suggests that using ICA to remove ECG contamination from the EEG suffers from redistribution problems, whereas the null-coherence approach does not. We show that both the null-coherence and ICA approaches attenuate the ECG contamination. However, the EEG obtained after ICA cleaning displayed higher cortico-cortical connectivity compared with that obtained using the null-coherence approach. This suggests that null-coherence is superior to ICA in attenuating the ECG interference in EEG for cortico-cortical connectivity analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization
NASA Astrophysics Data System (ADS)
Hénault, François
2015-09-01
Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extrasolar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided.
Kv7.2 regulates the function of peripheral sensory neurons.
King, Chih H; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S
2014-10-01
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. © 2014 Wiley Periodicals, Inc.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
NASA Astrophysics Data System (ADS)
Zhang, Kang; Kang, Jin U.
2011-09-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.
Ten Years of Speckle Interferometry at SOAR
NASA Astrophysics Data System (ADS)
Tokovinin, Andrei
2018-03-01
Since 2007, close binary and multiple stars are observed by speckle interferometry at the 4.1 m Southern Astrophysical Research (SOAR) telescope. The HRCam instrument, observing strategy and planning, data processing and calibration methods, developed and improved during ten years, are presented here in a concise way. Thousands of binary stars were measured with diffraction-limited resolution (29 mas at 540 nm wavelength) and a high accuracy reaching 1 mas; 200 new pairs or subsystems were discovered. To date, HRCam has performed over 11,000 observations with a high efficiency (up to 300 stars per night). An overview of the main results delivered by this instrument is given.
Double-pulse digital speckle pattern interferometry for vibration analysis
NASA Astrophysics Data System (ADS)
Zhang, Dazhi; Xue, Jingfeng; Chen, Lu; Wen, Juying; Wang, Jingjing
2014-12-01
The double-pulse Digital Speckle Pattern Interferometry (DSPI) in the laboratory is established. Two good performances have been achieved at the same time, which is uniform distribution of laser beam energy by space filter and recording two successive pictures by a CCD camera successfully. Then two-dimensional discrete orthogonal wavelet transform method is used for the process of filtering method. By using the DSPI, speckle pattern of a vibrated object is obtained with interval of (2~800)μs, and 3D plot of the transient vibration is achieved. Moreover, good agreements of the mode shapes and displacement are obtained by comparing with Laser Doppler Vibrometer (LDV) .
Langoju, Rajesh; Patil, Abhijit; Rastogi, Pramod
2007-11-20
Signal processing methods based on maximum-likelihood theory, discrete chirp Fourier transform, and spectral estimation methods have enabled accurate measurement of phase in phase-shifting interferometry in the presence of nonlinear response of the piezoelectric transducer to the applied voltage. We present the statistical study of these generalized nonlinear phase step estimation methods to identify the best method by deriving the Cramér-Rao bound. We also address important aspects of these methods for implementation in practical applications and compare the performance of the best-identified method with other bench marking algorithms in the presence of harmonics and noise.
An experimental investigation of Iosipescu specimen for composite materials
NASA Technical Reports Server (NTRS)
Ho, H.; Tsai, M. Y.; Morton, J.; Farley, G. L.
1991-01-01
A detailed experimental evaluation of the Iosipescu specimen tested in the modified Wyoming fixture is presented. Moire interferometry is employed to determine the deformation of unidirectional and cross-ply graphite-epoxy specimens. The results of the moire experiments are compared to those from the traditional strain-gage method. It is shown that the strain-gage readings from one surface of a specimen together with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to twisting. A localized hybrid analysis is introduced to perform efficient reduction of moire data, producing whole-field strain distributions in the specimen test sections.
Federico, Alejandro; Kaufmann, Guillermo H
2005-05-10
We evaluate the use of smoothing splines with a weighted roughness measure for local denoising of the correlation fringes produced in digital speckle pattern interferometry. In particular, we also evaluate the performance of the multiplicative correlation operation between two speckle patterns that is proposed as an alternative procedure to generate the correlation fringes. It is shown that the application of a normalization algorithm to the smoothed correlation fringes reduces the excessive bias generated in the previous filtering stage. The evaluation is carried out by use of computer-simulated fringes that are generated for different average speckle sizes and intensities of the reference beam, including decorrelation effects. A comparison with filtering methods based on the continuous wavelet transform is also presented. Finally, the performance of the smoothing method in processing experimental data is illustrated.
NASA Astrophysics Data System (ADS)
Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu
2018-07-01
For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
Castilla-Ortega, Estela; Pavón, Francisco Javier; Sánchez-Marín, Laura; Estivill-Torrús, Guillermo; Pedraza, Carmen; Blanco, Eduardo; Suárez, Juan; Santín, Luis; Rodríguez de Fonseca, Fernando; Serrano, Antonia
2016-04-01
Lysophosphatidic acid species (LPA) are lipid bioactive signaling molecules that have been recently implicated in the modulation of emotional and motivational behaviors. The present study investigates the consequences of either genetic deletion or pharmacological blockade of lysophosphatidic acid receptor-1 (LPA1) in alcohol consumption. The experiments were performed in alcohol-drinking animals by using LPA1-null mice and administering the LPA1 receptor antagonist Ki16425 in both mice and rats. In the two-bottle free choice paradigm, the LPA1-null mice preferred the alcohol more than their wild-type counterparts. Whereas the male LPA1-null mice displayed this higher preference at all doses tested, the female LPA1-null mice only consumed more alcohol at 6% concentration. The male LPA1-null mice were then further characterized, showing a notably increased ethanol drinking after a deprivation period and a reduced sleep time after acute ethanol administration. In addition, LPA1-null mice were more anxious than the wild-type mice in the elevated plus maze test. For the pharmacological experiments, the acute administration of the antagonist Ki16425 consistently increased ethanol consumption in both wild-type mice and rats; while it did not modulate alcohol drinking in the LPA1-null mice and lacked intrinsic rewarding properties and locomotor effects in a conditioned place preference paradigm. In addition, LPA1-null mice exhibited a marked reduction on the expression of glutamate-transmission-related genes in the prefrontal cortex similar to those described in alcohol-exposed rodents. Results suggest a relevant role for the LPA/LPA1 signaling system in alcoholism. In addition, the LPA1-null mice emerge as a new model for genetic vulnerability to excessive alcohol drinking. The pharmacological manipulation of LPA1 receptor arises as a new target for the study and treatment of alcoholism. Copyright © 2015 Elsevier Ltd. All rights reserved.
TDRS orbit determination by radio interferometry
NASA Technical Reports Server (NTRS)
Pavloff, Michael S.
1994-01-01
In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.
High heat flux measurements and experimental calibrations/characterizations
NASA Technical Reports Server (NTRS)
Kidd, Carl T.
1992-01-01
Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.
Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies
NASA Technical Reports Server (NTRS)
2004-01-01
Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.
2016-10-01
ARL-TR-7846 ● OCT 2016 US Army Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center...Research Laboratory Application of Hybrid Along-Track Interferometry/ Displaced Phase Center Antenna Method for Moving Human Target Detection...TYPE Technical Report 3. DATES COVERED (From - To) 2015–2016 4. TITLE AND SUBTITLE Application of Hybrid Along-Track Interferometry/ Displaced
A study of model deflection measurement techniques applicable within the national transonic facility
NASA Technical Reports Server (NTRS)
Hildebrand, B. P.; Doty, J. L.
1982-01-01
Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF.
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Soukhanovskii, V. A.
2015-11-01
The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. Among potential beneficial effects of this geometry are: increased volume of a low poloidal field around the null, increased connection length, and the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described.
Optical Interferometry Motivation and History
NASA Technical Reports Server (NTRS)
Lawson, Peter
2006-01-01
A history and motivation of stellar interferometry is presented. The topics include: 1) On Tides, Organ Pipes, and Soap Bubbles; 2) Armand Hippolyte Fizeau (1819-1896); 3) Fizeau Suggests Stellar Interferometry 1867; 4) Edouard Stephan (1837-1923); 5) Foucault Refractor; 6) Albert A. Michelson (1852-1931); 7) On the Application of Interference Methods to Astronomy (1890); 8) Moons of Jupiter (1891); 9) Other Applications in 19th Century; 10) Timeline of Interferometry to 1938; 11) 30 years goes by; 12) Mount Wilson Observatory; 13) Michelson's 20 ft Interferometer; 14) Was Michelson Influenced by Fizeau? 15) Work Continues in the 1920s and 30s; 16) 50 ft Interferometer (1931-1938); 17) Light Paths in the 50 ft Interferometer; 18) Ground-level at the 50 ft; 19) F.G. Pease (1881-1938); 20) Timeline of Optical Interferometry to 1970; 21) A New Type of Stellar Interferometer (1956); 22) Intensity Interferometer (1963- 1976; 23) Robert Hanbury Brown; 24) Interest in Optical Interferometry in the 1960s; 25) Interferometry in the Early 1970s; and 26) A New Frontier is Opened up in 1974.
Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael
2011-01-01
Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.
Glutathione S-transferase M1 polymorphism and endometriosis susceptibility: a meta-analysis.
Li, H; Zhang, Y
2015-02-01
Many studies have investigated the association between glutathione S-transferase M1 (GSTM1) null genotype and the risk of endometriosis. However, the effect of the GSTM1 null genotype on endometriosis is still unclear because of apparent inconsistencies among those studies. A meta-analysis was performed to characterize the relationship more accurately. PubMed, Embase, and Web of Science were searched. To derive a more precise estimation of the relationship, a meta-analysis was performed. We estimated the summary odds ratio (OR) with a 95% confidence interval (95% CI) to assess the association. Up to 24 case-control studies with 2,684 endometriosis cases and 3,119 control cases were included into this meta-analysis. Meta-analysis of the 24 studies showed that GSTM1 null genotype was associated with the risk of endometriosis (random effects OR=1.66, 95% CI 1.23 to 2.24). In the subgroup analysis by ethnicity, increased risks were found for both Caucasians (OR=1.26, 95% CI 1.04-1.51) and Asians (OR=1.28, 95% CI 1.06-1.55). No evidence of publication bias was observed. In conclusion, this meta-analysis suggests that the GSTM1 null genotype increases the overall risk of endometriosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Feasibility of satellite interferometry for surveillance, navigation, and traffic control
NASA Technical Reports Server (NTRS)
Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.
1976-01-01
The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.
Federico, Alejandro; Kaufmann, Guillermo H
2003-12-10
We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.
Space beam combiner for long-baseline interferometry
NASA Astrophysics Data System (ADS)
Lin, Yao; Bartos, Randall D.; Korechoff, Robert P.; Shaklan, Stuart B.
1999-04-01
An experimental beam combiner (BC) is being developed to support the space interferometry program at the JPL. The beam combine forms the part of an interferometer where star light collected by the sidestats or telescopes is brought together to produce white light fringes, and to provide wavefront tilt information via guiding spots and beam walk information via shear spots. The assembly and alignment of the BC has been completed. The characterization test were performed under laboratory conditions with an artificial star and optical delay line. Part of each input beam was used to perform star tracking. The white light interference fringes were obtained over the selected wavelength range from 450 nm to 850 nm. A least-square fit process was used to analyze the fringe initial phase, fringe visibilities and shift errors of the optical path difference in the delay line using the dispersed white-light fringes at different OPD positions.
Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements
Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN
2006-02-14
Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.
Application Of Interferometry To Optical Components And Systems Evaluation
NASA Astrophysics Data System (ADS)
Houston, Joseph B., Jr.
1982-05-01
Interferometry provides opticians and lens designers with the ability to evaluate optical components and systems quantitatively. A variety of interferometers and interferometric test procedures have evolved over the past several decades. This evolution has stimulated an ever-increasing amount of interest in using a new generation of instrumentation and computer software for solving cost and schedule problems both in the shop and at field test sites. Optical engineers and their customers continue to gain confidence in their abilities to perform several operations such as assure component quality, analyze and optimize lens assemblies, and accurately predict end-item performance. In this paper, a set of typical test situations are addressed and some standard instrumentation is described, as a means of illustrating the special advantages of interferometric testing. Emphasis will be placed on the proper application of currently available hardware and some of the latest proven techniques.
Evaluation of diffuse-illumination holographic cinematography in a flutter cascade
NASA Technical Reports Server (NTRS)
Decker, A. J.
1986-01-01
Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.
2015-02-15
Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less
Task-induced Changes in Idiopathic Infantile Nystagmus Vary with Gaze.
Salehi Fadardi, Marzieh; Bathke, Arne C; Harrar, Solomon W; Abel, Larry Allen
2017-05-01
Investigations of infantile nystagmus syndrome (INS) at center or at the null position have reported that INS worsens when visual demand is combined with internal states, e.g. stress. Visual function and INS parameters such as foveation time, frequency, amplitude, and intensity can also be influenced by gaze position. We hypothesized that increases from baseline in visual demand and mental load would affect INS parameters at the null position differently than at other gaze positions. Eleven participants with idiopathic INS were asked to determine the direction of Tumbling-E targets, whose visual demand was varied through changes in size and contrast, using a staircase procedure. Targets appeared between ±25° in 5° steps. The task was repeated with both mental arithmetic and time restriction to impose higher mental load, confirmed through subjective ratings and concurrent physiological measurements. Within-subject comparisons were limited to the null and 15° away from it. No significant main effects of task on any INS parameters were found. At both locations, high mental load worsened task performance metrics, i.e. lowest contrast (P = .001) and smallest optotype size reached (P = .012). There was a significant interaction between mental load and gaze position for foveation time (P = .02) and for the smallest optotype reached (P = .028). The increase in threshold optotype size from the low to high mental load was greater at the null than away from it. During high visual demand, foveation time significantly decreased from baseline at the null as compared to away from it (mean difference ± SE: 14.19 ± 0.7 msec; P = .010). Under high visual demand, the effects of increased mental load on foveation time and visual task performance differed at the null as compared to 15° away from it. Assessment of these effects could be valuable when evaluating INS clinically and when considering its impact on patients' daily activities.
NASA Technical Reports Server (NTRS)
Baker, John; Thorpe, Ira
2012-01-01
Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
NASA Astrophysics Data System (ADS)
Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.
2018-05-01
Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.
Modelling of a holographic interferometry based calorimeter for radiation dosimetry
NASA Astrophysics Data System (ADS)
Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.
2017-08-01
In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
Zhang, Kang; Kang, Jin U.
2011-01-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912
Tang, Chen; Han, Lin; Ren, Hongwei; Zhou, Dongjian; Chang, Yiming; Wang, Xiaohang; Cui, Xiaolong
2008-10-01
We derive the second-order oriented partial-differential equations (PDEs) for denoising in electronic-speckle-pattern interferometry fringe patterns from two points of view. The first is based on variational methods, and the second is based on controlling diffusion direction. Our oriented PDE models make the diffusion along only the fringe orientation. The main advantage of our filtering method, based on oriented PDE models, is that it is very easy to implement compared with the published filtering methods along the fringe orientation. We demonstrate the performance of our oriented PDE models via application to two computer-simulated and experimentally obtained speckle fringes and compare with related PDE models.
Science objectives for ground- and space-based optical/IR interferometry
NASA Technical Reports Server (NTRS)
Ridgway, Stephen T.
1992-01-01
Ground-based interferometry will make spectacular strides in the next decade. However, it will always be limited by the turbulence of the terrestrial atmosphere. Some of the most exciting and subtle problems may only be addressed from a stable platform above the atmosphere. The lunar surface offers such a platform, nearly ideal in many respects. Once built, such a telescope array will not only resolve key fundamental problems, but will revolutionize virtually every topic in observational astronomy. Estimates of the possible performance of lunar and ground-based interferometers of the 21st century shows that the lunar interferometer reaches the faintest sources of all wavelengths, but has the most significant advantage in the infrared.
Holographic analysis as an inspection method for welded thin-wall tubing
NASA Technical Reports Server (NTRS)
Brooks, Lawrence; Mulholland, John; Genin, Joseph; Matthews, Larryl
1990-01-01
The feasibility of using holographic interferometry for locating flaws in welded tubing is explored. Two holographic techniques are considered: traditional holographic interferometry and electronic speckle pattern interferometry. Several flaws including cold laps, discontinuities, and tube misalignments are detected.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
Conditioning Military Women for Optimal Performance: Effects of Contraceptive Use
1997-10-01
female soldier with three months of uncomplicated birth control . This contraceptive technique is worthy of study because it is used by an ever...of birth control (EU-OV) B. time: pre-training/heat acclimation post-training/heat acclimation 10 Null Hypotheses A. Null Hypotheses Associated with...IgG = immunoglobulin G birth control = eight subjects using either oral contraceptive (n = 7) or Depo Provera (n = 1) combined no birth control = eumenorrheic
New central configurations of the (n + 1) -body problem
NASA Astrophysics Data System (ADS)
Fernandes, Antonio Carlos; Garcia, Braulio Augusto; Llibre, Jaume; Mello, Luis Fernando
2018-01-01
In this article we study central configurations of the (n + 1) -body problem. For the planar (n + 1) -body problem we study central configurations performed by n ≥ 2 bodies with equal masses at the vertices of a regular n-gon and one body with null mass. We also study spatial central configurations considering n bodies with equal masses at the vertices of a regular polyhedron and one body with null mass.
Integrated optics prototype beam combiner for long baseline interferometry in the L and M bands
NASA Astrophysics Data System (ADS)
Tepper, J.; Labadie, L.; Diener, R.; Minardi, S.; Pott, J.-U.; Thomson, R.; Nolte, S.
2017-06-01
Context. Optical long baseline interferometry is a unique way to study astronomical objects at milli-arcsecond resolutions not attainable with current single-dish telescopes. Yet, the significance of its scientfic return strongly depends on a dense coverage of the uv-plane and a highly stable transfer function of the interferometric instrument. In the last few years, integrated optics (IO) beam combiners have facilitated the emergence of 4-telescope interferometers such as PIONIER or GRAVITY, boosting the imaging capabilities of the VLTI. However, the spectral range beyond 2.2 μm is not ideally covered by the conventional silica based IO. Here, we consider new laser-written IO prototypes made of gallium lanthanum sulfide (GLS) glass, a material that permits access to the mid-infrared spectral regime. Aims: Our goal is to conduct a full characterization of our mid-IR IO two-telescope coupler in order to measure the performance levels directly relevant for long-baseline interferometry. We focus in particular on the exploitation of the L and M astronomical bands. Methods: We use a dedicated Michelson-interferometer setup to perform Fourier transform spectroscopy on the coupler and measure its broadband interferometric performance. We also analyze the polarization properties of the coupler, the differential dispersion and phase degradation, as well as the modal behavior and the total throughput. Results: We measure broadband interferometric contrasts of 94.9% and 92.1% for unpolarized light in the L and M bands. Spectrally integrated splitting ratios are close to 50%, but show chromatic dependence over the considered bandwidths. Additionally, the phase variation due to the combiner is measured and does not exceed 0.04 rad and 0.07 rad across the L and M band, respectively. The total throughput of the coupler including Fresnel and injection losses from free-space is 25.4%. Furthermore, differential birefringence is low (<0.2 rad), in line with the high contrasts reported for unpolarized light. Conclusions: The laser-written IO GLS prototype combiners prove to be a reliable technological solution with promising performance for mid-infrared long-baseline interferometry. In the next steps, we will consider more advanced optical functions, as well as a fiber-fed input, and we will revise the optical design parameters in order to further enhance the total throughput and achromatic behavior.
Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye
2015-08-01
A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.
Effective correlator for RadioAstron project
NASA Astrophysics Data System (ADS)
Sergeev, Sergey
This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.
NASA Astrophysics Data System (ADS)
Gravity Collaboration; Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J. P.; Blind, N.; Bonnet, H.; Bourget, P.; Brandner, W.; Brast, R.; Buron, A.; Burtscher, L.; Cassaing, F.; Chapron, F.; Choquet, É.; Clénet, Y.; Collin, C.; Coudé Du Foresto, V.; de Wit, W.; de Zeeuw, P. T.; Deen, C.; Delplancke-Ströbele, F.; Dembet, R.; Derie, F.; Dexter, J.; Duvert, G.; Ebert, M.; Eckart, A.; Eisenhauer, F.; Esselborn, M.; Fédou, P.; Finger, G.; Garcia, P.; Garcia Dabo, C. E.; Garcia Lopez, R.; Gendron, E.; Genzel, R.; Gillessen, S.; Gonte, F.; Gordo, P.; Grould, M.; Grözinger, U.; Guieu, S.; Haguenauer, P.; Hans, O.; Haubois, X.; Haug, M.; Haussmann, F.; Henning, Th.; Hippler, S.; Horrobin, M.; Huber, A.; Hubert, Z.; Hubin, N.; Hummel, C. A.; Jakob, G.; Janssen, A.; Jochum, L.; Jocou, L.; Kaufer, A.; Kellner, S.; Kendrew, S.; Kern, L.; Kervella, P.; Kiekebusch, M.; Klein, R.; Kok, Y.; Kolb, J.; Kulas, M.; Lacour, S.; Lapeyrère, V.; Lazareff, B.; Le Bouquin, J.-B.; Lèna, P.; Lenzen, R.; Lévêque, S.; Lippa, M.; Magnard, Y.; Mehrgan, L.; Mellein, M.; Mérand, A.; Moreno-Ventas, J.; Moulin, T.; Müller, E.; Müller, F.; Neumann, U.; Oberti, S.; Ott, T.; Pallanca, L.; Panduro, J.; Pasquini, L.; Paumard, T.; Percheron, I.; Perraut, K.; Perrin, G.; Pflüger, A.; Pfuhl, O.; Phan Duc, T.; Plewa, P. M.; Popovic, D.; Rabien, S.; Ramírez, A.; Ramos, J.; Rau, C.; Riquelme, M.; Rohloff, R.-R.; Rousset, G.; Sanchez-Bermudez, J.; Scheithauer, S.; Schöller, M.; Schuhler, N.; Spyromilio, J.; Straubmeier, C.; Sturm, E.; Suarez, M.; Tristram, K. R. W.; Ventura, N.; Vincent, F.; Waisberg, I.; Wank, I.; Weber, J.; Wieprecht, E.; Wiest, M.; Wiezorrek, E.; Wittkowski, M.; Woillez, J.; Wolff, B.; Yazici, S.; Ziegler, D.; Zins, G.
2017-06-01
GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.
Eye shape using partial coherence interferometry, autorefraction, and SD-OCT.
Clark, Christopher A; Elsner, Ann E; Konynenbelt, Benjamin J
2015-01-01
Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. Spectral domain optical coherence tomography (SD-OCT) and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Seventy-nine subjects' right eyes were imaged for this study (age range, 22 to 34 years; refractive error, -10 to +5.00). Thirty-degree SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Autorefractor) and peripheral axial length measurements with partial coherence interferometry (IOLMaster, Zeiss). Statistics were performed using repeated-measures analysis of variance in SPSS (IBM, Armonk, NY), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Spectral domain OCT showed a retinal shape with an increased curvature for myopes compared with emmetropes/hyperopes. This retinal shape change became significant around 5 degrees. The SD-OCT analysis for retinal shape provides a resolution of 0.026 diopters, which is about 10 times more accurate than using autorefraction (AR) or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD-OCT and the partial coherence interferometry method were more consistent with one another than either was with AR. With more accurate measures of retinal shape using SD-OCT, consistent differences between emmetropes/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD-OCT appear to be more accurate than AR, which may be influenced by other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method.
Pal-Ghosh, Sonali; Tadvalkar, Gauri; Stepp, Mary Ann
2017-10-01
To determine the impact of the loss of syndecan 1 (SDC1) on intraepithelial corneal nerves (ICNs) during homeostasis, aging, and in response to 1.5-mm trephine and debridement injury. Whole-mount corneas are used to quantify ICN density and thickness over time after birth and in response to injury in SDC1-null and wild-type (WT) mice. High-resolution three-dimensional imaging is used to visualize intraepithelial nerve terminals (INTs), axon fragments, and lysosomes in corneal epithelial cells using antibodies against growth associated protein 43 (GAP43), βIII tubulin, and LAMP1. Quantitative PCR was performed to quantify expression of SDC1, SDC2, SDC3, and SDC4 in corneal epithelial mRNA. Phagocytosis was assessed by quantifying internalization of fluorescently labeled 1-μm latex beads. Intraepithelial corneal nerves innervate the corneas of SDC1-null mice more slowly. At 8 weeks, ICN density is less but thickness is greater. Apically projecting intraepithelial nerve terminals and lysosome-associated membrane glycoprotein 1 (LAMP1) are also reduced in unwounded SDC1-null corneas. Quantitative PCR and immunofluorescence studies show that SDC3 expression and localization are increased in SDC1-null ICNs. Wild-type and SDC1-null corneas lose ICN density and thickness as they age. Recovery of axon density and thickness after trephine but not debridement wounds is slower in SDC1-null corneas compared with WT. Experiments assessing phagocytosis show reduced bead internalization by SDC1-null epithelial cells. Syndecan-1 deficiency alters ICN morphology and homeostasis during aging, reduces epithelial phagocytosis, and impairs reinnervation after trephine but not debridement injury. These data provide insight into the mechanisms used by sensory nerves to reinnervate after injury.
Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury
Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.
2012-01-01
Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449
Initial development of the DIII–D snowflake divertor control
NASA Astrophysics Data System (ADS)
Kolemen, E.; Vail, P. J.; Makowski, M. A.; Allen, S. L.; Bray, B. D.; Fenstermacher, M. E.; Humphreys, D. A.; Hyatt, A. W.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Maingi, R.; Nazikian, R.; Petrie, T. W.; Soukhanovskii, V. A.; Unterberg, E. A.
2018-06-01
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasma and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. The SFD resulted in a 2.5× reduction in the peak heat flux for many energy confinement times (2–3 s) without any adverse effects on core plasma performance.
Shi, Haolun; Yin, Guosheng
2018-02-21
Simon's two-stage design is one of the most commonly used methods in phase II clinical trials with binary endpoints. The design tests the null hypothesis that the response rate is less than an uninteresting level, versus the alternative hypothesis that the response rate is greater than a desirable target level. From a Bayesian perspective, we compute the posterior probabilities of the null and alternative hypotheses given that a promising result is declared in Simon's design. Our study reveals that because the frequentist hypothesis testing framework places its focus on the null hypothesis, a potentially efficacious treatment identified by rejecting the null under Simon's design could have only less than 10% posterior probability of attaining the desirable target level. Due to the indifference region between the null and alternative, rejecting the null does not necessarily mean that the drug achieves the desirable response level. To clarify such ambiguity, we propose a Bayesian enhancement two-stage (BET) design, which guarantees a high posterior probability of the response rate reaching the target level, while allowing for early termination and sample size saving in case that the drug's response rate is smaller than the clinically uninteresting level. Moreover, the BET design can be naturally adapted to accommodate survival endpoints. We conduct extensive simulation studies to examine the empirical performance of our design and present two trial examples as applications. © 2018, The International Biometric Society.
Ballooning modes localized near the null point of a divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550
2014-04-15
The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from themore » null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.« less
Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A
2015-09-21
Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.
NASA Astrophysics Data System (ADS)
Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.
2015-09-01
Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Lindensmith, C. A.
1998-12-01
Terrestrial Planet Finder (TPF) is an evolving mission in NASA's ORIGINS program designed to detect earth like planets and perform high-resolution interferometric imaging of astrophysics targets in the infrared. The planet detection concept involves the use of multiple collectors in formation flying spacecraft and nulling interferometry to isolate the image of the planet (located near a bright star) while the star image is canceled out. The concept development involves the search for 10 to 20 micron radiation from planets orbiting stars out to a distance of 3 to 15 pc using NGST type collectors passively cooled to 35 K with high quality thermal shields. The need to obtain a suitable null for planet detection results in strict requirements of signal amplitude and phase matching at the optics. This in turn implies very tight cleanliness requirements at the optics. Several contamination issues need to be taken into account in order to maintain the integrity of the optics as well as the thermal shields. Cryogenic optical surfaces, e.g., mirror surfaces, are susceptible to contamination due to formation of thin cryolayers from propulsion system exhaust and outgassing products. Detector optics at 5 to 7 K will condense almost all species with the exception of hydrogen and helium. Thermal control surfaces at 35 to 40 K will condense a host of species including water vapor, which because of the presence of several absorption peaks in the infrared, will increase the emissivity of low emissivity surfaces. The increased emissivity will result in a temperature rise for the surface which will lead to decreased performance of cryocoolers, which depend upon passive precooling of the working fluid, used to cool the detectors. The condensed contaminant film on optics will also increase non-specular reflection from the surface, i.e., an increase in Bi-directional Reflectance Distribution Function (BRDF), leading to a lowering of the image quality. Particles on optical surfaces also increase scatter and thus the surface BRDF. This results in an increase in straylight. In addition, the surface particle induced scatter will reduce the contrast of the dark rings of the Point Spread Function (PSF) and hence make separation of a fainter celestial object situated near a brighter object more difficult. Warm particles in the field-of-view of the sensors can be mistaken for a celestial body due to their thermal emission. Similarly, certain contaminant molecules in the field-of-view of the sensors can mimic the sought spectral signatures of the terrestrial type planet. Contamination is an important consideration in the development of the TPF and continued study will help to minimize its effects on the mission.
Tone-assisted time delay interferometry on GRACE Follow-On
NASA Astrophysics Data System (ADS)
Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk
2015-07-01
We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a significant displacement signal.
Digital Holographic Interferometry for Airborne Particle Characterization
2015-03-19
Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c
Accessing High Spatial Resolution in Astronomy Using Interference Methods
ERIC Educational Resources Information Center
Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean
2018-01-01
In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…
Determination of thin hydrodynamic lubricating film thickness using dichromatic interferometry.
Guo, L; Wong, P L; Guo, F; Liu, H C
2014-09-10
This paper introduces the application of dichromatic interferometry for the study of hydrodynamic lubrication. In conventional methods, two beams with different colors are projected consecutively on a static object. By contrast, the current method deals with hydrodynamic lubricated contacts under running conditions and two lasers with different colors are projected simultaneously to form interference images. Dichromatic interferometry incorporates the advantages of monochromatic and chromatic interferometry, which are widely used in lubrication research. This new approach was evaluated statically and dynamically by measuring the inclination of static wedge films and the thickness of the hydrodynamic lubricating film under running conditions, respectively. Results show that dichromatic interferometry can facilitate real-time determination of lubricating film thickness and is well suited for the study of transient or dynamic lubricating problems.
The Path to Interferometry in Space
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Savini, G.; Holland, W.; Absil, O.; Defrere, D.; Spencer, L.; Leisawitz, D.; Rizzo, M.; Juanola-Parramon, R.; Mozurkewich, D.
2016-01-01
For over two decades, astronomers have considered the possibilities for interferometry in space. The first of these missions was the Space Interferometry Mission (SIM), but that was followed by missions for studying exoplanets (e.g Terrestrial Planet Finder, Darwin), and then far-infrared interferometers (e.g. the Space Infrared Interferometric Telescope, the Far-Infrared Interferometer). Unfortunately, following the cancellation of SIM, the future for space-based interferometry has been in doubt, and the interferometric community needs to reevaluate the path forward. While interferometers have strong potential for scientific discovery, there are technological developments still needed, and continued maturation of techniques is important for advocacy to the broader astronomical community. We review the status of several concepts for space-based interferometry, and look for possible synergies between missions oriented towards different science goals.
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini
2015-01-01
Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.
Lukong, Kiven E; Richard, Stéphane
2008-06-03
The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.
Kyriakides, T R; Zhu, Y H; Yang, Z; Huynh, G; Bornstein, P
2001-10-01
The matricellular angiogenesis inhibitor, thrombospondin (TSP) 2, has been shown to be an important modulator of wound healing and the foreign body response. Specifically, TSP2-null mice display improved healing with minimal scarring and form well-vascularized foreign body capsules. In this study we performed subcutaneous implantation of sponges and investigated the resulting angiogenic and fibrogenic responses. Histological and immunohistochemical analysis of sponges, excised at 7, 14, and 21 days after implantation, revealed significant differences between TSP2-null and wild-type mice. Most notably, TSP2-null mice exhibited increased angiogenesis and fibrotic encapsulation of the sponge. However, invasion of dense tissue was compromised, even though its overall density was increased. Furthermore, histomorphometry and biochemical assays demonstrated a significant increase in the extracellular distribution of matrix metalloproteinase (MMP) 2, but no change in the levels of active transforming growth factor-beta(1). The alterations in neovascularization, dense tissue invasion, and MMP2 in TSP2-null mice coincided with the deposition of TSP2 in the extracellular matrix of wild-type animals. These observations support the proposed role of TSP2 as a modulator of angiogenesis and matrix remodeling during tissue repair. In addition, they provide in vivo evidence for a newly proposed function of TSP2 as a modulator of extracellular MMP2 levels.
Damage monitoring in historical murals by speckle interferometry
NASA Astrophysics Data System (ADS)
Hinsch, Klaus D.; Gulker, Gerd; Joost, Holger
2003-11-01
In the conservation of historical murals it is important to identify loose plaster sections that threaten to fall off. Electronic speckle interferometry in combination with acoustic excitation of the object has been employed to monitor loose areas. To avoid disadvantages of high sound irradiation of the complete building a novel directional audio-sound source based on nonlinear mixing of ultrasound has been introduced. The optical system was revised for optimum performance in the new environment. Emphasis is placed on noise suppression to increase sensitivity. Furthermore, amplitude and phase data of object response over the frequency-range inspected are employed to gain additional information on the state of the plaster or paint. Laboratory studies on sample specimen supplement field campaigns at historical sites.
Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility.
McIntyre, T J; Wegener, M J; Bishop, A I; Rubinsztein-Dunlop, H
1997-11-01
A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder.
Spatial-heterodyne interferometry for transmission (SHIFT) measurements
Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.
2006-10-10
Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.
Kasevich, Mark
2017-12-22
Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newtonâs constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?
NASA Technical Reports Server (NTRS)
Juanola Parramon, Roser; Leisawitz, David T.; Bolcar, Matthew R.; Maher, Stephen F.; Rinehart, Stephen A.; Iacchetta, Alex; Savini, Giorgio
2016-01-01
The Wide-field Imaging Interferometry Testbed (WIIT) is a double Fourier (DF) interferometer operating at optical wavelengths, and provides data that are highly representative of those from a space-based far-infrared interferometer like SPIRIT. This testbed has been used to measure both a geometrically simple test scene and an astronomically representative test scene. Here we present the simulation of recent WIIT measurements using FIInS (the Far-infrared Interferometer Instrument Simulator), the main goal of which is to simulate both the input and the output of a DFM system. FIInS has been modified to perform calculations at optical wavelengths and to include an extended field of view due to the presence of a detector array.
Near-field interferometry of a free-falling nanoparticle from a point-like source
NASA Astrophysics Data System (ADS)
Bateman, James; Nimmrichter, Stefan; Hornberger, Klaus; Ulbricht, Hendrik
2014-09-01
Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, Mark
2008-05-07
Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Canmore » atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?« less
Comparison of simulation and experimental results for a gas puff nozzle on Ambiorix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnier, J-N.; Chevalier, J-M.; Dubroca, B.
One of source term of Z-Pinch experiments is the gas puff density profile. In order to characterize the gas jet, an experiment based on interferometry has been performed. The first study was a point measurement (a section density profile) which led us to develop a global and instantaneous interferometry imaging method. In order to optimise the nozzle, we simulated the experiment with a flow calculation code (ARES). In this paper, the experimental results are compared with simulations. The different gas properties (He, Ne, Ar) and the flow duration lead us to take care, on the one hand, of the gasmore » viscosity, and on the other, of modifying the code for an instationary flow.« less
A Fourier dimensionality reduction model for big data interferometric imaging
NASA Astrophysics Data System (ADS)
Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves
2017-06-01
Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.
The appearance, motion, and disappearance of three-dimensional magnetic null points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu; Parnell, Clare E.; Haynes, Andrew L.
2015-10-15
While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field,more » which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.« less
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo; Contreras, Johnny H.
2012-01-01
Double-exposure holographic interferometry is applied to measure the "linear" or "longitudinal" magnetostriction constant of a soft-ferrite rod. This high-accuracy measurement is done indirectly, by measuring the small rotations of a lever in contact with the rod using double-exposure holographic interferometry implemented with a robust…
NASA Technical Reports Server (NTRS)
Lauer, James L.; Abel, Phillip B.
1988-01-01
The characteristics of the scanning tunneling microscope and atomic force microscope (AFM) are briefly reviewed, and optical methods, mainly interferometry, of sufficient resolution to measure AFM deflections are discussed. The methods include optical resonators, laser interferometry, multiple-beam interferometry, and evanescent wave detection. Experimental results using AFM are reviewed.
Spatial interferometry in optical astronomy
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude
1990-01-01
A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L.; Ding, W. X.; Brower, D. L.
2010-10-15
Differential interferometry employs two parallel laser beams with a small spatial offset (less than beam width) and frequency difference (1-2 MHz) using common optics and a single mixer for a heterodyne detection. The differential approach allows measurement of the electron density gradient, its fluctuations, as well as the equilibrium density distribution. This novel interferometry technique is immune to fringe skip errors and is particularly useful in harsh plasma environments. Accurate calibration of the beam spatial offset, accomplished by use of a rotating dielectric wedge, is required to enable broad application of this approach. Differential interferometry has been successfully used onmore » the Madison Symmetric Torus reversed-field pinch plasma to directly measure fluctuation-induced transport along with equilibrium density profile evolution during pellet injection. In addition, by combining differential and conventional interferometry, both linear and nonlinear terms of the electron density fluctuation energy equation can be determined, thereby allowing quantitative investigation of the origin of the density fluctuations. The concept, calibration, and application of differential interferometry are presented.« less
Digital off-axis holographic interferometry with simulated wavefront.
Belashov, A V; Petrov, N V; Semenova, I V
2014-11-17
The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.
Application of point-diffraction interferometry to testing infrared imaging systems
NASA Astrophysics Data System (ADS)
Smartt, Raymond N.; Paez, Gonzalo
2004-11-01
Point-diffraction interferometry has found wide applications spanning much of the electromagnetic spectrum, including both near- and far-infrared wavelengths. Any telescopic, spectroscopic or other imaging system that converts an incident plane or spherical wavefront into an accessible point-like image can be tested at an intermediate image plane or at the principal image plane, in situ. Angular field performance can be similarly tested with inclined incident wavefronts. Any spatially coherent source can be used, but because of the available flux, it is most convenient to use a laser source. The simplicity of the test setup can allow testing of even large and complex fully-assembled systems. While purely reflective IR systems can be conveniently tested at visible wavelengths (apart from filters), catadioptric systems could be evaluated using an appropriate source and an IRPDI, with an imaging and recording system. PDI operating principles are briefly reviewed, and some more recent developments and interesting applications briefly discussed. Alternative approaches and recommended procedures for testing IR imaging systems, including the thermal IR, are suggested. An example of applying point-diffraction interferometry to testing a relatively low angular-resolution, optically complex IR telescopic system is presented.
Imaging reconstruction for infrared interferometry: first images of YSOs environment
NASA Astrophysics Data System (ADS)
Renard, S.; Malbet, F.; Thiébaut, E.; Berger, J.-P.
2008-07-01
The study of protoplanetary disks, where the planets are believed to form, will certainly allow the formation of our Solar System to be understood. To conduct observations of these objects at the milli-arcsecond scale, infrared interferometry provides the right performances for T Tauri, FU Ori or Herbig Ae/Be stars. However, the only information obtained so far are scarce visibility measurements which are directly tested with models. With the outcome of recent interferometers, one can foresee obtaining images reconstructed independently of the models. In fact, several interferometers including IOTA and AMBER on the VLTI already provide the possibility to recombine three telescopes at once and thus to obtain the data necessary to reconstruct images. In this paper, we describe the use of MIRA, an image reconstruction algorithm developed for optical interferometry data (squared visibilities and closure phases) by E. Thiébaut. We foresee also to use the spectral information given by AMBER data to constrain even better the reconstructed images. We describe the use of MIRA to reconstruct images of young stellar objects out of actual data, in particular the multiple system GW Orionis (IOTA, 2004), and discuss the encountered difficulties.
The Wide-Field Imaging Interferometry Testbed: Recent Progress
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) at NASA's Goddard Space Flight Center was designed to demonstrate the practicality and application of techniques for wide-field spatial-spectral ("double Fourier") interferometry. WIIT is an automated system, and it is now producing substantial amounts of high-quality data from its state-of-the-art operating environment, Goddard's Advanced Interferometry and Metrology Lab. In this paper, we discuss the characterization and operation of the testbed and present the most recent results. We also outline future research directions. A companion paper within this conference discusses the development of new wide-field double Fourier data analysis algorithms.
Initial development of the DIII–D snowflake divertor control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
The Effect of Gaze Angle on Visual Acuity in Infantile Nystagmus.
Dunn, Matt J; Wiggins, Debbie; Woodhouse, J Margaret; Margrain, Tom H; Harris, Christopher M; Erichsen, Jonathan T
2017-01-01
Most individuals with infantile nystagmus (IN) have an idiosyncratic gaze angle at which their nystagmus intensity is minimized. Some adopt an abnormal head posture to use this "null zone," and it has therefore long been assumed that this provides people with nystagmus with improved visual acuity (VA). However, recent studies suggest that improving the nystagmus waveform could have little, if any, influence on VA; that is, VA is fundamentally limited in IN. Here, we examined the impact of the null zone on VA. Visual acuity was measured in eight adults with IN using a psychophysical staircase procedure with reversals at three horizontal gaze angles, including the null zone. As expected, changes in gaze angle affected nystagmus amplitude, frequency, foveation duration, and variability of intercycle foveation position. Across participants, each parameter (except frequency) was significantly correlated with VA. Within any given individual, there was a small but significant improvement in VA (0.08 logMAR) at the null zone as compared with the other gaze angles tested. Despite this, no change in any of the nystagmus waveform parameters was significantly associated with changes in VA within individuals. A strong relationship between VA and nystagmus characteristics exists between individuals with IN. Although significant, the improvement in VA observed within individuals at the null zone is much smaller than might be expected from the occasionally large variations in intensity and foveation dynamics (and anecdotal patient reports of improved vision), suggesting that improvement of other aspects of visual performance may also encourage use of the null zone.
Initial development of the DIII–D snowflake divertor control
Kolemen, Egemen; Vail, P. J.; Makowski, M. A.; ...
2018-04-11
Simultaneous control of two proximate magnetic field nulls in the divertor region is demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal field null, created by merging two first-order nulls of the standard divertor configuration. The snowflake configuration has many magnetic properties, such as high poloidal flux expansion, large plasma-wetted area, and additional strike points, that are advantageous for divertor heat flux management in future fusion reactors. However, the magnetic configuration of the SFD is highly-sensitive to changes in currents within the plasmamore » and external coils and therefore requires complex magnetic control. The first real-time snowflake detection and control system on DIII–D has been implemented in order to stabilize the configuration. The control algorithm calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov equation in the divertor region. A linear relation between variations in the poloidal field coil currents and changes in the null locations is then analytically derived. This formulation allows for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown that the control enabled various snowflake configurations on DIII–D in scenarios such as the double-null advanced tokamak. In conclusion, the SFD resulted in a 2.5×reduction in the peak heat flux for many energy confinement times (2–3s) without any adverse effects on core plasma performance.« less
Dhar-Mascareno, Manya; Rozenberg, Inna; Iqbal, Jahangir; Hussain, M Mahmood; Beckles, Daniel; Mascareno, Eduardo
2017-02-01
Hexim-1 is an inhibitor of RNA polymerase II transcription elongation. Decreased Hexim-1 expression in animal models of chronic diseases such as left ventricular hypertrophy, obesity and cancer triggered significant changes in adaptation and remodeling. The main aim of this study was to evaluate the role of Hexim1 in lipid metabolism focused in the progression of atherosclerosis and steatosis. We used the C57BL6 apolipoprotein E (ApoE null) crossed bred to C57BL6Hexim1 heterozygous mice to obtain ApoE null - Hexim1 heterozygous mice (ApoE-HT). Both ApoE null backgrounds were fed high fat diet for twelve weeks. Then, we evaluated lipid metabolism, atherosclerotic plaque formation and liver steatosis. In order to understand changes in the transcriptome of both backgrounds during the progression of steatosis, we performed Affymetrix mouse 430 2.0 microarray. After 12 weeks of HFD, ApoE null and ApoE-HT showed similar increase of cholesterol and triglycerides in plasma. Plaque composition was altered in ApoE-HT. Additionally, liver triglycerides and steatosis were decreased in ApoE-HT mice. Affymetrix analysis revealed that decreased steatosis might be due to impaired inducible SOCS3 expression in ApoE-HT mice. In conclusion, decreased Hexim-1 expression does not alter cholesterol metabolism in ApoE null background after HFD. However, it promotes stable atherosclerotic plaque and decreased steatosis by promoting the anti-inflammatory TGFβ pathway and blocking the expression of the inducible and pro-inflammatory expression of SOCS3 respectively. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi
2018-04-01
Interferometric wide-swath mode of Sentinel-1, which is implemented by Terrain Observation by Progressive Scan (TOPS) technique, is the main mode of SAR data acquisition in this mission. It aims at global monitoring of large areas with enhanced revisit frequency of 6 days at the expense of reduced azimuth resolution, compared to classical ScanSAR mode. TOPS technique is equipped by steering the beam from backward to forward along the heading direction for each burst, in addition to the steering along the range direction, which is the only sweeping direction in standard ScanSAR mode. This leads to difficulty in measuring along-track displacement by applying the conventional method of multi-aperture interferometry (MAI), which exploits a double difference interferometry to estimate azimuth offset. There is a possibility to solve this issue by a technique called "Burst Overlap Interferometry" which focuses on the region of burst overlap. Taking advantage of large squint angle diversity of 1° in burst overlapped area leads to improve the accuracy of ground motion measurement especially in along-track direction. We investigate the advantage of SAR Interferometry (InSAR), burst overlap interferometry and offset tracking to investigate coseismic deformation and coseismic-induced landslide related to 12 November 2017 Mw 7.3 Sarpol-e Zahab earthquake in Iran.
Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; March, Paul; Lawrence, James; Vera, Jerry; Sylvester, Andre; Brady, David; Bailey, Paul
2016-01-01
A vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 x 10(exp -6) Torr vacuum with power scans at 40 watts, 60 watts, and 80 watts. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust, however none were identified. Thrust data from forward, reverse, and null suggests that the system is consistently performing with a thrust to power ratio of 1.2 +/- 0.1 mN/kW.
NASA Astrophysics Data System (ADS)
Kulkarni, Rishikesh; Rastogi, Pramod
2018-05-01
A new approach is proposed for the multiple phase estimation from a multicomponent exponential phase signal recorded in multi-beam digital holographic interferometry. It is capable of providing multidimensional measurements in a simultaneous manner from a single recording of the exponential phase signal encoding multiple phases. Each phase within a small window around each pixel is appproximated with a first order polynomial function of spatial coordinates. The problem of accurate estimation of polynomial coefficients, and in turn the unwrapped phases, is formulated as a state space analysis wherein the coefficients and signal amplitudes are set as the elements of a state vector. The state estimation is performed using the extended Kalman filter. An amplitude discrimination criterion is utilized in order to unambiguously estimate the coefficients associated with the individual signal components. The performance of proposed method is stable over a wide range of the ratio of signal amplitudes. The pixelwise phase estimation approach of the proposed method allows it to handle the fringe patterns that may contain invalid regions.
Experimental demonstration of deep frequency modulation interferometry.
Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán
2016-01-25
Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.
Atom Interferometry for Fundamental Physics and Gravity Measurements in Space
NASA Technical Reports Server (NTRS)
Kohel, James M.
2012-01-01
Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.
NASA Technical Reports Server (NTRS)
Arrott, A. P.; Young, L. R.
1986-01-01
Tests of otolith function were performed pre-flight and post-flight on the science crew of the first Spacelab Mission with a rail-mounted linear acceleration sled. Four tests were performed using horizontal lateral (y-axis) acceleration: perception of linear motion, a closed loop nulling task, dynamic ocular torsion, and lateral eye deviations. The motion perception test measured the time to detect the onset and direction of near threshold accelerations. Post-flight measures of threshold and velocity constant obtained during the days immediately following the mission showed no consistent pattern of change among the four crewmen compared to their pre-flight baseline other than an increased variability of response. In the closed loop nulling task, crewmen controlled the motion of the sled and attempted to null a computer-generated random disturbance motion. When performed in the light, no difference in ability was noted between pre-flight and post-flight. In the dark, however, two of the four crewmen exhibited somewhat enhanced performance post-flight. Dynamic ocular torsion was measured in response to sinusoidal lateral acceleration which produces a gravitionertial stimulus equivalent to lateral head tilt without rotational movement of the head. Results available for two crewmen suggest a decreased amplitude of sinusoidal ocular torsion when measured on the day of landing (R+0) and an increasing amplitude when measured during the week following the mission.
Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M
2002-08-01
mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.
Ugarte-Gil, M F; Sánchez-Zúñiga, C; Gamboa-Cárdenas, R V; Aliaga-Zamudio, M; Zevallos, F; Tineo-Pozo, G; Cucho-Venegas, J M; Mosqueira-Riveros, A; Medina, M; Perich-Campos, R A; Alfaro-Lozano, J L; Rodriguez-Bellido, Z; Alarcón, G S; Pastor-Asurza, C A
2016-03-01
To determine whether circulating CD4+CD28null and extra-thymic CD4+CD8+ double positive (DP) T cells are independently associated with damage accrual in systemic lupus erythematosus (SLE) patients. This cross-sectional study was conducted between September 2013 and April 2014 in consecutive SLE patients from our Rheumatology Department. CD4+CD28null and CD4+CD8+ DP T-cell frequencies were analyzed by flow-cytometry. The association of damage (SLICC/ACR Damage Index, SDI) and CD4+CD28null and CD4+CD8+ DP T cells was examined by univariable and multivariable Poisson regression models, adjusting for possible confounders. All analyses were performed using SPSS 21.0. Patients' (n = 133) mean (SD) age at diagnosis was 35.5 (16.8) years, 124 (93.2%) were female; all were mestizo (mixed Caucasian and Amerindian ancestry). Disease duration was 7.4 (6.8) years. The SLE Disease Activity Index was 5.5 (4.2), and the SDI 0.9 (1.2). The percentages of CD4+CD28null and CD4+CD8+ DP T cells were 17.1 (14.4) and 0.4 (1.4), respectively. The percentage of CD4+CD28null and CD4+CD8+ DP T cells were positively associated with a higher SDI in both univariable (rate ratio (RR) 1.02, 95% confidence interval (CI): 1.01-1.03 and 1.17, 95% CI: 1.07-1.27, respectively; p < 0.001 for both) and multivariable analyses RR 1.02, 95% CI: 1.01-1.03, p = 0.001 for CD4+CD28null T cells and 1.28, 95% CI: 1.13-1.44, p < 0.001 for CD4+CD8+ DP T cells). Only the renal domain remained associated with CD4+CD28null in multivariable analyses (RR 1.023 (1.002-1.045); p = 0.034). In SLE patients, CD4+CD28null and CD4+CD8+ DP T cells are independently associated with disease damage. Longitudinal studies are warranted to determine the predictive value of these associations. © The Author(s) 2015.
Vilinsky, Ilya; Stewart, Bryan A; Drummond, James; Robinson, Iain; Deitcher, David L
2002-01-01
The synaptic protein SNAP-25 is an important component of the neurotransmitter release machinery, although its precise function is still unknown. Genetic analysis of other synaptic proteins has yielded valuable information on their role in synaptic transmission. In this study, we performed a mutagenesis screen to identify new SNAP-25 alleles that fail to complement our previously isolated recessive temperature-sensitive allele of SNAP-25, SNAP-25(ts). In a screen of 100,000 flies, 26 F(1) progeny failed to complement SNAP-25(ts) and 21 of these were found to be null alleles of SNAP-25. These null alleles die at the pharate adult stage and electroretinogram recordings of these animals reveal that synaptic transmission is blocked. At the third instar larval stage, SNAP-25 nulls exhibit nearly normal neurotransmitter release at the neuromuscular junction. This is surprising since SNAP-25(ts) larvae exhibit a much stronger synaptic phenotype. Our evidence indicates that a related protein, SNAP-24, can substitute for SNAP-25 at the larval stage in SNAP-25 nulls. However, if a wild-type or mutant form of SNAP-25 is present, then SNAP-24 does not appear to take part in neurotransmitter release at the larval NMJ. These results suggest that the apparent redundancy between SNAP-25 and SNAP-24 is due to inappropriate genetic substitution. PMID:12242238
Arbag, Hamdi; Cora, Tulin; Acar, Hasan; Ozturk, Kayhan; Sari, Fatih; Ulusoy, Bulent
2006-03-01
To evaluate the glutation-S-transferase (GST) polymorphisms (GSTM1 and GSTT1) in nasal polyposis (NP). The study population consisted of 102 unrelated healthy individuals and 98 patients with NP (67 without asthma, 31 with asthma). Genotyping of the polymorphism in the GSTM1 and GSTT1 genes was performed using the multiplex polymerase chain reaction (PCR)-based method. GSTM1 and GSTT1 null-genotypes were found in 46.1% and 23.5% of the controls, and in 43.9% and 33.7% of the NP patients, respectively. These differences were not significant (for GSTM1 null odds ratio (OR) = 0.92; 95% confidence interval (CI) = 0.52-1.6 and for GSTT1, OR = 1.65; 95% CI = 0.89-3.07). Although no significant difference for combined GSTM1 and GSTT1 null genotypes between control (8.8%) and NP patients (17.3%) was found, there was a 2.16-fold increased proportion in the NP with the combined GSTM1-null and GSTT1-null genotype (OR = 2.16; 95% CI = 0.91-5.13). These results suggest that there is lack of association between GSTM1 and GSTT1 polymorphisms and NP. The GSTM1 or GSTT1 polymorphisms had also no relevant developing effect on NP patients without or with asthma.
Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William
2004-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.
A Data Exchange Standard for Optical (Visible/IR) Interferometry
NASA Astrophysics Data System (ADS)
Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.
2005-11-01
This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Machado, Rachel R P; Dutra, Rafael C; Raposo, Nádia R B; Lesche, Bernhard; Gomes, Marlei S; Duarte, Rafael S; Soares, Geraldo Luiz G; Kaplan, Maria Auxiliadora C
2015-12-01
Interferometry was used together with the conventional microplate resazurin assay to evaluate the antimycobacterial properties of essential oil (EO) from fruits of Pterodon emarginatus and also of rifampicin against Mycobacterium bovis. The aim of this work is not only to investigate the potential antimycobacterial activity of this EO, but also to test the interferometric method in comparison with the conventional one. The Minimum Inhibitory Concentration (MIC) values of EO (625 μg/mL) and rifampicin (4 ng/mL) were firstly identified with the microplate method. These values were used as parameters in Drug Susceptibility Tests (DST) with interferometry. The interferometry confirmed the MIC value of EO identified with microplate and revealed a bacteriostatic behavior for this concentration. At 2500 μg/mL interferometry revealed bactericidal activity of the EO. Mycobacterial growth was detected with interferometry at 4 ng/mL of rifampicin and even at higher concentrations. One important difference is that the interferometric method preserves the sample, so that after weeks of quantitative observation, the sample can be used to evaluate the bactericidal activity of the tested drug. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doering, D.; McDonald, G.; Debs, J. E.
2010-04-15
Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less
NASA Astrophysics Data System (ADS)
Gerberding, Oliver; Sheard, Benjamin; Bykov, Iouri; Kullmann, Joachim; Esteban Delgado, Juan Jose; Danzmann, Karsten; Heinzel, Gerhard
2013-12-01
Intersatellite laser interferometry is a central component of future space-borne gravity instruments like Laser Interferometer Space Antenna (LISA), evolved LISA, NGO and future geodesy missions. The inherently small laser wavelength allows us to measure distance variations with extremely high precision by interfering a reference beam with a measurement beam. The readout of such interferometers is often based on tracking phasemeters, which are able to measure the phase of an incoming beatnote with high precision over a wide range of frequencies. The implementation of such phasemeters is based on all digital phase-locked loops (ADPLL), hosted in FPGAs. Here, we present a precise model of an ADPLL that allows us to design such a readout algorithm and we support our analysis by numerical performance measurements and experiments with analogue signals.
Butterflies' wings deformations using high speed digital holographic interferometry
NASA Astrophysics Data System (ADS)
Mendoza Santoyo, Fernando; Aguayo, Daniel D.; de La Torre-Ibarra, Manuel H.; Salas-Araiza, Manuel D.
2011-08-01
A variety of efforts in different scientific disciplines have tried to mimic the insect's in-flight complex system. The gained knowledge has been applied to improve the performance of different flying artifacts. In this research report it is presented a displacement measurement on butterflies' wings using the optical noninvasive Digital Holographic Interferometry technique with out of plane sensitivity, using a high power cw laser and a high speed CMOS camera to record the unrepeatable displacement movements on these organic tissues. A series of digital holographic interferograms were recorded and the experimental results for several butterflies during flapping events. The relative unwrapped phase maps micro-displacements over the whole wing surface are shown in a wire-mesh representation. The difference between flying modes is remarkably depicted among them.
Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed
2009-10-09
Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
Bai, Yulei; Jia, Quanjie; Zhang, Yun; Huang, Qiquan; Yang, Qiyu; Ye, Shuangli; He, Zhaoshui; Zhou, Yanzhou; Xie, Shengli
2016-05-01
It is important to improve the depth resolution in depth-resolved wavenumber-scanning interferometry (DRWSI) owing to the limited range of wavenumber scanning. In this work, a new nonlinear iterative least-squares algorithm called the wavenumber-domain least-squares algorithm (WLSA) is proposed for evaluating the phase of DRWSI. The simulated and experimental results of the Fourier transform (FT), complex-number least-squares algorithm (CNLSA), eigenvalue-decomposition and least-squares algorithm (EDLSA), and WLSA were compared and analyzed. According to the results, the WLSA is less dependent on the initial values, and the depth resolution δz is approximately changed from δz to δz/6. Thus, the WLSA exhibits a better performance than the FT, CNLSA, and EDLSA.
Detection of long nulls in PSR B1706-16, a pulsar with large timing irregularities
NASA Astrophysics Data System (ADS)
Naidu, Arun; Joshi, Bhal Chandra; Manoharan, P. K.; Krishnakumar, M. A.
2018-04-01
Single pulse observations, characterizing in detail, the nulling behaviour of PSR B1706-16 are being reported for the first time in this paper. Our regular long duration monitoring of this pulsar reveals long nulls of 2-5 h with an overall nulling fraction of 31 ± 2 per cent. The pulsar shows two distinct phases of emission. It is usually in an active phase, characterized by pulsations interspersed with shorter nulls, with a nulling fraction of about 15 per cent, but it also rarely switches to an inactive phase, consisting of long nulls. The nulls in this pulsar are concurrent between 326.5 and 610 MHz. Profile mode changes accompanied by changes in fluctuation properties are seen in this pulsar, which switches from mode A before a null to mode B after the null. The distribution of null durations in this pulsar is bimodal. With its occasional long nulls, PSR B1706-16 joins the small group of intermediate nullers, which lie between the classical nullers and the intermittent pulsars. Similar to other intermediate nullers, PSR B1706-16 shows high timing noise, which could be due to its rare long nulls if one assumes that the slowdown rate during such nulls is different from that during the bursts.
NASA Astrophysics Data System (ADS)
Babakhani, Behrouz
Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency agility (1.17 GHz to 1.58 GHz), full polarization reconfiguration was added to the design by controlling ports excitation of circular patch using RF switches (vertical linear, horizontal linear, right-handed circular polarization (RHCP) and left-handed circular polarization (LHCP)). This deign maintains good gain and radiation efficiency over the tunable range as well as acceptable co-polarization and cross-polarization separation for different polarizations. Since many communications applications require beam steering ability, in our third design, we designed and developed a linear phased array antenna using a modified version of our frequency agile polarization reconfigurable antenna for beam steering applications. This design offers wide frequency agility (1.50 GHz to 2.40 GHz), full polarization reconfiguration (vertical linear, horizontal linear, LHCP and RHCP) as well as beam steering of +/-52° and +/-28° at 1.5 GHz and 2.4 GHz, respectively. In this 1x4 array, the excitation magnitude and phase of each element was controlled by an analog beamforming feed network (BFN) for beam steering purposes. The required excitation for each element to steer the beam toward a desired location was calculated using projection matrix method (PMM) which uses measured active element pattern (AEP) as its input. This array antenna performance for frequency agility, radiation quality for each polarization and beam steering capability was obtained in the acceptable range. In the last design, the full spherical dual null steering capability of a triple mode circular microstrip patch antenna was investigated. By combining the radiation patterns of three individual modes of microstrip circular patch antenna, two nulls have been generated. These nulls can be repositioned in the upper hemisphere by controlling excitation ratio of each mode. The modes excitation ratio to steer the nulls toward the desired positions was calculated using a derivative free hybrid optimization method. This optimization method uses particle swarm optimization (PSO) combined with pattern search (PS) to find the optimum modes excitation ratio which minimizes the received power at the null positions. The calculated coefficients were applied to the multimode antenna using an analog BFN. This design shows an independent dual null steering with null depth of around 20 dB. Discussion about the proposed antennas included detailed theoretical analysis, numerical simulation and optimizations, beam forming and null steering algorithms, fabrication of the antennas and its control/beamforming feed networks along with the associated bias networks, microcontroller units, and finally its characterization (impedance matching, gain and 2D and 3D radiation patterns). The research work was performed at the Antenna and Microwave Lab (AML) which has the required resources including full wave analysis tools, PCB milling machine, surface mount component soldering station, vector network analyzers, and far-field/spherical near-field radiation pattern measurement system.
Bias in error estimation when using cross-validation for model selection.
Varma, Sudhir; Simon, Richard
2006-02-23
Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.
Arnold, Shanna A.; Rivera, Lee B.; Carbon, Juliet G.; Toombs, Jason E.; Chang, Chi-Lun; Bradshaw, Amy D.; Brekken, Rolf A.
2012-01-01
Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation. PMID:22348081
Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures
NASA Technical Reports Server (NTRS)
Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.
2011-01-01
The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets
VizieR Online Data Catalog: Multiplicity among chemically peculiar stars II (Carrier+, 2002)
NASA Astrophysics Data System (ADS)
Carrier, F.; North, P.; Udry, S.; Babel, J.
2002-08-01
We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. (4 data files).
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Goddard Geophysical and Astronomical Observatory
NASA Technical Reports Server (NTRS)
Redmond, Jay; Kodak, Charles
2001-01-01
This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.
Tucker, Kristal R.; Godbey, Steven J.; Thiebaud, Nicolas; Fadool, Debra Ann
2012-01-01
Physiological and nutritional state can modify sensory ability and perception through hormone signaling. Obesity and related metabolic disorders present a chronic imbalance in hormonal signaling that could impact sensory systems. In the olfactory system, external chemical cues are transduced into electrical signals to encode information. It is becoming evident that this system can also detect internal chemical cues in the form of molecules of energy homeostasis and endocrine hormones, whereby neurons of the olfactory system are modulated to change animal behavior towards olfactory cues. We hypothesized that chronic imbalance in hormonal signaling and energy homeostasis due to obesity would thereby disrupt olfactory behaviors in mice. To test this idea, we utilized three mouse models of varying body weight, metabolic hormones, and visceral adiposity – 1) C57BL6/J mice maintained on a condensed-milk based, moderately high-fat diet (MHF) of 32% fat for 6 months as the diet-induced obesity model, 2) an obesity-resistant, lean line of mice due to a gene-targeted deletion of a voltage-dependent potassium channel (Kv1.3-null), and 3) a genetic model of obesity as a result of a gene-targeted deletion of the melanocortin 4 receptor (MC4R-null). Diet-induced obese (DIO) mice failed to find fatty-scented hidden peanut butter cracker, based solely on olfactory cues, any faster than an unscented hidden marble, initially suggesting general anosmia. However, when these DIO mice were challenged to find a sweet-scented hidden chocolate candy, they had no difficulty. Furthermore, DIO mice were able to discriminate between fatty acids that differ by a single double bond and are components of the MHF diet (linoleic and oleic acid) in a habituation-dishabituation paradigm. Obesity-resistant, Kv1.3-null mice exhibited no change in scented object retrieval when placed on the MHF-diet, nor did they perform differently than wild-type mice in parallel habituation-dishabituation paradigms of fatty food-related odor components. Genetically obese, MC4R-null mice successfully found hidden scented objects, but did so more slowly than lean, wild-type mice, in an object-dependent fashion. In habituation-dishabituation trials of general odorants, MC4R-null mice failed to discriminate a novel odor, but were able to distinguish two fatty acids. Object memory recognition tests for short- and long-term memory retention demonstrated that maintenance on the MHF diet did not modify ability to perform these tasks independent of whether mice became obese or were resistant to weight gain (Kv1.3-null), however, the genetically predisposed obese mice (MC4R-null) failed the long-term object memory recognition performed at 24 hours. These results demonstrate that even though both the DIO mice and genetically predisposed obese mice are obese, they vary in the degree to which they exhibit behavioral deficits in odor detection, odor discrimination, and long-term memory. PMID:22995978
NASA Technical Reports Server (NTRS)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.
Status of holographic interferometry at Wright Patterson Air Force Base
NASA Technical Reports Server (NTRS)
Seibert, George
1987-01-01
At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.
Ambient seismic noise interferometry in Hawai'i reveals long-range observability of volcanic tremor
Ballmer, Silke; Wolfe, Cecily; Okubo, Paul G.; Haney, Matt; Thurber, Clifford H.
2013-01-01
The use of seismic noise interferometry to retrieve Green's functions and the analysis of volcanic tremor are both useful in studying volcano dynamics. Whereas seismic noise interferometry allows long-range extraction of interpretable signals from a relatively weak noise wavefield, the characterization of volcanic tremor often requires a dense seismic array close to the source. We here show that standard processing of seismic noise interferometry yields volcanic tremor signals observable over large distances exceeding 50 km. Our study comprises 2.5 yr of data from the U.S. Geological Survey Hawaiian Volcano Observatory short period seismic network. Examining more than 700 station pairs, we find anomalous and temporally coherent signals that obscure the Green's functions. The time windows and frequency bands of these anomalous signals correspond well with the characteristics of previously studied volcanic tremor sources at Pu'u 'Ō'ō and Halema'uma'u craters. We use the derived noise cross-correlation functions to perform a grid-search for source location, confirming that these signals are surface waves originating from the known tremor sources. A grid-search with only distant stations verifies that useful tremor signals can indeed be recovered far from the source. Our results suggest that the specific data processing in seismic noise interferometry—typically used for Green's function retrieval—can aid in the study of both the wavefield and source location of volcanic tremor over large distances. In view of using the derived Green's functions to image heterogeneity and study temporal velocity changes at volcanic regions, however, our results illustrate how care should be taken when contamination by tremor may be present.
Sources of Artefacts in Synthetic Aperture Radar Interferometry Data Sets
NASA Astrophysics Data System (ADS)
Becek, K.; Borkowski, A.
2012-07-01
In recent years, much attention has been devoted to digital elevation models (DEMs) produced using Synthetic Aperture Radar Interferometry (InSAR). This has been triggered by the relative novelty of the InSAR method and its world-famous product—the Shuttle Radar Topography Mission (SRTM) DEM. However, much less attention, if at all, has been paid to sources of artefacts in SRTM. In this work, we focus not on the missing pixels (null pixels) due to shadows or the layover effect, but rather on outliers that were undetected by the SRTM validation process. The aim of this study is to identify some of the causes of the elevation outliers in SRTM. Such knowledge may be helpful to mitigate similar problems in future InSAR DEMs, notably the ones currently being developed from data acquired by the TanDEM-X mission. We analysed many cross-sections derived from SRTM. These cross-sections were extracted over the elevation test areas, which are available from the Global Elevation Data Testing Facility (GEDTF) whose database contains about 8,500 runways with known vertical profiles. Whenever a significant discrepancy between the known runway profile and the SRTM cross-section was detected, a visual interpretation of the high-resolution satellite image was carried out to identify the objects causing the irregularities. A distance and a bearing from the outlier to the object were recorded. Moreover, we considered the SRTM look direction parameter. A comprehensive analysis of the acquired data allows us to establish that large metallic structures, such as hangars or car parking lots, are causing the outliers. Water areas or plain wet terrains may also cause an InSAR outlier. The look direction and the depression angle of the InSAR system in relation to the suspected objects influence the magnitude of the outliers. We hope that these findings will be helpful in designing the error detection routines of future InSAR or, in fact, any microwave aerial- or space-based survey. The presence of outliers in SRTM was first reported in Becek, K. (2008). Investigating error structure of shuttle radar topography mission elevation data product, Geophys. Res. Lett., 35, L15403.
Technology Plan for the Terrestrial Planet Finder Interferometer
NASA Technical Reports Server (NTRS)
Lawson, Peter R. (Editor); Dooley, Jennifer A. (Editor)
2005-01-01
The technology plan for the Terrestrial Planet Finder Interferometer (TPF-I) describes the breadth of technology development currently envisaged to enable TPF-I to search for habitable worlds around nearby stars. TPF-I is currently in Pre-Phase A (the Advanced Study Phase) of its development. For planning purposes, it is expected to enter into Phase A in 2010 and be launched sometime before 2020. TPF-I is being developed concurrently with the Terrestrial Planet Finder Coronagraph (TPF-C), whose launch is anticipated in 201 6. The missions are being designed with the capability to detect Earth-like planets should they exist in the habitable zones of Sun-like (F,G, and K) stars out to a distance of about 60 light-years. Each mission will have the starlight-suppression and spectroscopic capability to enable the characterization of extrasolar planetary atmospheres, identifying biomarkers and signs of life. TPF-C is designed as a visible-light coronagraph; TPF-I is designed as a mid-infrared formation-flying interferometer. The two missions, working together, promise to yield unambiguous detections and characterizations of Earth-like planets. The challenges of planet detections with mid-infrared formation-flying interferometry are described within this technology plan. The approach to developing the technology is described through roadmaps that lead from our current state of the art through the different phases of mission development to launch. Technology metrics and milestones are given to measure progress. The emphasis of the plan is development and acquisition of technology during pre-Phase A to establish feasibility of the mission to enter Phase A sometime around 2010. Plans beyond 2010 are outlined. The plan contains descriptions of the development of new component technology as well as testbeds that demonstrate the viability of new techniques and technology required for the mission. Starlight-suppression (nulling) and formation-flying technology are highlighted. Although the techniques are described herein, the descriptions are only at a high-level, and tutorial material is not included. The reader is expected to have some familiarity with the principles of long-baseline mid-infrared interferometry. Selected references to existing literature are given where relevant.
System and Method for Null-Lens Wavefront Sensing
NASA Technical Reports Server (NTRS)
Hill, Peter C. (Inventor); Thompson, Patrick L. (Inventor); Aronstein, David L. (Inventor); Bolcar, Matthew R. (Inventor); Smith, Jeffrey S. (Inventor)
2015-01-01
A method of measuring aberrations in a null-lens including assembly and alignment aberrations. The null-lens may be used for measuring aberrations in an aspheric optic with the null-lens. Light propagates from the aspheric optic location through the null-lens, while sweeping a detector through the null-lens focal plane. Image data being is collected at locations about said focal plane. Light is simulated propagating to the collection locations for each collected image. Null-lens aberrations may extracted, e.g., applying image-based wavefront-sensing to collected images and simulation results. The null-lens aberrations improve accuracy in measuring aspheric optic aberrations.
Broken chiral symmetry on a null plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beane, Silas R., E-mail: silas@physics.unh.edu
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-planemore » description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.« less
NASA Astrophysics Data System (ADS)
Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.
2016-12-01
Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Appendix: Limits on the use of heterodyning and amplification in optical interferometry
NASA Technical Reports Server (NTRS)
Burke, Bernard F.
1992-01-01
The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, T sub N = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 10(exp 12) to 10(exp 14) Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as noise performance improves. One might guess that ultimately a wavelength of about 100 microns will mark the limit of useful amplification and heterodyning in astronomical aperture synthesis interferometry.
Algorithms and Array Design Criteria for Robust Imaging in Interferometry
2016-04-01
Interferometry 1.1 Chapter Overview In this Section, we introduce the physics -based principles of optical interferometry, thereby providing a foundation for...particular physical structure (i.e. the existence of a certain type of loop in the interferometric graph), and provide a simple algorithm for identifying...mathematical conditions for wrap invariance to a physical condition on aperture placement is more intuitive when considering the raw phase measurements as
Ocean Remote Sensing Using Ambient Noise
2015-09-30
and other adaptive array processing methods. OBJECTIVES Work on this project has focused on noise interferometry – the process by which an...measured at xA and xB. In that context, our objective is to investigate and identify the limitations of noise interferometry for remote sensing...and 6 is ongoing. 1. Demonstration of noise interferometry at 10 km range in a shallow water environment Recently conducted experiments in the
A Possible Future for Space-Based Interferometry
NASA Technical Reports Server (NTRS)
Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.
2013-01-01
We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.
Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C.
1978-01-01
The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.
NASA Astrophysics Data System (ADS)
Zhu, Yizheng; Li, Chengshuai
2016-03-01
Morphological assessment of spermatozoa is of critical importance for in vitro fertilization (IVF), especially intracytoplasmic sperm injection (ICSI)-based IVF. In ICSI, a single sperm cell is selected and injected into an egg to achieve fertilization. The quality of the sperm cell is found to be highly correlated to IVF success. Sperm morphology, such as shape, head birefringence and motility, among others, are typically evaluated under a microscope. Current observation relies on conventional techniques such as differential interference contrast microscopy and polarized light microscopy. Their qualitative nature, however, limits the ability to provide accurate quantitative analysis. Here, we demonstrate quantitative morphological measurement of sperm cells using two types of spectral interferometric techniques, namely spectral modulation interferometry and spectral multiplexing interferometry. Both are based on spectral-domain low coherence interferometry, which is known for its exquisite phase determination ability. While spectral modulation interferometry encodes sample phase in a single spectrum, spectral multiplexing interferometry does so for sample birefringence. Therefore they are capable of highly sensitive phase and birefringence imaging. These features suit well in the imaging of live sperm cells, which are small, dynamic objects with only low to moderate levels of phase and birefringence contrast. We will introduce the operation of both techniques and demonstrate their application to measuring the phase and birefringence morphology of sperm cells.
Estimating the Proportion of True Null Hypotheses Using the Pattern of Observed p-values
Tong, Tiejun; Feng, Zeny; Hilton, Julia S.; Zhao, Hongyu
2013-01-01
Estimating the proportion of true null hypotheses, π0, has attracted much attention in the recent statistical literature. Besides its apparent relevance for a set of specific scientific hypotheses, an accurate estimate of this parameter is key for many multiple testing procedures. Most existing methods for estimating π0 in the literature are motivated from the independence assumption of test statistics, which is often not true in reality. Simulations indicate that most existing estimators in the presence of the dependence among test statistics can be poor, mainly due to the increase of variation in these estimators. In this paper, we propose several data-driven methods for estimating π0 by incorporating the distribution pattern of the observed p-values as a practical approach to address potential dependence among test statistics. Specifically, we use a linear fit to give a data-driven estimate for the proportion of true-null p-values in (λ, 1] over the whole range [0, 1] instead of using the expected proportion at 1 − λ. We find that the proposed estimators may substantially decrease the variance of the estimated true null proportion and thus improve the overall performance. PMID:24078762
DETECTING UNSPECIFIED STRUCTURE IN LOW-COUNT IMAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Nathan M.; Dyk, David A. van; Kashyap, Vinay L.
Unexpected structure in images of astronomical sources often presents itself upon visual inspection of the image, but such apparent structure may either correspond to true features in the source or be due to noise in the data. This paper presents a method for testing whether inferred structure in an image with Poisson noise represents a significant departure from a baseline (null) model of the image. To infer image structure, we conduct a Bayesian analysis of a full model that uses a multiscale component to allow flexible departures from the posited null model. As a test statistic, we use a tailmore » probability of the posterior distribution under the full model. This choice of test statistic allows us to estimate a computationally efficient upper bound on a p-value that enables us to draw strong conclusions even when there are limited computational resources that can be devoted to simulations under the null model. We demonstrate the statistical performance of our method on simulated images. Applying our method to an X-ray image of the quasar 0730+257, we find significant evidence against the null model of a single point source and uniform background, lending support to the claim of an X-ray jet.« less
The impact of the SSIIa null mutations on grain traits and composition in durum wheat.
Botticella, Ermelinda; Sestili, Francesco; Ferrazzano, Gianluca; Mantovani, Paola; Cammerata, Alessandro; D'Egidio, Maria Grazia; Lafiandra, Domenico
2016-09-01
Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and β-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, β-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and β-glucans biosynthesis.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
Adiponectin deficiency impairs liver regeneration through attenuating STAT3 phosphorylation in mice.
Shu, Run-Zhe; Zhang, Feng; Wang, Fang; Feng, De-Chun; Li, Xi-Hua; Ren, Wei-Hua; Wu, Xiao-Lin; Yang, Xue; Liao, Xiao-Dong; Huang, Lei; Wang, Zhu-Gang
2009-09-01
Liver regeneration is a very complex and well-orchestrated process associated with signaling cascades involving cytokines, growth factors, and metabolic pathways. Adiponectin is an adipocytokine secreted by mature adipocytes, and its receptors are widely distributed in many tissues, including the liver. Adiponectin has direct actions in the liver with prominent roles to improve hepatic insulin sensitivity, increase fatty acid oxidation, and decrease inflammation. To test the hypothesis that adiponectin is required for normal progress of liver regeneration, 2/3 partial hepatectomy (PH) was performed on wild-type and adiponectin-null mice. Compared to wild-type mice, adiponectin-null mice displayed decreased liver mass regrowth, impeded hepatocyte proliferation, and increased hepatic lipid accumulation. Gene expression analysis revealed that adiponectin regulated the gene transcription related to lipid metabolism. Furthermore, the suppressed hepatocyte proliferation was accompanied with reduced signal transducer and activator of transcription protein 3 (STAT3) activity and enhanced suppressor of cytokine signaling 3 (Socs3) transcription. In conclusion, adiponectin-null mice exhibit impaired liver regeneration and increased hepatic steatosis. Increased expression of Socs3 and subsequently reduced activation of STAT3 in adiponectin-null mice may contribute to the alteration of the liver regeneration capability and hepatic lipid metabolism after PH.
Estimating the Proportion of True Null Hypotheses Using the Pattern of Observed p-values.
Tong, Tiejun; Feng, Zeny; Hilton, Julia S; Zhao, Hongyu
2013-01-01
Estimating the proportion of true null hypotheses, π 0 , has attracted much attention in the recent statistical literature. Besides its apparent relevance for a set of specific scientific hypotheses, an accurate estimate of this parameter is key for many multiple testing procedures. Most existing methods for estimating π 0 in the literature are motivated from the independence assumption of test statistics, which is often not true in reality. Simulations indicate that most existing estimators in the presence of the dependence among test statistics can be poor, mainly due to the increase of variation in these estimators. In this paper, we propose several data-driven methods for estimating π 0 by incorporating the distribution pattern of the observed p -values as a practical approach to address potential dependence among test statistics. Specifically, we use a linear fit to give a data-driven estimate for the proportion of true-null p -values in (λ, 1] over the whole range [0, 1] instead of using the expected proportion at 1 - λ. We find that the proposed estimators may substantially decrease the variance of the estimated true null proportion and thus improve the overall performance.
Blob dynamics in TORPEX poloidal null configurations
NASA Astrophysics Data System (ADS)
Shanahan, B. W.; Dudson, B. D.
2016-12-01
3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.
Achievements and perspectives of fiber gyros
NASA Astrophysics Data System (ADS)
Boehm, Manfred
1986-01-01
After evaluating the development history and current status of fiber-optic gyros employing the Sagnac effect, attention is given to a novel class of inertial fiber-optic motion devices having their basis in the Kennedy-Thorndike (1932) interferometry experiments. These devices promise high performance strapdown inertial navigation systems that dispense with accelerometers. The prospective performance of such devices is discussed in light of an analysis of Sagnac, Michelson, and Kennedy-Thorndike interferometers.
2006 Interferometry Imaging Beauty Contest
NASA Technical Reports Server (NTRS)
Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Ireland, Michael; Monnier, John D.; Thiebaut, Eric; Rengaswamy, Sridharan; Baron, Fabien; Young, John S.; Kraus, Stefan;
2006-01-01
We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Five different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formatted in the OI-FITS format. The data are calibrated power spectra and bispectra measured with an array intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.
Mechanical Amplifier for a Piezoelectric Transducer
NASA Technical Reports Server (NTRS)
Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert
2003-01-01
A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.
Xia, Haiyun; Zhang, Chunxi
2010-03-01
An ultrafast and Doppler-free optical ranging system based on dispersive frequency-modulated interferometry is demonstrated. The principle is similar to the conventional frequency-modulated continuous-wave interferometry where the range information is derived from the beat frequency between the object signal and the reference signal. However, a passive and static frequency scanning is performed based on the chromatic dispersion of a transform-limited femtosecond pulse in the time domain. We point out that the unbalanced dispersion introduced in the Mach-Zehnder interferometer can be optimized to eliminate the frequency chirp in the temporal interferograms pertaining to the third order dispersion of the all-fiber system, if the dynamic range being considered is small. Some negative factors, such as the polarization instability of the femtosecond pulse, the power fluctuation of the optical signal and the nonuniform gain spectrum of the erbium-doped fiber amplifier lead to an obvious envelope deformation of the temporal interferograms from the Gaussian shape. Thus a new data processing method is proposed to guarantee the range resolution. In the experiment, the vibration of a speaker is measured. A range resolution of 1.59 microm is achieved with an exposure time of 394 fs at a sampling rate of 48.6 MHz.
Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques
NASA Technical Reports Server (NTRS)
Kuan, Gary M
2008-01-01
The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.
NASA Astrophysics Data System (ADS)
Gorecki, Christophe
2015-08-01
The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.
NASA Astrophysics Data System (ADS)
Chikode, Prashant; Sabale, Sandip; Chavan, Sugam
2017-01-01
Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.
Speckle interferometry of asteroids. II - 532 Herculina
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Hege, E. K.; Cocke, W. J.; Freeman, J. D.; Christou, J. C.; Binzel, R. P.
1985-01-01
Speckle interferometry of 532 Herculina performed on January 17 and 18, 1982, yields triaxial ellipsoid dimensions of (263 + or - 14) x (218 + or - 12) x (215 + or - 12) km, and a north pole for the asteroid within 7 deg of RA = 7h47min and DEC = -39 deg (ecliptic coordinates lambda = 132 deg beta = -59 deg). In addition, a 'spot' some 75 percent brighter than the rest of the asteroid is inferred from both speckle observations and Herculina's lightcurve history. This bright complex, centered at asterocentric latitude -35 deg, longitude 145-165 deg, extends over a diameter of 55 deg (115 km) of the asteroid's surface. No evidence for a satellite is found from the speckle observations, which leads to an upper limit of 50 km for the diameter of any satellite with an albedo the same as or higher than Herculina.
Brassboard Astrometric Beam Combiner (ABC) Development for the Space Interferometry Mission (SIM)
NASA Technical Reports Server (NTRS)
Jeganathan, Muthu; Kuan, Gary; Rud, Mike; Lin, Sean; Sutherland, Kristen; Moore, James; An, Xin
2008-01-01
The Astrometric Beam Combiner (ABC) is a critical element of the Space Interferometry Mission (SIM) that performs three key functions: coherently combine starlight from two siderostats; individually detect starlight for angle tracking; and disperse and detect the interferometric fringes. In addition, the ABC contains: a stimulus, cornercubes and shutters for in-orbit calibration; several tip/tilt mirror mechanisms for in-orbit alignment; and internal metrology beam launcher for pathlength monitoring. The detailed design of the brassboard ABC (which has the form, fit and function of the flight unit) is complete, procurement of long-lead items is underway, and assembly and testing is expected to be completed in Spring 2009. In this paper, we present the key requirements for the ABC, details of the completed optical and mechanical design as well as plans for assembly and alignment.
Zhuang, Fengjiang; Jungbluth, Bernd; Gronloh, Bastian; Hoffmann, Hans-Dieter; Zhang, Ge
2013-07-20
We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.
Very Long Baseline Interferometry: Dependencies on Frequency Stability
NASA Astrophysics Data System (ADS)
Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald
2018-04-01
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
1979-11-23
Entered) ACKNOWLEDGMENTS The author hereby expresses his appreciation to Mr. J. A. Schaeffel Jr. for his guidance on interferometry and the computer...were collected by an automated laser speckle interferometry displacement contour analyzer developed by John A. Schaeffel , Jr. [3]. The new method of 10...Fringe Patterns, US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-18, 20 April 1976. 3. Schaeffel , J. A., Automated Laser
Fringe formation in dual-hologram interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1990-01-01
Reference-fringe formation in nondiffuse dual-hologram interferometry is described by combining a first-order geometrical hologram treatment with interference fringes generated by two point sources. The first-order imaging relationships can be used to describe reference-fringe patterns for the geometry of the dual-hologram interferometry. The process can be completed without adjusting the two holograms when the reconstructing wavelength is less than the exposing wavelength, and the process is found to facilitate basic intereferometer adjustments.
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Simultaneous immersion Mirau interferometry.
Lyulko, Oleksandra V; Randers-Pehrson, Gerhard; Brenner, David J
2013-05-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.
NASA Technical Reports Server (NTRS)
Hamer, H. A.; Johnson, K. G.
1986-01-01
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.
NASA Astrophysics Data System (ADS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-07-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal
2016-01-01
The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.
Methods To Determine the Silicone Oil Layer Thickness in Sprayed-On Siliconized Syringes.
Loosli, Viviane; Germershaus, Oliver; Steinberg, Henrik; Dreher, Sascha; Grauschopf, Ulla; Funke, Stefanie
2018-01-01
The silicone lubricant layer in prefilled syringes has been investigated with regards to siliconization process performance, prefilled syringe functionality, and drug product attributes, such as subvisible particle levels, in several studies in the past. However, adequate methods to characterize the silicone oil layer thickness and distribution are limited, and systematic evaluation is missing. In this study, white light interferometry was evaluated to close this gap in method understanding. White light interferometry demonstrated a good accuracy of 93-99% for MgF 2 coated, curved standards covering a thickness range of 115-473 nm. Thickness measurements for sprayed-on siliconized prefilled syringes with different representative silicone oil distribution patterns (homogeneous, pronounced siliconization at flange or needle side, respectively) showed high instrument (0.5%) and analyst precision (4.1%). Different white light interferometry instrument parameters (autofocus, protective shield, syringe barrel dimensions input, type of non-siliconized syringe used as base reference) had no significant impact on the measured average layer thickness. The obtained values from white light interferometry applying a fully developed method (12 radial lines, 50 mm measurement distance, 50 measurements points) were in agreement with orthogonal results from combined white and laser interferometry and 3D-laser scanning microscopy. The investigated syringe batches (lot A and B) exhibited comparable longitudinal silicone oil layer thicknesses ranging from 170-190 nm to 90-100 nm from flange to tip and homogeneously distributed silicone layers over the syringe barrel circumference (110- 135 nm). Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. A silicone oil layer thickness of 100-200 nm was thus sufficient for adequate functionality in this particular study. Filling the syringe with a surrogate solution including short-term exposure and emptying did not significantly influence the silicone oil layer at the investigated silicone level. It thus appears reasonable to use this approach to characterize silicone oil layers in filled syringes over time. The developed method characterizes non-destructively the layer thickness and distribution of silicone oil in empty syringes and provides fast access to reliable results. The gained information can be further used to support optimization of siliconization processes and increase the understanding of syringe functionality. LAY ABSTRACT: Silicone oil layers as lubricant are required to ensure functionality of prefilled syringes. Methods evaluating these layers are limited, and systematic evaluation is missing. The aim of this study was to develop and assess white light interferometry as an analytical method to characterize sprayed-on silicone oil layers in 1 mL prefilled syringes. White light interferometry showed a good accuracy (93-99%) as well as instrument and analyst precision (0.5% and 4.1%, respectively). Different applied instrument parameters had no significant impact on the measured layer thickness. The obtained values from white light interferometry applying a fully developed method concurred with orthogonal results from 3D-laser scanning microscopy and combined white light and laser interferometry. The average layer thicknesses in two investigated syringe lots gradually decreased from 170-190 nm at the flange to 100-90 nm at the needle side. The silicone layers were homogeneously distributed over the syringe barrel circumference (110-135 nm) for both lots. Empty break-loose (4-4.5 N) and gliding forces (2-2.5 N) were comparably low for both analyzed syringe lots. Syringe filling with a surrogate solution, including short-term exposure and emptying, did not significantly affect the silicone oil layer. The developed, non-destructive method provided reliable results to characterize the silicone oil layer thickness and distribution in empty siliconized syringes. This information can be further used to support optimization of siliconization processes and increase understanding of syringe functionality. © PDA, Inc. 2018.
2015-10-05
photometry covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A...covering the interval between optical and radio wavelengths, optical polarimetry , and optical and near-IR (spectro)interferometry. Results. A... polarimetry , and near-infrared (IR) interferometry of ζ Tau, providing firm evi- dence that the V/R oscillations are an effect of one-armed den- sity
2014-07-17
frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction
Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry
NASA Astrophysics Data System (ADS)
Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell
2015-09-01
We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.
NASA Technical Reports Server (NTRS)
Sargent, A. I.
2002-01-01
The Interferometry Science Center (ISC) is operated jointly by Caltech and JPL and is part of NASA's Navigator Program. The ISC has been created to facilitate the timely and successful execution of scientific investigations within the Navigator program, particularly those that rely on observations from NASA's interferometer projects. Currently, ISC is expected to provide full life cycle support for the Keck Interferometer, the Starlight mission, the Space Interferometry Mission, and the Terrestrial Planet Finder Mission. The nature and goals of ISc will be described.
Extracting DEM from airborne X-band data based on PolInSAR
NASA Astrophysics Data System (ADS)
Hou, X. X.; Huang, G. M.; Zhao, Z.
2015-06-01
Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) is a new trend of SAR remote sensing technology which combined polarized multichannel information and Interferometric information. It is of great significance for extracting DEM in some regions with low precision of DEM such as vegetation coverage area and building concentrated area. In this paper we describe our experiments with high-resolution X-band full Polarimetric SAR data acquired by a dual-baseline interferometric airborne SAR system over an area of Danling in southern China. Pauli algorithm is used to generate the double polarimetric interferometry data, Singular Value Decomposition (SVD), Numerical Radius (NR) and Phase diversity (PD) methods are used to generate the full polarimetric interferometry data. Then we can make use of the polarimetric interferometric information to extract DEM with processing of pre filtering , image registration, image resampling, coherence optimization, multilook processing, flat-earth removal, interferogram filtering, phase unwrapping, parameter calibration, height derivation and geo-coding. The processing system named SARPlore has been exploited based on VC++ led by Chinese Academy of Surveying and Mapping. Finally compared optimization results with the single polarimetric interferometry, it has been observed that optimization ways can reduce the interferometric noise and the phase unwrapping residuals, and improve the precision of DEM. The result of full polarimetric interferometry is better than double polarimetric interferometry. Meanwhile, in different terrain, the result of full polarimetric interferometry will have a different degree of increase.
Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David
2011-09-01
To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.
[Dilemma of null hypothesis in ecological hypothesis's experiment test.
Li, Ji
2016-06-01
Experimental test is one of the major test methods of ecological hypothesis, though there are many arguments due to null hypothesis. Quinn and Dunham (1983) analyzed the hypothesis deduction model from Platt (1964) and thus stated that there is no null hypothesis in ecology that can be strictly tested by experiments. Fisher's falsificationism and Neyman-Pearson (N-P)'s non-decisivity inhibit statistical null hypothesis from being strictly tested. Moreover, since the null hypothesis H 0 (α=1, β=0) and alternative hypothesis H 1 '(α'=1, β'=0) in ecological progresses are diffe-rent from classic physics, the ecological null hypothesis can neither be strictly tested experimentally. These dilemmas of null hypothesis could be relieved via the reduction of P value, careful selection of null hypothesis, non-centralization of non-null hypothesis, and two-tailed test. However, the statistical null hypothesis significance testing (NHST) should not to be equivalent to the causality logistical test in ecological hypothesis. Hence, the findings and conclusions about methodological studies and experimental tests based on NHST are not always logically reliable.
Phase Calibration for the Block 1 VLBI System
NASA Technical Reports Server (NTRS)
Roth, M. G.; Runge, T. F.
1983-01-01
Very Long Baseline Interferometry (VLBI) in the DSN provides support for spacecraft navigation, Earth orientation measurements, and synchronization of network time and frequency standards. An improved method for calibrating instrumental phase shifts has recently been implemented as a computer program in the Block 1 system. The new calibration program, called PRECAL, performs calibrations over intervals as small as 0.4 seconds and greatly reduces the amount of computer processing required to perform phase calibration.
Centroids evaluation of the images obtained with the conical null-screen corneal topographer
NASA Astrophysics Data System (ADS)
Osorio-Infante, Arturo I.; Armengol-Cruz, Victor de Emanuel; Campos-García, Manuel; Cossio-Guerrero, Cesar; Marquez-Flores, Jorge; Díaz-Uribe, José Rufino
2016-09-01
In this work, we propose some algorithms to recover the centroids of the resultant image obtained by a conical nullscreen based corneal topographer. With these algorithms, we obtain the region of interest (roi) of the original image and using an image-processing algorithm, we calculate the geometric centroid of each roi. In order to improve our algorithm performance, we use different settings of null-screen targets, changing their size and number. We also improved the illumination system to avoid inhomogeneous zones in the corneal images. Finally, we report some corneal topographic measurements with the best setting we found.
Optic-null space medium for cover-up cloaking without any negative refraction index materials
Sun, Fei; He, Sailing
2016-01-01
With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833
Optic-null space medium for cover-up cloaking without any negative refraction index materials.
Sun, Fei; He, Sailing
2016-07-07
With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.
Brown, SJ; Relton, CL; Liao, H; Zhao, Y; Sandilands, A; McLean, WHI; Cordell, HJ; Reynolds, NJ
2009-01-01
Background Null mutations within the filaggrin gene (FLG) cause ichthyosis vulgaris and are associated with atopic eczema. However, the dermatological features of filaggrin haploinsufficiency have not been clearly defined. Objectives This study investigated the genotype–phenotype association between detailed skin phenotype and FLG genotype data in a population-based cohort of children. Methods Children (n= 792) aged 7–9 years were examined by a dermatologist. Features of ichthyosis vulgaris, atopic eczema and xerosis were recorded and eczema severity graded using the Three Item Severity score. Each child was genotyped for the six most prevalent FLG null mutations (R501X, 2282del4, R2447X, S3247X, 3702delG, 3673delC). Fisher’s exact test was used to compare genotype frequencies in phenotype groups; logistic regression analysis was used to estimate odds ratios and penetrance of the FLG null genotype and a permutation test performed to investigate eczema severity in different genotype groups. Results Ten children in this cohort had ichthyosis vulgaris, of whom five had mild–moderate eczema. The penetrance of FLG null mutations with respect to flexural eczema was 55·6% in individuals with two mutations, 16·3% in individuals with one mutation and 14·2% in wild-type individuals. Summating skin features known to be associated with FLG null mutations (ichthyosis, keratosis pilaris, palmar hyperlinearity and flexural eczema) showed a penetrance of 100% in children with two FLG mutations, 87·8% in children with one FLG mutation and 46·5% in wild-type individuals (P< 0·0001, Fisher exact test). FLG null mutations were associated with more severe eczema (P= 0·0042) but the mean difference was only 1–2 points in severity score. Three distinct patterns of palmar hyperlinearity were observed and these are reported for the first time. Conclusions Filaggrin haploinsufficiency appears to be highly penetrant when all relevant skin features are included in the analysis. FLG null mutations are associated with more severe eczema, but the effect size is small in a population setting. PMID:19681860
The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)
NASA Technical Reports Server (NTRS)
Danchi, William C.
2003-01-01
Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.
Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.
Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G
2013-10-01
The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.
NASA Technical Reports Server (NTRS)
Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.;
2007-01-01
The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.
Simultaneous immersion Mirau interferometry
Lyulko, Oleksandra V.; Randers-Pehrson, Gerhard; Brenner, David J.
2013-01-01
A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented. PMID:23742552
Meterwavelength Single-pulse Polarimetric Emission Survey. III. The Phenomenon of Nulling in Pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Rahul; Mitra, Dipanjan; Melikidze, George I., E-mail: rahulbasu.astro@gmail.com
A detailed analysis of nulling was conducted for the pulsars studied in the Meterwavelength Single-pulse Polarimetric Emission Survey. We characterized nulling in 36 pulsars including 17 pulsars where the phenomenon was reported for the first time. The most dominant nulls lasted for a short duration, less than five periods. Longer duration nulls extending to hundreds of periods were also seen in some cases. A careful analysis showed the presence of periodicities in the transition from the null to the burst states in 11 pulsars. In our earlier work, fluctuation spectrum analysis showed multiple periodicities in 6 of these 11 pulsars.more » We demonstrate that the longer periodicity in each case was associated with nulling. The shorter periodicities usually originate from subpulse drifting. The nulling periodicities were more aligned with the periodic amplitude modulation, indicating a possible common origin for both. The most prevalent nulls last for a single period and can be potentially explained using random variations affecting the plasma processes in the pulsar magnetosphere. On the other hand, longer-duration nulls require changes in the pair-production processes, which need an external triggering mechanism for the changes. The presence of periodic nulling puts an added constraint on the triggering mechanism, which also needs to be periodic.« less
Process tool monitoring and matching using interferometry technique
NASA Astrophysics Data System (ADS)
Anberg, Doug; Owen, David M.; Mileham, Jeffrey; Lee, Byoung-Ho; Bouche, Eric
2016-03-01
The semiconductor industry makes dramatic device technology changes over short time periods. As the semiconductor industry advances towards to the 10 nm device node, more precise management and control of processing tools has become a significant manufacturing challenge. Some processes require multiple tool sets and some tools have multiple chambers for mass production. Tool and chamber matching has become a critical consideration for meeting today's manufacturing requirements. Additionally, process tools and chamber conditions have to be monitored to ensure uniform process performance across the tool and chamber fleet. There are many parameters for managing and monitoring tools and chambers. Particle defect monitoring is a well-known and established example where defect inspection tools can directly detect particles on the wafer surface. However, leading edge processes are driving the need to also monitor invisible defects, i.e. stress, contamination, etc., because some device failures cannot be directly correlated with traditional visualized defect maps or other known sources. Some failure maps show the same signatures as stress or contamination maps, which implies correlation to device performance or yield. In this paper we present process tool monitoring and matching using an interferometry technique. There are many types of interferometry techniques used for various process monitoring applications. We use a Coherent Gradient Sensing (CGS) interferometer which is self-referencing and enables high throughput measurements. Using this technique, we can quickly measure the topography of an entire wafer surface and obtain stress and displacement data from the topography measurement. For improved tool and chamber matching and reduced device failure, wafer stress measurements can be implemented as a regular tool or chamber monitoring test for either unpatterned or patterned wafers as a good criteria for improved process stability.
Eye Shape Using Partial Coherence Interferometry, Autorefraction and SD OCT
Clark, Christopher A.; Elsner, Ann E.; Konynenbelt, Benjamin J.
2015-01-01
Purpose Peripheral refraction and retinal shape may influence refractive development. Peripheral refraction has been shown to have a high degree of variability and can take considerable time to perform. SD OCT and peripheral axial length measures may be more reliable, assuming that the retinal position is more important than the peripheral optics of the lens/cornea. Methods 79 subjects right eyes were imaged for this study (age range: 22 to 34 yr, refractive error: −10 to +5.00.) Thirty deg SD OCT (Spectralis, Heidleberg) images were collected in a radial pattern along with peripheral refraction with an autorefractor (Shin-Nippon Auto-refractor) and peripheral axial length measurements with partial coherence interferometry (PCI) (IOLmaster, Zeiss). Statistics were performed using repeat measures ANOVA in SPSS (IBM), Bland-Altman analyses, and regression. All measures were converted to diopters to allow direct comparison. Results SD OCT showed a retinal shape with an increased curvature for myopes compared to emmetropes/hyperopes. This retinal shape change became significant around 5 deg. The SD OCT analysis for retinal shape provides a resolution of 0.026 dipopters, which is about ten times more accurate than using autorefraction or clinical refractive techniques. Bland-Altman analyses suggest that retinal shape measured by SD OCT and the PCI method were more consistent with one another than either was with AR. Conclusions With more accurate measures of retinal shape using SD OCT, consistent differences between emmetrope/hyperopes and myopes were found nearer to the fovea than previously reported. Retinal shape may be influenced by central refractive error, and not merely peripheral optics. Partial coherence interferometry and SD OCT appear to be more accurate than autorefraction, which may be influenced other factors such as fixation and accommodation. Autorefraction does measure the optics directly, which may be a strength of that method. PMID:25437906
Performing Inferential Statistics Prior to Data Collection
ERIC Educational Resources Information Center
Trafimow, David; MacDonald, Justin A.
2017-01-01
Typically, in education and psychology research, the investigator collects data and subsequently performs descriptive and inferential statistics. For example, a researcher might compute group means and use the null hypothesis significance testing procedure to draw conclusions about the populations from which the groups were drawn. We propose an…
High-Speed Digital Interferometry
NASA Technical Reports Server (NTRS)
De Vine, Glenn; Shaddock, Daniel A.; Ware, Brent; Spero, Robert E.; Wuchenich, Danielle M.; Klipstein, William M.; McKenzie, Kirk
2012-01-01
Digitally enhanced heterodyne interferometry (DI) is a laser metrology technique employing pseudo-random noise (PRN) codes phase-modulated onto an optical carrier. Combined with heterodyne interferometry, the PRN code is used to select individual signals, returning the inherent interferometric sensitivity determined by the optical wavelength. The signal isolation arises from the autocorrelation properties of the PRN code, enabling both rejection of spurious signals (e.g., from scattered light) and multiplexing capability using a single metrology system. The minimum separation of optical components is determined by the wavelength of the PRN code.
Infrared Speckle Interferometry with 2-D Arrays
NASA Technical Reports Server (NTRS)
Harvey, P. M.; Balkum, S. L.; Monin, J. L.
1994-01-01
We describe results from a program of speckle interferometry with two-dimensional infrared array detectors. Analysis of observations of eta Carinae made with 58 x 62 InSb detector are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe detector will lead to a significant improvement i limiting magnitude for IR speckle interferometry.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
ERIC Educational Resources Information Center
Altman, Thomas C.
1992-01-01
Describes a method to create holograms for use in different interferometry techniques. Students utilize these techniques in experiments to study the structural integrity of a clarinet reed and the effects of temperature on objects. (MDH)
Fringe Formation in Dual-Hologram Interferometry
NASA Technical Reports Server (NTRS)
Burner, A. W.
1989-01-01
A first order geometrical optics treatment of holograms combined with the generation of interference fringes by two point sources is used to describe reference fringe formation in non-diffuse dual-hologram interferometry.
Liu, Aiming; Krausz, Kristopher W; Fang, Zhong-Ze; Brocker, Chad; Qu, Aijuan; Gonzalez, Frank J
2014-04-01
Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam
2011-03-01
We have applied wide-field digital interferometry (WFDI) to examine the morphology and dynamics of live red blood cells (RBCs) from individuals who suffer from sickle cell anemia (SCA), a genetic disorder that affects the structure and mechanical properties of RBCs. WFDI is a noncontact, label-free optical microscopy approach that can yield quantitative thickness profiles of RBCs and measurements of their membrane fluctuations at the nanometer scale reflecting their stiffness. We find that RBCs from individuals with SCA are significantly stiffer than those from a healthy control. Moreover, we show that the technique is sensitive enough to distinguish classes of RBCs in SCA, including sickle RBCs with apparently normal morphology, compared to the stiffer crescent-shaped sickle RBCs. We expect that this approach will be useful for diagnosis of SCA and for determining efficacy of therapeutic agents.
Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu
2015-07-16
To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.
NASA Astrophysics Data System (ADS)
Corrêa, Cássia B.; Ramos, Nuno V.; Monteiro, Jaime; Vaz, Luis G.; Vaz, Mario A. P.
2012-10-01
The use of implants to rehabilitation of total edentulous, partial edentulous or single tooth is increasing, it is due to the high rate of success that this type of treatment present. The objective of this study was to analyze the mechanical behavior of different positions of two dental implants in a rehabilitation of 4 teeth in the region of maxilla anterior. The groups studied were divided according the positioning of the implants. The Group 1: Internal Hexagonal implant in position of lateral incisors and pontic in region of central incisors; Group 2: Internal Hexagonal implant in position of central incisors and cantilever of the lateral incisors and Group3 - : Internal Hexagonal implants alternate with suspended elements. The Electronic Speckle Pattern Interferometry (ESPI) technique was selected for the mechanical evaluation of the 3 groups performance. The results are shown in interferometric phase maps representing the displacement field of the prosthetic structure.
Very large ground-based telescopes for optical and IR astronomy
NASA Technical Reports Server (NTRS)
Angel, J. R. P.
1982-01-01
Methods for improving the light grasp by an order of magnitude for earth-based observations of astrophysical objects are reviewed. Noting that the atmosphere is opaque below 0.3 micron and that techniques have been developed to make corrections for the atmospheric distortion, fully diffraction limited IR performance at 10 microns is asserted to be practicable. The use of mirror-seeing with metal mirrors with thin faceplates and air cooling is outlined as a means to achieve subarcsec resolution. Designs are considered which involve multiple sections to gain effective large aperture viewing for spectroscopy, using Si CCD detectors, and heterodyne IR interferometry, but not for direct interferometry or certain IR measurements. The Multiple Mirror Telescope is described, including designs for four 7.5 m honeycomb glass primaries co-aligned in a single mount. Further discussion is devoted to the fabrication of mirror elements and electronic image stabilization.
Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen
2017-10-16
Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.
Detecting inertial effects with airborne matter-wave interferometry
Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; Bresson, A.; Landragin, A.; Bouyer, P.
2011-01-01
Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / √Hz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves. PMID:21934658
Long, Xianming; Zhang, Yanping; Lu, Jie; Long, Changcai
2015-09-01
To study the relationship of distortion product in cochlea with cochlear activity and hearing. Time variances of distortion product of basilar membrane vibration in vitro guineapig cochlea were observed by laser interferometry. Within half hour after a cochlea was isolated from a guineapig, distortion product accompanied with two-tone inhibition in cochlea, can be observed. As time passed, distortion product and two-tone inhibition effect disappeared at the same time. After that, the membrane contiune vibrating in response to the sound stimulus, but the vibration amplitude decreased obviously and continued decreasing until it disappeared completely. Distortion product in cochlea is a symbol of cochlear activity which makes the membrane respond in large amplitude vibration to sound stimulus and exhibit two-tone inhibition. The former makes the hearing highly sensitive to sound stimulus, the later makes the hearing perform information abstract well.
Drake, Tyler K.; DeSoto, Michael G.; Peters, Jennifer J.; Henderson, Marcus H.; Murtha, Amy P.; Katz, David F.; Wax, Adam
2011-01-01
We present a multiplexed, Fourier-domain low coherence interferometry (mLCI) instrument for in vivo measurement of intravaginal microbicide gel coating thickness distribution over the surface of the vaginal epithelium. The mLCI instrument uses multiple delivery fibers to acquire depth resolved reflection profiles across large scanned tissue areas. Here mLCI has been adapted into an endoscopic system with a custom imaging module for simultaneous, co-registered measurements with fluorimetric scans of the same surface. The resolution, optical signal-to-noise, and cross-talk of the mLCI instrument are characterized to evaluate performance. Validation measurements of gel thickness are made using a calibration socket. Initial results from a clinical study are presented to show the in vivo capability of the dual-modality system for assessing the distribution of microbicide gel vehicles in the lower human female reproductive tract. PMID:22025989
Wavefront tilt feedforward for the formation interferometer testbad (FIT)
NASA Technical Reports Server (NTRS)
Shields, J. F.; Liewer, K.; Wehmeier, U.
2002-01-01
Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.
Kumar, Varun; Shakher, Chandra
2015-02-20
This paper presents the results of experimental investigations about the heat dissipation process of plate fin heat sink using digital holographic interferometry. Visual inspection of reconstructed phase difference maps of the air field around the heat sink with and without electric power in the load resistor provides qualitative information about the variation of temperature and the heat dissipation process. Quantitative information about the temperature distribution is obtained from the relationship between the digitally reconstructed phase difference map of ambient air and heated air. Experimental results are presented for different current and voltage in the load resistor to investigate the heat dissipation process. The effect of fin spacing on the heat dissipation performance of the heat sink is also investigated in the case of natural heat convection. From experimental data, heat transfer parameters, such as local heat flux and convective heat transfer coefficients, are also calculated.
Variation in the ciliary neurotrophic factor gene and muscle strength in older Caucasian women.
Arking, Dan E; Fallin, Daniele M; Fried, Linda P; Li, Tao; Beamer, Brock A; Xue, Qian Li; Chakravarti, Aravinda; Walston, Jeremy
2006-05-01
To determine whether genetic variants in the ciliary neurotrophic factor (CNTF) gene are associated with muscle strength in older women. Cross-sectional analysis of baseline data from the Women's Health and Aging Studies I (1992) and II (1994), complementary population-based studies. Twelve contiguous ZIP code areas in Baltimore, Maryland. Three hundred sixty-three Caucasian, community-dwelling women aged 70 to 79. Participants were genotyped at the CNTF locus for eight single nucleotide polymorphisms (SNPs), including the null allele rs1800169. The dependent variables were grip strength and the frailty syndrome, identified as presence of three or more of five frailty indicators (weakness, slowness, weight loss, low physical activity, exhaustion). In addition to genotypes, independent variables of body mass index (BMI) and osteoarthritis of the hands were included. Using multivariate linear regression, single SNP analysis identified five SNPs significantly associated with grip strength (P<.05), after adjusting for age, BMI, and osteoarthritis. Haplotype analysis was performed, and a single haplotype associated with grip strength was identified (P<.01). The rs1800169 null allele fully explained the association between this haplotype and grip strength under a recessive model, with individuals homozygous for the null allele exhibiting a 3.80-kg lower (95% confidence interval=1.01-6.58) grip strength. No association was seen between the CNTF null allele and frailty. Individuals homozygous for the CNTF null allele had significantly lower grip strength but did not exhibit overt frailty. Larger prospective studies are needed to confirm this finding and extend it to additional populations.
Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains
Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción
2008-01-01
Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835
What is too much variation? The null hypothesis in small-area analysis.
Diehr, P; Cain, K; Connell, F; Volinn, E
1990-01-01
A small-area analysis (SAA) in health services research often calculates surgery rates for several small areas, compares the largest rate to the smallest, notes that the difference is large, and attempts to explain this discrepancy as a function of service availability, physician practice styles, or other factors. SAAs are often difficult to interpret because there is little theoretical basis for determining how much variation would be expected under the null hypothesis that all of the small areas have similar underlying surgery rates and that the observed variation is due to chance. We developed a computer program to simulate the distribution of several commonly used descriptive statistics under the null hypothesis, and used it to examine the variability in rates among the counties of the state of Washington. The expected variability when the null hypothesis is true is surprisingly large, and becomes worse for procedures with low incidence, for smaller populations, when there is variability among the populations of the counties, and when readmissions are possible. The characteristics of four descriptive statistics were studied and compared. None was uniformly good, but the chi-square statistic had better performance than the others. When we reanalyzed five journal articles that presented sufficient data, the results were usually statistically significant. Since SAA research today is tending to deal with low-incidence events, smaller populations, and measures where readmissions are possible, more research is needed on the distribution of small-area statistics under the null hypothesis. New standards are proposed for the presentation of SAA results. PMID:2312306
What is too much variation? The null hypothesis in small-area analysis.
Diehr, P; Cain, K; Connell, F; Volinn, E
1990-02-01
A small-area analysis (SAA) in health services research often calculates surgery rates for several small areas, compares the largest rate to the smallest, notes that the difference is large, and attempts to explain this discrepancy as a function of service availability, physician practice styles, or other factors. SAAs are often difficult to interpret because there is little theoretical basis for determining how much variation would be expected under the null hypothesis that all of the small areas have similar underlying surgery rates and that the observed variation is due to chance. We developed a computer program to simulate the distribution of several commonly used descriptive statistics under the null hypothesis, and used it to examine the variability in rates among the counties of the state of Washington. The expected variability when the null hypothesis is true is surprisingly large, and becomes worse for procedures with low incidence, for smaller populations, when there is variability among the populations of the counties, and when readmissions are possible. The characteristics of four descriptive statistics were studied and compared. None was uniformly good, but the chi-square statistic had better performance than the others. When we reanalyzed five journal articles that presented sufficient data, the results were usually statistically significant. Since SAA research today is tending to deal with low-incidence events, smaller populations, and measures where readmissions are possible, more research is needed on the distribution of small-area statistics under the null hypothesis. New standards are proposed for the presentation of SAA results.
Nichols, Buford L.; Quezada-Calvillo, Roberto; Robayo-Torres, Claudia C.; Ao, Zihua; Hamaker, Bruce R.; Butte, Nancy F.; Marini, Juan; Jahoor, Farook; Sterchi, Erwin E.
2009-01-01
Starch is the major source of food glucose and its digestion requires small intestinal α-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in α-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal α-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of 13C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced α-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal α-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis. PMID:19193815
Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.
2002-01-01
Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chi-Jung; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Huang, Chao-Yuan
Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain riskmore » factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.« less
Lee, Y H; Song, G G
2016-09-30
This study aimed to determine whether Glutathione S-transferase M1 (GSTM1), P1 (GSTT1), NFKB1 polymorphisms confer susceptibility to systemic lupus erythematosus (SLE). We performed a meta-analysis on the associations between GSTM1 and GSTT1 null genotypes, and NFKB1 -94 ins/delATTG polymorphisms and SLE. In total, seven studies were considered for this meta-analysis, which comprised 2,119 SLE patients and 3,014 healthy controls. Meta-analysis of the GSTM1 null polymorphism in 869 SLE and 1,544 control subjects revealed an association between SLE and the GSTM1 null genotype (OR = 1.321, 95% CI = 1.103-1.583, p = 0.002). Stratification by ethnicity indicated an association between the GSTM1 null genotype and SLE in Asians (OR = 1.334, 95% CI = 1.096-1.623, p = 0.004). However, meta-analysis of the GSTT1 null polymorphism, comprising 717 SLE and 1,008 control subjects, revealed no association between SLE and the GSTT1 null genotype overall (OR = 0.850, 95% CI = 0.687-1.051, p = 0.113) or in an Asian population (OR = 0.794, 95% CI = 0.594-1.061, p = 0.119). Meta-analysis of the NFKB1 -94 ins/delATTG polymorphism, comprising 1,250 SLE and 1,127 control subjects, revealed an association between SLE and the NFKB1 D allele (OR = 1.127, 95% CI = 1.011-1.257, p = 0.031). Ethnicity-specific meta-analysis revealed an association between the NFKB1 D allele and SLE in Asians (OR = 1.155, 95% CI = 1.026-1.300, p = 0.017). This meta-analysis demonstrates that the functional GSTM1 and NFKB1 polymorphisms are associated with the SLE risk in Asians.
Identification and characterisation of eight novel SERPINA1 Null mutations.
Ferrarotti, Ilaria; Carroll, Tomás P; Ottaviani, Stefania; Fra, Anna M; O'Brien, Geraldine; Molloy, Kevin; Corda, Luciano; Medicina, Daniela; Curran, David R; McElvaney, Noel G; Luisetti, Maurizio
2014-11-26
Alpha-1 antitrypsin (AAT) is the most abundant circulating antiprotease and is a member of the serine protease inhibitor (SERPIN) superfamily. The gene encoding AAT is the highly polymorphic SERPINA1 gene, found at 14q32.1. Mutations in the SERPINA1 gene can lead to AAT deficiency (AATD) which is associated with a substantially increased risk of lung and liver disease. The most common pathogenic AAT variant is Z (Glu342Lys) which causes AAT to misfold and polymerise within hepatocytes and other AAT-producing cells. A group of rare mutations causing AATD, termed Null or Q0, are characterised by a complete absence of AAT in the plasma. While ultra rare, these mutations confer a particularly high risk of emphysema. We performed the determination of AAT serum levels by a rate immune nephelometric method or by immune turbidimetry. The phenotype was determined by isoelectric focusing analysis on agarose gel with specific immunological detection. DNA was isolated from whole peripheral blood or dried blood spot (DBS) samples using a commercial extraction kit. The new mutations were identified by sequencing all coding exons (II-V) of the SERPINA1 gene. We have found eight previously unidentified SERPINA1 Null mutations, named: Q0cork, Q0perugia, Q0brescia, Q0torino, Q0cosenza, Q0pordenone, Q0lampedusa, and Q0dublin . Analysis of clinical characteristics revealed evidence of the recurrence of lung symptoms (dyspnoea, cough) and lung diseases (emphysema, asthma, chronic bronchitis) in M/Null subjects, over 45 years-old, irrespective of smoking. We have added eight more mutations to the list of SERPINA1 Null alleles. This study underlines that the laboratory diagnosis of AATD is not just a matter of degree, because the precise determination of the deficiency and Null alleles carried by an AATD individual may help to evaluate the risk for the lung disease.
Basic research for the geodynamics program
NASA Technical Reports Server (NTRS)
Mueller, I. I.
1982-01-01
Work performed and data obtained in geodynamic research is reported. The purpose was to obtain utilization of: (1) laser and very long baseline interferometry (VLBI); (2) range difference observation in geodynamics; (3) development of models for ice sheet and crustal deformations. The effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame are investigated.
Adaptive Nulling for the Terrestrial Planet Finder Interferometer
NASA Technical Reports Server (NTRS)
Peters, Robert D.; Lay, Oliver P.; Jeganathan, Muthu; Hirai, Akiko
2006-01-01
A description of adaptive nulling for Terrestrial Planet Finder Interferometer (TPFI) is presented. The topics include: 1) Nulling in TPF-I; 2) Why Do Adaptive Nulling; 3) Parallel High-Order Compensator Design; 4) Phase and Amplitude Control; 5) Development Activates; 6) Requirements; 7) Simplified Experimental Setup; 8) Intensity Correction; and 9) Intensity Dispersion Stability. A short summary is also given on adaptive nulling for the TPFI.
NASA Astrophysics Data System (ADS)
Upputuri, Paul Kumar; Pramanik, Manojit
2018-02-01
Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.
Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications
NASA Technical Reports Server (NTRS)
Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.
2012-01-01
Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.
Satellite radar interferometry measures deformation at Okmok Volcano
Lu, Zhong; Mann, Dorte; Freymueller, Jeff
1998-01-01
The center of the Okmok caldera in Alaska subsided 140 cm as a result of its February– April 1997 eruption, according to satellite data from ERS-1 and ERS-2 synthetic aperture radar (SAR) interferometry. The inferred deflationary source was located 2.7 km beneath the approximate center of the caldera using a point source deflation model. Researchers believe this source is a magma chamber about 5 km from the eruptive source vent. During the 3 years before the eruption, the center of the caldera uplifted by about 23 cm, which researchers believe was a pre-emptive inflation of the magma chamber. Scientists say such measurements demonstrate that radar interferometry is a promising spaceborne technique for monitoring remote volcanoes. Frequent, routine acquisition of images with SAR interferometry could make near realtime monitoring at such volcanoes the rule, aiding in eruption forecasting.
A Random Walk in the Park: An Individual-Based Null Model for Behavioral Thermoregulation.
Vickers, Mathew; Schwarzkopf, Lin
2016-04-01
Behavioral thermoregulators leverage environmental temperature to control their body temperature. Habitat thermal quality therefore dictates the difficulty and necessity of precise thermoregulation, and the quality of behavioral thermoregulation in turn impacts organism fitness via the thermal dependence of performance. Comparing the body temperature of a thermoregulator with a null (non-thermoregulating) model allows us to estimate habitat thermal quality and the effect of behavioral thermoregulation on body temperature. We define a null model for behavioral thermoregulation that is a random walk in a temporally and spatially explicit thermal landscape. Predicted body temperature is also integrated through time, so recent body temperature history, environmental temperature, and movement influence current body temperature; there is no particular reliance on an organism's equilibrium temperature. We develop a metric called thermal benefit that equates body temperature to thermally dependent performance as a proxy for fitness. We measure thermal quality of two distinct tropical habitats as a temporally dynamic distribution that is an ergodic property of many random walks, and we compare it with the thermal benefit of real lizards in both habitats. Our simple model focuses on transient body temperature; as such, using it we observe such subtleties as shifts in the thermoregulatory effort and investment of lizards throughout the day, from thermoregulators to thermoconformers.
Nulling Data Reduction and On-Sky Performance of the Large Binocular Telescope Interferometer
NASA Technical Reports Server (NTRS)
Defrere, D.; Hinz, P. M.; Mennesson, B.; Hoffman, W. F.; Millan-Gabet, R.; Skemer, A. J.; Bailey, V.; Danchi, W. C.; Downy, E. C.; Durney, O.;
2016-01-01
The Large Binocular Telescope Interferometer (LBTI) is a versatile instrument designed for high angular resolution and high-contrast infrared imaging (1.5-13 micrometers). In this paper, we focus on the mid-infrared (8-13 micrometers) nulling mode and present its theory of operation, data reduction, and on-sky performance as of the end of the commissioning phase in 2015 March. With an interferometric baseline of 14.4 m, the LBTI nuller is specifically tuned to resolve the habitable zone of nearby main-sequence stars, where warm exozodiacal dust emission peaks. Measuring the exozodi luminosity function of nearby main-sequence stars is a key milestone to prepare for future exo-Earth direct imaging instruments. Thanks to recent progress in wavefront control and phase stabilization, as well as in data reduction techniques, the LBTI demonstrated in 2015 February a calibrated null accuracy of 0.05% over a 3 hr long observing sequence on the bright nearby A3V star Beta Leo. This is equivalent to an exozodiacal disk density of 15-30 zodi for a Sun-like star located at 10 pc, depending on the adopted disk model. This result sets a new record for high-contrast mid-infrared interferometric imaging and opens a new window on the study of planetary systems.
Bayesian analysis of multimethod ego-depletion studies favours the null hypothesis.
Etherton, Joseph L; Osborne, Randall; Stephenson, Katelyn; Grace, Morgan; Jones, Chas; De Nadai, Alessandro S
2018-04-01
Ego-depletion refers to the purported decrease in performance on a task requiring self-control after engaging in a previous task involving self-control, with self-control proposed to be a limited resource. Despite many published studies consistent with this hypothesis, recurrent null findings within our laboratory and indications of publication bias have called into question the validity of the depletion effect. This project used three depletion protocols involved three different depleting initial tasks followed by three different self-control tasks as dependent measures (total n = 840). For each method, effect sizes were not significantly different from zero When data were aggregated across the three different methods and examined meta-analytically, the pooled effect size was not significantly different from zero (for all priors evaluated, Hedges' g = 0.10 with 95% credibility interval of [-0.05, 0.24]) and Bayes factors reflected strong support for the null hypothesis (Bayes factor > 25 for all priors evaluated). © 2018 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Francioni, Elena; Paglia, Luca; Minati, Federico; Margottini, Claudio; Spizzichino, Daniele; Trigila, Alessandro; Iadanza, Carla; De Nigris, Bruno
2016-04-01
The "Major Project Pompeii" (MPP) is a great collective commitment of different institututions and people to set about solving the serious problem of conservation of the largest archeological sites in the world. The ancient city of Pompeii with its 66 hectares, 44 of which are excaveted, is divided into 9 regiones (district), subdivided in 118 insulae (blocks) and almost 1500 domus (houses), and is Unesco site since 1996. The Italian Ministry for Heritage and Cultural Activities and Tourism (MiBACT) and Finmeccanica Group have sealed an agreement whereby the Finmeccanica Group will donate innovative technologies and services for monitoring and protecting the archaeological site of Pompeii. Moreover, the Italian Institute for Environment Protection and Research (ISPRA) - Geological Survey of Italy, was also involved to support the ground based analysis and interpretation of the measurements provided by the industrial team, in order to promote an interdisciplinary approach. In this work, we will focus on ground deformation measurements obtained by satellite SAR interferometry and on their interpretation. The satellite monitoring service is based on the processing of COSMO-SkyMed Himage data by the e-Geos proprietary Persistent Scatterer Pair (PSP) SAR interferometry technology. The PSP technique is a proven SAR interferometry method characterized by the fact of exploiting in the processing only the relative properties between close points (pairs) in order to overcome atmospheric artifacts (which are one of the main problems of SAR interferometry). Validations analyses showed that this technique applied to COSMO-SkyMed Himage data is able to retrieve very dense (except of course on vegetated or cultivated areas) millimetric deformation measurements with sub-metric localization. By means of the COSMO-SkyMed PSP SAR interferometry processing, a historical analysis of the ground and structure deformations occurred over the entire archaeological site of Pompeii in the period from 2010 to 2014 was initially performed. Moreover, the deformation monitoring is continuing with monthly updates of the PSP analysis with new COSMO-SkyMed acquisitions both in ascending and descending geometry. The first results of the preliminary analysis over the archaeological site of Pompeii did not show large areas affected by deformations. However, the COSMO-SkyMed PSP SAR interferometry analysis proved to be very efficient due to its capability of providing a large number of deformation measurements over the archaeological site and structures with relatively small impact and cost. Moreover, in areas affected by collapses in the recent past, deformations were detected. Recent instability processes, both for the unexcavated slopes and for the archaeological structures, have promoted this low-impact analysis, aimed at identifying deformation paths and to prevent sudden collapses. Finally, the results obtained from the satellite techniques, will be also used to implement and improve the ground based geotechnical monitoring and warning system recently installed in selected case studies. Cross analysis between interferometric results, meteorological data and historical data of the site (e.g. collapses, works, etc.) are in progress in order to define provisional model aiming at an early identification of areas subjected to potential instability.
Higher-dimensional phase imaging
NASA Astrophysics Data System (ADS)
Huntley, Jonathan M.
2010-04-01
Traditional full-field interferometric techniques (speckle, moiré, holography etc) provide 2-D phase images, which encode the surface deformation state of the object under test. Over the past 15 years, the use of additional spatial or temporal dimensions has been investigated by a number of research groups. Early examples include the measurement of 3-D surface profiles by temporally-varying projected fringe patterns, and dynamic speckle interferometry. More recently (the past 5 years) a family of related techniques (Wavelength Scanning Interferometry, Phase Contrast Spectral Optical Coherence Tomography (OCT), and Tilt Scanning Interferometry) has emerged that provides the volume deformation state of the object. The techniques can be thought of as a marriage between the phase sensing capabilities of Phase Shifting Interferometry and the depth-sensing capabilities of OCT. Finally, in the past 12 months a technique called Hyperspectral Interferometry has been proposed in which absolute optical path distributions are obtained in a single shot through the spectral decomposition of a white light interferogram, and for which the additional dimension therefore corresponds to the illumination wavenumber. An overview of these developments, and the related issue of robust phase unwrapping of noisy 3-D wrapped phase volumes, is presented in this paper.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars (Abstract)
NASA Astrophysics Data System (ADS)
Gener, R.; Rowe, D.; Smith, T. C.; Teiche, A.; Harshaw, R.; Wallace, D.; Weise, E.; Wiley, E.; Boyce, G.; Boyce, P.; Branston, D.; Chaney, K.; Clark, R. K.; Estrada, C.; Estrada, R.; Frey, T.; Green, W. L.; Haurberg, N.; Jones, G.; Kenney, J.; Loftin, S.; McGieson, I.; Patel, R.; Plummer, J.; Ridgely, J.; Trueblood, M.; Westergren, D.; Wren, P.
2014-12-01
(Abstract only) Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1,000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electron-multiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1,000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The database of well over one million images was reduced with the Speckle Interferometry Tool of platesolve3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Kitt Peak Speckle Interferometry of Close Visual Binary Stars
NASA Astrophysics Data System (ADS)
Genet, Russell M.; Rowe, David; Smith, Thomas C.; Teiche, Alex; Harshaw, Richard; Wallace, Daniel; Weise, Eric; Wiley, Edward; Boyce, Grady; Boyce, Patrick; Branston, Detrick; Chaney, Kayla; Clark, R. Kent; Estrada, Chris; Frey, Thomas; Estrada, Reed; Green, Wayne; Haurberg, Nathalie; Kenney, John; Jones, Greg; Loftin, Sheri; McGieson, Izak; Patel, Rikita; Plummer, Josh; Ridgely, John; Trueblood, Mark; Westergren, Donald; Wren, Paul
2015-09-01
Speckle interferometry can be used to overcome normal seeing limitations by taking many very short exposures at high magnification and analyzing the resulting speckles to obtain the position angles and separations of close binary stars. A typical speckle observation of a close binary consists of 1000 images, each 20 milliseconds in duration. The images are stored as a multi-plane FITS cube. A portable speckle interferometry system that features an electronmultiplying CCD camera was used by the authors during two week-long observing runs on the 2.1-meter telescope at Kitt Peak National Observatory to obtain some 1000 data cubes of close binaries selected from a dozen different research programs. Many hundreds of single reference stars were also observed and used in deconvolution to remove undesirable atmospheric and telescope optical effects. The data base of well over one million images was reduced with the Speckle Interferometry Tool of PlateSolve 3. A few sample results are provided. During the second Kitt Peak run, the McMath-Pierce 1.6- and 0.8-meter solar telescopes were evaluated for nighttime speckle interferometry, while the 0.8-meter Coude feed was used to obtain differential radial velocities of short arc binaries.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
Fermilab Education Office - Special Events for Students and Families
students and families. These include: null Fermilab Outdoor Family Fair (K-12) null Wonders of Science (2-7 ) null Family Open House (3-12) null STEM Career Expo (9-12) Search Programs - Search Science Adventures
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument
NASA Astrophysics Data System (ADS)
Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.
2016-07-01
We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.
Optical long baseline intensity interferometry: prospects for stellar physics
NASA Astrophysics Data System (ADS)
Rivet, Jean-Pierre; Vakili, Farrokh; Lai, Olivier; Vernet, David; Fouché, Mathilde; Guerin, William; Labeyrie, Guillaume; Kaiser, Robin
2018-06-01
More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.
Optics in engineering measurement; Proceedings of the Meeting, Cannes, France, December 3-6, 1985
NASA Technical Reports Server (NTRS)
Fagan, William F. (Editor)
1986-01-01
The present conference on optical measurement systems considers topics in the fields of holographic interferometry, speckle techniques, moire fringe and grating methods, optical surface gaging, laser- and fiber-optics-based measurement systems, and optics for engineering data evaluation. Specific attention is given to holographic NDE for aerospace composites, holographic interferometry of rotating components, new developments in computer-aided holography, electronic speckle pattern interferometry, mass transfer measurements using projected fringes, nuclear reactor photogrammetric inspection, a laser Doppler vibrometer, and optoelectronic measurements of the yaw angle of projectiles.
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars
NASA Astrophysics Data System (ADS)
Mérand, Antoine
2017-10-01
SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.
Laser Interferometry Method as a Novel Tool in Endotoxins Research.
Arabski, Michał; Wąsik, Sławomir
2017-01-01
Optical properties of chemical substances are widely used at present for assays thereof in a variety of scientific disciplines. One of the measurement techniques applied in physical sciences, with a potential for novel applications in biology, is laser interferometry. This method enables to record the diffusion properties of chemical substances. Here we describe the novel application of laser interferometry in chitosan interactions with lipopolysaccharide by detection of colistin diffusion. The proposed model could be used in simple measurements of polymer interactions with endotoxins and/or biological active compounds, like antibiotics.
Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies
NASA Astrophysics Data System (ADS)
Gay, J.; Rabbia, Y.
2014-04-01
We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.
Reducing the dimensions of acoustic devices using anti-acoustic-null media
NASA Astrophysics Data System (ADS)
Li, Borui; Sun, Fei; He, Sailing
2018-02-01
An anti-acoustic-null medium (anti-ANM), a special homogeneous medium with anisotropic mass density, is designed by transformation acoustics (TA). Anti-ANM can greatly compress acoustic space along the direction of its main axis, where the size compression ratio is extremely large. This special feature can be utilized to reduce the geometric dimensions of classic acoustic devices. For example, the height of a parabolic acoustic reflector can be greatly reduced. We also design a brass-air structure on the basis of the effective medium theory to materialize the anti-ANM in a broadband frequency range. Numerical simulations verify the performance of the proposed anti-ANM.
Local earthquake interferometry of the IRIS Community Wavefield Experiment, Grant County, Oklahoma
NASA Astrophysics Data System (ADS)
Eddy, A. C.; Harder, S. H.
2017-12-01
The IRIS Community Wavefield Experiment was deployed in Grant County, located in north central Oklahoma, from June 21 to July 27, 2016. Data from all nodes were recorded at 250 samples per second between June 21 and July 20 along three lines. The main line was 12.5 km long oriented east-west and consisted of 129 nodes. The other two lines were 5.5 km long north-south oriented with 49 nodes each. During this time, approximately 150 earthquakes of magnitude 1.0 to 4.4 were recorded in the surrounding counties of Oklahoma and Kansas. Ideally, sources for local earthquake interferometry should be near surface events that produce high frequency body waves. Unlike ambient noise seismic interferometry (ANSI), which uses days, weeks, or even months of continuously recorded seismic data, local earthquake interferometry uses only short segments ( 2 min.) of data. Interferometry in this case is based on the cross-correlation of body wave surface multiples where the event source is translated to a reference station in the array, which acts as a virtual source. Multiples recorded between the reference station and all other stations can be cross-correlated to produce a clear seismic trace. This process will be repeated with every node acting as the reference station for all events. The resulting shot gather will then be processed and analyzed for quality and accuracy. Successful application of local earthquake interferometry will produce a crustal image with identifiable sedimentary and basement reflectors and possibly a Moho reflection. Economically, local earthquake interferometry could lower the time and resource cost of active and passive seismic surveys while improving subsurface image quality in urban settings or areas of limited access. The applications of this method can potentially be expanded with the inclusion of seismic events with a magnitude of 1.0 or lower.
NASA Astrophysics Data System (ADS)
Georges, Marc; Lemaire, Philippe; Pauliat, Gilles; Launay, Jean-Claude; Roosen, Gérald
2018-04-01
This paper, "State-of-the-art of photorefractive holographic interferometry and potentialities for space applications," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Modular Hamiltonians on the null plane and the Markov property of the vacuum state
NASA Astrophysics Data System (ADS)
Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo
2017-09-01
We compute the modular Hamiltonians of regions having the future horizon lying on a null plane. For a CFT this is equivalent to regions with a boundary of arbitrary shape lying on the null cone. These Hamiltonians have a local expression on the horizon formed by integrals of the stress tensor. We prove this result in two different ways, and show that the modular Hamiltonians of these regions form an infinite dimensional Lie algebra. The corresponding group of unitary transformations moves the fields on the null surface locally along the null generators with arbitrary null line dependent velocities, but act non-locally outside the null plane. We regain this result in greater generality using more abstract tools on the algebraic quantum field theory. Finally, we show that modular Hamiltonians on the null surface satisfy a Markov property that leads to the saturation of the strong sub-additive inequality for the entropies and to the strong super-additivity of the relative entropy.
Theoretical investigations on dual-beam illumination electronic speckle pattern interferometry
NASA Astrophysics Data System (ADS)
Goudemand, Nicolas
2006-07-01
Contrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.
The mid-IR and near-IR interferometry of AGNs: key results and their implications
NASA Astrophysics Data System (ADS)
Kishimoto, M.
2015-09-01
Infrared interferometry has been very productive in directly probing the structure of AGNs at sub-pc scales. With tens of objects already probed in the mid-IR and near-IR, I will summarize the key results and im- plications from this direct exploration. The Keck interferometry in the near-IR and VLTI in the mid-IR shaped the luminosity dependence of the torus size and structure, while the latter also revealed an equatorial structure at several Rsub (dust sublimation radius), and a polar-elongated region at a few tens of Rsub. Notably, this polar component seems to dominate the compact mid-IR flux. This component can persuasively be attributed to a polar outflow. However, interferometry, through emissivity estimations, also indicates that it is not a UV-optically-thin cloud but participating in the obscuration of the nucleus. I will discuss how to accommodate all these facts to build a consistent picture.
NASA Astrophysics Data System (ADS)
Pisarev, Vladimir S.; Odintsev, I.; Balalov, V.; Apalkov, A.
2003-05-01
Sophisticated technique for reliable quantitative deriving residual stress values from initial experimental data, which are inherent in combined implementing the hole drilling method with both holographic and speckle interferometry, is described in detail. The approach developed includes both possible ways of obtaining initial experimental information. The first of them consists of recording a set of required interference fringe patterns, which are resulted from residual stress energy release after through hole drilling, in two orthogonal directions that coincide with principal strain directions. The second way is obtaining a series of interrelated fringe patterns when a direction of either observation in reflection hologram interferometry or dual-beam illumination in speckle interferometry lies arbitrary with respect to definite principal strain direction. A set of the most typical both actual and analogous reference fringe patterns, which are related to both reflection hologram and dual-beam speckle interferometry, are presented.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
A publication database for optical long baseline interferometry
NASA Astrophysics Data System (ADS)
Malbet, Fabien; Mella, Guillaume; Lawson, Peter; Taillifet, Esther; Lafrasse, Sylvain
2010-07-01
Optical long baseline interferometry is a technique that has generated almost 850 refereed papers to date. The targets span a large variety of objects from planetary systems to extragalactic studies and all branches of stellar physics. We have created a database hosted by the JMMC and connected to the Optical Long Baseline Interferometry Newsletter (OLBIN) web site using MySQL and a collection of XML or PHP scripts in order to store and classify these publications. Each entry is defined by its ADS bibcode, includes basic ADS informations and metadata. The metadata are specified by tags sorted in categories: interferometric facilities, instrumentation, wavelength of operation, spectral resolution, type of measurement, target type, and paper category, for example. The whole OLBIN publication list has been processed and we present how the database is organized and can be accessed. We use this tool to generate statistical plots of interest for the community in optical long baseline interferometry.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Resolving microstructures in Z pinches with intensity interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apruzese, J. P.; Kroupp, E.; Maron, Y.
2014-03-15
Nearly 60 years ago, Hanbury Brown and Twiss [R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956)] succeeded in measuring the 30 nrad angular diameter of Sirius using a new type of interferometry that exploited the interference of photons independently emitted from different regions of the stellar disk. Its basis was the measurement of intensity correlations as a function of detector spacing, with no beam splitting or preservation of phase information needed. Applied to Z pinches, X pinches, or laser-produced plasmas, this method could potentially provide spatial resolution under one micron. A quantitative analysis based on the workmore » of Purcell [E. M. Purcell, Nature 178, 1449 (1956)] reveals that obtaining adequate statistics from x-ray interferometry of a Z-pinch microstructure would require using the highest-current generators available. However, using visible light interferometry would reduce the needed photon count and could enable its use on sub-MA machines.« less
Optical aperture synthesis with electronically connected telescopes
Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.
2015-01-01
Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705
A real-time interferometer technique for compressible flow research
NASA Technical Reports Server (NTRS)
Bachalo, W. D.; Houser, M. J.
1984-01-01
Strengths and shortcomings in the application of interferometric techniques to transonic flow fields are examined and an improved method is elaborated. Such applications have demonstrated the value of interferometry in obtaining data for compressible flow research. With holographic techniques, interferometry may be applied in large scale facilities without the use of expensive optics or elaborate vibration isolation equipment. Results obtained using holographic interferometry and other methods demonstrate that reliable qualitative and quantitative data can be acquired. Nevertheless, the conventional method can be difficult to set up and apply, and it cannot produce real-time data. A new interferometry technique is investigated that promises to be easier to apply and can provide real-time information. This single-beam technique has the necessary insensitivity to vibration for large scale wind tunnel operations. Capabilities of the method and preliminary tests on some laboratory scale flow fluids are described.
NASA Astrophysics Data System (ADS)
Axelsson, Anders; Marucci, Mariagrazia
2008-12-01
In this review holographic interferometry and electron speckle pattern interferometry are discussed as efficient techniques for diffusion measurements in biochemical and pharmaceutical applications. Transport phenomena can be studied, quantitatively and qualitatively, in gels, liquids and membranes. Detailed information on these phenomena is required to design effective chromatography bioseparation processes using gel beads or ultrafiltration membranes, and in the design of controlled-release pharmaceuticals using membrane-coated pellets or tablets. The influence of gel concentration, ion strength in the liquid and the size of diffusing protein molecules can easily be studied with good accuracy. When studying membranes, the resistance can be quantified, and it is also possible to discriminate between permeable and semi-permeable membranes. In this review the influence of temperature, natural convection and light deflection on the accuracy of the diffusion measurements is also discussed.
NASA Astrophysics Data System (ADS)
Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun
2014-04-01
This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.
McAlinden, Colm; Wang, Qinmei; Gao, Rongrong; Zhao, Weiqi; Yu, Ayong; Li, Yu; Guo, Yan; Huang, Jinhai
2017-01-01
To compare a new swept-source optical coherence tomography (SSOCT)-based biometer (OA-2000) with the IOLMaster v5.4 (partial-coherence interferometry) and Aladdin (optical low-coherence interferometry) biometers in terms of axial length measurement and failure rate in eyes with cataract. Reliability study. A total of 377 eyes of 210 patients were scanned with the 3 biometers in a random order. For each biometer, the number of unobtainable axial length measurements was recorded and grouped as per the type and severity of cataract based on the Lens Opacities Classification System III by the same experienced ophthalmologist. The Bland-Altman limits-of-agreement (LoA) method was used to assess the agreement in axial length measurements between the 3 biometers. The failure rate was 0 eyes (0%) with the OA-2000, 136 eyes (36.07%) with the IOLMaster, and 51 eyes (13.53%) with the Aladdin. χ 2 analyses indicated a significant difference in failure rate between all 3 devices (P < .001). Logistic regression analysis highlighted a statistically significant trend of higher failure rates with increasing severity of nuclear, cortical, and posterior subcapsular cataracts. Bland-Altman statistics indicated small mean differences and narrow LoA (OA-2000 vs IOLMaster -0.09 to 0.08 mm; OA-2000 vs Aladdin -0.10 to 0.07 mm; IOLMaster vs Aladdin -0.05 to 0.04 mm). The OA-2000, a new SSOCT-based biometer, outperformed both the IOLMaster and Aladdin biometers in very advanced cataracts of various morphologies. The use of SSOCT technology may be the reason for the improved performance of the OA-2000 and may lead to this technology becoming the gold standard for the measurement of axial length. Copyright © 2016 Elsevier Inc. All rights reserved.
Error analysis and system optimization of non-null aspheric testing system
NASA Astrophysics Data System (ADS)
Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo
2010-10-01
A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.
Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1989-01-01
The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.
Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans
Gunalan, Karthigayan; Lo, Eugenia; Hostetler, Jessica B.; Yewhalaw, Delenasaw; Mu, Jianbing; Neafsey, Daniel E.; Yan, Guiyun; Miller, Louis H.
2016-01-01
The ability of the malaria parasite Plasmodium vivax to invade erythrocytes is dependent on the expression of the Duffy blood group antigen on erythrocytes. Consequently, Africans who are null for the Duffy antigen are not susceptible to P. vivax infections. Recently, P. vivax infections in Duffy-null Africans have been documented, raising the possibility that P. vivax, a virulent pathogen in other parts of the world, may expand malarial disease in Africa. P. vivax binds the Duffy blood group antigen through its Duffy-binding protein 1 (DBP1). To determine if mutations in DBP1 resulted in the ability of P. vivax to bind Duffy-null erythrocytes, we analyzed P. vivax parasites obtained from two Duffy-null individuals living in Ethiopia where Duffy-null and -positive Africans live side-by-side. We determined that, although the DBP1s from these parasites contained unique sequences, they failed to bind Duffy-null erythrocytes, indicating that mutations in DBP1 did not account for the ability of P. vivax to infect Duffy-null Africans. However, an unusual DNA expansion of DBP1 (three and eight copies) in the two Duffy-null P. vivax infections suggests that an expansion of DBP1 may have been selected to allow low-affinity binding to another receptor on Duffy-null erythrocytes. Indeed, we show that Salvador (Sal) I P. vivax infects Squirrel monkeys independently of DBP1 binding to Squirrel monkey erythrocytes. We conclude that P. vivax Sal I and perhaps P. vivax in Duffy-null patients may have adapted to use new ligand–receptor pairs for invasion. PMID:27190089
Ying, Hou-Qun; Qi, Yue; Pu, Xiao-Ying; Liu, Shuo-Ran
2013-01-01
The deletion polymorphisms of the glutathione S-transferase M1 (GSTM1) and glutathione S-transferase T1 (GSTT1) genes were considered as candidates for genetic susceptibility factors of male infertility. Previous studies concerning the relationship between the null genotype of the two genes and male infertility have been reported in recent years. However, the results remain elusive. A meta-analysis was performed to estimate the relationship between the deletion polymorphism of the GSTM1 or GSTT1 gene, and male infertility in this study. Sixteen studies concerning the GSTM1 gene, including 2174 cases and 1861 controls, and 13 case–control studies on the GSTT1 gene with a total number of 1992 cases and 1617 controls were processed. The results showed that the null genotype of the GSTM1 gene was associated with male infertility in the overall populations (P=0.003, OR=1.40, 95%CI=1.12–1.75), especially in Caucasian (P=0.012, OR=1.50, 95%CI=1.09–2.07) as well as Chinese (P=0.001, OR=1.55, 95%CI=1.19–2.03). The null genotype of the GSTT1 gene was strongly related to male infertility only in Chinese (P=0.000, OR=1.70, 95%CI=1.34–2.14). These results indicated that the null genotype of the GSTM1 gene might contribute to the susceptibility of male infertility, whereas the null genotype of the GSTT1 gene may be a genetic susceptibility factor of male infertility for the Chinese. PMID:23631429
NASA Astrophysics Data System (ADS)
Straka, Mika J.; Caldarelli, Guido; Squartini, Tiziano; Saracco, Fabio
2018-04-01
Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007-2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo's hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.
Serreze, D V; Leiter, E H; Hanson, M S; Christianson, S W; Shultz, L D; Hesselton, R M; Greiner, D L
1995-12-01
When used as hosts in passive transfer experiments, a stock of NOD/Lt mice congenic for the severe combined immunodeficiency (scid) mutation have provided great insight to the contributions of various T-cell populations in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). Moreover, NOD-scid mice support higher levels of human lymphohematopoietic cell growth than the C.B-17-scid strain in which the mutation originated. However, the ability to perform long-term lymphohematopoietic repopulation studies in the NOD-scid stock has been limited by the fact that most of these mice develop lethal thymic lymphomas beginning at 20 weeks of age. These thymic lymphomas are characterized by activation and subsequent genomic reintegrations of Emv30, an endogenous murine ecotropic retrovirus unique to the NOD genome. To test the role of this endogenous retrovirus in thymomagenesis, we produced a stock of Emv30null NOD-scid mice by congenic replacement of the proximal end of chromosome 11 with genetic material derived from the closely related NOR/Lt strain. Thymic lymphomas still initiate in Emv30null NOD-scid females, but their rate of progression is significantly retarded since the frequency of tumors weighing between 170 and 910 mg at 25 weeks of age was reduced to 20.8% vs. 76.2% in Emv30% segregants. The thymic lymphomas that did develop in Emv30null NOD-scid mice were not characterized by a compensatory increase in mink cell focus-forming proviral integrations, which initiate thymomagenesis in other susceptible mouse strains. Significantly, the ability of standard NOD T-cells to transfer IDDM to the Emv30null NOD-scid stock was not impaired.(ABSTRACT TRUNCATED AT 250 WORDS)
Experimental determination of release fields in cut railroad car wheels
DOT National Transportation Integrated Search
1999-02-01
A new approach to the measurement of residual stresses in railroad wheels is investigated using a saw cut method of releasing stresses in the structure. High-sensitivity moire interferometry combined with Michelson interferometry provides full-field ...
Experimental Study of Residual Stresses in Rail by Moire Interferometry
DOT National Transportation Integrated Search
1993-09-01
The residual stresses in rails produced by rolling cycles are studied experimentally by moire interferometry. The dissection technique is adopted for this investigation. The basic principle of the dissection technique is that the residual stress is r...
Regional distribution of forest height and biomass from multisensor data fusion
Yifan Yu; Sassan Saatch; Linda S. Heath; Elizabeth LaPoint; Ranga Myneni; Yuri Knyazikhin
2010-01-01
Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM...
The current ability to test theories of gravity with black hole shadows
NASA Astrophysics Data System (ADS)
Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano
2018-04-01
Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.
2011-01-01
We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.
NASA Astrophysics Data System (ADS)
Hilditch, David; Harms, Enno; Bugner, Marcus; Rüter, Hannes; Brügmann, Bernd
2018-03-01
A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the ‘dual foliation’ formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoğlu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et al, we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically ‘waggled’ to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.
Canal, G. P.; Ferraro, N. M.; Evans, T. E.; ...
2017-04-20
Here in this work, single- and two-fluid resistive magnetohydrodynamic calculations of the plasma response to n = 3 magnetic perturbations in single-null (SN) and snowflake (SF) divertor configurations are compared with those based on the vacuum approach. The calculations are performed using the code M3D-C 1 and are based on simulated NSTX-U plasmas. Significantly different plasma responses were found from these calculations, with the difference between the single- and two-fluid plasma responses being caused mainly by the different screening mechanism intrinsic to each of these models. Although different plasma responses were obtained from these different plasma models, no significant differencemore » between the SN and SF plasma responses were found. However, due to their different equilibrium properties, magnetic perturbations cause the SF configuration to develop additional and longer magnetic lobes in the null-point region than the SN, regardless of the plasma model used. The intersection of these longer and additional lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and snowflake configurations, are more sensitive to resonant magnetic perturbations than to non-resonant magnetic perturbations.« less
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
Toroidally symmetric plasma vortex at tokamak divertor null point
Umansky, M. V.; Ryutov, D. D.
2016-03-09
Reduced MHD equations are used for studying toroidally symmetric plasma dynamics near the divertor null point. Numerical solution of these equations exhibits a plasma vortex localized at the null point with the time-evolution defined by interplay of the curvature drive, magnetic restoring force, and dissipation. Convective motion is easier to achieve for a second-order null (snowflake) divertor than for a regular x-point configuration, and the size of the convection zone in a snowflake configuration grows with plasma pressure at the null point. In conclusion, the trends in simulations are consistent with tokamak experiments which indicate the presence of enhanced transportmore » at the null point.« less
NASA Technical Reports Server (NTRS)
Rignot, Eric
1998-01-01
The synthetic-aperture radar interferometry technique is used to detect the migration of the limit of tidal flexing, or hinge line, of the floating ice tongue of Petermann Gletscher, a major outlet glacier of north Greenland.
NASA Astrophysics Data System (ADS)
Nabias, Laurent; Schanen, Isabelle; Berger, Jean-Philippe; Kern, Pierre; Malbet, Fabien; Benech, Pierre
2018-04-01
This paper, "Integrated optics applied to astronomical aperture synthesis III: simulation of components optimized for astronomical interferometry," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Interferometry correlations in central p+Pb collisions
NASA Astrophysics Data System (ADS)
Bożek, Piotr; Bysiak, Sebastian
2018-01-01
We present results on interferometry correlations for pions emitted in central p+Pb collisions at √{s_{NN}}=5.02 TeV in a 3+1-dimensional viscous hydrodynamic model with initial conditions from the Glauber Monte Carlo model. The correlation function is calculated as a function of the pion pair rapidity. The extracted interferometry radii show a weak rapidity dependence, reflecting the lack of boost invariance of the pion distribution. A cross term between the out and long directions is found to be nonzero. The results obtained in the hydrodynamic model are in fair agreement with recent data of the ATLAS Collaboration.
Altimetry Using GPS-Reflection/Occultation Interferometry
NASA Technical Reports Server (NTRS)
Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi
2008-01-01
A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.
Iliev, Marin; Meier, Amanda K; Galloway, Benjamin; Adams, Daniel E; Squier, Jeff A; Durfee, Charles G
2014-07-28
We present a method using spectral interferometry (SI) to characterize a pulse in the presence of an incoherent background such as amplified spontaneous emission (ASE). The output of a regenerative amplifier is interfered with a copy of the pulse that has been converted using third-order cross-polarized wave generation (XPW). The ASE shows as a pedestal background in the interference pattern. The energy contrast between the short-pulse component and the ASE is retrieved. The spectra of the interacting beams are obtained through an improvement to the self-referenced spectral interferometry (SRSI) analysis.
Highly sensitive atomic based MW interferometry.
Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya
2018-06-06
We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Phase-Shifted Laser Feedback Interferometry
NASA Technical Reports Server (NTRS)
Ovryn, Benjie
1999-01-01
Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
Off-Axis Nulling Transfer Function Measurement: A First Assessment
NASA Technical Reports Server (NTRS)
Vedova, G. Dalla; Menut, J.-L.; Millour, F.; Petrov, R.; Cassaing, F.; Danchi, W. C.; Jacquinod, S.; Lhome, E.; Lopez, B.; Lozi, J.;
2013-01-01
We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp -4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results.
Loss of Vitamin D Receptor Produces Polyuria by Increasing Thirst
Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E.; Zhang, Yan; Szeto, Frances L.; Musch, Mark W.; Li, Yan Chun
2008-01-01
Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II–mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II. PMID:18832438
Loss of vitamin D receptor produces polyuria by increasing thirst.
Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E; Zhang, Yan; Szeto, Frances L; Musch, Mark W; Li, Yan Chun
2008-12-01
Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II-mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II.
Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent
Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.
2015-01-01
Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897
Tennese, Alysa A; Wevrick, Rachel
2011-03-01
Hypothalamic dysfunction may underlie endocrine abnormalities in Prader-Willi syndrome (PWS), a genetic disorder that features GH deficiency, obesity, and infertility. One of the genes typically inactivated in PWS, MAGEL2, is highly expressed in the hypothalamus. Mice deficient for Magel2 are obese with increased fat mass and decreased lean mass and have blunted circadian rhythm. Here, we demonstrate that Magel2-null mice have abnormalities of hypothalamic endocrine axes that recapitulate phenotypes in PWS. Magel2-null mice had elevated basal corticosterone levels, and although male Magel2-null mice had an intact corticosterone response to restraint and to insulin-induced hypoglycemia, female Magel2-null mice failed to respond to hypoglycemia with increased corticosterone. After insulin-induced hypoglycemia, Magel2-null mice of both sexes became more profoundly hypoglycemic, and female mice were slower to recover euglycemia, suggesting an impaired hypothalamic counterregulatory response. GH insufficiency can produce abnormal body composition, such as that seen in PWS and in Magel2-null mice. Male Magel2-null mice had Igf-I levels similar to control littermates. Female Magel2-null mice had low Igf-I levels and reduced GH release in response to stimulation with ghrelin. Female Magel2-null mice did respond to GHRH, suggesting that their GH deficiency has a hypothalamic rather than pituitary origin. Female Magel2-null mice also had higher serum adiponectin than expected, considering their increased fat mass, and thyroid (T(4)) levels were low. Together, these findings strongly suggest that loss of MAGEL2 contributes to endocrine dysfunction of hypothalamic origin in individuals with PWS.
Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J; Goedken, Michael J; Zhang, Yuxia; Kong, Bo; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H; Wang, Li
2015-05-01
Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. We studied mice with disruptions in Nr0b2 (called small heterodimer partner [SHP]-null mice), betaine-homocysteine S-methyltransferase (Bhmt), or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (National Institute on Alcohol Abuse and Alcoholism binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%) or high-fat diets (60%). Serum and livers were collected during a 24-hour light-dark cycle and analyzed by RNA-seq, metabolomic, and quantitative polymerase chain reaction, immunoblot, and chromatin immunoprecipitation assays. SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Expression of Bhmt and cystathionine γ-lyase was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control, but not SHP-null, mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. Disruption of Shp in mice alters timing of expression of genes that regulate homocysteine metabolism and the liver responses to ethanol and homocysteine. SHP inhibits the transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras
Keighren, Margaret A.; Flockhart, Jean H.
2016-01-01
ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217
Speckle interferometry applied to asteroids and other solar system objects
NASA Technical Reports Server (NTRS)
Drummond, J. D.; Hege, E. K.
1985-01-01
The application of speckle interferometry to asteroids and other solar system objects is discussed. The assumption of a triaxial ellipsoid rotating about its shortest axis is the standard model. Binary asteroids, 433 Eros, 532 Herculina, 511 Davida, and Pallas are discussed.
An Atomic Clock with 10 (exp -18) Instability
2013-09-13
experimental tools to address exciting topics in cosmology and gravitational physics such as Hawking radiation (13) or Unruh effect (27). References...long baseline interferometry), secure communication, and interferometry and can possibly lead to a re definition of the SI second (9). References and
Detection of deoxynivalenol using biolayer interferometry
USDA-ARS?s Scientific Manuscript database
Biolayer interferometry allows for the real time monitoring of the interactions between molecules without the need for reagents with enzymatic, fluorescent, or radioactive labels. The technology is based upon the changes in interference pattern of light reflected from the surface of an optical fiber...
An empirical model to forecast solar wind velocity through statistical modeling
NASA Astrophysics Data System (ADS)
Gao, Y.; Ridley, A. J.
2013-12-01
The accurate prediction of the solar wind velocity has been a major challenge in the space weather community. Previous studies proposed many empirical and semi-empirical models to forecast the solar wind velocity based on either the historical observations, e.g. the persistence model, or the instantaneous observations of the sun, e.g. the Wang-Sheeley-Arge model. In this study, we use the one-minute WIND data from January 1995 to August 2012 to investigate and compare the performances of 4 models often used in literature, here referred to as the null model, the persistence model, the one-solar-rotation-ago model, and the Wang-Sheeley-Arge model. It is found that, measured by root mean square error, the persistence model gives the most accurate predictions within two days. Beyond two days, the Wang-Sheeley-Arge model serves as the best model, though it only slightly outperforms the null model and the one-solar-rotation-ago model. Finally, we apply the least-square regression to linearly combine the null model, the persistence model, and the one-solar-rotation-ago model to propose a 'general persistence model'. By comparing its performance against the 4 aforementioned models, it is found that the accuracy of the general persistence model outperforms the other 4 models within five days. Due to its great simplicity and superb performance, we believe that the general persistence model can serve as a benchmark in the forecast of solar wind velocity and has the potential to be modified to arrive at better models.
[Predictive model based multimetric index of macroinvertebrates for river health assessment].
Chen, Kai; Yu, Hai Yan; Zhang, Ji Wei; Wang, Bei Xin; Chen, Qiu Wen
2017-06-18
Improving the stability of integrity of biotic index (IBI; i.e., multi-metric indices, MMI) across temporal and spatial scales is one of the most important issues in water ecosystem integrity bioassessment and water environment management. Using datasets of field-based macroinvertebrate and physicochemical variables and GIS-based natural predictors (e.g., geomorphology and climate) and land use variables collected at 227 river sites from 2004 to 2011 across the Zhejiang Province, China, we used random forests (RF) to adjust the effects of natural variations at temporal and spatial scales on macroinvertebrate metrics. We then developed natural variations adjusted (predictive) and unadjusted (null) MMIs and compared performance between them. The core me-trics selected for predictive and null MMIs were different from each other, and natural variations within core metrics in predictive MMI explained by RF models ranged between 11.4% and 61.2%. The predictive MMI was more precise and accurate, but less responsive and sensitive than null MMI. The multivariate nearest-neighbor test determined that 9 test sites and 1 most degraded site were flagged outside of the environmental space of the reference site network. We found that combination of predictive MMI developed by using predictive model and the nearest-neighbor test performed best and decreased risks of inferring type I (designating a water body as being in poor biological condition, when it was actually in good condition) and type II (designating a water body as being in good biological condition, when it was actually in poor condition) errors. Our results provided an effective method to improve the stability and performance of integrity of biotic index.
NASA Astrophysics Data System (ADS)
Scott, R.
On-Orbit-Servicing (OOS) in Geostationary Equatorial Orbit (GEO) is likely to become a space mission reality provoking new problems for the optical space surveillance community. OOS’ close-proximity flight of servicer and client satellites with separations less than 1 kilometer in GEO challenge the metric measurement capabilities of medium and small aperture space surveillance instruments. This paper describes an OOS monitoring technique based on Cross-Spectrum speckle interferometry to compensate for atmospheric turbulence and measure the OOS satellites’ differential relative position. Cross-Spectrum speckle interferometry, an astronomical technique developed to measure the astrometric positions of binary stars, was adapted to the geostationary OOS problem and was tested using Sloan i’ observations of co-located geostationary satellites. Medium (1.6m) and small (0.35m) aperture telescopes were used to observe these satellites undergoing optical conjunctions where their apparent line-of-sight separation narrowed within 5 arcseconds. During the initial development of the Cross-Spectrum approach some weaknesses were identified where particle strikes, faint background stars, anomalous fringe orientation angles and high relative angular rates corrupt the relative position measurement process. In this paper, newly adjusted compensation techniques to remedy these issues are described and the data is reprocessed. The Cross-Spectrum’s performance is shown to work well on closely-spaced GEO satellites with separations less than 3 arcseconds and evidence is shown suggesting the technique can measure satellite separations within 1.8 arcseconds.
ERIC Educational Resources Information Center
McCabe, Declan J.; Knight, Evelyn J.
2016-01-01
Since being introduced by Connor and Simberloff in response to Diamond's assembly rules, null model analysis has been a controversial tool in community ecology. Despite being commonly used in the primary literature, null model analysis has not featured prominently in general textbooks. Complexity of approaches along with difficulty in interpreting…
Alignment of optical system components using an ADM beam through a null assembly
NASA Technical Reports Server (NTRS)
Hayden, Joseph E. (Inventor); Olczak, Eugene G. (Inventor)
2010-01-01
A system for testing an optical surface includes a rangefinder configured to emit a light beam and a null assembly located between the rangefinder and the optical surface. The null assembly is configured to receive and to reflect the emitted light beam toward the optical surface. The light beam reflected from the null assembly is further reflected back from the optical surface toward the null assembly as a return light beam. The rangefinder is configured to measure a distance to the optical surface using the return light beam.
Interpreting null results from measurements with uncertain correlations: an info-gap approach.
Ben-Haim, Yakov
2011-01-01
Null events—not detecting a pernicious agent—are the basis for declaring the agent is absent. Repeated nulls strengthen confidence in the declaration. However, correlations between observations are difficult to assess in many situations and introduce uncertainty in interpreting repeated nulls. We quantify uncertain correlations using an info-gap model, which is an unbounded family of nested sets of possible probabilities. An info-gap model is nonprobabilistic and entails no assumption about a worst case. We then evaluate the robustness, to uncertain correlations, of estimates of the probability of a null event. This is then the basis for evaluating a nonprobabilistic robustness-based confidence interval for the probability of a null. © 2010 Society for Risk Analysis.
From a structural average to the conformational ensemble of a DNA bulge
Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel
2014-01-01
Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812
Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung
2015-12-01
The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.
Orr, H A
1998-01-01
Evolutionary biologists have long sought a way to determine whether a phenotypic difference between two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I propose a sign test that compares the observed number of plus and minus alleles in the "high line" with that expected under neutrality, conditioning on the known phenotypic difference between the taxa. Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to any character in any organism in which QTL analysis can be performed. PMID:9691061
Ryutov, D. D.; Soukhanovskii, V. A.
2015-11-17
The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation tomore » the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.« less
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek
1990-01-01
Two steering laws are presented for single-gimbal control moment gyroscopes. An approach using the Moore-Penrose pseudoinverse with a nondirectional null-motion algorithm is shown by example to avoid internal singularities for unidirectional torque commands, for which existing algorithms fail. Because this is still a tangent-based approach, however, singularity avoidance cannot be guaranteed. The singularity robust inverse is introduced as an alternative to the pseudoinverse for computing torque-producing gimbal rates near singular states. This approach, coupled with the nondirectional null algorithm, is shown by example to provide better steering law performance by allowing torque errors to be produced in the vicinity of singular states.
Interference, focusing and excitation of ultracold atoms
NASA Astrophysics Data System (ADS)
Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.
2011-05-01
One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.
Review of ASTM Symposium on Surface Crack Growth: Models, Experiments, and Structures
1990-11-01
34 Extraction of Stress-Intensity Factor from In-Plane Displacements Measured by Holographic Interferometry--J.W. Dally, C.A. Sciammarella , and I...results and finite elements and find that they are essentially equivalent. Dally, Sciammarella , and Shareef use holographic interferometry and
An examination of along-track interferometry for detecting ground moving targets
NASA Technical Reports Server (NTRS)
Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott
2005-01-01
Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.
Interferometry using subnanosecond pulses from TEA nitrogen lasers.
Schmidt, H; Salzmann, H; Strohwald, H
1975-09-01
The applicability of TEA nitrogen lasers emitting at 3371 A for high speed optical plasma interferometry of short lived plasmas is demonstrated. Interferograms of the dense phase of a 30-kJ plasma focus are obtained with an exposure time of less than 500 psec.
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1993-01-01
This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.
NASA Technical Reports Server (NTRS)
Marn, Jure
1989-01-01
Holographic interferometry is a nonintrusive method and as such possesses considerable advantages such as not disturbing the velocity and temperature field by creating obstacles which would alter the flow field. These optical methods have disadvantages as well. Holography, as one of the interferometry methods, retains the accuracy of older methods, and at the same time eliminates the system error of participating components. The holographic interferometry consists of comparing the objective beam with the reference beam and observing the difference in lengths of optical paths, which can be observed during the propagation of the light through a medium with locally varying refractive index. Thus, change in refractive index can be observed as a family of nonintersecting surfaces in space (wave fronts). The object of the investigation was a rectangular heat pipe. The goal was to measure temperatures in the heat pipe, which yields data for computer code or model assessment. The results were obtained by calculating the temperatures by means of finite fringes.
Development of Speckle Interferometry Algorithm and System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsir, A. A. M.; Jafri, M. Z. M.; Lim, H. S.
2011-05-25
Electronic speckle pattern interferometry (ESPI) method is a wholefield, non destructive measurement method widely used in the industries such as detection of defects on metal bodies, detection of defects in intergrated circuits in digital electronics components and in the preservation of priceless artwork. In this research field, this method is widely used to develop algorithms and to develop a new laboratory setup for implementing the speckle pattern interferometry. In speckle interferometry, an optically rough test surface is illuminated with an expanded laser beam creating a laser speckle pattern in the space surrounding the illuminated region. The speckle pattern is opticallymore » mixed with a second coherent light field that is either another speckle pattern or a smooth light field. This produces an interferometric speckle pattern that will be detected by sensor to count the change of the speckle pattern due to force given. In this project, an experimental setup of ESPI is proposed to analyze a stainless steel plate using 632.8 nm (red) wavelength of lights.« less
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
NASA Astrophysics Data System (ADS)
Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-06-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.
NASA Astrophysics Data System (ADS)
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-10-01
Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.
A portable magneto-optical trap with prospects for atom interferometry in civil engineering
Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.
2017-01-01
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue ‘Quantum technology for the 21st century’. PMID:28652493
A portable magneto-optical trap with prospects for atom interferometry in civil engineering.
Hinton, A; Perea-Ortiz, M; Winch, J; Briggs, J; Freer, S; Moustoukas, D; Powell-Gill, S; Squire, C; Lamb, A; Rammeloo, C; Stray, B; Voulazeris, G; Zhu, L; Kaushik, A; Lien, Y-H; Niggebaum, A; Rodgers, A; Stabrawa, A; Boddice, D; Plant, S R; Tuckwell, G W; Bongs, K; Metje, N; Holynski, M
2017-08-06
The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 10 7 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Mayer, Larry; Lu, Zhong
2001-01-01
A basic model incorporating satellite synthetic aperture radar (SAR) interferometry of the fault rupture zone that formed during the Kocaeli earthquake of August 17, 1999, documents the elastic rebound that resulted from the concomitant elastic strain release along the North Anatolian fault. For pure strike-slip faults, the elastic rebound function derived from SAR interferometry is directly invertible from the distribution of elastic strain on the fault at criticality, just before the critical shear stress was exceeded and the fault ruptured. The Kocaeli earthquake, which was accompanied by as much as ∼5 m of surface displacement, distributed strain ∼110 km around the fault prior to faulting, although most of it was concentrated in a narrower and asymmetric 10-km-wide zone on either side of the fault. The use of SAR interferometry to document the distribution of elastic strain at the critical condition for faulting is clearly a valuable tool, both for scientific investigation and for the effective management of earthquake hazard.
Accessing High Spatial Resolution in Astronomy Using Interference Methods
NASA Astrophysics Data System (ADS)
Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean
2018-04-01
In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).
Double-path acquisition of pulse wave transit time and heartbeat using self-mixing interferometry
NASA Astrophysics Data System (ADS)
Wei, Yingbin; Huang, Wencai; Wei, Zheng; Zhang, Jie; An, Tong; Wang, Xiulin; Xu, Huizhen
2017-06-01
We present a technique based on self-mixing interferometry for acquiring the pulse wave transit time (PWTT) and heartbeat. A signal processing method based on Continuous Wavelet Transform and Hilbert Transform is applied to extract potentially useful information in the self-mixing interference (SMI) signal, including PWTT and heartbeat. Then, some cardiovascular characteristics of the human body are easily acquired without retrieving the SMI signal by complicated algorithms. Experimentally, the PWTT is measured on the finger and the toe of the human body using double-path self-mixing interferometry. Experimental statistical data show the relation between the PWTT and blood pressure, which can be used to estimate the systolic pressure value by fitting. Moreover, the measured heartbeat shows good agreement with that obtained by a photoplethysmography sensor. The method that we demonstrate, which is based on self-mixing interferometry with significant advantages of simplicity, compactness and non-invasion, effectively illustrates the viability of the SMI technique for measuring other cardiovascular signals.
SWOT Oceanography and Hydrology Data Product Simulators
NASA Technical Reports Server (NTRS)
Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis
2013-01-01
The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.
NASA Technical Reports Server (NTRS)
Feria, V. Alfonso; Lam, Jonathan; Van Buren, Dave
2006-01-01
This paper presents the studies carried out to determine the source of the surface distortions on the M1 mirror as well as comparison and model validation during testing. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Sanz-Martín, José M; Pacheco-Arjona, José Ramón; Bello-Rico, Víctor; Vargas, Walter A; Monod, Michel; Díaz-Mínguez, José M; Thon, Michael R; Sukno, Serenella A
2016-09-01
Colletotrichum graminicola causes maize anthracnose, an agronomically important disease with a worldwide distribution. We have identified a fungalysin metalloprotease (Cgfl) with a role in virulence. Transcriptional profiling experiments and live cell imaging show that Cgfl is specifically expressed during the biotrophic stage of infection. To determine whether Cgfl has a role in virulence, we obtained null mutants lacking Cgfl and performed pathogenicity and live microscopy assays. The appressorium morphology of the null mutants is normal, but they exhibit delayed development during the infection process on maize leaves and roots, showing that Cgfl has a role in virulence. In vitro chitinase activity assays of leaves infected with wild-type and null mutant strains show that, in the absence of Cgfl, maize leaves exhibit increased chitinase activity. Phylogenetic analyses show that Cgfl is highly conserved in fungi. Similarity searches, phylogenetic analysis and transcriptional profiling show that C. graminicola encodes two LysM domain-containing homologues of Ecp6, suggesting that this fungus employs both Cgfl-mediated and LysM protein-mediated strategies to control chitin signalling. © 2015 BSPP and John Wiley & Sons Ltd.
Characterization of a conical null-screen corneal topographer
NASA Astrophysics Data System (ADS)
Osorio-Infante, Arturo I.; Campos-García, Manuel; Cossio-Guerrero, Cesar
2017-06-01
In this work, we perform the characterization of a conical null-screen corneal topographer. For this, we design a custom null-screens for testing a reference spherical surfaces with a radius of curvature of 7.8 mm. We also test a 1/2-inch (12.7 mm) diameter stainless steel sphere and an aspherical surface with a radius of curvature of 7.77 mm. We designed some different target distributions with the same target size to evaluate the shape of the reference surfaces. The shape of each surface was recovered by fitting the experimental data to a custom shape using the least square methods with an iterative algorithm. The target distributions were modified to improve the accuracy of the measurements. We selected a distribution and evaluate the accuracy of the algorithms to measure spherical surfaces with a radius of curvature from 6 mm to 8.2 mm by simulating the reflected pattern. We also simulate the reflected patter by changing the position of the surface along the optical axis and then we measure the resulting radius of curvature.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Danchi, W. C.; Deming, L. D.; Richardson, L. J.; Kuchner, M. J.; Seager, S.; Frey, B. J.; Martino, A. J.; Lee, K. A.; Zuray, M.;
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne nulling interferometer for high-resolution astronomy and the direct detection of exoplanets and assay of their environments and atmospheres. FKSI is a high angular resolution system operating in the near to midinfrared spectral region and is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions. The instrument is configured with an optical system consisting, depending on configuration, of two 0.5 - 1.0 m telescopes on a 12.5 - 20 m boom feeding a symmetric, dual Mach- Zehnder beam combiner. We report on progress on our nulling testbed including the design of an optical pathlength null-tracking control system and development of a testing regime for hollow-core fiber waveguides proposed for use in wavefront cleanup. We also report results of integrated simulation studies of the planet detection performance of FKSI and results from an in-depth control system and residual optical pathlength jitter analysis.
Complexity-reduced implementations of complete and null-space-based linear discriminant analysis.
Lu, Gui-Fu; Zheng, Wenming
2013-10-01
Dimensionality reduction has become an important data preprocessing step in a lot of applications. Linear discriminant analysis (LDA) is one of the most well-known dimensionality reduction methods. However, the classical LDA cannot be used directly in the small sample size (SSS) problem where the within-class scatter matrix is singular. In the past, many generalized LDA methods has been reported to address the SSS problem. Among these methods, complete linear discriminant analysis (CLDA) and null-space-based LDA (NLDA) provide good performances. The existing implementations of CLDA are computationally expensive. In this paper, we propose a new and fast implementation of CLDA. Our proposed implementation of CLDA, which is the most efficient one, is equivalent to the existing implementations of CLDA in theory. Since CLDA is an extension of null-space-based LDA (NLDA), our implementation of CLDA also provides a fast implementation of NLDA. Experiments on some real-world data sets demonstrate the effectiveness of our proposed new CLDA and NLDA algorithms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Projecting adverse event incidence rates using empirical Bayes methodology.
Ma, Guoguang Julie; Ganju, Jitendra; Huang, Jing
2016-08-01
Although there is considerable interest in adverse events observed in clinical trials, projecting adverse event incidence rates in an extended period can be of interest when the trial duration is limited compared to clinical practice. A naïve method for making projections might involve modeling the observed rates into the future for each adverse event. However, such an approach overlooks the information that can be borrowed across all the adverse event data. We propose a method that weights each projection using a shrinkage factor; the adverse event-specific shrinkage is a probability, based on empirical Bayes methodology, estimated from all the adverse event data, reflecting evidence in support of the null or non-null hypotheses. Also proposed is a technique to estimate the proportion of true nulls, called the common area under the density curves, which is a critical step in arriving at the shrinkage factor. The performance of the method is evaluated by projecting from interim data and then comparing the projected results with observed results. The method is illustrated on two data sets. © The Author(s) 2013.
Abu-Amero, Khaled K; Al-Boudari, Olayan M; Mohamed, Gamal H; Dzimiri, Nduna
2006-01-01
Background The association of the deletion in GSTT1 and GSTM1 genes with coronary artery disease (CAD) among smokers is controversial. In addition, no such investigation has previously been conducted among Arabs. Methods We genotyped 1054 CAD patients and 762 controls for GSTT1 and GSTM1 deletion by multiplex polymerase chain reaction. Both CAD and controls were Saudi Arabs. Results In the control group (n = 762), 82.3% had the T wild M wildgenotype, 9% had the Twild M null, 2.4% had the Tnull M wild and 6.3% had the Tnull M null genotype. Among the CAD group (n = 1054), 29.5% had the Twild M wild genotype, 26.6% (p < .001) had the Twild M null, 8.3% (p < .001) had the Tnull M wild and 35.6% (p < .001) had the Tnull M null genotype, indicating a significant association of the Twild M null, Tnull M wild and Tnull M null genotypes with CAD. Univariate analysis also showed that smoking, age, hypercholesterolemia and hypertriglyceridemia, diabetes mellitus, family history of CAD, hypertension and obesity are all associated with CAD, whereas gender and myocardial infarction are not. Binary logistic regression for smoking and genotypes indicated that only M null and Tnullare interacting with smoking. However, further subgroup analysis stratifying the data by smoking status suggested that genotype-smoking interactions have no effect on the development of CAD. Conclusion GSTT1 and GSTM1 null-genotypes are risk factor for CAD independent of genotype-smoking interaction. PMID:16620396
Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.
2014-01-01
Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. PMID:24200853
A simple and versatile phase detector for heterodyne interferometers
NASA Astrophysics Data System (ADS)
Mlynek, A.; Faugel, H.; Eixenberger, H.; Pautasso, G.; Sellmair, G.
2017-02-01
The measurement of the relative phase of two sinusoidal electrical signals is a frequently encountered task in heterodyne interferometry, but also occurs in many other applications. Especially in interferometry, multi-radian detectors are often required, which track the temporal evolution of the phase difference and are able to register phase changes that exceed 2π. While a large variety of solutions to this problem is already known, we present an alternative approach, which pre-processes the signals with simple analog circuitry and digitizes two resulting voltages with an analog-to-digital converter (ADC), whose sampling frequency can be far below the frequency of the sinusoidal signals. Phase reconstruction is finally carried out by software. The main advantage of this approach is its simplicity, using only few low-cost hardware components and a standard 2-channel ADC with low performance requirements. We present an application on the two-color interferometer of the ASDEX Upgrade tokamak, where the relative phase of 40 MHz sinusoids is measured.
Federico, Alejandro; Kaufmann, Guillermo H
2006-03-20
We propose a novel approach to retrieving the phase map coded by a single closed-fringe pattern in digital speckle pattern interferometry, which is based on the estimation of the local sign of the quadrature component. We obtain the estimate by calculating the local orientation of the fringes that have previously been denoised by a weighted smoothing spline method. We carry out the procedure of sign estimation by determining the local abrupt jumps of size pi in the orientation field of the fringes and by segmenting the regions defined by these jumps. The segmentation method is based on the application of two-dimensional active contours (snakes), with which one can also estimate absent jumps, i.e., those that cannot be detected from the local orientation of the fringes. The performance of the proposed phase-retrieval technique is evaluated for synthetic and experimental fringes and compared with the results obtained with the spiral-phase- and Fourier-transform methods.
A New Optical Bench Concept for Space-Based Laser Interferometric Gravitational Wave Missions
NASA Astrophysics Data System (ADS)
Chilton, Andrew; Apple, Stephen; Ciani, Giacomo; Olatunde, Taiwo; Conklin, John; Mueller, Guido
2015-04-01
Space-based interferometric gravitational wave detectors such as LISA have been proposed to detect low-frequency gravitational wave sources such as the inspirals of compact objects into massive black holes or two massive black holes into each other. The optical components used to perform the high-precision interferometry required to make these measurements have historically been bonded to Zerodur optical benches, which are thermally ultrastable but difficult and time-consuming to manufacture. More modern implementations of LISA-like interferometry have reduced the length stability requirement on these benches from 30fm/√{Hz} to a few pm √{ Hz}. We therefore propose to alter the design of the optical bench in such a way as to no longer require the use of Zerodur; instead, we plan to replace it with more easily-used materials such as titanium or molybdenum. In this presentation, we discuss the current status of and future plans for the construction and testing of such an optical bench.
Flight phasemeter on the Laser Ranging Interferometer on the GRACE Follow-On mission
NASA Astrophysics Data System (ADS)
Bachman, B.; de Vine, G.; Dickson, J.; Dubovitsky, S.; Liu, J.; Klipstein, W.; McKenzie, K.; Spero, R.; Sutton, A.; Ware, B.; Woodruff, C.
2017-05-01
As the first inter-spacecraft laser interferometer, the Laser Ranging Interferometer (LRI) on the GRACE Follow-On Mission will demonstrate interferometry technology relevant to the LISA mission. This paper focuses on the completed LRI Laser Ranging Processor (LRP), which includes heterodyne signal phase tracking at μ {{cycle/}}\\sqrt{{{Hz}}} precision, differential wavefront sensing, offset frequency phase locking and Pound-Drever-Hall laser stabilization. The LRI design has characteristics that are similar to those for LISA: 1064 nm NPRO laser source, science bandwidth in the mHz range, MHz-range intermediate frequency and Doppler shift, detected optical power of tens of picoWatts. Laser frequency stabilization has been demonstrated at a level below 30{{Hz/}}\\sqrt{{{Hz}}}, better than the LISA requirement of 300{{Hz/}}\\sqrt{{{Hz}}}. The LRP has completed all performance testing and environmental qualification and has been delivered to the GRACE Follow-On spacecraft. The LRI is poised to test the LISA techniques of tone-assisted time delay interferometry and arm-locking. GRACE Follow-On launches in 2017.
Pseudo-cat's eye for improved tilt-immune interferometry.
Speake, Clive C; Bradshaw, Miranda J
2015-08-20
We present a new simple optical design for a cat's eye retroreflector. We describe the design of the new optical configuration and its use in tilt-immune interferometry where it enables the tracking of the displacement of a plane target mirror with minimum sensitivity to its tilt about axes orthogonal to the interferometer's optical axis. In this application the new cat's eye does not behave as a perfect retroreflector and we refer to it as a "pseudo"-cat's eye (PCE). The device allows, for the first time, tilt-immune interferometric displacement measurements in cases where the nominal distance to the target mirror is significantly larger than the length of the cat's eye. We describe the general optical characteristics of the PCE and compare its performance in our application with that of a conventional cat's eye optical configuration using ABCD matrices and Zemax analyses. We further suggest a simple modification to the design that would enable the PCE to behave as a perfect cat's eye, and this design may provide an advantageous solution for other applications.
Software-centric View on OVMS for LBT
NASA Astrophysics Data System (ADS)
Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.
2012-09-01
The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.