The generalization ability of online SVM classification based on Markov sampling.
Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang
2015-03-01
In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.
The normative structure of mathematization in systematic biology.
Sterner, Beckett; Lidgard, Scott
2014-06-01
We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to formalize the work of classification, but Mayr introduced a qualitative formalism based on human judgment for determining the taxonomic rank of populations, while the numerical taxonomists introduced a quantitative formalism based on automated procedures for computing classifications. The key contrast between Mayr and the numerical taxonomists is how they conceptualized the temporal structure of the workflow of classification, specifically where they allowed meta-level discourse about difficulties in producing the classification. Copyright © 2014. Published by Elsevier Ltd.
World Reference Base | FAO SOILS PORTAL | Food and Agriculture
> Soil classification > World Reference Base FAO SOILS PORTAL Survey Assessment Biodiversity Management Degradation/Restoration Policies/Governance Publications Soil properties Soil classification World Reference Base FAO legend USDA soil taxonomy Universal soil classification National Systems Numerical
A structural classification for inland northwest forest vegetation.
Kevin L. O' Hara; Penelope A. Latham; Paul Hessburg; Bradley G. Smith
1996-01-01
Existing approaches to vegetation classification range from those bassed on potential vegetation to others based on existing vegetation composition, or existing structural or physiognomic characteristics. Examples of these classifications are numerous, and in some cases, date back hundreds of years (Mueller-Dumbois and Ellenberg 1974). Small-scale or stand level...
Sugawara, Kotaro; Yamashita, Hiroharu; Uemura, Yukari; Mitsui, Takashi; Yagi, Koichi; Nishida, Masato; Aikou, Susumu; Mori, Kazuhiko; Nomura, Sachiyo; Seto, Yasuyuki
2017-10-01
The current eighth tumor node metastasis lymph node category pathologic lymph node staging system for esophageal squamous cell carcinoma is based solely on the number of metastatic nodes and does not consider anatomic distribution. We aimed to assess the prognostic capability of the eighth tumor node metastasis pathologic lymph node staging system (numeric-based) compared with the 11th Japan Esophageal Society (topography-based) pathologic lymph node staging system in patients with esophageal squamous cell carcinoma. We retrospectively reviewed the clinical records of 289 patients with esophageal squamous cell carcinoma who underwent esophagectomy with extended lymph node dissection during the period from January 2006 through June 2016. We compared discrimination abilities for overall survival, recurrence-free survival, and cancer-specific survival between these 2 staging systems using C-statistics. The median number of dissected and metastatic nodes was 61 (25% to 75% quartile range, 45 to 79) and 1 (25% to 75% quartile range, 0 to 3), respectively. The eighth tumor node metastasis pathologic lymph node staging system had a greater ability to accurately determine overall survival (C-statistics: tumor node metastasis classification, 0.69, 95% confidence interval, 0.62-0.76; Japan Esophageal Society classification; 0.65, 95% confidence interval, 0.58-0.71; P = .014) and cancer-specific survival (C-statistics: tumor node metastasis classification, 0.78, 95% confidence interval, 0.70-0.87; Japan Esophageal Society classification; 0.72, 95% confidence interval, 0.64-0.80; P = .018). Rates of total recurrence rose as the eighth tumor node metastasis pathologic lymph node stage increased, while stratification of patients according to the topography-based node classification system was not feasible. Numeric nodal staging is an essential tool for stratifying the oncologic outcomes of patients with esophageal squamous cell carcinoma even in the cohort in which adequate numbers of lymph nodes were harvested. Copyright © 2017 Elsevier Inc. All rights reserved.
The distance function effect on k-nearest neighbor classification for medical datasets.
Hu, Li-Yu; Huang, Min-Wei; Ke, Shih-Wen; Tsai, Chih-Fong
2016-01-01
K-nearest neighbor (k-NN) classification is conventional non-parametric classifier, which has been used as the baseline classifier in many pattern classification problems. It is based on measuring the distances between the test data and each of the training data to decide the final classification output. Since the Euclidean distance function is the most widely used distance metric in k-NN, no study examines the classification performance of k-NN by different distance functions, especially for various medical domain problems. Therefore, the aim of this paper is to investigate whether the distance function can affect the k-NN performance over different medical datasets. Our experiments are based on three different types of medical datasets containing categorical, numerical, and mixed types of data and four different distance functions including Euclidean, cosine, Chi square, and Minkowsky are used during k-NN classification individually. The experimental results show that using the Chi square distance function is the best choice for the three different types of datasets. However, using the cosine and Euclidean (and Minkowsky) distance function perform the worst over the mixed type of datasets. In this paper, we demonstrate that the chosen distance function can affect the classification accuracy of the k-NN classifier. For the medical domain datasets including the categorical, numerical, and mixed types of data, K-NN based on the Chi square distance function performs the best.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
Novel methodologies for spectral classification of exon and intron sequences
NASA Astrophysics Data System (ADS)
Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.
2012-12-01
Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.
Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.
Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel
2017-06-01
Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.
The generalization ability of SVM classification based on Markov sampling.
Xu, Jie; Tang, Yuan Yan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang; Zhang, Baochang
2015-06-01
The previously known works studying the generalization ability of support vector machine classification (SVMC) algorithm are usually based on the assumption of independent and identically distributed samples. In this paper, we go far beyond this classical framework by studying the generalization ability of SVMC based on uniformly ergodic Markov chain (u.e.M.c.) samples. We analyze the excess misclassification error of SVMC based on u.e.M.c. samples, and obtain the optimal learning rate of SVMC for u.e.M.c. We also introduce a new Markov sampling algorithm for SVMC to generate u.e.M.c. samples from given dataset, and present the numerical studies on the learning performance of SVMC based on Markov sampling for benchmark datasets. The numerical studies show that the SVMC based on Markov sampling not only has better generalization ability as the number of training samples are bigger, but also the classifiers based on Markov sampling are sparsity when the size of dataset is bigger with regard to the input dimension.
Classification of time series patterns from complex dynamic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schryver, J.C.; Rao, N.
1998-07-01
An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately,more » the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.« less
Stretchy binary classification.
Toh, Kar-Ann; Lin, Zhiping; Sun, Lei; Li, Zhengguo
2018-01-01
In this article, we introduce an analytic formulation for compressive binary classification. The formulation seeks to solve the least ℓ p -norm of the parameter vector subject to a classification error constraint. An analytic and stretchable estimation is conjectured where the estimation can be viewed as an extension of the pseudoinverse with left and right constructions. Our variance analysis indicates that the estimation based on the left pseudoinverse is unbiased and the estimation based on the right pseudoinverse is biased. Sparseness can be obtained for the biased estimation under certain mild conditions. The proposed estimation is investigated numerically using both synthetic and real-world data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
Development of a Procurement Task Classification Scheme.
1987-12-01
Office of Sci- entific Research, Arlington, Virginia, January 1970. Tornow , Walter W . and Pinto, Patrick R. "The Development of a Man- agerial Job...classification. [Ref. 4:271 -. 20 6 %° w Numerical taxonomy proponents hold [Ref. 4:271, ... that the relationships of contiguity and similarity should be...solving. 22 W i * These primitive categories are based on a sorting of learning pro- cesses into classes that have obvious differences at the
Influence of nuclei segmentation on breast cancer malignancy classification
NASA Astrophysics Data System (ADS)
Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam
2009-02-01
Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.
Argumentation Based Joint Learning: A Novel Ensemble Learning Approach
Xu, Junyi; Yao, Li; Li, Le
2015-01-01
Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359
Na, X D; Zang, S Y; Wu, C S; Li, W L
2015-11-01
Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.
Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores
ERIC Educational Resources Information Center
Douglas, Karen M.; Mislevy, Robert J.
2010-01-01
Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…
NASA Astrophysics Data System (ADS)
Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.
2017-09-01
Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.
NASA Astrophysics Data System (ADS)
Hoffmann, Robert; Liebich, Robert
2018-01-01
This paper states a unique classification to understand the source of the subharmonic vibrations of gas foil bearing (GFB) systems, which will experimentally and numerically tested. The classification is based on two cases, where an isolated system is assumed: Case 1 considers a poorly balance rotor, which results in increased displacement during operation and interacts with the nonlinear progressive structure. It is comparable to a Duffing-Oscillator. In contrast, for case 2 a well/perfectly balanced rotor is assumed. Hence, the only source of nonlinear subharmonic whirling results from the fluid film self-excitation. Experimental tests with different unbalance levels and GFB modifications confirm these assumptions. Furthermore, simulations are able to predict the self-excitations and synchronous and subharmonic resonances of the experimental test. The numerical model is based on a linearised eigenvalue problem. The GFB system uses linearised stiffness and damping parameters by applying a perturbation method on the Reynolds Equation. The nonlinear bump structure is simplified by a link-spring model. It includes Coulomb friction effects inside the elastic corrugated structure and captures the interaction between single bumps.
USDA-ARS?s Scientific Manuscript database
Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
NASA Astrophysics Data System (ADS)
Trigunasih, N. M.; Lanya, I.; Subadiyasa, N. N.; Hutauruk, J.
2018-02-01
Increasing number and activity of the population to meet the needs of their lives greatly affect the utilization of land resources. Land needs for activities of the population continue to grow, while the availability of land is limited. Therefore, there will be changes in land use. As a result, the problems faced by land degradation and conversion of agricultural land become non-agricultural. The objectives of this research are: (1) to determine parameter of spatial numerical classification of sustainable food agriculture in Badung Regency and Denpasar City (2) to know the projection of food balance in Badung Regency and Denpasar City in 2020, 2030, 2040, and 2050 (3) to specify of function of spatial numerical classification in the making of zonation model of sustainable agricultural land area in Badung regency and Denpasar city (4) to determine the appropriate model of the area to protect sustainable agricultural land in spatial and time scale in Badung and Denpasar regencies. The method used in this research was quantitative method include: survey, soil analysis, spatial data development, geoprocessing analysis (spatial analysis of overlay and proximity analysis), interpolation of raster digital elevation model data, and visualization (cartography). Qualitative methods consisted of literature studies, and interviews. The parameters observed for a total of 11 parameters Badung regency and Denpasar as much as 9 parameters. Numerical classification parameter analysis results used the standard deviation and the mean of the population data and projections relationship rice field in the food balance sheet by modelling. The result of the research showed that, the number of different numerical classification parameters in rural areas (Badung) and urban areas (Denpasar), in urban areas the number of parameters is less than the rural areas. The based on numerical classification weighting and scores generate population distribution parameter analysis results of a standard deviation and average value. Numerical classification produced 5 models, which was divided into three zones are sustainable neighbourhood, buffer and converted in Denpasar and Badung. The results of Population curve parameter analysis in Denpasar showed normal curve, in contrast to the Badung regency showed abnormal curve, therefore Denpasar modeling carried out throughout the region, while in the Badung regency modeling done in each district. Relationship modelling and projections lands role in food balance in Badung views of sustainable land area whereas in Denpasar seen from any connection to the green open spaces in the spatial plan Denpasar 2011-2031. Modelling in Badung (rural) is different in Denpasar (urban), as well as population curve parameter analysis results in Badung showed abnormal curve while in Denpasar showed normal curve. Relationship modelling and projections lands role in food balance in the Badung regency sustainable in terms of land area, while in Denpasar in terms of linkages with urban green space in Denpasar City’s regional landuse plan of 2011-2031.
Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar
2013-12-01
To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.
Classification of wheat: Badhwar profile similarity technique
NASA Technical Reports Server (NTRS)
Austin, W. W.
1980-01-01
The Badwar profile similarity classification technique used successfully for classification of corn was applied to spring wheat classifications. The software programs and the procedures used to generate full-scene classifications are presented, and numerical results of the acreage estimations are given.
USDA-ARS?s Scientific Manuscript database
The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.
Shabanzadeh, Parvaneh; Yusof, Rubiyah
2015-01-01
Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
Energy-efficiency based classification of the manufacturing workstation
NASA Astrophysics Data System (ADS)
Frumuşanu, G.; Afteni, C.; Badea, N.; Epureanu, A.
2017-08-01
EU Directive 92/75/EC established for the first time an energy consumption labelling scheme, further implemented by several other directives. As consequence, nowadays many products (e.g. home appliances, tyres, light bulbs, houses) have an EU Energy Label when offered for sale or rent. Several energy consumption models of manufacturing equipments have been also developed. This paper proposes an energy efficiency - based classification of the manufacturing workstation, aiming to characterize its energetic behaviour. The concept of energy efficiency of the manufacturing workstation is defined. On this base, a classification methodology has been developed. It refers to specific criteria and their evaluation modalities, together to the definition & delimitation of energy efficiency classes. The energy class position is defined after the amount of energy needed by the workstation in the middle point of its operating domain, while its extension is determined by the value of the first coefficient from the Taylor series that approximates the dependence between the energy consume and the chosen parameter of the working regime. The main domain of interest for this classification looks to be the optimization of the manufacturing activities planning and programming. A case-study regarding an actual lathe classification from energy efficiency point of view, based on two different approaches (analytical and numerical) is also included.
A review of supervised object-based land-cover image classification
NASA Astrophysics Data System (ADS)
Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue
2017-08-01
Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial vehicle) or agricultural sites where it also correlates with the number of targeted classes. More than 95.6% of studies involve an area less than 300 ha, and the spatial resolution of images is predominantly between 0 and 2 m. Furthermore, we identify some methods that may advance supervised object-based image classification. For example, deep learning and type-2 fuzzy techniques may further improve classification accuracy. Lastly, scientists are strongly encouraged to report results of uncertainty studies to further explore the effects of varied factors on supervised object-based image classification.
Zarzo, Manuel
2015-06-01
Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Transformation based endorsement systems
NASA Technical Reports Server (NTRS)
Sudkamp, Thomas
1988-01-01
Evidential reasoning techniques classically represent support for a hypothesis by a numeric value or an evidential interval. The combination of support is performed by an arithmetic rule which often requires restrictions to be placed on the set of possibilities. These assumptions usually require the hypotheses to be exhausitive and mutually exclusive. Endorsement based classification systems represent support for the alternatives symbolically rather than numerically. A framework for constructing endorsement systems is presented in which transformations are defined to generate and update the knowledge base. The interaction of the knowledge base and transformations produces a non-monotonic reasoning system. Two endorsement based reasoning systems are presented to demonstrate the flexibility of the transformational approach for reasoning with ambiguous and inconsistent information.
Peker, Musa; Şen, Baha; Gürüler, Hüseyin
2015-02-01
The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time.
Gupta, Radhey S
2016-07-01
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong
2018-01-01
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Pattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
The use of the modified Cholesky decomposition in divergence and classification calculations
NASA Technical Reports Server (NTRS)
Vanroony, D. L.; Lynn, M. S.; Snyder, C. H.
1973-01-01
The use of the Cholesky decomposition technique is analyzed as applied to the feature selection and classification algorithms used in the analysis of remote sensing data (e.g. as in LARSYS). This technique is approximately 30% faster in classification and a factor of 2-3 faster in divergence, as compared with LARSYS. Also numerical stability and accuracy are slightly improved. Other methods necessary to deal with numerical stablity problems are briefly discussed.
The use of the modified Cholesky decomposition in divergence and classification calculations
NASA Technical Reports Server (NTRS)
Van Rooy, D. L.; Lynn, M. S.; Snyder, C. H.
1973-01-01
This report analyzes the use of the modified Cholesky decomposition technique as applied to the feature selection and classification algorithms used in the analysis of remote sensing data (e.g., as in LARSYS). This technique is approximately 30% faster in classification and a factor of 2-3 faster in divergence, as compared with LARSYS. Also numerical stability and accuracy are slightly improved. Other methods necessary to deal with numerical stability problems are briefly discussed.
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Barthel, Roland
2016-04-01
When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes corresponding to geological descriptors. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria.
A roadmap for natural product discovery based on large-scale genomics and metabolomics
USDA-ARS?s Scientific Manuscript database
Actinobacteria encode a wealth of natural product biosynthetic gene clusters, whose systematic study is complicated by numerous repetitive motifs. By combining several metrics we developed a method for global classification of these gene clusters into families (GCFs) and analyzed the biosynthetic ca...
Galizia, Gennaro; Lieto, Eva; Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele
2017-01-01
In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system.
NASA Astrophysics Data System (ADS)
Li, Bocong; Huang, Qingmei; Lu, Yan; Chen, Songhe; Liang, Rong; Wang, Zhaoping
Objective tongue color analysis is an important research point for tongue diagnosis in Traditional Chinese Medicine. In this paper a research based on the clinical process of diagnosing tongue color is reported. The color data in RGB color space were first transformed into the data in CIELAB color space, and the color gamut of the displayed tongue was obtained. Then a numerical method of tongue color classification based on the Traditional Chinese Medicine (for example: light white tongue, light red tongue, red tongue) was developed. The conclusion is that this research can give the description and classification of the tongue color close to those given by human vision and may be carried out in clinical diagnosis.
Model-Based Building Detection from Low-Cost Optical Sensors Onboard Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Karantzalos, K.; Koutsourakis, P.; Kalisperakis, I.; Grammatikopoulos, L.
2015-08-01
The automated and cost-effective building detection in ultra high spatial resolution is of major importance for various engineering and smart city applications. To this end, in this paper, a model-based building detection technique has been developed able to extract and reconstruct buildings from UAV aerial imagery and low-cost imaging sensors. In particular, the developed approach through advanced structure from motion, bundle adjustment and dense image matching computes a DSM and a true orthomosaic from the numerous GoPro images which are characterised by important geometric distortions and fish-eye effect. An unsupervised multi-region, graphcut segmentation and a rule-based classification is responsible for delivering the initial multi-class classification map. The DTM is then calculated based on inpaininting and mathematical morphology process. A data fusion process between the detected building from the DSM/DTM and the classification map feeds a grammar-based building reconstruction and scene building are extracted and reconstructed. Preliminary experimental results appear quite promising with the quantitative evaluation indicating detection rates at object level of 88% regarding the correctness and above 75% regarding the detection completeness.
Consensus Classification Using Non-Optimized Classifiers.
Brownfield, Brett; Lemos, Tony; Kalivas, John H
2018-04-03
Classifying samples into categories is a common problem in analytical chemistry and other fields. Classification is usually based on only one method, but numerous classifiers are available with some being complex, such as neural networks, and others are simple, such as k nearest neighbors. Regardless, most classification schemes require optimization of one or more tuning parameters for best classification accuracy, sensitivity, and specificity. A process not requiring exact selection of tuning parameter values would be useful. To improve classification, several ensemble approaches have been used in past work to combine classification results from multiple optimized single classifiers. The collection of classifications for a particular sample are then combined by a fusion process such as majority vote to form the final classification. Presented in this Article is a method to classify a sample by combining multiple classification methods without specifically classifying the sample by each method, that is, the classification methods are not optimized. The approach is demonstrated on three analytical data sets. The first is a beer authentication set with samples measured on five instruments, allowing fusion of multiple instruments by three ways. The second data set is composed of textile samples from three classes based on Raman spectra. This data set is used to demonstrate the ability to classify simultaneously with different data preprocessing strategies, thereby reducing the need to determine the ideal preprocessing method, a common prerequisite for accurate classification. The third data set contains three wine cultivars for three classes measured at 13 unique chemical and physical variables. In all cases, fusion of nonoptimized classifiers improves classification. Also presented are atypical uses of Procrustes analysis and extended inverted signal correction (EISC) for distinguishing sample similarities to respective classes.
Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui
2017-02-06
A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.
iPcc: a novel feature extraction method for accurate disease class discovery and prediction
Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi
2013-01-01
Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440
Evaluating Support for the Current Classification of Eukaryotic Diversity
Parfrey, Laura Wegener; Barbero, Erika; Lasser, Elyse; Dunthorn, Micah; Bhattacharya, Debashish; Patterson, David J; Katz, Laura A
2006-01-01
Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. PMID:17194223
NASA Astrophysics Data System (ADS)
Ashraf, M. A. M.; Kumar, N. S.; Yusoh, R.; Hazreek, Z. A. M.; Aziman, M.
2018-04-01
Site classification utilizing average shear wave velocity (Vs(30) up to 30 meters depth is a typical parameter. Numerous geophysical methods have been proposed for estimation of shear wave velocity by utilizing assortment of testing configuration, processing method, and inversion algorithm. Multichannel Analysis of Surface Wave (MASW) method is been rehearsed by numerous specialist and professional to geotechnical engineering for local site characterization and classification. This study aims to determine the site classification on soft and hard ground using MASW method. The subsurface classification was made utilizing National Earthquake Hazards Reduction Program (NERHP) and international Building Code (IBC) classification. Two sites are chosen to acquire the shear wave velocity which is in the state of Pulau Pinang for soft soil and Perlis for hard rock. Results recommend that MASW technique can be utilized to spatially calculate the distribution of shear wave velocity (Vs(30)) in soil and rock to characterize areas.
A Model-Free Machine Learning Method for Risk Classification and Survival Probability Prediction.
Geng, Yuan; Lu, Wenbin; Zhang, Hao Helen
2014-01-01
Risk classification and survival probability prediction are two major goals in survival data analysis since they play an important role in patients' risk stratification, long-term diagnosis, and treatment selection. In this article, we propose a new model-free machine learning framework for risk classification and survival probability prediction based on weighted support vector machines. The new procedure does not require any specific parametric or semiparametric model assumption on data, and is therefore capable of capturing nonlinear covariate effects. We use numerous simulation examples to demonstrate finite sample performance of the proposed method under various settings. Applications to a glioma tumor data and a breast cancer gene expression survival data are shown to illustrate the new methodology in real data analysis.
NASA Technical Reports Server (NTRS)
Myint, Soe W.; Mesev, Victor; Quattrochi, Dale; Wentz, Elizabeth A.
2013-01-01
Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas.
NASA Astrophysics Data System (ADS)
Fleig, Anne K.; Tallaksen, Lena M.; Hisdal, Hege; Stahl, Kerstin; Hannah, David M.
Classifications of weather and circulation patterns are often applied in research seeking to relate atmospheric state to surface environmental phenomena. However, numerous procedures have been applied to define the patterns, thus limiting comparability between studies. The COST733 Action “ Harmonisation and Applications of Weather Type Classifications for European regions” tests 73 different weather type classifications (WTC) and their associate weather types (WTs) and compares the WTCs’ utility for various applications. The objective of this study is to evaluate the potential of these WTCs for analysis of regional hydrological drought development in north-western Europe. Hydrological drought is defined in terms of a Regional Drought Area Index (RDAI), which is based on deficits derived from daily river flow series. RDAI series (1964-2001) were calculated for four homogeneous regions in Great Britain and two in Denmark. For each region, WTs associated with hydrological drought development were identified based on antecedent and concurrent WT-frequencies for major drought events. The utility of the different WTCs for the study of hydrological drought development was evaluated, and the influence of WTC attributes, i.e. input variables, number of defined WTs and general classification concept, on WTC performance was assessed. The objective Grosswetterlagen (OGWL), the objective Second-Generation Lamb Weather Type Classification (LWT2) with 18 WTs and two implementations of the objective Wetterlagenklassifikation (WLK; with 40 and 28 WTs) outperformed all other WTCs. In general, WTCs with more WTs (⩾27) were found to perform better than WTCs with less (⩽18) WTs. The influence of input variables was not consistent across the different classification procedures, and the performance of a WTC was determined primarily by the classification procedure itself. Overall, classification procedures following the relatively simple general classification concept of predefining WTs based on thresholds, performed better than those based on more sophisticated classification concepts such as deriving WTs by cluster analysis or artificial neural networks. In particular, PCA based WTCs with 9 WTs and automated WTCs with a high number of predefined WTs (subjectively and threshold based) performed well. It is suggested that the explicit consideration of the air flow characteristics of meridionality, zonality and cyclonicity in the definition of WTs is a useful feature for a WTC when analysing regional hydrological drought development.
Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele
2017-01-01
Background In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Study design Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. Results More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. Conclusions This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system. PMID:28380037
Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003
Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid
2015-01-01
This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Satellite recovery - Attitude dynamics of the targets
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Lahr, B. S.
1986-01-01
The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
Morphological feature extraction for the classification of digital images of cancerous tissues.
Thiran, J P; Macq, B
1996-10-01
This paper presents a new method for automatic recognition of cancerous tissues from an image of a microscopic section. Based on the shape and the size analysis of the observed cells, this method provides the physician with nonsubjective numerical values for four criteria of malignancy. This automatic approach is based on mathematical morphology, and more specifically on the use of Geodesy. This technique is used first to remove the background noise from the image and then to operate a segmentation of the nuclei of the cells and an analysis of their shape, their size, and their texture. From the values of the extracted criteria, an automatic classification of the image (cancerous or not) is finally operated.
Problems of classification in the family Paramyxoviridae.
Rima, Bert; Collins, Peter; Easton, Andrew; Fouchier, Ron; Kurath, Gael; Lamb, Robert A; Lee, Benhur; Maisner, Andrea; Rota, Paul; Wang, Lin-Fa
2018-05-01
A number of unassigned viruses in the family Paramyxoviridae need to be classified either as a new genus or placed into one of the seven genera currently recognized in this family. Furthermore, numerous new paramyxoviruses continue to be discovered. However, attempts at classification have highlighted the difficulties that arise by applying historic criteria or criteria based on sequence alone to the classification of the viruses in this family. While the recent taxonomic change that elevated the previous subfamily Pneumovirinae into a separate family Pneumoviridae is readily justified on the basis of RNA dependent -RNA polymerase (RdRp or L protein) sequence motifs, using RdRp sequence comparisons for assignment to lower level taxa raises problems that would require an overhaul of the current criteria for assignment into genera in the family Paramyxoviridae. Arbitrary cut off points to delineate genera and species would have to be set if classification was based on the amino acid sequence of the RdRp alone or on pairwise analysis of sequence complementarity (PASC) of all open reading frames (ORFs). While these cut-offs cannot be made consistent with the current classification in this family, resorting to genus-level demarcation criteria with additional input from the biological context may afford a way forward. Such criteria would reflect the increasingly dynamic nature of virus taxonomy even if it would require a complete revision of the current classification.
Towards a robust framework for catchment classification
NASA Astrophysics Data System (ADS)
Deshmukh, A.; Samal, A.; Singh, R.
2017-12-01
Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.
Classification of Instructional Programs, 1990 Edition.
ERIC Educational Resources Information Center
Morgan, Robert L.; And Others
This document, the Department of Education's standard educational program classification system for secondary and postsecondary schools, supersedes all previous editions. The manual is divided into seven chapters, each of which contains, in numerical order, the complete list of currently active Classification of Instructional Programs (CIP)…
Nonlinear programming for classification problems in machine learning
NASA Astrophysics Data System (ADS)
Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio
2016-10-01
We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.
Investigating Elementary Teachers' Conceptions of Animal Classification
ERIC Educational Resources Information Center
Burgoon, Jacob N.; Duran, Emilio
2012-01-01
Numerous studies have been conducted regarding alternative conceptions about animal diversity and classification, many of which have used a cross-age approach to investigate how students' conceptions change over time. None of these studies, however, have investigated teachers' conceptions of animal classification. This study was intended to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-12-13
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-01-01
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577
Relevance popularity: A term event model based feature selection scheme for text classification.
Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao
2017-01-01
Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.
Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition.
Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L
2017-02-27
In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called 'shadow features' are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research.
Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K. L.
2017-01-01
In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research. PMID:28264470
NASA Astrophysics Data System (ADS)
Avetisyan, H.; Bruna, O.; Holub, J.
2016-11-01
A numerous techniques and algorithms are dedicated to extract emotions from input data. In our investigation it was stated that emotion-detection approaches can be classified into 3 following types: Keyword based / lexical-based, learning based, and hybrid. The most commonly used techniques, such as keyword-spotting method, Support Vector Machines, Naïve Bayes Classifier, Hidden Markov Model and hybrid algorithms, have impressive results in this sphere and can reach more than 90% determining accuracy.
Numerical list of U.S. Geological Survey trace elements reports to September 15, 1952
Wallace, Jane H.; Blatcher, Virginia K.
1952-01-01
This report lists in numerical order U.S. Geological Survey Trace Elements Investigations and Memorandum Reports and supersedes a similar report issued in January 1952 (TEI-202). This report contains lists not only of reports that have been transmitted to the U.S. Atomic Energy Commission, that is, those reports followed by a date, but also those reports for which tentative titles were available prior to the date of completion of this list, September 14, 1952. The reports that are in preparation and subject to change in title are indicated by an asterisk. The classifications that are shown for some of the reports issued prior to 1947 are uncertain; classifications shown are based on the best information available at the time that this report was prepared. To keep the numerical lists up to date, periodic supplements will be issued. The supplementary pages will be prepared so that they can be substituted for the pages in the present report. The Geological Survey does not have additional copies for permanent distribution of most of the reports listed, but copies of many of the completed reports can be loaned to organizations or individuals who are cooperating with the Atomic Energy Commission.
Confidence level estimation in multi-target classification problems
NASA Astrophysics Data System (ADS)
Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia
2018-04-01
This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.
Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes
Schwartz, Laurent; Lafitte, Olivier; da Veiga Moreira, Jorgelindo
2018-01-01
Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future. PMID:29541031
Topological classification of periodic orbits in the Kuramoto-Sivashinsky equation
NASA Astrophysics Data System (ADS)
Dong, Chengwei
2018-05-01
In this paper, we systematically research periodic orbits of the Kuramoto-Sivashinsky equation (KSe). In order to overcome the difficulties in the establishment of one-dimensional symbolic dynamics in the nonlinear system, two basic periodic orbits can be used as basic building blocks to initialize cycle searching, and we use the variational method to numerically determine all the periodic orbits under parameter ν = 0.02991. The symbolic dynamics based on trajectory topology are very successful for classifying all short periodic orbits in the KSe. The current research can be conveniently adapted to the identification and classification of periodic orbits in other chaotic systems.
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-06-12
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Ozcift, Akin
2012-08-01
Parkinson disease (PD) is an age-related deterioration of certain nerve systems, which affects movement, balance, and muscle control of clients. PD is one of the common diseases which affect 1% of people older than 60 years. A new classification scheme based on support vector machine (SVM) selected features to train rotation forest (RF) ensemble classifiers is presented for improving diagnosis of PD. The dataset contains records of voice measurements from 31 people, 23 with PD and each record in the dataset is defined with 22 features. The diagnosis model first makes use of a linear SVM to select ten most relevant features from 22. As a second step of the classification model, six different classifiers are trained with the subset of features. Subsequently, at the third step, the accuracies of classifiers are improved by the utilization of RF ensemble classification strategy. The results of the experiments are evaluated using three metrics; classification accuracy (ACC), Kappa Error (KE) and Area under the Receiver Operating Characteristic (ROC) Curve (AUC). Performance measures of two base classifiers, i.e. KStar and IBk, demonstrated an apparent increase in PD diagnosis accuracy compared to similar studies in literature. After all, application of RF ensemble classification scheme improved PD diagnosis in 5 of 6 classifiers significantly. We, numerically, obtained about 97% accuracy in RF ensemble of IBk (a K-Nearest Neighbor variant) algorithm, which is a quite high performance for Parkinson disease diagnosis.
On the classification of normalized natural frequencies for damage detection in cantilever beam
NASA Astrophysics Data System (ADS)
Dahak, Mustapha; Touat, Noureddine; Benseddiq, Noureddine
2017-08-01
The presence of a damage on a beam causes changes in the physical properties, which introduce flexibility, and reduce the natural frequencies of the beam. Based on this, a new method is proposed to locate the damage zone in a cantilever beam. In this paper, the cantilever beam is discretized into a number of zones, where each zone has a specific classification of the first four normalized natural frequencies. The damaged zone is distinguished by only the classification of the normalized frequencies of the structure. In the case when the damage is symmetric to the vibration node, we use the unchanged natural frequency as a second information to obtain a more accurate location. The effectiveness of the proposed method is shown by a numerical simulation with ANSYS software and experimental investigation of a cantilever beam with different damage.
Evidence and evidence gaps in the treatment of Eustachian tube dysfunction and otitis media
Teschner, Magnus
2016-01-01
Evidence-based medicine is an approach to medical treatment intended to optimize patient-oriented decision-making on the basis of empirically proven effectiveness. For this purpose, a classification system has been established to categorize studies – and hence therapy options – in respect of associated evidence according to defined criteria. The Eustachian tube connects the nasopharynx with the middle ear cavity. Its key function is to ensure middle ear ventilation. Compromised ventilation results in inflammatory middle ear disorders. Numerous evidence-based therapy options are available for the treatment of impaired middle ear ventilation and otitis media, the main therapeutic approach being antibiotic treatment. More recent procedures such as balloon dilation of the Eustachian tube have also shown initial success but must undergo further evaluation with regard to evidence. There is, as yet, no evidence for some of the other long-established procedures. Owing to the multitude of variables, the classification of evidence levels for various treatment approaches calls for highly diversified assessment. Numerous evidence-based studies are therefore necessary in order to evaluate the evidence pertaining to existing and future therapy solutions for impaired middle ear ventilation and otitis media. If this need is addressed, a wealth of implications can be expected for therapeutic approaches in the years to come. PMID:28025605
Classification Model for Damage Localization in a Plate Structure
NASA Astrophysics Data System (ADS)
Janeliukstis, R.; Ruchevskis, S.; Chate, A.
2018-01-01
The present study is devoted to the problem of damage localization by means of data classification. The commercial ANSYS finite-elements program was used to make a model of a cantilevered composite plate equipped with numerous strain sensors. The plate was divided into zones, and, for data classification purposes, each of them housed several points to which a point mass of magnitude 5 and 10% of plate mass was applied. At each of these points, a numerical modal analysis was performed, from which the first few natural frequencies and strain readings were extracted. The strain data for every point were the input for a classification procedure involving k nearest neighbors and decision trees. The classification model was trained and optimized by finetuning the key parameters of both algorithms. Finally, two new query points were simulated and subjected to a classification in terms of assigning a label to one of the zones of the plate, thus localizing these points. Damage localization results were compared for both algorithms and were found to be in good agreement with the actual application positions of point load.
Discrimination of different sub-basins on Tajo River based on water influence factor
NASA Astrophysics Data System (ADS)
Bermudez, R.; Gascó, J. M.; Tarquis, A. M.; Saa-Requejo, A.
2009-04-01
Numeric taxonomy has been applied to classify Tajo basin water (Spain) till Portugal border. Several stations, a total of 52, that estimate 15 water variables have been used in this study. The different groups have been obtained applying a Euclidean distance among stations (distance classification) and a Euclidean distance between each station and the centroid estimated among them (centroid classification), varying the number of parameters and with or without variable typification. In order to compare the classification a log-log relation has been established, between number of groups created and distances, to select the best one. It has been observed that centroid classification is more appropriate following in a more logic way the natural constrictions than the minimum distance among stations. Variable typification doesn't improve the classification except when the centroid method is applied. Taking in consideration the ions and the sum of them as variables, the classification improved. Stations are grouped based on electric conductivity (CE), total anions (TA), total cations (TC) and ions ratio (Na/Ca and Mg/Ca). For a given classification and comparing the different groups created a certain variation in ions concentration and ions ratio are observed. However, the variation in each ion among groups is different depending on the case. For the last group, regardless the classification, the increase in all ions is general. Comparing the dendrograms, and groups that originated, Tajo river basin can be sub dived in five sub-basins differentiated by the main influence on water: 1. With a higher ombrogenic influence (rain fed). 2. With ombrogenic and pedogenic influence (rain and groundwater fed). 3. With pedogenic influence. 4. With lithogenic influence (geological bedrock). 5. With a higher ombrogenic and lithogenic influence added.
Promoter Sequences Prediction Using Relational Association Rule Mining
Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely
2012-01-01
In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233
Network-based stochastic semisupervised learning.
Silva, Thiago Christiano; Zhao, Liang
2012-03-01
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Dekant, Wolfgang; Bridges, James
2016-11-01
Quantitative weight of evidence (QWoE) methodology utilizes detailed scoring sheets to assess the quality/reliability of each publication on toxicity of a chemical and gives numerical scores for quality and observed toxicity. This QWoE-methodology was applied to the reproductive toxicity data on diisononylphthalate (DINP), di-n-hexylphthalate (DnHP), and dicyclohexylphthalate (DCHP) to determine if the scientific evidence for adverse effects meets the requirements for classification as reproductive toxicants. The scores for DINP were compared to those when applying the methodology DCHP and DnHP that have harmonized classifications. Based on the quality/reliability scores, application of the QWoE shows that the three databases are of similar quality; but effect scores differ widely. Application of QWoE to DINP studies resulted in an overall score well below the benchmark required to trigger classification. For DCHP, the QWoE also results in low scores. The high scores from the application of the QWoE methodology to the toxicological data for DnHP represent clear evidence for adverse effects and justify a classification of DnHP as category 1B for both development and fertility. The conclusions on classification based on the QWoE are well supported using a narrative assessment of consistency and biological plausibility. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Numerical classification of coding sequences
NASA Technical Reports Server (NTRS)
Collins, D. W.; Liu, C. C.; Jukes, T. H.
1992-01-01
DNA sequences coding for protein may be represented by counts of nucleotides or codons. A complete reading frame may be abbreviated by its base count, e.g. A76C158G121T74, or with the corresponding codon table, e.g. (AAA)0(AAC)1(AAG)9 ... (TTT)0. We propose that these numerical designations be used to augment current methods of sequence annotation. Because base counts and codon tables do not require revision as knowledge of function evolves, they are well-suited to act as cross-references, for example to identify redundant GenBank entries. These descriptors may be compared, in place of DNA sequences, to extract homologous genes from large databases. This approach permits rapid searching with good selectivity.
Andries, Erik; Hagstrom, Thomas; Atlas, Susan R; Willman, Cheryl
2007-02-01
Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularization. Here, we examine the ill-posedness involved in the linear discrimination of cancer gene expression data with respect to outcome and tumor subclasses. We show that a filter factor representation, based upon Singular Value Decomposition, yields insight into the numerical ill-posedness of the hyperplane-based separation when applied to gene expression data. We also show that this representation yields useful diagnostic tools for guiding the selection of classifier parameters, thus leading to improved performance.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
The seven levels of education, as classified numerically by International Standard Classification of Education (ISCED), are defined along with courses, programs, and fields of education listed under each level. Also contained is an alphabetical subject index indicating appropriate code numbers. For related documents see TM003535 and TM003536. (RC)
Doostparast Torshizi, Abolfazl; Petzold, Linda R
2018-01-01
Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Algorithm of Taxonomy: Method of Design and Implementation Mechanism
NASA Astrophysics Data System (ADS)
Shalanov, N. V.; Aletdinova, A. A.
2018-05-01
The authors propose that the method of design of the algorithm of taxonomy should be based on the calculation of integral indicators for the estimation of the level of an object according to the set of initial indicators (i. e. potential). Their values will be the values of the projected lengths of the objects on the numeric axis, which will take values [0.100]. This approach will reduce the task of multidimensional classification to the task of one-dimensional classification. The algorithm for solving the task of taxonomy contains 14 stages; the example of its implementation is illustrated by the data of 46 consumer societies of the Yakut Union of Consumer Societies of Russia.
Boosting bonsai trees for handwritten/printed text discrimination
NASA Astrophysics Data System (ADS)
Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand
2013-12-01
Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.
Study on some useful Operators for Graph-theoretic Image Processing
NASA Astrophysics Data System (ADS)
Moghani, Ali; Nasiri, Parviz
2010-11-01
In this paper we describe a human perception based approach to pixel color segmentation which applied in color reconstruction by numerical method associated with graph-theoretic image processing algorithm typically in grayscale. Fuzzy sets defined on the Hue, Saturation and Value components of the HSV color space, provide a fuzzy logic model that aims to follow the human intuition of color classification.
Reliable Early Classification on Multivariate Time Series with Numerical and Categorical Attributes
2015-05-22
design a procedure of feature extraction in REACT named MEG (Mining Equivalence classes with shapelet Generators) based on the concept of...Equivalence Classes Mining [12, 15]. MEG can efficiently and effectively generate the discriminative features. In addition, several strategies are proposed...technique of parallel computing [4] to propose a process of pa- rallel MEG for substantially reducing the computational overhead of discovering shapelet
NASA Astrophysics Data System (ADS)
Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang
2017-07-01
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.
[Changes of 2015 WHO Histological Classification of Lung Cancer and the Clinical Significance].
Yang, Xin; Lin, Dongmei
2016-06-20
Due in part to remarkable advances over the past decade in our understanding of lung cancer, particularly in area of medical oncology, molecular biology, and radiology, there is a pressing need for a revised classification, based not on pathology alone, but rather on an integrated multidisciplinary approach to classification of lung cancer. The 2015 World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart has just been published with numerous important changes from the 2004 WHO classification. The revised classification has been greatly improved in helping advance the field, increasing the impact of research, improving patient care and assisting in predicting outcome. The most significant changes will be summarized in this paper as follows: (1) main changes of lung adenocarcinoma as proposed by the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) classification, (2) reclassifying squamous cell carcinomas into keratinizing, nonkeratinizing, and basaloid subtypes with the nonkeratinizing tumors requiring immunohistochemistry proof of squamous differentiation, (3) restricting the diagnosis of large cell carcinoma only to resected tumors that lack any clear morphologic or immunohistochemical differentiation with reclassification of the remaining former large cell carcinoma subtypes into different categories, (4) grouping of neuroendocrine tumors together in one category, (5) and the current viewpoint of histologic grading of lung cancer.
ERIC Educational Resources Information Center
Funk, Kerri L.; Tseng, M. S.
Two groups of 32 educable mentally retarded children (ages 7 to 14 years) were compared as to their arithmetic and classification performances attributable to the presence or absence of a 4 1/2 week exposure to classification tasks. The randomized block pretest-posttest design was used. The experimental group and the control group were matched on…
ERIC Educational Resources Information Center
Desoete, Annemie; Stock, Pieter; Schepens, Annemie; Baeyens, Dieter; Roeyers, Herbert
2009-01-01
Previous research stresses the importance of seriation, classification, and counting abilities that should be assessed in kindergarten, when looking for crucial predictors of mathematical learning disabilities in Grade 1. This study examines (n = 158) two-year-long predictive relationships between children's seriation, classification, procedural…
2016-11-01
focuses on characterizing Electromagnetic Induction (EMI) responses in the underwater setting through numerical and experimental studies with the...marine EMI sensing. 15. SUBJECT TERMS Munitions Response, Electromagnetic Induction, Unexploded Ordnance, Classification 16. SECURITY CLASSIFICATION...using Advanced EMI Sensors in the Underwater Environment.” The project focuses on characterizing Electromagnetic Induction (EMI) responses in the
Author-Editor Guide to Technical Publications Preparation. Revision
1990-01-01
meteorology, climatology, military technical publications. ( ") <- 15: Number of Pages: 68 17. Security Classification of Report: Unclassified 1... Security Classification of this Page: Unclassified 19. Security Classification of Abstract: Unclassified 20. Limitation of Abstract: UL Standard Form 298...34 There are, however, February 1983. numerous exceptions. Although some technical material may not be classified in accordance with security AFR 83-2, Air
A Classification Table for Achondrites
NASA Technical Reports Server (NTRS)
Chennaoui-Aoudjehane, H.; Larouci, N.; Jambon, A.; Mittlefehldt, D. W.
2014-01-01
Classifying chondrites is relatively easy and the criteria are well documented. It is based on mineral compositions, textural characteristics and more recently, magnetic susceptibility. It can be more difficult to classify achondrites, especially those that are very similar to terrestrial igneous rocks, because mineralogical, textural and compositional properties can be quite variable. Achondrites contain essentially olivine, pyroxenes, plagioclases, oxides, sulphides and accessory minerals. Their origin is attributed to differentiated parents bodies: large asteroids (Vesta); planets (Mars); a satellite (the Moon); and numerous asteroids of unknown size. In most cases, achondrites are not eye witnessed falls and some do not have fusion crust. Because of the mineralogical and magnetic susceptibility similarity with terrestrial igneous rocks for some achondrites, it can be difficult for classifiers to confirm their extra-terrestrial origin. We -as classifiers of meteorites- are confronted with this problem with every suspected achondrite we receive for identification. We are developing a "grid" of classification to provide an easier approach for initial classification. We use simple but reproducible criteria based on mineralogical, petrological and geochemical studies. We presented the classes: acapulcoites, lodranites, winonaites and Martian meteorites (shergottite, chassignites, nakhlites). In this work we are completing the classification table by including the groups: angrites, aubrites, brachinites, ureilites, HED (howardites, eucrites, and diogenites), lunar meteorites, pallasites and mesosiderites. Iron meteorites are not presented in this abstract.
De Smet, L
2002-01-01
The purpose of a classification for clinical problems which, except for a few specialized centers, occur only sporadically is to provide a system where these cases can be stored. This should allow all involved investigators to speak the same language; so-doing syndromes can be delinated, frequencies of occurence established and results of--different--treatments compared. A classification system should be simple to use, reliable and uniformly accepted. It should allow space for adaptations and/or extensions. The IFSSH proposed a 7 categories classification based on the proposed classification of Swanson et al. in 1976. This classification, was based on, which was thought in the seventies, etiopathogenic pathways. These 7 groups are: I. Failure of formation; transverse (A), or longitudinal (B) II. Failure of differentiation III. Polydactyly IV. Overgrowth V. Undergrowth VI. Amniotic band syndrome VII. Generalized skeletal syndromes. The extended classification proposed by IFSSH was used to classify 1013 hand differences in 925 hands of 650 patients. We found associated anomalies in 26.7%. The classification was straightforward in 86%, difficult in 6.6% and not possible in 7.8%. Group II was the most numerous group including 513 anomalies. We propose to include in this group the Madelung deformity, the Kirner deformity and congenital trigger fingers and trigger thumbs. In group I the radial and ulnar deficiencies, limited to the hand without forearm deficlencies should be Included. Triphalangeal thumbs are a problem, we suggest it to be listed in group III and consider it as a duplication in length. It is not always possible to evaluate the (transverse) absence of the fingers or hand. Longitudinal deficiencies (group IIB), symbrachydactyly (group V), and amniotic bands (group IV) occasionally develop a phenotype similar to the genuine transverse deficiency (group IA). Recently, the Japanese Society for Surgery of the Hand (JSSH) (16) proposed an extension/modification of the IFSSH classification. Based on newer knowledge on teratology, symbrachydactyly in all stages were transfered to group I. Two new groups were introduced. A group "failure of finger ray induction" including typical cleft hand (IC), central polydactyly (III) and (bony) syndactyly (II)--was included. Also a group of "unclassifiable" cases was added. This Japanese proposed classification is a real improvement and most clinicians and surgeons tend to use it in the future.
Pairwise diversity ranking of polychotomous features for ensemble physiological signal classifiers.
Gupta, Lalit; Kota, Srinivas; Molfese, Dennis L; Vaidyanathan, Ravi
2013-06-01
It is well known that fusion classifiers for physiological signal classification with diverse components (classifiers or data sets) outperform those with less diverse components. Determining component diversity, therefore, is of the utmost importance in the design of fusion classifiers that are often employed in clinical diagnostic and numerous other pattern recognition problems. In this article, a new pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined will be more diverse than any other component subset of the same size. The strategy is unified in the sense that the components can be classifiers or data sets. Moreover, the classifiers and data sets can be polychotomous. Classifier-fusion and data-fusion systems are formulated based on the diversity-based selection strategy, and the application of the two fusion strategies are demonstrated through the classification of multichannel event-related potentials. It is observed that for both classifier and data fusion, the classification accuracy tends to increase/decrease when the diversity of the component ensemble increases/decreases. For the four sets of 14-channel event-related potentials considered, it is shown that data fusion outperforms classifier fusion. Furthermore, it is demonstrated that the combination of data components that yield the best performance, in a relative sense, can be determined through the diversity-based selection strategy.
Feature selection for elderly faller classification based on wearable sensors.
Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D
2017-05-30
Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Tatsuoka, Curtis; McGowan, Bridget; Yamada, Tomoko; Espy, Kimberly Andrews; Minich, Nori; Taylor, H. Gerry
2016-01-01
Although mathematics disabilities (MD) are common in extremely preterm/extremely low birth weight (EPT/ELBW) children, little is known about the nature of these problems. In this study partially ordered set (POSET) models were applied to classify 140 EPT/ELBW kindergarten children (gestational age <28 weeks and/or birth weight <1000 g) and 110 normal birth weight (NBW) controls into profiles of numerical and cognitive skills. Models based on five numerical skills and five executive function and processing speed skills provided a good fit to performance data. The EPT/ELBW group had poorer skills in all areas than NBW controls but the models also revealed substantial individual variability in skill profiles. Weaknesses in executive function were associated with poorer mastery of numerical skills. The findings illustrate the applicability of POSET models to research on MD and suggest distinct types of early numerical deficits in EPT/ELBW children that are related to their impairments in executive function. PMID:27818602
Tatsuoka, Curtis; McGowan, Bridget; Yamada, Tomoko; Espy, Kimberly Andrews; Minich, Nori; Taylor, H Gerry
2016-07-01
Although mathematics disabilities (MD) are common in extremely preterm/extremely low birth weight (EPT/ELBW) children, little is known about the nature of these problems. In this study partially ordered set (POSET) models were applied to classify 140 EPT/ELBW kindergarten children (gestational age <28 weeks and/or birth weight <1000 g) and 110 normal birth weight (NBW) controls into profiles of numerical and cognitive skills. Models based on five numerical skills and five executive function and processing speed skills provided a good fit to performance data. The EPT/ELBW group had poorer skills in all areas than NBW controls but the models also revealed substantial individual variability in skill profiles. Weaknesses in executive function were associated with poorer mastery of numerical skills. The findings illustrate the applicability of POSET models to research on MD and suggest distinct types of early numerical deficits in EPT/ELBW children that are related to their impairments in executive function.
A classification of large amplitude oscillations of a spring-pendulum system
NASA Technical Reports Server (NTRS)
Broucke, R.
1977-01-01
We present a detailed classification of large amplitude oscillations of a non-integrable autonomous system with two degrees of freedom: the spring pendulum system. The classification is made with the method of invariant curves. The results show the importance of three types of motion: periodic, quasi-periodic and semi-ergodic. The numerical results are given for nine different values of the energy constant.
2014-04-01
WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch
Dekant, Wolfgang; Bridges, James
2016-12-01
Hazard assessment of chemicals usually applies narrative assessments with a number of weaknesses. Therefore, application of weight of evidence (WoE) approaches are often mandated but guidance to perform a WoE assessment is lacking. This manuscript describes a quantitative WoE (QWoE) assessment for reproductive toxicity data and its application for classification and labeling (C&L). Because C&L criteria are based on animal studies, the scope is restricted to animal toxicity data. The QWoE methodology utilizes numerical scoring sheets to assess reliability of a publication and the toxicological relevance of reported effects. Scores are given for fourteen quality aspects, best practice receives the highest score. The relevance/effects scores (0 to four) are adjusted to the key elements of the toxic response for the endpoint and include weighting factors for effects on different levels of the biological organization. The relevance/effects scores are then assessed against the criteria dose-response, magnitude and persistence of effects, consistency of observations with the hypothesis, and relation of effects to human disease. The quality/reliability scores and the relevance/effect scores are then multiplied to give a numerical strength of evidence for adverse effects. This total score is then used to assign the chemical to the different classes employed in classification. Copyright © 2016 Elsevier Inc. All rights reserved.
Numerical list of U.S. Geological Survey Trace Elements Reports to April 30, 1953
Blatcher, Virginia K.; Wallace, Jane H.
1953-01-01
This report contains 1) a list in numerical order of U.S. Geological Survey Trace Elements Investigations and Memorandum Reports, and 2) an author index for these reports. It supercedes TEI-30, issued in November 1952. This report contains lists not only of reports that have been transmitted to the U.S Atomic Energy Commission, that is, those reports followed by a date, but also those reports for which tentative titles were available prior to the date of completion of this list, April 30, 1953. The reports that are in preparation and subject to change in title are indicated by an asterisk. The classifications that are shown for some of the reports issued prior to 1947 are uncertain: classifications shown are based on the best information available at the time that this report was prepared. The Geological Survey does not have additional copies for permanent distribution of most of the reports listed, but copies of many of the completed reports can be loaned to organizations or individuals who are cooperating with the Atomic Energy Commission.
48 CFR 204.7101 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Definitions. Accounting classification reference number (ACRN) means any combination of a two position alpha/numeric code used as a method of relating the accounting classification citation to detailed line item... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Definitions. 204.7101...
Mathematical values in the processing of Chinese numeral classifiers and measure words.
Her, One-Soon; Chen, Ying-Chun; Yen, Nai-Shing
2017-01-01
A numeral classifier is required between a numeral and a noun in Chinese, which comes in two varieties, sortal classifer (C) and measural classifier (M), also known as 'classifier' and 'measure word', respectively. Cs categorize objects based on semantic attributes and Cs and Ms both denote quantity in terms of mathematical values. The aim of this study was to conduct a psycholinguistic experiment to examine whether participants process C/Ms based on their mathematical values with a semantic distance comparison task, where participants judged which of the two C/M phrases was semantically closer to the target C/M. Results showed that participants performed more accurately and faster for C/Ms with fixed values than the ones with variable values. These results demonstrated that mathematical values do play an important role in the processing of C/Ms. This study may thus shed light on the influence of the linguistic system of C/Ms on magnitude cognition.
Fluid mechanics based classification of the respiratory efficiency of several nasal cavities.
Lintermann, Andreas; Meinke, Matthias; Schröder, Wolfgang
2013-11-01
The flow in the human nasal cavity is of great importance to understand rhinologic pathologies like impaired respiration or heating capabilities, a diminished sense of taste and smell, and the presence of dry mucous membranes. To numerically analyze this flow problem a highly efficient and scalable Thermal Lattice-BGK (TLBGK) solver is used, which is very well suited for flows in intricate geometries. The generation of the computational mesh is completely automatic and highly parallelized such that it can be executed efficiently on High Performance Computers (HPCs). An evaluation of the functionality of nasal cavities is based on an analysis of pressure drop, secondary flow structures, wall-shear stress distributions, and temperature variations from the nostrils to the pharynx. The results of the flow fields of three completely different nasal cavities allow their classification into ability groups and support the a priori decision process on surgical interventions. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Warren, Sean N.; Kallu, Raj R.; Barnard, Chase K.
2016-11-01
Underground gold mines in Nevada are exploiting increasingly deeper ore bodies comprised of weak to very weak rock masses. The Rock Mass Rating (RMR) classification system is widely used at underground gold mines in Nevada and is applicable in fair to good-quality rock masses, but is difficult to apply and loses reliability in very weak rock mass to soil-like material. Because very weak rock masses are transition materials that border engineering rock mass and soil classification systems, soil classification may sometimes be easier and more appropriate to provide insight into material behavior and properties. The Unified Soil Classification System (USCS) is the most likely choice for the classification of very weak rock mass to soil-like material because of its accepted use in tunnel engineering projects and its ability to predict soil-like material behavior underground. A correlation between the RMR and USCS systems was developed by comparing underground geotechnical RMR mapping to laboratory testing of bulk samples from the same locations, thereby assigning a numeric RMR value to the USCS classification that can be used in spreadsheet calculations and geostatistical analyses. The geotechnical classification system presented in this paper including a USCS-RMR correlation, RMR rating equations, and the Geo-Pick Strike Index is collectively introduced as the Weak Rock Mass Rating System (W-RMR). It is the authors' hope that this system will aid in the classification of weak rock masses and more usable design tools based on the RMR system. More broadly, the RMR-USCS correlation and the W-RMR system help define the transition between engineering soil and rock mass classification systems and may provide insight for geotechnical design in very weak rock masses.
Control-based continuation: Bifurcation and stability analysis for physical experiments
NASA Astrophysics Data System (ADS)
Barton, David A. W.
2017-02-01
Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
NASA Astrophysics Data System (ADS)
Goetz-Weiss, L. R.; Herzfeld, U. C.; Trantow, T.; Hunke, E. C.; Maslanik, J. A.; Crocker, R. I.
2016-12-01
An important problem in model-data comparison is the identification of parameters that can be extracted from observational data as well as used in numerical models, which are typically based on idealized physical processes. Here, we present a suite of approaches to characterization and classification of sea ice and land ice types, properties and provinces based on several types of remote-sensing data. Applications will be given to not only illustrate the approach, but employ it in model evaluation and understanding of physical processes. (1) In a geostatistical characterization, spatial sea-ice properties in the Chukchi and Beaufort Sea and in Elsoon Lagoon are derived from analysis of RADARSAT and ERS-2 SAR data. (2) The analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification, which facilitates classification of different sea-ice types. (3) Characteristic sea-ice parameters, as resultant from the classification, can then be applied in model evaluation, as demonstrated for the ridging scheme of the Los Alamos sea ice model, CICE, using high-resolution altimeter and image data collected from unmanned aircraft over Fram Strait during the Characterization of Arctic Sea Ice Experiment (CASIE). The characteristic parameters chosen in this application are directly related to deformation processes, which also underly the ridging scheme. (4) The method that is capable of the most complex classification tasks is the connectionist-geostatistical classification method. This approach has been developed to identify currently up to 18 different crevasse types in order to map progression of the surge through the complex Bering-Bagley Glacier System, Alaska, in 2011-2014. The analysis utilizes airborne altimeter data and video image data and satellite image data. Results of the crevasse classification are compare to fracture modeling and found to match.
Lee, Kang-Hoon; Shin, Kyung-Seop; Lim, Debora; Kim, Woo-Chan; Chung, Byung Chang; Han, Gyu-Bum; Roh, Jeongkyu; Cho, Dong-Ho; Cho, Kiho
2015-07-01
The genomes of living organisms are populated with pleomorphic repetitive elements (REs) of varying densities. Our hypothesis that genomic RE landscapes are species/strain/individual-specific was implemented into the Genome Signature Imaging system to visualize and compute the RE-based signatures of any genome. Following the occurrence profiling of 5-nucleotide REs/words, the information from top-50 frequency words was transformed into a genome-specific signature and visualized as Genome Signature Images (GSIs), using a CMYK scheme. An algorithm for computing distances among GSIs was formulated using the GSIs' variables (word identity, frequency, and frequency order). The utility of the GSI-distance computation system was demonstrated with control genomes. GSI-based computation of genome-relatedness among 1766 microbes (117 archaea and 1649 bacteria) identified their clustering patterns; although the majority paralleled the established classification, some did not. The Genome Signature Imaging system, with its visualization and distance computation functions, enables genome-scale evolutionary studies involving numerous genomes with varying sizes. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural-Fuzzy model Based Steel Pipeline Multiple Cracks Classification
NASA Astrophysics Data System (ADS)
Elwalwal, Hatem Mostafa; Mahzan, Shahruddin Bin Hj.; Abdalla, Ahmed N.
2017-10-01
While pipes are cheaper than other means of transportation, this cost saving comes with a major price: pipes are subject to cracks, corrosion etc., which in turn can cause leakage and environmental damage. In this paper, Neural-Fuzzy model for multiple cracks classification based on Lamb Guide Wave. Simulation results for 42 sample were collected using ANSYS software. The current research object to carry on the numerical simulation and experimental study, aiming at finding an effective way to detection and the localization of cracks and holes defects in the main body of pipeline. Considering the damage form of multiple cracks and holes which may exist in pipeline, to determine the respective position in the steel pipe. In addition, the technique used in this research a guided lamb wave based structural health monitoring method whereas piezoelectric transducers will use as exciting and receiving sensors by Pitch-Catch method. Implementation of simple learning mechanism has been developed specially for the ANN for fuzzy the system represented.
A vegetational and ecological resource analysis from space and high flight photography
NASA Technical Reports Server (NTRS)
Poulton, C. E.; Faulkner, D. P.; Schrumpf, B. J.
1970-01-01
A hierarchial classification of vegetation and related resources is considered that is applicable to convert remote sensing data in space and aerial synoptic photography. The numerical symbolization provides for three levels of vegetational classification and three levels of classification of environmental features associated with each vegetational class. It is shown that synoptic space photography accurately projects how urban sprawl affects agricultural land use areas and ecological resources.
Classification of Nortes in the Gulf of Mexico derived from wave energy maps
NASA Astrophysics Data System (ADS)
Appendini, C. M.; Hernández-Lasheras, J.
2016-02-01
Extreme wave climate in the Gulf of Mexico is determined by tropical cyclones and winds from the Central American Cold Surges, locally referred to as Nortes. While hurricanes can have catastrophic effects, extreme waves and storm surge from Nortes occur several times a year, and thus have greater impacts on human activities along the Mexican coast of the Gulf of Mexico. Despite the constant impacts from Nortes, there is no available classification that relates their characteristics (e.g. pressure gradients, wind speed), to the associated coastal impacts. This work presents a first approximation to characterize and classify Nortes, which is based on the assumption that the derived wave energy synthetizes information (i.e. wind intensity, direction and duration) of individual Norte events as they pass through the Gulf of Mexico. First, we developed an index to identify Nortes based on surface pressure differences of two locations. To validate the methodology we compared the events identified with other studies and available Nortes logs. Afterwards, we detected Nortes from the 1986/1987, 2008/2009 and 2009/2010 seasons and used their corresponding wind fields to derive the wave energy maps using a numerical wave model. We used the energy maps to classify the events into groups using manual (visual) and automatic classifications (principal component analysis and k-means). The manual classification identified 3 types of Nortes and the automatic classification identified 5, although 3 of them had a high degree of similarity. The principal component analysis indicated that all events have similar characteristics, as few components are necessary to explain almost all of the variance. The classification from the k-means indicated that 81% of analyzed Nortes affect the southeastern Gulf of Mexico, while a smaller percentage affects the northern Gulf of Mexico and even less affect the western Caribbean.
NASA Technical Reports Server (NTRS)
Austin, W. W. (Principal Investigator)
1981-01-01
The same software programs used to classify spring wheat are applied to the classification of corn in 26 segments in the corn belt. Numerical results of the acreage estimation are given. Potential problem areas defined in an earlier application are examined.
Applications of magnetic resonance image segmentation in neurology
NASA Astrophysics Data System (ADS)
Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu
1999-05-01
After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.
Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine
NASA Technical Reports Server (NTRS)
Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)
2002-01-01
The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.
Inayat-Hussain, Salmaan H; Fukumura, Masao; Muiz Aziz, A; Jin, Chai Meng; Jin, Low Wei; Garcia-Milian, Rolando; Vasiliou, Vasilis; Deziel, Nicole C
2018-08-01
Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases. GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects. We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide. Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Comparison of Synoptic Classification Methods for Application to Wind Power Prediction
NASA Astrophysics Data System (ADS)
Fowler, P.; Basu, S.
2008-12-01
Wind energy is a highly variable resource. To make it competitive with other sources of energy for integration on the power grid, at the very least, a day-ahead forecast of power output must be available. In many grid operations worldwide, next-day power output is scheduled in 30 minute intervals and grid management routinely occurs at real time. Maintenance and repairs require costly time to complete and must be scheduled along with normal operations. Revenue is dependent on the reliability of the entire system. In other words, there is financial and managerial benefit to short-term prediction of wind power. One approach to short-term forecasting is to combine a data centric method such as an artificial neural network with a physically based approach like numerical weather prediction (NWP). The key is in associating high-dimensional NWP model output with the most appropriately trained neural network. Because neural networks perform the best in the situations they are designed for, one can hypothesize that if one can identify similar recurring states in historical weather data, this data can be used to train multiple custom designed neural networks to be used when called upon by numerical prediction. Identifying similar recurring states may offer insight to how a neural network forecast can be improved, but amassing the knowledge and utilizing it efficiently in the time required for power prediction would be difficult for a human to master, thus showing the advantage of classification. Classification methods are important tools for short-term forecasting because they can be unsupervised, objective, and computationally quick. They primarily involve categorizing data sets in to dominant weather classes, but there are numerous ways to define a class and a great variety in interpretation of the results. In the present study a collection of classification methods are used on a sampling of atmospheric variables from the North American Regional Reanalysis data set. The results will be discussed in relation to their use for short-term wind power forecasting by neural networks.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... requirement or quantitative treatment limitation on mental health and substance use disorder benefits in any classification that is more restrictive than the predominant financial requirement or quantitative treatment... or quantitative treatment limitation in the relevant classification. Using these numerical standards...
A unified classification of stationary phases for packed column supercritical fluid chromatography.
West, C; Lesellier, E
2008-05-16
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.
Kavianpour, Hamidreza; Vasighi, Mahdi
2017-02-01
Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.
Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J
2017-07-11
Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.
A method for development of a system of identification for Appalachian coal-bearing rocks
Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.
2002-01-01
The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.
A dynamical classification of the cosmic web
NASA Astrophysics Data System (ADS)
Forero-Romero, J. E.; Hoffman, Y.; Gottlöber, S.; Klypin, A.; Yepes, G.
2009-07-01
In this paper, we propose a new dynamical classification of the cosmic web. Each point in space is classified in one of four possible web types: voids, sheets, filaments and knots. The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of the gravitational potential) on a grid. The classification is based on counting the number of eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one, two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The collection of neighbouring grid points, friends of friends, of the same web type constitutes voids, sheets, filaments and knots as extended web objects. A simple dynamical consideration of the emergence of the web suggests that the threshold should not be null, as in previous implementations of the algorithm. A detailed dynamical analysis would have found different threshold values for the collapse of sheets, filaments and knots. Short of such an analysis a phenomenological approach has been opted for, looking for a single threshold to be determined by analysing numerical simulations. Our cosmic web classification has been applied and tested against a suite of large (dark matter only) cosmological N-body simulations. In particular, the dependence of the volume and mass filling fractions on λth and on the resolution has been calculated for the four web types. We also study the percolation properties of voids and filaments. Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification reproduces the visual impression of the cosmic web. (ii) Between 0.2 <~ λth <~ 0.4, a system of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of the suggested classification provides a robust framework for incorporating environmental information into galaxy formation models, and in particular to semi-analytical models.
Terrain Classification and Identification of Tree Stems Using Ground-Based Lidar
2012-12-01
hailing from North America and Eastern Asia. Stands are mixed age and very diverse, making this an appealing test site in terms of tree variety...sparse scene in Fig. 3(b) contains several deciduous trees and shrubs, but is largely open. The moderate scene, shown in Fig. 3(c), is cluttered with...numerous deciduous trees and shrubs, and significant ground cover. The remaining two data sets, dense1 and dense2 were collected at Breakheart
Numerical analysis of the effects induced by normal faults and dip angles on rock bursts
NASA Astrophysics Data System (ADS)
Jiang, Lishuai; Wang, Pu; Zhang, Peipeng; Zheng, Pengqiang; Xu, Bin
2017-10-01
The study of mining effects under the influences of a normal fault and its dip angle is significant for the prediction and prevention of rock bursts. Based on the geological conditions of panel 2301N in a coalmine, the evolution laws of the strata behaviors of the working face affected by a fault and the instability of the fault induced by mining operations with the working face of the footwall and hanging wall advancing towards a normal fault are studied using UDEC numerical simulation. The mechanism that induces rock burst is revealed, and the influence characteristics of the fault dip angle are analyzed. The results of the numerical simulation are verified by conducting a case study regarding the microseismic events. The results of this study serve as a reference for the prediction of rock bursts and their classification into hazardous areas under similar conditions.
NASA Technical Reports Server (NTRS)
Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.
1976-01-01
A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.
Practice patterns when treating patients with low back pain: a survey of physical therapists.
Davies, Claire; Nitz, Arthur J; Mattacola, Carl G; Kitzman, Patrick; Howell, Dana; Viele, Kert; Baxter, David; Brockopp, Dorothy
2014-08-01
Low back pain (LBP), is a common musculoskeletal problem, affecting 75-85% of adults in their lifetime. Direct costs of LBP in the USA were estimated over 85 billion dollars in 2005 resulting in a significant economic burden for the healthcare system. LBP classification systems and outcome measures are available to guide physical therapy assessments and intervention. However, little is known about which, if any, physical therapists use in clinical practice. The purpose of this study was to identify the use of and barriers to LBP classification systems and outcome measures among physical therapists in one state. A mixed methods study using a cross-sectional cohort design with descriptive qualitative methods was performed. A survey collected both quantitative and qualitative data relevant to classification systems and outcome measures used by physical therapists working with patients with LBP. Physical therapists responded using classification systems designed to direct treatment predominantly. The McKenzie method was the most frequent approach to classify LBP. Barriers to use of classification systems and outcome measures were lack of knowledge, too limiting and time. Classification systems are being used for decision-making in physical therapy practice for patients with LBP. Lack of knowledge and training seems to be the main barrier to the use of classification systems in practice. The Oswestry Disability Index and Numerical Pain Scale were the most commonly used outcome measures. The main barrier to their use was lack of time. Continuing education and reading the literature were identified as important tools to teach evidence-based practice to physical therapists in practice.
Featureless classification of light curves
NASA Astrophysics Data System (ADS)
Kügler, S. D.; Gianniotis, N.; Polsterer, K. L.
2015-08-01
In the era of rapidly increasing amounts of time series data, classification of variable objects has become the main objective of time-domain astronomy. Classification of irregularly sampled time series is particularly difficult because the data cannot be represented naturally as a vector which can be directly fed into a classifier. In the literature, various statistical features serve as vector representations. In this work, we represent time series by a density model. The density model captures all the information available, including measurement errors. Hence, we view this model as a generalization to the static features which directly can be derived, e.g. as moments from the density. Similarity between each pair of time series is quantified by the distance between their respective models. Classification is performed on the obtained distance matrix. In the numerical experiments, we use data from the OGLE (Optical Gravitational Lensing Experiment) and ASAS (All Sky Automated Survey) surveys and demonstrate that the proposed representation performs up to par with the best currently used feature-based approaches. The density representation preserves all static information present in the observational data, in contrast to a less-complete description by features. The density representation is an upper boundary in terms of information made available to the classifier. Consequently, the predictive power of the proposed classification depends on the choice of similarity measure and classifier, only. Due to its principled nature, we advocate that this new approach of representing time series has potential in tasks beyond classification, e.g. unsupervised learning.
Krause, Fabian G; Di Silvestro, Matthew; Penner, Murray J; Wing, Kevin J; Glazebrook, Mark A; Daniels, Timothy R; Lau, Johnny T C; Younger, Alastair S E
2012-02-01
End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.
High-order asynchrony-tolerant finite difference schemes for partial differential equations
NASA Astrophysics Data System (ADS)
Aditya, Konduri; Donzis, Diego A.
2017-12-01
Synchronizations of processing elements (PEs) in massively parallel simulations, which arise due to communication or load imbalances between PEs, significantly affect the scalability of scientific applications. We have recently proposed a method based on finite-difference schemes to solve partial differential equations in an asynchronous fashion - synchronization between PEs is relaxed at a mathematical level. While standard schemes can maintain their stability in the presence of asynchrony, their accuracy is drastically affected. In this work, we present a general methodology to derive asynchrony-tolerant (AT) finite difference schemes of arbitrary order of accuracy, which can maintain their accuracy when synchronizations are relaxed. We show that there are several choices available in selecting a stencil to derive these schemes and discuss their effect on numerical and computational performance. We provide a simple classification of schemes based on the stencil and derive schemes that are representative of different classes. Their numerical error is rigorously analyzed within a statistical framework to obtain the overall accuracy of the solution. Results from numerical experiments are used to validate the performance of the schemes.
Risk assessment of storm surge disaster based on numerical models and remote sensing
NASA Astrophysics Data System (ADS)
Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu
2018-06-01
Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.
NASA Technical Reports Server (NTRS)
Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato
2011-01-01
A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.
Numerical Simulation of the ``Fluid Mechanical Sewing Machine''
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2011-11-01
A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun
2016-06-01
Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach.
Crown-condition classification: a guide to data collection and analysis
Michael E. Schomaker; Stanley J. Zarnoch; William A. Bechtold; David J. Latelle; William G. Burkman; Susan M. Cox
2007-01-01
The Forest Inventory and Analysis (FIA) Program of the Forest Service, U.S. Department of Agriculture, conducts a national inventory of forests across the United States. A systematic subset of permanent inventory plots in 38 States is currently sampled every year for numerous forest health indicators. One of these indicators, crown-condition classification, is designed...
Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang
2016-09-01
With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.
Gijsen, Frank J H; Nieuwstadt, Harm A; Wentzel, Jolanda J; Verhagen, Hence J M; van der Lugt, Aad; van der Steen, Antonius F W
2015-08-01
Two approaches to target plaque vulnerability-a histopathologic classification scheme and a biomechanical analysis-were compared and the implications for noninvasive risk stratification of carotid plaques using magnetic resonance imaging were assessed. Seventy-five histological plaque cross sections were obtained from carotid endarterectomy specimens from 34 patients (>70% stenosis) and subjected to both a Virmani histopathologic classification (thin fibrous cap atheroma with <0.2-mm cap thickness, presumed vulnerable) and a peak cap stress computation (<140 kPa: presumed stable; >300 kPa: presumed vulnerable). To demonstrate the implications for noninvasive plaque assessment, numeric simulations of a typical carotid magnetic resonance imaging protocol were performed (0.62×0.62 mm(2) in-plane acquired voxel size) and used to obtain the magnetic resonance imaging-based peak cap stress. Peak cap stress was generally associated with histological classification. However, only 16 of 25 plaque cross sections could be labeled as high-risk (peak cap stress>300 kPa and classified as a thin fibrous cap atheroma). Twenty-eight of 50 plaque cross sections could be labeled as low-risk (a peak cap stress<140 kPa and not a thin fibrous cap atheroma), leading to a κ=0.39. 31 plaques (41%) had a disagreement between both classifications. Because of the limited magnetic resonance imaging voxel size with regard to cap thickness, a noninvasive identification of only a group of low-risk, thick-cap plaques was reliable. Instead of trying to target only vulnerable plaques, a more reliable noninvasive identification of a select group of stable plaques with a thick cap and low stress might be a more fruitful approach to start reducing surgical interventions on carotid plaques. © 2015 American Heart Association, Inc.
Classification of polytype structures of zinc sulfide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laptev, V.I.
1994-12-31
It is suggested that the existing classification of polytype structures of zinc sulfide be supplemented with an additional criterion: the characteristic of regular point systems (Wyckoff positions) including their type, number, and multiplicity. The consideration of the Wyckoff positions allowed the establishment of construction principles of known polytype series of different symmetries and the systematization (for the first time) of the polytypes with the same number of differently packed layers. the classification suggested for polytype structures of zinc sulfide is compact and provides a basis for creating search systems. The classification table obtained can also be used for numerous siliconmore » carbide polytypes. 8 refs., 4 tabs.« less
Selection-Fusion Approach for Classification of Datasets with Missing Values
Ghannad-Rezaie, Mostafa; Soltanian-Zadeh, Hamid; Ying, Hao; Dong, Ming
2010-01-01
This paper proposes a new approach based on missing value pattern discovery for classifying incomplete data. This approach is particularly designed for classification of datasets with a small number of samples and a high percentage of missing values where available missing value treatment approaches do not usually work well. Based on the pattern of the missing values, the proposed approach finds subsets of samples for which most of the features are available and trains a classifier for each subset. Then, it combines the outputs of the classifiers. Subset selection is translated into a clustering problem, allowing derivation of a mathematical framework for it. A trade off is established between the computational complexity (number of subsets) and the accuracy of the overall classifier. To deal with this trade off, a numerical criterion is proposed for the prediction of the overall performance. The proposed method is applied to seven datasets from the popular University of California, Irvine data mining archive and an epilepsy dataset from Henry Ford Hospital, Detroit, Michigan (total of eight datasets). Experimental results show that classification accuracy of the proposed method is superior to those of the widely used multiple imputations method and four other methods. They also show that the level of superiority depends on the pattern and percentage of missing values. PMID:20212921
Complex network approach to classifying classical piano compositions
NASA Astrophysics Data System (ADS)
Xin, Chen; Zhang, Huishu; Huang, Jiping
2016-10-01
Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.
Diagnosing Cognitive Errors: Statistical Pattern Classification and Recognition Approach
1985-01-01
often produces several different erroneous rules. For example, when adding two fractions with different denominators, many students add the numerators ...common denominator and add the numerators . As listed in Tatsuoka (1984a), there are eleven different erroneous rules which result from a misconception...the score of five. These patterns correspond to different values of 42 (Tatsuoka, 1985) The numerator of 42 is divided into two parts in Equation (5
Energy-Based Metrics for Arthroscopic Skills Assessment.
Poursartip, Behnaz; LeBel, Marie-Eve; McCracken, Laura C; Escoto, Abelardo; Patel, Rajni V; Naish, Michael D; Trejos, Ana Luisa
2017-08-05
Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency.
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-01-01
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624
NASA Astrophysics Data System (ADS)
Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt
2018-02-01
A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2017-01-01
Objectives Widespread implementation of electronic databases has improved the accessibility of plaintext clinical information for supplementary use. Numerous machine learning techniques, such as supervised machine learning approaches or ontology-based approaches, have been employed to obtain useful information from plaintext clinical data. This study proposes an automatic multi-class classification system to predict accident-related causes of death from plaintext autopsy reports through expert-driven feature selection with supervised automatic text classification decision models. Methods Accident-related autopsy reports were obtained from one of the largest hospital in Kuala Lumpur. These reports belong to nine different accident-related causes of death. Master feature vector was prepared by extracting features from the collected autopsy reports by using unigram with lexical categorization. This master feature vector was used to detect cause of death [according to internal classification of disease version 10 (ICD-10) classification system] through five automated feature selection schemes, proposed expert-driven approach, five subset sizes of features, and five machine learning classifiers. Model performance was evaluated using precisionM, recallM, F-measureM, accuracy, and area under ROC curve. Four baselines were used to compare the results with the proposed system. Results Random forest and J48 decision models parameterized using expert-driven feature selection yielded the highest evaluation measure approaching (85% to 90%) for most metrics by using a feature subset size of 30. The proposed system also showed approximately 14% to 16% improvement in the overall accuracy compared with the existing techniques and four baselines. Conclusion The proposed system is feasible and practical to use for automatic classification of ICD-10-related cause of death from autopsy reports. The proposed system assists pathologists to accurately and rapidly determine underlying cause of death based on autopsy findings. Furthermore, the proposed expert-driven feature selection approach and the findings are generally applicable to other kinds of plaintext clinical reports. PMID:28166263
Classification of patients with low back-related leg pain: a systematic review.
Stynes, Siobhán; Konstantinou, Kika; Dunn, Kate M
2016-05-23
The identification of clinically relevant subgroups of low back pain (LBP) is considered the number one LBP research priority in primary care. One subgroup of LBP patients are those with back related leg pain. Leg pain frequently accompanies LBP and is associated with increased levels of disability and higher health costs than simple low back pain. Distinguishing between different types of low back-related leg pain (LBLP) is important for clinical management and research applications, but there is currently no clear agreement on how to define and identify LBLP due to nerve root involvement. The aim of this systematic review was to identify, describe and appraise papers that classify or subgroup populations with LBLP, and summarise how leg pain due to nerve root involvement is described and diagnosed in the various systems. The search strategy involved nine electronic databases including Medline and Embase, reference lists of eligible studies and relevant reviews. Selected papers were appraised independently by two reviewers using a standardised scoring tool. Of 13,358 initial potential eligible citations, 50 relevant papers were identified that reported on 22 classification systems. Papers were grouped according to purpose and criteria of the classification systems. Five themes emerged: (i) clinical features (ii) pathoanatomy (iii) treatment-based approach (iv) screening tools and prediction rules and (v) pain mechanisms. Three of the twenty two systems focused specifically on LBLP populations. Systems that scored highest following quality appraisal were ones where authors generally included statistical methods to develop their classifications, and supporting work had been published on the systems' validity, reliability and generalisability. There was lack of consistency in how LBLP due to nerve root involvement was described and diagnosed within the systems. Numerous classification systems exist that include patients with leg pain, a minority of them focus specifically on distinguishing between different presentations of leg pain. Further work is needed to identify clinically meaningful subgroups of LBLP patients, ideally based on large primary care cohort populations and using recommended methods for classification system development.
Pang, Shuchao; Yu, Zhezhou; Orgun, Mehmet A
2017-03-01
Highly accurate classification of biomedical images is an essential task in the clinical diagnosis of numerous medical diseases identified from those images. Traditional image classification methods combined with hand-crafted image feature descriptors and various classifiers are not able to effectively improve the accuracy rate and meet the high requirements of classification of biomedical images. The same also holds true for artificial neural network models directly trained with limited biomedical images used as training data or directly used as a black box to extract the deep features based on another distant dataset. In this study, we propose a highly reliable and accurate end-to-end classifier for all kinds of biomedical images via deep learning and transfer learning. We first apply domain transferred deep convolutional neural network for building a deep model; and then develop an overall deep learning architecture based on the raw pixels of original biomedical images using supervised training. In our model, we do not need the manual design of the feature space, seek an effective feature vector classifier or segment specific detection object and image patches, which are the main technological difficulties in the adoption of traditional image classification methods. Moreover, we do not need to be concerned with whether there are large training sets of annotated biomedical images, affordable parallel computing resources featuring GPUs or long times to wait for training a perfect deep model, which are the main problems to train deep neural networks for biomedical image classification as observed in recent works. With the utilization of a simple data augmentation method and fast convergence speed, our algorithm can achieve the best accuracy rate and outstanding classification ability for biomedical images. We have evaluated our classifier on several well-known public biomedical datasets and compared it with several state-of-the-art approaches. We propose a robust automated end-to-end classifier for biomedical images based on a domain transferred deep convolutional neural network model that shows a highly reliable and accurate performance which has been confirmed on several public biomedical image datasets. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The Importance of Clinical Phenotype in Understanding and Preventing Spontaneous Preterm Birth.
Esplin, M Sean
2016-02-01
Spontaneous preterm birth (SPTB) is a well-known cause of maternal and neonatal morbidity. The search for the underlying pathways, documentation of the genetic causes, and identification of markers of spontaneous PTB have been marginally successful due to the fact that it is highly complex, with numerous processes that lead to a final common pathway. There is a great need for a comprehensive, consistent, and uniform classification system, which will be useful in identifying mechanisms, assigning prognosis, aiding in clinical management, and can identify areas of interest for intervention and future study. Effective classification systems must overcome obstacles including the lack of widely accepted definitions and uncertainty about inclusion of classifying features (e.g., presentation at delivery and multiple gestations) and levels of detail of these features. The optimal classification system should be based on the clinical phenotype, including characteristics of the mother, fetus, placenta, and the presentation for delivery. We present a proposed phenotyping system for spontaneous PTB. Future classification systems must establish a universally accepted set of definitions and a standardized clinical workup for all PTBs including the minimum clinical data to be collected and the laboratory and pathologic evaluation that should be completed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Clustering-Based Ensemble Learning for Activity Recognition in Smart Homes
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-01-01
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks. PMID:25014095
Clustering-based ensemble learning for activity recognition in smart homes.
Jurek, Anna; Nugent, Chris; Bi, Yaxin; Wu, Shengli
2014-07-10
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Deep learning and non-negative matrix factorization in recognition of mammograms
NASA Astrophysics Data System (ADS)
Swiderski, Bartosz; Kurek, Jaroslaw; Osowski, Stanislaw; Kruk, Michal; Barhoumi, Walid
2017-02-01
This paper presents novel approach to the recognition of mammograms. The analyzed mammograms represent the normal and breast cancer (benign and malignant) cases. The solution applies the deep learning technique in image recognition. To obtain increased accuracy of classification the nonnegative matrix factorization and statistical self-similarity of images are applied. The images reconstructed by using these two approaches enrich the data base and thanks to this improve of quality measures of mammogram recognition (increase of accuracy, sensitivity and specificity). The results of numerical experiments performed on large DDSM data base containing more than 10000 mammograms have confirmed good accuracy of class recognition, exceeding the best results reported in the actual publications for this data base.
Pixel-based flood mapping from SAR imagery: a comparison of approaches
NASA Astrophysics Data System (ADS)
Landuyt, Lisa; Van Wesemael, Alexandra; Van Coillie, Frieke M. B.; Verhoest, Niko E. C.
2017-04-01
Due to their all-weather, day and night capabilities, SAR sensors have been shown to be particularly suitable for flood mapping applications. Thus, they can provide spatially-distributed flood extent data which are valuable for calibrating, validating and updating flood inundation models. These models are an invaluable tool for water managers, to take appropriate measures in times of high water levels. Image analysis approaches to delineate flood extent on SAR imagery are numerous. They can be classified into two categories, i.e. pixel-based and object-based approaches. Pixel-based approaches, e.g. thresholding, are abundant and in general computationally inexpensive. However, large discrepancies between these techniques exist and often subjective user intervention is needed. Object-based approaches require more processing but allow for the integration of additional object characteristics, like contextual information and object geometry, and thus have significant potential to provide an improved classification result. As means of benchmark, a selection of pixel-based techniques is applied on a ERS-2 SAR image of the 2006 flood event of River Dee, United Kingdom. This selection comprises Otsu thresholding, Kittler & Illingworth thresholding, the Fine To Coarse segmentation algorithm and active contour modelling. The different classification results are evaluated and compared by means of several accuracy measures, including binary performance measures.
Fault Diagnosis Strategies for SOFC-Based Power Generation Plants
Costamagna, Paola; De Giorgi, Andrea; Gotelli, Alberto; Magistri, Loredana; Moser, Gabriele; Sciaccaluga, Emanuele; Trucco, Andrea
2016-01-01
The success of distributed power generation by plants based on solid oxide fuel cells (SOFCs) is hindered by reliability problems that can be mitigated through an effective fault detection and isolation (FDI) system. However, the numerous operating conditions under which such plants can operate and the random size of the possible faults make identifying damaged plant components starting from the physical variables measured in the plant very difficult. In this context, we assess two classical FDI strategies (model-based with fault signature matrix and data-driven with statistical classification) and the combination of them. For this assessment, a quantitative model of the SOFC-based plant, which is able to simulate regular and faulty conditions, is used. Moreover, a hybrid approach based on the random forest (RF) classification method is introduced to address the discrimination of regular and faulty situations due to its practical advantages. Working with a common dataset, the FDI performances obtained using the aforementioned strategies, with different sets of monitored variables, are observed and compared. We conclude that the hybrid FDI strategy, realized by combining a model-based scheme with a statistical classifier, outperforms the other strategies. In addition, the inclusion of two physical variables that should be measured inside the SOFCs can significantly improve the FDI performance, despite the actual difficulty in performing such measurements. PMID:27556472
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Stec, Magdalena; Wieczorek, Malgorzata; Slopek, Jacek; Jurecka, Miroslawa
2016-04-01
The objective of this work is to discuss the usefulness of the k-mean method in the process of detecting persons on oblique aerial photographs acquired by unmanned aerial vehicles (UAVs). The detection based on the k-mean procedure belongs to one of the modules of a larger Search and Rescue (SAR) system which is being developed at the University of Wroclaw, Poland (research project no. IP2014 032773 financed by the Ministry of Science and Higher Education of Poland). The module automatically processes individual geotagged visual-light UAV-taken photographs or their orthorectified versions. Firstly, we separate red (R), green (G) and blue (B) channels, express raster data as numeric matrices and acquire coordinates of centres of images using the exchangeable image file format (EXIF). Subsequently, we divide the matrices into matrices of smaller dimensions, the latter being associated with the size of spatial window which is suitable for discriminating between human and terrain. Each triplet of the smaller matrices (R, G and B) serves as input spatial data for the k-mean classification. We found that, in several configurations of the k-mean parameters, it is possible to distinguish a separate class which characterizes a person. We compare the skills of this approach by performing two experiments, based on UAV-taken RGB photographs and their orthorectified versions. This allows us to verify the hypothesis that the two exercises lead to similar classifications. In addition, we discuss the performance of the approach for dissimilar spatial windows, hence various dimensions of the above-mentioned matrices, and we do so in order to find the one which offers the most adequate classification. The numerical experiment is carried out using the data acquired during a dedicated observational UAV campaign carried out in the Izerskie Mountains (SW Poland).
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V
2018-05-15
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
Classification of hospital admissions into emergency and elective care: a machine learning approach.
Krämer, Jonas; Schreyögg, Jonas; Busse, Reinhard
2017-11-25
Rising admissions from emergency departments (EDs) to hospitals are a primary concern for many healthcare systems. The issue of how to differentiate urgent admissions from non-urgent or even elective admissions is crucial. We aim to develop a model for classifying inpatient admissions based on a patient's primary diagnosis as either emergency care or elective care and predicting urgency as a numerical value. We use supervised machine learning techniques and train the model with physician-expert judgments. Our model is accurate (96%) and has a high area under the ROC curve (>.99). We provide the first comprehensive classification and urgency categorization for inpatient emergency and elective care. This model assigns urgency values to every relevant diagnosis in the ICD catalog, and these values are easily applicable to existing hospital data. Our findings may provide a basis for policy makers to create incentives for hospitals to reduce the number of inappropriate ED admissions.
Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor
Alamedine, D.; Khalil, M.; Marque, C.
2013-01-01
Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper presents three methods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of classifiers. These methods have allowed us to identify common features which are relevant for contraction classification. PMID:24454536
Review of numerical models of cavitating flows with the use of the homogeneous approach
NASA Astrophysics Data System (ADS)
Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech
2016-06-01
The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.
Cheng, Shaobo; Li, Jun; Han, Myung-Geun; ...
2017-04-05
Here, we report structural transformation of sixfold vortex domains into two-, four-, and eightfold vortices via a different type of topological defect in hexagonal manganites. Combining high-resolution electron microscopy and Landau-theory-based numerical simulations, we also investigate the remarkable atomic arrangement and the intertwined relationship between the vortex structures and the topological defects. The roles of their displacement field, formation temperature, and nucleation sites are revealed. All conceivable vortices in the system are topologically classified using homotopy group theory, and their origins are identified.
The classification of two-loop integrand basis in pure four-dimension
NASA Astrophysics Data System (ADS)
Feng, Bo; Huang, Rijun
2013-02-01
In this paper, we have made the attempt to classify the integrand basis of all two-loop diagrams in pure four-dimensional space-time. The first step of our classification is to determine all different topologies of two-loop diagrams, i.e., the structure of denominators. The second step is to determine the set of independent numerators for each topology using Gröbner basis method. For the second step, varieties defined by putting all propagators on-shell has played an important role. We discuss the structures of varieties and how they split to various irreducible branches under specific kinematic configurations of external momenta. The structures of varieties are crucial to determine coefficients of integrand basis in reduction both numerically or analytically.
1987-07-14
RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in
NASA Astrophysics Data System (ADS)
Arai, Shun; Nishizawa, Atsushi
2018-05-01
Gravitational waves (GW) are generally affected by modification of a gravity theory during propagation at cosmological distances. We numerically perform a quantitative analysis on Horndeski theory at the cosmological scale to constrain the Horndeski theory by GW observations in a model-independent way. We formulate a parametrization for a numerical simulation based on the Monte Carlo method and obtain the classification of the models that agrees with cosmic accelerating expansion within observational errors of the Hubble parameter. As a result, we find that a large group of the models in the Horndeski theory that mimic cosmic expansion of the Λ CDM model can be excluded from the simultaneous detection of a GW and its electromagnetic transient counterpart. Based on our result and the latest detection of GW170817 and GRB170817A, we conclude that the subclass of Horndeski theory including arbitrary functions G4 and G5 can hardly explain cosmic accelerating expansion without fine-tuning.
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING
Liu, Meizhu; Vemuri, Baba C.
2011-01-01
Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) – used to represent the distribution over the training data and the classification error respectively – to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643
Wang, Shui-Hua; Phillips, Preetha; Sui, Yuxiu; Liu, Bin; Yang, Ming; Cheng, Hong
2018-03-26
Alzheimer's disease (AD) is a progressive brain disease. The goal of this study is to provide a new computer-vision based technique to detect it in an efficient way. The brain-imaging data of 98 AD patients and 98 healthy controls was collected using data augmentation method. Then, convolutional neural network (CNN) was used, CNN is the most successful tool in deep learning. An 8-layer CNN was created with optimal structure obtained by experiences. Three activation functions (AFs): sigmoid, rectified linear unit (ReLU), and leaky ReLU. The three pooling-functions were also tested: average pooling, max pooling, and stochastic pooling. The numerical experiments demonstrated that leaky ReLU and max pooling gave the greatest result in terms of performance. It achieved a sensitivity of 97.96%, a specificity of 97.35%, and an accuracy of 97.65%, respectively. In addition, the proposed approach was compared with eight state-of-the-art approaches. The method increased the classification accuracy by approximately 5% compared to state-of-the-art methods.
SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform.
Lin, Jie; Wei, Jing; Adjeroh, Donald; Jiang, Bing-Hua; Jiang, Yue
2018-05-02
Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
Overview of classification systems in peripheral artery disease.
Hardman, Rulon L; Jazaeri, Omid; Yi, J; Smith, M; Gupta, Rajan
2014-12-01
Peripheral artery disease (PAD), secondary to atherosclerotic disease, is currently the leading cause of morbidity and mortality in the western world. While PAD is common, it is estimated that the majority of patients with PAD are undiagnosed and undertreated. The challenge to the treatment of PAD is to accurately diagnose the symptoms and determine treatment for each patient. The varied presentations of peripheral vascular disease have led to numerous classification schemes throughout the literature. Consistent grading of patients leads to both objective criteria for treating patients and a baseline for clinical follow-up. Reproducible classification systems are also important in clinical trials and when comparing medical, surgical, and endovascular treatment paradigms. This article reviews the various classification systems for PAD and advantages to each system.
Commission 45: Spectral Classification
NASA Astrophysics Data System (ADS)
Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta
This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.
Multivariate spline methods in surface fitting
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr. (Principal Investigator); Schumaker, L. L.
1984-01-01
The use of spline functions in the development of classification algorithms is examined. In particular, a method is formulated for producing spline approximations to bivariate density functions where the density function is decribed by a histogram of measurements. The resulting approximations are then incorporated into a Bayesiaan classification procedure for which the Bayes decision regions and the probability of misclassification is readily computed. Some preliminary numerical results are presented to illustrate the method.
Common occupational classification system - revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahlman, E.J.; Lewis, R.E.
1996-05-01
Workforce planning has become an increasing concern within the DOE community as the Office of Environmental Restoration and Waste Management (ER/WM or EM) seeks to consolidate and refocus its activities and the Office of Defense Programs (DP) closes production sites. Attempts to manage the growth and skills mix of the EM workforce while retaining the critical skills of the DP workforce have been difficult due to the lack of a consistent set of occupational titles and definitions across the complex. Two reasons for this difficulty may be cited. First, classification systems commonly used in industry often fail to cover inmore » sufficient depth the unique demands of DOE`s nuclear energy and research community. Second, the government practice of contracting the operation of government facilities to the private sector has introduced numerous contractor-specific classification schemes to the DOE complex. As a result, sites/contractors report their workforce needs using unique classification systems. It becomes difficult, therefore, to roll these data up to the national level necessary to support strategic planning and analysis. The Common Occupational Classification System (COCS) is designed to overcome these workforce planning barriers. The COCS is based on earlier workforce planning activities and the input of technical, workforce planning, and human resource managers from across the DOE complex. It provides a set of mutually-exclusive occupation titles and definitions that cover the broad range of activities present in the DOE complex. The COCS is not a required record-keeping or data management guide. Neither is it intended to replace contractor/DOE-specific classification systems. Instead, the system provides a consistent, high- level, functional structure of occupations to which contractors can crosswalk (map) their job titles.« less
Crain, Angela S.; Caskey, Brian J.
2010-01-01
To assist Kentucky in refining numeric nutrient criteria in the Pennyroyal Bioregion, the U.S. Geological Survey and the Kentucky Division of Water collected and analyzed water chemistry, turbidity, and biological-community data from 22 streams throughout the Crawford-Mammoth Cave Upland ecoregion (U.S. Environmental Protection Agency Level IV Ecoregion, 71a) within the Pennyroyal Bioregion from September 2007 to May 2008. Statistically significant and ecologically relevant relations among the stressor (total phosphorus, total nitrogen, and turbidity) variables and response (macroinvertebrate-community attributes) variables and the breakpoint values of biological-community attributes and metrics in response to changes in stressor variables were determined. Thirteen of 18 macroinvertebrate attributes were significantly and ecologically correlated (p-value < 0.10) with at least one nutrient measure. Total number of individuals, Ephemeroptera-Plecoptera-Trichoptera richness, and average tolerance value were macroinvertebrate measures that most strongly correlated with the concentrations of nutrients. Comparison of the average macroinvertebrate-breakpoint value for the median concentration of total phosphorus (TP, 0.033 mg/L) and for median concentration of total nitrogen (TN, 1.1 mg/L) to Dodds' trophic classification for TP and TN indicates streams in the Crawford-Mammoth Cave Uplands ecoregion within the Pennyroyal Bioregion would be classified as mesotrophic-eutrophic. The biological breakpoint relations with median concentrations of TP in this study were similar to the U.S. Environmental Protection Agency proposed numeric TP criteria (0.037 mg/L), but were 1.5 times higher than the proposed numeric criteria for concentrations of TN (0.69 mg/L). No sites were impacted adversely using median turbidity values based on a 25 Formazin nephelometric turbidity unit biological threshold. The breakpoints determined in this study, in addition to Dodds' trophic classifications, were used as multiple lines of evidence to show changes in macroinvertebrate community and attributes based on exposure to nutrients.
Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors
Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.
2012-01-01
The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089
Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression
NASA Astrophysics Data System (ADS)
Khikmah, L.; Wijayanto, H.; Syafitri, U. D.
2017-04-01
The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.
Reproducibility of neuroimaging analyses across operating systems
Glatard, Tristan; Lewis, Lindsay B.; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C.
2015-01-01
Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed. PMID:25964757
Reproducibility of neuroimaging analyses across operating systems.
Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C
2015-01-01
Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.
The Effect of Normalization in Violence Video Classification Performance
NASA Astrophysics Data System (ADS)
Ali, Ashikin; Senan, Norhalina
2017-08-01
Basically, data pre-processing is an important part of data mining. Normalization is a pre-processing stage for any type of problem statement, especially in video classification. Challenging problems that arises in video classification is because of the heterogeneous content, large variations in video quality and complex semantic meanings of the concepts involved. Therefore, to regularize this problem, it is thoughtful to ensure normalization or basically involvement of thorough pre-processing stage aids the robustness of classification performance. This process is to scale all the numeric variables into certain range to make it more meaningful for further phases in available data mining techniques. Thus, this paper attempts to examine the effect of 2 normalization techniques namely Min-max normalization and Z-score in violence video classifications towards the performance of classification rate using Multi-layer perceptron (MLP) classifier. Using Min-Max Normalization range of [0,1] the result shows almost 98% of accuracy, meanwhile Min-Max Normalization range of [-1,1] accuracy is 59% and for Z-score the accuracy is 50%.
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-01-01
Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation. PMID:27618903
Hou, Bin; Wang, Yunhong; Liu, Qingjie
2016-08-27
Characterizations of up to date information of the Earth's surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD) methods have been developed to solve them by utilizing remote sensing (RS) images. The advent of high resolution (HR) remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs) allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC) segmentation. Then, saliency and morphological building index (MBI) extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF). Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.
NASA Astrophysics Data System (ADS)
Howes, N. C.; Georgiou, I. Y.; Hughes, Z. J.; Wolinsky, M. A.
2012-12-01
Channels in fluvio-deltaic and coastal plain settings undergo a progressive series of downstream transitions in hydrodynamics and sediment transport, which is consequently reflected in their morphology and stratigraphic architecture. Conditions progress from uniform fluvial flow to backwater conditions with non-uniform flow, and finally to bi-directional tidal flow or estuarine circulation at the ocean boundary. While significant attention has been given to geomorphic scaling relationships in purely fluvial settings, there have been far fewer studies on the backwater and tidal reaches, and no systematic comparisons. Our study addresses these gaps by analyzing geometric scaling relationships independently in each of the above hydrodynamic regimes and establishes a comparison. To accomplish this goal we have constructed a database of planform geometries including more than 150 channels. In terms of hydrodynamics studies, much of the work on backwater dynamics has concentrated on the Mississippi River, which has very limited tidal influence. We will extend this analysis to include systems with appreciable offshore tidal range, using a numerical hydrodynamic model to study the interaction between backwater dynamics and tides. The database is comprised of systems with a wide range of tectonic, climatic, and oceanic forcings. The scale of these systems, as measured by bankfull width, ranges over three orders of magnitude from the Amazon River in Brazil to the Palix River in Washington. Channel centerlines are extracted from processed imagery, enabling continuous planform measurements of bankfull width, meander wavelength, and sinuosity. Digital terrain and surface models are used to estimate floodplain slopes. Downstream tidal boundary conditions are obtained from the TOPEX 7.1 global tidal model, while upstream boundary conditions such as basin area, relief, and discharge are obtained by linking the databases of Milliman and Meade (2011) and Syvitski (2005). Backwater and tidal length-scales are computed from published data as well as from numerical simulations. An analysis of the database combined with numerical hydrodynamic simulations allows us to organize the results into a process-based classification of coastal rivers. The classification describes the scale, shape, and flow field transitions of coastal rivers as a function of discharge, floodplain slope, and offshore tidal range.
Detection of epileptic seizure in EEG signals using linear least squares preprocessing.
Roshan Zamir, Z
2016-09-01
An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Post-treatment glenoid classification system for total shoulder arthroplasty.
Churchill, R Sean
2012-04-01
Over the past 10 years, numerous advancements in glenoid preparation and resurfacing have occurred. Current glenoid classification systems are either focused solely on the patient's preoperative glenoid bone configuration or on the available glenoid bone stock in revision arthroplasty cases. While these systems provide value in preoperative planning, they fail to properly classify the surgical reconstruction completed. A literature review of common bone preparation methods and sources of glenoid prosthetic failure was performed. Based upon this review, a classification system for grading the status of the glenoid after prosthetic implantation was developed. A 6 category, post-treatment, glenoid classification system is proposed: type 0: no reaming; type I: glenoid reaming into but not through the subchondral bone; type II: glenoid reaming which perforates through <50% of the subchondral bone surface area; type III: glenoid reaming which perforates through >50% of the subchondral bone surface area; type IV: use of structural bone graft; and type V: use of a posterior augmented glenoid prosthesis. Types I-III are further subdivided into subtype A which have 100% bone support of the prosthesis, and subtype B which have a region of unsupported prosthesis. The classification system proposed addresses the surgical management of the glenoid during prosthetic replacement. This unique approach to classifying the glenoid following surgical intervention will allow direct follow-up comparison of similarly treated glenoid replacements. Future multicenter studies, possibly through joint registry databases, could then determine the long-term efficacy of the various glenoid preparation methods. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Random forests-based differential analysis of gene sets for gene expression data.
Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An
2013-04-10
In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Land cover mapping for development planning in Eastern and Southern Africa
NASA Astrophysics Data System (ADS)
Oduor, P.; Flores Cordova, A. I.; Wakhayanga, J. A.; Kiema, J.; Farah, H.; Mugo, R. M.; Wahome, A.; Limaye, A. S.; Irwin, D.
2016-12-01
Africa continues to experience intensification of land use, driven by competition for resources and a growing population. Land cover maps are some of the fundamental datasets required by numerous stakeholders to inform a number of development decisions. For instance, they can be integrated with other datasets to create value added products such as vulnerability impact assessment maps, and natural capital accounting products. In addition, land cover maps are used as inputs into Greenhouse Gas (GHG) inventories to inform the Agriculture, Forestry and other Land Use (AFOLU) sector. However, the processes and methodologies of creating land cover maps consistent with international and national land cover classification schemes can be challenging, especially in developing countries where skills, hardware and software resources can be limiting. To meet this need, SERVIR Eastern and Southern Africa developed methodologies and stakeholder engagement processes that led to a successful initiative in which land cover maps for 9 countries (Malawi, Rwanda, Namibia, Botswana, Lesotho, Ethiopia, Uganda, Zambia and Tanzania) were developed, using 2 major classification schemes. The first sets of maps were developed based on an internationally acceptable classification system, while the second sets of maps were based on a nationally defined classification system. The mapping process benefited from reviews from national experts and also from technical advisory groups. The maps have found diverse uses, among them the definition of the Forest Reference Levels in Zambia. In Ethiopia, the maps have been endorsed by the national mapping agency as part of national data. The data for Rwanda is being used to inform the Natural Capital Accounting process, through the WAVES program, a World Bank Initiative. This work illustrates the methodologies and stakeholder engagement processes that brought success to this land cover mapping initiative.
Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia
2018-05-30
The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.
Formability prediction for AHSS materials using damage models
NASA Astrophysics Data System (ADS)
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
Application of LANDSAT data to wetland study and land use classification in west Tennessee
NASA Technical Reports Server (NTRS)
Jones, N. L.; Shahrokhi, F.
1977-01-01
The Obion-Forked Deer River Basin in northwest Tennessee is confronted with several acute land use problems which result in excessive erosion, sedimentation, pollution, and hydrologic runoff. LANDSAT data was applied to determine land use of selected watershed areas within the basin, with special emphasis on determining wetland boundaries. Densitometric analysis was performed to allow numerical classification of objects observed in the imagery on the basis of measurements of optical densities. Multispectral analysis of the LANDSAT imagery provided the capability of altering the color of the image presentation in order to enhance desired relationships. Manual mapping and classification techniques were performed in order to indicate a level of accuracy of the LANDSAT data as compared with high and low altitude photography for land use classification.
A Descriptive and Interpretative Information System for the IODP
NASA Astrophysics Data System (ADS)
Blum, P.; Foster, P. A.; Mateo, Z.
2006-12-01
The ODP/IODP has a long and rich history of collecting descriptive and interpretative information (DESCINFO) from rock and sediment cores from the world's oceans. Unlike instrumental data, DESCINFO generated by subject experts is biased by the scientific and cultural background of the observers and their choices of classification schemes. As a result, global searches of DESCINFO and its integration with other data are problematical. To address this issue, the IODP-USIO is in the process of designing and implementing a DESCINFO system for IODP Phase 2 (2007-2013) that meets the user expectations expressed over the past decade. The requirements include support of (1) detailed, material property-based descriptions as well as classification-based descriptions; (2) global searches by physical sample and digital data sources as well as any of the descriptive parameters; (3) user-friendly data capture tools for a variety of workflows; and (4) extensive visualization of DESCINFO data along with instrumental data and images; and (5) portability/interoperability such that the system can work with database schemas of other organizations - a specific challenge given the schema and semantic heterogeneity not only among the three IODP operators but within the geosciences in general. The DESCINFO approach is based on the definition of a set of generic observable parameters that are populated with numeric or text values. Text values are derived from controlled, extensible hierarchical value lists that allow descriptions at the appropriate level of detail and ensure successful data searches. Material descriptions can be completed independently of domain-specific classifications, genetic concepts, and interpretative frameworks.
A two-tier atmospheric circulation classification scheme for the European-North Atlantic region
NASA Astrophysics Data System (ADS)
Guentchev, Galina S.; Winkler, Julie A.
A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past variability and projecting future changes in the occurrence of extreme weather and climate events.
Oi, Shizuo
2011-10-01
Hydrocephalus is a complex pathophysiology with disturbed cerebrospinal fluid (CSF) circulation. There are numerous numbers of classification trials published focusing on various criteria, such as associated anomalies/underlying lesions, CSF circulation/intracranial pressure patterns, clinical features, and other categories. However, no definitive classification exists comprehensively to cover the variety of these aspects. The new classification of hydrocephalus, "Multi-categorical Hydrocephalus Classification" (Mc HC), was invented and developed to cover the entire aspects of hydrocephalus with all considerable classification items and categories. Ten categories include "Mc HC" category I: onset (age, phase), II: cause, III: underlying lesion, IV: symptomatology, V: pathophysiology 1-CSF circulation, VI: pathophysiology 2-ICP dynamics, VII: chronology, VII: post-shunt, VIII: post-endoscopic third ventriculostomy, and X: others. From a 100-year search of publication related to the classification of hydrocephalus, 14 representative publications were reviewed and divided into the 10 categories. The Baumkuchen classification graph made from the round o'clock classification demonstrated the historical tendency of deviation to the categories in pathophysiology, either CSF or ICP dynamics. In the preliminary clinical application, it was concluded that "Mc HC" is extremely effective in expressing the individual state with various categories in the past and present condition or among the compatible cases of hydrocephalus along with the possible chronological change in the future.
Bradfield, A.D.
1986-01-01
Coal-mining impacts on Smoky Creek, eastern Tennessee were evaluated using water quality and benthic invertebrate data. Data from mined sites were also compared with water quality and invertebrate fauna found at Crabapple Branch, an undisturbed stream in a nearby basin. Although differences in water quality constituent concentrations and physical habitat conditions at sampling sites were apparent, commonly used measures of benthic invertebrate sample data such as number of taxa, sample diversity, number of organisms, and biomass were inadequate for determining differences in stream environments. Clustering algorithms were more useful in determining differences in benthic invertebrate community structure and composition. Normal (collections) and inverse (species) analyses based on presence-absence data of species of Ephemeroptera, Plecoptera, and Tricoptera were compared using constancy, fidelity, and relative abundance of species found at stations with similar fauna. These analyses identified differences in benthic community composition due to seasonal variations in invertebrate life histories. When data from a single season were examined, sites on tributary streams generally clustered separately from sites on Smoky Creek. These analyses compared with differences in water quality, stream size, and substrate characteristics between tributary sites and the more degraded main stem sites, indicated that numerical classification of invertebrate data can provide discharge-independent information useful in rapid evaluations of in-stream environmental conditions. (Author 's abstract)
Friedel, M.J.; Asch, T.H.; Oden, C.
2012-01-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Asch, T. H.; Oden, C.
2012-08-01
The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.
Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong
2017-01-01
The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms other feature models.
Signal detection using support vector machines in the presence of ultrasonic speckle
NASA Astrophysics Data System (ADS)
Kotropoulos, Constantine L.; Pitas, Ioannis
2002-04-01
Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.
Locating and classifying defects using an hybrid data base
NASA Astrophysics Data System (ADS)
Luna-Avilés, A.; Hernández-Gómez, L. H.; Durodola, J. F.; Urriolagoitia-Calderón, G.; Urriolagoitia-Sosa, G.; Beltrán Fernández, J. A.; Díaz Pineda, A.
2011-07-01
A computational inverse technique was used in the localization and classification of defects. Postulated voids of two different sizes (2 mm and 4 mm diameter) were introduced in PMMA bars with and without a notch. The bar dimensions are 200×20×5 mm. One half of them were plain and the other half has a notch (3 mm × 4 mm) which is close to the defect area (19 mm × 16 mm).This analysis was done with an Artificial Neural Network (ANN) and its optimization was done with an Adaptive Neuro Fuzzy Procedure (ANFIS). A hybrid data base was developed with numerical and experimental results. Synthetic data was generated with the finite element method using SOLID95 element of ANSYS code. A parametric analysis was carried out. Only one defect in such bars was taken into account and the first five natural frequencies were calculated. 460 cases were evaluated. Half of them were plain and the other half has a notch. All the input data was classified in two groups. Each one has 230 cases and corresponds to one of the two sort of voids mentioned above. On the other hand, experimental analysis was carried on with PMMA specimens of the same size. The first two natural frequencies of 40 cases were obtained with one void. The other three frequencies were obtained numerically. 20 of these bars were plain and the others have a notch. These experimental results were introduced in the synthetic data base. 400 cases were taken randomly and, with this information, the ANN was trained with the backpropagation algorithm. The accuracy of the results was tested with the 100 cases that were left. In the next stage of this work, the ANN output was optimized with ANFIS. Previous papers showed that localization and classification of defects was reduced as notches were introduced in such bars. In the case of this paper, improved results were obtained when a hybrid data base was used.
Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery
Moran, Emilio Federico.
2010-01-01
High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433
Combined use of computational chemistry and chemoinformatics methods for chemical discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Manabu, E-mail: sugimoto@kumamoto-u.ac.jp; Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
2015-12-31
Data analysis on numerical data by the computational chemistry calculations is carried out to obtain knowledge information of molecules. A molecular database is developed to systematically store chemical, electronic-structure, and knowledge-based information. The database is used to find molecules related to a keyword of “cancer”. Then the electronic-structure calculations are performed to quantitatively evaluate quantum chemical similarity of the molecules. Among the 377 compounds registered in the database, 24 molecules are found to be “cancer”-related. This set of molecules includes both carcinogens and anticancer drugs. The quantum chemical similarity analysis, which is carried out by using numerical results of themore » density-functional theory calculations, shows that, when some energy spectra are referred to, carcinogens are reasonably distinguished from the anticancer drugs. Therefore these spectral properties are considered of as important measures for classification.« less
NASA Astrophysics Data System (ADS)
Langer, H. K.; Falsaperla, S. M.; Behncke, B.; Messina, A.; Spampinato, S.
2009-12-01
Artificial Intelligence (AI) has found broad applications in volcano observatories worldwide with the aim of reducing volcanic hazard. The need to process larger and larger quantity of data makes indeed AI techniques appealing for monitoring purposes. Tools based on Artificial Neural Networks and Support Vector Machine have proved to be particularly successful in the classification of seismic events and volcanic tremor changes heralding eruptive activity, such as paroxysmal explosions and lava fountaining at Stromboli and Mt Etna, Italy (e.g., Falsaperla et al., 1996; Langer et al., 2009). Moving on from the excellent results obtained from these applications, we present KKAnalysis, a MATLAB based software which combines several unsupervised pattern classification methods, exploiting routines of the SOM Toolbox 2 for MATLAB (http://www.cis.hut.fi/projects/somtoolbox). KKAnalysis is based on Self Organizing Maps (SOM) and clustering methods consisting of K-Means, Fuzzy C-Means, and a scheme based on a metrics accounting for correlation between components of the feature vector. We show examples of applications of this tool to volcanic tremor data recorded at Mt Etna between 2007 and 2009. This time span - during which Strombolian explosions, 7 episodes of lava fountaining and effusive activity occurred - is particularly interesting, as it encompassed different states of volcanic activity (i.e., non-eruptive, eruptive according to different styles) for the unsupervised classifier to identify, highlighting their development in time. Even subtle changes in the signal characteristics allow the unsupervised classifier to recognize features belonging to the different classes and stages of volcanic activity. A convenient color-code representation shows up the temporal development of the different classes of signal, making this method extremely helpful for monitoring purposes and surveillance. Though being developed for volcanic tremor classification, KKAnalysis is generally applicable to any type of physical or chemical pattern, provided that feature vectors are given in numerical form. References: Falsaperla, S., S. Graziani, G. Nunnari, and S. Spampinato (1996). Automatic classification of volcanic earthquakes by using multy-layered neural networks. Natural Hazard, 13, 205-228. Langer, H., S. Falsaperla, M. Masotti, R. Campanini, S. Spampinato, and A. Messina (2008). Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt Etna, Italy. Geophys. J. Int., doi:10.1111/j.1365-246X.2009.04179.x.
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
NASA Astrophysics Data System (ADS)
Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.
2018-04-01
The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.
Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor
NASA Astrophysics Data System (ADS)
Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi
2017-12-01
The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.
NASA Astrophysics Data System (ADS)
Le Bas, Tim; Scarth, Anthony; Bunting, Peter
2015-04-01
Traditional computer based methods for the interpretation of remotely sensed imagery use each pixel individually or the average of a small window of pixels to calculate a class or thematic value, which provides an interpretation. However when a human expert interprets imagery, the human eye is excellent at finding coherent and homogenous areas and edge features. It may therefore be advantageous for computer analysis to mimic human interpretation. A new toolbox for ArcGIS 10.x will be presented that segments the data layers into a set of polygons. Each polygon is defined by a K-means clustering and region growing algorithm, thus finding areas, their edges and any lineations in the imagery. Attached to each polygon are the characteristics of the imagery such as mean and standard deviation of the pixel values, within the polygon. The segmentation of imagery into a jigsaw of polygons also has the advantage that the human interpreter does not need to spend hours digitising the boundaries. The segmentation process has been taken from the RSGIS library of analysis and classification routines (Bunting et al., 2014). These routines are freeware and have been modified to be available in the ArcToolbox under the Windows (v7) operating system. Input to the segmentation process is a multi-layered raster image, for example; a Landsat image, or a set of raster datasets made up from derivatives of topography. The size and number of polygons are set by the user and are dependent on the imagery used. Examples will be presented of data from the marine environment utilising bathymetric depth, slope, rugosity and backscatter from a multibeam system. Meaningful classification of the polygons using their numerical characteristics is the next goal. Object based image analysis (OBIA) should help this workflow. Fully calibrated imagery systems will allow numerical classification to be translated into more readily understandable terms. Peter Bunting, Daniel Clewley, Richard M. Lucas and Sam Gillingham. 2014. The Remote Sensing and GIS Software Library (RSGISLib), Computers & Geosciences. Volume 62, Pages 216-226 http://dx.doi.org/10.1016/j.cageo.2013.08.007.
Hydrogeology of glacial-terrain lakes, with management and planning applications
Born, S.M.; Smith, S.A.; Stephenson, D.A.
1979-01-01
The subject of the relationship between groundwater and lakes is characterized by sparse information and, in general, has received limited attention by hydrologists. Nevertheless, the hydrogeologic regime of lakes must be adequately assessed in order to intelligently manage lakes and their related shorelands. This paper is a compilation of hydrogeologic data for numerous lakes in North America and presents a preliminary classification framework for lakes based on hydrogeologic considerations. The classification leads to systematic categorization of lake types for planning and management purposes. The main hydrogeologic factors for assessing lake environments are: (1) regime dominance, the relative magnitude of groundwater in the total water budget of a lake; (2) system efficiency, a description of the rate aspects of surface and groundwater movement through a lake system; and (3) position within a groundwater flow system. We indicate the significance and difficulty of measuring these descriptive characteristics and provide examples of each category. Additionally, a variety of lake-related activities that illustrate the value of hydrogeologic information for planning and management purposes are presented. ?? 1979.
Performance Analysis of Classification Methods for Indoor Localization in Vlc Networks
NASA Astrophysics Data System (ADS)
Sánchez-Rodríguez, D.; Alonso-González, I.; Sánchez-Medina, J.; Ley-Bosch, C.; Díaz-Vilariño, L.
2017-09-01
Indoor localization has gained considerable attention over the past decade because of the emergence of numerous location-aware services. Research works have been proposed on solving this problem by using wireless networks. Nevertheless, there is still much room for improvement in the quality of the proposed classification models. In the last years, the emergence of Visible Light Communication (VLC) brings a brand new approach to high quality indoor positioning. Among its advantages, this new technology is immune to electromagnetic interference and has the advantage of having a smaller variance of received signal power compared to RF based technologies. In this paper, a performance analysis of seventeen machine leaning classifiers for indoor localization in VLC networks is carried out. The analysis is accomplished in terms of accuracy, average distance error, computational cost, training size, precision and recall measurements. Results show that most of classifiers harvest an accuracy above 90 %. The best tested classifier yielded a 99.0 % accuracy, with an average error distance of 0.3 centimetres.
Data Format Classification for Autonomous Software Defined Radios
NASA Technical Reports Server (NTRS)
Simon, Marvin; Divsalar, Dariush
2005-01-01
We present maximum-likelihood (ML) coherent and noncoherent classifiers for discriminating between NRZ and Manchester coded (biphase-L) data formats for binary phase-shift-keying (BPSK) modulation. Such classification of the data format is an essential element of so-called autonomous software defined radio (SDR) receivers (similar to so-called cognitive SDR receivers in the military application) where it is desired that the receiver perform each of its functions by extracting the appropriate knowledge from the received signal and, if possible, with as little information of the other signal parameters as possible. Small and large SNR approximations to the ML classifiers are also proposed that lead to simpler implementation with comparable performance in their respective SNR regions. Numerical performance results obtained by a combination of computer simulation and, wherever possible, theoretical analyses, are presented and comparisons are made among the various configurations based on the probability of misclassification as a performance criterion. Extensions to other modulations such as QPSK are readily accomplished using the same methods described in the paper.
Differential diagnosis of the scalp hair folliculitis.
Lugović-Mihić, Liborija; Barisić, Freja; Bulat, Vedrana; Buljan, Marija; Situm, Mirna; Bradić, Lada; Mihić, Josip
2011-09-01
Scalp hair folliculitis is a relatively common condition in dermatological practice and a major diagnostic and therapeutic challenge due to the lack of exact guidelines. Generally, inflammatory diseases of the pilosebaceous follicle of the scalp most often manifest as folliculitis. There are numerous infective agents that may cause folliculitis, including bacteria, viruses and fungi, as well as many noninfective causes. Several noninfectious diseases may present as scalp hair folliculitis, such as folliculitis decalvans capillitii, perifolliculitis capitis abscendens et suffodiens, erosive pustular dermatitis, lichen planopilaris, eosinophilic pustular folliculitis, etc. The classification of folliculitis is both confusing and controversial. There are many different forms of folliculitis and several classifications. According to the considerable variability of histologic findings, there are three groups of folliculitis: infectious folliculitis, noninfectious folliculitis and perifolliculitis. The diagnosis of folliculitis occasionally requires histologic confirmation and cannot be based solely on clinical appearance of scalp lesions. This article summarizes prominent variants of inflammatory diseases of the scalp hair follicle with differential diagnosis and appertaining histological features.
An updated evolutionary classification of CRISPR–Cas systems
Makarova, Kira S.; Wolf, Yuri I.; Alkhnbashi, Omer S.; Costa, Fabrizio; Shah, Shiraz A.; Saunders, Sita J.; Barrangou, Rodolphe; Brouns, Stan J. J.; Charpentier, Emmanuelle; Haft, Daniel H.; Horvath, Philippe; Moineau, Sylvain; Mojica, Francisco J. M.; Terns, Rebecca M.; Terns, Michael P.; White, Malcolm F.; Yakunin, Alexander F.; Garrett, Roger A.; van der Oost, John; Backofen, Rolf; Koonin, Eugene V.
2017-01-01
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized. PMID:26411297
Evaluation of Hydrometeor Classification for Winter Mixed-Phase Precipitation Events
NASA Astrophysics Data System (ADS)
Hickman, B.; Troemel, S.; Ryzhkov, A.; Simmer, C.
2016-12-01
Hydrometeor classification algorithms (HCL) typically discriminate radar echoes into several classes including rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Despite the strength of HCL for precipitation dominated by a single phase - especially warm-season classification - shortcomings exist for mixed-phase precipitation classification. Properly identifying mixed-phase can lead to more accurate precipitation estimates, and better forecasts for aviation weather and ground warnings. Cold season precipitation classification is also highly important due to their potentially high impact on society (e.g. black ice, ice accumulation, snow loads), but due to the varying nature of the hydrometeor - density, dielectric constant, shape - reliable classification via radar alone is not capable. With the addition of thermodynamic information of the atmosphere, either from weather models or sounding data, it has been possible to extend more and more into winter time precipitation events. Yet, inaccuracies still exist in separating more benign (ice pellets) from more the more hazardous (freezing rain) events. We have investigated winter mixed-phase precipitation cases which include freezing rain, ice pellets, and rain-snow transitions from several events in Germany in order to move towards a reliable nowcasting of winter precipitation in hopes to provide faster, more accurate winter time warnings. All events have been confirmed to have the specified precipitation from ground reports. Classification of the events is achieved via a combination of inputs from a bulk microphysics numerical weather prediction model and the German dual-polarimetric C-band radar network, into a 1D spectral bin microphysical model (SBC) which explicitly treats the processes of melting, refreezing, and ice nucleation to predict four near-surface precipitation types: rain, snow, freezing rain, ice pellets, rain/snow mixture, and freezing rain/pellet mixture. Evaluation of the classification is performed by means of disdrometer data, in-situ ground observations, and eye-witness reports from the European Severe Weather Database (ESWD). Additionally, a comparison to an existing radar based HCL is performed as a sanity check and a performance evaluator.
NASA Astrophysics Data System (ADS)
Barthel, Roland; Haaf, Ezra
2016-04-01
Regional hydrogeology is becoming increasingly important, but at the same time, scientifically sound, universal solutions for typical groundwater problems encountered on the regional scale are hard to find. While managers, decision-makers and state agencies operating on regional and national levels have always shown a strong interest in regional scale hydrogeology, researchers from academia tend to avoid the subject, focusing instead on local scales. Additionally, hydrogeology has always had a tendency to regard every problem as unique to its own site- and problem-specific context. Regional scale hydrogeology is therefore pragmatic rather than aiming at developing generic methodology (Barthel, 2014; Barthel and Banzhaf, 2016). One of the main challenges encountered on the regional scale in hydrogeology is the extreme heterogeneity that generally increases with the size of the studied area - paired with relative data scarcity. Even in well-monitored regions of the world, groundwater observations are usually clustered, leaving large areas without any direct data. However, there are many good reasons for assessing the status and predicting the behavior of groundwater systems under conditions of global change even for those areas and aquifers without observations. This is typically done by using rather coarsely discretized and / or poorly parameterized numerical models, or by using very simplistic conceptual hydrological models that do not take into account the complex three-dimensional geological setup. Numerical models heavily rely on local data and are resource-demanding. Conceptual hydrological models only deliver reliable information on groundwater if the geology is extremely simple. In this contribution, we present an approach to derive statistically relevant information for un-monitored areas, making use of existing information from similar localities that are or have been monitored. The approach combines site-specific knowledge with conceptual assumptions on the behavior of groundwater systems. It is based on the hypothesis that similar groundwater systems respond similarly to similar impacts. At its core is the classification of (i) static hydrogeological characteristics (such as aquifer geometry and hydraulic properties), (ii) dynamic changes of the boundary conditions (such as recharge, water levels in surface waters), and (iii) dynamic groundwater system responses (groundwater head and chemical parameters). The dependencies of system responses on explanatory variables are used to map knowledge from observed locations to areas without measurements. Classification of static and dynamic system features combined with information about known system properties and their dependencies provide insight into system behavior that cannot be directly derived through the analysis of raw data. Classification and dependency analysis could finally lead to a new framework for groundwater system assessment on the regional scale as a replacement or supplement to numerical groundwater models and catchment scale hydrological models. This contribution focusses on the main hydrogeological concepts underlying the approach while another EGU contribution (Haaf and Barthel, 2016) explains the methodologies used to classify groundwater systems. References: Barthel, R., 2014. A call for more fundamental science in regional hydrogeology. Hydrogeol J, 22(3): 507-510. Barthel, R., Banzhaf, S., 2016. Groundwater and Surface Water Interaction at the Regional-scale - A Review with Focus on Regional Integrated Models. Water Resour Manag, 30(1): 1-32. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs. Abstract submitted to EGU General Assembly 2016, Vienna, Austria.
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
IRIS COLOUR CLASSIFICATION SCALES – THEN AND NOW
Grigore, Mariana; Avram, Alina
2015-01-01
Eye colour is one of the most obvious phenotypic traits of an individual. Since the first documented classification scale developed in 1843, there have been numerous attempts to classify the iris colour. In the past centuries, iris colour classification scales has had various colour categories and mostly relied on comparison of an individual’s eye with painted glass eyes. Once photography techniques were refined, standard iris photographs replaced painted eyes, but this did not solve the problem of painted/ printed colour variability in time. Early clinical scales were easy to use, but lacked objectivity and were not standardised or statistically tested for reproducibility. The era of automated iris colour classification systems came with the technological development. Spectrophotometry, digital analysis of high-resolution iris images, hyper spectral analysis of the human real iris and the dedicated iris colour analysis software, all accomplished an objective, accurate iris colour classification, but are quite expensive and limited in use to research environment. Iris colour classification systems evolved continuously due to their use in a wide range of studies, especially in the fields of anthropology, epidemiology and genetics. Despite the wide range of the existing scales, up until present there has been no generally accepted iris colour classification scale. PMID:27373112
IRIS COLOUR CLASSIFICATION SCALES--THEN AND NOW.
Grigore, Mariana; Avram, Alina
2015-01-01
Eye colour is one of the most obvious phenotypic traits of an individual. Since the first documented classification scale developed in 1843, there have been numerous attempts to classify the iris colour. In the past centuries, iris colour classification scales has had various colour categories and mostly relied on comparison of an individual's eye with painted glass eyes. Once photography techniques were refined, standard iris photographs replaced painted eyes, but this did not solve the problem of painted/ printed colour variability in time. Early clinical scales were easy to use, but lacked objectivity and were not standardised or statistically tested for reproducibility. The era of automated iris colour classification systems came with the technological development. Spectrophotometry, digital analysis of high-resolution iris images, hyper spectral analysis of the human real iris and the dedicated iris colour analysis software, all accomplished an objective, accurate iris colour classification, but are quite expensive and limited in use to research environment. Iris colour classification systems evolved continuously due to their use in a wide range of studies, especially in the fields of anthropology, epidemiology and genetics. Despite the wide range of the existing scales, up until present there has been no generally accepted iris colour classification scale.
Open Fractures of the Hand: Review of Pathogenesis and Introduction of a New Classification System.
Tulipan, Jacob E; Ilyas, Asif M
2018-02-01
Open fractures of the hand are a common and varied group of injuries. Although at increased risk for infection, open fractures of the hand are more resistant to infection than other open fractures. Numerous unique factors in the hand may play a role in the altered risk of postinjury infection. Current systems for the classification of open fractures fail to address the unique qualities of the hand. This article proposes a novel classification system for open fractures of the hand, taking into account the factors unique to the hand that affect its risk for developing infection after an open fracture. Copyright © 2017. Published by Elsevier Inc.
Energy Current Cumulants in One-Dimensional Systems in Equilibrium
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Saito, Keiji; Roy, Anjan
2018-06-01
A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
NASA Astrophysics Data System (ADS)
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Penalized gaussian process regression and classification for high-dimensional nonlinear data.
Yi, G; Shi, J Q; Choi, T
2011-12-01
The model based on Gaussian process (GP) prior and a kernel covariance function can be used to fit nonlinear data with multidimensional covariates. It has been used as a flexible nonparametric approach for curve fitting, classification, clustering, and other statistical problems, and has been widely applied to deal with complex nonlinear systems in many different areas particularly in machine learning. However, it is a challenging problem when the model is used for the large-scale data sets and high-dimensional data, for example, for the meat data discussed in this article that have 100 highly correlated covariates. For such data, it suffers from large variance of parameter estimation and high predictive errors, and numerically, it suffers from unstable computation. In this article, penalized likelihood framework will be applied to the model based on GPs. Different penalties will be investigated, and their ability in application given to suit the characteristics of GP models will be discussed. The asymptotic properties will also be discussed with the relevant proofs. Several applications to real biomechanical and bioinformatics data sets will be reported. © 2011, The International Biometric Society No claim to original US government works.
Event-Based User Classification in Weibo Media
Wang, Wendong; Cheng, Shiduan; Que, Xirong
2014-01-01
Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately. PMID:25133235
Event-based user classification in Weibo media.
Guo, Liang; Wang, Wendong; Cheng, Shiduan; Que, Xirong
2014-01-01
Weibo media, known as the real-time microblogging services, has attracted massive attention and support from social network users. Weibo platform offers an opportunity for people to access information and changes the way people acquire and disseminate information significantly. Meanwhile, it enables people to respond to the social events in a more convenient way. Much of the information in Weibo media is related to some events. Users who post different contents, and exert different behavior or attitude may lead to different contribution to the specific event. Therefore, classifying the large amount of uncategorized social circles generated in Weibo media automatically from the perspective of events has been a promising task. Under this circumstance, in order to effectively organize and manage the huge amounts of users, thereby further managing their contents, we address the task of user classification in a more granular, event-based approach in this paper. By analyzing real data collected from Sina Weibo, we investigate the Weibo properties and utilize both content information and social network information to classify the numerous users into four primary groups: celebrities, organizations/media accounts, grassroots stars, and ordinary individuals. The experiments results show that our method identifies the user categories accurately.
Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
Ko, Li-Wei; Ranga, S S K; Komarov, Oleksii; Chen, Chung-Chiang
2017-01-01
Numerous EEG-based brain-computer interface (BCI) systems that are being developed focus on novel feature extraction algorithms, classification methods and combining existing approaches to create hybrid BCIs. Several recent studies demonstrated various advantages of hybrid BCI systems in terms of an improved accuracy or number of commands available for the user. But still, BCI systems are far from realization for daily use. Having high performance with less number of channels is one of the challenging issues that persists, especially with hybrid BCI systems, where multiple channels are necessary to record information from two or more EEG signal components. Therefore, this work proposes a single-channel (C3 or C4) hybrid BCI system that combines motor imagery (MI) and steady-state visually evoked potential (SSVEP) approaches. This study demonstrates that besides MI features, SSVEP features can also be captured from C3 or C4 channel. The results show that due to rich feature information (MI and SSVEP) at these channels, the proposed hybrid BCI system outperforms both MI- and SSVEP-based systems having an average classification accuracy of 85.6 ± 7.7% in a two-class task.
Przyłuska, Jolanta
2006-01-01
A high classification of scientific journals in the ranking of international transfer of knowledge is reflected by other researchers' citations. The International Journal of Occupational Medicine and Environmental Health (IJOMEH) is an international professional quarterly focused on such areas as occupational medicine, toxicology and environmental health edited in Poland. IJOMEH, published in English, is indexed in numerous world information services (MEDLINE, EMBASE, EBSCO, SCOPUS). This paper presents the contribution of IJOMEH publications to the world circulation of scientific information based on the citation analysis. The analysis, grounded on the SCOPUS database, assessed the frequency of citations in the years 1996-2005. Journals in which they have been cited were retrieved and their list is also included.
Shpynov, S; Pozdnichenko, N; Gumenuk, A
2015-01-01
Genome sequences of 36 Rickettsia and Orientia were analyzed using Formal Order Analysis (FOA). This approach takes into account arrangement of nucleotides in each sequence. A numerical characteristic, the average distance (remoteness) - "g" was used to compare of genomes. Our results corroborated previous separation of three groups within the genus Rickettsia, including typhus group, classic spotted fever group, and the ancestral group and Orientia as a separate genus. Rickettsia felis URRWXCal2 and R. akari Hartford were not in the same group based on FOA, therefore designation of a so-called transitional Rickettsia group could not be confirmed with this approach. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Leth-Steensen, Craig; Citta, Richie
2016-01-01
Performance in numerical classification tasks involving either parity or magnitude judgements is quicker when small numbers are mapped onto a left-sided response and large numbers onto a right-sided response than for the opposite mapping (i.e., the spatial-numerical association of response codes or SNARC effect). Recent research by Gevers et al. [Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology: General, 139, 180-190] suggests that this effect also arises for vocal "left" and "right" responding, indicating that verbal-spatial coding has a role to play in determining it. Another presumably verbal-based, spatial-numerical mapping phenomenon is the linguistic markedness association of response codes (MARC) effect whereby responding in parity tasks is quicker when odd numbers are mapped onto left-sided responses and even numbers onto right-sided responses. A recent account of both the SNARC and MARC effects is based on the polarity correspondence principle [Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416-442]. This account assumes that stimulus and response alternatives are coded along any number of dimensions in terms of - and + polarities with quicker responding when the polarity codes for the stimulus and the response correspond. In the present study, even-odd parity judgements were made using either "left" and "right" or "bad" and "good" vocal responses. Results indicated that a SNARC effect was indeed present for the former type of vocal responding, providing further evidence for the sufficiency of the verbal-spatial coding account for this effect. However, the decided lack of an analogous SNARC-like effect in the results for the latter type of vocal responding provides an important constraint on the presumed generality of the polarity correspondence account. On the other hand, the presence of robust MARC effects for "bad" and "good" but not "left" and "right" vocal responses is consistent with the view that such effects are due to conceptual associations between semantic codes for odd-even and bad-good (but not necessarily left-right).
1992-01-09
consolidated into this aniuai report. 14. SUBJECT TERMS IS. NUMBER OF PAGi:S 16. P ’.RCE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19...Tc(Jop), the conductor is perfectly superconducting and carries the entirety of the operating current Iop. This implies no heat generation and P = 0...further found that the code cannot converge as is. See Appendix A. 2. The subject of developing a numerical scheme capable of handling both the incom
Park, Myoung-Ok
2017-02-01
[Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.
A Novel Classification System for Injuries After Electronic Cigarette Explosions.
Patterson, Scott B; Beckett, Allison R; Lintner, Alicia; Leahey, Carly; Greer, Ashley; Brevard, Sidney B; Simmons, Jon D; Kahn, Steven A
Electronic cigarettes (e-cigarettes) contain lithium batteries that have been known to explode and/or cause fires that have resulted in burn injury. The purpose of this article is to present a case study, review injuries caused by e-cigarettes, and present a novel classification system from the newly emerging patterns of burns. A case study was presented and online media reports for e-cigarette burns were queried with search terms "e-cigarette burns" and "electronic cigarette burns." The reports and injury patterns were tabulated. Analysis was then performed to create a novel classification system based on the distinct injury patterns seen in the study. Two patients were seen at our regional burn center after e-cigarette burns. One had an injury to his thigh and penis that required operative intervention after ignition of this device in his pocket. The second had a facial burn and corneal abrasions when the device exploded while he was inhaling vapor. The Internet search and case studies resulted in 26 cases for evaluation. The burn patterns were divided in direct injury from the device igniting and indirect injury when the device caused a house or car fire. A numerical classification was created: direct injury: type 1 (hand injury) 7 cases, type 2 (face injury) 8 cases, type 3 (waist/groin injury) 11 cases, and type 5a (inhalation injury from using device) 2 cases; indirect injury: type 4 (house fire injury) 7 cases and type 5b (inhalation injury from fire started by the device) 4 cases. Multiple e-cigarette injuries are occurring in the United States and distinct patterns of burns are emerging. The classification system developed in this article will aid in further study and future regulation of these dangerous devices.
NASA Astrophysics Data System (ADS)
Aidi, Muhammad Nur; Sari, Resty Indah
2012-05-01
A decision of credit that given by bank or another creditur must have a risk and it called credit risk. Credit risk is an investor's risk of loss arising from a borrower who does not make payments as promised. The substantial of credit risk can lead to losses for the banks and the debtor. To minimize this problem need a further study to identify a potential new customer before the decision given. Identification of debtor can using various approaches analysis, one of them is by using discriminant analysis. Discriminant analysis in this study are used to classify whether belonging to the debtor's good credit or bad credit. The result of this study are two discriminant functions that can identify new debtor. Before step built the discriminant function, selection of explanatory variables should be done. Purpose of selection independent variable is to choose the variable that can discriminate the group maximally. Selection variables in this study using different test, for categoric variable selection of variable using proportion chi-square test, and stepwise discriminant for numeric variable. The result of this study are two discriminant functions that can identify new debtor. The selected variables that can discriminating two groups of debtor maximally are status of existing checking account, credit history, credit amount, installment rate in percentage of disposable income, sex, age in year, other installment plans, and number of people being liable to provide maintenance. This classification produce a classification accuracy rate is good enough, that is equal to 74,70%. Debtor classification using discriminant analysis has risk level that is small enough, and it ranged beetwen 14,992% and 17,608%. Based on that credit risk rate, using discriminant analysis on the classification of credit status can be used effectively.
An approach toward the numerical evaluation of multi-loop Feynman diagrams
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
2001-12-01
A scheme for systematically achieving accurate numerical evaluation of multi-loop Feynman diagrams is developed. This shows the feasibility of a project aimed to produce a complete calculation for two-loop predictions in the Standard Model. As a first step an algorithm, proposed by F.V. Tkachov and based on the so-called generalized Bernstein functional relation, is applied to one-loop multi-leg diagrams with particular emphasis to the presence of infrared singularities, to the problem of tensorial reduction and to the classification of all singularities of a given diagram. Successively, the extension of the algorithm to two-loop diagrams is examined. The proposed solution consists in applying the functional relation to the one-loop sub-diagram which has the largest number of internal lines. In this way the integrand can be made smooth, a part from a factor which is a polynomial in xS, the vector of Feynman parameters needed for the complementary sub-diagram with the smallest number of internal lines. Since the procedure does not introduce new singularities one can distort the xS-integration hyper-contour into the complex hyper-plane, thus achieving numerical stability. The algorithm is then modified to deal with numerical evaluation around normal thresholds. Concise and practical formulas are assembled and presented, numerical results and comparisons with the available literature are shown and discussed for the so-called sunset topology.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Castaño-Díez, Daniel
2017-01-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance. PMID:28580909
Castaño-Díez, Daniel
2017-06-01
Dynamo is a package for the processing of tomographic data. As a tool for subtomogram averaging, it includes different alignment and classification strategies. Furthermore, its data-management module allows experiments to be organized in groups of tomograms, while offering specialized three-dimensional tomographic browsers that facilitate visualization, location of regions of interest, modelling and particle extraction in complex geometries. Here, a technical description of the package is presented, focusing on its diverse strategies for optimizing computing performance. Dynamo is built upon mbtools (middle layer toolbox), a general-purpose MATLAB library for object-oriented scientific programming specifically developed to underpin Dynamo but usable as an independent tool. Its structure intertwines a flexible MATLAB codebase with precompiled C++ functions that carry the burden of numerically intensive operations. The package can be delivered as a precompiled standalone ready for execution without a MATLAB license. Multicore parallelization on a single node is directly inherited from the high-level parallelization engine provided for MATLAB, automatically imparting a balanced workload among the threads in computationally intense tasks such as alignment and classification, but also in logistic-oriented tasks such as tomogram binning and particle extraction. Dynamo supports the use of graphical processing units (GPUs), yielding considerable speedup factors both for native Dynamo procedures (such as the numerically intensive subtomogram alignment) and procedures defined by the user through its MATLAB-based GPU library for three-dimensional operations. Cloud-based virtual computing environments supplied with a pre-installed version of Dynamo can be publicly accessed through the Amazon Elastic Compute Cloud (EC2), enabling users to rent GPU computing time on a pay-as-you-go basis, thus avoiding upfront investments in hardware and longterm software maintenance.
NASA Astrophysics Data System (ADS)
Stauffer, Mel R.; Butler, Samuel L.
2010-12-01
Splash-form tektites are found with a wide range of sizes and in an intriguing array of shapes ranging from spheres to flat discs to dumbbells. Despite the considerable interest that exists in tektites, there has been relatively little effort to develop rational shape descriptors and to understand the origin of their shapes based on basic physics. Tektites represent a natural laboratory experiment that can be analyzed to better understand the physics of rotating fluid drops. In this paper, we propose a classification scheme based on the axial ratios of ellipsoids, and we analyze the frequency of tektite shapes using a database of over 1,000 measured tektites. We show that the shape distribution for tektites from Thailand and Vietnam are very similar and that the most common tektites are moderately deformed discs but there exist also a significant number of moderately deformed dumbbells, and we argue that this distribution comes about because fluid drops first deform as oblate forms and then undergo a non-axisymmetric instability to become prolate. We also find that the largest tektites are most likely to be weakly deformed oblate objects while the most strongly deformed and most highly prolate forms are considerably smaller. A numerical model for the evolution of an axisymmetric fluid drop, such as a tektite in its molten early stage, is presented which demonstrates that drops that deform relatively slowly over a longer period of time are likely to develop central thinning while those that deform more rapidly are more likely to retain the shape of an ellipsoid. For the numerical parameters used the characteristic time scale for deformation was less than 1 s.
Matrix and Tensor Completion on a Human Activity Recognition Framework.
Savvaki, Sofia; Tsagkatakis, Grigorios; Panousopoulou, Athanasia; Tsakalides, Panagiotis
2017-11-01
Sensor-based activity recognition is encountered in innumerable applications of the arena of pervasive healthcare and plays a crucial role in biomedical research. Nonetheless, the frequent situation of unobserved measurements impairs the ability of machine learning algorithms to efficiently extract context from raw streams of data. In this paper, we study the problem of accurate estimation of missing multimodal inertial data and we propose a classification framework that considers the reconstruction of subsampled data during the test phase. We introduce the concept of forming the available data streams into low-rank two-dimensional (2-D) and 3-D Hankel structures, and we exploit data redundancies using sophisticated imputation techniques, namely matrix and tensor completion. Moreover, we examine the impact of reconstruction on the classification performance by experimenting with several state-of-the-art classifiers. The system is evaluated with respect to different data structuring scenarios, the volume of data available for reconstruction, and various levels of missing values per device. Finally, the tradeoff between subsampling accuracy and energy conservation in wearable platforms is examined. Our analysis relies on two public datasets containing inertial data, which extend to numerous activities, multiple sensing parameters, and body locations. The results highlight that robust classification accuracy can be achieved through recovery, even for extremely subsampled data streams.
REVIEW ARTICLE: Spectrophotometric applications of digital signal processing
NASA Astrophysics Data System (ADS)
Morawski, Roman Z.
2006-09-01
Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.
Bayesian Analysis of High Dimensional Classification
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subhadeep; Liang, Faming
2009-12-01
Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.
Network selection, Information filtering and Scalable computation
NASA Astrophysics Data System (ADS)
Ye, Changqing
This dissertation explores two application scenarios of sparsity pursuit method on large scale data sets. The first scenario is classification and regression in analyzing high dimensional structured data, where predictors corresponds to nodes of a given directed graph. This arises in, for instance, identification of disease genes for the Parkinson's diseases from a network of candidate genes. In such a situation, directed graph describes dependencies among the genes, where direction of edges represent certain causal effects. Key to high-dimensional structured classification and regression is how to utilize dependencies among predictors as specified by directions of the graph. In this dissertation, we develop a novel method that fully takes into account such dependencies formulated through certain nonlinear constraints. We apply the proposed method to two applications, feature selection in large margin binary classification and in linear regression. We implement the proposed method through difference convex programming for the cost function and constraints. Finally, theoretical and numerical analyses suggest that the proposed method achieves the desired objectives. An application to disease gene identification is presented. The second application scenario is personalized information filtering which extracts the information specifically relevant to a user, predicting his/her preference over a large number of items, based on the opinions of users who think alike or its content. This problem is cast into the framework of regression and classification, where we introduce novel partial latent models to integrate additional user-specific and content-specific predictors, for higher predictive accuracy. In particular, we factorize a user-over-item preference matrix into a product of two matrices, each representing a user's preference and an item preference by users. Then we propose a likelihood method to seek a sparsest latent factorization, from a class of over-complete factorizations, possibly with a high percentage of missing values. This promotes additional sparsity beyond rank reduction. Computationally, we design methods based on a ``decomposition and combination'' strategy, to break large-scale optimization into many small subproblems to solve in a recursive and parallel manner. On this basis, we implement the proposed methods through multi-platform shared-memory parallel programming, and through Mahout, a library for scalable machine learning and data mining, for mapReduce computation. For example, our methods are scalable to a dataset consisting of three billions of observations on a single machine with sufficient memory, having good timings. Both theoretical and numerical investigations show that the proposed methods exhibit significant improvement in accuracy over state-of-the-art scalable methods.
EXTENDING AQUATIC CLASSIFICATION TO THE LANDSCAPE SCALE HYDROLOGY-BASED STRATEGIES
Aquatic classification of single water bodies (lakes, wetlands, estuaries) is often based on geologic origin, while stream classification has relied on multiple factors related to landform, geomorphology, and soils. We have developed an approach to aquatic classification based o...
Direct Numerical Simulation of Incompressible Pipe Flow Using a B-Spline Spectral Method
NASA Technical Reports Server (NTRS)
Loulou, Patrick; Moser, Robert D.; Mansour, Nagi N.; Cantwell, Brian J.
1997-01-01
A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
Determining Heterogeneous Bottom Friction Distributions using a Numerical Wave Model
2007-08-11
dissipation in this study. For a bathymetry inversion, how- ever, we would expect E to be more concentrated because of Easting Meters the local efTect of...numerical wave model, bottom dissipation , data assimilation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE...obviously, dissipation of wave energy as waves addition to its use in improving wave forecasting, assimi- propagate) as demonstrated in recent work
Classification of chemical substances, reactions, and interactions: The effect of expertise
NASA Astrophysics Data System (ADS)
Stains, Marilyne Nicole Olivia
2007-12-01
This project explored the strategies that undergraduate and graduate chemistry students engaged in when solving classification tasks involving microscopic (particulate) representations of chemical substances and microscopic and symbolic representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention while classifying, identifying the patterns of reasoning that they follow, and comparing the performance of students with different levels of preparation in the discipline. In general, our results suggest that advanced levels of expertise in chemical classification do not necessarily evolve in a linear and continuous way with academic training. Novice students had a tendency to reduce the cognitive demand of the task and rely on common-sense reasoning; they had difficulties differentiating concepts (conceptual undifferentiation) and based their classification decisions on only one variable (reduction). These ways of thinking lead them to consider extraneous features, pay more attention to explicit or surface features than implicit features and to overlook important and relevant features. However, unfamiliar levels of representations (microscopic level) seemed to trigger deeper and more meaningful thinking processes. On the other hand, expert students classified entities using a specific set of rules that they applied throughout the classification tasks. They considered a larger variety of implicit features and the unfamiliarity with the microscopic level of representation did not affect their reasoning processes. Consequently, novices created numerous small groups, few of them being chemically meaningful, while experts created few but large chemically meaningful groups. Novices also had difficulties correctly classifying entities in chemically meaningful groups. Finally, expert chemists in our study used classification schemes that are not necessarily traditionally taught in classroom chemistry (e.g. the structure of substances is more relevant to them than their composition when classifying substances as compounds or elements). This result suggests that practice in the field may develop different types of knowledge framework than those usually presented in chemistry textbooks.
Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data
NASA Astrophysics Data System (ADS)
Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.
2016-06-01
Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.
Analysis of data mining classification by comparison of C4.5 and ID algorithms
NASA Astrophysics Data System (ADS)
Sudrajat, R.; Irianingsih, I.; Krisnawan, D.
2017-01-01
The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.
Classifications of Acute Scaphoid Fractures: A Systematic Literature Review.
Ten Berg, Paul W; Drijkoningen, Tessa; Strackee, Simon D; Buijze, Geert A
2016-05-01
Background In the lack of consensus, surgeon-based preference determines how acute scaphoid fractures are classified. There is a great variety of classification systems with considerable controversies. Purposes The purpose of this study was to provide an overview of the different classification systems, clarifying their subgroups and analyzing their popularity by comparing citation indexes. The intention was to improve data comparison between studies using heterogeneous fracture descriptions. Methods We performed a systematic review of the literature based on a search of medical literature from 1950 to 2015, and a manual search using the reference lists in relevant book chapters. Only original descriptions of classifications of acute scaphoid fractures in adults were included. Popularity was based on citation index as reported in the databases of Web of Science (WoS) and Google Scholar. Articles that were cited <10 times in WoS were excluded. Results Our literature search resulted in 308 potentially eligible descriptive reports of which 12 reports met the inclusion criteria. We distinguished 13 different (sub) classification systems based on (1) fracture location, (2) fracture plane orientation, and (3) fracture stability/displacement. Based on citations numbers, the Herbert classification was most popular, followed by the Russe and Mayo classifications. All classification systems were based on plain radiography. Conclusions Most classification systems were based on fracture location, displacement, or stability. Based on the controversy and limited reliability of current classification systems, suggested research areas for an updated classification include three-dimensional fracture pattern etiology and fracture fragment mobility assessed by dynamic imaging.
7 CFR 27.36 - Classification and Micronaire determinations based on official standards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification and Micronaire determinations based on... COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.36 Classification and Micronaire...
7 CFR 27.36 - Classification and Micronaire determinations based on official standards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Classification and Micronaire determinations based on... COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.36 Classification and Micronaire...
Ontology-based malaria parasite stage and species identification from peripheral blood smear images.
Makkapati, Vishnu V; Rao, Raghuveer M
2011-01-01
The diagnosis and treatment of malaria infection requires detecting the presence of the malaria parasite in the patient as well as identification of the parasite species. We present an image processing-based approach to detect parasites in microscope images of a blood smear and an ontology-based classification of the stage of the parasite for identifying the species of infection. This approach is patterned after the diagnosis approach adopted by a pathologist for visual examination, and hence, is expected to deliver similar results. We formulate several rules based on the morphology of the basic components of a parasite, namely, chromatin dot(s) and cytoplasm, to identify the parasite stage and species. Numerical results are presented for data taken from various patients. A sensitivity of 88% and a specificity of 95% is reported by evaluation of the scheme on 55 images.
NASA Astrophysics Data System (ADS)
Rodionov, A. A.; Turchin, V. I.
2017-06-01
We propose a new method of signal processing in antenna arrays, which is called the Maximum-Likelihood Signal Classification. The proposed method is based on the model in which interference includes a component with a rank-deficient correlation matrix. Using numerical simulation, we show that the proposed method allows one to ensure variance of the estimated arrival angle of the plane wave, which is close to the Cramer-Rao lower boundary and more efficient than the best-known MUSIC method. It is also shown that the proposed technique can be efficiently used for estimating the time dependence of the useful signal.
Model and Data Reduction for Control, Identification and Compressed Sensing
NASA Astrophysics Data System (ADS)
Kramer, Boris
This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.
Summary of tracking and identification methods
NASA Astrophysics Data System (ADS)
Blasch, Erik; Yang, Chun; Kadar, Ivan
2014-06-01
Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Ďuračkoá, Daniela
2014-01-01
The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition, an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested sentences uttered using three configurations of orthodontic appliances.
Enhancing Math through Literature.
ERIC Educational Resources Information Center
O'Banion, Carie
1997-01-01
Provides a bibliography of children's literature exploring mathematical concepts: classification; place value and numeration systems; counting, addition, and subtraction; multiplication and division; fractions; estimation; big numbers; geometry; measurement; and games and puzzles. Highlights one book for each concept, suggests class activities,…
Classification of Features of Pavement Profiles Using Empirical Mode Decomposition
DOT National Transportation Integrated Search
2014-12-01
The Long-Term Pavement Performance (LTPP) database contains surface profile data for numerous pavements that are used mainly for computing International Roughness Index (IRI).(2) In order to obtain more information from these surface profiles, a Hilb...
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku
2018-03-28
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.
Numerical Simulations of Asymmetric Mixing in Planar Shear Flows.
1985-08-23
S. Oran 202 767-296 10oe44 00. FORM 1473,84 MAR 83 APR edition may be used until exhausted All other editions are obsolete SECURITY CLASSIFICATION OF...first is developing the numerical model that was used in these studies. In particular, we are concerned with the treatment of inflow and outflow...boundary conditions suitable for both compressible and incompressible flows. The second aspect is using this model to describe shear flows in a splitter
Yang, Xiaoyan; Chen, Longgao; Li, Yingkui; Xi, Wenjia; Chen, Longqian
2015-07-01
Land use/land cover (LULC) inventory provides an important dataset in regional planning and environmental assessment. To efficiently obtain the LULC inventory, we compared the LULC classifications based on single satellite imagery with a rule-based classification based on multi-seasonal imagery in Lianyungang City, a coastal city in China, using CBERS-02 (the 2nd China-Brazil Environmental Resource Satellites) images. The overall accuracies of the classification based on single imagery are 78.9, 82.8, and 82.0% in winter, early summer, and autumn, respectively. The rule-based classification improves the accuracy to 87.9% (kappa 0.85), suggesting that combining multi-seasonal images can considerably improve the classification accuracy over any single image-based classification. This method could also be used to analyze seasonal changes of LULC types, especially for those associated with tidal changes in coastal areas. The distribution and inventory of LULC types with an overall accuracy of 87.9% and a spatial resolution of 19.5 m can assist regional planning and environmental assessment efficiently in Lianyungang City. This rule-based classification provides a guidance to improve accuracy for coastal areas with distinct LULC temporal spectral features.
Application of LANDSAT images to wetland study and land use classification in west Tennessee, part 1
NASA Technical Reports Server (NTRS)
Shahrokhi, F. (Principal Investigator); Jones, N. L.
1977-01-01
The author has identified the following significant results. densitometric analysis was performed on LANDSAT data to permit numerical classification of objects observed in the imagery on the basis of measurements of optical density. Relative light transmission measurements were taken on four types of scene elements in each of three LANDSAT black and white bands in order to determine which classification could be distinguished. The analysis of band 6 determined forest and agricultural classifications, but not the urban and wetlands. Both bands 4 and 5 showed a significant difference existed between the confirmed classification of wetlands-agriculture, and urban areas. Therefore, the combination of band 6 with either 4 or 5 would permit the separation of the urban from the wetland classification. To enhance the urban and wetland boundaries, the LANDSAT black and white bands were combined in a multispectral additive color viewer. Several combinations of filters and light intensities were used to obtain maximum discrimination between points of interest. The best results for enhancing wetland boundaries and urban areas were achieved by using a color composite (a blue, green, and red filter on bands 4, 5 and 6 respectively).
NASA Astrophysics Data System (ADS)
González, J. A.; Guzmán, F. S.
2018-03-01
We present a method for estimating the velocity of a wandering black hole and the equation of state for the gas around it based on a catalog of numerical simulations. The method uses machine-learning methods based on convolutional neural networks applied to the classification of images resulting from numerical simulations. Specifically we focus on the supersonic velocity regime and choose the direction of the black hole to be parallel to its spin. We build a catalog of 900 simulations by numerically solving Euler's equations onto the fixed space-time background of a black hole, for two parameters: the adiabatic index Γ with values in the range [1.1, 5 /3 ], and the asymptotic relative velocity of the black hole with respect to the surroundings v∞, with values within [0.2 ,0.8 ]c . For each simulation we produce a 2D image of the gas density once the process of accretion has approached a stationary regime. The results obtained show that the implemented convolutional neural networks are able to correctly classify the adiabatic index 87.78% of the time within an uncertainty of ±0.0284 , while the prediction of the velocity is correct 96.67% of the time within an uncertainty of ±0.03 c . We expect that this combination of a massive number of numerical simulations and machine-learning methods will help us analyze more complicated scenarios related to future high-resolution observations of black holes, like those from the Event Horizon Telescope.
Li, Ji; Larregieu, Caroline A; Benet, Leslie Z
2016-12-01
Natural products (NPs) are compounds that are derived from natural sources such as plants, animals, and micro-organisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1 (high solubility, extensive metabolism), 22% to class 2 (low solubility, extensive metabolism), 40% to class 3 (high solubility, poor metabolism), and 9% to class 4 (low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we compiled 32 drugs from plants, 50% (16) of total in class 1, 22% (7) in class 2 and 28% (9) in class 3, none found in class 4; Meantime, the antibiotics were found 5 (16%) in class 2, 22 (71%) in class 3, and 4 (13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sukawattanavijit, Chanika; Srestasathiern, Panu
2017-10-01
Land Use and Land Cover (LULC) information are significant to observe and evaluate environmental change. LULC classification applying remotely sensed data is a technique popularly employed on a global and local dimension particularly, in urban areas which have diverse land cover types. These are essential components of the urban terrain and ecosystem. In the present, object-based image analysis (OBIA) is becoming widely popular for land cover classification using the high-resolution image. COSMO-SkyMed SAR data was fused with THAICHOTE (namely, THEOS: Thailand Earth Observation Satellite) optical data for land cover classification using object-based. This paper indicates a comparison between object-based and pixel-based approaches in image fusion. The per-pixel method, support vector machines (SVM) was implemented to the fused image based on Principal Component Analysis (PCA). For the objectbased classification was applied to the fused images to separate land cover classes by using nearest neighbor (NN) classifier. Finally, the accuracy assessment was employed by comparing with the classification of land cover mapping generated from fused image dataset and THAICHOTE image. The object-based data fused COSMO-SkyMed with THAICHOTE images demonstrated the best classification accuracies, well over 85%. As the results, an object-based data fusion provides higher land cover classification accuracy than per-pixel data fusion.
CSP - The 19th European Conference on Mathematics for Industry (ECMI 2016)
2017-03-02
Quality physics in game cinematics. Conclusions Most significant advance reported The ECMI 2016 exceeded by far the expectations of the Organizing... games . 15. SUBJECT TERMS Industrial mathematics; numerical simulation ; optimization; modelling; innovation. 16. SECURITY CLASSIFICATION OF: 17
NASA Astrophysics Data System (ADS)
Bonfante, A.; Basile, A.; de Mascellis, R.; Manna, P.; Terribile, F.
2009-04-01
Soil classification according to Soil Taxonomy include, as fundamental feature, the estimation of soil moisture regime. The term soil moisture regime refers to the "presence or absence either of ground water or of water held at a tension of less than 1500 kPa in the soil or in specific horizons during periods of the year". In the classification procedure, defining of the soil moisture control section is the primary step in order to obtain the soil moisture regimes classification. Currently, the estimation of soil moisture regimes is carried out through simple calculation schemes, such as Newhall and Billaux models, and only in few cases some authors suggest the use of different more complex models (i.e., EPIC) In fact, in the Soil Taxonomy, the definition of the soil moisture control section is based on the wetting front position in two different conditions: the upper boundary is the depth to which a dry soil will be moistened by 2.5 cm of water within 24 hours and the lower boundary is the depth to which a dry soil will be moistened by 7.5 cm of water within 48 hours. Newhall, Billaux and EPIC models don't use physical laws to describe soil water flows, but they use a simple bucket-like scheme where the soil is divided into several compartments and water moves, instantly, only downward when the field capacity is achieved. On the other side, a large number of one-dimensional hydrological simulation models (SWAP, Cropsyst, Hydrus, MACRO, etc..) are available, tested and successfully used. The flow is simulated according to pressure head gradients through the numerical solution of the Richard's equation. These simulation models can be fruitful used to improve the study of soil moisture regimes. The aims of this work are: (i) analysis of the soil moisture control section concept by a physically based model (SWAP); (ii) comparison of the classification obtained in five different Italian pedoclimatic conditions (Mantova and Lodi in northern Italy; Salerno, Benevento and Caserta in southern Italy) applying the classical models (Newhall e Billaux) and the physically-based models (CropSyst e SWAP), The results have shown that the Soil Taxonomy scheme for the definition of the soil moisture regime is unrealistic for the considered Mediterranean soil hydrological conditions. In fact, the same classifications arise irrespective of the soil type. In this respect some suggestions on how modified the section control boundaries were formulated. Keywords: Soil moisture regimes, Newhall, Swap, Soil Taxonomy
NASA Astrophysics Data System (ADS)
Gao, Yan; Marpu, Prashanth; Morales Manila, Luis M.
2014-11-01
This paper assesses the suitability of 8-band Worldview-2 (WV2) satellite data and object-based random forest algorithm for the classification of avocado growth stages in Mexico. We tested both pixel-based with minimum distance (MD) and maximum likelihood (MLC) and object-based with Random Forest (RF) algorithm for this task. Training samples and verification data were selected by visual interpreting the WV2 images for seven thematic classes: fully grown, middle stage, and early stage of avocado crops, bare land, two types of natural forests, and water body. To examine the contribution of the four new spectral bands of WV2 sensor, all the tested classifications were carried out with and without the four new spectral bands. Classification accuracy assessment results show that object-based classification with RF algorithm obtained higher overall higher accuracy (93.06%) than pixel-based MD (69.37%) and MLC (64.03%) method. For both pixel-based and object-based methods, the classifications with the four new spectral bands (overall accuracy obtained higher accuracy than those without: overall accuracy of object-based RF classification with vs without: 93.06% vs 83.59%, pixel-based MD: 69.37% vs 67.2%, pixel-based MLC: 64.03% vs 36.05%, suggesting that the four new spectral bands in WV2 sensor contributed to the increase of the classification accuracy.
NASA Astrophysics Data System (ADS)
Mishra, Ritesh Kumar; Rinne, Mikael
2015-03-01
Underground mining activities are prone to major hazards largely owing to geotechnical reasons. Mining combined with the confined working space and uncertain geotechnical data leads to hazards having the potential of catastrophic consequences. These incidents have the potential of causing multiple fatalities and large financial damages. Use of formal risk assessment in the past has demonstrated an important role in the prediction and prevention of accidents in risk prone industries such as petroleum, nuclear and aviation. This paper proposes a classification system for underground mining operations based on their geotechnical risk levels. The classification is done based on the type of mining method employed and the rock mass in which it is carried out. Mining methods have been classified in groups which offer similar geotechnical risk. The rock mass classification has been proposed based on bulk rock mass properties which are collected as part of the routine mine planning. This classification has been subdivided for various stages of mine planning to suit the extent of available data. Alpha-numeric coding has been proposed to identify a mining operation based on the competency of rock and risk of geotechnical failures. This alpha numeric coding has been further extended to identify mining activity under `Geotechnical Hazard Potential (GHP)'. GHP has been proposed to be used as a preliminary tool of risk assessment and risk ranking for a mining activity. The aim of such classification is to be used as a guideline for the justification of a formal geotechnical risk assessment.
Innovative vehicle classification strategies : using LIDAR to do more for less.
DOT National Transportation Integrated Search
2012-06-23
This study examines LIDAR (light detection and ranging) based vehicle classification and classification : performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can : be rapidly deployed, and then we use t...
Ben Chaabane, Salim; Fnaiech, Farhat
2014-01-23
Color image segmentation has been so far applied in many areas; hence, recently many different techniques have been developed and proposed. In the medical imaging area, the image segmentation may be helpful to provide assistance to doctor in order to follow-up the disease of a certain patient from the breast cancer processed images. The main objective of this work is to rebuild and also to enhance each cell from the three component images provided by an input image. Indeed, from an initial segmentation obtained using the statistical features and histogram threshold techniques, the resulting segmentation may represent accurately the non complete and pasted cells and enhance them. This allows real help to doctors, and consequently, these cells become clear and easy to be counted. A novel method for color edges extraction based on statistical features and automatic threshold is presented. The traditional edge detector, based on the first and the second order neighborhood, describing the relationship between the current pixel and its neighbors, is extended to the statistical domain. Hence, color edges in an image are obtained by combining the statistical features and the automatic threshold techniques. Finally, on the obtained color edges with specific primitive color, a combination rule is used to integrate the edge results over the three color components. Breast cancer cell images were used to evaluate the performance of the proposed method both quantitatively and qualitatively. Hence, a visual and a numerical assessment based on the probability of correct classification (PC), the false classification (Pf), and the classification accuracy (Sens(%)) are presented and compared with existing techniques. The proposed method shows its superiority in the detection of points which really belong to the cells, and also the facility of counting the number of the processed cells. Computer simulations highlight that the proposed method substantially enhances the segmented image with smaller error rates better than other existing algorithms under the same settings (patterns and parameters). Moreover, it provides high classification accuracy, reaching the rate of 97.94%. Additionally, the segmentation method may be extended to other medical imaging types having similar properties.
2012-01-01
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin Lymphoma comprising of greater than 30% of adult non-Hodgkin Lymphomas. DLBCL represents a diverse set of lymphomas, defined as diffuse proliferation of large B lymphoid cells. Numerous cytogenetic studies including karyotypes and fluorescent in situ hybridization (FISH), as well as morphological, biological, clinical, microarray and sequencing technologies have attempted to categorize DLBCL into morphological variants, molecular and immunophenotypic subgroups, as well as distinct disease entities. Despite such efforts, most lymphoma remains undistinguishable and falls into DLBCL, not otherwise specified (DLBCL-NOS). The advent of microarray-based studies (chromosome, RNA, gene expression, etc) has provided a plethora of high-resolution data that could potentially facilitate the finer classification of DLBCL. This review covers the microarray data currently published for DLBCL. We will focus on these types of data; 1) array based CGH; 2) classical CGH; and 3) gene expression profiling studies. The aims of this review were three-fold: (1) to catalog chromosome loci that are present in at least 20% or more of distinct DLBCL subtypes; a detailed list of gains and losses for different subtypes was generated in a table form to illustrate specific chromosome loci affected in selected subtypes; (2) to determine common and distinct copy number alterations among the different subtypes and based on this information, characteristic and similar chromosome loci for the different subtypes were depicted in two separate chromosome ideograms; and, (3) to list re-classified subtypes and those that remained indistinguishable after review of the microarray data. To the best of our knowledge, this is the first effort to compile and review available literatures on microarray analysis data and their practical utility in classifying DLBCL subtypes. Although conventional cytogenetic methods such as Karyotypes and FISH have played a major role in classification schemes of lymphomas, better classification models are clearly needed to further understanding the biology, disease outcome and therapeutic management of DLBCL. In summary, microarray data reviewed here can provide better subtype specific classifications models for DLBCL. PMID:22967872
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2014-11-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2015-04-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
NASA Astrophysics Data System (ADS)
Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong
2018-03-01
We investigate three-wave resonant interactions through both the generalized Darboux transformation method and numerical simulations. Firstly, we derive a simple multi-dark-dark-dark-soliton formula through the generalized Darboux transformation. Secondly, we use the matrix analysis method to avoid the singularity of transformed potential functions and to find the general nonsingular breather solutions. Moreover, through a limit process, we deduce the general rogue wave solutions and give a classification by their dynamics including bright, dark, four-petals, and two-peaks rogue waves. Ever since the coexistence of dark soliton and rogue wave in non-zero background, their interactions naturally become a quite appealing topic. Based on the N-fold Darboux transformation, we can derive the explicit solutions to depict their interactions. Finally, by performing extensive numerical simulations we can predict whether these dark solitons and rogue waves are stable enough to propagate. These results can be available for several physical subjects such as fluid dynamics, nonlinear optics, solid state physics, and plasma physics.
NASA Astrophysics Data System (ADS)
Lin, Y.; Chen, X.
2016-12-01
Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1996-01-01
The ASTER polar cloud mask algorithm is currently under development. Several classification techniques have been developed and implemented. The merits and accuracy of each are being examined. The classification techniques under investigation include fuzzy logic, hierarchical neural network, and a pairwise histogram comparison scheme based on sample histograms called the Paired Histogram Method. Scene adaptive methods also are being investigated as a means to improve classifier performance. The feature, arctan of Band 4 and Band 5, and the Band 2 vs. Band 4 feature space are key to separating frozen water (e.g., ice/snow, slush/wet ice, etc.) from cloud over frozen water, and land from cloud over land, respectively. A total of 82 Landsat TM circumpolar scenes are being used as a basis for algorithm development and testing. Numerous spectral features are being tested and include the 7 basic Landsat TM bands, in addition to ratios, differences, arctans, and normalized differences of each combination of bands. A technique for deriving cloud base and top height is developed. It uses 2-D cross correlation between a cloud edge and its corresponding shadow to determine the displacement of the cloud from its shadow. The height is then determined from this displacement, the solar zenith angle, and the sensor viewing angle.
Urban Density Indices Using Mean Shift-Based Upsampled Elevetion Data
NASA Astrophysics Data System (ADS)
Charou, E.; Gyftakis, S.; Bratsolis, E.; Tsenoglou, T.; Papadopoulou, Th. D.; Vassilas, N.
2015-04-01
Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model (nDSM) is an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows the applicability and effectiveness of the methodology proposed.
Machine learning-based diagnosis of melanoma using macro images.
Gautam, Diwakar; Ahmed, Mushtaq; Meena, Yogesh Kumar; Ul Haq, Ahtesham
2018-05-01
Cancer bears a poisoning threat to human society. Melanoma, the skin cancer, originates from skin layers and penetrates deep into subcutaneous layers. There exists an extensive research in melanoma diagnosis using dermatoscopic images captured through a dermatoscope. While designing a diagnostic model for general handheld imaging systems is an emerging trend, this article proposes a computer-aided decision support system for macro images captured by a general-purpose camera. General imaging conditions are adversely affected by nonuniform illumination, which further affects the extraction of relevant information. To mitigate it, we process an image to define a smooth illumination surface using the multistage illumination compensation approach, and the infected region is extracted using the proposed multimode segmentation method. The lesion information is numerated as a feature set comprising geometry, photometry, border series, and texture measures. The redundancy in feature set is reduced using information theory methods, and a classification boundary is modeled to distinguish benign and malignant samples using support vector machine, random forest, neural network, and fast discriminative mixed-membership-based naive Bayesian classifiers. Moreover, the experimental outcome is supported by hypothesis testing and boxplot representation for classification losses. The simulation results prove the significance of the proposed model that shows an improved performance as compared with competing arts. Copyright © 2017 John Wiley & Sons, Ltd.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ruzik, L; Obarski, N; Papierz, A; Mojski, M
2015-06-01
High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Simulation-driven machine learning: Bearing fault classification
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Freitas, Carina; Nicolai, Mike
2018-01-01
Increasing the accuracy of mechanical fault detection has the potential to improve system safety and economic performance by minimizing scheduled maintenance and the probability of unexpected system failure. Advances in computational performance have enabled the application of machine learning algorithms across numerous applications including condition monitoring and failure detection. Past applications of machine learning to physical failure have relied explicitly on historical data, which limits the feasibility of this approach to in-service components with extended service histories. Furthermore, recorded failure data is often only valid for the specific circumstances and components for which it was collected. This work directly addresses these challenges for roller bearings with race faults by generating training data using information gained from high resolution simulations of roller bearing dynamics, which is used to train machine learning algorithms that are then validated against four experimental datasets. Several different machine learning methodologies are compared starting from well-established statistical feature-based methods to convolutional neural networks, and a novel application of dynamic time warping (DTW) to bearing fault classification is proposed as a robust, parameter free method for race fault detection.
Reflected scatterometry for noninvasive interrogation of bacterial colonies
NASA Astrophysics Data System (ADS)
Kim, Huisung; Doh, Iyll-Joon; Sturgis, Jennifer; Bhunia, Arun K.; Robinson, J. Paul; Bae, Euiwon
2016-10-01
A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittance of both the colony and the medium is critical to ensure quality data. However, numerous microorganisms and their growth media allow only limited light penetration and render the forward-scattering measurement a challenging task. For example, yeast, Lactobacillus, mold, and several soil bacteria form colorful and dense colonies that obstruct most of the incoming light passing through them. Moreover, blood agar, which is widely utilized in the clinical field, completely blocks the incident coherent light source used in forward scatterometry. We present a newly designed reflection scatterometer and validation of the resolving power of the instrument. The reflectance-type instrument can acquire backward elastic scatter patterns for both highly opaque media and colonies and has been tested with three different bacterial genera grown on blood agar plates. Cross-validation results show a classification rate above 90% for four genera.
Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin
NASA Astrophysics Data System (ADS)
Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva
2017-10-01
Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock
LeVan, P; Urrestarazu, E; Gotman, J
2006-04-01
To devise an automated system to remove artifacts from ictal scalp EEG, using independent component analysis (ICA). A Bayesian classifier was used to determine the probability that 2s epochs of seizure segments decomposed by ICA represented EEG activity, as opposed to artifact. The classifier was trained using numerous statistical, spectral, and spatial features. The system's performance was then assessed using separate validation data. The classifier identified epochs representing EEG activity in the validation dataset with a sensitivity of 82.4% and a specificity of 83.3%. An ICA component was considered to represent EEG activity if the sum of the probabilities that its epochs represented EEG exceeded a threshold predetermined using the training data. Otherwise, the component represented artifact. Using this threshold on the validation set, the identification of EEG components was performed with a sensitivity of 87.6% and a specificity of 70.2%. Most misclassified components were a mixture of EEG and artifactual activity. The automated system successfully rejected a good proportion of artifactual components extracted by ICA, while preserving almost all EEG components. The misclassification rate was comparable to the variability observed in human classification. Current ICA methods of artifact removal require a tedious visual classification of the components. The proposed system automates this process and removes simultaneously multiple types of artifacts.
Tanaka, Rie; Tsuji, Mayumi; Asakura, Keiko; Senju, Ayako; Shibata, Eiji; Kusuhara, Koichi; Morokuma, Seiichi; Sanefuji, Masafumi; Kawamoto, Toshihiro
2018-06-01
There has been increasing interest in dietary health promotion in the workplace. Although many previous studies have focused on dietary habits in specific occupations, variation between occupational groups requires clarification. The present study aimed to examine differences in food and nutrient intake between occupational groups, using detailed classification. A cross-sectional study was conducted using data from the Japan Environment and Children's Study. The study included 38,721 employed Japanese expectant fathers aged between 20 and 65 years. Dietary intake was assessed using a food frequency questionnaire. Occupations were categorized into 11 categories according to the Japan Standard Occupational Classification. Analysis of variance and analysis of covariance were performed to compare dietary intake of occupational groups. Logistic regression analysis was performed to examine the differences in adherence to dietary recommendations across occupations. Dietary intake differed significantly between occupations. Specific dietary intake was observed in security and agricultural workers, who tended to exhibit higher consumption levels for numerous foods and nutrients. In addition, relative to other workers, security workers showed higher intake of dairy products and calcium, and agricultural workers consumed larger amounts of pickles and salt. The study categorized occupations into detailed categories using the Japan Standard Occupational Classification, which facilitated the clarification of overall dietary trends across occupations and identification of specific dietary characteristics in individual occupations. The findings could aid in workplace health promotion.
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
USDA-ARS?s Scientific Manuscript database
Numerous plant species worldwide including Palicourea marcgravii(Rubiaceae) and Tanaecium bilabiatum (Bignoniaceae) in Brazil cause acute cardiac failure (sudden death) and are known to contain monofluoroacetate (MFA). Other Bignoniaceae species including Fridericia japurensis (Arrabidaea japurensis...
Pyrolysis Mass Spectrometry of Complex Organic Materials.
ERIC Educational Resources Information Center
Meuzelaar, Henk L. C.; And Others
1984-01-01
Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Glove-based approach to online signature verification.
Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A
2008-06-01
Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Muench, Eugene V.
1971-01-01
A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471
[Land cover classification of Four Lakes Region in Hubei Province based on MODIS and ENVISAT data].
Xue, Lian; Jin, Wei-Bin; Xiong, Qin-Xue; Liu, Zhang-Yong
2010-03-01
Based on the differences of back scattering coefficient in ENVISAT ASAR data, a classification was made on the towns, waters, and vegetation-covered areas in the Four Lakes Region of Hubei Province. According to the local cropping systems and phenological characteristics in the region, and by using the discrepancies of the MODIS-NDVI index from late April to early May, the vegetation-covered areas were classified into croplands and non-croplands. The classification results based on the above-mentioned procedure was verified by the classification results based on the ETM data with high spatial resolution. Based on the DEM data, the non-croplands were categorized into forest land and bottomland; and based on the discrepancies of mean NDVI index per month, the crops were identified as mid rice, late rice, and cotton, and the croplands were identified as paddy field and upland field. The land cover classification based on the MODIS data with low spatial resolution was basically consistent with that based on the ETM data with high spatial resolution, and the total error rate was about 13.15% when the classification results based on ETM data were taken as the standard. The utilization of the above-mentioned procedures for large scale land cover classification and mapping could make the fast tracking of regional land cover classification.
Multi-label literature classification based on the Gene Ontology graph.
Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua
2008-12-08
The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.
Younghak Shin; Balasingham, Ilangko
2017-07-01
Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.
14 CFR 1203.412 - Classification guides.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Classification guides. 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...
14 CFR 1203.412 - Classification guides.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Classification guides. 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...
14 CFR 1203.412 - Classification guides.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Classification guides. 1203.412 Section 1203... Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification authorities...
Nasrallah, Henry; Muvvala, Srinivas; El-Missiry, Ahmed; Mansour, Hader; Hill, Cheryl; Elswick, Daniel; Price, Elizabeth C.
2016-01-01
Existing standardized diagnostic interviews (SDIs) were designed for researchers and produce mainly categorical diagnoses. There is an urgent need for a clinician-administered tool that produces dimensional measures, in addition to categorical diagnoses. The Standard for Clinicians’ Interview in Psychiatry (SCIP) is a method of assessment of psychopathology for adults. It is designed to be administered by clinicians and includes the SCIP manual and the SCIP interview. Clinicians use the SCIP questions and rate the responses according to the SCIP manual rules. Clinicians use the patient’s responses to questions, observe the patient’s behaviors and make the final rating of the various signs and symptoms assessed. The SCIP method of psychiatric assessment has three components: 1) the SCIP interview (dimensional) component, 2) the etiological component, and 3) the disorder classification component. The SCIP produces three main categories of clinical data: 1) a diagnostic classification of psychiatric disorders, 2) dimensional scores, and 3) numeric data. The SCIP provides diagnoses consistent with criteria from editions of the Diagnostic and Statistical Manual (DSM) and International Classification of Disease (ICD). The SCIP produces 18 dimensional measures for key psychiatric signs or symptoms: anxiety, posttraumatic stress, obsessions, compulsions, depression, mania, suicidality, suicidal behavior, delusions, hallucinations, agitation, disorganized behavior, negativity, catatonia, alcohol addiction, drug addiction, attention, and hyperactivity. The SCIP produces numeric severity data for use in either clinical care or research. The SCIP was shown to be a valid and reliable assessment tool, and the validity and reliability results were published in 2014 and 2015. The SCIP is compatible with personalized psychiatry research and is in line with the Research Domain Criteria framework. PMID:27800284
Aboraya, Ahmed; Nasrallah, Henry; Muvvala, Srinivas; El-Missiry, Ahmed; Mansour, Hader; Hill, Cheryl; Elswick, Daniel; Price, Elizabeth C
2016-01-01
Existing standardized diagnostic interviews (SDIs) were designed for researchers and produce mainly categorical diagnoses. There is an urgent need for a clinician-administered tool that produces dimensional measures, in addition to categorical diagnoses. The Standard for Clinicians' Interview in Psychiatry (SCIP) is a method of assessment of psychopathology for adults. It is designed to be administered by clinicians and includes the SCIP manual and the SCIP interview. Clinicians use the SCIP questions and rate the responses according to the SCIP manual rules. Clinicians use the patient's responses to questions, observe the patient's behaviors and make the final rating of the various signs and symptoms assessed. The SCIP method of psychiatric assessment has three components: 1) the SCIP interview (dimensional) component, 2) the etiological component, and 3) the disorder classification component. The SCIP produces three main categories of clinical data: 1) a diagnostic classification of psychiatric disorders, 2) dimensional scores, and 3) numeric data. The SCIP provides diagnoses consistent with criteria from editions of the Diagnostic and Statistical Manual (DSM) and International Classification of Disease (ICD). The SCIP produces 18 dimensional measures for key psychiatric signs or symptoms: anxiety, posttraumatic stress, obsessions, compulsions, depression, mania, suicidality, suicidal behavior, delusions, hallucinations, agitation, disorganized behavior, negativity, catatonia, alcohol addiction, drug addiction, attention, and hyperactivity. The SCIP produces numeric severity data for use in either clinical care or research. The SCIP was shown to be a valid and reliable assessment tool, and the validity and reliability results were published in 2014 and 2015. The SCIP is compatible with personalized psychiatry research and is in line with the Research Domain Criteria framework.
Feature selection and classification of multiparametric medical images using bagging and SVM
NASA Astrophysics Data System (ADS)
Fan, Yong; Resnick, Susan M.; Davatzikos, Christos
2008-03-01
This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.
Image-classification-based global dimming algorithm for LED backlights in LCDs
NASA Astrophysics Data System (ADS)
Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv
2015-07-01
Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard
2010-01-30
Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.
2010-01-01
Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515
van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B
2015-12-01
Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.
Information extraction with object based support vector machines and vegetation indices
NASA Astrophysics Data System (ADS)
Ustuner, Mustafa; Abdikan, Saygin; Balik Sanli, Fusun
2016-07-01
Information extraction through remote sensing data is important for policy and decision makers as extracted information provide base layers for many application of real world. Classification of remotely sensed data is the one of the most common methods of extracting information however it is still a challenging issue because several factors are affecting the accuracy of the classification. Resolution of the imagery, number and homogeneity of land cover classes, purity of training data and characteristic of adopted classifiers are just some of these challenging factors. Object based image classification has some superiority than pixel based classification for high resolution images since it uses geometry and structure information besides spectral information. Vegetation indices are also commonly used for the classification process since it provides additional spectral information for vegetation, forestry and agricultural areas. In this study, the impacts of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) on the classification accuracy of RapidEye imagery were investigated. Object based Support Vector Machines were implemented for the classification of crop types for the study area located in Aegean region of Turkey. Results demonstrated that the incorporation of NDRE increase the classification accuracy from 79,96% to 86,80% as overall accuracy, however NDVI decrease the classification accuracy from 79,96% to 78,90%. Moreover it is proven than object based classification with RapidEye data give promising results for crop type mapping and analysis.
Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos
2005-01-01
Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.
NASA Astrophysics Data System (ADS)
Efremova, T. T.; Avrova, A. F.; Efremov, S. P.
2016-09-01
The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized.
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Ulnar neuropathy at wrist: entrapment at a very "congested" site.
Coraci, Daniele; Loreti, Claudia; Piccinini, Giulia; Doneddu, Pietro E; Biscotti, Silvia; Padua, Luca
2018-05-19
Ulnar tunnel syndrome indicates ulnar neuropathy at different sites within the wrist. Several classifications of ulnar tunnel syndrome are present in literature, based upon typical nerve anatomy. However, anatomical variations are not uncommon and can complicate assessment. The etiology is also complex, due to the numerous potential causes of entrapment. Clinical examination, neurophysiological testing, and imaging are all used to support the diagnosis. At present, many therapeutic approaches are available, ranging from observation to surgical management. Although ulnar neuropathy at the wrist has undergone extensive prior study, unresolved questions on diagnosis and treatment remain. In the current paper, we review relevant literature and present the current knowledge on ulnar tunnel syndrome.
Leucocyte classification for leukaemia detection using image processing techniques.
Putzu, Lorenzo; Caocci, Giovanni; Di Ruberto, Cecilia
2014-11-01
The counting and classification of blood cells allow for the evaluation and diagnosis of a vast number of diseases. The analysis of white blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia (ALL), a blood cancer that can be fatal if left untreated. Currently, the morphological analysis of blood cells is performed manually by skilled operators. However, this method has numerous drawbacks, such as slow analysis, non-standard accuracy, and dependences on the operator's skill. Few examples of automated systems that can analyse and classify blood cells have been reported in the literature, and most of these systems are only partially developed. This paper presents a complete and fully automated method for WBC identification and classification using microscopic images. In contrast to other approaches that identify the nuclei first, which are more prominent than other components, the proposed approach isolates the whole leucocyte and then separates the nucleus and cytoplasm. This approach is necessary to analyse each cell component in detail. From each cell component, different features, such as shape, colour and texture, are extracted using a new approach for background pixel removal. This feature set was used to train different classification models in order to determine which one is most suitable for the detection of leukaemia. Using our method, 245 of 267 total leucocytes were properly identified (92% accuracy) from 33 images taken with the same camera and under the same lighting conditions. Performing this evaluation using different classification models allowed us to establish that the support vector machine with a Gaussian radial basis kernel is the most suitable model for the identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Furthermore, we evaluated the goodness of our new feature set, which displayed better performance with each evaluated classification model. The proposed method permits the analysis of blood cells automatically via image processing techniques, and it represents a medical tool to avoid the numerous drawbacks associated with manual observation. This process could also be used for counting, as it provides excellent performance and allows for early diagnostic suspicion, which can then be confirmed by a haematologist through specialised techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
14 CFR § 1203.412 - Classification guides.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Classification guides. § 1203.412 Section... PROGRAM Guides for Original Classification § 1203.412 Classification guides. (a) General. A classification guide, based upon classification determinations made by appropriate program and classification...
Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd
2013-01-17
Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset proved representative enough to use simple statistical methods for testing the amylogenicity based only on six letter sequences. Statistical machine learning methods such as Alternating Decision Tree and Multilayer Perceptron can replace the energy based classifier, with advantage of very significantly reduced computational time and simplicity to perform the analysis. Additionally, a decision tree provides a set of very easily interpretable rules.
Hyun, S; Park, H A
2002-06-01
Nursing language plays an important role in describing and defining nursing phenomena and nursing actions. There are numerous vocabularies describing nursing diagnoses, interventions and outcomes in nursing. However, the lack of a standardized unified nursing language is considered a problem for further development of the discipline of nursing. In an effort to unify the nursing languages, the International Council of Nurses (ICN) has proposed the International Classification for Nursing Practice (ICNP) as a unified nursing language system. The purpose of this study was to evaluate the inclusiveness and expressiveness of the ICNP terms by cross-mapping them with the existing nursing terminologies, specifically the North American Nursing Diagnosis Association (NANDA) taxonomy I, the Omaha System, the Home Health Care Classification (HHCC) and the Nursing Interventions Classification (NIC). Nine hundred and seventy-four terms from these four classifications were cross-mapped with the ICNP terms. This was performed in accordance with the Guidelines for Composing a Nursing Diagnosis and Guidelines for Composing a Nursing Intervention, which were suggested by the ICNP development team. An expert group verified the results. The ICNP Phenomena Classification described 87.5% of the NANDA diagnoses, 89.7% of the HHCC diagnoses and 72.7% of the Omaha System problem classification scheme. The ICNP Action Classification described 79.4% of the NIC interventions, 80.6% of the HHCC interventions and 71.4% of the Omaha System intervention scheme. The results of this study suggest that the ICNP has a sound starting structure for a unified nursing language system and can be used to describe most of the existing terminologies. Recommendations for the addition of terms to the ICNP are provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
...-AM78 Prevailing Rate Systems; North American Industry Classification System Based Federal Wage System... 2007 North American Industry Classification System (NAICS) codes currently used in Federal Wage System... (OPM) issued a final rule (73 FR 45853) to update the 2002 North American Industry Classification...
NASA Astrophysics Data System (ADS)
Selwyn, Ebenezer Juliet; Florinabel, D. Jemi
2018-04-01
Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.
Sentiment classification technology based on Markov logic networks
NASA Astrophysics Data System (ADS)
He, Hui; Li, Zhigang; Yao, Chongchong; Zhang, Weizhe
2016-07-01
With diverse online media emerging, there is a growing concern of sentiment classification problem. At present, text sentiment classification mainly utilizes supervised machine learning methods, which feature certain domain dependency. On the basis of Markov logic networks (MLNs), this study proposed a cross-domain multi-task text sentiment classification method rooted in transfer learning. Through many-to-one knowledge transfer, labeled text sentiment classification, knowledge was successfully transferred into other domains, and the precision of the sentiment classification analysis in the text tendency domain was improved. The experimental results revealed the following: (1) the model based on a MLN demonstrated higher precision than the single individual learning plan model. (2) Multi-task transfer learning based on Markov logical networks could acquire more knowledge than self-domain learning. The cross-domain text sentiment classification model could significantly improve the precision and efficiency of text sentiment classification.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E.; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J.
2016-01-01
Purpose Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. Methods We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. Results In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%–74%) and 87% (95% CI, 86%–88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91–0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. Conclusions This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. Translational Relevance The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis. PMID:27668130
The Accuracy and Reliability of Crowdsource Annotations of Digital Retinal Images.
Mitry, Danny; Zutis, Kris; Dhillon, Baljean; Peto, Tunde; Hayat, Shabina; Khaw, Kay-Tee; Morgan, James E; Moncur, Wendy; Trucco, Emanuele; Foster, Paul J
2016-09-01
Crowdsourcing is based on outsourcing computationally intensive tasks to numerous individuals in the online community who have no formal training. Our aim was to develop a novel online tool designed to facilitate large-scale annotation of digital retinal images, and to assess the accuracy of crowdsource grading using this tool, comparing it to expert classification. We used 100 retinal fundus photograph images with predetermined disease criteria selected by two experts from a large cohort study. The Amazon Mechanical Turk Web platform was used to drive traffic to our site so anonymous workers could perform a classification and annotation task of the fundus photographs in our dataset after a short training exercise. Three groups were assessed: masters only, nonmasters only and nonmasters with compulsory training. We calculated the sensitivity, specificity, and area under the curve (AUC) of receiver operating characteristic (ROC) plots for all classifications compared to expert grading, and used the Dice coefficient and consensus threshold to assess annotation accuracy. In total, we received 5389 annotations for 84 images (excluding 16 training images) in 2 weeks. A specificity and sensitivity of 71% (95% confidence interval [CI], 69%-74%) and 87% (95% CI, 86%-88%) was achieved for all classifications. The AUC in this study for all classifications combined was 0.93 (95% CI, 0.91-0.96). For image annotation, a maximal Dice coefficient (∼0.6) was achieved with a consensus threshold of 0.25. This study supports the hypothesis that annotation of abnormalities in retinal images by ophthalmologically naive individuals is comparable to expert annotation. The highest AUC and agreement with expert annotation was achieved in the nonmasters with compulsory training group. The use of crowdsourcing as a technique for retinal image analysis may be comparable to expert graders and has the potential to deliver timely, accurate, and cost-effective image analysis.
Hierarchical structure for audio-video based semantic classification of sports video sequences
NASA Astrophysics Data System (ADS)
Kolekar, M. H.; Sengupta, S.
2005-07-01
A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.
Yu, Wenbao; Park, Taesung
2014-01-01
It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.
Clinical epidemiology of ulcerative colitis in Arabs based on the Montréal classification.
Alharbi, Othman R; Azzam, Nahla A; Almalki, Ahmed S; Almadi, Majid A; Alswat, Khalid A; Sadaf, Nazia; Aljebreen, Abdulrahman M
2014-12-14
To determine the clinical, epidemiological and phenotypic characteristics of ulcerative colitis (UC) in Saudi Arabia by studying the largest cohort of Arab UC patients. Data from UC patients attending gastroenterology clinics in four tertiary care centers in three cities between September 2009 and September 2013 were entered into a validated web-based registry, inflammatory bowel disease information system (IBDIS). The IBDIS database covers numerous aspects of inflammatory bowel disease. Patient characteristics, disease phenotype and behavior, age at diagnosis, course of the disease, and extraintestinal manifestations were recorded. Among 394 UC patients, males comprised 51.0% and females 49.0%. According to the Montréal classification of age, the major chunk of our patients belonged to the A2 category for age of diagnosis at 17-40 years (68.4%), while 24.2% belonged to the A3 category for age of diagnosis at > 40 years. According to the same classification, a majority of patients had extensive UC (42.7%), 35.3% had left-sided colitis and 29.2% had only proctitis. Moreover, 51.3% were in remission, 16.6% had mild UC, 23.4% had moderate UC and 8.6% had severe UC. Frequent relapse occurred in 17.4% patients, infrequent relapse in 77% and 4.8% had chronic disease. A majority (85.2%) of patients was steroid responsive. With regard to extraintestinal manifestations, arthritis was present in 16.4%, osteopenia in 31.4%, osteoporosis in 17.1% and cutaneous involvement in 7.0%. The majority of UC cases were young people (17-40 years), with a male preponderance. While the disease course was found to be similar to that reported in Western countries, more similarities were found with Asian countries with regards to the extent of the disease and response to steroid therapy.
NASA Astrophysics Data System (ADS)
Thelen, Brian T.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.
2017-04-01
With all of the new remote sensing modalities available, and with ever increasing capabilities and frequency of collection, there is a desire to fundamentally understand/quantify the information content in the collected image data relative to various exploitation goals, such as detection/classification. A fundamental approach for this is the framework of Bayesian decision theory, but a daunting challenge is to have significantly flexible and accurate multivariate models for the features and/or pixels that capture a wide assortment of distributions and dependen- cies. In addition, data can come in the form of both continuous and discrete representations, where the latter is often generated based on considerations of robustness to imaging conditions and occlusions/degradations. In this paper we propose a novel suite of "latent" models fundamentally based on multivariate Gaussian copula models that can be used for quantized data from SAR imagery. For this Latent Gaussian Copula (LGC) model, we derive an approximate, maximum-likelihood estimation algorithm and demonstrate very reasonable estimation performance even for the larger images with many pixels. However applying these LGC models to large dimen- sions/images within a Bayesian decision/classification theory is infeasible due to the computational/numerical issues in evaluating the true full likelihood, and we propose an alternative class of novel pseudo-likelihoood detection statistics that are computationally feasible. We show in a few simple examples that these statistics have the potential to provide very good and robust detection/classification performance. All of this framework is demonstrated on a simulated SLICY data set, and the results show the importance of modeling the dependencies, and of utilizing the pseudo-likelihood methods.
Molecular classification of soft tissue sarcomas and its clinical applications
Jain, Shilpa; Xu, Ruliang; Prieto, Victor G; Lee, Peng
2010-01-01
Sarcomas are a heterogeneous group of tumors that are traditionally classified according to the morphology and type of tissue that they resemble, such as rhabdomyosarcoma, which resembles skeletal muscle. However, the cell of origin is unclear in numerous sarcomas. Molecular genetics analyses have not only assisted in understanding the molecular mechanism in sarcoma pathogenesis but also demonstrated new relationships within different types of sarcomas leading to a more proper classification of sarcomas. Molecular classification based on the genetic alteration divides sarcomas into two main categories: (i) sarcomas with specific genetic alterations; which can further be subclassified based on a) reciprocal translocations resulting in oncogenic fusion transcripts (e.g. EWSR1-FLI1 in Ewing sarcoma) and b) specific oncogenic mutations (e.g. KIT and PDGFRA mutations in gastrointestinal stromal tumors) and (ii) sarcomas displaying multiple, complex karyotypic abnormalities with no specific pattern, including leiomyo-sarcoma, and pleomorphic liposarcoma. These specific genetic alterations are an important adjunct to standard morphological and immunohistochemical diagnoses, and in some cases have a prognostic value, e. g., Ewing family tumors, synovial sarcoma, and alveolar rhabdomyosarcoma. In addition, these studies may also serve as markers to detect minimal residual disease and can aid in staging or monitor the efficacy of therapy. Furthermore, sarcoma-specific fusion genes and other emerging molecular events may also represent potential targets for novel therapeutic approaches such as Gleevec for dermatofibrosarcoma protuberans. Therefore, increased understanding of the molecular biology of sarcomas is leading towards development of newer and more effective treatment regimens. The review focuses on recent advances in molecular genetic alterations having an impact on diagnostics, prognostication and clinical management of selected sarcomas. PMID:20490332
Not Color-Blind: Using Multiband Photometry to Classify Supernovae
NASA Astrophysics Data System (ADS)
Poznanski, Dovi; Gal-Yam, Avishay; Maoz, Dan; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas
2002-08-01
Large numbers of supernovae (SNe) have been discovered in recent years, and many more will be found in the near future. Once discovered, further study of a SN and its possible use as an astronomical tool (e.g., as a distance estimator) require knowledge of the SN type. Current classification methods rely almost solely on the analysis of SN spectra to determine their type. However, spectroscopy may not be possible or practical when SNe are faint, numerous, or discovered in archival studies. We present a classification method for SNe based on the comparison of their observed colors with synthetic ones, calculated from a large database of multiepoch optical spectra of nearby events. We discuss the capabilities and limitations of this method. For example, Type Ia SNe at redshifts z<0.1 can be distinguished from most other SN types during the first few weeks of their evolution, based on V-R versus R-I colors. Type II-P SNe have distinct (very red) colors at late (t>100 days) stages. Broadband photometry through standard Johnson-Cousins UBVRI filters can be useful to classify SNe out to z~0.6. The use of Sloan Digital Sky Survey (SDSS) ugriz filters allows the extension of our classification method to even higher redshifts (z=0.75), and the use of infrared bands, to z=2.5. We demonstrate the application of this method to a recently discovered SN from the SDSS. Finally, we outline the observational data required to further improve the sensitivity of the method and discuss prospects for its use on future SN samples. Community access to the tools developed is provided by a dedicated Web site.5
Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek
2017-01-01
Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.
NASA Astrophysics Data System (ADS)
Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.
2014-12-01
Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.
Carroll, Kristen L; Murray, Kathleen A; MacLeod, Lynne M; Hennessey, Theresa A; Woiczik, Marcella R; Roach, James W
2011-06-01
Numerous studies underscore the poor intraobserver and interobserver reliability of both the center edge angle (CEA) and the Severin classification using plain film measurements. In this study, experienced observers applied a computer-assisted measurement program to determine the CEA in digital pelvic radiographs of adults who had been previously treated for dysplasia of the hip (DDH). Using a teaching aid/algorithm of the Severin classification, the observers then assigned a Severin rating to these hips. Intraobserver and interobserver errors were then calculated on both the CEA measurements and the Severin classifications. Four pediatric orthopaedic surgeons and 1 pediatric radiologist calculated the CEAs using the OrthoView TM planning system and then determined the Severin classification on 41 blinded digital pelvic radiographs. The radiographs were evaluated by each examiner twice, with evaluations separated by 2 months. All examiners reviewed a Severin classification algorithm before making their Severin assignments. The intraobserver and interobserver reliability for both the CEA and the Severin classification were calculated using the interclass correlation coefficients and Cohen and Fleiss κ scores, respectively. The intraobserver and interobserver reliability for CEA measurement was moderate to almost perfect. When we separated the Severin classification into 3 clinically relevant groups of good (Severin I and II), dysplastic (Severin III), and poor (Severin IV and above), our interobserver reliability neared almost perfect. The Severin classification is an extremely useful and oft-used radiographic measure for the success of DDH treatment. Our research found digital radiography, computer-aided measurement tools, the use of a Severin algorithm, and separating the Severin classification into 3 clinically relevant groups significantly increased the intraobserver and interobserver reliability of both the CEA and Severin classification. This finding will assist future studies using the CEA and Severin classification in the radiographic assessment of DDH treatment outcomes.
As-built design specification for segment map (Sgmap) program
NASA Technical Reports Server (NTRS)
Tompkins, M. A. (Principal Investigator)
1981-01-01
The segment map program (SGMAP), which is part of the CLASFYT package, is described in detail. This program is designed to output symbolic maps or numerical dumps from LANDSAT cluster/classification files or aircraft ground truth/processed ground truth files which are in 'universal' format.
A multiple-point spatially weighted k-NN method for object-based classification
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.
2016-10-01
Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Concept of Smart Cyberspace for Smart Grid Implementation
NASA Astrophysics Data System (ADS)
Zhukovskiy, Y.; Malov, D.
2018-05-01
The concept of Smart Cyberspace for Smart Grid (SG) implementation is presented in the paper. The classification of electromechanical units, based on the amount of analysing data, the classification of electromechanical units, based on the data processing speed; and the classification of computational network organization, based on required resources, are proposed in this paper. The combination of the considered classifications is formalized, which can be further used in organizing and planning of SG.
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...
Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Evaluation of procedures for prediction of unconventional gas in the presence of geologic trends
Attanasi, E.D.; Coburn, T.C.
2009-01-01
This study extends the application of local spatial nonparametric prediction models to the estimation of recoverable gas volumes in continuous-type gas plays to regimes where there is a single geologic trend. A transformation is presented, originally proposed by Tomczak, that offsets the distortions caused by the trend. This article reports on numerical experiments that compare predictive and classification performance of the local nonparametric prediction models based on the transformation with models based on Euclidean distance. The transformation offers improvement in average root mean square error when the trend is not severely misspecified. Because of the local nature of the models, even those based on Euclidean distance in the presence of trends are reasonably robust. The tests based on other model performance metrics such as prediction error associated with the high-grade tracts and the ability of the models to identify sites with the largest gas volumes also demonstrate the robustness of both local modeling approaches. ?? International Association for Mathematical Geology 2009.
Ortega-Hernández, Javier
2016-02-01
The ever-increasing number of studies that address the origin and evolution of Euarthropoda - whose extant representatives include chelicerates, myriapods, crustaceans and hexapods - are gradually reaching a consensus with regard to the overall phylogenetic relationships of some of the earliest representatives of this phylum. The stem-lineage of Euarthropoda includes numerous forms that reflect the major morphological transition from a lobopodian-type to a completely arthrodized body organization. Several methods of classification that aim to reflect such a complex evolutionary history have been proposed as a consequence of this taxonomic diversity. Unfortunately, this has also led to a saturation of nomenclatural schemes, often in conflict with each other, some of which are incompatible with cladistic-based methodologies. Here, I review the convoluted terminology associated with the classification of stem-group Euarthropoda, and propose a synapomorphy-based distinction that allows 'lower stem-Euarthropoda' (e.g. lobopodians, radiodontans) to be separated from 'upper stem-Euarthropoda' (e.g. fuxianhuiids, Cambrian bivalved forms) in terms of the structural organization of the head region and other aspects of overall body architecture. The step-wise acquisition of morphological features associated with the origins of the crown-group indicate that the node defining upper stem-Euarthropoda is phylogenetically stable, and supported by numerous synapomorphic characters; these include the presence of a deutocerebral first appendage pair, multisegmented head region with one or more pairs of post-ocular differentiated limbs, complete body arthrodization, posterior-facing mouth associated with the hypostome/labrum complex, and post-oral biramous arthropodized appendages. The name 'Deuteropoda' nov. is proposed for the scion (monophyletic group including the crown-group and an extension of the stem-group) that comprises upper stem-Euarthropoda and Euarthropoda. A brief account of common terminological inaccuracies in recent palaeontological studies evinces the utility of Deuteropoda nov. as a reference point for discussing aspects of early euarthropod phylogeny. © 2014 Cambridge Philosophical Society.
Research on Classification of Chinese Text Data Based on SVM
NASA Astrophysics Data System (ADS)
Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao
2017-09-01
Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.
32 CFR 1633.12 - Reconsideration of classification.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2010-07-01 2010-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...
32 CFR 1633.12 - Reconsideration of classification.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., upon which the classification is based, change or when he finds that the registrant made a... 32 National Defense 6 2011-07-01 2011-07-01 false Reconsideration of classification. 1633.12... ADMINISTRATION OF CLASSIFICATION § 1633.12 Reconsideration of classification. No classification is permanent. The...
Scalable Kernel Methods and Algorithms for General Sequence Analysis
ERIC Educational Resources Information Center
Kuksa, Pavel
2011-01-01
Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…
Automated Coastal Engineering System: Technical Reference
1992-09-01
of Contents ACES Technical Reference Wave Transmission Through Permeable Structures ..................................... 5-4 Littoral Processes...A-2 Table A-4: Grain-Size Scales ( Soil Classification) ..................................... A-3 Table A-5: Major Tidal Constituents... Permeable Structures Lonphore Sediment Tranaport Littoral Numerical Si~ulation of Time-Dependent Beach and Dune Erosion Processes Calculation of Composite
1973-01-01
This EREP photograph of the Uncompahgre Plateau area of Colorado illustrates the land use classification using the hierarchical numbering system to depict land forms and vegetative patterns. The numerator is a three-digit number with decimal components identifying the vegetation analog or land use conditions. The denominator uses a three-component decimal system for landscape characterization.
Some Basic Techniques in Bioimpedance Research
NASA Astrophysics Data System (ADS)
Martinsen, Ørjan G.
2004-09-01
Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.
Research in remote sensing of agriculture, earth resources, and man's environment
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1975-01-01
Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function. PMID:26121466
Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K
2015-01-01
Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape function, suggest that hydrologic-process-based classifications should be incorporated into environmental process models and can be used to define application-specific maps of hydrologic function.
Designing and Implementation of River Classification Assistant Management System
NASA Astrophysics Data System (ADS)
Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan
2018-03-01
In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.
Spectral Classification of the 30 Doradus Stellar Populations
NASA Astrophysics Data System (ADS)
Walborn, Nolan R.; Blades, J. Chris
1997-10-01
An optical spectral classification study of 106 OB stars within the 30 Doradus Nebula has sharpened the description of the spatial and temporal structures among the associated clusters. Five distinct stellar groups are recognized: (1) the central early-O (Carina phase) concentration, which includes Radcliffe 136 (R136); (2) a younger (Orion phase) population to the north and west of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central concentration; (3) an older population of late-O and early-B supergiants (Scorpius OB1 phase) throughout the central field, whose structural relationship, if any, to the younger groups is unclear; (4) a previously known, even older compact cluster 3' northwest of R136, containing A- and M-type supergiants (h and χ Persei phase), which has evidently affected the nebular dynamics substantially; and (5) a newly recognized Sco OB1-phase association, surrounding the recently discovered luminous blue variable (LBV) R143, in the southern part of the Nebula. The intricacy of this region and the implications for the interpretation of more distant starbursts are emphasized. The evidence indicates that the formation of the 30 Dor stellar content was neither instantaneous nor continuous, but rather that the stars formed in discrete events at different epochs. The average difference between the derived and calibration absolute visual magnitudes of the stars is 0.05, indicating that the classification, calibration, and adopted distance modulus (V0 - MV = 18.6) are accurate. For 70 of the stars, either the absolute value of that difference is <=0.6 mag, or they are subluminous dwarfs or superluminous supergiants. Many astrophysically interesting objects have been isolated for further investigation. Surprisingly, in view of the presence of several O3 supergiants, the mid-Of star R139 is identified as the most massive object in this sample; it is located well along the 120 M⊙ track, very near the Humphreys-Davidson limit, and it is probably an immediate LBV precursor. This work can and should be extended in three ways: (1) higher resolution and higher S/N observations of many of the stars with larger ground-based telescopes for quantitative analysis, (2) ground-based spectral classification of the numerous additional accessible stars in the field, and (3) spatially resolved spectral classification of compact multiple systems with the Hubble Space Telescope.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
Learning classification models with soft-label information.
Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos
2014-01-01
Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.
Coefficient of variation for use in crop area classification across multiple climates
NASA Astrophysics Data System (ADS)
Whelen, Tracy; Siqueira, Paul
2018-05-01
In this study, the coefficient of variation (CV) is introduced as a unitless statistical measurement for the classification of croplands using synthetic aperture radar (SAR) data. As a measurement of change, the CV is able to capture changing backscatter responses caused by cycles of planting, growing, and harvesting, and thus is able to differentiate these areas from a more static forest or urban area. Pixels with CV values above a given threshold are classified as crops, and below the threshold are non-crops. This paper uses cross-polarized L-band SAR data from the ALOS PALSAR satellite to classify eleven regions across the United States, covering a wide range of major crops and climates. Two separate sets of classification were done, with the first targeting the optimum classification thresholds for each dataset, and the second using a generalized threshold for all datasets to simulate a large-scale operationalized situation. Overall accuracies for the first phase of classification ranged from 66%-81%, and 62%-84% for the second phase. Visual inspection of the results shows numerous possibilities for improving the classifications while still using the same classification method, including increasing the number and temporal frequency of input images in order to better capture phenological events and mitigate the effects of major precipitation events, as well as more accurate ground truth data. These improvements would make the CV method a viable tool for monitoring agriculture throughout the year on a global scale.
Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?
NASA Astrophysics Data System (ADS)
Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof
2016-10-01
It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.
Domingo-Salvany, Antònia; Bacigalupe, Amaia; Carrasco, José Miguel; Espelt, Albert; Ferrando, Josep; Borrell, Carme
2013-01-01
In Spain, the new National Classification of Occupations (Clasificación Nacional de Ocupaciones [CNO-2011]) is substantially different to the 1994 edition, and requires adaptation of occupational social classes for use in studies of health inequalities. This article presents two proposals to measure social class: the new classification of occupational social class (CSO-SEE12), based on the CNO-2011 and a neo-Weberian perspective, and a social class classification based on a neo-Marxist approach. The CSO-SEE12 is the result of a detailed review of the CNO-2011 codes. In contrast, the neo-Marxist classification is derived from variables related to capital and organizational and skill assets. The proposed CSO-SEE12 consists of seven classes that can be grouped into a smaller number of categories according to study needs. The neo-Marxist classification consists of 12 categories in which home owners are divided into three categories based on capital goods and employed persons are grouped into nine categories composed of organizational and skill assets. These proposals are complemented by a proposed classification of educational level that integrates the various curricula in Spain and provides correspondences with the International Standard Classification of Education. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali
2011-01-01
The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification's priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method.
Reiss, Renate; Ihssen, Julian; Richter, Michael; Eichhorn, Eric; Schilling, Boris; Thöny-Meyer, Linda
2013-01-01
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera. PMID:23755261
VO2 estimation using 6-axis motion sensor with sports activity classification.
Nagata, Takashi; Nakamura, Naoteru; Miyatake, Masato; Yuuki, Akira; Yomo, Hiroyuki; Kawabata, Takashi; Hara, Shinsuke
2016-08-01
In this paper, we focus on oxygen consumption (VO2) estimation using 6-axis motion sensor (3-axis accelerometer and 3-axis gyroscope) for people playing sports with diverse intensities. The VO2 estimated with a small motion sensor can be used to calculate the energy expenditure, however, its accuracy depends on the intensities of various types of activities. In order to achieve high accuracy over a wide range of intensities, we employ an estimation framework that first classifies activities with a simple machine-learning based classification algorithm. We prepare different coefficients of linear regression model for different types of activities, which are determined with training data obtained by experiments. The best-suited model is used for each type of activity when VO2 is estimated. The accuracy of the employed framework depends on the trade-off between the degradation due to classification errors and improvement brought by applying separate, optimum model to VO2 estimation. Taking this trade-off into account, we evaluate the accuracy of the employed estimation framework by using a set of experimental data consisting of VO2 and motion data of people with a wide range of intensities of exercises, which were measured by a VO2 meter and motion sensor, respectively. Our numerical results show that the employed framework can improve the estimation accuracy in comparison to a reference method that uses a common regression model for all types of activities.
8 CFR 204.306 - Classification as an immediate relative based on a Convention adoption.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Classification as an immediate relative....306 Classification as an immediate relative based on a Convention adoption. (a) Unless 8 CFR 204.309 requires the denial of a Form I-800A or Form I-800, a child is eligible for classification as an immediate...
Spatial Classification of Orchards and Vineyards with High Spatial Resolution Panchromatic Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Timothy; Steinmaus, Karen L.
2005-02-01
New high resolution single spectral band imagery offers the capability to conduct image classifications based on spatial patterns in imagery. A classification algorithm based on autocorrelation patterns was developed to automatically extract orchards and vineyards from satellite imagery. The algorithm was tested on IKONOS imagery over Granger, WA, which resulted in a classification accuracy of 95%.
A discrimlnant function approach to ecological site classification in northern New England
James M. Fincher; Marie-Louise Smith
1994-01-01
Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...
Classifications for Cesarean Section: A Systematic Review
Torloni, Maria Regina; Betran, Ana Pilar; Souza, Joao Paulo; Widmer, Mariana; Allen, Tomas; Gulmezoglu, Metin; Merialdi, Mario
2011-01-01
Background Rising cesarean section (CS) rates are a major public health concern and cause worldwide debates. To propose and implement effective measures to reduce or increase CS rates where necessary requires an appropriate classification. Despite several existing CS classifications, there has not yet been a systematic review of these. This study aimed to 1) identify the main CS classifications used worldwide, 2) analyze advantages and deficiencies of each system. Methods and Findings Three electronic databases were searched for classifications published 1968–2008. Two reviewers independently assessed classifications using a form created based on items rated as important by international experts. Seven domains (ease, clarity, mutually exclusive categories, totally inclusive classification, prospective identification of categories, reproducibility, implementability) were assessed and graded. Classifications were tested in 12 hypothetical clinical case-scenarios. From a total of 2948 citations, 60 were selected for full-text evaluation and 27 classifications identified. Indications classifications present important limitations and their overall score ranged from 2–9 (maximum grade = 14). Degree of urgency classifications also had several drawbacks (overall scores 6–9). Woman-based classifications performed best (scores 5–14). Other types of classifications require data not routinely collected and may not be relevant in all settings (scores 3–8). Conclusions This review and critical appraisal of CS classifications is a methodologically sound contribution to establish the basis for the appropriate monitoring and rational use of CS. Results suggest that women-based classifications in general, and Robson's classification, in particular, would be in the best position to fulfill current international and local needs and that efforts to develop an internationally applicable CS classification would be most appropriately placed in building upon this classification. The use of a single CS classification will facilitate auditing, analyzing and comparing CS rates across different settings and help to create and implement effective strategies specifically targeted to optimize CS rates where necessary. PMID:21283801
Andreeva, Antonina
2016-06-15
The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
On the dynamical basis of the classification of normal galaxies
Haass, J.; Bertin, G.; Lin, C. C.
1982-01-01
Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200
Speaker emotion recognition: from classical classifiers to deep neural networks
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2018-04-01
Speaker emotion recognition is considered among the most challenging tasks in recent years. In fact, automatic systems for security, medicine or education can be improved when considering the speech affective state. In this paper, a twofold approach for speech emotion classification is proposed. At the first side, a relevant set of features is adopted, and then at the second one, numerous supervised training techniques, involving classic methods as well as deep learning, are experimented. Experimental results indicate that deep architecture can improve classification performance on two affective databases, the Berlin Dataset of Emotional Speech and the SAVEE Dataset Surrey Audio-Visual Expressed Emotion.
Building a common pipeline for rule-based document classification.
Patterson, Olga V; Ginter, Thomas; DuVall, Scott L
2013-01-01
Instance-based classification of clinical text is a widely used natural language processing task employed as a step for patient classification, document retrieval, or information extraction. Rule-based approaches rely on concept identification and context analysis in order to determine the appropriate class. We propose a five-step process that enables even small research teams to develop simple but powerful rule-based NLP systems by taking advantage of a common UIMA AS based pipeline for classification. Our proposed methodology coupled with the general-purpose solution provides researchers with access to the data locked in clinical text in cases of limited human resources and compact timelines.
Gold-standard for computer-assisted morphological sperm analysis.
Chang, Violeta; Garcia, Alejandra; Hitschfeld, Nancy; Härtel, Steffen
2017-04-01
Published algorithms for classification of human sperm heads are based on relatively small image databases that are not open to the public, and thus no direct comparison is available for competing methods. We describe a gold-standard for morphological sperm analysis (SCIAN-MorphoSpermGS), a dataset of sperm head images with expert-classification labels in one of the following classes: normal, tapered, pyriform, small or amorphous. This gold-standard is for evaluating and comparing known techniques and future improvements to present approaches for classification of human sperm heads for semen analysis. Although this paper does not provide a computational tool for morphological sperm analysis, we present a set of experiments for comparing sperm head description and classification common techniques. This classification base-line is aimed to be used as a reference for future improvements to present approaches for human sperm head classification. The gold-standard provides a label for each sperm head, which is achieved by majority voting among experts. The classification base-line compares four supervised learning methods (1- Nearest Neighbor, naive Bayes, decision trees and Support Vector Machine (SVM)) and three shape-based descriptors (Hu moments, Zernike moments and Fourier descriptors), reporting the accuracy and the true positive rate for each experiment. We used Fleiss' Kappa Coefficient to evaluate the inter-expert agreement and Fisher's exact test for inter-expert variability and statistical significant differences between descriptors and learning techniques. Our results confirm the high degree of inter-expert variability in the morphological sperm analysis. Regarding the classification base line, we show that none of the standard descriptors or classification approaches is best suitable for tackling the problem of sperm head classification. We discovered that the correct classification rate was highly variable when trying to discriminate among non-normal sperm heads. By using the Fourier descriptor and SVM, we achieved the best mean correct classification: only 49%. We conclude that the SCIAN-MorphoSpermGS will provide a standard tool for evaluation of characterization and classification approaches for human sperm heads. Indeed, there is a clear need for a specific shape-based descriptor for human sperm heads and a specific classification approach to tackle the problem of high variability within subcategories of abnormal sperm cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accurate diagnosis of thyroid follicular lesions from nuclear morphology using supervised learning.
Ozolek, John A; Tosun, Akif Burak; Wang, Wei; Chen, Cheng; Kolouri, Soheil; Basu, Saurav; Huang, Hu; Rohde, Gustavo K
2014-07-01
Follicular lesions of the thyroid remain significant diagnostic challenges in surgical pathology and cytology. The diagnosis often requires considerable resources and ancillary tests including immunohistochemistry, molecular studies, and expert consultation. Visual analyses of nuclear morphological features, generally speaking, have not been helpful in distinguishing this group of lesions. Here we describe a method for distinguishing between follicular lesions of the thyroid based on nuclear morphology. The method utilizes an optimal transport-based linear embedding for segmented nuclei, together with an adaptation of existing classification methods. We show the method outputs assignments (classification results) which are near perfectly correlated with the clinical diagnosis of several lesion types' lesions utilizing a database of 94 patients in total. Experimental comparisons also show the new method can significantly outperform standard numerical feature-type methods in terms of agreement with the clinical diagnosis gold standard. In addition, the new method could potentially be used to derive insights into biologically meaningful nuclear morphology differences in these lesions. Our methods could be incorporated into a tool for pathologists to aid in distinguishing between follicular lesions of the thyroid. In addition, these results could potentially provide nuclear morphological correlates of biological behavior and reduce health care costs by decreasing histotechnician and pathologist time and obviating the need for ancillary testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Diagnostic discrepancies in retinopathy of prematurity classification
Campbell, J. Peter; Ryan, Michael C.; Lore, Emily; Tian, Peng; Ostmo, Susan; Jonas, Karyn; Chan, R.V. Paul; Chiang, Michael F.
2016-01-01
Objective To identify the most common areas for discrepancy in retinopathy of prematurity (ROP) classification between experts. Design Prospective cohort study. Subjects, Participants, and/or Controls 281 infants were identified as part of a multi-center, prospective, ROP cohort study from 7 participating centers. Each site had participating ophthalmologists who provided the clinical classification after routine examination using binocular indirect ophthalmoscopy (BIO), and obtained wide-angle retinal images, which were independently classified by two study experts. Methods Wide-angle retinal images (RetCam; Clarity Medical Systems, Pleasanton, CA) were obtained from study subjects, and two experts evaluated each image using a secure web-based module. Image-based classifications for zone, stage, plus disease, overall disease category (no ROP, mild ROP, Type II or pre-plus, and Type I) were compared between the two experts, and to the clinical classification obtained by BIO. Main Outcome Measures Inter-expert image-based agreement and image-based vs. ophthalmoscopic diagnostic agreement using absolute agreement and weighted kappa statistic. Results 1553 study eye examinations from 281 infants were included in the study. Experts disagreed on the stage classification in 620/1553 (40%) of comparisons, plus disease classification (including pre-plus) in 287/1553 (18%), zone in 117/1553 (8%), and overall ROP category in 618/1553 (40%). However, agreement for presence vs. absence of type 1 disease was >95%. There were no differences between image-based and clinical classification except for zone III disease. Conclusions The most common area of discrepancy in ROP classification is stage, although inter-expert agreement for clinically-significant disease such as presence vs. absence of type 1 and type 2 disease is high. There were no differences between image-based grading and the clinical exam in the ability to detect clinically-significant disease. This study provides additional evidence that image-based classification of ROP reliably detects clinically significant levels of ROP with high accuracy compared to the clinical exam. PMID:27238376
Signal classification using global dynamical models, Part II: SONAR data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremliovsky, M.; Kadtke, J.
1996-06-01
In Part I of this paper, we described a numerical method for nonlinear signal detection and classification which made use of techniques borrowed from dynamical systems theory. Here in Part II of the paper, we will describe an example of data analysis using this method, for data consisting of open ocean acoustic (SONAR) recordings of marine mammal transients, supplied from NUWC sources. The purpose here is two-fold: first to give a more operational description of the technique and provide rules-of-thumb for parameter choices; and second to discuss some new issues raised by the analysis of non-ideal (real-world) data sets. Themore » particular data set considered here is quite non-stationary, relatively noisy, is not clearly localized in the background, and as such provides a difficult challenge for most detection/classification schemes. {copyright} {ital 1996 American Institute of Physics.}« less
Characterisation of Feature Points in Eye Fundus Images
NASA Astrophysics Data System (ADS)
Calvo, D.; Ortega, M.; Penedo, M. G.; Rouco, J.
The retinal vessel tree adds decisive knowledge in the diagnosis of numerous opthalmologic pathologies such as hypertension or diabetes. One of the problems in the analysis of the retinal vessel tree is the lack of information in terms of vessels depth as the image acquisition usually leads to a 2D image. This situation provokes a scenario where two different vessels coinciding in a point could be interpreted as a vessel forking into a bifurcation. That is why, for traking and labelling the retinal vascular tree, bifurcations and crossovers of vessels are considered feature points. In this work a novel method for these retinal vessel tree feature points detection and classification is introduced. The method applies image techniques such as filters or thinning to obtain the adequate structure to detect the points and sets a classification of these points studying its environment. The methodology is tested using a standard database and the results show high classification capabilities.
NASA Technical Reports Server (NTRS)
Peters, C.; Kampe, F. (Principal Investigator)
1980-01-01
The mathematical description and implementation of the statistical estimation procedure known as the Houston integrated spatial/spectral estimator (HISSE) is discussed. HISSE is based on a normal mixture model and is designed to take advantage of spectral and spatial information of LANDSAT data pixels, utilizing the initial classification and clustering information provided by the AMOEBA algorithm. The HISSE calculates parametric estimates of class proportions which reduce the error inherent in estimates derived from typical classify and count procedures common to nonparametric clustering algorithms. It also singles out spatial groupings of pixels which are most suitable for labeling classes. These calculations are designed to aid the analyst/interpreter in labeling patches with a crop class label. Finally, HISSE's initial performance on an actual LANDSAT agricultural ground truth data set is reported.
Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases.
He, Xin; Chen, Zhigang; Jiang, Yangyan; Qiu, Xi; Zhao, Xiaoying
2013-01-25
The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.
Huser, Vojtech; Cimino, James J.
2013-01-01
Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network’s Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management. PMID:24551366
Huser, Vojtech; Cimino, James J
2013-01-01
Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network's Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management.
Epidemic spreading on random surfer networks with optimal interaction radius
NASA Astrophysics Data System (ADS)
Feng, Yun; Ding, Li; Hu, Ping
2018-03-01
In this paper, the optimal control problem of epidemic spreading on random surfer heterogeneous networks is considered. An epidemic spreading model is established according to the classification of individual's initial interaction radii. Then, a control strategy is proposed based on adjusting individual's interaction radii. The global stability of the disease free and endemic equilibrium of the model is investigated. We prove that an optimal solution exists for the optimal control problem and the explicit form of which is presented. Numerical simulations are conducted to verify the correctness of the theoretical results. It is proved that the optimal control strategy is effective to minimize the density of infected individuals and the cost associated with the adjustment of interaction radii.
THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Classification of cloud fields based on textural characteristics
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1987-01-01
The present study reexamines the applicability of texture-based features for automatic cloud classification using very high spatial resolution (57 m) Landsat multispectral scanner digital data. It is concluded that cloud classification can be accomplished using only a single visible channel.
Molecular cancer classification using a meta-sample-based regularized robust coding method.
Wang, Shu-Lin; Sun, Liuchao; Fang, Jianwen
2014-01-01
Previous studies have demonstrated that machine learning based molecular cancer classification using gene expression profiling (GEP) data is promising for the clinic diagnosis and treatment of cancer. Novel classification methods with high efficiency and prediction accuracy are still needed to deal with high dimensionality and small sample size of typical GEP data. Recently the sparse representation (SR) method has been successfully applied to the cancer classification. Nevertheless, its efficiency needs to be improved when analyzing large-scale GEP data. In this paper we present the meta-sample-based regularized robust coding classification (MRRCC), a novel effective cancer classification technique that combines the idea of meta-sample-based cluster method with regularized robust coding (RRC) method. It assumes that the coding residual and the coding coefficient are respectively independent and identically distributed. Similar to meta-sample-based SR classification (MSRC), MRRCC extracts a set of meta-samples from the training samples, and then encodes a testing sample as the sparse linear combination of these meta-samples. The representation fidelity is measured by the l2-norm or l1-norm of the coding residual. Extensive experiments on publicly available GEP datasets demonstrate that the proposed method is more efficient while its prediction accuracy is equivalent to existing MSRC-based methods and better than other state-of-the-art dimension reduction based methods.
Miao, Qiguang; Cao, Ying; Xia, Ge; Gong, Maoguo; Liu, Jiachen; Song, Jianfeng
2016-11-01
AdaBoost has attracted much attention in the machine learning community because of its excellent performance in combining weak classifiers into strong classifiers. However, AdaBoost tends to overfit to the noisy data in many applications. Accordingly, improving the antinoise ability of AdaBoost plays an important role in many applications. The sensitiveness to the noisy data of AdaBoost stems from the exponential loss function, which puts unrestricted penalties to the misclassified samples with very large margins. In this paper, we propose two boosting algorithms, referred to as RBoost1 and RBoost2, which are more robust to the noisy data compared with AdaBoost. RBoost1 and RBoost2 optimize a nonconvex loss function of the classification margin. Because the penalties to the misclassified samples are restricted to an amount less than one, RBoost1 and RBoost2 do not overfocus on the samples that are always misclassified by the previous base learners. Besides the loss function, at each boosting iteration, RBoost1 and RBoost2 use numerically stable ways to compute the base learners. These two improvements contribute to the robustness of the proposed algorithms to the noisy training and testing samples. Experimental results on the synthetic Gaussian data set, the UCI data sets, and a real malware behavior data set illustrate that the proposed RBoost1 and RBoost2 algorithms perform better when the training data sets contain noisy data.
Flashing characters with famous faces improves ERP-based brain-computer interface performance
NASA Astrophysics Data System (ADS)
Kaufmann, T.; Schulz, S. M.; Grünzinger, C.; Kübler, A.
2011-10-01
Currently, the event-related potential (ERP)-based spelling device, often referred to as P300-Speller, is the most commonly used brain-computer interface (BCI) for enhancing communication of patients with impaired speech or motor function. Among numerous improvements, a most central feature has received little attention, namely optimizing the stimulus used for eliciting ERPs. Therefore we compared P300-Speller performance with the standard stimulus (flashing characters) against performance with stimuli known for eliciting particularly strong ERPs due to their psychological salience, i.e. flashing familiar faces transparently superimposed on characters. Our results not only indicate remarkably increased ERPs in response to familiar faces but also improved P300-Speller performance due to a significant reduction of stimulus sequences needed for correct character classification. These findings demonstrate a promising new approach for improving the speed and thus fluency of BCI-enhanced communication with the widely used P300-Speller.
Segmenting human from photo images based on a coarse-to-fine scheme.
Lu, Huchuan; Fang, Guoliang; Shao, Xinqing; Li, Xuelong
2012-06-01
Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.
DTM-based automatic mapping and fractal clustering of putative mud volcanoes in Arabia Terra craters
NASA Astrophysics Data System (ADS)
Pozzobon, R. P.; Mazzarini, F. M.; Massironi, M. M.; Cremonese, G. C.; Rossi, A. P. R.; Pondrelli, M. P.; Marinangeli, L. M.
2017-09-01
Arabia Terra is a region of Mars where occurrence of past-water manifests at surface and subsurface. To date, several landforms associated with this activity were recognized and mapped, directly influencing the models of fluid circulation. In particular, within several craters such as Firsoff and an unnamed southern crater, putative mud volcanoes were described by several authors. In fact, numerous mounds (from 30 m of diameter in the case of monogenic cones, up to 3-400 m in the case of coalescing mounds) present an apical vent-like depression, resembling subaerial Azerbaijan mud volcanoes and gryphons. To this date, landform analysis through topographic position index and curvatures based on topography was never attempted. We hereby present a landform classification method suitable for mounds automatic mapping. Their resulting spatial distribution is then studied in terms of self-similar clustering.
Harff, Jan; Bohling, Geoffrey C.; Endler, R.; Davis, J.C.; Olea, R.A.
1999-01-01
The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.
MASS SPECTROMETRY-BASED METABOLOMICS
Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.
2007-01-01
This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475
A numerical investigation of the fluid mechanical sewing machine
NASA Astrophysics Data System (ADS)
Brun, P.-T.; Ribe, N. M.; Audoly, B.
2012-04-01
A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here, we simulate this experiment numerically using the discrete viscous threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia and of deformation by stretching, bending, and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory and agree closely with the experimental phase diagram of Morris et al. [Phys. Rev. E 77, 066218 (2008)], 10.1103/PhysRevE.77.066218. We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency Ωc of steady coiling obtained in the limit of zero belt speed. In particular, the intriguing "alternating loops" pattern is produced by combining the first five multiples of Ωc/3.
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Biclustering Learning of Trading Rules.
Huang, Qinghua; Wang, Ting; Tao, Dacheng; Li, Xuelong
2015-10-01
Technical analysis with numerous indicators and patterns has been regarded as important evidence for making trading decisions in financial markets. However, it is extremely difficult for investors to find useful trading rules based on numerous technical indicators. This paper innovatively proposes the use of biclustering mining to discover effective technical trading patterns that contain a combination of indicators from historical financial data series. This is the first attempt to use biclustering algorithm on trading data. The mined patterns are regarded as trading rules and can be classified as three trading actions (i.e., the buy, the sell, and no-action signals) with respect to the maximum support. A modified K nearest neighborhood ( K -NN) method is applied to classification of trading days in the testing period. The proposed method [called biclustering algorithm and the K nearest neighbor (BIC- K -NN)] was implemented on four historical datasets and the average performance was compared with the conventional buy-and-hold strategy and three previously reported intelligent trading systems. Experimental results demonstrate that the proposed trading system outperforms its counterparts and will be useful for investment in various financial markets.
NASA Astrophysics Data System (ADS)
Wolter, Andrea; Stead, Doug; Clague, John J.
2014-02-01
The 1963 Vajont Slide in northeast Italy is an important engineering and geological event. Although the landslide has been extensively studied, new insights can be derived by applying modern techniques such as remote sensing and numerical modelling. This paper presents the first digital terrestrial photogrammetric analyses of the failure scar, landslide deposits, and the area surrounding the failure, with a focus on the scar. We processed photogrammetric models to produce discontinuity stereonets, residual maps and profiles, and slope and aspect maps, all of which provide information on the failure scar morphology. Our analyses enabled the creation of a preliminary semi-quantitative morphologic classification of the Vajont failure scar based on the large-scale tectonic folds and step-paths that define it. The analyses and morphologic classification have implications for the kinematics, dynamics, and mechanism of the slide. Metre- and decametre-scale features affected the initiation, direction, and displacement rate of sliding. The most complexly folded and stepped areas occur close to the intersection of orthogonal synclinal features related to the Dinaric and Neoalpine deformation events. Our analyses also highlight, for the first time, the evolution of the Vajont failure scar from 1963 to the present.
NASA Astrophysics Data System (ADS)
Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore
2013-04-01
Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.
Issues and advances in research methods on video games and cognitive abilities.
Sobczyk, Bart; Dobrowolski, Paweł; Skorko, Maciek; Michalak, Jakub; Brzezicka, Aneta
2015-01-01
The impact of video game playing on cognitive abilities has been the focus of numerous studies over the last 10 years. Some cross-sectional comparisons indicate the cognitive advantages of video game players (VGPs) over non-players (NVGPs) and the benefits of video game trainings, while others fail to replicate these findings. Though there is an ongoing discussion over methodological practices and their impact on observable effects, some elementary issues, such as the representativeness of recruited VGP groups and lack of genre differentiation have not yet been widely addressed. In this article we present objective and declarative gameplay time data gathered from large samples in order to illustrate how playtime is distributed over VGP populations. The implications of this data are then discussed in the context of previous studies in the field. We also argue in favor of differentiating video games based on their genre when recruiting study samples, as this form of classification reflects the core mechanics that they utilize and therefore provides a measure of insight into what cognitive functions are likely to be engaged most. Additionally, we present the Covert Video Game Experience Questionnaire as an example of how this sort of classification can be applied during the recruitment process.
Review and Future Research Directions about Major Monitoring Method of Soil Erosion
NASA Astrophysics Data System (ADS)
LI, Yue; Bai, Xiaoyong; Tian, Yichao; Luo, Guangjie
2017-05-01
Soil erosion is a highly serious ecological problem that occurs worldwide. Hence,scientific methods for accurate monitoring are needed to obtain soil erosion data. At present,numerous methods on soil erosion monitoring are being used internationally. In this paper, wepresent a systematic classification of these methods based on the date of establishment andtype of approach. This classification comprises five categories: runoff plot method, erosion pinmethod, radionuclide tracer method, model estimation, and 3S technology combined method.The backgrounds of their establishment are briefly introduced, the history of their developmentis reviewed, and the conditions for their application are enumerated. Their respectiveadvantages and disadvantages are compared and analysed, and future prospects regarding theirdevelopment are discussed. We conclude that the methods of soil erosion monitoring in the past 100 years of their development constantly considered the needs of the time. According to the progress of soil erosion monitoring technology throughout its history, we predict that the future trend in this field would move toward the development of quantitative, precise, and composite methods. This report serves as a valuable reference for scientific and technological workers globally, especially those engaged in soil erosion research.
Joint Sparse Recovery With Semisupervised MUSIC
NASA Astrophysics Data System (ADS)
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2017-05-01
Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.
Object-based image analysis and data mining for building ontology of informal urban settlements
NASA Astrophysics Data System (ADS)
Khelifa, Dejrriri; Mimoun, Malki
2012-11-01
During recent decades, unplanned settlements have been appeared around the big cities in most developing countries and as consequence, numerous problems have emerged. Thus the identification of different kinds of settlements is a major concern and challenge for authorities of many countries. Very High Resolution (VHR) Remotely Sensed imagery has proved to be a very promising way to detect different kinds of settlements, especially through the using of new objectbased image analysis (OBIA). The most important key is in understanding what characteristics make unplanned settlements differ from planned ones, where most experts characterize unplanned urban areas by small building sizes at high densities, no orderly road arrangement and Lack of green spaces. Knowledge about different kinds of settlements can be captured as a domain ontology that has the potential to organize knowledge in a formal, understandable and sharable way. In this work we focus on extracting knowledge from VHR images and expert's knowledge. We used an object based strategy by segmenting a VHR image taken over urban area into regions of homogenous pixels at adequate scale level and then computing spectral, spatial and textural attributes for each region to create objects. A genetic-based data mining was applied to generate high predictive and comprehensible classification rules based on selected samples from the OBIA result. Optimized intervals of relevant attributes are found, linked with land use types for forming classification rules. The unplanned areas were separated from the planned ones, through analyzing of the line segments detected from the input image. Finally a simple ontology was built based on the previous processing steps. The approach has been tested to VHR images of one of the biggest Algerian cities, that has grown considerably in recent decades.
A review of classification algorithms for EEG-based brain-computer interfaces.
Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B
2007-06-01
In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data
NASA Astrophysics Data System (ADS)
Elhag, Mohamed; Boteva, Silvena
2016-10-01
Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.
A Bio-Inspired Herbal Tea Flavour Assessment Technique
Zakaria, Nur Zawatil Isqi; Masnan, Maz Jamilah; Zakaria, Ammar; Shakaff, Ali Yeon Md
2014-01-01
Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers' performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied. PMID:25010697
NASA Astrophysics Data System (ADS)
Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A. K.
2016-12-01
Urbanization is one of the most fundamental trends of the past two centuries and a key force shaping almost all dimensions of modern society. Monitoring the spatial extent of cities and their dynamics be means of remote sensing methods is crucial for many research domains, as well as to city and regional planning and to policy making. Yet the majority of urban research is being done in small scales, due, in part, to computational limitation. With the increasing availability of parallel computing platforms with large storage capacities, such as Google Earth Engine (GEE), researchers can scale up the spatial and the temporal units of analysis and investigate urbanization processes over larger areas and over longer periods of time. In this study we present a methodology that is designed to capture temporal changes in the spatial extent of urban areas at the national level. We utilize a large scale ground-truth dataset containing examples of "built-up" and "not built-up" areas from across India. This dataset, which was collected based on 2016 high-resolution imagery, is used for supervised pixel-based image classification in GEE. We assess different types of classifiers and inputs and demonstrate that with Landsat 8 as the classifier`s input, Random Forest achieves a high accuracy rate of around 87%. Although performance with Landsat 8 as the input exceeds that of Landsat 7, with the addition of several per-pixel computed indices to Landsat 7 - NDVI, NDBI, MNDWI and SAVI - the classifier`s sensitivity improves by around 10%. We use Landsat 7 to detect temporal changes in the extent of urban areas. The classifier is trained with 2016 imagery as the input - for which ground truth data is available - and is used the to detect urban areas over the historical imagery. We demonstrate that this classification produces high quality maps of urban extent over time. We compare the classification result with numerous datasets of urban areas (e.g. MODIS, DMSP-OLS and WorldPop) and show that our classification captures the fine boundaries between built-up areas and various types of land cover thus providing an accurate estimation of the extent of urban areas. The study demonstrates the potential of cloud-based platforms, such as GEE, for monitoring long-term and continuous urbanization processes at scale.
Morfeld, Peter; Bruch, Joachim; Levy, Len; Ngiewih, Yufanyi; Chaudhuri, Ishrat; Muranko, Henry J; Myerson, Ross; McCunney, Robert J
2015-04-23
We analyze the scientific basis and methodology used by the German MAK Commission in their recommendations for exposure limits and carcinogen classification of "granular biopersistent particles without known specific toxicity" (GBS). These recommendations are under review at the European Union level. We examine the scientific assumptions in an attempt to reproduce the results. MAK's human equivalent concentrations (HECs) are based on a particle mass and on a volumetric model in which results from rat inhalation studies are translated to derive occupational exposure limits (OELs) and a carcinogen classification. We followed the methods as proposed by the MAK Commission and Pauluhn 2011. We also examined key assumptions in the metrics, such as surface area of the human lung, deposition fractions of inhaled dusts, human clearance rates; and risk of lung cancer among workers, presumed to have some potential for lung overload, the physiological condition in rats associated with an increase in lung cancer risk. The MAK recommendations on exposure limits for GBS have numerous incorrect assumptions that adversely affect the final results. The procedures to derive the respirable occupational exposure limit (OEL) could not be reproduced, a finding raising considerable scientific uncertainty about the reliability of the recommendations. Moreover, the scientific basis of using the rat model is confounded by the fact that rats and humans show different cellular responses to inhaled particles as demonstrated by bronchoalveolar lavage (BAL) studies in both species. Classifying all GBS as carcinogenic to humans based on rat inhalation studies in which lung overload leads to chronic inflammation and cancer is inappropriate. Studies of workers, who have been exposed to relevant levels of dust, have not indicated an increase in lung cancer risk. Using the methods proposed by the MAK, we were unable to reproduce the OEL for GBS recommended by the Commission, but identified substantial errors in the models. Considerable shortcomings in the use of lung surface area, clearance rates, deposition fractions; as well as using the mass and volumetric metrics as opposed to the particle surface area metric limit the scientific reliability of the proposed GBS OEL and carcinogen classification.
Hosseinpour-Feizi, Hojjat; Soleimanpour, Jafar; Sales, Jafar Ganjpour; Arzroumchilar, Ali
2011-01-01
Purpose The aim of this study was to investigate the interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis, and to compare the results of surgery performed based on classification of the scoliosis according to each of these classification systems. Methods The study was conducted in Shohada Hospital in Tabriz, Iran, between 2009 and 2010. First, a reliability assessment was undertaken to assess interobserver agreement of the Lenke and King classifications for adolescent idiopathic scoliosis. Second, postoperative efficacy and safety of surgery performed based on the Lenke and King classifications were compared. Kappa coefficients of agreement were calculated to assess the agreement. Outcomes were compared using bivariate tests and repeated measures analysis of variance. Results A low to moderate interobserver agreement was observed for the King classification; the Lenke classification yielded mostly high agreement coefficients. The outcome of surgery was not found to be substantially different between the two systems. Conclusion Based on the results, the Lenke classification method seems advantageous. This takes into consideration the Lenke classification’s priority in providing details of curvatures in different anatomical surfaces to explain precise intensity of scoliosis, that it has higher interobserver agreement scores, and also that it leads to noninferior postoperative results compared with the King classification method. PMID:22267934
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.
Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery
LI, GUIYING; LU, DENGSHENG; MORAN, EMILIO; HETRICK, SCOTT
2011-01-01
This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms – maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes. PMID:22368311
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
A new epileptic seizure classification based exclusively on ictal semiology.
Lüders, H; Acharya, J; Baumgartner, C; Benbadis, S; Bleasel, A; Burgess, R; Dinner, D S; Ebner, A; Foldvary, N; Geller, E; Hamer, H; Holthausen, H; Kotagal, P; Morris, H; Meencke, H J; Noachtar, S; Rosenow, F; Sakamoto, A; Steinhoff, B J; Tuxhorn, I; Wyllie, E
1999-03-01
Historically, seizure semiology was the main feature in the differential diagnosis of epileptic syndromes. With the development of clinical EEG, the definition of electroclinical complexes became an essential tool to define epileptic syndromes, particularly focal epileptic syndromes. Modern advances in diagnostic technology, particularly in neuroimaging and molecular biology, now permit better definitions of epileptic syndromes. At the same time detailed studies showed that there does not necessarily exist a one-to-one relationship between epileptic seizures or electroclinical complexes and epileptic syndromes. These developments call for the reintroduction of an epileptic seizure classification based exclusively on clinical semiology, similar to the seizure classifications which were used by neurologists before the introduction of the modern diagnostic methods. This classification of epileptic seizures should always be complemented by an epileptic syndrome classification based on all the available clinical information (clinical history, neurological exam, ictal semiology, EEG, anatomical and functional neuroimaging, etc.). Such an approach is more consistent with mainstream clinical neurology and would avoid the current confusion between the classification of epileptic seizures (which in the International Seizure Classification is actually a classification of electroclinical complexes) and the classification of epileptic syndromes.
Morton, Lindsay M.; Linet, Martha S.; Clarke, Christina A.; Kadin, Marshall E.; Vajdic, Claire M.; Monnereau, Alain; Maynadié, Marc; Chiu, Brian C.-H.; Marcos-Gragera, Rafael; Costantini, Adele Seniori; Cerhan, James R.; Weisenburger, Dennis D.
2010-01-01
After publication of the updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues in 2008, the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph) now presents an update of the hierarchical classification of lymphoid neoplasms for epidemiologic research based on the 2001 WHO classification, which we published in 2007. The updated hierarchical classification incorporates all of the major and provisional entities in the 2008 WHO classification, including newly defined entities based on age, site, certain infections, and molecular characteristics, as well as borderline categories, early and “in situ” lesions, disorders with limited capacity for clinical progression, lesions without current International Classification of Diseases for Oncology, 3rd Edition codes, and immunodeficiency-associated lymphoproliferative disorders. WHO subtypes are defined in hierarchical groupings, with newly defined groups for small B-cell lymphomas with plasmacytic differentiation and for primary cutaneous T-cell lymphomas. We suggest approaches for applying the hierarchical classification in various epidemiologic settings, including strategies for dealing with multiple coexisting lymphoma subtypes in one patient, and cases with incomplete pathologic information. The pathology materials useful for state-of-the-art epidemiology studies are also discussed. We encourage epidemiologists to adopt the updated InterLymph hierarchical classification, which incorporates the most recent WHO entities while demonstrating their relationship to older classifications. PMID:20699439
Turner, Jennifer J; Morton, Lindsay M; Linet, Martha S; Clarke, Christina A; Kadin, Marshall E; Vajdic, Claire M; Monnereau, Alain; Maynadié, Marc; Chiu, Brian C-H; Marcos-Gragera, Rafael; Costantini, Adele Seniori; Cerhan, James R; Weisenburger, Dennis D
2010-11-18
After publication of the updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues in 2008, the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph) now presents an update of the hierarchical classification of lymphoid neoplasms for epidemiologic research based on the 2001 WHO classification, which we published in 2007. The updated hierarchical classification incorporates all of the major and provisional entities in the 2008 WHO classification, including newly defined entities based on age, site, certain infections, and molecular characteristics, as well as borderline categories, early and "in situ" lesions, disorders with limited capacity for clinical progression, lesions without current International Classification of Diseases for Oncology, 3rd Edition codes, and immunodeficiency-associated lymphoproliferative disorders. WHO subtypes are defined in hierarchical groupings, with newly defined groups for small B-cell lymphomas with plasmacytic differentiation and for primary cutaneous T-cell lymphomas. We suggest approaches for applying the hierarchical classification in various epidemiologic settings, including strategies for dealing with multiple coexisting lymphoma subtypes in one patient, and cases with incomplete pathologic information. The pathology materials useful for state-of-the-art epidemiology studies are also discussed. We encourage epidemiologists to adopt the updated InterLymph hierarchical classification, which incorporates the most recent WHO entities while demonstrating their relationship to older classifications.
Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.
Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W
2012-07-01
Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were
NASA Astrophysics Data System (ADS)
Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu
2017-10-01
Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.
[Biomorphology of gastrointestinal nematodes of small ruminants].
Giannetto, S
2006-09-01
Under the term gastrointestinal nematodes are included numerous parasites species of livestock belonging to the families Strongyloididae (Strongyloides), Strongylidae (Chabertia, Oesophagostomum) Trichostrongylidae (Trichostrongylus, Ostertagia, Teladorsagia, Cooperia, Marshallagia), Molineidae (Nematodirus), Ancylostomatidae (Bunostomum) and Trichuridae (Trichuris). This paper reviews the biomorphology aspects of these parasites as well as the controversy by the taxonomists in the classifications.
Investigations of possible contributions NDVI's have to misclassification in AVHRR data analysis
David L. Evans; Raymond L. Czaplewski
1996-01-01
Numerous subcontinental-scale projects have placed significant emphasis on the use of Normalized Difference Vegetation Indices (NDVI's) derived from Advanced Very High Resolution Radiometer (AVHRR) satellite data for vegetation type recognition. In multi-season AVHRR data, overlap of NDVI ranges for vegetation classes may degrade overall classification performance...
Helping Teachers Become Better Teachers.
ERIC Educational Resources Information Center
Dick, Robert C.
Since speech communication is experiencing numerous changes, it is useful to examine some of the causes of inadequate teaching in the field and various ways to solve the problems. Some causes of poor teaching are (1) the small value placed on university teaching compared to other criteria for tenure and promotion; (2) the classification or…
NASA Astrophysics Data System (ADS)
Chen, J.; Xi, G.; Wang, W.
2008-02-01
Detecting phase transitions in neural networks (determined or random) presents a challenging subject for phase transitions play a key role in human brain activity. In this paper, we detect numerically phase transitions in two types of random neural network(RNN) under proper parameters.
Cloud field classification based on textural features
NASA Technical Reports Server (NTRS)
Sengupta, Sailes Kumar
1989-01-01
An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes of features. Preliminary results based on the GLDV textural features alone look promising.
Numerical observer for atherosclerotic plaque classification in spectral computed tomography
Lorsakul, Auranuch; Fakhri, Georges El; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; Laine, Andrew F.; Li, Quanzheng
2016-01-01
Abstract. Spectral computed tomography (SCT) generates better image quality than conventional computed tomography (CT). It has overcome several limitations for imaging atherosclerotic plaque. However, the literature evaluating the performance of SCT based on objective image assessment is very limited for the task of discriminating plaques. We developed a numerical-observer method and used it to assess performance on discrimination vulnerable-plaque features and compared the performance among multienergy CT (MECT), dual-energy CT (DECT), and conventional CT methods. Our numerical observer was designed to incorporate all spectral information and comprised two-processing stages. First, each energy-window domain was preprocessed by a set of localized channelized Hotelling observers (CHO). In this step, the spectral image in each energy bin was decorrelated using localized prewhitening and matched filtering with a set of Laguerre–Gaussian channel functions. Second, the series of the intermediate scores computed from all the CHOs were integrated by a Hotelling observer with an additional prewhitening and matched filter. The overall signal-to-noise ratio (SNR) and the area under the receiver operating characteristic curve (AUC) were obtained, yielding an overall discrimination performance metric. The performance of our new observer was evaluated for the particular binary classification task of differentiating between alternative plaque characterizations in carotid arteries. A clinically realistic model of signal variability was also included in our simulation of the discrimination tasks. The inclusion of signal variation is a key to applying the proposed observer method to spectral CT data. Hence, the task-based approaches based on the signal-known-exactly/background-known-exactly (SKE/BKE) framework and the clinical-relevant signal-known-statistically/background-known-exactly (SKS/BKE) framework were applied for analytical computation of figures of merit (FOM). Simulated data of a carotid-atherosclerosis patient were used to validate our methods. We used an extended cardiac-torso anthropomorphic digital phantom and three simulated plaque types (i.e., calcified plaque, fatty-mixed plaque, and iodine-mixed blood). The images were reconstructed using a standard filtered backprojection (FBP) algorithm for all the acquisition methods and were applied to perform two different discrimination tasks of: (1) calcified plaque versus fatty-mixed plaque and (2) calcified plaque versus iodine-mixed blood. MECT outperformed DECT and conventional CT systems for all cases of the SKE/BKE and SKS/BKE tasks (all p<0.01). On average of signal variability, MECT yielded the SNR improvements over other acquisition methods in the range of 46.8% to 65.3% (all p<0.01) for FBP-Ramp images and 53.2% to 67.7% (all p<0.01) for FBP-Hanning images for both identification tasks. This proposed numerical observer combined with our signal variability framework is promising for assessing material characterization obtained through the additional energy-dependent attenuation information of SCT. These methods can be further extended to other clinical tasks such as kidney or urinary stone identification applications. PMID:27429999
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2018-06-01
The circular Sitnikov problem, where the two primary bodies are prolate or oblate spheroids, is numerically investigated. In particular, the basins of convergence on the complex plane are revealed by using a large collection of numerical methods of several order. We consider four cases, regarding the value of the oblateness coefficient which determines the nature of the roots (attractors) of the system. For all cases we use the iterative schemes for performing a thorough and systematic classification of the nodes on the complex plane. The distribution of the iterations as well as the probability and their correlations with the corresponding basins of convergence are also discussed. Our numerical computations indicate that most of the iterative schemes provide relatively similar convergence structures on the complex plane. However, there are some numerical methods for which the corresponding basins of attraction are extremely complicated with highly fractal basin boundaries. Moreover, it is proved that the efficiency strongly varies between the numerical methods.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Zhao, Xin; Cheung, Leo Wang-Kit
2007-01-01
Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811
The development of a classification schema for arts-based approaches to knowledge translation.
Archibald, Mandy M; Caine, Vera; Scott, Shannon D
2014-10-01
Arts-based approaches to knowledge translation are emerging as powerful interprofessional strategies with potential to facilitate evidence uptake, communication, knowledge, attitude, and behavior change across healthcare provider and consumer groups. These strategies are in the early stages of development. To date, no classification system for arts-based knowledge translation exists, which limits development and understandings of effectiveness in evidence syntheses. We developed a classification schema of arts-based knowledge translation strategies based on two mechanisms by which these approaches function: (a) the degree of precision in key message delivery, and (b) the degree of end-user participation. We demonstrate how this classification is necessary to explore how context, time, and location shape arts-based knowledge translation strategies. Classifying arts-based knowledge translation strategies according to their core attributes extends understandings of the appropriateness of these approaches for various healthcare settings and provider groups. The classification schema developed may enhance understanding of how, where, and for whom arts-based knowledge translation approaches are effective, and enable theorizing of essential knowledge translation constructs, such as the influence of context, time, and location on utilization strategies. The classification schema developed may encourage systematic inquiry into the effectiveness of these approaches in diverse interprofessional contexts. © 2014 Sigma Theta Tau International.
42 CFR 412.513 - Patient classification system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...
42 CFR 412.513 - Patient classification system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Patient classification system. 412.513 Section 412... Long-Term Care Hospitals § 412.513 Patient classification system. (a) Classification methodology. CMS...-DRGs. (1) The classification of a particular discharge is based, as appropriate, on the patient's age...
A Systematic Approach to Subgroup Classification in Intellectual Disability
ERIC Educational Resources Information Center
Schalock, Robert L.; Luckasson, Ruth
2015-01-01
This article describes a systematic approach to subgroup classification based on a classification framework and sequential steps involved in the subgrouping process. The sequential steps are stating the purpose of the classification, identifying the classification elements, using relevant information, and using clearly stated and purposeful…
5 CFR 511.602 - Notification of classification decision.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Notification of classification decision... REGULATIONS CLASSIFICATION UNDER THE GENERAL SCHEDULE Classification Appeals § 511.602 Notification of classification decision. An employee whose position is reclassified to a lower grade which is based in whole or...
5 CFR 511.602 - Notification of classification decision.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Notification of classification decision... REGULATIONS CLASSIFICATION UNDER THE GENERAL SCHEDULE Classification Appeals § 511.602 Notification of classification decision. An employee whose position is reclassified to a lower grade which is based in whole or...
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Martinez, R; Irigoyen, E; Arruti, A; Martin, J I; Muguerza, J
2017-09-01
Detection and labelling of an increment in the human stress level is a contribution focused principally on improving the quality of life of people. This work is aimed to develop a biophysical real-time stress identification and classification system, analysing two noninvasive signals, the galvanic skin response and the heart rate variability. An experimental procedure was designed and configured in order to elicit a stressful situation that is similar to those found in real cases. A total of 166 subjects participated in this experimental stage. The set of registered signals of each subject was considered as one experiment. A preliminary qualitative analysis of the signals collected was made, based on previous counselling received from neurophysiologists and psychologists. This study revealed a relationship between changes in the temporal signals and the induced stress states in each subject. To identify and classify such states, a subsequent quantitative analysis was performed in order to determine specific numerical information related to the above mentioned relationship. This second analysis gives the particular details to design the finally proposed classification algorithm, based on a Finite State Machine. The proposed system is able to classify the detected stress stages at three levels: low, medium, and high. Furthermore, the system identifies persistent stress situations or momentary alerts, depending on the subject's arousal. The system reaches an F 1 score of 0.984 in the case of high level, an F 1 score of 0.970 for medium level, and an F 1 score of 0.943 for low level. The resulting system is able to detect and classify different stress stages only based on two non invasive signals. These signals can be collected in people during their monitoring and be processed in a real-time sense, as the system can be previously preconfigured. Therefore, it could easily be implemented in a wearable prototype that could be worn by end users without feeling to be monitored. Besides, due to its low computational, the computation of the signals slopes is easy to do and its deployment in real-time applications is feasible. Copyright © 2017 Elsevier B.V. All rights reserved.
MODEL-BASED CLUSTERING FOR CLASSIFICATION OF AQUATIC SYSTEMS AND DIAGNOSIS OF ECOLOGICAL STRESS
Clustering approaches were developed using the classification likelihood, the mixture likelihood, and also using a randomization approach with a model index. Using a clustering approach based on the mixture and classification likelihoods, we have developed an algorithm that...
Classification of wetlands systems is needed not only to establish reference condition, but also to predict the relative sensitivity of different wetland classes. In the current study, we examined the potential for ecoregion- versus flow-based classification strategies to explain...
Classification of large-scale fundus image data sets: a cloud-computing framework.
Roychowdhury, Sohini
2016-08-01
Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.
Sevel, Landrew S; Boissoneault, Jeff; Letzen, Janelle E; Robinson, Michael E; Staud, Roland
2018-05-30
Chronic fatigue syndrome (CFS) is a disorder associated with fatigue, pain, and structural/functional abnormalities seen during magnetic resonance brain imaging (MRI). Therefore, we evaluated the performance of structural MRI (sMRI) abnormalities in the classification of CFS patients versus healthy controls and compared it to machine learning (ML) classification based upon self-report (SR). Participants included 18 CFS patients and 15 healthy controls (HC). All subjects underwent T1-weighted sMRI and provided visual analogue-scale ratings of fatigue, pain intensity, anxiety, depression, anger, and sleep quality. sMRI data were segmented using FreeSurfer and 61 regions based on functional and structural abnormalities previously reported in patients with CFS. Classification was performed in RapidMiner using a linear support vector machine and bootstrap optimism correction. We compared ML classifiers based on (1) 61 a priori sMRI regional estimates and (2) SR ratings. The sMRI model achieved 79.58% classification accuracy. The SR (accuracy = 95.95%) outperformed both sMRI models. Estimates from multiple brain areas related to cognition, emotion, and memory contributed strongly to group classification. This is the first ML-based group classification of CFS. Our findings suggest that sMRI abnormalities are useful for discriminating CFS patients from HC, but SR ratings remain most effective in classification tasks.
Henry, Suzanne Bakken; Warren, Judith J.; Lange, Linda; Button, Patricia
1998-01-01
Building on the work of previous authors, the Computer-based Patient Record Institute (CPRI) Work Group on Codes and Structures has described features of a classification scheme for implementation within a computer-based patient record. The authors of the current study reviewed the evaluation literature related to six major nursing vocabularies (the North American Nursing Diagnosis Association Taxonomy 1, the Nursing Interventions Classification, the Nursing Outcomes Classification, the Home Health Care Classification, the Omaha System, and the International Classification for Nursing Practice) to determine the extent to which the vocabularies include the CPRI features. None of the vocabularies met all criteria. The Omaha System, Home Health Care Classification, and International Classification for Nursing Practice each included five features. Criteria not fully met by any systems were clear and non-redundant representation of concepts, administrative cross-references, syntax and grammar, synonyms, uncertainty, context-free identifiers, and language independence. PMID:9670127
Some new classification methods for hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia
2006-10-01
Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.
Accuracy of gestalt perception of acute chest pain in predicting coronary artery disease
das Virgens, Cláudio Marcelo Bittencourt; Lemos Jr, Laudenor; Noya-Rabelo, Márcia; Carvalhal, Manuela Campelo; Cerqueira Junior, Antônio Maurício dos Santos; Lopes, Fernanda Oliveira de Andrade; de Sá, Nicole Cruz; Suerdieck, Jéssica Gonzalez; de Souza, Thiago Menezes Barbosa; Correia, Vitor Calixto de Almeida; Sodré, Gabriella Sant'Ana; da Silva, André Barcelos; Alexandre, Felipe Kalil Beirão; Ferreira, Felipe Rodrigues Marques; Correia, Luís Cláudio Lemos
2017-01-01
AIM To test accuracy and reproducibility of gestalt to predict obstructive coronary artery disease (CAD) in patients with acute chest pain. METHODS We studied individuals who were consecutively admitted to our Chest Pain Unit. At admission, investigators performed a standardized interview and recorded 14 chest pain features. Based on these features, a cardiologist who was blind to other clinical characteristics made unstructured judgment of CAD probability, both numerically and categorically. As the reference standard for testing the accuracy of gestalt, angiography was required to rule-in CAD, while either angiography or non-invasive test could be used to rule-out. In order to assess reproducibility, a second cardiologist did the same procedure. RESULTS In a sample of 330 patients, the prevalence of obstructive CAD was 48%. Gestalt’s numerical probability was associated with CAD, but the area under the curve of 0.61 (95%CI: 0.55-0.67) indicated low level of accuracy. Accordingly, categorical definition of typical chest pain had a sensitivity of 48% (95%CI: 40%-55%) and specificity of 66% (95%CI: 59%-73%), yielding a negligible positive likelihood ratio of 1.4 (95%CI: 0.65-2.0) and negative likelihood ratio of 0.79 (95%CI: 0.62-1.02). Agreement between the two cardiologists was poor in the numerical classification (95% limits of agreement = -71% to 51%) and categorical definition of typical pain (Kappa = 0.29; 95%CI: 0.21-0.37). CONCLUSION Clinical judgment based on a combination of chest pain features is neither accurate nor reproducible in predicting obstructive CAD in the acute setting. PMID:28400920
Neural Network Based Sensory Fusion for Landmark Detection
NASA Technical Reports Server (NTRS)
Kumbla, Kishan -K.; Akbarzadeh, Mohammad R.
1997-01-01
NASA is planning to send numerous unmanned planetary missions to explore the space. This requires autonomous robotic vehicles which can navigate in an unstructured, unknown, and uncertain environment. Landmark based navigation is a new area of research which differs from the traditional goal-oriented navigation, where a mobile robot starts from an initial point and reaches a destination in accordance with a pre-planned path. The landmark based navigation has the advantage of allowing the robot to find its way without communication with the mission control station and without exact knowledge of its coordinates. Current algorithms based on landmark navigation however pose several constraints. First, they require large memories to store the images. Second, the task of comparing the images using traditional methods is computationally intensive and consequently real-time implementation is difficult. The method proposed here consists of three stages, First stage utilizes a heuristic-based algorithm to identify significant objects. The second stage utilizes a neural network (NN) to efficiently classify images of the identified objects. The third stage combines distance information with the classification results of neural networks for efficient and intelligent navigation.
Macrophage Responses to Epithelial Dysfunction Promote Lung Fibrosis in Aging
2017-10-01
alveolar macrophages based on single cell molecular classification in patients with pulmonary fibrosis. We have recruited a planned number of patients...biomarkers expressed by human tissue-resident and monocyte-derived alveolar macrophages based on single cell molecular classification in patients with...identify novel biomarkers expressed by human tissue-resident and monocyte- derived alveolar macrophages based on single cell molecular classification
New algorithm and system for measuring size distribution of blood cells
NASA Astrophysics Data System (ADS)
Yao, Cuiping; Li, Zheng; Zhang, Zhenxi
2004-06-01
In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Periodontal inflamed surface area as a novel numerical variable describing periodontal conditions
2017-01-01
Purpose A novel index, the periodontal inflamed surface area (PISA), represents the sum of the periodontal pocket depth of bleeding on probing (BOP)-positive sites. In the present study, we evaluated correlations between PISA and periodontal classifications, and examined PISA as an index integrating the discrete conventional periodontal indexes. Methods This study was a cross-sectional subgroup analysis of data from a prospective cohort study investigating the association between chronic periodontitis and the clinical features of ankylosing spondylitis. Data from 84 patients without systemic diseases (the control group in the previous study) were analyzed in the present study. Results PISA values were positively correlated with conventional periodontal classifications (Spearman correlation coefficient=0.52; P<0.01) and with periodontal indexes, such as BOP and the plaque index (PI) (r=0.94; P<0.01 and r=0.60; P<0.01, respectively; Pearson correlation test). Porphyromonas gingivalis (P. gingivalis) expression and the presence of serum P. gingivalis antibodies were significant factors affecting PISA values in a simple linear regression analysis, together with periodontal classification, PI, bleeding index, and smoking, but not in the multivariate analysis. In the multivariate linear regression analysis, PISA values were positively correlated with the quantity of current smoking, PI, and severity of periodontal disease. Conclusions PISA integrates multiple periodontal indexes, such as probing pocket depth, BOP, and PI into a numerical variable. PISA is advantageous for quantifying periodontal inflammation and plaque accumulation. PMID:29093989
Gilbert, Fabian; Böhm, Dirk; Eden, Lars; Schmalzl, Jonas; Meffert, Rainer H; Köstler, Herbert; Weng, Andreas M; Ziegler, Dirk
2016-08-22
The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting.
Bokulich, Nicholas A; Kaehler, Benjamin D; Rideout, Jai Ram; Dillon, Matthew; Bolyen, Evan; Knight, Rob; Huttley, Gavin A; Gregory Caporaso, J
2018-05-17
Taxonomic classification of marker-gene sequences is an important step in microbiome analysis. We present q2-feature-classifier ( https://github.com/qiime2/q2-feature-classifier ), a QIIME 2 plugin containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly used methods designed for classification of marker gene sequences that were evaluated in this work. These evaluations, based on 19 mock communities and error-free sequence simulations, including classification of simulated "novel" marker-gene sequences, are available in our extensible benchmarking framework, tax-credit ( https://github.com/caporaso-lab/tax-credit-data ). Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we make recommendations regarding parameter choices for these classifiers under a range of standard operating conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.
Kumar, Senthil P
2011-01-01
Mechanism-based classification and physical therapy management of pain is essential to effectively manage painful symptoms in patients attending palliative care. The objective of this review is to provide a detailed review of mechanism-based classification and physical therapy management of patients with cancer pain. Cancer pain can be classified based upon pain symptoms, pain mechanisms and pain syndromes. Classification based upon mechanisms not only addresses the underlying pathophysiology but also provides us with an understanding behind patient's symptoms and treatment responses. Existing evidence suggests that the five mechanisms – central sensitization, peripheral sensitization, sympathetically maintained pain, nociceptive and cognitive-affective – operate in patients with cancer pain. Summary of studies showing evidence for physical therapy treatment methods for cancer pain follows with suggested therapeutic implications. Effective palliative physical therapy care using a mechanism-based classification model should be tailored to suit each patient's findings, using a biopsychosocial model of pain. PMID:21976851
Vail, Paris J; Morris, Brian; van Kan, Aric; Burdett, Brianna C; Moyes, Kelsey; Theisen, Aaron; Kerr, Iain D; Wenstrup, Richard J; Eggington, Julie M
2015-10-01
Genetic variants of uncertain clinical significance (VUSs) are a common outcome of clinical genetic testing. Locus-specific variant databases (LSDBs) have been established for numerous disease-associated genes as a research tool for the interpretation of genetic sequence variants to facilitate variant interpretation via aggregated data. If LSDBs are to be used for clinical practice, consistent and transparent criteria regarding the deposition and interpretation of variants are vital, as variant classifications are often used to make important and irreversible clinical decisions. In this study, we performed a retrospective analysis of 2017 consecutive BRCA1 and BRCA2 genetic variants identified from 24,650 consecutive patient samples referred to our laboratory to establish an unbiased dataset representative of the types of variants seen in the US patient population, submitted by clinicians and researchers for BRCA1 and BRCA2 testing. We compared the clinical classifications of these variants among five publicly accessible BRCA1 and BRCA2 variant databases: BIC, ClinVar, HGMD (paid version), LOVD, and the UMD databases. Our results show substantial disparity of variant classifications among publicly accessible databases. Furthermore, it appears that discrepant classifications are not the result of a single outlier but widespread disagreement among databases. This study also shows that databases sometimes favor a clinical classification when current best practice guidelines (ACMG/AMP/CAP) would suggest an uncertain classification. Although LSDBs have been well established for research applications, our results suggest several challenges preclude their wider use in clinical practice.
Idkaidek, Nasir M.
2013-01-01
The aim of this commentary is to investigate the interplay of Biopharmaceutics Classification System (BCS), Biopharmaceutics Drug Disposition Classification System (BDDCS) and Salivary Excretion Classification System (SECS). BCS first classified drugs based on permeability and solubility for the purpose of predicting oral drug absorption. Then BDDCS linked permeability with hepatic metabolism and classified drugs based on metabolism and solubility for the purpose of predicting oral drug disposition. On the other hand, SECS classified drugs based on permeability and protein binding for the purpose of predicting the salivary excretion of drugs. The role of metabolism, rather than permeability, on salivary excretion is investigated and the results are not in agreement with BDDCS. Conclusion The proposed Salivary Excretion Classification System (SECS) can be used as a guide for drug salivary excretion based on permeability (not metabolism) and protein binding. PMID:24493977
Status of Vegetation Classification in Redwood Ecosystems
Thomas M. Mahony; John D. Stuart
2007-01-01
Vegetation classifications, based primarily on physiognomic variability and canopy dominants and derived principally from remotely sensed imagery, have been completed for the entire redwood range (Eyre 1980, Fox 1989). However, systematic, quantitative, floristic-based vegetation classifications in old-growth redwood forests have not been completed for large portions...
Knowledge Discovery in Literature Data Bases
NASA Astrophysics Data System (ADS)
Albrecht, Rudolf; Merkl, Dieter
The concept of knowledge discovery as defined through ``establishing previously unknown and unsuspected relations of features in a data base'' is, cum grano salis, relatively easy to implement for data bases containing numerical data. Increasingly we find at our disposal data bases containing scientific literature. Computer assisted detection of unknown relations of features in such data bases would be extremely valuable and would lead to new scientific insights. However, the current representation of scientific knowledge in such data bases is not conducive to computer processing. Any correlation of features still has to be done by the human reader, a process which is plagued by ineffectiveness and incompleteness. On the other hand we note that considerable progress is being made in an area where reading all available material is totally prohibitive: the World Wide Web. Robots and Web crawlers mine the Web continuously and construct data bases which allow the identification of pages of interest in near real time. An obvious step is to categorize and classify the documents in the text data base. This can be used to identify papers worth reading, or which are of unexpected cross-relevance. We show the results of first experiments using unsupervised classification based on neural networks.
A Series of MATLAB Learning Modules to Enhance Numerical Competency in Applied Marine Sciences
NASA Astrophysics Data System (ADS)
Fischer, A. M.; Lucieer, V.; Burke, C.
2016-12-01
Enhanced numerical competency to navigate the massive data landscapes are critical skills students need to effectively explore, analyse and visualize complex patterns in high-dimensional data for addressing the complexity of many of the world's problems. This is especially the case for interdisciplinary, undergraduate applied marine science programs, where students are required to demonstrate competency in methods and ideas across multiple disciplines. In response to this challenge, we have developed a series of repository-based data exploration, analysis and visualization modules in MATLAB for integration across various attending and online classes within the University of Tasmania. The primary focus of these modules is to teach students to collect, aggregate and interpret data from large on-line marine scientific data repositories to, 1) gain technical skills in discovering, accessing, managing and visualising large, numerous data sources, 2) interpret, analyse and design approaches to visualise these data, and 3) to address, through numerical approaches, complex, real-world problems, that the traditional scientific methods cannot address. All modules, implemented through a MATLAB live script, include a short recorded lecture to introduce the topic, a handout that gives an overview of the activities, an instructor's manual with a detailed methodology and discussion points, a student assessment (quiz and level-specific challenge task), and a survey. The marine science themes addressed through these modules include biodiversity, habitat mapping, algal blooms and sea surface temperature change and utilize a series of marine science and oceanographic data portals. Through these modules students, with minimal experience in MATLAB or numerical methods are introduced to array indexing, concatenation, sorting, and reshaping, principal component analysis, spectral analysis and unsupervised classification within the context of oceanographic processes, marine geology and marine community ecology.
NASA Astrophysics Data System (ADS)
Praskievicz, S. J.; Luo, C.
2017-12-01
Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.
NASA Astrophysics Data System (ADS)
Jiang, Yicheng; Cheng, Ping; Ou, Yangkui
2001-09-01
A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
Siskind, Dan; Harris, Meredith; Pirkis, Jane; Whiteford, Harvey
2013-06-01
A lack of definitional clarity in supported accommodation and the absence of a widely accepted system for classifying supported accommodation models creates barriers to service planning and evaluation. We undertook a systematic review of existing supported accommodation classification systems. Using a structured system for qualitative data analysis, we reviewed the stratification features in these classification systems, identified the key elements of supported accommodation and arranged them into domains and dimensions to create a new taxonomy. The existing classification systems were mapped onto the new taxonomy to verify the domains and dimensions. Existing classification systems used either a service-level characteristic or programmatic approach. We proposed a taxonomy based around four domains: duration of tenure; patient characteristics; housing characteristics; and service characteristics. All of the domains in the taxonomy were drawn from the existing classification structures; however, none of the existing classification structures covered all of the domains in the taxonomy. Existing classification systems are regionally based, limited in scope and lack flexibility. A domains-based taxonomy can allow more accurate description of supported accommodation services, aid in identifying the service elements likely to improve outcomes for specific patient populations, and assist in service planning.
Hierarchical Higher Order Crf for the Classification of Airborne LIDAR Point Clouds in Urban Areas
NASA Astrophysics Data System (ADS)
Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C.
2016-06-01
We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
Significance of clustering and classification applications in digital and physical libraries
NASA Astrophysics Data System (ADS)
Triantafyllou, Ioannis; Koulouris, Alexandros; Zervos, Spiros; Dendrinos, Markos; Giannakopoulos, Georgios
2015-02-01
Applications of clustering and classification techniques can be proved very significant in both digital and physical (paper-based) libraries. The most essential application, document classification and clustering, is crucial for the content that is produced and maintained in digital libraries, repositories, databases, social media, blogs etc., based on various tags and ontology elements, transcending the traditional library-oriented classification schemes. Other applications with very useful and beneficial role in the new digital library environment involve document routing, summarization and query expansion. Paper-based libraries can benefit as well since classification combined with advanced material characterization techniques such as FTIR (Fourier Transform InfraRed spectroscopy) can be vital for the study and prevention of material deterioration. An improved two-level self-organizing clustering architecture is proposed in order to enhance the discrimination capacity of the learning space, prior to classification, yielding promising results when applied to the above mentioned library tasks.
Behavior Based Social Dimensions Extraction for Multi-Label Classification
Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin
2016-01-01
Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849
Computerized Classification Testing with the Rasch Model
ERIC Educational Resources Information Center
Eggen, Theo J. H. M.
2011-01-01
If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
Gao, Xiang; Lin, Huaiying; Revanna, Kashi; Dong, Qunfeng
2017-05-10
Species-level classification for 16S rRNA gene sequences remains a serious challenge for microbiome researchers, because existing taxonomic classification tools for 16S rRNA gene sequences either do not provide species-level classification, or their classification results are unreliable. The unreliable results are due to the limitations in the existing methods which either lack solid probabilistic-based criteria to evaluate the confidence of their taxonomic assignments, or use nucleotide k-mer frequency as the proxy for sequence similarity measurement. We have developed a method that shows significantly improved species-level classification results over existing methods. Our method calculates true sequence similarity between query sequences and database hits using pairwise sequence alignment. Taxonomic classifications are assigned from the species to the phylum levels based on the lowest common ancestors of multiple database hits for each query sequence, and further classification reliabilities are evaluated by bootstrap confidence scores. The novelty of our method is that the contribution of each database hit to the taxonomic assignment of the query sequence is weighted by a Bayesian posterior probability based upon the degree of sequence similarity of the database hit to the query sequence. Our method does not need any training datasets specific for different taxonomic groups. Instead only a reference database is required for aligning to the query sequences, making our method easily applicable for different regions of the 16S rRNA gene or other phylogenetic marker genes. Reliable species-level classification for 16S rRNA or other phylogenetic marker genes is critical for microbiome research. Our software shows significantly higher classification accuracy than the existing tools and we provide probabilistic-based confidence scores to evaluate the reliability of our taxonomic classification assignments based on multiple database matches to query sequences. Despite its higher computational costs, our method is still suitable for analyzing large-scale microbiome datasets for practical purposes. Furthermore, our method can be applied for taxonomic classification of any phylogenetic marker gene sequences. Our software, called BLCA, is freely available at https://github.com/qunfengdong/BLCA .
29 CFR 14.3 - DOL Classification Review Committee.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 1 2014-07-01 2013-07-01 true DOL Classification Review Committee. 14.3 Section 14.3 Labor... Classification Review Committee. A DOL Classification Review Committee is hereby established. (a) Composition of... under the Freedom of Information Act, 5 U.S.C. 552, when a proposed denial is based on classification...
An Evaluation of Item Response Theory Classification Accuracy and Consistency Indices
ERIC Educational Resources Information Center
Wyse, Adam E.; Hao, Shiqi
2012-01-01
This article introduces two new classification consistency indices that can be used when item response theory (IRT) models have been applied. The new indices are shown to be related to Rudner's classification accuracy index and Guo's classification accuracy index. The Rudner- and Guo-based classification accuracy and consistency indices are…
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673
Prostate segmentation by sparse representation based classification.
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-10-01
The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Davenport, Anna Elizabeth; Davis, Jerry D.; Woo, Isa; Grossman, Eric; Barham, Jesse B.; Ellings, Christopher S.; Takekawa, John Y.
2017-01-01
Native eelgrass (Zostera marina) is an important contributor to ecosystem services that supplies cover for juvenile fish, supports a variety of invertebrate prey resources for fish and waterbirds, provides substrate for herring roe consumed by numerous fish and birds, helps stabilize sediment, and sequesters organic carbon. Seagrasses are in decline globally, and monitoring changes in their growth and extent is increasingly valuable to determine impacts from large-scale estuarine restoration and inform blue carbon mapping initiatives. Thus, we examined the efficacy of two remote sensing mapping methods with high-resolution (0.5 m pixel size) color near infrared imagery with ground validation to assess change following major tidal marsh restoration. Automated classification of false color aerial imagery and digitized polygons documented a slight decline in eelgrass area directly after restoration followed by an increase two years later. Classification of sparse and low to medium density eelgrass was confounded in areas with algal cover, however large dense patches of eelgrass were well delineated. Automated classification of aerial imagery from unsupervised and supervised methods provided reasonable accuracies of 73% and hand-digitizing polygons from the same imagery yielded similar results. Visual clues for hand digitizing from the high-resolution imagery provided as reliable a map of dense eelgrass extent as automated image classification. We found that automated classification had no advantages over manual digitization particularly because of the limitations of detecting eelgrass with only three bands of imagery and near infrared.
Neural correlates of the number–size interference task in children
Kaufmann, Liane; Koppelstaetter, Florian; Siedentopf, Christian; Haala, Ilka; Haberlandt, Edda; Zimmerhackl, Lothar-Bernd; Felber, Stefan; Ischebeck, Anja
2010-01-01
In this functional magnetic resonance imaging study, 17 children were asked to make numerical and physical magnitude classifications while ignoring the other stimulus dimension (number–size interference task). Digit pairs were either incongruent (3 8) or neutral (3 8). Generally, numerical magnitude interferes with font size (congruity effect). Moreover, relative to numerically adjacent digits far ones yield quicker responses (distance effect). Behaviourally, robust distance and congruity effects were observed in both tasks. imaging baselline contrasts revealed activations in frontal, parietal, occipital and cerebellar areas bilaterally. Different from results usually reported for adultssmaller distances activated frontal, but not (intra-)parietal areas in children. Congruity effects became significant only in physical comparisons. Thus, even with comparable behavioural performance, cerebral activation patterns may differ substantially between children and adults. PMID:16603917
NASA Astrophysics Data System (ADS)
Knoefel, Patrick; Loew, Fabian; Conrad, Christopher
2015-04-01
Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.
Robust spike classification based on frequency domain neural waveform features.
Yang, Chenhui; Yuan, Yuan; Si, Jennie
2013-12-01
We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto
2015-01-01
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was an effective approach for delimitating Melampsora species on willows in China. PMID:26680416
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
Rifai Chai; Naik, Ganesh R; Tran, Yvonne; Sai Ho Ling; Craig, Ashley; Nguyen, Hung T
2015-08-01
An electroencephalography (EEG)-based counter measure device could be used for fatigue detection during driving. This paper explores the classification of fatigue and alert states using power spectral density (PSD) as a feature extractor and fuzzy swarm based-artificial neural network (ANN) as a classifier. An independent component analysis of entropy rate bound minimization (ICA-ERBM) is investigated as a novel source separation technique for fatigue classification using EEG analysis. A comparison of the classification accuracy of source separator versus no source separator is presented. Classification performance based on 43 participants without the inclusion of the source separator resulted in an overall sensitivity of 71.67%, a specificity of 75.63% and an accuracy of 73.65%. However, these results were improved after the inclusion of a source separator module, resulting in an overall sensitivity of 78.16%, a specificity of 79.60% and an accuracy of 78.88% (p <; 0.05).
ERIC Educational Resources Information Center
Hand, Cynthia G.; Archer, Robert P.; Handel, Richard W.; Forbey, Johnathan D.
2007-01-01
Numerous studies have reported that the Minnesota Multiphasic Personality Inventory-Adolescent (MMPI-A) produces a high frequency of within-normal-limits basic scale profiles for adolescents with significant clinical pathology (e.g., Archer, 2005). The current study builds on the observation that the MMPI-A normative sample included participants…
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...
Three-Dimensional Transient Natural Convection in a Horizontal Cylinder: A Numerical Analysis
1980-02-01
A11D 03 _________ 14. MNITORNG AGNCY AME&AORESS(it different from Controlling Office) IS. SECURITY CLASS. (of this report) -~Th /UNCLASSIFIED AISa . OECL...method for the vorticity and - DD IjANඑ 1473 EDITION OF I NOV6 SS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION Of THIS PACE,n bt. Nte, -’ ’..r&IeI
Code of Federal Regulations, 2013 CFR
2013-07-01
... Great Lakes Water Quality Initiative Criteria Documents for the Protection of Aquatic Life in Ambient... water quality criteria to protect against acute effects in aquatic life and is the highest instream... any aquatic life or human health use classifications in the Water Quality Control Plans for the...
Identifying areas of relative change in forest fragmentation in New Hampshire between 1990 and 2000
Tonya Lister; Andrew Lister; William McWilliams; Rachel Riemann
2007-01-01
Forest fragmentation potentially can impact many facets of natural ecosystems. Numerous methods have been employed to assess static forest fragmentation. Few studies, however, have analyzed changes in forest fragmentation over time. In this study, we developed new classifications from Landsat imagery data acquired in 1990 and 2000 for New Hampshire, assessed...
ERIC Educational Resources Information Center
Kinne-Clawson, Alicia M.
2017-01-01
Public Master's granting universities have long been viewed as a sector "caught in the middle" between their much more prestigious research university counterparts and the more numerous community colleges. The little research that exists on this sector of institutions has suggested that the Master's university classification merely…
Analog design of a new neural network for optical character recognition.
Morns, I P; Dlay, S S
1999-01-01
An electronic circuit is presented for a new type of neural network, which gives a recognition rate of over 100 kHz. The network is used to classify handwritten numerals, presented as Fourier and wavelet descriptors, and has been shown to train far quicker than the popular backpropagation network while maintaining classification accuracy.
Use of the Dewey Decimal Classification in the United States and Canada.
ERIC Educational Resources Information Center
Comaromi, John P.
1978-01-01
A summary of use of DDC in U.S. and Canadian libraries shows that 85 percent of all libraries use DDC; of these, 75 percent use the most recent full or abridged edition. Divisions needing revision are listed and discussed. Librarians want continuous revision but they do not want numerical designation meanings changed. (Author/MBR)
2013-09-20
October 1928 – 14 January 2013. His numerous papers on the subject, along with those of Donald L. Blount, David Fox, Stephen Denny, E. Nadine Hubble ...Classing High-Speed Craft”, American Bureau of Shipping, Publication 61, Part 1, Rules for Condition of Classification, March 2013. 3. Hubble , E.N
Algorithm Diversity for Resilent Systems
2016-06-27
data structures. 15. SUBJECT TERMS computer security, software diversity, program transformation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...systematic method for transforming Datalog rules with general universal and existential quantification into efficient algorithms with precise complexity...worst case in the size of the ground rules. There are numerous choices during the transformation that lead to diverse algorithms and different
A Numerical Approach to Solving the Hall MHD Equations Including Diamagnetic Drift (Preprint)
2008-02-19
SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Jean-Luc Cambier a. REPORT...1997. [3] L. Chacon and D.A. Knoll. A 2d high-beta hall mhd implicit nonlinear solver. Journal of Computational Physics, 188:573–592, 2003. [4] Tony F
28 CFR 17.26 - Derivative classification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...
28 CFR 17.26 - Derivative classification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...
28 CFR 17.26 - Derivative classification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...
28 CFR 17.26 - Derivative classification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Derivative classification. 17.26 Section... ACCESS TO CLASSIFIED INFORMATION Classified Information § 17.26 Derivative classification. (a) Persons need not possess original classification authority to derivatively classify information based on source...
Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine
2018-01-01
Behavioral evidence for the link between numerical and spatial representations comes from the spatial-numerical association of response codes (SNARC) effect, consisting in faster reaction times to small/large numbers with the left/right hand respectively. The SNARC effect is, however, characterized by considerable intra- and inter-individual variability. It depends not only on the explicit or implicit nature of the numerical task, but also relates to interference control. To determine whether the prevalence of the latter relation in the elderly could be ascribed to younger individuals’ ceiling performances on executive control tasks, we determined whether the SNARC effect related to Stroop and/or Flanker effects in 26 young adults with ADHD. We observed a divergent pattern of correlation depending on the type of numerical task used to assess the SNARC effect and the type of interference control measure involved in number-space associations. Namely, stronger number-space associations during parity judgments involving implicit magnitude processing related to weaker interference control in the Stroop but not Flanker task. Conversely, stronger number-space associations during explicit magnitude classifications tended to be associated with better interference control in the Flanker but not Stroop paradigm. The association of stronger parity and magnitude SNARC effects with weaker and better interference control respectively indicates that different mechanisms underlie these relations. Activation of the magnitude-associated spatial code is irrelevant and potentially interferes with parity judgments, but in contrast assists explicit magnitude classifications. Altogether, the present study confirms the contribution of interference control to number-space associations also in young adults. It suggests that magnitude-associated spatial codes in implicit and explicit tasks are monitored by different interference control mechanisms, thereby explaining task-related intra-individual differences in number-space associations. PMID:29881363
Chen, Yifei; Sun, Yuxing; Han, Bing-Qing
2015-01-01
Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Ground-based cloud classification by learning stable local binary patterns
NASA Astrophysics Data System (ADS)
Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua
2018-07-01
Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Sadik, Omowunmi A.; Embrechts, Mark J.; Leibensperger, Dale; Wong, Lut; Wanekaya, Adam; Uematsu, Michiko
2003-08-01
Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. Furthermore, recent events have highlighted awareness that chemical and biological agents (CBAs) may become the preferred, cheap alternative WMD, because these agents can effectively attack large populations while leaving infrastructures intact. Despite the availability of numerous sensing devices, intelligent hybrid sensors that can detect and degrade CBAs are virtually nonexistent. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using parathion and dichlorvos as model stimulants compounds. SVMs were used for the design and evaluation of new and more accurate data extraction, preprocessing and classification. Experimental results for the paradigms developed using Structural Risk Minimization, show a significant increase in classification accuracy when compared to the existing AromaScan baseline system. Specifically, the results of this research has demonstrated that, for the Parathion versus Dichlorvos pair, when compared to the AromaScan baseline system: (1) a 23% improvement in the overall ROC Az index using the S2000 kernel, with similar improvements with the Gaussian and polynomial (of degree 2) kernels, (2) a significant 173% improvement in specificity with the S2000 kernel. This means that the number of false negative errors were reduced by 173%, while making no false positive errors, when compared to the AromaScan base line performance. (3) The Gaussian and polynomial kernels demonstrated similar specificity at 100% sensitivity. All SVM classifiers provided essentially perfect classification performance for the Dichlorvos versus Trichlorfon pair. For the most difficult classification task, the Parathion versus Paraoxon pair, the following results were achieved (using the three SVM kernels: (1) ROC Az indices from approximately 93% to greater than 99%, (2) partial Az values from ~79% to 93%, (3) specificities from 76% to ~84% at 100 and 98% sensitivity, and (4) PPVs from 73% to ~84% at 100% and 98% sensitivities. These are excellent results, considering only one atom differentiates these nerve agents.
Classification Accuracy Increase Using Multisensor Data Fusion
NASA Astrophysics Data System (ADS)
Makarau, A.; Palubinskas, G.; Reinartz, P.
2011-09-01
The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.