Sample records for numerical approximation techniques

  1. Locating CVBEM collocation points for steady state heat transfer problems

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  2. A Sensitivity Analysis of Circular Error Probable Approximation Techniques

    DTIC Science & Technology

    1992-03-01

    SENSITIVITY ANALYSIS OF CIRCULAR ERROR PROBABLE APPROXIMATION TECHNIQUES THESIS Presented to the Faculty of the School of Engineering of the Air Force...programming skills. Major Paul Auclair patiently advised me in this endeavor, and Major Andy Howell added numerous insightful contributions. I thank my...techniques. The two ret(st accuratec techniiques require numerical integration and can take several hours to run ov a personal comlputer [2:1-2,4-6]. Some

  3. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  4. An analytical technique for approximating unsteady aerodynamics in the time domain

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    An analytical technique is presented for approximating unsteady aerodynamic forces in the time domain. The order of elements of a matrix Pade approximation was postulated, and the resulting polynomial coefficients were determined through a combination of least squares estimates for the numerator coefficients and a constrained gradient search for the denominator coefficients which insures stable approximating functions. The number of differential equations required to represent the aerodynamic forces to a given accuracy tends to be smaller than that employed in certain existing techniques where the denominator coefficients are chosen a priori. Results are shown for an aeroelastic, cantilevered, semispan wing which indicate a good fit to the aerodynamic forces for oscillatory motion can be achieved with a matrix Pade approximation having fourth order numerator and second order denominator polynomials.

  5. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  6. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  7. Stability of numerical integration techniques for transient rotor dynamics

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1977-01-01

    A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.

  8. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Sethian, James A.

    1997-01-01

    Borrowing from techniques developed for conservation law equations, numerical schemes which discretize the Hamilton-Jacobi (H-J), level set, and Eikonal equations on triangulated domains are presented. The first scheme is a provably monotone discretization for certain forms of the H-J equations. Unfortunately, the basic scheme lacks proper Lipschitz continuity of the numerical Hamiltonian. By employing a virtual edge flipping technique, Lipschitz continuity of the numerical flux is restored on acute triangulations. Next, schemes are introduced and developed based on the weaker concept of positive coefficient approximations for homogeneous Hamiltonians. These schemes possess a discrete maximum principle on arbitrary triangulations and naturally exhibit proper Lipschitz continuity of the numerical Hamiltonian. Finally, a class of Petrov-Galerkin approximations are considered. These schemes are stabilized via a least-squares bilinear form. The Petrov-Galerkin schemes do not possess a discrete maximum principle but generalize to high order accuracy.

  9. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1989-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.

  10. Optimal moving grids for time-dependent partial differential equations

    NASA Technical Reports Server (NTRS)

    Wathen, A. J.

    1992-01-01

    Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.

  11. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  12. A technique to remove the tensile instability in weakly compressible SPH

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Yu, Peng

    2018-01-01

    When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.

  13. Targeted numerical simulations of binary black holes for GW170104

    NASA Astrophysics Data System (ADS)

    Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.

    2018-03-01

    In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.

  14. An approximate inverse scattering technique for reconstructing blockage profiles in water pipelines using acoustic transients.

    PubMed

    Jing, Liwen; Li, Zhao; Wang, Wenjie; Dubey, Amartansh; Lee, Pedro; Meniconi, Silvia; Brunone, Bruno; Murch, Ross D

    2018-05-01

    An approximate inverse scattering technique is proposed for reconstructing cross-sectional area variation along water pipelines to deduce the size and position of blockages. The technique allows the reconstructed blockage profile to be written explicitly in terms of the measured acoustic reflectivity. It is based upon the Born approximation and provides good accuracy, low computational complexity, and insight into the reconstruction process. Numerical simulations and experimental results are provided for long pipelines with mild and severe blockages of different lengths. Good agreement is found between the inverse result and the actual pipe condition for mild blockages.

  15. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  16. Computational methods for estimation of parameters in hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.; Murphy, K. A.

    1983-01-01

    Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.

  17. Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review

    NASA Astrophysics Data System (ADS)

    Kahnert, Michael

    2016-07-01

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.

  18. High order discretization techniques for real-space ab initio simulations

    NASA Astrophysics Data System (ADS)

    Anderson, Christopher R.

    2018-03-01

    In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.

  19. Vistas in applied mathematics: Numerical analysis, atmospheric sciences, immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, A.V.; Dorodnitsyn, A.A.; Lions, J.L.

    1986-01-01

    Advances in the theory and application of numerical modeling techniques are discussed in papers contributed, primarily by Soviet scientists, on the occasion of the 60th birthday of Gurii I. Marchuk. Topics examined include splitting techniques for computations of industrial flows, the mathematical foundations of the k-epsilon turbulence model, splitting methods for the solution of the incompressible Navier-Stokes equations, the approximation of inhomogeneous hyperbolic boundary-value problems, multigrid methods, and the finite-element approximation of minimal surfaces. Consideration is given to dynamic modeling of moist atmospheres, satellite observations of the earth radiation budget and the problem of energy-active ocean regions, a numerical modelmore » of the biosphere for use with GCMs, and large-scale modeling of ocean circulation. Also included are several papers on modeling problems in immunology.« less

  20. A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method

    NASA Astrophysics Data System (ADS)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-08-01

    In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.

  1. Moho Modeling Using FFT Technique

    NASA Astrophysics Data System (ADS)

    Chen, Wenjin; Tenzer, Robert

    2017-04-01

    To improve the numerical efficiency, the Fast Fourier Transform (FFT) technique was facilitated in Parker-Oldenburg's method for a regional gravimetric Moho recovery, which assumes the Earth's planar approximation. In this study, we extend this definition for global applications while assuming a spherical approximation of the Earth. In particular, we utilize the FFT technique for a global Moho recovery, which is practically realized in two numerical steps. The gravimetric forward modeling is first applied, based on methods for a spherical harmonic analysis and synthesis of the global gravity and lithospheric structure models, to compute the refined gravity field, which comprises mainly the gravitational signature of the Moho geometry. The gravimetric inverse problem is then solved iteratively in order to determine the Moho depth. The application of FFT technique to both numerical steps reduces the computation time to a fraction of that required without applying this fast algorithm. The developed numerical producers are used to estimate the Moho depth globally, and the gravimetric result is validated using the global (CRUST1.0) and regional (ESC) seismic Moho models. The comparison reveals a relatively good agreement between the gravimetric and seismic models, with the RMS of differences (of 4-5 km) at the level of expected uncertainties of used input datasets, while without the presence of significant systematic bias.

  2. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  3. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  4. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  5. Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultrarelativistic particles

    NASA Astrophysics Data System (ADS)

    Assous, Franck; Chaskalovic, Joël

    2011-06-01

    We propose a new approach that consists in using data mining techniques for scientific computing. Indeed, data mining has proved to be efficient in other contexts which deal with huge data like in biology, medicine, marketing, advertising and communications. Our aim, here, is to deal with the important problem of the exploitation of the results produced by any numerical method. Indeed, more and more data are created today by numerical simulations. Thus, it seems necessary to look at efficient tools to analyze them. In this work, we focus our presentation to a test case dedicated to an asymptotic paraxial approximation to model ultrarelativistic particles. Our method directly deals with numerical results of simulations and try to understand what each order of the asymptotic expansion brings to the simulation results over what could be obtained by other lower-order or less accurate means. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.

  6. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

    PubMed

    Narayanamoorthy, S; Sathiyapriya, S P

    2016-01-01

    Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

  7. An approximation theory for nonlinear partial differential equations with applications to identification and control

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kunisch, K.

    1982-01-01

    Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.

  8. Numerical realization of the variational method for generating self-trapped beams

    NASA Astrophysics Data System (ADS)

    Duque, Erick I.; Lopez-Aguayo, Servando; Malomed, Boris A.

    2018-03-01

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schr\\"odinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  9. Analytical approximation of a distorted reflector surface defined by a discrete set of points

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Zaman, Afroz A.

    1988-01-01

    Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.

  10. Asymptotic-induced numerical methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Garbey, Marc; Scroggs, Jeffrey S.

    1990-01-01

    Asymptotic-induced methods are presented for the numerical solution of hyperbolic conservation laws with or without viscosity. The methods consist of multiple stages. The first stage is to obtain a first approximation by using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problems identified by using techniques derived via asymptotics. Finally, a residual correction increases the accuracy of the scheme. The method is derived and justified with singular perturbation techniques.

  11. The use of the modified Cholesky decomposition in divergence and classification calculations

    NASA Technical Reports Server (NTRS)

    Vanroony, D. L.; Lynn, M. S.; Snyder, C. H.

    1973-01-01

    The use of the Cholesky decomposition technique is analyzed as applied to the feature selection and classification algorithms used in the analysis of remote sensing data (e.g. as in LARSYS). This technique is approximately 30% faster in classification and a factor of 2-3 faster in divergence, as compared with LARSYS. Also numerical stability and accuracy are slightly improved. Other methods necessary to deal with numerical stablity problems are briefly discussed.

  12. The use of the modified Cholesky decomposition in divergence and classification calculations

    NASA Technical Reports Server (NTRS)

    Van Rooy, D. L.; Lynn, M. S.; Snyder, C. H.

    1973-01-01

    This report analyzes the use of the modified Cholesky decomposition technique as applied to the feature selection and classification algorithms used in the analysis of remote sensing data (e.g., as in LARSYS). This technique is approximately 30% faster in classification and a factor of 2-3 faster in divergence, as compared with LARSYS. Also numerical stability and accuracy are slightly improved. Other methods necessary to deal with numerical stability problems are briefly discussed.

  13. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  14. Difference-Equation/Flow-Graph Circuit Analysis

    NASA Technical Reports Server (NTRS)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  15. Numerical realization of the variational method for generating self-trapped beams.

    PubMed

    Duque, Erick I; Lopez-Aguayo, Servando; Malomed, Boris A

    2018-03-19

    We introduce a numerical variational method based on the Rayleigh-Ritz optimization principle for predicting two-dimensional self-trapped beams in nonlinear media. This technique overcomes the limitation of the traditional variational approximation in performing analytical Lagrangian integration and differentiation. Approximate soliton solutions of a generalized nonlinear Schrödinger equation are obtained, demonstrating robustness of the beams of various types (fundamental, vortices, multipoles, azimuthons) in the course of their propagation. The algorithm offers possibilities to produce more sophisticated soliton profiles in general nonlinear models.

  16. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    USGS Publications Warehouse

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  17. An explicit mixed numerical method for mesoscale model

    NASA Technical Reports Server (NTRS)

    Hsu, H.-M.

    1981-01-01

    A mixed numerical method has been developed for mesoscale models. The technique consists of a forward difference scheme for time tendency terms, an upstream scheme for advective terms, and a central scheme for the other terms in a physical system. It is shown that the mixed method is conditionally stable and highly accurate for approximating the system of either shallow-water equations in one dimension or primitive equations in three dimensions. Since the technique is explicit and two time level, it conserves computer and programming resources.

  18. S-matrix method for the numerical determination of bound states.

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Madan, R. N.

    1973-01-01

    A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.

  19. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  20. Numeric Modified Adomian Decomposition Method for Power System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrovski, Aleksandar D; Simunovic, Srdjan; Pannala, Sreekanth

    This paper investigates the applicability of numeric Wazwaz El Sayed modified Adomian Decomposition Method (WES-ADM) for time domain simulation of power systems. WESADM is a numerical method based on a modified Adomian decomposition (ADM) technique. WES-ADM is a numerical approximation method for the solution of nonlinear ordinary differential equations. The non-linear terms in the differential equations are approximated using Adomian polynomials. In this paper WES-ADM is applied to time domain simulations of multimachine power systems. WECC 3-generator, 9-bus system and IEEE 10-generator, 39-bus system have been used to test the applicability of the approach. Several fault scenarios have been tested.more » It has been found that the proposed approach is faster than the trapezoidal method with comparable accuracy.« less

  1. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  2. Advances in numerical and applied mathematics

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)

    1986-01-01

    This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.

  3. The Evolution and Discharge of Electric Fields within a Thunderstorm

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-05-01

    A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.

  4. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    NASA Technical Reports Server (NTRS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the ordinary photons, under the approximation of large angle and large optical depth. These assumptions allow the equation to be treated using a diffusion-like approximation.

  5. On approximating guided waves in plates with thin anisotropic coatings by means of effective boundary conditions

    PubMed

    Niklasson; Datta; Dunn

    2000-09-01

    In this paper, effective boundary conditions for elastic wave propagation in plates with thin coatings are derived. These effective boundary conditions are used to obtain an approximate dispersion relation for guided waves in an isotropic plate with thin anisotropic coating layers. The accuracy of the effective boundary conditions is investigated numerically by comparison with exact solutions for two different material systems. The systems considered consist of a metallic core with thin superconducting coatings. It is shown that for wavelengths long compared to the coating thickness there is excellent agreement between the approximate and exact solutions for both systems. Furthermore, numerical results presented might be used to characterize coating properties by ultrasonic techniques.

  6. Efficient solution of parabolic equations by Krylov approximation methods

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.

  7. Buckling Of Shells Of Revolution /BOSOR/ with various wall constructions

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Bushnell, D.; Sobel, L. H.

    1969-01-01

    Computer program, using numerical integration and finite difference techniques, solves almost any buckling problem for shells exhibiting orthotropic behavior. Stability analyses can be performed with reasonable accuracy and without unduly restrictive approximations.

  8. Influence of the Numerical Scheme on the Solution Quality of the SWE for Tsunami Numerical Codes: The Tohoku-Oki, 2011Example.

    NASA Astrophysics Data System (ADS)

    Reis, C.; Clain, S.; Figueiredo, J.; Baptista, M. A.; Miranda, J. M. A.

    2015-12-01

    Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.Numerical tools turn to be very important for scenario evaluations of hazardous phenomena such as tsunami. Nevertheless, the predictions highly depends on the numerical tool quality and the design of efficient numerical schemes still receives important attention to provide robust and accurate solutions. In this study we propose a comparative study between the efficiency of two volume finite numerical codes with second-order discretization implemented with different method to solve the non-conservative shallow water equations, the MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) and the MOOD methods (Multi-dimensional Optimal Order Detection) which optimize the accuracy of the approximation in function of the solution local smoothness. The MUSCL is based on a priori criteria where the limiting procedure is performed before updated the solution to the next time-step leading to non-necessary accuracy reduction. On the contrary, the new MOOD technique uses a posteriori detectors to prevent the solution from oscillating in the vicinity of the discontinuities. Indeed, a candidate solution is computed and corrections are performed only for the cells where non-physical oscillations are detected. Using a simple one-dimensional analytical benchmark, 'Single wave on a sloping beach', we show that the classical 1D shallow-water system can be accurately solved with the finite volume method equipped with the MOOD technique and provide better approximation with sharper shock and less numerical diffusion. For the code validation, we also use the Tohoku-Oki 2011 tsunami and reproduce two DART records, demonstrating that the quality of the solution may deeply interfere with the scenario one can assess. This work is funded by the Portugal-France research agreement, through the research project GEONUM FCT-ANR/MAT-NAN/0122/2012.

  9. Beam shape coefficients calculation for an elliptical Gaussian beam with 1-dimensional quadrature and localized approximation methods

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shen, Jianqi

    2018-06-01

    The use of a shaped beam for applications relying on light scattering depends much on the ability to evaluate the beam shape coefficients (BSC) effectively. Numerical techniques for evaluating the BSCs of a shaped beam, such as the quadrature, the localized approximation (LA), the integral localized approximation (ILA) methods, have been developed within the framework of generalized Lorenz-Mie theory (GLMT). The quadrature methods usually employ the 2-/3-dimensional integrations. In this work, the expressions of the BSCs for an elliptical Gaussian beam (EGB) are simplified into the 1-dimensional integral so as to speed up the numerical computation. Numerical results of BSCs are used to reconstruct the beam field and the fidelity of the reconstructed field to the given beam field is estimated. It is demonstrated that the proposed method is much faster than the 2-dimensional integrations and it can acquire more accurate results than the LA method. Limitations of the quadrature method and also the LA method in the numerical calculation are analyzed in detail.

  10. A spline-based parameter and state estimation technique for static models of elastic surfaces

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Daniel, P. L.; Armstrong, E. S.

    1983-01-01

    Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.

  11. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  12. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  13. The evolution and discharge of electric fields within a thunderstorm

    NASA Technical Reports Server (NTRS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-01-01

    An analysis of the present three-dimensional thunderstorm electrical model and its finite-difference approximations indicates unconditional stability for the discretization that results from the approximation of the spatial derivatives by a box-schemelike method and of the temporal derivative by either a backward-difference or Crank-Nicholson scheme. Lightning propagation is treated through numerical techniques based on the inverse-matrix modification formula and Cholesky updates. The model is applied to a storm observed at the Kennedy Space Center in 1978, and numerical comparisons are conducted between the model and the theoretical results obtained by Wilson (1920) and Holzer and Saxon (1952).

  14. An investigation of several numerical procedures for time-asymptotic compressible Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.

    1975-01-01

    The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.

  15. A new operational approach for solving fractional variational problems depending on indefinite integrals

    NASA Astrophysics Data System (ADS)

    Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.

    2018-04-01

    In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm

  16. Some variance reduction methods for numerical stochastic homogenization

    PubMed Central

    Blanc, X.; Le Bris, C.; Legoll, F.

    2016-01-01

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. PMID:27002065

  17. Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...

    2016-08-04

    This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less

  18. Model reduction of the numerical analysis of Low Impact Developments techniques

    NASA Astrophysics Data System (ADS)

    Brunetti, Giuseppe; Šimůnek, Jirka; Wöhling, Thomas; Piro, Patrizia

    2017-04-01

    Mechanistic models have proven to be accurate and reliable tools for the numerical analysis of the hydrological behavior of Low Impact Development (LIDs) techniques. However, their widespread adoption is limited by their complexity and computational cost. Recent studies have tried to address this issue by investigating the application of new techniques, such as surrogate-based modeling. However, current results are still limited and fragmented. One of such approaches, the Model Order Reduction (MOR) technique, can represent a valuable tool for reducing the computational complexity of a numerical problems by computing an approximation of the original model. While this technique has been extensively used in water-related problems, no studies have evaluated its use in LIDs modeling. Thus, the main aim of this study is to apply the MOR technique for the development of a reduced order model (ROM) for the numerical analysis of the hydrologic behavior of LIDs, in particular green roofs. The model should be able to correctly reproduce all the hydrological processes of a green roof while reducing the computational cost. The proposed model decouples the subsurface water dynamic of a green roof in a) one-dimensional (1D) vertical flow through a green roof itself and b) one-dimensional saturated lateral flow along the impervious rooftop. The green roof is horizontally discretized in N elements. Each element represents a vertical domain, which can have different properties or boundary conditions. The 1D Richards equation is used to simulate flow in the substrate and drainage layers. Simulated outflow from the vertical domain is used as a recharge term for saturated lateral flow, which is described using the kinematic wave approximation of the Boussinesq equation. The proposed model has been compared with the mechanistic model HYDRUS-2D, which numerically solves the Richards equation for the whole domain. The HYDRUS-1D code has been used for the description of vertical flow, while a Finite Volume Scheme has been adopted for lateral flow. Two scenarios involving flat and steep green roofs were analyzed. Results confirmed the accuracy of the reduced order model, which was able to reproduce both subsurface outflow and the moisture distribution in the green roof, significantly reducing the computational cost.

  19. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  20. Research study on stabilization and control: Modern sampled data control theory

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Singh, G.; Yackel, R. A.

    1973-01-01

    A numerical analysis of spacecraft stability parameters was conducted. The analysis is based on a digital approximation by point by point state comparison. The technique used is that of approximating a continuous data system by a sampled data model by comparison of the states of the two systems. Application of the method to the digital redesign of the simplified one axis dynamics of the Skylab is presented.

  1. Approximation techniques for parameter estimation and feedback control for distributed models of large flexible structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1984-01-01

    Approximation ideas are discussed that can be used in parameter estimation and feedback control for Euler-Bernoulli models of elastic systems. Focusing on parameter estimation problems, ways by which one can obtain convergence results for cubic spline based schemes for hybrid models involving an elastic cantilevered beam with tip mass and base acceleration are outlined. Sample numerical findings are also presented.

  2. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  3. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  4. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows

    NASA Astrophysics Data System (ADS)

    Stelling, G. S.; Duinmeijer, S. P. A.

    2003-12-01

    This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.

  6. Formulation of aerodynamic prediction techniques for hypersonic configuration design

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Supersonic second order potential theory was examined in detail to meet this objective. Shock layer integral techniques were considered as an alternative means of predicting gross aerodynamic characteristics. Several numerical pilot codes were developed for simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the second order computations indicated good agreement with higher order solutions and experimental results for a variety of wing like shapes and values of the hypersonic similarity parameter M delta approaching one.

  7. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  8. Applications of Laplace transform methods to airfoil motion and stability calculations

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1979-01-01

    This paper reviews the development of generalized unsteady aerodynamic theory and presents a derivation of the generalized Possio integral equation. Numerical calculations resolve questions concerning subsonic indicial lift functions and demonstrate the generation of Kutta waves at high values of reduced frequency, subsonic Mach number, or both. The use of rational function approximations of unsteady aerodynamic loads in aeroelastic stability calculations is reviewed, and a reformulation of the matrix Pade approximation technique is given. Numerical examples of flutter boundary calculations for a wing which is to be flight tested are given. Finally, a simplified aerodynamic model of transonic flow is used to study the stability of an airfoil exposed to supersonic and subsonic flow regions.

  9. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  10. Some variance reduction methods for numerical stochastic homogenization.

    PubMed

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  11. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  12. Nonequilibrium flow computations. 1: An analysis of numerical formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1988-01-01

    Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer Flux-vector splittings, and Roe's approximate Riemann solver are presented for 3-D, time-varying grids. The analysis is based on a thermodynamic model that includes the most general thermal and chemical nonequilibrium flow of an arbitrary gas. Various special cases are also discussed.

  13. Aerodynamic prediction techniques for hypersonic configuration design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An investigation of approximate theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds was performed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Potential theory was examined in detail to meet this objective. Numerical pilot codes were developed for relatively simple three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body, and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one.

  14. Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation

    NASA Astrophysics Data System (ADS)

    Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia

    2013-08-01

    Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.

  15. In Praise of Numerical Computation

    NASA Astrophysics Data System (ADS)

    Yap, Chee K.

    Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.

  16. Methods in the study of discrete upper hybrid waves

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.

    2007-11-01

    Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.

  17. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  18. Computer program analyzes Buckling Of Shells Of Revolution with various wall construction, BOSOR

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Bushnell, D.; Sobel, L. H.

    1968-01-01

    Computer program performs stability analyses for a wide class of shells without unduly restrictive approximations. The program uses numerical integration, finite difference of finite element techniques to solve with reasonable accuracy almost any buckling problem for shells exhibiting orthotropic behavior.

  19. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358

  20. A technique for designing active control systems for astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Creedon, J. F.

    1973-01-01

    The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.

  1. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  2. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  3. Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.

    DTIC Science & Technology

    1980-07-01

    Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution

  4. Solute redistribution in dendritic solidification with diffusion in the solid

    NASA Technical Reports Server (NTRS)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  5. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  6. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  7. Efficient calculation of the polarizability: a simplified effective-energy technique

    NASA Astrophysics Data System (ADS)

    Berger, J. A.; Reining, L.; Sottile, F.

    2012-09-01

    In a recent publication [J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)] we introduced the effective-energy technique to calculate in an accurate and numerically efficient manner the GW self-energy as well as the polarizability, which is required to evaluate the screened Coulomb interaction W. In this work we show that the effective-energy technique can be used to further simplify the expression for the polarizability without a significant loss of accuracy. In contrast to standard sum-over-state methods where huge summations over empty states are required, our approach only requires summations over occupied states. The three simplest approximations we obtain for the polarizability are explicit functionals of an independent- or quasi-particle one-body reduced density matrix. We provide evidence of the numerical accuracy of this simplified effective-energy technique as well as an analysis of our method.

  8. Computational method for analysis of polyethylene biodegradation

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaji; Kawai, Fusako; Shibata, Masaru; Yokoyama, Shigeo; Sudate, Yasuhiro

    2003-12-01

    In a previous study concerning the biodegradation of polyethylene, we proposed a mathematical model based on two primary factors: the direct consumption or absorption of small molecules and the successive weight loss of large molecules due to β-oxidation. Our model is an initial value problem consisting of a differential equation whose independent variable is time. Its unknown variable represents the total weight of all the polyethylene molecules that belong to a molecular-weight class specified by a parameter. In this paper, we describe a numerical technique to introduce experimental results into analysis of our model. We first establish its mathematical foundation in order to guarantee its validity, by showing that the initial value problem associated with the differential equation has a unique solution. Our computational technique is based on a linear system of differential equations derived from the original problem. We introduce some numerical results to illustrate our technique as a practical application of the linear approximation. In particular, we show how to solve the inverse problem to determine the consumption rate and the β-oxidation rate numerically, and illustrate our numerical technique by analyzing the GPC patterns of polyethylene wax obtained before and after 5 weeks cultivation of a fungus, Aspergillus sp. AK-3. A numerical simulation based on these degradation rates confirms that the primary factors of the polyethylene biodegradation posed in modeling are indeed appropriate.

  9. Structural optimization with approximate sensitivities

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.

    1994-01-01

    Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.

  10. A conservative implicit finite difference algorithm for the unsteady transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Caradonna, F. X.

    1980-01-01

    An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.

  11. Comparison of Implicit Collocation Methods for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.

  12. Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Halem, Milton (Technical Monitor)

    2000-01-01

    We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.

  13. Vapor ingestion in a cylindrical tank with a concave elliptical bottom

    NASA Technical Reports Server (NTRS)

    Klavins, A.

    1974-01-01

    An approximate analytical technique is presented for estimating the liquid residual in a tank of arbitrary geometry due to vapor ingestion at any drain rate and acceleration level. The bulk liquid depth at incipient pull-through is defined in terms of the Weber and Bond numbers and two functions that describe the fluid velocity field and free surface shape appropriate to the tank geometry. Numerical results are obtained for the Centaur LH2 tank using limiting approximations to these functions.

  14. A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.

    PubMed

    Lin, Ying-Tsong; Duda, Timothy F

    2012-08-01

    A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.

  15. Hybrid perturbation methods based on statistical time series models

    NASA Astrophysics Data System (ADS)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  16. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  17. A general numerical model for wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel W.

    1992-01-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  18. An iterative analytical technique for the design of interplanetary direct transfer trajectories including perturbations

    NASA Astrophysics Data System (ADS)

    Parvathi, S. P.; Ramanan, R. V.

    2018-06-01

    An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.

  19. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties.

    PubMed

    James, Kevin R; Dowling, David R

    2008-09-01

    In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.

  20. Numerical Estimation of the Curvature of Biological Surfaces

    NASA Technical Reports Server (NTRS)

    Todd, P. H.

    1985-01-01

    Many biological systems may profitably be studied as surface phenomena. A model consisting of isotropic growth of a curved surface from a flat sheet is assumed. With such a model, the Gaussian curvature of the final surface determines whether growth rate of the surface is subharmonic or superharmonic. These properties correspond to notions of convexity and concavity, and thus to local excess growth and local deficiency of growth. In biological models where the major factors controlling surface growth are intrinsic to the surface, researchers thus gained from geometrical study information on the differential growth undergone by the surface. These ideas were applied to an analysis of the folding of the cerebral cortex, a geometrically rather complex surface growth. A numerical surface curvature technique based on an approximation to the Dupin indicatrix of the surface was developed. A metric for comparing curvature estimates is introduced, and considerable numerical testing indicated the reliability of this technique.

  1. A Measure Approximation for Distributionally Robust PDE-Constrained Optimization Problems

    DOE PAGES

    Kouri, Drew Philip

    2017-12-19

    In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. Here in this work, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robustmore » optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. Finally, we prove consistency of our approximated min-max problem and conclude with numerical results.« less

  2. Geometric factor and influence of sensors in the establishment of a resistivity-moisture relation in soil samples

    NASA Astrophysics Data System (ADS)

    López-Sánchez, M.; Mansilla-Plaza, L.; Sánchez-de-laOrden, M.

    2017-10-01

    Prior to field scale research, soil samples are analysed on a laboratory scale for electrical resistivity calibrations. Currently, there are a variety of field instruments to estimate the water content in soils using different physical phenomena. These instruments can be used to develop moisture-resistivity relationships on the same soil samples. This assures that measurements are performed on the same material and under the same conditions (e.g., humidity and temperature). A geometric factor is applied to the location of electrodes, in order to calculate the apparent electrical resistivity of the laboratory test cells. This geometric factor can be determined in three different ways: by means of the use of an analytical approximation, laboratory trials (experimental approximation), or by the analysis of a numerical model. The first case, the analytical approximation, is not appropriate for complex cells or arrays. And both, the experimental and numerical approximation can lead to inaccurate results. Therefore, we propose a novel approach to obtain a compromise solution between both techniques, providing a more precise determination of the geometrical factor.

  3. A spline-based parameter estimation technique for static models of elastic structures

    NASA Technical Reports Server (NTRS)

    Dutt, P.; Taasan, S.

    1986-01-01

    The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.

  4. Ray Tracing Methods in Seismic Emission Tomography

    NASA Astrophysics Data System (ADS)

    Chebotareva, I. Ya.

    2018-03-01

    Highly efficient approximate ray tracing techniques which can be used in seismic emission tomography and in other methods requiring a large number of raypaths are described. The techniques are applicable for the gradient and plane-layered velocity sections of the medium and for the models with a complicated geometry of contrasting boundaries. The empirical results obtained with the use of the discussed ray tracing technologies and seismic emission tomography results, as well as the results of numerical modeling, are presented.

  5. Reconstructing gravitational wave source parameters via direct comparisons to numerical relativity I: Method

    NASA Astrophysics Data System (ADS)

    Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei

    2016-03-01

    In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.

  6. Weierstrass method for quaternionic polynomial root-finding

    NASA Astrophysics Data System (ADS)

    Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana

    2018-01-01

    Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.

  7. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  8. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  9. Global Journal of Computer Science and Technology. Volume 9, Issue 5 (Ver. 2.0)

    ERIC Educational Resources Information Center

    Dixit, R. K.

    2010-01-01

    This is a special issue published in version 1.0 of "Global Journal of Computer Science and Technology." Articles in this issue include: (1) [Theta] Scheme (Orthogonal Milstein Scheme), a Better Numerical Approximation for Multi-dimensional SDEs (Klaus Schmitz Abe); (2) Input Data Processing Techniques in Intrusion Detection…

  10. Computation of Steady and Unsteady Laminar Flames: Theory

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai

    1999-01-01

    In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.

  11. Approximate Bayesian evaluations of measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  12. Approximate analysis for repeated eigenvalue problems with applications to controls-structure integrated design

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Hou, Gene J. W.

    1994-01-01

    A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.

  13. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    NASA Astrophysics Data System (ADS)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  14. A New Homotopy Perturbation Scheme for Solving Singular Boundary Value Problems Arising in Various Physical Models

    NASA Astrophysics Data System (ADS)

    Roul, Pradip; Warbhe, Ujwal

    2017-08-01

    The classical homotopy perturbation method proposed by J. H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999) is useful for obtaining the approximate solutions for a wide class of nonlinear problems in terms of series with easily calculable components. However, in some cases, it has been found that this method results in slowly convergent series. To overcome the shortcoming, we present a new reliable algorithm called the domain decomposition homotopy perturbation method (DDHPM) to solve a class of singular two-point boundary value problems with Neumann and Robin-type boundary conditions arising in various physical models. Five numerical examples are presented to demonstrate the accuracy and applicability of our method, including thermal explosion, oxygen-diffusion in a spherical cell and heat conduction through a solid with heat generation. A comparison is made between the proposed technique and other existing seminumerical or numerical techniques. Numerical results reveal that only two or three iterations lead to high accuracy of the solution and this newly improved technique introduces a powerful improvement for solving nonlinear singular boundary value problems (SBVPs).

  15. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  16. Structural reanalysis via a mixed method. [using Taylor series for accuracy improvement

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1975-01-01

    A study is made of the approximate structural reanalysis technique based on the use of Taylor series expansion of response variables in terms of design variables in conjunction with the mixed method. In addition, comparisons are made with two reanalysis techniques based on the displacement method. These techniques are the Taylor series expansion and the modified reduced basis. It is shown that the use of the reciprocals of the sizing variables as design variables (which is the natural choice in the mixed method) can result in a substantial improvement in the accuracy of the reanalysis technique. Numerical results are presented for a space truss structure.

  17. A multilayer shallow water system for polydisperse sedimentation

    NASA Astrophysics Data System (ADS)

    Fernández-Nieto, E. D.; Koné, E. H.; Morales de Luna, T.; Bürger, R.

    2013-04-01

    This work considers the flow of a fluid containing one disperse substance consisting of small particles that belong to different species differing in size and density. The flow is modelled by combining a multilayer shallow water approach with a polydisperse sedimentation process. This technique allows one to keep information on the vertical distribution of the solid particles in the mixture, and thereby to model the segregation of the particle species from each other, and from the fluid, taking place in the vertical direction of the gravity body force only. This polydisperse sedimentation process is described by the well-known Masliyah-Lockett-Bassoon (MLB) velocity functions. The resulting multilayer sedimentation-flow model can be written as a hyperbolic system with nonconservative products. The definitions of the nonconservative products are related to the hydrostatic pressure and to the mass and momentum hydrodynamic transfer terms between the layers. For the numerical discretization a strategy of two steps is proposed, where the first one is also divided into two parts. In the first step, instead of approximating the complete model, we approximate a reduced model with a smaller number of unknowns. Then, taking advantage of the fact that the concentrations are passive scalars in the system, we approximate the concentrations of the different species by an upwind scheme related to the numerical flux of the total concentration. In the second step, the effect of the transference terms defined in terms of the MLB model is introduced. These transfer terms are approximated by using a numerical flux function used to discretize the 1D vertical polydisperse model, see Bürger et al. [ R. Bürger, A. García, K.H. Karlsen, J.D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math. 60 (2008) 387-425]. Finally, some numerical examples are presented. Numerical results suggest that the multilayer shallow water model could be adequate in situations where the settling takes place from a suspension that undergoes horizontal movement.

  18. Steady viscous flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Fornberg, B.

    1984-01-01

    Viscous flow past a circular cylinder becomes unstable around Reynolds number Re = 40. With a numerical technique based on Newton's method and made possible by the use of a supercomputer, steady (but unstable) solutions have been calculated up to Re = 400. It is found that the wake continues to grow in length approximately linearly with Re. However, in conflict with available asymptotic predictions, the width starts to increase very rapidly around Re = 300. All numerical calculations have been performed on the CDC CYBER 205 at the CDC Service Center in Arden Hills, Minnesota.

  19. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  20. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  1. Robust synchronization of master-slave chaotic systems using approximate model: An experimental study.

    PubMed

    Ahmed, Hafiz; Salgado, Ivan; Ríos, Héctor

    2018-02-01

    Robust synchronization of master slave chaotic systems are considered in this work. First an approximate model of the error system is obtained using the ultra-local model concept. Then a Continuous Singular Terminal Sliding-Mode (CSTSM) Controller is designed for the purpose of synchronization. The proposed approach is output feedback-based and uses fixed-time higher order sliding-mode (HOSM) differentiator for state estimation. Numerical simulation and experimental results are given to show the effectiveness of the proposed technique. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Wavelet Algorithms for Illumination Computations

    NASA Astrophysics Data System (ADS)

    Schroder, Peter

    One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

  3. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  4. Sinc-Galerkin estimation of diffusivity in parabolic problems

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.; Bowers, Kenneth L.

    1991-01-01

    A fully Sinc-Galerkin method for the numerical recovery of spatially varying diffusion coefficients in linear partial differential equations is presented. Because the parameter recovery problems are inherently ill-posed, an output error criterion in conjunction with Tikhonov regularization is used to formulate them as infinite-dimensional minimization problems. The forward problems are discretized with a sinc basis in both the spatial and temporal domains thus yielding an approximate solution which displays an exponential convergence rate and is valid on the infinite time interval. The minimization problems are then solved via a quasi-Newton/trust region algorithm. The L-curve technique for determining an approximate value of the regularization parameter is briefly discussed, and numerical examples are given which show the applicability of the method both for problems with noise-free data as well as for those whose data contains white noise.

  5. Some issues in the simulation of two-phase flows: The relative velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräbel, J.; Hensel, S.; Ueberholz, P.

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less

  6. Boundary particle method for Laplace transformed time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian

    2013-02-01

    This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

  7. Absorbing boundaries in numerical solutions of the time-dependent Schroedinger equation on a grid using exterior complex scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, F.; Ruiz, C.; Becker, A.

    We study the suppression of reflections in the numerical simulation of the time-dependent Schroedinger equation for strong-field problems on a grid using exterior complex scaling (ECS) as an absorbing boundary condition. It is shown that the ECS method can be applied in both the length and the velocity gauge as long as appropriate approximations are applied in the ECS transformation of the electron-field coupling. It is found that the ECS method improves the suppression of reflection as compared to the conventional masking function technique in typical simulations of atoms exposed to an intense laser pulse. Finally, we demonstrate the advantagemore » of the ECS technique to avoid unphysical artifacts in the evaluation of high harmonic spectra.« less

  8. Transonic Navier-Stokes solutions of three-dimensional afterbody flows

    NASA Technical Reports Server (NTRS)

    Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.

    1989-01-01

    The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.

  9. An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations

    DOE PAGES

    Lu, Dan; Zhang, Guannan; Webster, Clayton G.; ...

    2016-12-30

    In this paper, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challengemore » in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice.« less

  10. Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation

    NASA Astrophysics Data System (ADS)

    Aleksandrov, I. A.; Plunien, G.; Shabaev, V. M.

    2018-06-01

    We investigate the phenomenon of electron-positron pair production from vacuum in the presence of a strong electric field superimposed by a weak but fast varying pulse which substantially increases the total particle yield. We employ a nonperturbative numerical technique and perform the calculations beyond the spatially-uniform-field approximation, i.e., dipole approximation, taking into account the coordinate dependence of the fast component. The analysis of the main characteristics of the pair-production process (momentum spectra of particles and total amount of pairs) reveals a number of important features which are absent within the previously used approximation. In particular, the structure of the momentum distribution is modified both qualitatively and quantitatively, and the total number of pairs created as well as the enhancement factor due to dynamical assistance become significantly smaller.

  11. EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS

    PubMed Central

    Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M

    2009-01-01

    A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques. PMID:19595622

  12. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    PubMed

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  13. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    NASA Astrophysics Data System (ADS)

    Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart

    2016-04-01

    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.

  14. A rational interpolation method to compute frequency response

    NASA Technical Reports Server (NTRS)

    Kenney, Charles; Stubberud, Stephen; Laub, Alan J.

    1993-01-01

    A rational interpolation method for approximating a frequency response is presented. The method is based on a product formulation of finite differences, thereby avoiding the numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and zero cancellation schemes are developed that increase the accuracy and efficiency of the interpolation method. Selection techniques of interpolation points are also discussed.

  15. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  16. Front dynamics and entanglement in the XXZ chain with a gradient

    NASA Astrophysics Data System (ADS)

    Eisler, Viktor; Bauernfeind, Daniel

    2017-11-01

    We consider the XXZ spin chain with a magnetic field gradient and study the profiles of the magnetization as well as the entanglement entropy. For a slowly varying field, it is shown that, by means of a local density approximation, the ground-state magnetization profile can be obtained with standard Bethe ansatz techniques. Furthermore, it is argued that the low-energy description of the theory is given by a Luttinger liquid with slowly varying parameters. This allows us to obtain a very good approximation of the entanglement profile using a recently introduced technique of conformal field theory in curved spacetime. Finally, the front dynamics is also studied after the gradient field has been switched off, following arguments of generalized hydrodynamics for integrable systems. While for the XX chain the hydrodynamic solution can be found analytically, the XXZ case appears to be more complicated and the magnetization profiles are recovered only around the edge of the front via an approximate numerical solution.

  17. A variable-order laminated plate theory based on the variational-asymptotical method

    NASA Technical Reports Server (NTRS)

    Lee, Bok W.; Sutyrin, Vladislav G.; Hodges, Dewey H.

    1993-01-01

    The variational-asymptotical method is a mathematical technique by which the three-dimensional analysis of laminated plate deformation can be split into a linear, one-dimensional, through-the-thickness analysis and a nonlinear, two-dimensional, plate analysis. The elastic constants used in the plate analysis are obtained from the through-the-thickness analysis, along with approximate, closed-form three-dimensional distributions of displacement, strain, and stress. In this paper, a theory based on this technique is developed which is capable of approximating three-dimensional elasticity to any accuracy desired. The asymptotical method allows for the approximation of the through-the-thickness behavior in terms of the eigenfunctions of a certain Sturm-Liouville problem associated with the thickness coordinate. These eigenfunctions contain all the necessary information about the nonhomogeneities along the thickness coordinate of the plate and thus possess the appropriate discontinuities in the derivatives of displacement. The theory is presented in this paper along with numerical results for the eigenfunctions of various laminated plates.

  18. Analytical approximations for the oscillators with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Alal Hosen, Md.; Chowdhury, M. S. H.; Yeakub Ali, Mohammad; Faris Ismail, Ahmad

    2017-12-01

    A second-order ordinary differential equation involving anti-symmetric quadratic nonlinearity changes sign. The behaviour of the oscillators with an anti-symmetric quadratic nonlinearity is assumed to oscillate different in the positive and negative directions. In this reason, Harmonic Balance Method (HBM) cannot be directly applied. The main purpose of the present paper is to propose an analytical approximation technique based on the HBM for obtaining approximate angular frequencies and the corresponding periodic solutions of the oscillators with anti-symmetric quadratic nonlinearity. After applying HBM, a set of complicated nonlinear algebraic equations is found. Analytical approach is not always fruitful for solving such kinds of nonlinear algebraic equations. In this article, two small parameters are found, for which the power series solution produces desired results. Moreover, the amplitude-frequency relationship has also been determined in a novel analytical way. The presented technique gives excellent results as compared with the corresponding numerical results and is better than the existing ones.

  19. Quantitative Characterization of the Microstructure and Transport Properties of Biopolymer Networks

    PubMed Central

    Jiao, Yang; Torquato, Salvatore

    2012-01-01

    Biopolymer networks are of fundamental importance to many biological processes in normal and tumorous tissues. In this paper, we employ the panoply of theoretical and simulation techniques developed for characterizing heterogeneous materials to quantify the microstructure and effective diffusive transport properties (diffusion coefficient De and mean survival time τ) of collagen type I networks at various collagen concentrations. In particular, we compute the pore-size probability density function P(δ) for the networks and present a variety of analytical estimates of the effective diffusion coefficient De for finite-sized diffusing particles, including the low-density approximation, the Ogston approximation, and the Torquato approximation. The Hashin-Strikman upper bound on the effective diffusion coefficient De and the pore-size lower bound on the mean survival time τ are used as benchmarks to test our analytical approximations and numerical results. Moreover, we generalize the efficient first-passage-time techniques for Brownian-motion simulations in suspensions of spheres to the case of fiber networks and compute the associated effective diffusion coefficient De as well as the mean survival time τ, which is related to nuclear magnetic resonance (NMR) relaxation times. Our numerical results for De are in excellent agreement with analytical results for simple network microstructures, such as periodic arrays of parallel cylinders. Specifically, the Torquato approximation provides the most accurate estimates of De for all collagen concentrations among all of the analytical approximations we consider. We formulate a universal curve for τ for the networks at different collagen concentrations, extending the work of Yeong and Torquato [J. Chem. Phys. 106, 8814 (1997)]. We apply rigorous cross-property relations to estimate the effective bulk modulus of collagen networks from a knowledge of the effective diffusion coefficient computed here. The use of cross-property relations to link other physical properties to the transport properties of collagen networks is also discussed. PMID:22683739

  20. Top-k similar graph matching using TraM in biological networks.

    PubMed

    Amin, Mohammad Shafkat; Finley, Russell L; Jamil, Hasan M

    2012-01-01

    Many emerging database applications entail sophisticated graph-based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact subgraph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. In this paper, we propose a novel technique called TraM for approximate graph matching that off-loads a significant amount of its processing on to the database making the approach viable for large graphs. Moreover, the vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We annotate nodes of the query graphs by means of their global topological properties and compare them with neighborhood biased segments of the datagraph for proper matches. We have conducted experiments on several real data sets, and have demonstrated the effectiveness and efficiency of the proposed method

  1. Couple of the Variational Iteration Method and Fractional-Order Legendre Functions Method for Fractional Differential Equations

    PubMed Central

    Song, Junqiang; Leng, Hongze; Lu, Fengshun

    2014-01-01

    We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303

  2. The application of rational approximation in the calculation of a temperature field with a non-linear surface heat-transfer coefficient during quenching for 42CrMo steel cylinder

    NASA Astrophysics Data System (ADS)

    Cheng, Heming; Huang, Xieqing; Fan, Jiang; Wang, Honggang

    1999-10-01

    The calculation of a temperature field has a great influence upon the analysis of thermal stresses and stains during quenching. In this paper, a 42CrMo steel cylinder was used an example for investigation. From the TTT diagram of the 42CrMo steel, the CCT diagram was simulated by mathematical transformation, and the volume fraction of phase constituents was calculated. The thermal physical properties were treated as functions of temperature and the volume fraction of phase constituents. The rational approximation was applied to the finite element method. The temperature field with phase transformation and non-linear surface heat-transfer coefficients was calculated using this technique, which can effectively avoid oscillationin the numerical solution for a small time step. The experimental results of the temperature field calculation coincide with the numerical solutions.

  3. On a numerical method for solving integro-differential equations with variable coefficients with applications in finance

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, O.; Rodochenko, V.

    2018-03-01

    We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.

  4. A formulation of convection for stellar structure and evolution calculations without the mixing-length theory approximations. I - Application to the sun

    NASA Technical Reports Server (NTRS)

    Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino

    1992-01-01

    The problem of treating convective energy transport without MLT approximations is approached here by formulating the results of numerical simulations of convection in terms of energy fluxes. This revised treatment of convective transport can be easily incorporated within existing stellar structure codes. As an example, the technique is applied to the sun. The treatment does not include any free parameters, making the models extremely sensitive to the accuracy of the treatments of opacities, chemical abundances, treatments of the solar atmosphere, and the equation of state.

  5. Continuation of probability density functions using a generalized Lyapunov approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baars, S., E-mail: s.baars@rug.nl; Viebahn, J.P., E-mail: viebahn@cwi.nl; Mulder, T.E., E-mail: t.e.mulder@uu.nl

    Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability density functions of systems of stochastic partial differential equations near fixed points, under a small noise approximation. Key innovation is the efficient solution of a generalized Lyapunov equation using an iterative method involving low-rank approximations. We apply and illustrate the capabilities of the method using a problem in physical oceanography, i.e. the occurrence of multiple steady states of the Atlantic Ocean circulation.

  6. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Meiyue; Jornada, Felipe H. da; Lin, Lin

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  7. Polynomial approximation of Poincare maps for Hamiltonian system

    NASA Technical Reports Server (NTRS)

    Froeschle, Claude; Petit, Jean-Marc

    1992-01-01

    Different methods are proposed and tested for transforming a non-linear differential system, and more particularly a Hamiltonian one, into a map without integrating the whole orbit as in the well-known Poincare return map technique. We construct piecewise polynomial maps by coarse-graining the phase-space surface of section into parallelograms and using either only values of the Poincare maps at the vertices or also the gradient information at the nearest neighbors to define a polynomial approximation within each cell. The numerical experiments are in good agreement with both the real symplectic and Poincare maps.

  8. Model-checking techniques based on cumulative residuals.

    PubMed

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  9. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  10. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments

    USGS Publications Warehouse

    Trescott, Peter C.; Pinder, George Francis; Larson, S.P.

    1976-01-01

    The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.

  11. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk

    NASA Astrophysics Data System (ADS)

    Aziz, Arsalan; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar

    2018-03-01

    Here MHD three-dimensional flow of viscous nanoliquid by a rotating disk with heat generation/absorption and slip effects is addressed. Thermophoresis and random motion features are also incorporated. Velocity, temperature and concentration slip conditions are imposed at boundary. Applied magnetic field is utilized. Low magnetic Reynolds number and boundary layer approximations have been employed in the problem formulation. Suitable transformations lead to strong nonlinear ordinary differential system. The obtained nonlinear system is solved numerically through NDSolve technique. Graphs have been sketched in order to analyze that how the velocity, temperature and concentration fields are affected by various pertinent variables. Moreover the numerical values for rates of heat and mass transfer have been tabulated and discussed.

  12. The numerical calculation of laminar boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.; Steger, J. L.

    1974-01-01

    Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.

  13. A two-dimensional composite grid numerical model based on the reduced system for oceanography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y.F.; Browning, G.L.; Chesshire, G.

    The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system, is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are discussed. Numerical resultsmore » are presented for circular and kidney-shaped basins by using a set of analytic solutions constructed in this paper.« less

  14. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  15. A hybrid perturbation-Galerkin technique for partial differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  16. Numerical modelling of thin-walled Z-columns made of general laminates subjected to uniform shortening

    NASA Astrophysics Data System (ADS)

    Teter, Andrzej; Kolakowski, Zbigniew

    2018-01-01

    The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.

  17. Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Hathaway, A. W.

    1978-01-01

    Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.

  18. Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

    PubMed

    Sachetto Oliveira, Rafael; Martins Rocha, Bernardo; Burgarelli, Denise; Meira, Wagner; Constantinides, Christakis; Weber Dos Santos, Rodrigo

    2018-02-01

    The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Boundary shape identification problems in two-dimensional domains related to thermal testing of materials

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kojima, Fumio

    1988-01-01

    The identification of the geometrical structure of the system boundary for a two-dimensional diffusion system is reported. The domain identification problem treated here is converted into an optimization problem based on a fit-to-data criterion and theoretical convergence results for approximate identification techniques are discussed. Results of numerical experiments to demonstrate the efficacy of the theoretical ideas are reported.

  20. Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.

    2010-03-01

    The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.

  1. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    PubMed

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  2. FDTD subcell graphene model beyond the thin-film approximation

    NASA Astrophysics Data System (ADS)

    Valuev, Ilya; Belousov, Sergei; Bogdanova, Maria; Kotov, Oleg; Lozovik, Yurii

    2017-01-01

    A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.

  3. The Propagation and Scattering of EM Waves in Electrically Large Ducts

    NASA Astrophysics Data System (ADS)

    Khan, Saeed Mahmood

    The electromagnetic scattering from large arbitrarily shaped ducts with complex termination is studied here by a hybrid technique. The propagation of electromagnetic waves in the duct is analyzed in terms of an approximate modal solution. A finite difference technique is employed for computing the reflection characteristics of the complex terminations. Both solutions are combined using the unimoment method. The analysis here is carried out for monostatic RCS and considers only fields backscattered from inside the cavity. Rim-diffraction has been left out. The procedure offers such advantages as in that it is not necessary to find complicated Green's functions, which may not be readily available, when compared with the integral equation method. Hybridization performed by combining an approximate modal technique with a finite difference one makes the scheme numerically efficient. From a computational EM point of view, it brings together a whole spectrum of techniques associated with high frequency modal analysis, Fourier Methods, Radar Cross Section and Scattering, finite difference solution and the Unimoment Method. The practical application of this technique may range from the study of RCS scattered from jet inlets of radar evasive aircraft to submarine communication waveguides.

  4. Numerical solutions of 2-D multi-stage rotor/stator unsteady flow interactions

    NASA Astrophysics Data System (ADS)

    Yang, R.-J.; Lin, S.-J.

    1991-01-01

    The Rai method of single-stage rotor/stator flow interaction is extended to handle multistage configurations. In this study, a two-dimensional Navier-Stokes multi-zone approach was used to investigate unsteady flow interactions within two multistage axial turbines. The governing equations are solved by an iterative, factored, implicit finite-difference, upwind algorithm. Numerical accuracy is checked by investigating the effect of time step size, the effect of subiteration in the Newton-Raphson technique, and the effect of full viscous versus thin-layer approximation. Computer results compared well with experimental data. Unsteady flow interactions, wake cutting, and the associated evolution of vortical entities are discussed.

  5. The gravitational potential of axially symmetric bodies from a regularized green kernel

    NASA Astrophysics Data System (ADS)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  6. Dissipative nonlinear waves in a gravitating quantum fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2018-02-01

    Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.

  7. Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.

    PubMed

    Li, Ben; Stenstrom, M K

    2014-01-01

    One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.

  8. Legendre spectral-collocation method for solving some types of fractional optimal control problems

    PubMed Central

    Sweilam, Nasser H.; Al-Ajami, Tamer M.

    2014-01-01

    In this paper, the Legendre spectral-collocation method was applied to obtain approximate solutions for some types of fractional optimal control problems (FOCPs). The fractional derivative was described in the Caputo sense. Two different approaches were presented, in the first approach, necessary optimality conditions in terms of the associated Hamiltonian were approximated. In the second approach, the state equation was discretized first using the trapezoidal rule for the numerical integration followed by the Rayleigh–Ritz method to evaluate both the state and control variables. Illustrative examples were included to demonstrate the validity and applicability of the proposed techniques. PMID:26257937

  9. Monitoring by forward scatter radar techniques: an improved second-order analytical model

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco

    2017-10-01

    In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.

  10. The constraint method: A new finite element technique. [applied to static and dynamic loads on plates

    NASA Technical Reports Server (NTRS)

    Tsai, C.; Szabo, B. A.

    1973-01-01

    An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Department of Mathematics and Statistics, International Islamic University Islamabad 44000

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heatmore » transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.« less

  12. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    DOE PAGES

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less

  13. Investigation of upwind, multigrid, multiblock numerical schemes for three dimensional flows. Volume 1: Runge-Kutta methods for a thin layer Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Ash, Robert L.

    1992-01-01

    A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.

  14. Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Ibanez, Jose M.

    2001-12-01

    My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.

  15. Algorithmic implementation of particle-particle ladder diagram approximation to study strongly-correlated metals and semiconductors

    NASA Astrophysics Data System (ADS)

    Prayogi, A.; Majidi, M. A.

    2017-07-01

    In condensed-matter physics, strongly-correlated systems refer to materials that exhibit variety of fascinating properties and ordered phases, depending on temperature, doping, and other factors. Such unique properties most notably arise due to strong electron-electron interactions, and in some cases due to interactions involving other quasiparticles as well. Electronic correlation effects are non-trivial that one may need a sufficiently accurate approximation technique with quite heavy computation, such as Quantum Monte-Carlo, in order to capture particular material properties arising from such effects. Meanwhile, less accurate techniques may come with lower numerical cost, but the ability to capture particular properties may highly depend on the choice of approximation. Among the many-body techniques derivable from Feynman diagrams, we aim to formulate algorithmic implementation of the Ladder Diagram approximation to capture the effects of electron-electron interactions. We wish to investigate how these correlation effects influence the temperature-dependent properties of strongly-correlated metals and semiconductors. As we are interested to study the temperature-dependent properties of the system, the Ladder diagram method needs to be applied in Matsubara frequency domain to obtain the self-consistent self-energy. However, at the end we would also need to compute the dynamical properties like density of states (DOS) and optical conductivity that are defined in the real frequency domain. For this purpose, we need to perform the analytic continuation procedure. At the end of this study, we will test the technique by observing the occurrence of metal-insulator transition in strongly-correlated metals, and renormalization of the band gap in strongly-correlated semiconductors.

  16. Visualization Techniques Applied to 155-mm Projectile Analysis

    DTIC Science & Technology

    2014-11-01

    semi-infinite Riemann problems are used in CFD++ to provide upwind flux information to the underlying transport scheme. Approximate Riemann solvers ...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the...the solution files generated by the computational fluid dynamics (CFD) solver for the time-accurate rolling simulations at each timestep for the Mach

  17. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  18. Detonation Properties Measurements for Inorganic Explosives

    NASA Astrophysics Data System (ADS)

    Morgan, Brent A.; Lopez, Angel

    2005-03-01

    Many commonly available explosive materials have never been quantitatively or theoretically characterized in a manner suitable for use in analytical models. This includes inorganic explosive materials used in spacecraft ordnance, such as zirconium potassium perchlorate (ZPP). Lack of empirical information about these materials impedes the development of computational techniques. We have applied high fidelity measurement techniques to experimentally determine the pressure and velocity characteristics of ZPP, a previously uncharacterized explosive material. Advances in measurement technology now permit the use of very small quantities of material, thus yielding a significant reduction in the cost of conducting these experiments. An empirical determination of the explosive behavior of ZPP derived a Hugoniot for ZPP with an approximate particle velocity (uo) of 1.0 km/s. This result compares favorably with the numerical calculations from the CHEETAH thermochemical code, which predicts uo of approximately 1.2 km/s under ideal conditions.

  19. An investigation of dynamic-analysis methods for variable-geometry structures

    NASA Technical Reports Server (NTRS)

    Austin, F.

    1980-01-01

    Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.

  20. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation

    NASA Astrophysics Data System (ADS)

    Käser, Martin; Dumbser, Michael; de la Puente, Josep; Igel, Heiner

    2007-01-01

    We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity-stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy-Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER-DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry.

  1. Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution

    NASA Astrophysics Data System (ADS)

    Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique

    2015-05-01

    A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.

  2. Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph

    2013-03-01

    We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.

  3. Numerical treatment for solving two-dimensional space-fractional advection-dispersion equation using meshless method

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng

    2018-02-01

    Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.

  4. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  5. Kramers problem: Numerical Wiener-Hopf-like model characteristics

    NASA Astrophysics Data System (ADS)

    Ezin, A. N.; Samgin, A. L.

    2010-11-01

    Since the Kramers problem cannot be, in general, solved in terms of elementary functions, various numerical techniques or approximate methods must be employed. We present a study of characteristics for a particle in a damped well, which can be considered as a discretized version of the Melnikov [Phys. Rev. E 48, 3271 (1993)]10.1103/PhysRevE.48.3271 turnover theory. The main goal is to justify the direct computational scheme to the basic Wiener-Hopf model. In contrast to the Melnikov approach, which implements factorization through a Cauchy-theorem-based formulation, we employ the Wiener-Levy theorem to reduce the Kramers problem to a Wiener-Hopf sum equation written in terms of Toeplitz matrices. This latter can provide a stringent test for the reliability of analytic approximations for energy distribution functions occurring in the Kramers problems at arbitrary damping. For certain conditions, the simulated characteristics are compared well with those determined using the conventional Fourier-integral formulas, but sometimes may differ slightly depending on the value of a dissipation parameter. Another important feature is that, with our method, we can avoid some complications inherent to the Melnikov method. The calculational technique reported in the present paper may gain particular importance in situations where the energy losses of the particle to the bath are a complex-shaped function of the particle energy and analytic solutions of desired accuracy are not at hand. In order to appreciate more readily the significance and scope of the present numerical approach, we also discuss concrete aspects relating to the field of superionic conductors.

  6. Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Liu, L. H.; Tan, J. Y.

    2007-02-01

    A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.

  7. Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case

    NASA Astrophysics Data System (ADS)

    Vilar, François; Shu, Chi-Wang; Maire, Pierre-Henri

    2016-05-01

    One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most of the problems studied in this framework contain very intense rarefaction and shock waves. In this paper, the admissibility of numerical solutions obtained by high-order finite-volume-scheme-based methods, such as the discontinuous Galerkin (DG) method, the essentially non-oscillatory (ENO) and the weighted ENO (WENO) finite volume schemes, is addressed in the one-dimensional Lagrangian gas dynamics framework. After briefly recalling how to derive Lagrangian forms of the 1D gas dynamics system of equations, a discussion on positivity-preserving approximate Riemann solvers, ensuring first-order finite volume schemes to be positive, is then given. This study is conducted for both ideal gas and non-ideal gas equations of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Mie-Grüneisen (MG) EOS, and relies on two different techniques: either a particular definition of the local approximation of the acoustic impedances arising from the approximate Riemann solver, or an additional time step constraint relative to the cell volume variation. Then, making use of the work presented in [89,90,22], this positivity study is extended to high-orders of accuracy, where new time step constraints are obtained, and proper limitation is required. Through this new procedure, scheme robustness is highly improved and hence new problems can be tackled. Numerical results are provided to demonstrate the effectiveness of these methods. This paper is the first part of a series of two. The whole analysis presented here is extended to the two-dimensional case in [85], and proves to fit a wide range of numerical schemes in the literature, such as those presented in [19,64,15,82,84].

  8. A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Zuo, B.; Hu, X.; Li, H.

    2011-12-01

    A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.

  9. Approximate optimal guidance for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Feeley, T. S.; Speyer, J. L.

    1993-01-01

    A real-time guidance scheme for the problem of maximizing the payload into orbit subject to the equations of motion for a rocket over a spherical, non-rotating earth is presented. An approximate optimal launch guidance law is developed based upon an asymptotic expansion of the Hamilton - Jacobi - Bellman or dynamic programming equation. The expansion is performed in terms of a small parameter, which is used to separate the dynamics of the problem into primary and perturbation dynamics. For the zeroth-order problem the small parameter is set to zero and a closed-form solution to the zeroth-order expansion term of Hamilton - Jacobi - Bellman equation is obtained. Higher-order terms of the expansion include the effects of the neglected perturbation dynamics. These higher-order terms are determined from the solution of first-order linear partial differential equations requiring only the evaluation of quadratures. This technique is preferred as a real-time, on-line guidance scheme to alternative numerical iterative optimization schemes because of the unreliable convergence properties of these iterative guidance schemes and because the quadratures needed for the approximate optimal guidance law can be performed rapidly and by parallel processing. Even if the approximate solution is not nearly optimal, when using this technique the zeroth-order solution always provides a path which satisfies the terminal constraints. Results for two-degree-of-freedom simulations are presented for the simplified problem of flight in the equatorial plane and compared to the guidance scheme generated by the shooting method which is an iterative second-order technique.

  10. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  11. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  12. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  13. Synthetic Seismogram Calculations for Two-Dimensional Velocity Models.

    DTIC Science & Technology

    1983-05-20

    vertical and radial component displacements. The seismograms have been convolved with a seismograph response function corresponding to a short period...phase velocity is a measure of the degree of numerical dispersion present in the calculation for a variety of grid spacings. The value of 1/G of 0.1...method is an approximate technique and is some what restricted in its application, its efficiency and accuracy make it suitable for routine modeling of

  14. A theoretical framework for convergence and continuous dependence of estimates in inverse problems for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1988-01-01

    Numerical techniques for parameter identification in distributed-parameter systems are developed analytically. A general convergence and stability framework (for continuous dependence on observations) is derived for first-order systems on the basis of (1) a weak formulation in terms of sesquilinear forms and (2) the resolvent convergence form of the Trotter-Kato approximation. The extension of this framework to second-order systems is considered.

  15. B-spline Method in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.

  16. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barquero, V.; Xu, S.; Desiati, P.

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity tomore » the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.« less

  17. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  18. Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zarifi, Keyvan; Gershman, Alex B.

    2006-12-01

    We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.

  19. Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M.

    2013-09-01

    In this paper, we propose the shifted Jacobi-Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials J {/n (α,β)}( x) with α, β ∈ (-1, ∞), x ∈ [0, 1] and n the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.

  20. The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Kozelkov, A. S.

    2017-12-01

    The paper presents an integral technique simulating all phases of a landslide-driven tsunami. The technique is based on the numerical solution of the system of Navier-Stokes equations for multiphase flows. The numerical algorithm uses a fully implicit approximation method, in which the equations of continuity and momentum conservation are coupled through implicit summands of pressure gradient and mass flow. The method we propose removes severe restrictions on the time step and allows simulation of tsunami propagation to arbitrarily large distances. The landslide origin is simulated as an individual phase being a Newtonian fluid with its own density and viscosity and separated from the water and air phases by an interface. The basic formulas of equation discretization and expressions for coefficients are presented, and the main steps of the computation procedure are described in the paper. To enable simulations of tsunami propagation across wide water areas, we propose a parallel algorithm of the technique implementation, which employs an algebraic multigrid method. The implementation of the multigrid method is based on the global level and cascade collection algorithms that impose no limitations on the paralleling scale and make this technique applicable to petascale systems. We demonstrate the possibility of simulating all phases of a landslide-driven tsunami, including its generation, propagation and uprush. The technique has been verified against the problems supported by experimental data. The paper describes the mechanism of incorporating bathymetric data to simulate tsunamis in real water areas of the world ocean. Results of comparison with the nonlinear dispersion theory, which has demonstrated good agreement, are presented for the case of a historical tsunami of volcanic origin on the Montserrat Island in the Caribbean Sea.

  1. The Orbital precession around oblate spheroids

    NASA Astrophysics Data System (ADS)

    Montanus, J. M. C.

    2006-07-01

    An exact series will be given for the gravitational potential generated by an oblate gravitating source. To this end the corresponding Epstein-Hubbell type elliptic integral is evaluated. The procedure is based on the Legendre polynomial expansion method and on combinatorial techniques. The result is of interest for gravitational models based on the linearity of the gravitational potential. The series approximation for such potentials is of use for the analysis of orbital motions around a nonspherical source. It can be considered advantageous that the analysis is purely algebraic. Numerical approximations are not required. As an important example, the expression for the orbital precession will be derived for an object orbiting around an oblate homogeneous spheroid.

  2. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541

  3. Reduced basis technique for evaluating the sensitivity coefficients of the nonlinear tire response

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    An efficient reduced-basis technique is proposed for calculating the sensitivity of nonlinear tire response to variations in the design variables. The tire is modeled using a 2-D, moderate rotation, laminated anisotropic shell theory, including the effects of variation in material and geometric parameters. The vector of structural response and its first-order and second-order sensitivity coefficients are each expressed as a linear combination of a small number of basis vectors. The effectiveness of the basis vectors used in approximating the sensitivity coefficients is demonstrated by a numerical example involving the Space Shuttle nose-gear tire, which is subjected to uniform inflation pressure.

  4. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  5. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  6. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.

  7. A Novel Nipple Reconstruction Technique for Maintaining Nipple Projection: The Boomerang Flap

    PubMed Central

    Kim, Young-Eun; Hong, Ki Yong; Minn, Kyung Won

    2016-01-01

    Nipple-areolar complex (NAC) reconstruction is the final step in the long journey of breast reconstruction for mastectomy patients. Successful NAC reconstruction depends on the use of appropriate surgical techniques that are simple and reliable. To date, numerous techniques have been used for nipple reconstruction, including contralateral nipple sharing and various local flaps. Recently, it has been common to utilize local flaps. However, the most common nipple reconstruction problem encountered with local flaps is the loss of nipple projection; there can be approximately 50% projection loss in reconstructed nipples over long-term follow-up. Several factors might contribute to nipple projection loss, and we tried to overcome these factors by performing nipple reconstructions using a boomerang flap technique, which is a modified C–V flap that utilizes the previous mastectomy scar to maintain long-term nipple projection. PMID:27689057

  8. A Novel Nipple Reconstruction Technique for Maintaining Nipple Projection: The Boomerang Flap.

    PubMed

    Kim, Young-Eun; Hong, Ki Yong; Minn, Kyung Won; Jin, Ung Sik

    2016-09-01

    Nipple-areolar complex (NAC) reconstruction is the final step in the long journey of breast reconstruction for mastectomy patients. Successful NAC reconstruction depends on the use of appropriate surgical techniques that are simple and reliable. To date, numerous techniques have been used for nipple reconstruction, including contralateral nipple sharing and various local flaps. Recently, it has been common to utilize local flaps. However, the most common nipple reconstruction problem encountered with local flaps is the loss of nipple projection; there can be approximately 50% projection loss in reconstructed nipples over long-term follow-up. Several factors might contribute to nipple projection loss, and we tried to overcome these factors by performing nipple reconstructions using a boomerang flap technique, which is a modified C-V flap that utilizes the previous mastectomy scar to maintain long-term nipple projection.

  9. Numerical studies in geophysics

    NASA Astrophysics Data System (ADS)

    Hier Majumder, Catherine Anne

    2003-10-01

    This thesis focuses on the use of modern numerical techniques in the geo- and environmental sciences. Four topics are discussed in this thesis: finite Prandtl number convection, wavelet analysis, inverse methods and data assimilation, and nuclear waste tank mixing. The finite Prandtl number convection studies examine how convection behavior changes as Prandtl numbers are increased to as high as 2 x 104, on the order of Prandtl numbers expected in very hot magmas or mushy ice diapirs. I found that there are significant differences in the convection style between finite Prandtl number convection and the infinite Prandtl number approximation even for Prandtl numbers on the order of 104. This indicates that the infinite Prandtl convection approximation might not accurately model behavior in fluids with large, but finite Prandtl numbers. The section on inverse methods and data assimilation used the technique of four dimensional variational data assimilation (4D-VAR) developed by meteorologists to integrate observations into forecasts. It was useful in studying the predictability and dependence on initial conditions of finite Prandtl simulations. This technique promises to be useful in a wide range of geological and geophysical fields, including mantle convection, hydrogeology, and sedimentology. Wavelet analysis was used to help image and scrutinize at small-scales both temperature and vorticity fields from convection simulations and the geoid. It was found to be extremely helpful in both cases. It allowed us to separate the information in the data into various spatial scales without losing the locations of the signals in space. This proved to be essential in understanding the processes producing the total signal in the datasets. The nuclear waste study showed that techniques developed in geology and geophysics can be used to solve scientific problems in other fields. I applied state-of-the-art techniques currently employed in geochemistry, sedimentology, and mantle mixing to simulate dynamical processes occurring in the course of mixing nuclear waste tanks.

  10. Theoretical face pressure and drag characteristics of forward-facing steps in supersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Patel, D. K.; Czarnecki, K. R.

    1975-01-01

    A theoretical investigation of the pressure distributions and drag characteristics was made for forward facing steps in turbulent flow at supersonic speeds. An approximate solution technique proposed by Uebelhack has been modified and extended to obtain a more consistent numerical procedure. A comparison of theoretical calculations with experimental data generally indicated good agreement over the experimentally available range of ratios of step height to boundary layer thickness from 7 to 0.05.

  11. Multigrid Techniques for Highly Indefinite Equations

    NASA Technical Reports Server (NTRS)

    Shapira, Yair

    1996-01-01

    A multigrid method for the solution of finite difference approximations of elliptic PDE's is introduced. A parallelizable version of it, suitable for two and multi level analysis, is also defined, and serves as a theoretical tool for deriving a suitable implementation for the main version. For indefinite Helmholtz equations, this analysis provides a suitable mesh size for the coarsest grid used. Numerical experiments show that the method is applicable to diffusion equations with discontinuous coefficients and highly indefinite Helmholtz equations.

  12. Fourth order difference methods for hyperbolic IBVP's

    NASA Technical Reports Server (NTRS)

    Gustafsson, Bertil; Olsson, Pelle

    1994-01-01

    Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.

  13. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.

  14. A numerical spectral approach to solve the dislocation density transport equation

    NASA Astrophysics Data System (ADS)

    Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.

    2015-09-01

    A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.

  15. Experimental and Numerical Study of Nozzle Plume Impingement on Spacecraft Surfaces

    NASA Astrophysics Data System (ADS)

    Ketsdever, A. D.; Lilly, T. C.; Gimelshein, S. F.; Alexeenko, A. A.

    2005-05-01

    An experimental and numerical effort was undertaken to assess the effects of a cold gas (To=300K) nozzle plume impinging on a simulated spacecraft surface. The nozzle flow impingement is investigated experimentally using a nano-Newton resolution force balance and numerically using the Direct Simulation Monte Carlo (DSMC) numerical technique. The Reynolds number range investigated in this study is from 0.5 to approximately 900 using helium and nitrogen propellants. The thrust produced by the nozzle was first assessed on a force balance to provide a baseline case. Subsequently, an aluminum plate was attached to the same force balance at various angles from 0° (parallel to the plume flow) to 10°. For low Reynolds number helium flow, a 16.5% decrease in thrust was measured for the plate at 0° relative to the free plume expansion case. For low Reynolds number nitrogen flow, the difference was found to be 12%. The thrust degradation was found to decrease at higher Reynolds numbers and larger plate angles.

  16. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  17. An efficient numerical method for the solution of the problem of elasticity for 3D-homogeneous elastic medium with cracks and inclusions

    NASA Astrophysics Data System (ADS)

    Kanaun, S.; Markov, A.

    2017-06-01

    An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.

  18. RT DDA: A hybrid method for predicting the scattering properties by densely packed media

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D.

    2017-12-01

    The most accurate approaches to predicting the scattering properties of particulate media are based on exact solutions of the Maxwell's equations (MEs), such as the T-matrix and discrete dipole methods. Applying these techniques for optically thick targets is challenging problem due to the large-scale computations and are usually substituted by phenomenological radiative transfer (RT) methods. On the other hand, the RT technique is of questionable validity in media with large particle packing densities. In recent works, we used numerically exact ME solvers to examine the effects of particle concentration on the polarized reflection properties of plane parallel random media. The simulations were performed for plane parallel layers of wavelength-sized spherical particles, and results were compared with RT predictions. We have shown that RTE results monotonically converge to the exact solution as the particle volume fraction becomes smaller and one can observe a nearly perfect fit for packing densities of 2%-5%. This study describes the hybrid technique composed of exact and numerical scalar RT methods. The exact methodology in this work is the plane parallel discrete dipole approximation whereas the numerical method is based on the adding and doubling method. This approach not only decreases the computational time owing to the RT method but also includes the interference and multiple scattering effects, so it may be applicable to large particle density conditions.

  19. A Numerical Comparison of Barrier and Modified Barrier Methods for Large-Scale Bound-Constrained Optimization

    NASA Technical Reports Server (NTRS)

    Nash, Stephen G.; Polyak, R.; Sofer, Ariela

    1994-01-01

    When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.

  20. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  1. Cosmographic analysis with Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-05-01

    The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.

  2. Nanometric depth resolution from multi-focal images in microscopy.

    PubMed

    Dalgarno, Heather I C; Dalgarno, Paul A; Dada, Adetunmise C; Towers, Catherine E; Gibson, Gavin J; Parton, Richard M; Davis, Ilan; Warburton, Richard J; Greenaway, Alan H

    2011-07-06

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels.

  3. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, P.R.; Ramshaw, J.D.

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less

  5. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  6. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.

    PubMed

    Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan

    2014-08-01

    When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jun; Jingfang, Huang

    2008-01-01

    In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less

  8. Revisited Fisher's equation in a new outlook: A fractional derivative approach

    NASA Astrophysics Data System (ADS)

    Alquran, Marwan; Al-Khaled, Kamel; Sardar, Tridip; Chattopadhyay, Joydev

    2015-11-01

    The well-known Fisher equation with fractional derivative is considered to provide some characteristics of memory embedded into the system. The modified model is analyzed both analytically and numerically. A comparatively new technique residual power series method is used for finding approximate solutions of the modified Fisher model. A new technique combining Sinc-collocation and finite difference method is used for numerical study. The abundance of the bird species Phalacrocorax carbois considered as a test bed to validate the model outcome using estimated parameters. We conjecture non-diffusive and diffusive fractional Fisher equation represents the same dynamics in the interval (memory index, α ∈(0.8384 , 0.9986)). We also observe that when the value of memory index is close to zero, the solutions bifurcate and produce a wave-like pattern. We conclude that the survivability of the species increases for long range memory index. These findings are similar to Fisher observation and act in a similar fashion that advantageous genes do.

  9. Numerical simulation of the pollution formed by exhaust jets at the ground running procedure

    NASA Astrophysics Data System (ADS)

    Korotaeva, T. A.; Turchinovich, A. O.

    2016-10-01

    The paper presents an approach that is new for aviation-related ecology. The approach allows defining spatial distribution of pollutant concentrations released at engine ground running procedure (GRP) using full gas-dynamic models. For the first time such a task is modeled in three-dimensional approximation in the framework of the numerical solution of the Navier-Stokes equations with taking into account a kinetic model of interaction between the components of engine exhaust and air. The complex pattern of gas-dynamic flow that occurs at the flow around an aircraft with the jet exhausts that interact with each other, air, jet blast deflector (JBD), and surface of the airplane has been studied in the present work. The numerical technique developed for calculating the concentrations of pollutants produced at the GRP stage permits to define level, character, and area of contamination more reliable and increase accuracy in definition of sanitary protection zones.

  10. Numerical solution of the full potential equation using a chimera grid approach

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1995-01-01

    A numerical scheme utilizing a chimera zonal grid approach for solving the full potential equation in two spatial dimensions is described. Within each grid zone a fully-implicit approximate factorization scheme is used to advance the solution one interaction. This is followed by the explicit advance of all common zonal grid boundaries using a bilinear interpolation of the velocity potential. The presentation is highlighted with numerical results simulating the flow about a two-dimensional, nonlifting, circular cylinder. For this problem, the flow domain is divided into two parts: an inner portion covered by a polar grid and an outer portion covered by a Cartesian grid. Both incompressible and compressible (transonic) flow solutions are included. Comparisons made with an analytic solution as well as single grid results indicate that the chimera zonal grid approach is a viable technique for solving the full potential equation.

  11. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    NASA Astrophysics Data System (ADS)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  12. Finite element computation of a viscous compressible free shear flow governed by the time dependent Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Blanchard, D. K.

    1975-01-01

    A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.

  13. On the energy integral for first post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    O'Leary, Joseph; Hill, James M.; Bennett, James C.

    2018-07-01

    The post-Newtonian approximation for general relativity is widely adopted by the geodesy and astronomy communities. It has been successfully exploited for the inclusion of relativistic effects in practically all geodetic applications and techniques such as satellite/lunar laser ranging and very long baseline interferometry. Presently, the levels of accuracy required in geodetic techniques require that reference frames, planetary and satellite orbits and signal propagation be treated within the post-Newtonian regime. For arbitrary scalar W and vector gravitational potentials W^j (j=1,2,3), we present a novel derivation of the energy associated with a test particle in the post-Newtonian regime. The integral so obtained appears not to have been given previously in the literature and is deduced through algebraic manipulation on seeking a Jacobi-like integral associated with the standard post-Newtonian equations of motion. The new integral is independently verified through a variational formulation using the post-Newtonian metric components and is subsequently verified by numerical integration of the post-Newtonian equations of motion.

  14. Numerical integration for ab initio many-electron self energy calculations within the GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang, E-mail: fliu@lsec.cc.ac.cn; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit ofmore » using different self energy expressions to perform the numerical convolution at different frequencies.« less

  15. A three-dimensional wide-angle BPM for optical waveguide structures.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  16. The HVT technique and the 'uncertainty' relation for central potentials

    NASA Astrophysics Data System (ADS)

    Grypeos, M. E.; Koutroulos, C. G.; Oyewumi, K. J.; Petridou, Th

    2004-08-01

    The quantum mechanical hypervirial theorems (HVT) technique is used to treat the so-called 'uncertainty' relation for quite a general class of central potential wells, including the (reduced) Poeschl-Teller and the Gaussian one. It is shown that this technique is quite suitable in deriving an approximate analytic expression in the form of a truncated power series expansion for the dimensionless product Pnl equiv langr2rangnllangp2rangnl/planck2, for every (deeply) bound state of a particle moving non-relativistically in the well, provided that a (dimensionless) parameter s is sufficiently small. Attention is also paid to a number of cases, among the limited existing ones, in which exact analytic or semi-analytic expressions for Pnl can be derived. Finally, numerical results are given and discussed.

  17. Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities

    NASA Technical Reports Server (NTRS)

    Pathak, Prabhakar H.; Burkholder, Robert J.

    1989-01-01

    The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.

  18. A three-dimensional wide-angle BPM for optical waveguide structures

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2007-01-01

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  19. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  20. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  1. Autonomous vehicle motion control, approximate maps, and fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1993-01-01

    Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.

  2. A Fast EM Algorithm for Fitting Joint Models of a Binary Response and Multiple Longitudinal Covariates Subject to Detection Limits

    PubMed Central

    Bernhardt, Paul W.; Zhang, Daowen; Wang, Huixia Judy

    2014-01-01

    Joint modeling techniques have become a popular strategy for studying the association between a response and one or more longitudinal covariates. Motivated by the GenIMS study, where it is of interest to model the event of survival using censored longitudinal biomarkers, a joint model is proposed for describing the relationship between a binary outcome and multiple longitudinal covariates subject to detection limits. A fast, approximate EM algorithm is developed that reduces the dimension of integration in the E-step of the algorithm to one, regardless of the number of random effects in the joint model. Numerical studies demonstrate that the proposed approximate EM algorithm leads to satisfactory parameter and variance estimates in situations with and without censoring on the longitudinal covariates. The approximate EM algorithm is applied to analyze the GenIMS data set. PMID:25598564

  3. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  4. A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1991-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problem is proposed. The method, which combines use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite-dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantages of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed, and numerical evidence of the efficacy of these ideas is presented.

  5. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  6. Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method

    NASA Astrophysics Data System (ADS)

    Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet

    2015-03-01

    In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.

  7. Extension of transonic flow computational concepts in the analysis of cavitated bearings

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, D.; Keith, T. G., Jr.; Brewe, D. E.

    1990-01-01

    An analogy between the mathematical modeling of transonic potential flow and the flow in a cavitating bearing is described. Based on the similarities, characteristics of the cavitated region and jump conditions across the film reformation and rupture fronts are developed using the method of weak solutions. The mathematical analogy is extended by utilizing a few computational concepts of transonic flow to numerically model the cavitating bearing. Methods of shock fitting and shock capturing are discussed. Various procedures used in transonic flow computations are adapted to bearing cavitation applications, for example, type differencing, grid transformation, an approximate factorization technique, and Newton's iteration method. These concepts have proved to be successful and have vastly improved the efficiency of numerical modeling of cavitated bearings.

  8. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    NASA Astrophysics Data System (ADS)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  9. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  10. A new approach to blind deconvolution of astronomical images

    NASA Astrophysics Data System (ADS)

    Vorontsov, S. V.; Jefferies, S. M.

    2017-05-01

    We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.

  11. Spectral/ hp element methods: Recent developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  12. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  13. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  14. Geometrically nonlinear analysis of laminated elastic structures

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1984-01-01

    Laminated composite plates and shells that can be used to model automobile bodies, aircraft wings and fuselages, and pressure vessels among many other were analyzed. The finite element method, a numerical technique for engineering analysis of structures, is used to model the geometry and approximate the solution. Various alternative formulations for analyzing laminated plates and shells are developed and their finite element models are tested for accuracy and economy in computation. These include the shear deformation laminate theory and degenerated 3-D elasticity theory for laminates.

  15. Interface conditions for domain decomposition with radical grid refinement

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.

    1991-01-01

    Interface conditions for coupling the domains in a physically motivated domain decomposition method are discussed. The domain decomposition is based on an asymptotic-induced method for the numerical solution of hyperbolic conservation laws with small viscosity. The method consists of multiple stages. The first stage is to obtain a first approximation using a first-order method, such as the Godunov scheme. Subsequent stages of the method involve solving internal-layer problem via a domain decomposition. The method is derived and justified via singular perturbation techniques.

  16. Flexible scheme to truncate the hierarchy of pure states.

    PubMed

    Zhang, P-P; Bentley, C D B; Eisfeld, A

    2018-04-07

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  17. Flexible scheme to truncate the hierarchy of pure states

    NASA Astrophysics Data System (ADS)

    Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.

    2018-04-01

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  18. Real time estimation of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. S.; Bodson, M.; Athans, M.

    1983-01-01

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.

  19. Verification of Java Programs using Symbolic Execution and Invariant Generation

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina; Visser, Willem

    2004-01-01

    Software verification is recognized as an important and difficult problem. We present a norel framework, based on symbolic execution, for the automated verification of software. The framework uses annotations in the form of method specifications an3 loop invariants. We present a novel iterative technique that uses invariant strengthening and approximation for discovering these loop invariants automatically. The technique handles different types of data (e.g. boolean and numeric constraints, dynamically allocated structures and arrays) and it allows for checking universally quantified formulas. Our framework is built on top of the Java PathFinder model checking toolset and it was used for the verification of several non-trivial Java programs.

  20. A boundary element method for Stokes flows with interfaces

    NASA Astrophysics Data System (ADS)

    Alinovi, Edoardo; Bottaro, Alessandro

    2018-03-01

    The boundary element method is a widely used and powerful technique to numerically describe multiphase flows with interfaces, satisfying Stokes' approximation. However, low viscosity ratios between immiscible fluids in contact at an interface and large surface tensions may lead to consistency issues as far as mass conservation is concerned. A simple and effective approach is described to ensure mass conservation at all viscosity ratios and capillary numbers within a standard boundary element framework. Benchmark cases are initially considered demonstrating the efficacy of the proposed technique in satisfying mass conservation, comparing with approaches and other solutions present in the literature. The methodology developed is finally applied to the problem of slippage over superhydrophobic surfaces.

  1. Wideband piezoelectric energy harvester for low-frequency application with plucking mechanism

    NASA Astrophysics Data System (ADS)

    Hiraki, Yasuhiro; Masuda, Arata; Ikeda, Naoto; Katsumura, Hidenori; Kagata, Hiroshi; Okumura, Hidenori

    2015-04-01

    Wireless sensor networks need energy harvesting from vibrational environment for their power supply. The conventional resonance type vibration energy harvesters, however, are not always effective for low frequency application. The purpose of this paper is to propose a high efficiency energy harvester for low frequency application by utilizing plucking and SSHI techniques, and to investigate the effects of applying those techniques in terms of the energy harvesting efficiency. First, we derived an approximate formulation of energy harvesting efficiency of the plucking device by theoretical analysis. Next, it was confirmed that the improved efficiency agreed with numerical and experimental results. Also, a parallel SSHI, a switching circuit technique to improve the performance of the harvester was introduced and examined by numerical simulations and experiments. Contrary to the simulated results in which the efficiency was improved from 13.1% to 22.6% by introducing the SSHI circuit, the efficiency obtained in the experiment was only 7.43%. This would due to the internal resistance of the inductors and photo MOS relays on the switching circuit and the simulation including this factor revealed large negative influence of it. This result suggested that the reduction of the switching resistance was significantly important to the implementation of SSHI.

  2. Simple Skin-Stretching Device in Assisted Tension-Free Wound Closure.

    PubMed

    Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si

    2017-03-01

    Numerous conventional wound reconstruction methods, such as wound undermining with direct suture, skin graft, and flap surgery, can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique after a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful.

  3. Numerical simulations of strongly correlated electron and spin systems

    NASA Astrophysics Data System (ADS)

    Changlani, Hitesh Jaiprakash

    Developing analytical and numerical tools for strongly correlated systems is a central challenge for the condensed matter physics community. In the absence of exact solutions and controlled analytical approximations, numerical techniques have often contributed to our understanding of these systems. Exact Diagonalization (ED) requires the storage of at least two vectors the size of the Hilbert space under consideration (which grows exponentially with system size) which makes it affordable only for small systems. The Density Matrix Renormalization Group (DMRG) uses an intelligent Hilbert space truncation procedure to significantly reduce this cost, but in its present formulation is limited to quasi-1D systems. Quantum Monte Carlo (QMC) maps the Schrodinger equation to the diffusion equation (in imaginary time) and only samples the eigenvector over time, thereby avoiding the memory limitation. However, the stochasticity involved in the method gives rise to the "sign problem" characteristic of fermion and frustrated spin systems. The first part of this thesis is an effort to make progress in the development of a numerical technique which overcomes the above mentioned problems. We consider novel variational wavefunctions, christened "Correlator Product States" (CPS), that have a general functional form which hopes to capture essential correlations in the ground states of spin and fermion systems in any dimension. We also consider a recent proposal to modify projector (Green's Function) Quantum Monte Carlo to ameliorate the sign problem for realistic and model Hamiltonians (such as the Hubbard model). This exploration led to our own set of improvements, primarily a semistochastic formulation of projector Quantum Monte Carlo. Despite their limitations, existing numerical techniques can yield physical insights into a wide variety of problems. The second part of this thesis considers one such numerical technique - DMRG - and adapts it to study the Heisenberg antiferromagnet on a generic tree graph. Our attention turns to a systematic numerical and semi-analytical study of the effect of local even/odd sublattice imbalance on the low energy spectrum of antiferromagnets on regular Cayley trees. Finally, motivated by previous experiments and theories of randomly diluted antiferromagnets (where an even/odd sublattice imbalance naturally occurs), we present our study of the Heisenberg antiferromagnet on the Cayley tree at the percolation threshold. Our work shows how to detect "emergent" low energy degrees of freedom and compute the effective interactions between them by using data from DMRG calculations.

  4. Approximate solutions of acoustic 3D integral equation and their application to seismic modeling and full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2017-10-01

    Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.

  5. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  6. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  7. Conjugate-gradient optimization method for orbital-free density functional calculations.

    PubMed

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  8. Modelling of induced electric fields based on incompletely known magnetic fields

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro

    2017-08-01

    Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.

  9. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    PubMed

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  10. Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1985-01-01

    The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.

  11. ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

    NASA Astrophysics Data System (ADS)

    Merkel, M.; Niyonzima, I.; Schöps, S.

    2017-12-01

    Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.

  12. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  13. EFT of large scale structures in redshift space

    NASA Astrophysics Data System (ADS)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  14. Kindergartners’ Fluent Processing of Symbolic Numerical Magnitude is Predicted by Their Cardinal Knowledge and Implicit Understanding of Arithmetic Two Years Earlier

    PubMed Central

    Moore, Alex M.; vanMarle, Kristy; Geary, David C.

    2016-01-01

    Fluency in first graders’ processing of the magnitudes associated with Arabic numerals, collections of objects, and mixtures of objects and numerals predicts current and future mathematics achievement. The quantitative competencies that support the development of fluent processing of magnitude are not fully understood, however. At the beginning and end of preschool (M = 3 years, 9 months at first assessment; range 3 years, 3 months to 4years, 3 months), 112 (51 boys) children completed tasks measuring numeral recognition and comparison, acuity of the approximate number system, and knowledge of counting principles, cardinality, and implicit arithmetic, and completed a magnitude processing task (number sets test) in kindergarten. Use of Bayesian and linear regression techniques revealed that two measures of preschoolers’ cardinal knowledge and their competence at implicit arithmetic predicted later fluency of magnitude processing, controlling domain general factors, preliteracy skills, and parental education. The results help to narrow the search for the early foundation of children’s emerging competence with symbolic mathematics and provide direction for early interventions. PMID:27236038

  15. Kindergartners' fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and implicit understanding of arithmetic 2years earlier.

    PubMed

    Moore, Alex M; vanMarle, Kristy; Geary, David C

    2016-10-01

    Fluency in first graders' processing of the magnitudes associated with Arabic numerals, collections of objects, and mixtures of objects and numerals predicts current and future mathematics achievement. The quantitative competencies that support the development of fluent processing of magnitude, however, are not fully understood. At the beginning and end of preschool (M=3years 9months at first assessment, range=3years 3months to 4years 3months), 112 children (51 boys) completed tasks measuring numeral recognition and comparison, acuity of the approximate number system, and knowledge of counting principles, cardinality, and implicit arithmetic and also completed a magnitude processing task (number sets test) in kindergarten. Use of Bayesian and linear regression techniques revealed that two measures of preschoolers' cardinal knowledge and their competence at implicit arithmetic predicted later fluency of magnitude processing, controlling domain-general factors, preliteracy skills, and parental education. The results help to narrow the search for the early foundation of children's emerging competence with symbolic mathematics and provide direction for early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  17. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  18. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  19. Diffusion amid random overlapping obstacles: Similarities, invariants, approximations

    PubMed Central

    Novak, Igor L.; Gao, Fei; Kraikivski, Pavel; Slepchenko, Boris M.

    2011-01-01

    Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in a void between random overlapping obstacles: essential invariance of effective diffusion coefficients (Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly entire range of excluded volume fractions (ϕ), except for a small vicinity of a percolation threshold. It is shown that while neither of the properties is exact, deviations from them are remarkably small. This allows for quick estimation of void percolation thresholds and approximate reconstruction of Deff (ϕ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of overlapping obstacles of different shapes with comparable sizes. PMID:21513372

  20. Generation of linear dynamic models from a digital nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Krosel, S. M.

    1979-01-01

    The results and methodology used to derive linear models from a nonlinear simulation are presented. It is shown that averaged positive and negative perturbations in the state variables can reduce numerical errors in finite difference, partial derivative approximations and, in the control inputs, can better approximate the system response in both directions about the operating point. Both explicit and implicit formulations are addressed. Linear models are derived for the F 100 engine, and comparisons of transients are made with the nonlinear simulation. The problem of startup transients in the nonlinear simulation in making these comparisons is addressed. Also, reduction of the linear models is investigated using the modal and normal techniques. Reduced-order models of the F 100 are derived and compared with the full-state models.

  1. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation

    PubMed Central

    Müller, Eike H.; Scheichl, Rob; Shardlow, Tony

    2015-01-01

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy. PMID:27547075

  2. On the evolution of perturbations to solutions of the Kadomtsev-Petviashvilli equation using the Benney-Luke equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Curtis, Christopher W.

    2011-05-01

    The Benney-Luke equation, which arises as a long wave asymptotic approximation of water waves, contains the Kadomtsev-Petviashvilli (KP) equation as a leading-order maximal balanced approximation. The question analyzed is how the Benney-Luke equation modifies the so-called web solutions of the KP equation. It is found that the Benney-Luke equation introduces dispersive radiation which breaks each of the symmetric soliton-like humps well away from the interaction region of the KP web solution into a tail of multi-peaked oscillating profiles behind the main solitary hump. Computation indicates that the wave structure is modified near the center of the interaction region. Both analytical and numerical techniques are employed for working with non-periodic, non-decaying solutions on unbounded domains.

  3. Algorithm 971: An Implementation of a Randomized Algorithm for Principal Component Analysis

    PubMed Central

    LI, HUAMIN; LINDERMAN, GEORGE C.; SZLAM, ARTHUR; STANTON, KELLY P.; KLUGER, YUVAL; TYGERT, MARK

    2017-01-01

    Recent years have witnessed intense development of randomized methods for low-rank approximation. These methods target principal component analysis and the calculation of truncated singular value decompositions. The present article presents an essentially black-box, foolproof implementation for Mathworks’ MATLAB, a popular software platform for numerical computation. As illustrated via several tests, the randomized algorithms for low-rank approximation outperform or at least match the classical deterministic techniques (such as Lanczos iterations run to convergence) in basically all respects: accuracy, computational efficiency (both speed and memory usage), ease-of-use, parallelizability, and reliability. However, the classical procedures remain the methods of choice for estimating spectral norms and are far superior for calculating the least singular values and corresponding singular vectors (or singular subspaces). PMID:28983138

  4. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of freezing photo-elasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometries studied were: (1) crack depth to thickness ratios of approximately 0.2, (2) 0.5 and 0.75; (3) crack depth to crack length ratios of approximately 1.0 to 2.0; and (4) crack length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar, with most of the growth occuring through the thickness under remote extension. Stress intensity factors were determined at the intersection of the flaw border.

  5. Synthesis of recurrent neural networks for dynamical system simulation.

    PubMed

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    PubMed

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  7. Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraysse, F., E-mail: francois.fraysse@rs2n.eu; E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid; Redondo, C.

    This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is appliedmore » to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.« less

  8. A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media

    NASA Astrophysics Data System (ADS)

    Denis, Max Fernand

    In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.

  9. Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions

    NASA Astrophysics Data System (ADS)

    Ilgen, Marc R.

    This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value of the flight path angle. A summary of performance results for all these guidance laws is presented in the fifth part of this thesis along with recommendations for further research.

  10. Continuum calculations of continental deformation in transcurrent environments

    NASA Technical Reports Server (NTRS)

    Sonder, L. J.; England, P. C.; Houseman, G. A.

    1986-01-01

    A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.

  11. Parameter uncertainty in simulations of extreme precipitation and attribution studies.

    NASA Astrophysics Data System (ADS)

    Timmermans, B.; Collins, W. D.; O'Brien, T. A.; Risser, M. D.

    2017-12-01

    The attribution of extreme weather events, such as heavy rainfall, to anthropogenic influence involves the analysis of their probability in simulations of climate. The climate models used however, such as the Community Atmosphere Model (CAM), employ approximate physics that gives rise to "parameter uncertainty"—uncertainty about the most accurate or optimal values of numerical parameters within the model. In particular, approximate parameterisations for convective processes are well known to be influential in the simulation of precipitation extremes. Towards examining the impact of this source of uncertainty on attribution studies, we investigate the importance of components—through their associated tuning parameters—of parameterisations relating to deep and shallow convection, and cloud and aerosol microphysics in CAM. We hypothesise that as numerical resolution is increased the change in proportion of variance induced by perturbed parameters associated with the respective components is consistent with the decreasing applicability of the underlying hydrostatic assumptions. For example, that the relative influence of deep convection should diminish as resolution approaches that where convection can be resolved numerically ( 10 km). We quantify the relationship between the relative proportion of variance induced and numerical resolution by conducting computer experiments that examine precipitation extremes over the contiguous U.S. In order to mitigate the enormous computational burden of running ensembles of long climate simulations, we use variable-resolution CAM and employ both extreme value theory and surrogate modelling techniques ("emulators"). We discuss the implications of the relationship between parameterised convective processes and resolution both in the context of attribution studies and progression towards models that fully resolve convection.

  12. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  13. Permeability Sensitivity Functions and Rapid Simulation of Hydraulic-Testing Measurements Using Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Escobar Gómez, J. D.; Torres-Verdín, C.

    2018-03-01

    Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.

  14. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  15. Stress intensity factors for deep cracks emanating from the corner formed by a hole intersecting a plate surface

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. J.; Smith, C. W.

    1974-01-01

    A technique consisting of a marriage between stress freezing photoelasticity and a numerical method was used to obtain stress intensity factors for natural cracks emanating from the corner at which a hole intersects a plate surface. Geometrics studied were: crack depth to thickness ratios of approximately 0.2, 0.5, and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0. All final crack geometries were grown under monotonic loading and growth was not self similar with most of the growth occurring through the thickness under remote extension. Stress intensity plate surface K sub s factors were determined at the intersection of the flaw border with the plate surface K sub s and with the edge of the hole K sub h. Results showed that for the relatively shallow flaws K sub h approximately equal to 1.5 K sub s, for the moderately deep flaws K sub h approximately equal to K sub s, and for the deep flaws K sub h approximately equal to 0.5 K sub s, revealing a severe sensitivity of K to flaw geometry.

  16. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  17. Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Bielak, J.

    2008-12-01

    I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.

  18. Concrete Open-Wall Systems Wrapped with FRP under Torsional Loads

    PubMed Central

    Mancusi, Geminiano; Feo, Luciano; Berardi, Valentino P.

    2012-01-01

    The static behavior of reinforced concrete (RC) beams plated with layers of fiber-reinforced composite material (FRP) is widely investigated in current literature, which deals with both its numerical modeling as well as experiments. Scientific interest in this topic is explained by the increasing widespread use of composite materials in retrofitting techniques, as well as the consolidation and upgrading of existing reinforced concrete elements to new service conditions. The effectiveness of these techniques is typically influenced by the debonding of the FRP at the interface with concrete, where the transfer of stresses occurs from one element (RC member) to the other (FRP strengthening). In fact, the activation of the well-known premature failure modes can be regarded as a consequence of high peak values of the interfacial interactions. Until now, typical applications of FRP structural plating have included cases of flexural or shear-flexural strengthening. Within this context, the present study aims at extending the investigation to the case of wall-systems with open cross-section under torsional loads. It includes the results of some numerical analyses carried out by means of a finite element approximation.

  19. libFLASM: a software library for fixed-length approximate string matching.

    PubMed

    Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad

    2016-11-10

    Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.

  20. Statistical Limits to Super Resolution

    NASA Astrophysics Data System (ADS)

    Lucy, L. B.

    1992-08-01

    The limits imposed by photon statistics on the degree to which Rayleigh's resolution limit for diffraction-limited images can be surpassed by applying image restoration techniques are investigated. An approximate statistical theory is given for the number of detected photons required in the image of an unresolved pair of equal point sources in order that its information content allows in principle resolution by restoration. This theory is confirmed by numerical restoration experiments on synthetic images, and quantitative limits are presented for restoration of diffraction-limited images formed by slit and circular apertures.

  1. Solution of the nonlinear mixed Volterra-Fredholm integral equations by hybrid of block-pulse functions and Bernoulli polynomials.

    PubMed

    Mashayekhi, S; Razzaghi, M; Tripak, O

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

  2. Solution of the Nonlinear Mixed Volterra-Fredholm Integral Equations by Hybrid of Block-Pulse Functions and Bernoulli Polynomials

    PubMed Central

    Mashayekhi, S.; Razzaghi, M.; Tripak, O.

    2014-01-01

    A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638

  3. Plunge waveforms from inspiralling binary black holes.

    PubMed

    Baker, J; Brügmann, B; Campanelli, M; Lousto, C O; Takahashi, R

    2001-09-17

    We study the coalescence of nonspinning binary black holes from near the innermost stable circular orbit down to the final single rotating black hole. We use a technique that combines the full numerical approach to solve the Einstein equations, applied in the truly nonlinear regime, and linearized perturbation theory around the final distorted single black hole at later times. We compute the plunge waveforms, which present a non-negligible signal lasting for t approximately 100M showing early nonlinear ringing, and we obtain estimates for the total gravitational energy and angular momentum radiated.

  4. Vortex dipolar structures in a rigid model of the larynx at flow onset

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Artana, G.; Sciamarella, D.

    2011-02-01

    Starting jet airflow is investigated in a channel with a pair of consecutive slitted constrictions approximating the true and false vocal folds in the human larynx. The flow is visualized using the Schlieren optical technique and simulated by solving the Navier-Stokes equations for an incompressible two-dimensional viscous flow. Laboratory and numerical experiments show the spontaneous formation of three different classes of vortex dipolar structures in several regions of the laryngeal profile under conditions that may be assimilated to those of voice onset.

  5. Improved numerical solutions for chaotic-cancer-model

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair

    2017-01-01

    In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.

  6. Pulse fracture simulation in shale rock reservoirs: DEM and FEM-DEM approaches

    NASA Astrophysics Data System (ADS)

    González, José Manuel; Zárate, Francisco; Oñate, Eugenio

    2018-07-01

    In this paper we analyze the capabilities of two numerical techniques based on DEM and FEM-DEM approaches for the simulation of fracture in shale rock caused by a pulse of pressure. We have studied the evolution of fracture in several fracture scenarios related to the initial stress state in the soil or the pressure pulse peak. Fracture length and type of failure have been taken as reference for validating the models. The results obtained show a good approximation to FEM results from the literature.

  7. Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation

    NASA Astrophysics Data System (ADS)

    Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye

    2018-04-01

    Within the framework of the renormalization group approach to the models of critical dynamics, we propose a method for a considerable reduction of the number of integrals needed to calculate the critical exponents. With this method we perform a calculation of the critical exponent z of model A at 4-loop level, where our method allows one to reduce the number of integrals from 66 to 17. The way of constructing the integrand in a Feynman representation of such diagrams is discussed. Integrals were estimated numerically with a sector decomposition technique.

  8. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  9. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  10. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems.

    PubMed

    Chen, Mou; Wu, Qing-Xian; Cui, Rong-Xin

    2013-03-01

    In this paper, the terminal sliding mode tracking control is proposed for the uncertain single-input and single-output (SISO) nonlinear system with unknown external disturbance. For the unmeasured disturbance of nonlinear systems, terminal sliding mode disturbance observer is presented. The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite time. Based on the output of designed disturbance observer, the terminal sliding mode tracking control is presented for uncertain SISO nonlinear systems. Subsequently, terminal sliding mode tracking control is developed using disturbance observer technique for the uncertain SISO nonlinear system with control singularity and unknown non-symmetric input saturation. The effects of the control singularity and unknown input saturation are combined with the external disturbance which is approximated using the disturbance observer. Under the proposed terminal sliding mode tracking control techniques, the finite time convergence of all closed-loop signals are guaranteed via Lyapunov analysis. Numerical simulation results are given to illustrate the effectiveness of the proposed terminal sliding mode tracking control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  12. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  13. Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation

    NASA Astrophysics Data System (ADS)

    Su, Bo; Tuo, Xianguo; Xu, Ling

    2017-08-01

    Based on a modified strategy, two modified symplectic partitioned Runge-Kutta (PRK) methods are proposed for the temporal discretization of the elastic wave equation. The two symplectic schemes are similar in form but are different in nature. After the spatial discretization of the elastic wave equation, the ordinary Hamiltonian formulation for the elastic wave equation is presented. The PRK scheme is then applied for time integration. An additional term associated with spatial discretization is inserted into the different stages of the PRK scheme. Theoretical analyses are conducted to evaluate the numerical dispersion and stability of the two novel PRK methods. A finite difference method is used to approximate the spatial derivatives since the two schemes are independent of the spatial discretization technique used. The numerical solutions computed by the two new schemes are compared with those computed by a conventional symplectic PRK. The numerical results, which verify the new method, are superior to those generated by traditional conventional methods in seismic wave modeling.

  14. Numerical simulation of high intensity focused ultrasound temperature distribution for transcranial brain therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi

    2017-03-01

    To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.

  15. Approximate Model Checking of PCTL Involving Unbounded Path Properties

    NASA Astrophysics Data System (ADS)

    Basu, Samik; Ghosh, Arka P.; He, Ru

    We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as PCTL formulas. Such approximate methods have been proposed primarily to deal with state-space explosion that makes the exact model checking by numerical methods practically infeasible for large systems. However, the existing statistical methods either consider a restricted subset of PCTL, specifically, the subset that can only express bounded until properties; or rely on user-specified finite bound on the sample path length. We propose a new method that does not have such restrictions and can be effectively used to reason about unbounded until properties. We approximate probabilistic characteristics of an unbounded until property by that of a bounded until property for a suitably chosen value of the bound. In essence, our method is a two-phase process: (a) the first phase is concerned with identifying the bound k 0; (b) the second phase computes the probability of satisfying the k 0-bounded until property as an estimate for the probability of satisfying the corresponding unbounded until property. In both phases, it is sufficient to verify bounded until properties which can be effectively done using existing statistical techniques. We prove the correctness of our technique and present its prototype implementations. We empirically show the practical applicability of our method by considering different case studies including a simple infinite-state model, and large finite-state models such as IPv4 zeroconf protocol and dining philosopher protocol modeled as Discrete Time Markov chains.

  16. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.

    PubMed

    di Stasio, Stefano; Konstandopoulos, Athanasios G; Kostoglou, Margaritis

    2002-03-01

    The agglomeration kinetics of growing soot generated in a diffusion atmospheric flame are here studied in situ by light scattering technique to infer cluster morphology and size (fractal dimension D(f) and radius of gyration R(g)). SEM analysis is used as a standard reference to obtain primary particle size D(P) at different residence times. The number N(P) of primary particles per aggregate and the number concentration n(A) of clusters are evaluated on the basis of the measured angular patterns of the scattered light intensity. The major finding is that the kinetics of the coagulation process that yields to the formation of chain-like aggregates by soot primary particles (size 10 to 40 nm) can be described with a constant coagulation kernel beta(c,exp)=2.37x10(-9) cm3/s (coagulation constant tau(c) approximately = 0.28 ms). This result is in nice accord with the Smoluchowski coagulation equation in the free molecular regime, and, vice versa, it is in contrast with previous studies conducted by invasive (ex situ) techniques, which claimed the evidence in flames of coagulation rates much larger than the kinetic theory predictions. Thereafter, a number of numerical simulations is implemented to compare with the experimental results on primary particle growth rate and on the process of aggregate reshaping that is observed by light scattering at later residence times. The restructuring process is conjectured to occur, for not well understood reasons, as a direct consequence of the atomic rearrangement in the solid phase carbon due to the prolonged residence time within the flame. Thus, on one side, it is shown that the numerical simulations of primary size history compare well with the values of primary size from SEM experiment with a growth rate constant of primary diameter about 1 nm/s. On the other side, the evolution of aggregate morphology is found to be predictable by the numerical simulations when the onset of a first-order "thermal" restructuring mechanism is assumed to occur in the flame at about 20 ms residence time leading to aggregates with an asymptotic fractal dimension D(f,infinity) approximately = 2.5.

  17. Numerical solution of 2D-vector tomography problem using the method of approximate inverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna

    2016-08-10

    We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.

  18. Modeling and control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Mingori, D. L.

    1988-01-01

    This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.

  19. a Bounded Finite-Difference Discretization of a Two-Dimensional Diffusion Equation with Logistic Nonlinear Reaction

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.

    In the present manuscript, we introduce a finite-difference scheme to approximate solutions of the two-dimensional version of Fisher's equation from population dynamics, which is a model for which the existence of traveling-wave fronts bounded within (0,1) is a well-known fact. The method presented here is a nonstandard technique which, in the linear regime, approximates the solutions of the original model with a consistency of second order in space and first order in time. The theory of M-matrices is employed here in order to elucidate conditions under which the method is able to preserve the positivity and the boundedness of solutions. In fact, our main result establishes relatively flexible conditions under which the preservation of the positivity and the boundedness of new approximations is guaranteed. Some simulations of the propagation of a traveling-wave solution confirm the analytical results derived in this work; moreover, the experiments evince a good agreement between the numerical result and the analytical solutions.

  20. Petermann I and II spot size: Accurate semi analytical description involving Nelder-Mead method of nonlinear unconstrained optimization and three parameter fundamental modal field

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Raja; Roy Choudhury, Arundhati; Kanti Ghose, Mrinal

    2013-01-01

    A semi-analytical model with three optimizing parameters and a novel non-Gaussian function as the fundamental modal field solution has been proposed to arrive at an accurate solution to predict various propagation parameters of graded-index fibers with less computational burden than numerical methods. In our semi analytical formulation the optimization of core parameter U which is usually uncertain, noisy or even discontinuous, is being calculated by Nelder-Mead method of nonlinear unconstrained minimizations as it is an efficient and compact direct search method and does not need any derivative information. Three optimizing parameters are included in the formulation of fundamental modal field of an optical fiber to make it more flexible and accurate than other available approximations. Employing variational technique, Petermann I and II spot sizes have been evaluated for triangular and trapezoidal-index fibers with the proposed fundamental modal field. It has been demonstrated that, the results of the proposed solution identically match with the numerical results over a wide range of normalized frequencies. This approximation can also be used in the study of doped and nonlinear fiber amplifier.

  1. Exoatmospheric intercepts using zero effort miss steering for midcourse guidance

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    The suitability of proportional navigation, or an equivalent zero effort miss formulation, for exatmospheric intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general, three dimensional framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect and thus, are less accurate than a direct numerical propagation of the governing equations, but more accurate than a baseline determination, which assumes equal accelerations for both vehicles. Approximations considered are constant, linear, quadratic, and linearized inverse square models. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.

  2. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.

  3. High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results

    USGS Publications Warehouse

    Naff, R.L.; Haley, D.F.; Sudicky, E.A.

    1998-01-01

    In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic-conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non-Gaussian behavior of the mean cloud, are reported on as well.

  4. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  5. Domain decomposition methods in aerodynamics

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Saltz, Joel

    1990-01-01

    Compressible Euler equations are solved for two-dimensional problems by a preconditioned conjugate gradient-like technique. An approximate Riemann solver is used to compute the numerical fluxes to second order accuracy in space. Two ways to achieve parallelism are tested, one which makes use of parallelism inherent in triangular solves and the other which employs domain decomposition techniques. The vectorization/parallelism in triangular solves is realized by the use of a recording technique called wavefront ordering. This process involves the interpretation of the triangular matrix as a directed graph and the analysis of the data dependencies. It is noted that the factorization can also be done in parallel with the wave front ordering. The performances of two ways of partitioning the domain, strips and slabs, are compared. Results on Cray YMP are reported for an inviscid transonic test case. The performances of linear algebra kernels are also reported.

  6. A k-Vector Approach to Sampling, Interpolation, and Approximation

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele; Rogers, Jonathan

    2013-12-01

    The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.

  7. Tomographic reconstruction of tokamak plasma light emission using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Schneider, Kai; Nguyen van Yen, Romain; Fedorczak, Nicolas; Brochard, Frederic; Bonhomme, Gerard; Farge, Marie; Monier-Garbet, Pascale

    2012-10-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we proposed in Nguyen van yen et al., Nucl. Fus., 52 (2012) 013005, an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  8. Tomographic reconstruction of tokamak plasma light emission from single image using wavelet-vaguelette decomposition

    NASA Astrophysics Data System (ADS)

    Nguyen van yen, R.; Fedorczak, N.; Brochard, F.; Bonhomme, G.; Schneider, K.; Farge, M.; Monier-Garbet, P.

    2012-01-01

    Images acquired by cameras installed in tokamaks are difficult to interpret because the three-dimensional structure of the plasma is flattened in a non-trivial way. Nevertheless, taking advantage of the slow variation of the fluctuations along magnetic field lines, the optical transformation may be approximated by a generalized Abel transform, for which we propose an inversion technique based on the wavelet-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained with the Tokam 2D code, we present an application to an experimental movie obtained in the tokamak Tore Supra. A comparison with a classical regularization technique for ill-posed inverse problems, the singular value decomposition, allows us to assess the efficiency. The superiority of the wavelet-vaguelette technique is reflected in preserving local features, such as blobs and fronts, in the denoised emissivity map.

  9. High range free space optic transmission using new dual diffuser modulation technique

    NASA Astrophysics Data System (ADS)

    Rahman, A. K.; Julai, N.; Jusoh, M.; Rashidi, C. B. M.; Aljunid, S. A.; Anuar, M. S.; Talib, M. F.; Zamhari, Nurdiani; Sahari, S. k.; Tamrin, K. F.; Jong, Rudiyanto P.; Zaidel, D. N. A.; Mohtadzar, N. A. A.; Sharip, M. R. M.; Samat, Y. S.

    2017-11-01

    Free space optical communication fsoc is vulnerable with fluctuating atmospheric. This paper focus analyzes the finding of new technique dual diffuser modulation (ddm) to mitigate the atmospheric turbulence effect. The performance of fsoc under the presence of atmospheric turbulence will cause the laser beam keens to (a) beam wander, (b) beam spreading and (c) scintillation. The most deteriorate the fsoc is scintillation where it affected the wavefront cause to fluctuating signal and ultimately receiver can turn into saturate or loss signal. Ddm approach enhances the detecting bit `1' and bit `0' and improves the power received to combat with turbulence effect. The performance focus on signal-to-noise (snr) and bit error rate (ber) where the numerical result shows that the ddm technique able to improves the range where estimated approximately 40% improvement under weak turbulence and 80% under strong turbulence.

  10. Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Wei, Caisheng; Dai, Honghua; Yuan, Jianping

    2018-03-01

    This paper focuses on robust adaptive control for a class of uncertain nonlinear systems subject to input saturation and external disturbance with guaranteed predefined tracking performance. To reduce the limitations of classical predefined performance control method in the presence of unknown initial tracking errors, a novel predefined performance function with time-varying design parameters is first proposed. Then, aiming at reducing the complexity of nonlinear approximations, only two least-square-support-vector-machine-based (LS-SVM-based) approximators with two design parameters are required through norm form transformation of the original system. Further, a novel LS-SVM-based adaptive constrained control scheme is developed under the time-vary predefined performance using backstepping technique. Wherein, to avoid the tedious analysis and repeated differentiations of virtual control laws in the backstepping technique, a simple and robust finite-time-convergent differentiator is devised to only extract its first-order derivative at each step in the presence of external disturbance. In this sense, the inherent demerit of backstepping technique-;explosion of terms; brought by the recursive virtual controller design is conquered. Moreover, an auxiliary system is designed to compensate the control saturation. Finally, three groups of numerical simulations are employed to validate the effectiveness of the newly developed differentiator and the proposed adaptive constrained control scheme.

  11. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  12. Simple skin-stretching device in assisted tension-free wound closure

    PubMed Central

    Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si

    2017-01-01

    Background Numerous conventional wound reconstruction methods such as wound undermining with direct suture, skin graft, and flap surgery can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. Materials and Methods This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique following a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. Results All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. Conclusion The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful. PMID:28195891

  13. Optical characterization of randomly microrough surfaces covered with very thin overlayers using effective medium approximation and Rayleigh-Rice theory

    NASA Astrophysics Data System (ADS)

    Ohlídal, Ivan; Vohánka, Jiří; Čermák, Martin; Franta, Daniel

    2017-10-01

    The modification of the effective medium approximation for randomly microrough surfaces covered by very thin overlayers based on inhomogeneous fictitious layers is formulated. The numerical analysis of this modification is performed using simulated ellipsometric data calculated using the Rayleigh-Rice theory. The system used to perform this numerical analysis consists of a randomly microrough silicon single crystal surface covered with a SiO2 overlayer. A comparison to the effective medium approximation based on homogeneous fictitious layers is carried out within this numerical analysis. For ellipsometry of the system mentioned above the possibilities and limitations of both the effective medium approximation approaches are discussed. The results obtained by means of the numerical analysis are confirmed by the ellipsometric characterization of two randomly microrough silicon single crystal substrates covered with native oxide overlayers. It is shown that the effective medium approximation approaches for this system exhibit strong deficiencies compared to the Rayleigh-Rice theory. The practical consequences implied by these results are presented. The results concerning the random microroughness are verified by means of measurements performed using atomic force microscopy.

  14. Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    PubMed Central

    Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474

  15. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  16. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  17. The aggregated unfitted finite element method for elliptic problems

    NASA Astrophysics Data System (ADS)

    Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.

    2018-07-01

    Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.

  18. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Osher scheme for real gases

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady; Liou, Meng-Sing

    1990-01-01

    An extension of Osher's approximate Riemann solver to include gases with an arbitrary equation of state is presented. By a judicious choice of thermodynamic variables, the Riemann invariats are reduced to quadratures which are then approximated numerically. The extension is rigorous and does not involve any further assumptions or approximations over the ideal gas case. Numerical results are presented to demonstrate the feasibility and accuracy of the proposed method.

  20. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1988-01-01

    A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.

  1. Full-order optimal compensators for flow control: the multiple inputs case

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  2. Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence

    PubMed Central

    Schöniger, Anneli; Wöhling, Thomas; Samaniego, Luis; Nowak, Wolfgang

    2014-01-01

    Bayesian model selection or averaging objectively ranks a number of plausible, competing conceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance in fitting available data and minimum model complexity. The procedure requires determining Bayesian model evidence (BME), which is the likelihood of the observed data integrated over each model's parameter space. The computation of this integral is highly challenging because it is as high-dimensional as the number of model parameters. Three classes of techniques to compute BME are available, each with its own challenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2) Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as information criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respectively) yield contradicting results with regard to model ranking. Our study features a theory-based intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-force Monte Carlo integration method as reference. We continue this analysis with a real-world application of hydrological model selection. This is a first-time benchmarking of the various methods for BME evaluation against true solutions. Results show that BME values from ICs are often heavily biased and that the choice of approximation method substantially influences the accuracy of model ranking. For reliable model selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible. PMID:25745272

  3. On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-Ta; Reichman, David R.; Berkelbach, Timothy C.

    2016-04-21

    Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin–boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we presentmore » is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques.« less

  4. Optimization of porthole die geometrical variables by Taguchi method

    NASA Astrophysics Data System (ADS)

    Gagliardi, F.; Ciancio, C.; Ambrogio, G.; Filice, L.

    2017-10-01

    Porthole die extrusion is commonly used to manufacture hollow profiles made of lightweight alloys for numerous industrial applications. The reliability of extruded parts is affected strongly by the quality of the longitudinal and transversal seam welds. According to that, the die geometry must be designed correctly and the process parameters must be selected properly to achieve the desired product quality. In this study, numerical 3D simulations have been created and run to investigate the role of various geometrical variables on punch load and maximum pressure inside the welding chamber. These are important outputs to take into account affecting, respectively, the necessary capacity of the extrusion press and the quality of the welding lines. The Taguchi technique has been used to reduce the number of the required numerical simulations necessary for considering the influence of twelve different geometric variables. Moreover, the Analysis of variance (ANOVA) has been implemented to individually analyze the effect of each input parameter on the two responses. Then, the methodology has been utilized to determine the optimal process configuration individually optimizing the two investigated process outputs. Finally, the responses of the optimized parameters have been verified through finite element simulations approximating the predicted value closely. This study shows the feasibility of the Taguchi technique for predicting performance, optimization and therefore for improving the design of a porthole extrusion process.

  5. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  6. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE PAGES

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; ...

    2018-03-15

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  7. DIATOM (Data Initialization and Modification) Library Version 7.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.

    DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less

  8. A numerical study of different projection-based model reduction techniques applied to computational homogenisation

    NASA Astrophysics Data System (ADS)

    Soldner, Dominic; Brands, Benjamin; Zabihyan, Reza; Steinmann, Paul; Mergheim, Julia

    2017-10-01

    Computing the macroscopic material response of a continuum body commonly involves the formulation of a phenomenological constitutive model. However, the response is mainly influenced by the heterogeneous microstructure. Computational homogenisation can be used to determine the constitutive behaviour on the macro-scale by solving a boundary value problem at the micro-scale for every so-called macroscopic material point within a nested solution scheme. Hence, this procedure requires the repeated solution of similar microscopic boundary value problems. To reduce the computational cost, model order reduction techniques can be applied. An important aspect thereby is the robustness of the obtained reduced model. Within this study reduced-order modelling (ROM) for the geometrically nonlinear case using hyperelastic materials is applied for the boundary value problem on the micro-scale. This involves the Proper Orthogonal Decomposition (POD) for the primary unknown and hyper-reduction methods for the arising nonlinearity. Therein three methods for hyper-reduction, differing in how the nonlinearity is approximated and the subsequent projection, are compared in terms of accuracy and robustness. Introducing interpolation or Gappy-POD based approximations may not preserve the symmetry of the system tangent, rendering the widely used Galerkin projection sub-optimal. Hence, a different projection related to a Gauss-Newton scheme (Gauss-Newton with Approximated Tensors- GNAT) is favoured to obtain an optimal projection and a robust reduced model.

  9. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  10. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  11. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  12. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NASA Astrophysics Data System (ADS)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  13. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1994-01-01

    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.

  14. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  15. Approximate numerical abilities and mathematics: Insight from correlational and experimental training studies.

    PubMed

    Hyde, D C; Berteletti, I; Mou, Y

    2016-01-01

    Humans have the ability to nonverbally represent the approximate numerosity of sets of objects. The cognitive system that supports this ability, often referred to as the approximate number system (ANS), is present in early infancy and continues to develop in precision over the life span. It has been proposed that the ANS forms a foundation for uniquely human symbolic number and mathematics learning. Recent work has brought two types of evidence to bear on the relationship between the ANS and human mathematics: correlational studies showing individual differences in approximate numerical abilities correlate with individual differences in mathematics achievement and experimental studies showing enhancing effects of nonsymbolic approximate numerical training on exact, symbolic mathematical abilities. From this work, at least two accounts can be derived from these empirical data. It may be the case that the ANS and mathematics are related because the cognitive and brain processes responsible for representing numerical quantity in each format overlap, the Representational Overlap Hypothesis, or because of commonalities in the cognitive operations involved in mentally manipulating the representations of each format, the Operational Overlap hypothesis. The two hypotheses make distinct predictions for future work to test. © 2016 Elsevier B.V. All rights reserved.

  16. Aerodynamic influence coefficient method using singularity splines.

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Weber, J. A.; Lesferd, E. P.

    1973-01-01

    A new numerical formulation with computed results, is presented. This formulation combines the adaptability to complex shapes offered by paneling schemes with the smoothness and accuracy of the loading function methods. The formulation employs a continuous distribution of singularity strength over a set of panels on a paneled wing. The basic distributions are independent, and each satisfies all of the continuity conditions required of the final solution. These distributions are overlapped both spanwise and chordwise (termed 'spline'). Boundary conditions are satisfied in a least square error sense over the surface using a finite summing technique to approximate the integral.

  17. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  18. On the solution of integral equations with strong ly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1985-01-01

    In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  19. On the solution of integral equations with strongly singular kernels

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1987-01-01

    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results.

  20. Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1980-01-01

    There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.

  1. Stochastic solution to quantum dynamics

    NASA Technical Reports Server (NTRS)

    John, Sarah; Wilson, John W.

    1994-01-01

    The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.

  2. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  3. Supersonic second order analysis and optimization program user's manual

    NASA Technical Reports Server (NTRS)

    Clever, W. C.

    1984-01-01

    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at supersonic and moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to conceptual configuration design level of effort. Second order small disturbance theory was utilized to meet this objective. Numerical codes were developed for analysis and design of relatively general three dimensional geometries. Results from the computations indicate good agreement with experimental results for a variety of wing, body, and wing-body shapes. Case computational time of one minute on a CDC 176 are typical for practical aircraft arrangement.

  4. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.

  5. On substructuring algorithms and solution techniques for the numerical approximation of partial differential equations

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, MeiYue; Lin, Lin; Yang, Chao

    The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G 0W 0 approximation is a widely used techniquemore » in which the self energy is expressed as the convolution of a noninteracting Green’s function (G 0) and a screened Coulomb interaction (W 0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G 0W 0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G 0W 0 approximation. We also discuss how the numerical convolution of G 0 and W 0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less

  7. Some Surprising Errors in Numerical Differentiation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2012-01-01

    Data analysis methods, both numerical and visual, are used to discover a variety of surprising patterns in the errors associated with successive approximations to the derivatives of sinusoidal and exponential functions based on the Newton difference-quotient. L'Hopital's rule and Taylor polynomial approximations are then used to explain why these…

  8. Intergenerational Associations in Numerical Approximation and Mathematical Abilities

    ERIC Educational Resources Information Center

    Braham, Emily J.; Libertus, Melissa E.

    2017-01-01

    Although growing evidence suggests a link between children's math skills and their ability to estimate numerical quantities using the approximate number system (ANS), little is known about the sources underlying individual differences in ANS acuity and their relation with specific mathematical skills. To examine the role of intergenerational…

  9. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  10. Bidirectional Reflectance of a Macroscopically Flat, High-Albedo Particulate Surface: An Efficient Radiative Transfer Solution and Applications to Regoliths

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Zakharova, Nadia T.

    1999-01-01

    Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web, and can be applied to a wide range of remote sensing problems. BRF computations for undulated (macroscopically rough) surfaces are more complicated and often rely on time consuming Monte Carlo procedures. This approach is especially inefficient for optically thick, weakly absorbing media (e.g., snow and desert surfaces at visible wavelengths since a photon may undergo many internal scattering events before it exists the medium or is absorbed. However, undulated surfaces can often be represented as collections of locally flat tilted facets characterized by the BRF found from the traditional plane parallel RTE. In this way the MOnte Carlo procedure could be used only to evaluate the effects of surface shadowing and multiple surface reflections, thereby bypassing the time-consuming ray tracing inside the medium and providing a great savings of CPU time.

  11. Four decades of implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan B.

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  12. Four decades of implicit Monte Carlo

    DOE PAGES

    Wollaber, Allan B.

    2016-02-23

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  13. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    NASA Astrophysics Data System (ADS)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  14. The Method of Space-time Conservation Element and Solution Element: Development of a New Implicit Solver

    NASA Technical Reports Server (NTRS)

    Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.

    1995-01-01

    The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  15. Effect of atmospheric scattering and surface reflection on upwelling solar radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Barkstrom, B. R.; Tiwari, S. N.

    1981-01-01

    A study is presented of the solar radiation transfer in the complete earth-atmosphere system, and numerical results are compared with satellite data obtained during the Earth Radiation Budget Experiment on Nimbus 6, in August, 1975. Emphasis is placed on the upwelling radiance distribution at the top of the atmosphere, assumed to be at 50 km. The numerical technique is based on the finite difference method, which includes azimuth and spectral variations for the entire solar wavelength range. Detailed solar properties, atmospheric physical properties, and optical properties are used. However, since the property descriptions are based on a trade-off between accuracy and computational realities, aerosol and cloud optical properties are treated with simple approximations. The radiative transfer model is in good agreement with the satellite radiance observations. The method provides a valuable tool in analyzing satellite- and ground-based radiation budget measurements and in designing instrumentation.

  16. Numerical study of the geometry of the phase space of the Augmented Hill Three-Body problem

    NASA Astrophysics Data System (ADS)

    Farrés, Ariadna; Jorba, Àngel; Mondelo, Josep-Maria

    2017-09-01

    The Augmented Hill Three-Body problem is an extension of the classical Hill problem that, among other applications, has been used to model the motion of a solar sail around an asteroid. This model is a 3 degrees of freedom (3DoF) Hamiltonian system that depends on four parameters. This paper describes the bounded motions (periodic orbits and invariant tori) in an extended neighbourhood of some of the equilibrium points of the model. An interesting feature is the existence of equilibrium points with a 1:1 resonance, whose neighbourhood we also describe. The main tools used are the computation of periodic orbits (including their stability and bifurcations), the reduction of the Hamiltonian to centre manifolds at equilibria, and the numerical approximation of invariant tori. It is remarkable how the combination of these techniques allows the description of the dynamics of a 3DoF Hamiltonian system.

  17. Control-based continuation: Bifurcation and stability analysis for physical experiments

    NASA Astrophysics Data System (ADS)

    Barton, David A. W.

    2017-02-01

    Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.

  18. Rarefied gas flow through two-dimensional nozzles

    NASA Technical Reports Server (NTRS)

    De Witt, Kenneth J.; Jeng, Duen-Ren; Keith, Theo G., Jr.; Chung, Chan-Hong

    1989-01-01

    A kinetic theory analysis is made of the flow of a rarefied gas from one reservoir to another through two-dimensional nozzles with arbitrary curvature. The Boltzmann equation simplified by a model collision integral is solved by means of finite-difference approximations with the discrete ordinate method. The physical space is transformed by a general grid generation technique and the velocity space is transformed to a polar coordinate system. A numerical code is developed which can be applied to any two-dimensional passage of complicated geometry for the flow regimes from free-molecular to slip. Numerical values of flow quantities can be calculated for the entire physical space including both inside the nozzle and in the outside plume. Predictions are made for the case of parallel slots and compared with existing literature data. Also, results for the cases of convergent or divergent slots and two-dimensional nozzles with arbitrary curvature at arbitrary knudsen number are presented.

  19. Measuring optical phase digitally in coherent metrology systems

    NASA Astrophysics Data System (ADS)

    Kelly, Damien P.; Ryle, James; Zhao, Liang; Sheridan, John T.

    2017-05-01

    The accurate measurement of optical phase has many applications in metrology. For biological samples, which appear transparent, the phase data provides information about the refractive index of the sample. In speckle metrology, the phase can be used to estimate stress and strains of a rough surface with high sensitivity. In this theoretical manuscript we compare and contrast the properties of two techniques for estimating the phase distribution of a wave field under the paraxial approximation: (I) A digital holographic system, and (II) An idealized phase retrieval system. Both systems use a CCD or CMOS array to measure the intensities of the wave fields that are reflected from or transmitted through the sample of interest. This introduces a numerical aspect to the problem. For the two systems above we examine how numerical calculations can limit the performance of these systems leading to a near-infinite number of possible solutions.

  20. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.

    2017-08-01

    A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.

  1. Parameter estimation techniques based on optimizing goodness-of-fit statistics for structural reliability

    NASA Technical Reports Server (NTRS)

    Starlinger, Alois; Duffy, Stephen F.; Palko, Joseph L.

    1993-01-01

    New methods are presented that utilize the optimization of goodness-of-fit statistics in order to estimate Weibull parameters from failure data. It is assumed that the underlying population is characterized by a three-parameter Weibull distribution. Goodness-of-fit tests are based on the empirical distribution function (EDF). The EDF is a step function, calculated using failure data, and represents an approximation of the cumulative distribution function for the underlying population. Statistics (such as the Kolmogorov-Smirnov statistic and the Anderson-Darling statistic) measure the discrepancy between the EDF and the cumulative distribution function (CDF). These statistics are minimized with respect to the three Weibull parameters. Due to nonlinearities encountered in the minimization process, Powell's numerical optimization procedure is applied to obtain the optimum value of the EDF. Numerical examples show the applicability of these new estimation methods. The results are compared to the estimates obtained with Cooper's nonlinear regression algorithm.

  2. Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities

    PubMed Central

    Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin

    2013-01-01

    Previous research has found a relationship between individual differences in children’s precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the present study we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of two years. Additionally, at the last time point, we tested children’s informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3; Ginsburg & Baroody, 2003). We found that children’s numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned, non-symbolic system of quantity representation and the system of mathematical reasoning that children come to master through instruction. PMID:24076381

  3. Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities.

    PubMed

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2013-12-01

    Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effective quadrature formula in solving linear integro-differential equations of order two

    NASA Astrophysics Data System (ADS)

    Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

    2017-08-01

    In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

  5. New Operational Matrices for Solving Fractional Differential Equations on the Half-Line

    PubMed Central

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369

  6. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  7. A compatible high-order meshless method for the Stokes equations with applications to suspension flows

    NASA Astrophysics Data System (ADS)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2018-02-01

    A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiev, R.Z.; Islamgaliev, R.K.; Kuzmina, N.F.

    Intense plastic straining techniques such as torsion straining and equal channel angular (ECA) pressing are processing procedures which may be used to make beneficial changes in the properties of materials through a substantial refinement in the microstructure. Although intense plastic straining procedures have been used for grain refinement in numerous experiments reported over the last decade, there appears to have been no investigations in which these procedures were used with metal matrix composites. The present paper describes a series of experiments in which torsion straining and ECA pressing were applied to an Al-6061 metal matrix composite reinforced with 10 volumemore » % of Al{sub 2}O{sub 3} particulates. As will be demonstrated, intense plastic straining has the potential for both reducing the grain size of the composite to the submicrometer level and increasing the strength at room temperature by a factor in the range of {approximately}2 to {approximately}3.« less

  9. New operational matrices for solving fractional differential equations on the half-line.

    PubMed

    Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.

  10. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  11. Probabilistic Structural Analysis Theory Development

    NASA Technical Reports Server (NTRS)

    Burnside, O. H.

    1985-01-01

    The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.

  12. On Using Surrogates with Genetic Programming.

    PubMed

    Hildebrandt, Torsten; Branke, Jürgen

    2015-01-01

    One way to accelerate evolutionary algorithms with expensive fitness evaluations is to combine them with surrogate models. Surrogate models are efficiently computable approximations of the fitness function, derived by means of statistical or machine learning techniques from samples of fully evaluated solutions. But these models usually require a numerical representation, and therefore cannot be used with the tree representation of genetic programming (GP). In this paper, we present a new way to use surrogate models with GP. Rather than using the genotype directly as input to the surrogate model, we propose using a phenotypic characterization. This phenotypic characterization can be computed efficiently and allows us to define approximate measures of equivalence and similarity. Using a stochastic, dynamic job shop scenario as an example of simulation-based GP with an expensive fitness evaluation, we show how these ideas can be used to construct surrogate models and improve the convergence speed and solution quality of GP.

  13. Region of attraction analysis for nonlinear vehicle lateral dynamics using sum-of-squares programming

    NASA Astrophysics Data System (ADS)

    Imani Masouleh, Mehdi; Limebeer, David J. N.

    2018-07-01

    In this study we will estimate the region of attraction (RoA) of the lateral dynamics of a nonlinear single-track vehicle model. The tyre forces are approximated using rational functions that are shown to capture the nonlinearities of tyre curves significantly better than polynomial functions. An existing sum-of-squares (SOS) programming algorithm for estimating regions of attraction is extended to accommodate the use of rational vector fields. This algorithm is then used to find an estimate of the RoA of the vehicle lateral dynamics. The influence of vehicle parameters and driving conditions on the stability region are studied. It is shown that SOS programming techniques can be used to approximate the stability region without resorting to numerical integration. The RoA estimate from the SOS algorithm is compared to the existing results in the literature. The proposed method is shown to obtain significantly better RoA estimates.

  14. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  15. The difference between LSMC and replicating portfolio in insurance liability modeling.

    PubMed

    Pelsser, Antoon; Schweizer, Janina

    2016-01-01

    Solvency II requires insurers to calculate the 1-year value at risk of their balance sheet. This involves the valuation of the balance sheet in 1 year's time. As for insurance liabilities, closed-form solutions to their value are generally not available, insurers turn to estimation procedures. While pure Monte Carlo simulation set-ups are theoretically sound, they are often infeasible in practice. Therefore, approximation methods are exploited. Among these, least squares Monte Carlo (LSMC) and portfolio replication are prominent and widely applied in practice. In this paper, we show that, while both are variants of regression-based Monte Carlo methods, they differ in one significant aspect. While the replicating portfolio approach only contains an approximation error, which converges to zero in the limit, in LSMC a projection error is additionally present, which cannot be eliminated. It is revealed that the replicating portfolio technique enjoys numerous advantages and is therefore an attractive model choice.

  16. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  17. SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlep, T.; Zhao, J.; Kosovichev, A. G.

    2013-01-10

    The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of themore » meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12 Degree-Sign and 42 Degree-Sign corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone.« less

  18. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, H.; Vay, J. -L.

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  20. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  1. Low rank approximation in G 0W 0 calculations

    DOE PAGES

    Shao, MeiYue; Lin, Lin; Yang, Chao; ...

    2016-06-04

    The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G 0W 0 approximation is a widely used techniquemore » in which the self energy is expressed as the convolution of a noninteracting Green’s function (G 0) and a screened Coulomb interaction (W 0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G 0W 0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G 0W 0 approximation. We also discuss how the numerical convolution of G 0 and W 0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less

  2. Phased-mission system analysis using Boolean algebraic methods

    NASA Technical Reports Server (NTRS)

    Somani, Arun K.; Trivedi, Kishor S.

    1993-01-01

    Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.

  3. A design approach for improving the performance of single-grid planar retarding potential analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. L.; Earle, G. D.

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these gridmore » errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.« less

  4. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    PubMed

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  5. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  6. T-matrix method in plasmonics: An overview

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Nikolai G.

    2013-07-01

    Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.

  7. Theoretical and numerical evaluation of polarimeter using counter-circularly-polarized-probing-laser under the coupling between Faraday and Cotton-Mouton effect.

    PubMed

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2016-04-01

    This study evaluated an effect of an coupling between the Faraday and Cotton-Mouton effect to a measurement signal of the Dodel-Kunz method which uses counter-circular-polarized probing-laser for measuring the Faraday effect. When the coupling is small (the Faraday effect is dominant and the characteristic eigenmodes are approximately circularly polarized), the measurement signal can be algebraically expressed and it is shown that the finite effect of the coupling is still significant. When the Faraday effect is not dominant, a numerical calculation is necessary. The numerical calculation under an ITER-like condition (Bt = 5.3 T, Ip = 15 MA, a = 2 m, ne = 10(20) m(-3) and λ = 119 μm) showed that difference between the pure Faraday rotation and the measurement signal of the Dodel-Kunz method was an order of one degree, which exceeds allowable error of ITER poloidal polarimeter. In conclusion, similar to other polarimeter techniques, the Dodel-Kunz method is not free from the coupling between the Faraday and Cotton-Mouton effect.

  8. Towards efficient backward-in-time adjoint computations using data compression techniques

    DOE PAGES

    Cyr, E. C.; Shadid, J. N.; Wildey, T.

    2014-12-16

    In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less

  9. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks

    PubMed Central

    Zaikin, Alexey; Míguez, Joaquín

    2017-01-01

    We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introducing dynamical noise in the model and assuming that the partial observations of the system are contaminated by additive noise, we enable a principled mechanism to represent experimental uncertainties in the synthesis of the multicellular system and pave the way for the design of probabilistic methods for the estimation of any unknowns in the model. Within this setup, we tackle the Bayesian estimation of a subset of the model parameters. Specifically, we compare three Monte Carlo based numerical methods for the approximation of the posterior probability density function of the unknown parameters given a set of partial and noisy observations of the system. The schemes we assess are the particle Metropolis-Hastings (PMH) algorithm, the nonlinear population Monte Carlo (NPMC) method and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) scheme. We present an extensive numerical simulation study, which shows that while the three techniques can effectively solve the problem there are significant differences both in estimation accuracy and computational efficiency. PMID:28797087

  10. An Approximate Model for the Performance and Acoustic Predictions of Counterrotating Propeller Configurations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Denner, Brett William

    1989-01-01

    An approximate method was developed to analyze and predict the acoustics of a counterrotating propeller configuration. The method employs the analytical techniques of Lock and Theodorsen as described by Davidson to predict the steady performance of a counterrotating configuration. Then, a modification of the method of Lesieutre is used to predict the unsteady forces on the blades. Finally, the steady and unsteady loads are used in the numerical method of Succi to predict the unsteady acoustics of the propeller. The numerical results are compared with experimental acoustic measurements of a counterrotating propeller configuration by Gazzaniga operating under several combinations of advance ratio, blade pitch, and number of blades. In addition, a constant-speed commuter-class propeller configuration was designed with the Davidson method and the acoustics analyzed at three advance ratios. Noise levels and frequency spectra were calculated at a number of locations around the configuration. The directivity patterns of the harmonics in both the horizontal and vertical planes were examined, with the conclusion that the noise levels of the even harmonics are relatively independent of direction whereas the noise levels of the odd harmonics are extremely dependent on azimuthal direction in the horizontal plane. The equations of Succi are examined to explain this behavior.

  11. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  12. Approximate and exact numerical integration of the gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Lewis, T. S.; Sirovich, L.

    1979-01-01

    A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.

  13. atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.

    2011-10-01

    atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.

  14. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  15. Resummed memory kernels in generalized system-bath master equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu

    2014-08-07

    Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less

  16. Analytical study and numerical solution of the inverse source problem arising in thermoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Holman, Benjamin R.

    In recent years, revolutionary "hybrid" or "multi-physics" methods of medical imaging have emerged. By combining two or three different types of waves these methods overcome limitations of classical tomography techniques and deliver otherwise unavailable, potentially life-saving diagnostic information. Thermoacoustic (and photoacoustic) tomography is the most developed multi-physics imaging modality. Thermo- and photo- acoustic tomography require reconstructing initial acoustic pressure in a body from time series of pressure measured on a surface surrounding the body. For the classical case of free space wave propagation, various reconstruction techniques are well known. However, some novel measurement schemes place the object of interest between reflecting walls that form a de facto resonant cavity. In this case, known methods cannot be used. In chapter 2 we present a fast iterative reconstruction algorithm for measurements made at the walls of a rectangular reverberant cavity with a constant speed of sound. We prove the convergence of the iterations under a certain sufficient condition, and demonstrate the effectiveness and efficiency of the algorithm in numerical simulations. In chapter 3 we consider the more general problem of an arbitrarily shaped resonant cavity with a non constant speed of sound and present the gradual time reversal method for computing solutions to the inverse source problem. It consists in solving back in time on the interval [0, T] the initial/boundary value problem for the wave equation, with the Dirichlet boundary data multiplied by a smooth cutoff function. If T is sufficiently large one obtains a good approximation to the initial pressure; in the limit of large T such an approximation converges (under certain conditions) to the exact solution.

  17. Reliability based design optimization: Formulations and methodologies

    NASA Astrophysics Data System (ADS)

    Agarwal, Harish

    Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.

  18. The PAWS and STEM reliability analysis programs

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Stevenson, Philip H.

    1988-01-01

    The PAWS and STEM programs are new design/validation tools. These programs provide a flexible, user-friendly, language-based interface for the input of Markov models describing the behavior of fault-tolerant computer systems. These programs produce exact solutions of the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. PAWS uses a Pade approximation as a solution technique; STEM uses a Taylor series as a solution technique. Both programs have the capability to solve numerically stiff models. PAWS and STEM possess complementary properties with regard to their input space; and, an additional strength of these programs is that they accept input compatible with the SURE program. If used in conjunction with SURE, PAWS and STEM provide a powerful suite of programs to analyze the reliability of fault-tolerant computer systems.

  19. Introduction to Numerical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  20. Applications of three-dimensional modeling in electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Pellerin, Louise Donna

    Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.

  1. A higher order numerical method for time fractional partial differential equations with nonsmooth data

    NASA Astrophysics Data System (ADS)

    Xing, Yanyuan; Yan, Yubin

    2018-03-01

    Gao et al. [11] (2014) introduced a numerical scheme to approximate the Caputo fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 by directly approximating the integer-order derivative with some finite difference quotients in the definition of the Caputo fractional derivative, see also Lv and Xu [20] (2016), where k is the time step size. Under the assumption that the solution of the time fractional partial differential equation is sufficiently smooth, Lv and Xu [20] (2016) proved by using energy method that the corresponding numerical method for solving time fractional partial differential equation has the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. However, in general the solution of the time fractional partial differential equation has low regularity and in this case the numerical method fails to have the convergence rate O (k 3 - α), 0 < α < 1 uniformly with respect to the time variable t. In this paper, we first obtain a similar approximation scheme to the Riemann-Liouville fractional derivative with the convergence rate O (k 3 - α), 0 < α < 1 as in Gao et al. [11] (2014) by approximating the Hadamard finite-part integral with the piecewise quadratic interpolation polynomials. Based on this scheme, we introduce a time discretization scheme to approximate the time fractional partial differential equation and show by using Laplace transform methods that the time discretization scheme has the convergence rate O (k 3 - α), 0 < α < 1 for any fixed tn > 0 for smooth and nonsmooth data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the theoretical results are consistent with the numerical results.

  2. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.

    PubMed

    Chao, Fa-An; Byrd, R Andrew

    2017-04-01

    The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C α , H α , etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain. Published by Elsevier Inc.

  3. Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children.

    PubMed

    Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S; Berteletti, Ilaria; Hyde, Daniel C

    2016-01-01

    Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks.

  4. Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children

    PubMed Central

    Khanum, Saeeda; Hanif, Rubina; Spelke, Elizabeth S.; Berteletti, Ilaria; Hyde, Daniel C.

    2016-01-01

    Current theories of numerical cognition posit that uniquely human symbolic number abilities connect to an early developing cognitive system for representing approximate numerical magnitudes, the approximate number system (ANS). In support of this proposal, recent laboratory-based training experiments with U.S. children show enhanced performance on symbolic addition after brief practice comparing or adding arrays of dots without counting: tasks that engage the ANS. Here we explore the nature and generality of this effect through two brief training experiments. In Experiment 1, elementary school children in Pakistan practiced either a non-symbolic numerical addition task or a line-length addition task with no numerical content, and then were tested on symbolic addition. After training, children in the numerical training group completed the symbolic addition test faster than children in the line length training group, suggesting a causal role of brief, non-symbolic numerical training on exact, symbolic addition. These findings replicate and extend the core findings of a recent U.S. laboratory-based study to non-Western children tested in a school setting, attesting to the robustness and generalizability of the observed training effects. Experiment 2 tested whether ANS training would also enhance the consistency of performance on a symbolic number line task. Over several analyses of the data there was some evidence that approximate number training enhanced symbolic number line placements relative to control conditions. Together, the findings suggest that engagement of the ANS through brief training procedures enhances children's immediate attention to number and engagement with symbolic number tasks. PMID:27764117

  5. Agent independent task planning

    NASA Technical Reports Server (NTRS)

    Davis, William S.

    1990-01-01

    Agent-Independent Planning is a technique that allows the construction of activity plans without regard to the agent that will perform them. Once generated, a plan is then validated and translated into instructions for a particular agent, whether a robot, crewmember, or software-based control system. Because Space Station Freedom (SSF) is planned for orbital operations for approximately thirty years, it will almost certainly experience numerous enhancements and upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the capability to construct plans for SSF operations, independent of specific robotic systems, by combining techniques of object oriented modeling, nonlinear planning and temporal logic. Since a plan is validated using the physical and functional models of a particular agent, new robotic systems can be developed and integrated with existing operations in a robust manner. This technique also provides the capability to generate plans for crewmembers with varying skill levels, and later apply these same plans to more sophisticated robotic manipulators made available by evolutions in technology.

  6. Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method

    NASA Astrophysics Data System (ADS)

    Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li

    2016-04-01

    A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).

  7. Simplified Phased-Mission System Analysis for Systems with Independent Component Repairs

    NASA Technical Reports Server (NTRS)

    Somani, Arun K.

    1996-01-01

    Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation. Most reliability analyses assume that the system configuration, success criteria, and component behavior remain the same. However, multiple phases are natural. We present a new computationally efficient technique for analysis of phased-mission systems where the operational states of a system can be described by combinations of components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed, as part of system operation but repairs are independent of the system state. For repairable systems Markov analysis techniques are used but they suffer from state space explosion. That limits the size of system that can be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to account for the effects of variable configurations, repairs, and success criteria from phase to phase. Our technique yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples and present numerical results to show the effects of phases and repairs on the system reliability/availability.

  8. Application of Model Based Parameter Estimation for Fast Frequency Response Calculations of Input Characteristics of Cavity-Backed Aperture Antennas Using Hybrid FEM/MoM Technique

    NASA Technical Reports Server (NTRS)

    Reddy C. J.

    1998-01-01

    Model Based Parameter Estimation (MBPE) is presented in conjunction with the hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique for fast computation of the input characteristics of cavity-backed aperture antennas over a frequency range. The hybrid FENI/MoM technique is used to form an integro-partial- differential equation to compute the electric field distribution of a cavity-backed aperture antenna. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency derivatives of the integro-partial-differential equation formed by the hybrid FEM/ MoM technique. Using the rational function approximation, the electric field is obtained over a frequency range. Using the electric field at different frequencies, the input characteristics of the antenna are obtained over a wide frequency range. Numerical results for an open coaxial line, probe-fed coaxial cavity and cavity-backed microstrip patch antennas are presented. Good agreement between MBPE and the solutions over individual frequencies is observed.

  9. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things

    PubMed Central

    Akan, Ozgur B.

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019

  10. Topological quantum error correction in the Kitaev honeycomb model

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  11. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  12. Newtonian nudging for a Richards equation-based distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.

  13. Newtonian Nudging For A Richards Equation-based Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Paniconi, C.; Marrocu, M.; Putti, M.; Verbunt, M.

    In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimila- tion scheme. Nudging is shown to be successful in improving the hydrological sim- ulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitiv- ity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexi- ble, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be read- ily extended to any features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation techniques in a Richards equation-based hydrological model.

  14. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  15. Numerical Activities and Information Learned at Home Link to the Exact Numeracy Skills in 5–6 Years-Old Children

    PubMed Central

    Benavides-Varela, Silvia; Butterworth, Brian; Burgio, Francesca; Arcara, Giorgio; Lucangeli, Daniela; Semenza, Carlo

    2016-01-01

    It is currently accepted that certain activities within the family environment contribute to develop early numerical skills before schooling. However, it is unknown whether this early experience influences both the exact and the approximate representation of numbers, and if so, which is more important for numerical tasks. In the present study the mathematical performance of 110 children (mean age 5 years 11 months) was evaluated using a battery that included tests of approximate and exact numerical abilities, as well as everyday numerical problems. Moreover, children were assessed on their knowledge of number information learned at home. The parents of the participants provided information regarding daily activities of the children and socio-demographic characteristics of the family. The results showed that the amount of numerical information learned at home was a significant predictor of participants' performance on everyday numerical problems and exact number representations, even after taking account of age, memory span and socio-economic and educational status of the family. We also found that particular activities, such as board games, correlate with the children's counting skills, which are foundational for arithmetic. Crucially, tests relying on approximate representations were not predicted by the numerical knowledge acquired at home. The present research supports claims about the importance and nature of home experiences in the child's acquisition of mathematics. PMID:26903902

  16. Application of variational principles and adjoint integrating factors for constructing numerical GFD models

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2015-04-01

    The proposed method is considered on an example of hydrothermodynamics and atmospheric chemistry models [1,2]. In the development of the existing methods for constructing numerical schemes possessing the properties of total approximation for operators of multiscale process models, we have developed a new variational technique, which uses the concept of adjoint integrating factors. The technique is as follows. First, a basic functional of the variational principle (the integral identity that unites the model equations, initial and boundary conditions) is transformed using Lagrange's identity and the second Green's formula. As a result, the action of the operators of main problem in the space of state functions is transferred to the adjoint operators defined in the space of sufficiently smooth adjoint functions. By the choice of adjoint functions the order of the derivatives becomes lower by one than those in the original equations. We obtain a set of new balance relationships that take into account the sources and boundary conditions. Next, we introduce the decomposition of the model domain into a set of finite volumes. For multi-dimensional non-stationary problems, this technique is applied in the framework of the variational principle and schemes of decomposition and splitting on the set of physical processes for each coordinate directions successively at each time step. For each direction within the finite volume, the analytical solutions of one-dimensional homogeneous adjoint equations are constructed. In this case, the solutions of adjoint equations serve as integrating factors. The results are the hybrid discrete-analytical schemes. They have the properties of stability, approximation and unconditional monotony for convection-diffusion operators. These schemes are discrete in time and analytic in the spatial variables. They are exact in case of piecewise-constant coefficients within the finite volume and along the coordinate lines of the grid area in each direction on a time step. In each direction, they have tridiagonal structure. They are solved by the sweep method. An important advantage of the discrete-analytical schemes is that the values of derivatives at the boundaries of finite volume are calculated together with the values of the unknown functions. This technique is particularly attractive for problems with dominant convection, as it does not require artificial monotonization and limiters. The same idea of integrating factors is applied in temporal dimension to the stiff systems of equations describing chemical transformation models [2]. The proposed method is applicable for the problems involving convection-diffusion-reaction operators. The work has been partially supported by the Presidium of RAS under Program 43, and by the RFBR grants 14-01-00125 and 14-01-31482. References: 1. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Variational approach and Euler's integrating factors for environmental studies// Computers and Mathematics with Applications, (2014) V.67, Issue 12, P. 2240-2256. 2. V.V.Penenko, E.A.Tsvetova. Variational methods of constructing monotone approximations for atmospheric chemistry models // Numerical analysis and applications, 2013, V. 6, Issue 3, pp 210-220.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.

    The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can bemore » divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.« less

  18. Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes

    NASA Astrophysics Data System (ADS)

    Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan

    2018-04-01

    Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.

  19. Energy analysis in the elliptic restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-07-01

    The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  20. Energy Analysis in the Elliptic Restricted Three-body Problem

    NASA Astrophysics Data System (ADS)

    Qi, Yi; de Ruiter, Anton

    2018-05-01

    The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.

  1. A NURBS-enhanced finite volume solver for steady Euler equations

    NASA Astrophysics Data System (ADS)

    Meng, Xucheng; Hu, Guanghui

    2018-04-01

    In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.

  2. Uranus - Disk structure within the 7300-A methane band

    NASA Technical Reports Server (NTRS)

    Price, M. J.; Franz, O. G.

    1979-01-01

    Orthogonal narrow-band (100 A) photoelectric slit scan photometry of Uranus has been used to infer the basic two-dimensional structure of the disk within the 7300-A methane band. Numerical image reconstruction and restoration techniques have been applied to quantitatively estimate the degrees of polar and limb brightening on the planet. Through partial removal of atmospheric smearing, an effective spatial resolution of approximately 0.9 arcsec has been achieved. Peak polar, limb, and central intensities on the disk are in the respective proportions 3:2:1. In addition, the bright polar feature is displaced from the geometric pole towards the equator of the planet.

  3. A robust optimization methodology for preliminary aircraft design

    NASA Astrophysics Data System (ADS)

    Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.

    2016-05-01

    This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.

  4. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    NASA Astrophysics Data System (ADS)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  5. Monte Carlo simulation of a noisy quantum channel with memory.

    PubMed

    Akhalwaya, Ismail; Moodley, Mervlyn; Petruccione, Francesco

    2015-10-01

    The classical capacity of quantum channels is well understood for channels with uncorrelated noise. For the case of correlated noise, however, there are still open questions. We calculate the classical capacity of a forgetful channel constructed by Markov switching between two depolarizing channels. Techniques have previously been applied to approximate the output entropy of this channel and thus its capacity. In this paper, we use a Metropolis-Hastings Monte Carlo approach to numerically calculate the entropy. The algorithm is implemented in parallel and its performance is studied and optimized. The effects of memory on the capacity are explored and previous results are confirmed to higher precision.

  6. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  7. Optical method for distance and displacement measurements of the probe-sample separation in a scanning near-field optical microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria, L.; Siller, H. R.; Garcia-Ortiz, C. E., E-mail: cegarcia@cicese.mx

    In this work, we present an alternative optical method to determine the probe-sample separation distance in a scanning near-field optical microscope. The experimental method is based in a Lloyd’s mirror interferometer and offers a measurement precision deviation of ∼100 nm using digital image processing and numerical analysis. The technique can also be strategically combined with the characterization of piezoelectric actuators and stability evaluation of the optical system. It also opens the possibility for the development of an automatic approximation control system valid for probe-sample distances from 5 to 500 μm.

  8. Flight Validation of Mars Mission Technologies

    NASA Technical Reports Server (NTRS)

    Eberspeaker, P. J.

    2000-01-01

    Effective exploration and characterization of Mars will require the deployment of numerous surface probes, tethered balloon stations and free-flying balloon systems as well as larger landers and orbiting satellite systems. Since launch opportunities exist approximately every two years it is extremely critical that each and every mission maximize its potential for success. This will require significant testing of each system in an environment that simulates the actual operational environment as closely as possible. Analytical techniques and laboratory testing goes a long way in mitigating the inherent risks associated with space exploration, however they fall sort of accurately simulating the unpredictable operational environment in which these systems must function.

  9. Application of AWE Along with a Combined FEM/MoM Technique to Compute RCS of a Cavity-Backed Aperture in an Infinite Ground Plane Over a Frequency Range

    NASA Technical Reports Server (NTRS)

    Reddy, C.J.; Deshpande, M.D.

    1997-01-01

    A hybrid Finite Element Method (FEM)/Method of Moments (MoM) technique in conjunction with the Asymptotic Waveform Evaluation (AWE) technique is applied to obtain radar cross section (RCS) of a cavity-backed aperture in an infinite ground plane over a frequency range. The hybrid FEM/MoM technique when applied to the cavity-backed aperture results in an integro-differential equation with electric field as the unknown variable, the electric field obtained from the solution of the integro-differential equation is expanded in Taylor series. The coefficients of the Taylor series are obtained using the frequency derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. The series is then matched via the Pade approximation to a rational polynomial, which can be used to extrapolate the electric field over a frequency range. The RCS of the cavity-backed aperture is calculated using the electric field at different frequencies. Numerical results for a rectangular cavity, a circular cavity, and a material filled cavity are presented over a frequency range. Good agreement between AWE and the exact solution over the frequency range is obtained.

  10. Lubrication of nonconformal contacts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jeng, Y. R.

    1985-01-01

    Minimum film thickness results for piezoviscous-rigid regime of lubrication are developed for a compressible Newtonian fluid with Roelands viscosity. The results provide a basis for the analysis and design of a wide range of machine elements operating in the piezoviscous-rigid regime of lubrication. A new numerical method of calculating elastic deformation in contact stresses is developed using a biquadratic polynomial to approximate the pressure distribution on the whole domain analyzed. The deformation of every node is expressed as a linear combination of the nodal pressures whose coefficients can be combined into an influence coefficient matrix. This approach has the advantages of improved numerical accuracy, less computing time and smaller storage size required for influence matrix. The ideal elastohydrodynamic lubrication is extended to real bearing systems in order to gain an understanding of failure mechanisms in machine elements. The improved elastic deformation calculation is successfully incorporated into the EHL numerical scheme. Using this revised numerical technique and the flow factor model developed by Patir and Cheng (1978) the surface roughness effects on the elastohydrodynamic lubrication of point contact is considered. Conditions typical of an EHL contact in the piezoviscous-elastic regime entrained in pure rolling are investigated. Results are compared with the smooth surface solutions. Experiments are conducted to study the transient EHL effects in instrument ball bearings.

  11. From the paddle to the beach - A Boussinesq shallow water numerical wave tank based on Madsen and Sørensen's equations

    NASA Astrophysics Data System (ADS)

    Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.

    2012-01-01

    This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.

  12. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    NASA Astrophysics Data System (ADS)

    Burger, Eric M.

    This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.

  13. A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model

    NASA Astrophysics Data System (ADS)

    Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled

    2017-02-01

    We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila's Godunov-type scheme [39] and Tokareva-Toro's HLLC scheme [44]. The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.

  14. A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coquel, Frédéric, E-mail: frederic.coquel@cmap.polytechnique.fr; Hérard, Jean-Marc, E-mail: jean-marc.herard@edf.fr; Saleh, Khaled, E-mail: saleh@math.univ-lyon1.fr

    We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer–Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in for the isentropic Baer–Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound aremore » also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer–Nunziato model, namely Schwendeman–Wahle–Kapila's Godunov-type scheme and Tokareva–Toro's HLLC scheme . The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.« less

  15. Numerical scheme approximating solution and parameters in a beam equation

    NASA Astrophysics Data System (ADS)

    Ferdinand, Robert R.

    2003-12-01

    We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.

  16. Numerical modeling and analytical evaluation of light absorption by gold nanostars

    NASA Astrophysics Data System (ADS)

    Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery

    2018-04-01

    In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.

  17. Understanding the Mapping between Numerical Approximation and Number Words: Evidence from Williams Syndrome and Typical Development

    ERIC Educational Resources Information Center

    Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin; Landau, Barbara

    2014-01-01

    All numerate humans have access to two systems of number representation: an exact system that is argued to be based on language and that supports formal mathematics, and an Approximate Number System (ANS) that is present at birth and appears independent of language. Here we examine the interaction between these two systems by comparing the…

  18. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  19. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, John Nicolas; Elman, Howard; Shuttleworth, Robert R.

    2007-04-01

    In recent years, considerable effort has been placed on developing efficient and robust solution algorithms for the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-based methods, such as SIMPLE, and purely algebraic preconditioners based on the approximation of the Schur complement. All these techniques can be represented as approximate block factorization (ABF) type preconditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an adaptation of a generalized approximate factorization of themore » Navier-Stokes system first presented in [25]. This taxonomy illuminates the similarities and differences among these preconditioners and the central role played by efficient approximation of certain Schur complement operators. We then present a parallel computational study that examines the performance of these methods and compares them to an additive Schwarz domain decomposition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed domains and inflow/outflow systems on both structured and unstructured meshes. The numerical experiments are performed using MPSalsa, a stabilized finite element code.« less

  20. Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2018-03-01

    A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.

  1. Semigroup theory and numerical approximation for equations in linear viscoelasticity

    NASA Technical Reports Server (NTRS)

    Fabiano, R. H.; Ito, K.

    1990-01-01

    A class of abstract integrodifferential equations used to model linear viscoelastic beams is investigated analytically, applying a Hilbert-space approach. The basic equation is rewritten as a Cauchy problem, and its well-posedness is demonstrated. Finite-dimensional subspaces of the state space and an estimate of the state operator are obtained; approximation schemes for the equations are constructed; and the convergence is proved using the Trotter-Kato theorem of linear semigroup theory. The actual convergence behavior of different approximations is demonstrated in numerical computations, and the results are presented in tables.

  2. On recent advances and future research directions for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.; Manhardt, P. D.

    1986-01-01

    This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.

  3. New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models

    NASA Astrophysics Data System (ADS)

    Toufik, Mekkaoui; Atangana, Abdon

    2017-10-01

    Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.

  4. Scattering Effects of Solar Panels on Space Station Antenna Performance

    NASA Technical Reports Server (NTRS)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  5. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  6. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    DOE PAGES

    Vincenti, H.; Vay, J. -L.

    2015-11-22

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  7. An approximation technique for predicting the transient response of a second order nonlinear equation

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Baumgarten, J. R.

    1975-01-01

    An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.

  8. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  9. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  10. Desorption electrospray ionization-mass spectrometry for the detection of analytes extracted by thin-film molecularly imprinted polymers.

    PubMed

    Van Biesen, Geert; Wiseman, Justin M; Li, Jessica; Bottaro, Christina S

    2010-09-01

    Desorption electrospray ionization-mass spectrometry (DESI-MS) is a powerful technique for the analysis of solid and liquid surfaces that has found numerous applications in the few years since its invention. For the first time, it is applied to the detection of analytes extracted by molecularly imprinted polymers (MIPs) in a thin-film format. MIPs formed with 2,4-dichlorophenoxyacetic acid (2,4-D) as the template were used for the extraction of this analyte from aqueous solutions spiked at concentrations of 0.0050-2.0 mg L(-1) (approximately 2 x 10(-8) to approximately 1 x 10(-5) M). The response was linear up to 0.50 mg L(-1), and then levelled off due to saturation of the active sites of the MIP. In MS/MS mode, the signal at 0.0050 mg L(-1) was still an order of magnitude higher than the signal of a blank. The MIP DESI-MS approach was also used for the analysis of tap water and river water spiked with 2,4-D and four analogues, which indicated that these analogues were also extracted to various extents. For practical applications of the MIP, a detection technique is required that can distinguish between these structurally similar compounds, and DESI-MS fulfills this purpose.

  11. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  12. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.

  13. CMB weak-lensing beyond the Born approximation: a numerical approach

    NASA Astrophysics Data System (ADS)

    Fabbian, Giulio; Calabrese, Matteo; Carbone, Carmelita

    2018-02-01

    We perform a complete study of the gravitational lensing effect beyond the Born approximation on the Cosmic Microwave Background (CMB) anisotropies using a multiple-lens raytracing technique through cosmological N-body simulations of the DEMNUni suite. The impact of second-order effects accounting for the non-linear evolution of large-scale structures is evaluated propagating for the first time the full CMB lensing jacobian together with the light rays trajectories. We carefully investigate the robustness of our approach against several numerical effects in the raytracing procedure and in the N-body simulation itself, and find no evidence of large contaminations. We discuss the impact of beyond-Born corrections on lensed CMB observables, and compare our results with recent analytical predictions that appeared in the literature, finding a good agreement, and extend these results to smaller angular scales. We measure the gravitationally-induced CMB polarization rotation that appears in the geodesic equation at second order, and compare this result with the latest analytical predictions. We then present the detection prospect of beyond-Born effects with the future CMB-S4 experiment. We show that corrections to the temperature power spectrum can be measured only if a good control of the extragalactic foregrounds is achieved. Conversely, the beyond-Born corrections on E and B-modes power spectra will be much more difficult to detect.

  14. A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Tayebi, A.; Shekari, Y.; Heydari, M. H.

    2017-07-01

    Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.

  15. State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.

    2015-06-01

    The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.

  16. Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues

    PubMed Central

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-01

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue. PMID:25603180

  17. Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues.

    PubMed

    Zhang, Ze-Wei; Wang, Hui; Qin, Qing-Hua

    2015-01-16

    A meshless numerical scheme combining the operator splitting method (OSM), the radial basis function (RBF) interpolation, and the method of fundamental solutions (MFS) is developed for solving transient nonlinear bioheat problems in two-dimensional (2D) skin tissues. In the numerical scheme, the nonlinearity caused by linear and exponential relationships of temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the analysis, the OSM is used first to separate the Laplacian operator and the nonlinear source term, and then the second-order time-stepping schemes are employed for approximating two splitting operators to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. Subsequently, the RBF interpolation and the MFS involving the fundamental solution of the Laplace equation are respectively employed to obtain approximated particular and homogeneous solutions of the nonhomogeneous Helmholtz-type governing equation. Finally, the full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations for determining unknowns at each time step. The proposed method is verified by comparison of other methods. Furthermore, the sensitivity of the coefficients in the cases of a linear and an exponential relationship of TDBPR is investigated to reveal their bioheat effect on the skin tissue.

  18. Analysis of control system responses for aircraft stability and efficient numerical techniques for real-time simulations

    NASA Astrophysics Data System (ADS)

    Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin

    2017-01-01

    The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.

  19. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.

    PubMed

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-07

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G') and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G' and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green's function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G' and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  20. A diffraction correction for storage and loss moduli imaging using radiation force based elastography

    NASA Astrophysics Data System (ADS)

    Budelli, Eliana; Brum, Javier; Bernal, Miguel; Deffieux, Thomas; Tanter, Mickaël; Lema, Patricia; Negreira, Carlos; Gennisson, Jean-Luc

    2017-01-01

    Noninvasive evaluation of the rheological behavior of soft tissues may provide an important diagnosis tool. Nowadays, available commercial ultrasound systems only provide shear elasticity estimation by shear wave speed assessment under the hypothesis of a purely elastic model. However, to fully characterize the rheological behavior of tissues, given by its storage (G‧) and loss (G″) moduli, it is necessary to estimate both: shear wave speed and shear wave attenuation. Most elastography techniques use the acoustic radiation force to generate shear waves. For this type of source the shear waves are not plane and a diffraction correction is needed to properly estimate the shear wave attenuation. The use of a cylindrical wave approximation to evaluate diffraction has been proposed by other authors before. Here the validity of such approximation is numerically and experimentally revisited. Then, it is used to generate images of G‧ and G″ in heterogeneous viscoelastic mediums. A simulation algorithm based on the anisotropic and viscoelastic Green’s function was used to establish the validity of the cylindrical approximation. Moreover, two experiments were carried out: a transient elastography experiment where plane shear waves were generated using a vibrating plate and a SSI experiment that uses the acoustic radiation force to generate shear waves. For both experiments the shear wave propagation was followed with an ultrafast ultrasound scanner. Then, the shear wave velocity and shear wave attenuation were recovered from the phase and amplitude decay versus distance respectively. In the SSI experiment the cylindrical approximation was applied to correct attenuation due to diffraction effects. The numerical and experimental results validate the use of a cylindrical correction to assess shear wave attenuation. Finally, by applying the cylindrical correction G‧ and G″ images were generated in heterogeneous phantoms and a preliminary in vivo feasibility study was carried out in the human liver.

  1. Multi-element least square HDMR methods and their applications for stochastic multiscale model reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Xinping, E-mail: exping@126.com

    Stochastic multiscale modeling has become a necessary approach to quantify uncertainty and characterize multiscale phenomena for many practical problems such as flows in stochastic porous media. The numerical treatment of the stochastic multiscale models can be very challengeable as the existence of complex uncertainty and multiple physical scales in the models. To efficiently take care of the difficulty, we construct a computational reduced model. To this end, we propose a multi-element least square high-dimensional model representation (HDMR) method, through which the random domain is adaptively decomposed into a few subdomains, and a local least square HDMR is constructed in eachmore » subdomain. These local HDMRs are represented by a finite number of orthogonal basis functions defined in low-dimensional random spaces. The coefficients in the local HDMRs are determined using least square methods. We paste all the local HDMR approximations together to form a global HDMR approximation. To further reduce computational cost, we present a multi-element reduced least-square HDMR, which improves both efficiency and approximation accuracy in certain conditions. To effectively treat heterogeneity properties and multiscale features in the models, we integrate multiscale finite element methods with multi-element least-square HDMR for stochastic multiscale model reduction. This approach significantly reduces the original model's complexity in both the resolution of the physical space and the high-dimensional stochastic space. We analyze the proposed approach, and provide a set of numerical experiments to demonstrate the performance of the presented model reduction techniques. - Highlights: • Multi-element least square HDMR is proposed to treat stochastic models. • Random domain is adaptively decomposed into some subdomains to obtain adaptive multi-element HDMR. • Least-square reduced HDMR is proposed to enhance computation efficiency and approximation accuracy in certain conditions. • Integrating MsFEM and multi-element least square HDMR can significantly reduce computation complexity.« less

  2. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration

    NASA Astrophysics Data System (ADS)

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-01

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  3. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.

    PubMed

    Eshuis, Henk; Yarkony, Julian; Furche, Filipp

    2010-06-21

    The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.

  4. The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1995-01-01

    A nontraditional numerical method for solving conservation laws is being developed. The new method is designed from a physicist's perspective, i.e., its development is based more on physics than numerics. Even though it uses only the simplest approximation techniques, a 2D time-marching Euler solver developed recently using the new method is capable of generating nearly perfect solutions for a 2D shock reflection problem used by Helen Yee and others. Moreover, a recent application of this solver to computational aeroacoustics (CAA) problems reveals that: (1) accuracy of its results is comparable to that of a 6th order compact difference scheme even though nominally the current solver is only of 2nd-order accuracy; (2) generally, the non-reflecting boundary condition can be implemented in a simple way without involving characteristic variables; and (3) most importantly, the current solver is capable of handling both continuous and discontinuous flows very well and thus provides a unique numerical tool for solving those flow problems where the interactions between sound waves and shocks are important, such as the noise field around a supersonic over- or under-expansion jet.

  5. Microscopic predictions of fission yields based on the time dependent GCM formalism

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  6. Numerical solution of the time fractional reaction-diffusion equation with a moving boundary

    NASA Astrophysics Data System (ADS)

    Zheng, Minling; Liu, Fawang; Liu, Qingxia; Burrage, Kevin; Simpson, Matthew J.

    2017-06-01

    A fractional reaction-diffusion model with a moving boundary is presented in this paper. An efficient numerical method is constructed to solve this moving boundary problem. Our method makes use of a finite difference approximation for the temporal discretization, and spectral approximation for the spatial discretization. The stability and convergence of the method is studied, and the errors of both the semi-discrete and fully-discrete schemes are derived. Numerical examples, motivated by problems from developmental biology, show a good agreement with the theoretical analysis and illustrate the efficiency of our method.

  7. Numerical methods for stiff systems of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Flaherty, J. E.; Omalley, R. E., Jr.

    1983-01-01

    Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.

  8. Moving along the number line: operational momentum in nonsymbolic arithmetic.

    PubMed

    McCrink, Koleen; Dehaene, Stanislas; Dehaene-Lambertz, Ghislaine

    2007-11-01

    Can human adults perform arithmetic operations with large approximate numbers, and what effect, if any, does an internal spatial-numerical representation of numerical magnitude have on their responses? We conducted a psychophysical study in which subjects viewed several hundred short videos of sets of objects being added or subtracted from one another and judged whether the final numerosity was correct or incorrect. Over a wide range of possible outcomes, the subjects' responses peaked at the approximate location of the true numerical outcome and gradually tapered off as a function of the ratio of the true and proposed outcomes (Weber's law). Furthermore, an operational momentum effect was observed, whereby addition problems were overestimated and subtraction problems were underestimated. The results show that approximate arithmetic operates according to precise quantitative rules, perhaps analogous to those characterizing movement on an internal continuum.

  9. Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Abd-Elhameed, W. M.

    2005-09-01

    We present a double ultraspherical spectral methods that allow the efficient approximate solution for the parabolic partial differential equations in a square subject to the most general inhomogeneous mixed boundary conditions. The differential equations with their boundary and initial conditions are reduced to systems of ordinary differential equations for the time-dependent expansion coefficients. These systems are greatly simplified by using tensor matrix algebra, and are solved by using the step-by-step method. Numerical applications of how to use these methods are described. Numerical results obtained compare favorably with those of the analytical solutions. Accurate double ultraspherical spectral approximations for Poisson's and Helmholtz's equations are also noted. Numerical experiments show that spectral approximation based on Chebyshev polynomials of the first kind is not always better than others based on ultraspherical polynomials.

  10. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.

  11. Triangle based TVD schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Durlofsky, Louis J.; Osher, Stanley; Engquist, Bjorn

    1990-01-01

    A triangle based total variation diminishing (TVD) scheme for the numerical approximation of hyperbolic conservation laws in two space dimensions is constructed. The novelty of the scheme lies in the nature of the preprocessing of the cell averaged data, which is accomplished via a nearest neighbor linear interpolation followed by a slope limiting procedures. Two such limiting procedures are suggested. The resulting method is considerably more simple than other triangle based non-oscillatory approximations which, like this scheme, approximate the flux up to second order accuracy. Numerical results for linear advection and Burgers' equation are presented.

  12. A low-dimensional analogue of holographic baryons

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Sutcliffe, Paul

    2014-04-01

    Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.

  13. Ergodicity of the Stochastic Nosé-Hoover Heat Bath

    NASA Astrophysics Data System (ADS)

    Wei Chung Lo,; Baowen Li,

    2010-07-01

    We numerically study the ergodicity of the stochastic Nosé-Hoover heat bath whose formalism is based on the Markovian approximation for the Nosé-Hoover equation [J. Phys. Soc. Jpn. 77 (2008) 103001]. The approximation leads to a Langevin-like equation driven by a fluctuating dissipative force and multiplicative Gaussian white noise. The steady state solution of the associated Fokker-Planck equation is the canonical distribution. We investigate the dynamics of this method for the case of (i) free particle, (ii) nonlinear oscillators and (iii) lattice chains. We derive the Fokker-Planck equation for the free particle and present approximate analytical solution for the stationary distribution in the context of the Markovian approximation. Numerical simulation results for nonlinear oscillators show that this method results in a Gaussian distribution for the particles velocity. We also employ the method as heat baths to study nonequilibrium heat flow in one-dimensional Fermi-Pasta-Ulam (FPU-β) and Frenkel-Kontorova (FK) lattices. The establishment of well-defined temperature profiles are observed only when the lattice size is large. Our results provide numerical justification for such Markovian approximation for classical single- and many-body systems.

  14. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  15. The stability of two-phase flow over a swept-wing

    NASA Technical Reports Server (NTRS)

    Coward, Adrian; Hall, Philip

    1994-01-01

    We use numerical and asymptotic techniques to study the stability of a two-phase air/water flow above a flat porous plate. This flow is a model of the boundary layer which forms on a yawed cylinder and can be used as a useful approximation to the air flow over swept wings during heavy rainfall. We show that the interface between the water and air layers can significantly destabilize the flow, leading to traveling wave disturbances which move along the attachment line. This instability occurs for lower Reynolds numbers than in the case of the absence of a water layer. We also investigate the instability of inviscid stationary modes. We calculate the effective wavenumber and orientation of the stationary disturbance when the fluids have identical physical properties. Using perturbation methods we obtain corrections due to a small stratification in viscosity, thus quantifying the interfacial effects. Our analytical results are in agreement with the numerical solution which we obtain for arbitrary fluid properties.

  16. Solution of 3-dimensional time-dependent viscous flows. Part 3: Application to turbulent and unsteady flows

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1982-01-01

    A numerical scheme is developed for solving the time dependent, three dimensional compressible viscous flow equations to be used as an aid in the design of helicopter rotors. In order to further investigate the numerical procedure, the computer code developed to solve an approximate form of the three dimensional unsteady Navier-Stokes equations employing a linearized block implicit technique in conjunction with a QR operator scheme is tested. Results of calculations are presented for several two dimensional boundary layer flows including steady turbulent and unsteady laminar cases. A comparison of fourth order and second order solutions indicate that increased accuracy can be obtained without any significant increases in cost (run time). The results of the computations also indicate that the computer code can be applied to more complex flows such as those encountered on rotating airfoils. The geometry of a symmetric NACA four digit airfoil is considered and the appropriate geometrical properties are computed.

  17. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.

    PubMed

    Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas

    2016-09-01

    A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

  18. Gaussian representation of high-intensity focused ultrasound beams.

    PubMed

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  19. Theoretical analysis of exponential transversal method of lines for the diffusion equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, A.; Raydan, M.; Campo, A.

    1996-12-31

    Recently a new approximate technique to solve the diffusion equation was proposed by Campo and Salazar. This new method is inspired on the Method of Lines (MOL) with some insight coming from the method of separation of variables. The proposed method, the Exponential Transversal Method of Lines (ETMOL), utilizes an exponential variation to improve accuracy in the evaluation of the time derivative. Campo and Salazar have implemented this method in a wide range of heat/mass transfer applications and have obtained surprisingly good numerical results. In this paper, the authors study the theoretical properties of ETMOL in depth. In particular, consistency,more » stability and convergence are established in the framework of the heat/mass diffusion equation. In most practical applications the method presents a very reduced truncation error in time and its different versions are proven to be unconditionally stable in the Fourier sense. Convergence of the solutions is then established. The theory is corroborated by several analytical/numerical experiments.« less

  20. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

Top