Zhang, Li; Xin, Ziqiang; Feng, Tingyong; Chen, Yinghe; Szűcs, Denes
2018-03-01
Recent studies have highlighted the fact that some tasks used to study symbolic number representations are confounded by judgments about physical similarity. Here, we investigated whether the contribution of physical similarity and numerical representation differed in the often-used symbolic same-different, numerical comparison, physical comparison, and priming tasks. Experiment 1 showed that subjective physical similarity was the best predictor of participants' performance in the same-different task, regardless of simultaneous or sequential presentation. Furthermore, the contribution of subjective physical similarity was larger in a simultaneous presentation than in a sequential presentation. Experiment 2 showed that only numerical representation was involved in numerical comparison. Experiment 3 showed that both subjective physical similarity and numerical representation contributed to participants' physical comparison performance. Finally, only numerical representation contributed to participants' performance in a priming task as revealed by Experiment 4. Taken together, the contribution of physical similarity and numerical representation depends on task demands. Performance primarily seems to rely on numerical properties in tasks that require explicit quantitative comparison judgments (physical or numerical), while physical stimulus properties exert an effect in the same-different task.
Pina, Violeta; Castillo, Alejandro; Cohen Kadosh, Roi; Fuentes, Luis J.
2015-01-01
Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1–6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size) was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved. PMID:25873909
Evaluating Blended and Flipped Instruction in Numerical Methods at Multiple Engineering Schools
ERIC Educational Resources Information Center
Clark, Renee; Kaw, Autar; Lou, Yingyan; Scott, Andrew; Besterfield-Sacre, Mary
2018-01-01
With the literature calling for comparisons among technology-enhanced or active-learning pedagogies, a blended versus flipped instructional comparison was made for numerical methods coursework using three engineering schools with diverse student demographics. This study contributes to needed comparisons of enhanced instructional approaches in STEM…
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1993-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1992-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
Use of multivariable asymptotic expansions in a satellite theory
NASA Technical Reports Server (NTRS)
Dallas, S. S.
1973-01-01
Initial conditions and perturbative force of satellite are restricted to yield motion of equatorial satellite about oblate body. In this manner, exact analytic solution exists and can be used as standard of comparison in numerical accuracy comparisons. Detailed numerical accuracy studies of uniformly valid asymptotic expansions were made.
A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow
NASA Technical Reports Server (NTRS)
Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh
1997-01-01
This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
Benzi, Roberto; Ching, Emily S C; De Angelis, Elisabetta; Procaccia, Itamar
2008-04-01
Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number (Re) and Deborah number (De). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.
Neural representations of social status hierarchy in human inferior parietal cortex.
Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J
2009-01-01
Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.
Numerical Modeling of Pulse Detonation Rocket Engine Gasdynamics and Performance
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents viewgraphs on the numerical modeling of pulse detonation rocket engines (PDRE), with an emphasis on the Gasdynamics and performance analysis of these engines. The topics include: 1) Performance Analysis of PDREs; 2) Simplified PDRE Cycle; 3) Comparison of PDRE and Steady-State Rocket Engines (SSRE) Performance; 4) Numerical Modeling of Quasi 1-D Rocket Flows; 5) Specific PDRE Geometries Studied; 6) Time-Accurate Thrust Calculations; 7) PDRE Performance (Geometries A B C and D); 8) PDRE Blowdown Gasdynamics (Geom. A B C and D); 9) PDRE Geometry Performance Comparison; 10) PDRE Blowdown Time (Geom. A B C and D); 11) Specific SSRE Geometry Studied; 12) Effect of F-R Chemistry on SSRE Performance; 13) PDRE/SSRE Performance Comparison; 14) PDRE Performance Study; 15) Grid Resolution Study; and 16) Effect of F-R Chemistry on SSRE Exit Species Mole Fractions.
Keller, Carmen
2011-07-01
Previous experimental research provides evidence that a familiar risk comparison within a risk ladder is understood by low- and high-numerate individuals. It especially helps low numerates to better evaluate risk. In the present study, an eye tracker was used to capture individuals' visual attention to a familiar risk comparison, such as the risk associated with smoking. Two parameters of information processing-efficiency and level-were derived from visual attention. A random sample of participants from the general population (N= 68) interpreted a given risk level with the help of the risk ladder. Numeracy was negatively correlated with overall visual attention on the risk ladder (r(s) =-0.28, p= 0.01), indicating that the lower the numeracy, the more the time spent looking at the whole risk ladder. Numeracy was positively correlated with the efficiency of processing relevant frequency (r(s) = 0.34, p < 0.001) and relevant textual information (r(s) = 0.34, p < 0.001), but not with the efficiency of processing relevant comparative information and numerical information. There was a significant negative correlation between numeracy and the level of processing of relevant comparative risk information (r(s) =-0.21, p < 0.01), indicating that low numerates processed the comparative risk information more deeply than the high numerates. There was no correlation between numeracy and perceived risk. These results add to previous experimental research, indicating that the smoking risk comparison was crucial for low numerates to evaluate and understand risk. Furthermore, the eye-tracker method is promising for studying information processing and improving risk communication formats. © 2011 Society for Risk Analysis.
ERIC Educational Resources Information Center
Brankaer, Carmen; Ghesquière, Pol; De Wel, Anke; Swillen, Ann; De Smedt, Bert
2017-01-01
Cross-syndrome comparisons offer an important window onto understanding heterogeneity in mathematical learning disabilities or dyscalculia. The present study therefore investigated symbolic numerical magnitude processing in two genetic syndromes that are both characterized by mathematical learning disabilities: Turner syndrome and 22q11.2 deletion…
Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.
1983-02-01
AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation
Valx: A system for extracting and structuring numeric lab test comparison statements from text
Hao, Tianyong; Liu, Hongfang; Weng, Chunhua
2017-01-01
Objectives To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Methods Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes 7 steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. Results The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 Diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Conclusions Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community. PMID:26940748
Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text.
Hao, Tianyong; Liu, Hongfang; Weng, Chunhua
2016-05-17
To develop an automated method for extracting and structuring numeric lab test comparison statements from text and evaluate the method using clinical trial eligibility criteria text. Leveraging semantic knowledge from the Unified Medical Language System (UMLS) and domain knowledge acquired from the Internet, Valx takes seven steps to extract and normalize numeric lab test expressions: 1) text preprocessing, 2) numeric, unit, and comparison operator extraction, 3) variable identification using hybrid knowledge, 4) variable - numeric association, 5) context-based association filtering, 6) measurement unit normalization, and 7) heuristic rule-based comparison statements verification. Our reference standard was the consensus-based annotation among three raters for all comparison statements for two variables, i.e., HbA1c and glucose, identified from all of Type 1 and Type 2 diabetes trials in ClinicalTrials.gov. The precision, recall, and F-measure for structuring HbA1c comparison statements were 99.6%, 98.1%, 98.8% for Type 1 diabetes trials, and 98.8%, 96.9%, 97.8% for Type 2 diabetes trials, respectively. The precision, recall, and F-measure for structuring glucose comparison statements were 97.3%, 94.8%, 96.1% for Type 1 diabetes trials, and 92.3%, 92.3%, 92.3% for Type 2 diabetes trials, respectively. Valx is effective at extracting and structuring free-text lab test comparison statements in clinical trial summaries. Future studies are warranted to test its generalizability beyond eligibility criteria text. The open-source Valx enables its further evaluation and continued improvement among the collaborative scientific community.
Children's Representation of Symbolic and Nonsymbolic Magnitude Examined with the Priming Paradigm
ERIC Educational Resources Information Center
Defever, Emmy; Sasanguie, Delphine; Gebuis, Titia; Reynvoet, Bert
2011-01-01
How people process and represent magnitude has often been studied using number comparison tasks. From the results of these tasks, a comparison distance effect (CDE) is generated, showing that it is easier to discriminate two numbers that are numerically further apart (e.g., 2 and 8) compared with numerically closer numbers (e.g., 6 and 8).…
Comparison of a 3-D DEM simulation with MRI data
NASA Astrophysics Data System (ADS)
Ng, Tang-Tat; Wang, Changming
2001-04-01
This paper presents a comparison of a granular material studied experimentally and numerically. Simple shear tests were performed inside the magnetic core of magnetic resonance imaging (MRI) equipment. Spherical pharmaceutical pills were used as the granular material, with each pill's centre location determined by MRI. These centre locations in the initial assembly were then used as the initial configuration in the numerical simulation using the discrete element method. The contact properties between pharmaceutical pills used in the numerical simulation were obtained experimentally. The numerical predication was compared with experimental data at both macroscopic and microscopic levels. Good agreement was found at both levels.
Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.
2004-01-01
This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
NASA Astrophysics Data System (ADS)
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Guillaume, Mathieu; Nys, Julie; Mussolin, Christophe; Content, Alain
2013-11-01
It is largely admitted that processing numerosity relies on an innate Approximate Number System (ANS), and recent research consistently observed a relationship between ANS acuity and mathematical ability in childhood. However, studies assessing this relationship in adults led to contradictory results. In this study, adults with different levels of mathematical expertise performed two tasks on the same pairs of dot collections, based either on numerosity comparison or on cumulative area comparison. Number of dots and cumulative area were congruent in half of the stimuli, and incongruent in the other half. The results showed that adults with higher mathematical ability obtained lower Weber fractions in the numerical condition than participants with lower mathematical ability. Further, adults with lower mathematical ability were more affected by the interference of the continuous dimension in the numerical comparison task, whereas conversely higher-expertise adults showed stronger interference of the numerical dimension in the continuous comparison task. Finally, ANS acuity correlated with arithmetic performance. Taken together, the data suggest that individual differences in ANS acuity subsist in adulthood, and that they are related to mathematical ability. © 2013.
Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels
2006-05-01
Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single
Numerical Order and Quantity Processing in Number Comparison
ERIC Educational Resources Information Center
Turconi, Eva; Campbell, Jamie I. D.; Seron, Xavier
2006-01-01
We investigated processing of numerical order information and its relation to mechanisms of numerical quantity processing. In two experiments, performance on a quantity-comparison task (e.g. 2 5; which is larger?) was compared with performance on a relative-order judgment task (e.g. 2 5; ascending or descending order?). The comparison task…
Landerl, Karin
2013-01-01
Numerical processing has been demonstrated to be closely associated with arithmetic skills, however, our knowledge on the development of the relevant cognitive mechanisms is limited. The present longitudinal study investigated the developmental trajectories of numerical processing in 42 children with age-adequate arithmetic development and 41 children with dyscalculia over a 2-year period from beginning of Grade 2, when children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit numbers, physical comparison, number line estimation) was given five times during the study (beginning and middle of each school year). Efficiency of numerical processing was a very good indicator of development in numerical processing while within-task effects remained largely constant and showed low long-term stability before middle of Grade 3. Children with dyscalculia showed less efficient numerical processing reflected in specifically prolonged response times. Importantly, they showed consistently larger slopes for dot enumeration in the subitizing range, an untypically large compatibility effect when processing two-digit numbers, and they were consistently less accurate in placing numbers on a number line. Thus, we were able to identify parameters that can be used in future research to characterize numerical processing in typical and dyscalculic development. These parameters can also be helpful for identification of children who struggle in their numerical development. PMID:23898310
Unpacking symbolic number comparison and its relation with arithmetic in adults.
Sasanguie, Delphine; Lyons, Ian M; De Smedt, Bert; Reynvoet, Bert
2017-08-01
Symbolic number - or digit - comparison has been a central tool in the domain of numerical cognition for decades. More recently, individual differences in performance on this task have been shown to robustly relate to individual differences in more complex math processing - a result that has been replicated across many different age groups. In this study, we 'unpack' the underlying components of digit comparison (i.e. digit identification, digit to number-word matching, digit ordering and general comparison) in a sample of adults. In a first experiment, we showed that digit comparison performance was most strongly related to digit ordering ability - i.e., the ability to judge whether symbolic numbers are in numerical order. Furthermore, path analyses indicated that the relation between digit comparison and arithmetic was partly mediated by digit ordering and fully mediated when non-numerical (letter) ordering was also entered into the model. In a second experiment, we examined whether a general order working memory component could account for the relation between digit comparison and arithmetic. It could not. Instead, results were more consistent with the notion that fluent access and activation of long-term stored associations between numbers explains the relation between arithmetic and both digit comparison and digit ordering tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Meert, Gaëlle; Grégoire, Jacques; Noël, Marie-Pascale
2009-08-01
This study investigated whether the mental representation of the fraction magnitude was componential and/or holistic in a numerical comparison task performed by adults. In Experiment 1, the comparison of fractions with common numerators (x/a_x/b) and of fractions with common denominators (a/x_b/x) primed the comparison of natural numbers. In Experiment 2, fillers (i.e., fractions without common components) were added to reduce the regularity of the stimuli. In both experiments, distance effects indicated that participants compared the numerators for a/x_b/x fractions, but that the magnitudes of the whole fractions were accessed and compared for x/a_x/b fractions. The priming effect of x/a_x/b fractions on natural numbers suggested that the interference of the denominator magnitude was controlled during the comparison of these fractions. These results suggested a hybrid representation of their magnitude (i.e., componential and holistic). In conclusion, the magnitude of the whole fraction can be accessed, probably by estimating the ratio between the magnitude of the denominator and the magnitude of the numerator. However, adults might prefer to rely on the magnitudes of the components and compare the magnitudes of the whole fractions only when the use of a componential strategy is made difficult.
ERIC Educational Resources Information Center
Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert
2017-01-01
Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-04-01
Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.
Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias
2018-01-22
Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.
Holloway, Ian D; Ansari, Daniel
2010-11-01
Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic numerals) and nonsymbolic (arrays of squares) numerical comparison tasks as well as two control tasks while their brains were scanned using fMRI. In a preliminary analysis, we calculated the conjunction between symbolic and nonsymbolic numerical comparison. We then examined in which brain regions this conjunction differed between children and adults. This analysis revealed a large network of visual and parietal regions that showed greater activation in adults relative to children. In our primary analysis, we examined age-related differences in the conjunction of symbolic and nonsymbolic comparison after subtracting the control tasks. This analysis revealed a much more limited set of regions including the right inferior parietal lobe near the intraparietal sulcus. In addition to showing increased activation to both symbolic and nonsymbolic magnitudes over and above activation related to response selection, this region showed age-related differences in the distance effect. Our findings demonstrate that the format-independent representation of numerical magnitude in the right inferior parietal lobe is the product of developmental processes of cortical specialization and highlight the importance of using appropriate control tasks when conducting developmental neuroimaging studies.
Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module
2016-07-01
NSMII analytical vs. numerical solutions of sediment methane ............................ 27 3.2.4 Comparisons of the diagenesis rates of three sediment...26 Figure 12. Comparisons of NSMII analytical vs. numerical solutions of sediment methane : (a) layer 2’s CH4, (b...oxygen demand mg-O2 L-1 0-10 CH4 Methane mg-O2 L-1 On/Off HxS Total dissolved sulfides mg-O2 L-1 On/Off DO Dissolved oxygen mg-O2 L-1 On BSi
Numerical magnitude processing in children with mild intellectual disabilities.
Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert
2011-01-01
The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children with MID on a symbolic (digits) and a non-symbolic (dot-arrays) comparison task with the performance of two control groups of typically developing children: one group matched on chronological age and one group matched on mathematical ability level. Findings revealed that children with MID performed more poorly than their typically developing chronological age-matched peers on both the symbolic and non-symbolic comparison tasks, while their performance did not substantially differ from the ability-matched control group. These findings suggest that the development of numerical magnitude representation in children with MID is marked by a delay. This performance pattern was observed for both symbolic and non-symbolic comparison tasks, although difficulties on the former task were more prominent. Interventions in children with MID should therefore foster both the development of magnitude representations and the connections between symbols and the magnitudes they represent. Copyright © 2011 Elsevier Ltd. All rights reserved.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
Comparison of Numerical Analyses with a Static Load Test of a Continuous Flight Auger Pile
NASA Astrophysics Data System (ADS)
Hoľko, Michal; Stacho, Jakub
2014-12-01
The article deals with numerical analyses of a Continuous Flight Auger (CFA) pile. The analyses include a comparison of calculated and measured load-settlement curves as well as a comparison of the load distribution over a pile's length. The numerical analyses were executed using two types of software, i.e., Ansys and Plaxis, which are based on FEM calculations. Both types of software are different from each other in the way they create numerical models, model the interface between the pile and soil, and use constitutive material models. The analyses have been prepared in the form of a parametric study, where the method of modelling the interface and the material models of the soil are compared and analysed. Our analyses show that both types of software permit the modelling of pile foundations. The Plaxis software uses advanced material models as well as the modelling of the impact of groundwater or overconsolidation. The load-settlement curve calculated using Plaxis is equal to the results of a static load test with a more than 95 % degree of accuracy. In comparison, the load-settlement curve calculated using Ansys allows for the obtaining of only an approximate estimate, but the software allows for the common modelling of large structure systems together with a foundation system.
Numerical analysis and experimental research of the rubber boot of the joint drive vehicle
NASA Astrophysics Data System (ADS)
Ziobro, Jan
2016-04-01
The article presents many numerical studies and experimental research of the drive rubber boot of the joint drive vehicle. Performance requirements have been discussed and the required coefficients of the mathematical model for numerical simulation have been determined. The behavior of living in MSC.MARC environment was examined. In the analysis the following have been used: hyperplastic two-parameter model of the Mooney-Rivlin material, large displacements procedure, safe contact condition, friction on the sides of the boots. 3D numerical model of the joint bootwas analyzed under influence of the forces: tensile, compressive, centrifugal and angular. Numerous results of studies have been presented. An appropriate test stand was built and comparison of the results of the numerical analysis and the results of experimental studies was made. Numerous requests and recommendations for utilitarian character have been presented.
The Language–Number Interface in the Brain: A Complex Parametric Study of Quantifiers and Quantities
Heim, Stefan; Amunts, Katrin; Drai, Dan; Eickhoff, Simon B.; Hautvast, Sarah; Grodzinsky, Yosef
2011-01-01
The neural bases for numerosity and language are of perennial interest. In monkeys, neural separation of numerical Estimation and numerical Comparison has been demonstrated. As linguistic and numerical knowledge can only be compared in humans, we used a new fMRI paradigm in an attempt to dissociate Estimation from Comparison, and at the same time uncover the neural relation between numerosity and language. We used complex stimuli: images depicting a proportion between quantities of blue and yellow circles were coupled with sentences containing quantifiers that described them (e.g., “most/few of the circles are yellow”). Participants verified sentences against images. Both Estimation and Comparison recruited adjacent, partially overlapping bi-hemispheric fronto-parietal regions. Additional semantic analysis of positive vs. negative quantifiers involving the interpretation of quantity and numerosity specifically recruited left area 45. The anatomical proximity between numerosity regions and those involved in semantic analysis points to subtle links between the number system and language. Results fortify the homology of Estimation and Comparison between humans and monkeys. PMID:22470338
ERIC Educational Resources Information Center
Budano, Christopher
2012-01-01
This study investigated the disciplinary knowledge and nature of expertise among political science experts studying American political science. A comparison group of students who had completed an introductory undergraduate course in American political science also participated in the study. Numerous research studies have found that civics and…
NASA Technical Reports Server (NTRS)
Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.
1992-01-01
A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.
Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation
NASA Astrophysics Data System (ADS)
Wardhani, Puteri Kusuma; Watanabe, Masaji
2016-02-01
The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
Dupree, Jean A.; Crowfoot, Richard M.
2012-01-01
The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)
Representation of numerosity in posterior parietal cortex
Roitman, Jamie D.; Brannon, Elizabeth M.; Platt, Michael L.
2012-01-01
Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition. PMID:22666194
Rodríguez-Santos, José Miguel; Calleja, Marina; García-Orza, Javier; Iza, Mauricio; Damas, Jesús
2014-01-01
Deaf children usually achieve lower scores on numerical tasks than normally hearing peers. Explanations for mathematical disabilities in hearing children are based on quantity representation deficits (Geary, 1994) or on deficits in accessing these representations (Rousselle & Noël, 2008). The present study aimed to verify, by means of symbolic (Arabic digits) and nonsymbolic (dot constellations and hands) magnitude comparison tasks, whether deaf children show deficits in representations or in accessing numerical representations. The study participants were 10 prelocutive deaf children and 10 normally hearing children. Numerical distance and magnitude were manipulated. Response time (RT) analysis showed similar magnitude and distance effects in both groups on the 3 tasks. However, slower RTs were observed among the deaf participants on the symbolic task alone. These results suggest that although both groups' quantity representations were similar, the deaf group experienced a delay in accessing representations from symbolic codes.
Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi
2016-08-01
Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with amusia may present a deficit in accessing nonsymbolic numerical representations from symbolic representations. The symbolic access deficit could reflect a widespread impairment in the establishment of cortico-cortical connections between association areas.
Association between basic numerical abilities and mathematics achievement.
Sasanguie, Delphine; De Smedt, Bert; Defever, Emmy; Reynvoet, Bert
2012-06-01
Various measures have been used to investigate number processing in children, including a number comparison or a number line estimation task. The present study aimed to examine whether and to which extent these different measures of number representation are related to performance on a curriculum-based standardized mathematics achievement test in kindergarteners, first, second, and sixth graders. Children completed a number comparison task and a number line estimation task with a balanced set of symbolic (Arabic digits) and non-symbolic (dot patterns) stimuli. Associations with mathematics achievement were observed for the symbolic measures. Although the association with number line estimation was consistent over grades, the association with number comparison was much stronger in kindergarten compared to the other grades. The current data indicate that a good knowledge of the numerical meaning of Arabic digits is important for children's mathematical development and that particularly the access to the numerical meaning of symbolic digits rather than the representation of number per se is important. © 2011 The British Psychological Society.
Wilson, Anna J; Revkin, Susannah K; Cohen, David; Cohen, Laurent; Dehaene, Stanislas
2006-01-01
Background In a companion article [1], we described the development and evaluation of software designed to remediate dyscalculia. This software is based on the hypothesis that dyscalculia is due to a "core deficit" in number sense or in its access via symbolic information. Here we review the evidence for this hypothesis, and present results from an initial open-trial test of the software in a sample of nine 7–9 year old children with mathematical difficulties. Methods Children completed adaptive training on numerical comparison for half an hour a day, four days a week over a period of five-weeks. They were tested before and after intervention on their performance in core numerical tasks: counting, transcoding, base-10 comprehension, enumeration, addition, subtraction, and symbolic and non-symbolic numerical comparison. Results Children showed specific increases in performance on core number sense tasks. Speed of subitizing and numerical comparison increased by several hundred msec. Subtraction accuracy increased by an average of 23%. Performance on addition and base-10 comprehension tasks did not improve over the period of the study. Conclusion Initial open-trial testing showed promising results, and suggested that the software was successful in increasing number sense over the short period of the study. However these results need to be followed up with larger, controlled studies. The issues of transfer to higher-level tasks, and of the best developmental time window for intervention also need to be addressed. PMID:16734906
Children’s Numerical Equivalence Judgments: Crossmapping Effects
Mix, Kelly S.
2009-01-01
Preschoolers made numerical comparisons between sets with varying degrees of shared surface similarity. When surface similarity was pitted against numerical equivalence (i.e., crossmapping), children made fewer number matches than when surface similarity was neutral (i.e, all sets contained the same objects). Only children who understood the number words for the target sets performed above chance in the crossmapping condition. These findings are consistent with previous research on children’s non-numerical comparisons (e.g., Rattermann & Gentner, 1998; Smith, 1993) and suggest that the same mechanisms may underlie numerical development. PMID:19655027
Siegrist, Michael; Orlow, Pascale; Keller, Carmen
2008-01-01
To evaluate various formats for the communication of prenatal test results. In study 1 (N=400), female students completed a questionnaire assessing risk perception, affect, and perceived usefulness of prenatal test results. A randomized, 2 (risk level; low, high) x 4 (format; ratio with numerator 1, ratio with denominator 1000, Paling Perspective Scale, pictograms) design was used. Study 2 (N=200) employed a 2 (risk level; low, high) x 2 (format; Paling Perspective Scale, risk comparisons in numerical format) design. In study 1, the Paling Perspective Scale resulted in a higher level of perceived risk across different risk levels compared with the other formats. Furthermore, participants in the low-risk group perceived the test results as less risky compared with participants in the high-risk group (P < 0.001) when the Paling Perspective Scale was used. No significant differences between low and high risks were observed for the other 3 formats. In study 2, the Paling Perspective Scale evoked higher levels of perceived risks relative to the numerical presentation of risk comparisons. For both formats, we found that participants confronted with a high risk perceived test results as more risky compared with participants confronted with a low risk. The Paling Perspective Scale resulted in a higher level of perceived risk compared with the other formats. This effect must be taken into account when choosing a graphical or numerical format for risk communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less
Numerical Study of a Convective Turbulence Encounter
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.
2002-01-01
A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.
Experimental and numerical studies of natural convection in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viney, C.E.; Hickox, C.E.; Montoya, P.C.
1982-12-01
The results of an experimental study are reported in which a Hele-Shaw cell was used to simulate natural convection flow in a homogeneous porous region subjected to a horizonal temperature gradient. Measured velocities and photographs of streamline patterns are compared with numerical predictions produced with the finite element computer program, MARIAH. Results of numerical simulations are also reported for Rayleigh-Benard convection in a bottom-heated, horizontal, prous layer. The numerical results are compared with the experimental Hele-Shaw cell results of Hartline and Lister. The comparison between these experimental and numerical studies provides some support for the qualification of MARIAH as amore » general purpose code for the description of natural convection in porous media at low Rayleigh numbers.« less
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation.
Candy, J; Waltz, R E
2003-07-25
Gyrokinetic simulation of tokamak transport has evolved sufficiently to allow direct comparison of numerical results with experimental data. It is to be emphasized that only with the simultaneous inclusion of many distinct and complex effects can this comparison realistically be made. Until now, numerical studies of tokamak microturbulence have been restricted to either (a) flux tubes or (b) electrostatic fluctuations. Using a newly developed global electromagnetic solver, we have been able to recover via direct simulation the Bohm-like scaling observed in DIII-D L-mode discharges. We also match, well within experimental uncertainty, the measured energy diffusivities.
Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.
Khrustalyov, Yu V; Vaulina, O S
2012-04-01
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
Szucs, Dénes; Soltész, Fruzsina
2007-11-05
In the numerical Stroop paradigm (NSP) participants compare simultaneously presented Arabic digits based on either their numerical or on their physical size dimension. Responses are faster when the numerical and size dimensions are congruent with each other (facilitation), and responses are slower when the numerical and size dimensions are incongruent with each other (interference). We aimed to find out whether facilitation and interference appears during the course of perceptual or response processing. To this end, facilitation and interference effects in the amplitude of event-related brain potentials (ERPs) were examined. The onset of motor preparation was determined by monitoring the lateralized readiness potential. In numerical comparison one facilitation effect was related to perceptual processing at the level of the magnitude representation. A second facilitation effect and interference effects appeared during response processing. In size comparison facilitation and interference appeared exclusively during response processing. In both tasks, ERP interference effects were probably related to contextual analysis and to the conflict monitoring and selection for action activity of the anterior cingulate cortex. The results demonstrate that facilitation and interference effects in the NSP appear during multiple stages of processing, and that they are related to different cognitive processes. Therefore these effects should be clearly separated in studies of the NSP. A model of the processes involved in the NSP is provided and implications for studies of the NSP are drawn.
Bottom-up and top-down attentional contributions to the size congruity effect.
Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J
2016-07-01
The size congruity effect refers to the interaction between the numerical and physical (i.e., font) sizes of digits in a numerical (or physical) magnitude selection task. Although various accounts of the size congruity effect have attributed this interaction to either an early representational stage or a late decision stage, only Risko, Maloney, and Fugelsang (Attention, Perception, & Psychophysics, 75, 1137-1147, 2013) have asserted a central role for attention. In the present study, we used a visual search paradigm to further study the role of attention in the size congruity effect. In Experiments 1 and 2, we showed that manipulating top-down attention (via the task instructions) had a significant impact on the size congruity effect. The interaction between numerical and physical size was larger for numerical size comparison (Exp. 1) than for physical size comparison (Exp. 2). In the remaining experiments, we boosted the feature salience by using a unique target color (Exp. 3) or by increasing the display density by using three-digit numerals (Exps. 4 and 5). As expected, a color singleton target abolished the size congruity effect. Searching for three-digit targets based on numerical size (Exp. 4) resulted in a large size congruity effect, but search based on physical size (Exp. 5) abolished the effect. Our results reveal a substantial role for top-down attention in the size congruity effect, which we interpreted as support for a shared-decision account.
Non-robust numerical simulations of analogue extension experiments
NASA Astrophysics Data System (ADS)
Naliboff, John; Buiter, Susanne
2016-04-01
Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.
Development of fraction comparison strategies: A latent transition analysis.
Rinne, Luke F; Ye, Ai; Jordan, Nancy C
2017-04-01
The present study investigated the development of fraction comparison strategies through a longitudinal analysis of children's responses to a fraction comparison task in 4th through 6th grades (N = 394). Participants were asked to choose the larger value for 24 fraction pairs blocked by fraction type. Latent class analysis of performance over item blocks showed that most children initially exhibited a "whole number bias," indicating that larger numbers in numerators and denominators produce larger fraction values. However, some children instead chose fractions with smaller numerators and denominators, demonstrating a partial understanding that smaller numbers can yield larger fractions. Latent transition analysis showed that most children eventually adopted normative comparison strategies. Children who exhibited a partial understanding by choosing fractions with smaller numbers were more likely to adopt normative comparison strategies earlier than those with larger number biases. Controlling for general math achievement and other cognitive abilities, whole number line estimation accuracy predicted the probability of transitioning to normative comparison strategies. Exploratory factor analyses showed that over time, children appeared to increasingly represent fractions as discrete magnitudes when simpler strategies were unavailable. These results support the integrated theory of numerical development, which posits that an understanding of numbers as magnitudes unifies the process of learning whole numbers and fractions. The findings contrast with conceptual change theories, which propose that children must move from a view of numbers as counting units to a new view that accommodates fractions to overcome whole number bias. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Jarecka, D.; Arabas, S.; Fijalkowski, M.; Gaynor, A.
2012-04-01
The language of choice for numerical modelling in geoscience has long been Fortran. A choice of a particular language and coding paradigm comes with different set of tradeoffs such as that between performance, ease of use (and ease of abuse), code clarity, maintainability and reusability, availability of open source compilers, debugging tools, adequate external libraries and parallelisation mechanisms. The availability of trained personnel and the scale and activeness of the developer community is of importance as well. We present a short comparison study aimed at identification and quantification of these tradeoffs for a particular example of an object oriented implementation of a parallel 2D-advection-equation solver in Python/NumPy, C++/Blitz++ and modern Fortran. The main angles of comparison will be complexity of implementation, performance of various compilers or interpreters and characterisation of the "added value" gained by a particular choice of the language. The choice of the numerical problem is dictated by the aim to make the comparison useful and meaningful to geoscientists. Python is chosen as a language that traditionally is associated with ease of use, elegant syntax but limited performance. C++ is chosen for its traditional association with high performance but even higher complexity and syntax obscurity. Fortran is included in the comparison for its widespread use in geoscience often attributed to its performance. We confront the validity of these traditional views. We point out how the usability of a particular language in geoscience depends on the characteristics of the language itself and the availability of pre-existing software libraries (e.g. NumPy, SciPy, PyNGL, PyNIO, MPI4Py for Python and Blitz++, Boost.Units, Boost.MPI for C++). Having in mind the limited complexity of the considered numerical problem, we present a tentative comparison of performance of the three implementations with different open source compilers including CPython and PyPy, Clang++ and GNU g++, and GNU gfortran.
Scientific study of data analysis
NASA Technical Reports Server (NTRS)
Wu, S. T.
1990-01-01
We present a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized and the accuracy and numerical instability are discussed. On the basis of this investigation, we claim that the two methods do resemble each other qualitatively.
Common magnitude representation of fractions and decimals is task dependent.
Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szűcs, Denes
2016-01-01
Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction-decimal mixed pairs and decimal-fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.
ERIC Educational Resources Information Center
Southard, Sheryne; Meddaugh, Joshua; France-Harris, Antoinette
2015-01-01
Numerous formats exist for online course delivery: pure online, blended or hybrid, flipped and web-enhanced. The literature is replete with comparison studies on the efficacy of online, hybrid and traditional format courses. However, the self-paced online course, a relatively new and rare variation, has received very little coverage in the body of…
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-02-06
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.
Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato
2008-01-01
The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations. PMID:27879733
NASA Astrophysics Data System (ADS)
Idelsohn, S. R.; Marti, J.; Souto-Iglesias, A.; Oñate, E.
2008-12-01
The paper aims to introduce new fluid structure interaction (FSI) tests to compare experimental results with numerical ones. The examples have been chosen for a particular case for which experimental results are not much reported. This is the case of FSI including free surface flows. The possibilities of the Particle Finite Element Method (PFEM) [1] for the simulation of free surface flows is also tested. The simulations are run using the same scale as the experiment in order to minimize errors due to scale effects. Different scenarios are simulated by changing the boundary conditions for reproducing flows with the desired characteristics. Details of the input data for all the examples studied are given. The aim is to identifying benchmark problems for FSI including free surface flows for future comparisons between different numerical approaches.
Cao, Fei; Li, Huashan; Zhang, Yang; Zhao, Liang
2013-01-01
The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights.
Zhang, Yang; Zhao, Liang
2013-01-01
The solar chimney power plant (SCPP) generates updraft wind through the green house effect. In this paper, the performances of two SCPP styles, that is, the conventional solar chimney power plant (CSCPP) and the sloped solar chimney power plant (SSCPP), are compared through a numerical simulation. A simplified Computational Fluid Dynamics (CFD) model is built to predict the performances of the SCPP. The model is validated through a comparison with the reported results from the Manzanares prototype. The annual performances of the CSCPP and the SSCPP are compared by taking Lanzhou as a case study. Numerical results indicate that the SSCPP holds a higher efficiency and generates smoother power than those of the CSCPP, and the effective pressure in the SSCPP is relevant to both the chimney and the collector heights. PMID:24489515
Núñez-Peña, M Isabel; Suárez-Pellicioni, Macarena
2014-12-01
Numerical comparison tasks are widely used to study the mental representation of numerical magnitude. In study, event-related brain potentials (ERPs) were recorded while 26 high math-anxious (HMA) and 27 low math-anxious (LMA) individuals were presented with pairs of single-digit Arabic numbers and were asked to decide which one had the larger numerical magnitude. The size of the numbers and the distance between them were manipulated in order to study the size and the distance effects. The results showed that both distance and size effects were larger for the HMA group. As for ERPs, results showed that the ERP distance effect had larger amplitude for both the size and distance effects in the HMA group than among their LMA counterparts. Since this component has been taken as a marker of the processing of numerical magnitude, this result suggests that HMA individuals have a less precise representation of numerical magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.
Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert
2014-01-01
The ability to map between non-symbolic numerical magnitudes and Arabic numerals has been put forward as a key factor in children’s mathematical development. This mapping ability has been mainly examined indirectly by looking at children’s performance on a symbolic magnitude comparison task. The present study investigated mapping in a more direct way by using a task in which children had to choose which of two choice quantities (Arabic digits or dot arrays) matched the target quantity (dot array or Arabic digit), thereby focusing on small quantities ranging from 1 to 9. We aimed to determine the development of mapping over time and its relation to mathematics achievement. Participants were 36 first graders (M = 6 years 8 months) and 46 third graders (M = 8 years 8 months) who all completed mapping tasks, symbolic and non-symbolic magnitude comparison tasks and standardized timed and untimed tests of mathematics achievement. Findings revealed that children are able to map between non-symbolic and symbolic representations and that this mapping ability develops over time. Moreover, we found that children’s mapping ability is related to timed and untimed measures of mathematics achievement, over and above the variance accounted for by their numerical magnitude comparison skills. PMID:24699664
NASA Astrophysics Data System (ADS)
Matas, Richard; Syka, Tomáš; Luňáček, Ondřej
The article deals with a description of results from research and development of a radial compressor stage. The experimental compressor and used numerical models are briefly described. In the first part, the comparisons of characteristics obtained experimentally and by numerical simulations for stage with vaneless diffuser are described. In the second part, the results for stage with vanned diffuser are presented. The results are relevant for next studies in research and development process.
Masson, Nicolas; Pesenti, Mauro; Dormal, Valérie
2016-08-01
Previous studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum. By comparing directly duration and numerosity processing, this study investigates whether or not the performance of neglect patients supports the hypothesis of a mental time line. Twenty-two right brain-damaged patients (11 with and 11 without left neglect), as well as 11 age-matched healthy controls, had to judge whether a single dot presented visually lasted shorter or longer than 500 ms and whether a sequence of flashed dots was smaller or larger than 5. Digit spans were also assessed to measure verbal working memory capacities. In duration comparison, no spatial-duration bias was found in neglect patients. Moreover, a significant correlation between verbal working memory and duration performance was observed in right brain-damaged patients, irrespective of the presence or absence of neglect. In numerical comparison, only neglect patients showed an enhanced distance effect for numerical magnitude smaller than the standard. These results do not support the hypothesis of the existence of a mental continuum oriented from left to right for duration. We discuss an alternative account to explain the duration impairment observed in right brain-damaged patients. © 2015 The British Psychological Society.
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
Price, Gavin R; Wilkey, Eric D; Yeo, Darren J
2017-05-01
A growing body of research suggests that the processing of nonsymbolic (e.g. sets of dots) and symbolic (e.g. Arabic digits) numerical magnitudes serves as a foundation for the development of math competence. Performance on magnitude comparison tasks is thought to reflect the precision of a shared cognitive representation, as evidence by the presence of a numerical ratio effect for both formats. However, little is known regarding how visuo-perceptual processes are related to the numerical ratio effect, whether they are shared across numerical formats, and whether they relate to math competence independently of performance outcomes. The present study investigates these questions in a sample of typically developing adults. Our results reveal a pattern of associations between eye-movement measures, but not their ratio effects, across formats. This suggests that ratio-specific visuo-perceptual processing during magnitude processing is different across nonsymbolic and symbolic formats. Furthermore, eye movements are related to math performance only during symbolic comparison, supporting a growing body of literature suggesting symbolic number processing is more strongly related to math outcomes than nonsymbolic magnitude processing. Finally, eye-movement patterns, specifically fixation dwell time, continue to be negatively related to math performance after controlling for task performance (i.e. error rate and reaction time) and domain general cognitive abilities (IQ), suggesting that fluent visual processing of Arabic digits plays a unique and important role in linking symbolic number processing to formal math abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less
Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.
2007-01-01
This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies.
NASA Technical Reports Server (NTRS)
Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.
1998-01-01
Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
Numerical and Experimental Investigations of the Flow in a Stationary Pelton Bucket
NASA Astrophysics Data System (ADS)
Nakanishi, Yuji; Fujii, Tsuneaki; Kawaguchi, Sho
A numerical code based on one of mesh-free particle methods, a Moving-Particle Semi-implicit (MPS) Method has been used for the simulation of free surface flows in a bucket of Pelton turbines so far. In this study, the flow in a stationary bucket is investigated by MPS simulation and experiment to validate the numerical code. The free surface flow dependent on the angular position of the bucket and the corresponding pressure distribution on the bucket computed by the numerical code are compared with that obtained experimentally. The comparison shows that numerical code based on MPS method is useful as a tool to gain an insight into the free surface flows in Pelton turbines.
Comparison of two methods for detection of strain localization in sheet forming
NASA Astrophysics Data System (ADS)
Lumelskyj, Dmytro; Lazarescu, Lucian; Banabic, Dorel; Rojek, Jerzy
2018-05-01
This paper presents a comparison of two criteria of strain localization in experimental research and numerical simulation of sheet metal forming. The first criterion is based on the analysis of the through-thickness thinning (through-thickness strain) and its first time derivative in the most strained zone. The limit strain in the second method is determined by the maximum of the strain acceleration. Experimental and numerical investigation have been carried out for the Nakajima test performed for different specimens of the DC04 grade steel sheet. The strain localization has been identified by analysis of experimental and numerical curves showing the evolution of strains and their derivatives in failure zones. The numerical and experimental limit strains calculated from both criteria have been compared with the experimental FLC evaluated according to the ISO 12004-2 norm. It has been shown that the first method predicts formability limits closer to the experimental FLC. The second criterion predicts values of strains higher than FLC determined according to ISO norm. These values are closer to the strains corresponding to the fracture limit. The results show that analysis of strain evolution allows us to determine strain localization in numerical simulation and experimental studies.
Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment
NASA Astrophysics Data System (ADS)
Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus
2014-12-01
Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.
Domain-Specific and Domain-General Changes in Children's Development of Number Comparison
ERIC Educational Resources Information Center
Holloway, Ian D.; Ansari, Daniel
2008-01-01
The numerical distance effect (inverse relationship between numerical distance and reaction time in relative number comparison tasks) has frequently been used to characterize the mental representation of number. The size of the distance effect decreases over developmental time. However, it is unclear whether this reduction simply reflects…
Regulation of Glycan Structures in Animal Tissues
Nairn, Alison V.; York, William S.; Harris, Kyle; Hall, Erica M.; Pierce, J. Michael; Moremen, Kelley W.
2008-01-01
Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes. PMID:18411279
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
ERIC Educational Resources Information Center
Bauch, Klaus Dieter
The study was designed to investigate the effects of Numerical Control Technology and Computer-Aided Manufacturing (NC/CAM) in American industry on industrial education and engineering technology education. The specific purpose was to identify a data base and rationale for curriculum development in NC/CAM through a comparison of views by…
ERIC Educational Resources Information Center
Robinson, LeAnne; Lambert, M. Chuck; Towner, John; Caros, Jennifer
2016-01-01
Literacy instruction is once again at the forefront of school reform throughout North America. Numerous federal and state initiatives in the United States, such as Reading First and Response to Intervention, have either recommended or required that educators use research based curricular materials and instructional practices. This study is reports…
Numerical modeling and analytical evaluation of light absorption by gold nanostars
NASA Astrophysics Data System (ADS)
Zarkov, Sergey; Akchurin, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Akchurin, Garif; Tuchin, Valery
2018-04-01
In this paper, the regularity of local light absorption by gold nanostars (AuNSts) model is studied by method of numerical simulation. The mutual diffraction influence of individual geometric fragments of AuNSts is analyzed. A comparison is made with an approximate analytical approach for estimating the average bulk density of absorbed power and total absorbed power by individual geometric fragments of AuNSts. It is shown that the results of the approximate analytical estimate are in qualitative agreement with the numerical calculations of the light absorption by AuNSts.
NASA Astrophysics Data System (ADS)
Casalegno, Mosè; Bernardi, Andrea; Raos, Guido
2013-07-01
Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2000-01-01
A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.
NASA Astrophysics Data System (ADS)
Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-01
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2015-06-18
In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less
Fazio, Lisa K; Bailey, Drew H; Thompson, Clarissa A; Siegler, Robert S
2014-07-01
We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both magnitude comparison and number line estimation tasks. After controlling for non-mathematical cognitive proficiency, both symbolic and non-symbolic numerical magnitude understandings were uniquely related to mathematics achievement, but the relation was much stronger for symbolic numbers. A meta-analysis of 19 published studies indicated that relations between non-symbolic numerical magnitude knowledge and mathematics achievement are present but tend to be weak, especially beyond 6 years of age. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment
Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng
2018-01-01
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981
Comparative Study Of Four Models Of Turbulence
NASA Technical Reports Server (NTRS)
Menter, Florian R.
1996-01-01
Report presents comparative study of four popular eddy-viscosity models of turbulence. Computations reported for three different adverse pressure-gradient flowfields. Detailed comparison of numerical results and experimental data given. Following models tested: Baldwin-Lomax, Johnson-King, Baldwin-Barth, and Wilcox.
NASA Astrophysics Data System (ADS)
Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa
2017-12-01
Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
Numerical evaluation of the scale problem on the wind flow of a windbreak
Liu, Benli; Qu, Jianjun; Zhang, Weimin; Tan, Lihai; Gao, Yanhong
2014-01-01
The airflow field around wind fences with different porosities, which are important in determining the efficiency of fences as a windbreak, is typically studied via scaled wind tunnel experiments and numerical simulations. However, the scale problem in wind tunnels or numerical models is rarely researched. In this study, we perform a numerical comparison between a scaled wind-fence experimental model and an actual-sized fence via computational fluid dynamics simulations. The results show that although the general field pattern can be captured in a reduced-scale wind tunnel or numerical model, several flow characteristics near obstacles are not proportional to the size of the model and thus cannot be extrapolated directly. For example, the small vortex behind a low-porosity fence with a scale of 1:50 is approximately 4 times larger than that behind a full-scale fence. PMID:25311174
Liu, S X; Zou, M S
2018-03-01
The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.
NASA Astrophysics Data System (ADS)
Allen, S. E.; Dinniman, M. S.; Klinck, J. M.; Gorby, D. D.; Hewett, A. J.; Hickey, B. M.
2003-01-01
Submarine canyons which indent the continental shelf are frequently regions of steep (up to 45°), three-dimensional topography. Recent observations have delineated the flow over several submarine canyons during 2-4 day long upwelling episodes. Thus upwelling episodes over submarine canyons provide an excellent flow regime for evaluating numerical and physical models. Here we compare a physical and numerical model simulation of an upwelling event over a simplified submarine canyon. The numerical model being evaluated is a version of the S-Coordinate Rutgers University Model (SCRUM). Careful matching between the models is necessary for a stringent comparison. Results show a poor comparison for the homogeneous case due to nonhydrostatic effects in the laboratory model. Results for the stratified case are better but show a systematic difference between the numerical results and laboratory results. This difference is shown not to be due to nonhydrostatic effects. Rather, the difference is due to truncation errors in the calculation of the vertical advection of density in the numerical model. The calculation is inaccurate due to the terrain-following coordinates combined with a strong vertical gradient in density, vertical shear in the horizontal velocity and topography with strong curvature.
NASA Astrophysics Data System (ADS)
O'Shaughnessy, Richard; Lange, Jacob; Healy, James; Carlos, Lousto; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark
2016-03-01
In this talk, we apply a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. We illustrate how to use only comparisons between synthetic data and these simulations to reconstruct properties of a synthetic candidate source. We demonstrate using selected examples that we can reconstruct posterior distributions obtained by other Bayesian methods with our sparse grid. We describe how followup simulations can corroborate and improve our understanding of a candidate signal.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
Spatial and numerical processing in children with high and low visuospatial abilities.
Crollen, Virginie; Noël, Marie-Pascale
2015-04-01
In the literature on numerical cognition, a strong association between numbers and space has been repeatedly demonstrated. However, only a few recent studies have been devoted to examine the consequences of low visuospatial abilities on calculation processing. In this study, we wanted to investigate whether visuospatial weakness may affect pure spatial processing as well as basic numerical reasoning. To do so, the performances of children with high and low visuospatial abilities were directly compared on different spatial tasks (the line bisection and Simon tasks) and numerical tasks (the number bisection, number-to-position, and numerical comparison tasks). Children from the low visuospatial group presented the classic Simon and SNARC (spatial numerical association of response codes) effects but showed larger deviation errors as compared with the high visuospatial group. Our results, therefore, demonstrated that low visuospatial abilities did not change the nature of the mental number line but rather led to a decrease in its accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
A study of numerical methods for hyperbolic conservation laws with stiff source terms
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Yee, H. C.
1988-01-01
The proper modeling of nonequilibrium gas dynamics is required in certain regimes of hypersonic flow. For inviscid flow this gives a system of conservation laws coupled with source terms representing the chemistry. Often a wide range of time scales is present in the problem, leading to numerical difficulties as in stiff systems of ordinary differential equations. Stability can be achieved by using implicit methods, but other numerical difficulties are observed. The behavior of typical numerical methods on a simple advection equation with a parameter-dependent source term was studied. Two approaches to incorporate the source term were utilized: MacCormack type predictor-corrector methods with flux limiters, and splitting methods in which the fluid dynamics and chemistry are handled in separate steps. Various comparisons over a wide range of parameter values were made. In the stiff case where the solution contains discontinuities, incorrect numerical propagation speeds are observed with all of the methods considered. This phenomenon is studied and explained.
Comprehensive study of numerical anisotropy and dispersion in 3-D TLM meshes
NASA Astrophysics Data System (ADS)
Berini, Pierre; Wu, Ke
1995-05-01
This paper presents a comprehensive analysis of the numerical anisotropy and dispersion of 3-D TLM meshes constructed using several generalized symmetrical condensed TLM nodes. The dispersion analysis is performed in isotropic lossless, isotropic lossy and anisotropic lossless media and yields a comparison of the simulation accuracy for the different TLM nodes. The effect of mesh grading on the numerical dispersion is also determined. The results compare meshes constructed with Johns' symmetrical condensed node (SCN), two hybrid symmetrical condensed nodes (HSCN) and two frequency domain symmetrical condensed nodes (FDSCN). It has been found that under certain circumstances, the time domain nodes may introduce numerical anisotropy when modelling isotropic media.
Partial differential equations of 3D boundary layer and their numerical solutions in turbomachinery
NASA Astrophysics Data System (ADS)
Zhang, Guoqing; Hua, Yaonan; Wu, Chung-Hua
1991-08-01
This paper studies the 3D boundary layer equations (3DBLE) and their numerical solutions in turbomachinery: (1) the general form of 3DBLE in turbomachines with rotational and curvature effects are derived under the semiorthogonal coordinate system, in which the normal pressure gradient is not equal to zero; (2) the method of solution of the 3DBLE is discussed; (3) the 3D boundary layers on the rotating blade surface, IGV endwall, rotor endwall (with a relatively moving boundary) are numerically solved, and the predicted data correlates well with the measured data; and (4) the comparison is made between the numerical results of 3DBLE with and without normal pressure gradient.
Wind shear over the Nice Côte d'Azur airport: case studies
NASA Astrophysics Data System (ADS)
Boilley, A.; Mahfouf, J.-F.
2013-09-01
The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating an horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.
Wind shear over the Nice Côte d'Azur airport: case studies
NASA Astrophysics Data System (ADS)
Boilley, A.; Mahfouf, J.-F.
2013-04-01
The Nice Côte d'Azur international airport is subject to horizontal low-level wind shears. Detecting and predicting these hazards is a major concern for aircraft security. A measurement campaign took place over the Nice airport in 2009 including 4 anemometers, 1 wind lidar and 1 wind profiler. Two wind shear events were observed during this measurement campaign. Numerical simulations were carried out with Meso-NH in a configuration compatible with near-real time applications to determine the ability of the numerical model to predict these events and to study the meteorological situations generating a horizontal wind shear. A comparison between numerical simulation and the observation dataset is conducted in this paper.
Ansari, Daniel; Dhital, Bibek
2006-11-01
Numerical magnitude processing is an essential everyday skill. Functional brain imaging studies with human adults have repeatedly revealed that bilateral regions of the intraparietal sulcus are correlated with various numerical and mathematical skills. Surprisingly little, however, is known about the development of these brain representations. In the present study, we used functional neuroimaging to compare the neural correlates of nonsymbolic magnitude judgments between children and adults. Although behavioral performance was similar across groups, in comparison to the group of children the adult participants exhibited greater effects of numerical distance on the left intraparietal sulcus. Our findings are the first to reveal that even the most basic aspects of numerical cognition are subject to age-related changes in functional neuroanatomy. We propose that developmental impairments of number may be associated with atypical specialization of cortical regions underlying magnitude processing.
Numerical developments for short-pulsed Near Infra-Red laser spectroscopy. Part I: direct treatment
NASA Astrophysics Data System (ADS)
Boulanger, Joan; Charette, André
2005-03-01
This two part study is devoted to the numerical treatment of short-pulsed laser near infra-red spectroscopy. The overall goal is to address the possibility of numerical inverse treatment based on a recently developed direct model to solve the transient radiative transfer equation. This model has been constructed in order to incorporate the last improvements in short-pulsed laser interaction with semi-transparent media and combine a discrete ordinates computing of the implicit source term appearing in the radiative transfer equation with an explicit treatment of the transport of the light intensity using advection schemes, a method encountered in reactive flow dynamics. The incident collimated beam is analytically solved through Bouger Beer Lambert extinction law. In this first part, the direct model is extended to fully non-homogeneous materials and tested with two different spatial schemes in order to be adapted to the inversion methods presented in the following second part. As a first point, fundamental methods and schemes used in the direct model are presented. Then, tests are conducted by comparison with numerical simulations given as references. In a third and last part, multi-dimensional extensions of the code are provided. This allows presentation of numerical results of short pulses propagation in 1, 2 and 3D homogeneous and non-homogeneous materials given some parametrical studies on medium properties and pulse shape. For comparison, an integral method adapted to non-homogeneous media irradiated by a pulsed laser beam is also developed for the 3D case.
NASA Astrophysics Data System (ADS)
Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Shoemaker, Deirdre; Lovelace, Geoffrey; Scheel, Mark; Ossokine, Serguei
2016-03-01
In this talk, we describe a procedure to reconstruct the parameters of sufficiently massive coalescing compact binaries via direct comparison with numerical relativity simulations. For sufficiently massive sources, existing numerical relativity simulations are long enough to cover the observationally accessible part of the signal. Due to the signal's brevity, the posterior parameter distribution it implies is broad, simple, and easily reconstructed from information gained by comparing to only the sparse sample of existing numerical relativity simulations. We describe how followup simulations can corroborate and improve our understanding of a detected source. Since our method can include all physics provided by full numerical relativity simulations of coalescing binaries, it provides a valuable complement to alternative techniques which employ approximations to reconstruct source parameters. Supported by NSF Grant PHY-1505629.
NASA Technical Reports Server (NTRS)
Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.
2010-01-01
A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).
A numerical study of shock wave reflections on low density foam
NASA Astrophysics Data System (ADS)
Baer, M. R.
1992-06-01
A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.
NASA Technical Reports Server (NTRS)
Hah, Chunill; Reid, Lonnie
1991-01-01
A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.
NASA Technical Reports Server (NTRS)
Spence, Peter L.
1987-01-01
This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.
Research study on stabilization and control: Modern sampled data control theory
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.; Yackel, R. A.
1973-01-01
A numerical analysis of spacecraft stability parameters was conducted. The analysis is based on a digital approximation by point by point state comparison. The technique used is that of approximating a continuous data system by a sampled data model by comparison of the states of the two systems. Application of the method to the digital redesign of the simplified one axis dynamics of the Skylab is presented.
The power spectrum of solar convection flows from high-resolution observations and 3D simulations
NASA Astrophysics Data System (ADS)
Yelles Chaouche, L.; Moreno-Insertis, F.; Bonet, J. A.
2014-03-01
Context. Understanding solar surface magnetoconvection requires the study of the Fourier spectra of the velocity fields. Nowadays, observations are available that resolve very small spatial scales, well into the subgranular range, almost reaching the scales routinely resolved in numerical magnetoconvection simulations. Comparison of numerical and observational data at present can provide an assessment of the validity of the observational proxies. Aims: Our aims are: (1) to obtain Fourier spectra for the photospheric velocity fields using the spectropolarimetric observations with the highest spatial resolution so far (~120 km), thus reaching for the first time spatial scales well into the subgranular range; (2) to calculate corresponding Fourier spectra from realistic 3D numerical simulations of magnetoconvection and carry out a proper comparison with their observational counterparts considering the residual instrumental degradation in the observational data; and (3) to test the observational proxies on the basis of the numerical data alone, by comparing the actual velocity field in the simulations with synthetic observations obtained from the numerical boxes. Methods: (a) For the observations, data from the SUNRISE/IMaX spectropolarimeter are used. (b) For the simulations, we use four series of runs obtained with the STAGGER code for different average signed vertical magnetic field values (0, 50, 100, and 200 G). Spectral line profiles are synthesized from the numerical boxes for the same line observed by IMaX (Fe I 5250.2 Å) and degraded to match the performance of the IMaX instrument. Proxies for the velocity field are obtained via Dopplergrams (vertical component) and local correlation tracking (LCT, for the horizontal component). Fourier power spectra are calculated and a comparison between the synthetic and observational data sets carried out. (c) For the internal comparison of the numerical data, velocity values on constant optical depth surfaces are used instead of on horizontal planes. Results: A very good match between observational and simulated Fourier power spectra is obtained for the vertical velocity data for scales between 200 km and 6 Mm. Instead, a clear vertical shift is obtained when the synthetic observations are not degraded to emulate the degradation in the IMaX data. The match for the horizontal velocity data is much less impressive because of the inaccuracies of the LCT procedure. Concerning the internal comparison of the direct velocity values of the numerical boxes with those from the synthetic observations, a high correlation (0.96) is obtained for the vertical component when using the velocity values on the log τ500 = -1 surface in the box. The corresponding Fourier spectra are near each other. A lower maximum correlation (0.5) is reached (at log τ500 = 0) for the horizontal velocities as a result of the coarseness of the LCT procedure. Correspondingly, the Fourier spectra for the LCT-determined velocities is well below that from the actual velocity components. Conclusions: As measured by the Fourier spectra, realistic numerical simulations of surface magnetoconvection provide a very good match to the observational proxies for the photospheric velocity fields at least on scales from several Mm down to around 200 km. Taking into account the spatial and spectral instrumental blurring is essential for the comparison between simulations and observations. Dopplergrams are an excellent proxy for the vertical velocities on constant-τ isosurfaces, while LCT is a much less reliable method of determining the horizontal velocities.
How the Geothermal Community Upped the Game for Computer Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Geothermal Technologies Office Code Comparison Study brought 11 research institutions together to collaborate on coupled thermal, hydrologic, geomechanical, and geochemical numerical simulators. These codes have the potential to help facilitate widespread geothermal energy development.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.; Strazisar, Anthony J.; Wood, Jerry R,; Hathaway, Michael D.; Okiishi, Theodore H.
2000-01-01
The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
NASA Astrophysics Data System (ADS)
Latiff, Nur Amalina Abdul; Yahya, Elisa; Ismail, Ahmad Izani Md.; Amirsom, Ardiana; Basir, Faisal
2017-08-01
An analysis is carried out to study the steady mixed convective boundary layer flow of a nanofluid in a Darcian porous media with microorganisms past a vertical stretching/shrinking sheet. Heat generation/absorption and chemical reaction effects are incorporated in the model. The partial differential equations are transformed into a system of ordinary differential equations by using similarity transformations generated by scaling group transformations. The transformed equations with boundary conditions are solved numerically. The effects of controlling parameters such as velocity slip, Darcy number, heat generation/absorption and chemical reaction on the skin friction factor, heat transfer, mass transfer and microorganism transfer are shown and discuss through graphs. Comparison of numerical solutions in the present study with the previous existing results in literature are made and comparison results are in very good agreement.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1991-01-01
Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given.
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert
2017-08-01
The ability to compare symbolic numerical magnitudes correlates with children's concurrent and future mathematics achievement. We developed and evaluated a quick timed paper-and-pencil measure that can easily be used, for example in large-scale research, in which children have to cross out the numerically larger of two Arabic one- and two-digit numbers (SYMP Test). We investigated performance on this test in 1,588 primary school children (Grades 1-6) and examined in each grade its associations with mathematics achievement. The SYMP Test had satisfactory test-retest reliability. The SYMP Test showed significant and stable correlations with mathematics achievement for both one-digit and two-digit comparison, across all grades. This replicates the previously observed association between symbolic numerical magnitude processing and mathematics achievement, but extends it by showing that the association is observed in all grades in primary education and occurs for single- as well as multi-digit processing. Children with mathematical learning difficulties performed significantly lower on one-digit comparison and two-digit comparison in all grades. This all suggests satisfactory construct and criterion-related validity of the SYMP Test, which can be used in research, when performing large-scale (intervention) studies, and by practitioners, as screening measure to identify children at risk for mathematical difficulties or dyscalculia.
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
A numerical study of the temperature field in a cooled radial turbine rotor
NASA Technical Reports Server (NTRS)
Hamed, A.; Baskharone, E.; Tabakoff, W.
1977-01-01
The three dimensional temperature distribution in the cooled rotor of a radial inflow turbine is determined numerically using the finite element method. Through this approach, the complicated geometries of the hot rotor and coolant passage surfaces are handled easily, and the temperatures are determined without loss of accuracy at these convective boundaries. Different cooling techniques with given coolant to primary flow ratios are investigated, and the corresponding rotor temperature fields are presented for comparison.
Krajcsi, Attila; Lengyel, Gábor; Kojouharova, Petia
2018-01-01
HIGHLIGHTS We test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems. Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS) working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation. PMID:29491845
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zegeling, Paul Andries
2017-09-01
Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
Numerical implementation of the S-matrix algorithm for modeling of relief diffraction gratings
NASA Astrophysics Data System (ADS)
Yaremchuk, Iryna; Tamulevičius, Tomas; Fitio, Volodymyr; Gražulevičiūte, Ieva; Bobitski, Yaroslav; Tamulevičius, Sigitas
2013-11-01
A new numerical implementation is developed to calculate the diffraction efficiency of relief diffraction gratings. In the new formulation, vectors containing the expansion coefficients of electric and magnetic fields on boundaries of the grating layer are expressed by additional constants. An S-matrix algorithm has been systematically described in detail and adapted to a simple matrix form. This implementation is suitable for the study of optical characteristics of periodic structures by using modern object-oriented programming languages and different standard mathematical software. The modeling program has been developed on the basis of this numerical implementation and tested by comparison with other commercially available programs and experimental data. Numerical examples are given to show the usefulness of the new implementation.
Integral abutment bridges under thermal loading : numerical simulations and parametric study.
DOT National Transportation Integrated Search
2016-06-01
Integral abutment bridges (IABs) have become of interest due to their decreased construction and maintenance costs in : comparison to conventional jointed bridges. Most prior IAB research was related to substructure behavior, and, as a result, most :...
Classical problems in computational aero-acoustics
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1996-01-01
In relation to the expected problems in the development of computational aeroacoustics (CAA), the preliminary applications were to classical problems where the known analytical solutions could be used to validate the numerical results. Such comparisons were used to overcome the numerical problems inherent in these calculations. Comparisons were made between the various numerical approaches to the problems such as direct simulations, acoustic analogies and acoustic/viscous splitting techniques. The aim was to demonstrate the applicability of CAA as a tool in the same class as computational fluid dynamics. The scattering problems that occur are considered and simple sources are discussed.
A comparison of control strategies for wave energy converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.
In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less
A comparison of control strategies for wave energy converters
Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.; ...
2017-11-15
In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less
NASA Technical Reports Server (NTRS)
Hou, Jean W.; Sheen, Jeen S.
1987-01-01
The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity.
Effects of symbol type and numerical distance on the human event-related potential.
Jiang, Ting; Qiao, Sibing; Li, Jin; Cao, Zhongyu; Gao, Xuefei; Song, Yan; Xue, Gui; Dong, Qi; Chen, Chuansheng
2010-01-01
This study investigated the influence of the symbol type and numerical distance of numbers on the amplitudes and peak latencies of event-related potentials (ERPs). Our aim was to (1) determine the point in time of magnitude information access in visual number processing; and (2) identify at what stage the advantage of Arabic digits over Chinese verbal numbers occur. ERPs were recorded from 64 scalp sites while subjects (n=26) performed a classification task. Results showed that larger ERP amplitudes were elicited by numbers with distance-close condition in comparison to distance-far condition in the VPP component over centro-frontal sites. Furthermore, the VPP latency varied as a function of the symbol type, but the N170 did not. Such results demonstrate that magnitude information access takes place as early as 150 ms after onset of visual number stimuli and the advantage of Arabic digits over verbal numbers should be localized to the VPP component. We establish the VPP component as a critical ERP component to report in studies of numerical cognition and our results call into question the N170/VPP association hypothesis and the serial-stage model of visual number comparison processing.
COMPARISON OF NUMERICAL SCHEMES FOR SOLVING A SPHERICAL PARTICLE DIFFUSION EQUATION
A new robust iterative numerical scheme was developed for a nonlinear diffusive model that described sorption dynamics in spherical particle suspensions. he numerical scheme had been applied to finite difference and finite element models that showed rapid convergence and stabilit...
Numerical simulation of KdV equation by finite difference method
NASA Astrophysics Data System (ADS)
Yokus, A.; Bulut, H.
2018-05-01
In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.
Simulation and Experimental Study on Cavitating Water Jet Nozzle
NASA Astrophysics Data System (ADS)
Zhou, Wei; He, Kai; Cai, Jiannan; Hu, Shaojie; Li, Jiuhua; Du, Ruxu
2017-01-01
Cavitating water jet technology is a new kind of water jet technology with many advantages, such as energy-saving, efficient, environmentally-friendly and so on. Based on the numerical simulation and experimental verification in this paper, the research on cavitating nozzle has been carried out, which includes comparison of the cleaning ability of the cavitating jet and the ordinary jet, and comparison of cavitation effects of different structures of cavitating nozzles.
Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oran, E.S.; Boris, J.P.
1991-01-01
Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert
2016-01-01
In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
Comparison of bulk sediment and sediment elutriate toxicity testing methods
Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers.
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation.
Huber, Stefan; Nuerk, Hans-Christoph; Reips, Ulf-Dietrich; Soltanlou, Mojtaba
2017-12-23
Symbolic magnitude comparison is one of the most well-studied cognitive processes in research on numerical cognition. However, while the cognitive mechanisms of symbolic magnitude processing have been intensively studied, previous studies have paid less attention to individual differences influencing symbolic magnitude comparison. Employing a two-digit number comparison task in an online setting, we replicated previous effects, including the distance effect, the unit-decade compatibility effect, and the effect of cognitive control on the adaptation to filler items, in a large-scale study in 452 adults. Additionally, we observed that the most influential individual differences were participants' first language, time spent playing computer games and gender, followed by reported alcohol consumption, age and mathematical ability. Participants who used a first language with a left-to-right reading/writing direction were faster than those who read and wrote in the right-to-left direction. Reported playing time for computer games was correlated with faster reaction times. Female participants showed slower reaction times and a larger unit-decade compatibility effect than male participants. Participants who reported never consuming alcohol showed overall slower response times than others. Older participants were slower, but more accurate. Finally, higher grades in mathematics were associated with faster reaction times. We conclude that typical experiments on numerical cognition that employ a keyboard as an input device can also be run in an online setting. Moreover, while individual differences have no influence on domain-specific magnitude processing-apart from age, which increases the decade distance effect-they generally influence performance on a two-digit number comparison task.
Validation and Performance Comparison of Numerical Codes for Tsunami Inundation
NASA Astrophysics Data System (ADS)
Velioglu, D.; Kian, R.; Yalciner, A. C.; Zaytsev, A.
2015-12-01
In inundation zones, tsunami motion turns from wave motion to flow of water. Modelling of this phenomenon is a complex problem since there are many parameters affecting the tsunami flow. In this respect, the performance of numerical codes that analyze tsunami inundation patterns becomes important. The computation of water surface elevation is not sufficient for proper analysis of tsunami behaviour in shallow water zones and on land and hence for the development of mitigation strategies. Velocity and velocity patterns are also crucial parameters and have to be computed at the highest accuracy. There are numerous numerical codes to be used for simulating tsunami inundation. In this study, FLOW 3D and NAMI DANCE codes are selected for validation and performance comparison. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. FLOW 3D is used specificaly for flood problems. NAMI DANCE uses finite difference computational method to solve linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In this study, these codes are validated and their performances are compared using two benchmark problems which are discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. One of the problems is an experiment of a single long-period wave propagating up a piecewise linear slope and onto a small-scale model of the town of Seaside, Oregon. Other benchmark problem is an experiment of a single solitary wave propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. All results are presented with discussions and comparisons. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)
The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Li, Yuexing
2016-11-01
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.
THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less
Modal method for Second Harmonic Generation in nanostructures
NASA Astrophysics Data System (ADS)
Héron, S.; Pardo, F.; Bouchon, P.; Pelouard, J.-L.; Haïdar, R.
2015-05-01
Nanophotonic devices show interesting features for nonlinear response enhancement but numerical tools are mandatory to fully determine their behaviour. To address this need, we present a numerical modal method dedicated to nonlinear optics calculations under the undepleted pump approximation. It is brie y explained in the frame of Second Harmonic Generation for both plane waves and focused beams. The nonlinear behaviour of selected nanostructures is then investigated to show comparison with existing analytical results and study the convergence of the code.
Comparison of Implicit Collocation Methods for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)
2001-01-01
We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.
Modelling crystal growth: Convection in an asymmetrically heated ampoule
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Rosenberger, Franz; Pulicani, J. P.; Krukowski, S.; Ouazzani, Jalil
1990-01-01
The objective was to develop and implement a numerical method capable of solving the nonlinear partial differential equations governing heat, mass, and momentum transfer in a 3-D cylindrical geometry in order to examine the character of convection in an asymmetrically heated cylindrical ampoule. The details of the numerical method, including verification tests involving comparison with results obtained from other methods, are presented. The results of the study of 3-D convection in an asymmetrically heated cylinder are described.
Benchmark Problems of the Geothermal Technologies Office Code Comparison Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Podgorney, Robert; Kelkar, Sharad M.
A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office has sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulationmore » capabilities to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. Study participants submitted solutions to problems for which their simulation tools were deemed capable or nearly capable. Some participating codes were originally developed for EGS applications whereas some others were designed for different applications but can simulate processes similar to those in EGS. Solution submissions from both were encouraged. In some cases, participants made small incremental changes to their numerical simulation codes to address specific elements of the problem, and in other cases participants submitted solutions with existing simulation tools, acknowledging the limitations of the code. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application of modern numerical simulation tools by recognized expert practitioners.« less
Lonnemann, Jan; Li, Su; Zhao, Pei; Li, Peng; Linkersdörfer, Janosch; Lindberg, Sven; Hasselhorn, Marcus; Yan, Song
2017-01-01
Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills. PMID:28384191
A numerical and experimental study of confined swirling jets
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.
1989-01-01
A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.
Olino, Thomas M; Benini, Laura; Icenogle, Grace; Wilson, Sylia; Klein, Daniel N; Seeley, John R; Lewinsohn, Peter M
2017-08-01
Numerous studies have focused on characterizing personality differences between individuals with and without psychopathology. For drawing valid conclusions for these comparisons, the personality instruments used must demonstrate psychometric equivalence. However, we are unaware of any studies that examine measurement invariance in personality across individuals with and without psychopathology. This study conducted tests of measurement invariance for positive emotionality, negative emotionality, and disinhibition across individuals with and without histories of depressive, anxiety, and substance use disorders. We found consistent evidence that positive emotionality, negative emotionality, and disinhibition were assessed equivalently across all comparisons with each demonstrating strict invariance. Overall, results suggest that comparisons of personality measures between diagnostic groups satisfy the assumption of measurement invariance and these scales represent the same psychological constructs. Thus, mean-level comparisons across these groups are valid tests.
NASA Astrophysics Data System (ADS)
Mourid, Amina; El Alami, Mustapha
2018-05-01
In this paper, we present a comparative thermal study of the usual insulation materials used in the building as well as the innovate one like phase change materials (PCMs). Both experimental study and numerical approach were applied in this work for summer season. In the experimental study the PCM was installed on the outer surface on the ceiling of one of two full-scale rooms located at FSAC, Casablanca. A simulation model was performed with TRNSYS’17 software. We have established as a criterion of comparison the internal temperatures. An economic study also has been carried out. Based on this latter, that the PCM is most efficient.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
ERIC Educational Resources Information Center
Fong, Lin Siew
2016-01-01
Peer-tutoring sessions of two groups of advanced diploma in financial accounting students with mixed proficiency were analysed thoroughly in this study. Numerous studies in peer tutoring have produced favourable results to both tutors and tutees due to the scaffolding process which promotes effective learning. However, there is a lack of studies…
An interlaboratory comparison of sediment elutriate preparation and toxicity test methods
Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...
NASA Astrophysics Data System (ADS)
Gupta, Diksha; Kumar, Lokendra; Bég, O. Anwar; Singh, Bani
2017-10-01
The objective of this paper is to study theoretically and numerically the effect of thermal radiation on mixed convection boundary layer flow of a dissipative micropolar non-Newtonian fluid from a continuously moving vertical porous sheet. The governing partial differential equations are transformed into a set of non-linear differential equations by using similarity transformations. These equations are solved iteratively with the Bellman-Kalaba quasi-linearization algorithm. This method converges quadratically and the solution is valid for a large range of parameters. The effects of transpiration (suction or injection) parameter, buoyancy parameter, radiation parameter and Eckert number on velocity, microrotation and temperature functions have been studied. Under a special case comparison of the present numerical results is made with the results available in the literature and an excellent agreement is found. Additionally skin friction and rate of heat transfer have also been computed. The study has applications in polymer processing.
An efficient numerical method for solving the Boltzmann equation in multidimensions
NASA Astrophysics Data System (ADS)
Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas
2018-01-01
In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.
Numerical simulation of granular flows : comparison with experimental results
NASA Astrophysics Data System (ADS)
Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.
2003-04-01
Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.
On the remote sensing of cloud properties from satellite infrared sounder data
NASA Technical Reports Server (NTRS)
Yeh, H. Y. M.
1984-01-01
A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.
Burger, Stefan; Fraunholz, Thomas; Leirer, Christian; Hoppe, Ronald H W; Wixforth, Achim; Peter, Malte A; Franke, Thomas
2013-06-25
Phase decomposition in lipid membranes has been the subject of numerous investigations by both experiment and theoretical simulation, yet quantitative comparisons of the simulated data to the experimental results are rare. In this work, we present a novel way of comparing the temporal development of liquid-ordered domains obtained from numerically solving the Cahn-Hilliard equation and by inducing a phase transition in giant unilamellar vesicles (GUVs). Quantitative comparison is done by calculating the structure factor of the domain pattern. It turns out that the decomposition takes place in three distinct regimes in both experiment and simulation. These regimes are characterized by different rates of growth of the mean domain diameter, and there is quantitative agreement between experiment and simulation as to the duration of each regime and the absolute rate of growth in each regime.
NASA Astrophysics Data System (ADS)
Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem
The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.
NASA Astrophysics Data System (ADS)
Safaei Pirooz, Amir A.; Flay, Richard G. J.
2018-03-01
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.
NASA Astrophysics Data System (ADS)
Velioglu Sogut, Deniz; Yalciner, Ahmet Cevdet
2018-06-01
Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ``Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop'' and the ``Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop". The variations between the numerical solutions of these two models are evaluated through statistical error analysis.
Role of sediment transport model to improve the tsunami numerical simulation
NASA Astrophysics Data System (ADS)
Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.
2015-12-01
Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.
2006-01-01
This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
ERIC Educational Resources Information Center
Biekert, Russell
Accompanying the rapid changes in technology has been a greater dependence on automation and numerical control, which has resulted in the need to find ways of preparing programers for industrial machines using numerical control. To compare the hands-on equipment method and a visual media method of teaching numerical control, an experimental and a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
Roth, Bradley J.
2002-09-01
Insidious experimental artifacts and invalid theoretical assumptions complicate the comparison of numerical predictions and observed data. Such difficulties are particularly troublesome when studying electrical stimulation of the heart. During unipolar stimulation of cardiac tissue, the artifacts include nonlinearity of membrane dyes, optical signals blocked by the stimulating electrode, averaging of optical signals with depth, lateral averaging of optical signals, limitations of the current source, and the use of excitation-contraction uncouplers. The assumptions involve electroporation, membrane models, electrode size, the perfusing bath, incorrect model parameters, the applicability of a continuum model, and tissue damage. Comparisons of theory and experiment during far-field stimulation are limited by many of these same factors, plus artifacts from plunge and epicardial recording electrodes and assumptions about the fiber angle at an insulating boundary. These pitfalls must be overcome in order to understand quantitatively how the heart responds to an electrical stimulus. (c) 2002 American Institute of Physics.
Direct numerical simulation of a combusting droplet with convection
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.
Starr, Ariel; DeWind, Nicholas K; Brannon, Elizabeth M
2017-11-01
Numerical acuity, frequently measured by a Weber fraction derived from nonsymbolic numerical comparison judgments, has been shown to be predictive of mathematical ability. However, recent findings suggest that stimulus controls in these tasks are often insufficiently implemented, and the proposal has been made that alternative visual features or inhibitory control capacities may actually explain this relation. Here, we use a novel mathematical algorithm to parse the relative influence of numerosity from other visual features in nonsymbolic numerical discrimination and to examine the strength of the relations between each of these variables, including inhibitory control, and mathematical ability. We examined these questions developmentally by testing 4-year-old children, 6-year-old children, and adults with a nonsymbolic numerical comparison task, a symbolic math assessment, and a test of inhibitory control. We found that the influence of non-numerical features decreased significantly over development but that numerosity was a primary determinate of decision making at all ages. In addition, numerical acuity was a stronger predictor of math achievement than either non-numerical bias or inhibitory control in children. These results suggest that the ability to selectively attend to number contributes to the maturation of the number sense and that numerical acuity, independent of inhibitory control, contributes to math achievement in early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Sun, M. T.; Sakurai, Takashi
1990-01-01
This paper presents a comparison between two numerical methods for the extrapolation of nonlinear force-free magnetic fields, viz the Iterative Method (IM) and the Progressive Extension Method (PEM). The advantages and disadvantages of these two methods are summarized, and the accuracy and numerical instability are discussed. On the basis of this investigation, it is claimed that the two methods do resemble each other qualitatively.
Cohen, Dale J.; Warren, Erin; Blanc-Goldhammer, Daryn
2013-01-01
The sound |faiv| is visually depicted as a written number word “five” and as an Arabic digit “5.” Here, we present four experiments – two quantity same/different experiments and two magnitude comparison experiments – that assess whether auditory number words (|faiv|), written number words (“five”), and Arabic digits (“5”) directly activate one another and/or their associated quantity. The quantity same/different experiments reveal that the auditory number words, written number words, and Arabic digits directly activate one another without activating their associated quantity. That is, there are cross-format physical similarity effects but no numerical distance effects. The cross-format magnitude comparison experiments reveal significant effects of both physical similarity and numerical distance. We discuss these results in relation to the architecture of numerical cognition. PMID:23624377
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
The Size Congruity Effect: Is Bigger Always More?
ERIC Educational Resources Information Center
Santens, Seppe; Verguts, Tom
2011-01-01
When comparing digits of different physical sizes, numerical and physical size interact. For example, in a numerical comparison task, people are faster to compare two digits when their numerical size (the relevant dimension) and physical size (the irrelevant dimension) are congruent than when they are incongruent. Two main accounts have been put…
Wavelet data compression for archiving high-resolution icosahedral model data
NASA Astrophysics Data System (ADS)
Wang, N.; Bao, J.; Lee, J.
2011-12-01
With the increase of the resolution of global circulation models, it becomes ever more important to develop highly effective solutions to archive the huge datasets produced by those models. While lossless data compression guarantees the accuracy of the restored data, it can only achieve limited reduction of data size. Wavelet transform based data compression offers significant potentials in data size reduction, and it has been shown very effective in transmitting data for remote visualizations. However, for data archive purposes, a detailed study has to be conducted to evaluate its impact to the datasets that will be used in further numerical computations. In this study, we carried out two sets of experiments for both summer and winter seasons. An icosahedral grid weather model and a highly efficient wavelet data compression software were used for this study. Initial conditions were compressed and input to the model to run to 10 days. The forecast results were then compared to those forecast results from the model run with the original uncompressed initial conditions. Several visual comparisons, as well as the statistics of numerical comparisons are presented. These results indicate that with specified minimum accuracy losses, wavelet data compression achieves significant data size reduction, and at the same time, it maintains minimum numerical impacts to the datasets. In addition, some issues are discussed to increase the archive efficiency while retaining a complete set of meta data for each archived file.
A Study of Fundamental Shock Noise Mechanisms
NASA Technical Reports Server (NTRS)
Meadows, Kristine R.
1997-01-01
This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Zhang, Lei; Wang, Yuan
2017-10-01
In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.
A Comparison of the Intellectual Abilities of Good and Poor Problem Solvers: An Exploratory Study.
ERIC Educational Resources Information Center
Meyer, Ruth Ann
This study examined a selected sample of fourth-grade students who had been previously identified as good or poor problem solvers. The pupils were compared on variables considered as "reference tests" for Verbal, Induction, Numerical, Word Fluency, Memory, Spatial Visualization, and Perceptual Speed abilities. The data were compiled to…
ERIC Educational Resources Information Center
Rehberg, Robb S.; Gazzillo Diaz, Linda; Middlemas, David A.
2009-01-01
Objective: The objective of this study was to determine whether computer-based CPR training is comparable to traditional classroom training. Design and Setting: This study was quantitative in design. Data was gathered from a standardized examination and skill performance evaluation which yielded numerical scores. Subjects: The subjects were 64…
Case study comparison of two pellet heating facilities in southeastern Alaska
David Nicholls; Allen Brackley; Robert Deering; Daniel Parrent; Brian Kleinhenz; Craig. Moore
2016-01-01
Over the past decade, wood-energy use in Alaska has grown dramatically. Since 2000, several dozen new wood-energy installations have been established, with numerous others in the design or construction phase. This case study report compares two wood-pellet heating systems in Juneau, Alaska. The Tlingit-Haida Regional Housing Authority, a native housing authority that...
Numerical studies of laminar and turbulent drag reduction, part 2
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Orszag, S. A.
1983-01-01
The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.
Validation of numerical models for flow simulation in labyrinth seals
NASA Astrophysics Data System (ADS)
Frączek, D.; Wróblewski, W.
2016-10-01
CFD results were compared with the results of experiments for the flow through the labyrinth seal. RANS turbulence models (k-epsilon, k-omega, SST and SST-SAS) were selected for the study. Steady and transient results were analyzed. ANSYS CFX was used for numerical computation. The analysis included flow through sealing section with the honeycomb land. Leakage flows and velocity profiles in the seal were compared. In addition to the comparison of computational models, the divergence of modeling and experimental results has been determined. Tips for modeling these problems were formulated.
Near Field Trailing Edge Tone Noise Computation
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2002-01-01
Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.
Computation of Nonlinear Backscattering Using a High-Order Numerical Method
NASA Technical Reports Server (NTRS)
Fibich, G.; Ilan, B.; Tsynkov, S.
2001-01-01
The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.
Catalytic Isonitrile Insertions and Condensations Initiated by RNC–X Complexation
Fleming, Fraser F.
2014-01-01
Isonitriles are delicately poised chemical entities capable of being coaxed to react as nucleophiles or electrophiles. Directing this tunable reactivity with metal and non-metal catalysts provides rapid access to a large array of complex nitrogenous structures ideally functionalized for medicinal applications. Isonitrile insertion into transition metal complexes has featured in numerous synthetic and mechanistic studies, leading to rapid deployment of isonitriles in numerous catalytic processes, including multicomponent reactions (MCR). Covering the literature from 1990–2014, the present review collates reaction types to highlight reactivity trends and allow catalyst comparison. PMID:25484847
Flow Structures and Efficiency of Swimming Fish school: Numerical Study
NASA Astrophysics Data System (ADS)
Yatagai, Yuzuru; Hattori, Yuji
2013-11-01
The flow structure and energy-saving mechanism in fish school is numerically investigated by using the volume penalization method. We calculate the various patterns of configuration of fishes and investigate the relation between spatial arrangement and the performance of fish. It is found that the down-stream fish gains a hydrodynamic advantage from the upstream wake shed by the upstream fish. The most efficient configuration is that the downstream fish is placed in the wake. It reduces the drag force of the downstream fish in comparison with that in solo swimming.
1994-08-01
n.m.) (11 -km) grid of the Pacific Ocean between latitude 20ON to 60WN and longi- tude 1 10*W to 200*W using the WIS deepwater numerical model DWAVE ...represents a wave travelling towards the north). Comparisons with the DWAVE wind and wave results (Tracy and Payne 1990) were made with NOAA buoy...hindcast using the WIS numerical model DWAVE to the deepwater depth corresponding to the location of the NOAA buoy. Directional spectral infor- mation was
Leakage flow simulation in a specific pump model
NASA Astrophysics Data System (ADS)
Dupont, P.; Bayeul-Lainé, A. C.; Dazin, A.; Bois, G.; Roussette, O.; Si, Q.
2014-03-01
This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.
Multiple comparisons in drug efficacy studies: scientific or marketing principles?
Leo, Jonathan
2004-01-01
When researchers design an experiment to compare a given medication to another medication, a behavioral therapy, or a placebo, the experiment often involves numerous comparisons. For instance, there may be several different evaluation methods, raters, and time points. Although scientifically justified, such comparisons can be abused in the interests of drug marketing. This article provides two recent examples of such questionable practices. The first involves the case of the arthritis drug celecoxib (Celebrex), where the study lasted 12 months but the authors only presented 6 months of data. The second case involves the NIMH Multimodal Treatment Study (MTA) study evaluating the efficacy of stimulant medication for attention-deficit hyperactivity disorder where ratings made by several groups are reported in contradictory fashion. The MTA authors have not clarified the confusion, at least in print, suggesting that the actual findings of the study may have played little role in the authors' reported conclusions.
Numerical and experimental studies of hydrodynamics of flapping foils
NASA Astrophysics Data System (ADS)
Zhou, Kai; Liu, Jun-kao; Chen, Wei-shan
2018-04-01
The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.
NASA Astrophysics Data System (ADS)
Lee, Bo Mi; Loh, Kenneth J.
2017-04-01
Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.
Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM
NASA Astrophysics Data System (ADS)
Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin
2017-08-01
Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.
Comparison of deterministic and stochastic methods for time-dependent Wigner simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Sihong, E-mail: sihong@math.pku.edu.cn; Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg
2015-11-01
Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution ofmore » a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.« less
A comparison between GO/aperture-field and physical-optics methods for offset reflectors
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1984-01-01
Both geometrical optics (GO)/aperture-field and physical-optics (PO) methods are used extensively in the diffraction analysis of offset parabolic and dual reflectors. An analytical/numerical comparative study is performed to demonstrate the limitations of the GO/aperture-field method for accurately predicting the sidelobe and null positions and levels. In particular, it is shown that for offset parabolic reflectors and for feeds located at the focal point, the predicted far-field patterns (amplitude) by the GO/aperture-field method will always be symmetric even in the offset plane. This, of course, is inaccurate for the general case and it is shown that the physical-optics method can result in asymmetric patterns for cases in which the feed is located at the focal point. Representative numerical data are presented and a comparison is made with available measured data.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
Calculations of turbulent separated flows
NASA Technical Reports Server (NTRS)
Zhu, J.; Shih, T. H.
1993-01-01
A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.
A VAS-numerical model impact study using the Gal-Chen variational approach
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.
1987-01-01
A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.
Comparison between Conduction and Convection Effects on Self-Heating in Doped Microcantilevers
Ansari, Mohd Zahid; Cho, Chongdu
2012-01-01
The present study investigates the effects of thermal conduction and convection on self-heating temperatures and bimetallic deflections produced in doped microcantilever sensors. These cantilevers are commonly used as sensors and actuators in microsystems. The cantilever is a monolith, multi-layer structure with a thin U-shaped element inside. The cantilever substrate is made of silicon and silicon dioxide, respectively, and the element is p-doped silicon. A numerical analysis package (ANSYS) is used to study the effect of cantilever substrate material, element width, applied voltage and the operating environments on cantilever characteristics. The numerical results for temperature are compared against their analytical models. Results indicate the numerical results are accurate within 6% of analytical, and Si/Si cantilevers are more suitable for biosensors and AFM, whereas, Si/SiO2 are for hotplates and actuators applications. PMID:22438736
Analysis of close encounters with Ganymede and Callisto using a genetic n-body algorithm
NASA Astrophysics Data System (ADS)
Winter, Philip M.; Galiazzo, Mattia A.; Maindl, Thomas I.
2018-05-01
In this work we describe a genetic algorithm which is used in order to study orbits of minor bodies in the frames of close encounters. We find that the algorithm in combination with standard orbital numerical integrators can be used as a good proxy for finding typical orbits of minor bodies in close encounters with planets and even their moons, saving a lot of computational time compared t0 long-term orbital numerical integrations. Here, we study close encounters of Centaurs with Callisto and Ganymede in particular. We also perform n-body numerical simulations for comparison. We find typical impact velocities to be between v rel = 20[v esc ] and v rel = 30[v esc ] for Ganymede and between v rel = 25[v esc ] and v rel = 35[v esc ] for Callisto.
Lourenco, Stella F; Bonny, Justin W
2017-07-01
A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises questions about whether the non-symbolic basis of mathematical thinking is unique to numerical magnitude. Here we examined this issue in 5- and 6-year-old children using comparison tasks of non-symbolic number arrays and cumulative area as well as standardized tests of math competence. One set of findings revealed that scores on both magnitude comparison tasks were modulated by ratio, consistent with shared analog format. Moreover, scores on these tasks were moderately correlated, suggesting overlap in the precision of numerical and non-numerical magnitudes, as expected under a general magnitude system. Another set of findings revealed that the precision of both types of magnitude contributed shared and unique variance to the same math measures (e.g. calculation and geometry), after accounting for age and verbal competence. These findings argue against an exclusive role for non-symbolic number in supporting early mathematical understanding. Moreover, they suggest that mathematical understanding may be rooted in a general system of magnitude representation that is not specific to numerical magnitude but that also encompasses non-numerical magnitude. © 2016 John Wiley & Sons Ltd.
Numerical methods for multi-scale modeling of non-Newtonian flows
NASA Astrophysics Data System (ADS)
Symeonidis, Vasileios
This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic simulations assume bead-spring representations of polymer chains and investigate different integrating schemes of the DPD equations and different intra-polymer force combinations. (1) A novel family of time-staggered integrators is presented, taking advantage of the time-scale disparity between polymer-solvent and solvent-solvent interactions. Convergence tests for relaxation parameters for the velocity-Verlet and Lowe's schemes are presented. (2) Wormlike chains simulating lambda- DNA molecules subject to constant shear are studied, and direct comparison with Brownian Dynamics and experimental results is made. The effect of the number of beads per chain is examined through the extension autocorrelation function. (3) The Schmidt number (Sc) for each numerical scheme is investigated and the dependence on the scheme's parameters is shown. Re-visiting the wormlike chain problem under shear, we recover a better agreement with the experimental data through proper adjustment of Sc.
Visual Form Perception Can Be a Cognitive Correlate of Lower Level Math Categories for Teenagers
Cui, Jiaxin; Zhang, Yiyun; Cheng, Dazhi; Li, Dawei; Zhou, Xinlin
2017-01-01
Numerous studies have assessed the cognitive correlates of performance in mathematics, but little research has been conducted to systematically examine the relations between visual perception as the starting point of visuospatial processing and typical mathematical performance. In the current study, we recruited 223 seventh graders to perform a visual form perception task (figure matching), numerosity comparison, digit comparison, exact computation, approximate computation, and curriculum-based mathematical achievement tests. Results showed that, after controlling for gender, age, and five general cognitive processes (choice reaction time, visual tracing, mental rotation, spatial working memory, and non-verbal matrices reasoning), visual form perception had unique contributions to numerosity comparison, digit comparison, and exact computation, but had no significant relation with approximate computation or curriculum-based mathematical achievement. These results suggest that visual form perception is an important independent cognitive correlate of lower level math categories, including the approximate number system, digit comparison, and exact computation. PMID:28824513
Representation of numerical magnitude in math-anxious individuals.
Colomé, Àngels
2018-01-01
Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.
ERIC Educational Resources Information Center
Lyons, Ian M.; Ansari, Daniel; Beilock, Sian L.
2012-01-01
Are numerals estranged from a sense of the actual quantities they represent? We demonstrate that, irrespective of numerical size or distance, direct comparison of the relative quantities represented by symbolic and nonsymbolic formats leads to performance markedly worse than when comparing 2 nonsymbolic quantities (Experiment 1). Experiment 2…
Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images
2009-12-01
Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design
Estimating neighborhood variability with a binary comparison matrix.
Murphy, D.L.
1985-01-01
A technique which utilizes a binary comparison matrix has been developed to implement a neighborhood function for a raster format data base. The technique assigns an index value to the center pixel of 3- by 3-pixel neighborhoods. The binary comparison matrix provides additional information not found in two other neighborhood variability statistics; the function is sensitive to both the number of classes within the neighborhood and the frequency of pixel occurrence in each of the classes. Application of the function to a spatial data base from the Kenai National Wildlife Refuge, Alaska, demonstrates 1) the numerical distribution of the index values, and 2) the spatial patterns exhibited by the numerical values. -Author
MOCCA code for star cluster simulation: comparison with optical observations using COCOA
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz
2016-02-01
We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
1991-01-01
Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.
Soltész, Fruzsina; Szucs, Dénes; Szucs, Lívia
2010-02-18
The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others, that a rather domain general magnitude representation provides the later basis for a specialized representation of numerical magnitudes. For this representational specialization, the acquisition of the concept of abstract numbers, together with the development of other cognitive abilities, is indispensable.
2010-01-01
Background The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. Methods The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Results and discussion Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. Conclusion We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others, that a rather domain general magnitude representation provides the later basis for a specialized representation of numerical magnitudes. For this representational specialization, the acquisition of the concept of abstract numbers, together with the development of other cognitive abilities, is indispensable. PMID:20167066
Basic and Exceptional Calculation Abilities in a Calculating Prodigy: A Case Study.
ERIC Educational Resources Information Center
Pesenti, Mauro; Seron, Xavier; Samson, Dana; Duroux, Bruno
1999-01-01
Describes the basic and exceptional calculation abilities of a calculating prodigy whose performances were investigated in single- and multi-digit number multiplication, numerical comparison, raising of powers, and short-term memory tasks. Shows how his highly efficient long-term memory storage and retrieval processes, knowledge of calculation…
A Comparison of Numerical Problem Solving under Three Types of Calculation Conditions.
ERIC Educational Resources Information Center
Roberts, Dennis M.; Glynn, Shawn M.
1978-01-01
The study reported is the first in a series of investigations designed to empirically test the hypothesis that calculators reduce quantitative working time and increase computational accuracy, and to examine the relative magnitude of benefit that accompanies utilizing calculators compared to manual work. (MN)
USDA-ARS?s Scientific Manuscript database
Aflatoxins are carcinogenic mycotoxins produced by the fungus Aspergillus flavus during infection of various grain crops including maize (Zea mays). Contamination of maize with aflatoxins has been shown to be exasperated by late season drought stress. Previous studies have identified numerous resist...
Integrated research in constitutive modelling at elevated temperatures, part 1
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.
NASA Technical Reports Server (NTRS)
de Groh, Henry C., III; Yao, Minwu
1994-01-01
A numerical and experimental study of the growth of succinonitrile (SCN) using a horizontal Bridginan furnace and transparent glass ampoule was conducted. Two experiments were considered: one in which the temperature profile was fixed relative to the ampoule (no-growth case); and a second in which the thermal profile was translated at a constant rate (steady growth case). Measured temperature profiles on the outer surface of the ampoule were used as thermal boundary conditions for the modelling. The apparent heat capacity formulation combined with the variable viscositymeth was used to model the phase change in SeN. Both 2-D and 3-D models were studied and numerical solutions obtained using the commercial finite element code, FIDAP1. Comparison of the numerical results to experimental data showed excellent agreement. The complex 3-D shallow-cavity flow in the melt, differences between 2-D and 3-D models, effects of natural convection on the thermal gradient and shape of the solid/liquid interface, and the sensitivity of simulations to specific assumptions, are also discussed.
An attempt to make a reliable assessment of the wet steam flow field in the de Laval nozzle
NASA Astrophysics Data System (ADS)
Dykas, Sławomir; Majkut, Mirosław; Smołka, Krystian; Strozik, Michał
2018-02-01
This paper presents the results of research on the wet steam flow with spontaneous condensation in the de Laval nozzle. A comparison is made between the results of numerical modelling performed for two cases of boundary conditions obtained using an in-house CFD code and the Ansys CFX commercial package. The numerical modelling results are compared to the results of experimental testing carried out on an in-house laboratory steam tunnel. The differences between the numerical results produced by the two codes in terms of place and intensity of condensations of steam to water point to the difficulty in correct modelling of this type of flows and emphasize the need for further studies in this field.
NASA Astrophysics Data System (ADS)
Liu, Pusheng; Lü, Baida
2007-04-01
By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.
NASA Technical Reports Server (NTRS)
Chao, D. F. K.
1983-01-01
Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Comparison of Numerical Modeling Methods for Soil Vibration Cutting
NASA Astrophysics Data System (ADS)
Jiang, Jiandong; Zhang, Enguang
2018-01-01
In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.
Inter-comparison of three-dimensional models of volcanic plumes
Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif
2016-01-01
We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10%. This inter-comparison study has highlighted the different capabilities of 3D volcanic plume models, and identified key features of weak and strong plumes, including the roles of jet stability, entrainment efficiency, and particle non-equilibrium, which deserve future investigation in field, laboratory, and numerical studies.
Numerical simulation of the effect of regular and sub-caliber projectiles on military bunkers
NASA Astrophysics Data System (ADS)
Jiricek, Pavel; Foglar, Marek
2015-09-01
One of the most demanding topics in blast and impact engineering is the modelling of projectile impact. To introduce this topic, a set of numerical simulations was undertaken. The simulations study the impact of regular and sub-calibre projectile on Czech pre-WW2 military bunkers. The penetrations of the military objects are well documented and can be used for comparison. The numerical model composes of a part from a wall of a military object. The concrete block is subjected to an impact of a regular and sub-calibre projectile. The model is divided into layers to simplify the evaluation of the results. The simulations are processed within ANSYS AUTODYN software. A nonlinear material model of with damage and incorporated strain-rate effect was used. The results of the numerical simulations are evaluated in means of the damage of the concrete block. Progress of the damage is described versus time. The numerical simulation provides good agreement with the documented penetrations.
Comparison of Artificial Compressibility Methods
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan
2004-01-01
Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.
NASA Technical Reports Server (NTRS)
Gossard, Myron L
1952-01-01
An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.
ERIC Educational Resources Information Center
Heine, Angela; Tamm, Sascha; Wissmann, Jacqueline; Jacobs, Arthur M.
2011-01-01
Whether and in what way enumeration processes differ for small and large sets of objects is still a matter of debate. In order to shed light on this issue, EEG data were obtained from 60 normally developing elementary school children. Adopting a standard non-symbolic numerical comparison paradigm allowed us to manipulate numerical distance between…
NASA Astrophysics Data System (ADS)
Alexandrov, S. V.; Vaganov, A. V.; Shalaev, V. I.
2016-10-01
Processes of vortex structures formation and they interactions with the boundary layer in the hypersonic flow over delta wing with blunted leading edges are analyzed on the base of experimental investigations and numerical solutions of Navier-Stokes equations. Physical mechanisms of longitudinal vortexes formation, appearance of abnormal zones with high heat fluxes and early laminar turbulent transition are studied. These phenomena were observed in many high-speed wind tunnel experiments; however they were understood only using the detailed analysis of numerical modeling results with the high resolution. Presented results allowed explaining experimental phenomena. ANSYS CFX code (the DAFE MIPT license) on the grid with 50 million nodes was used for the numerical modeling. The numerical method was verified by comparison calculated heat flux distributions on the wing surface with experimental data.
Three-dimensional supersonic flow around double compression ramp with finite span
NASA Astrophysics Data System (ADS)
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
Sobel, Kenith V; Puri, Amrita M; Faulkenberry, Thomas J; Dague, Taylor D
2017-03-01
The size congruity effect refers to the interaction between numerical magnitude and physical digit size in a symbolic comparison task. Though this effect is well established in the typical 2-item scenario, the mechanisms at the root of the interference remain unclear. Two competing explanations have emerged in the literature: an early interaction model and a late interaction model. In the present study, we used visual conjunction search to test competing predictions from these 2 models. Participants searched for targets that were defined by a conjunction of physical and numerical size. Some distractors shared the target's physical size, and the remaining distractors shared the target's numerical size. We held the total number of search items fixed and manipulated the ratio of the 2 distractor set sizes. The results from 3 experiments converge on the conclusion that numerical magnitude is not a guiding feature for visual search, and that physical and numerical magnitude are processed independently, which supports a late interaction model of the size congruity effect. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Target Scattering Metrics: Model-Model and Model-Data Comparisons
2017-12-13
measured synthetic aperture sonar (SAS) data or from numerical models is investigated. Metrics are needed for quantitative comparisons for signals...candidate metrics for model-model comparisons are examined here with a goal to consider raw data prior to its reduction to data products, which may...be suitable for input to classification schemes. The investigated metrics are then applied to model-data comparisons. INTRODUCTION Metrics for
Target Scattering Metrics: Model-Model and Model Data comparisons
2017-12-13
measured synthetic aperture sonar (SAS) data or from numerical models is investigated. Metrics are needed for quantitative comparisons for signals...candidate metrics for model-model comparisons are examined here with a goal to consider raw data prior to its reduction to data products, which may...be suitable for input to classification schemes. The investigated metrics are then applied to model-data comparisons. INTRODUCTION Metrics for
Evaluating nuclear physics inputs in core-collapse supernova models
NASA Astrophysics Data System (ADS)
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
A time-accurate finite volume method valid at all flow velocities
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1993-01-01
A finite volume method to solve the Navier-Stokes equations at all flow velocities (e.g., incompressible, subsonic, transonic, supersonic and hypersonic flows) is presented. The numerical method is based on a finite volume method that incorporates a pressure-staggered mesh and an incremental pressure equation for the conservation of mass. Comparison of three generally accepted time-advancing schemes, i.e., Simplified Marker-and-Cell (SMAC), Pressure-Implicit-Splitting of Operators (PISO), and Iterative-Time-Advancing (ITA) scheme, are made by solving a lid-driven polar cavity flow and self-sustained oscillatory flows over circular and square cylinders. Calculated results show that the ITA is the most stable numerically and yields the most accurate results. The SMAC is the most efficient computationally and is as stable as the ITA. It is shown that the PISO is the most weakly convergent and it exhibits an undesirable strong dependence on the time-step size. The degenerated numerical results obtained using the PISO are attributed to its second corrector step that cause the numerical results to deviate further from a divergence free velocity field. The accurate numerical results obtained using the ITA is attributed to its capability to resolve the nonlinearity of the Navier-Stokes equations. The present numerical method that incorporates the ITA is used to solve an unsteady transitional flow over an oscillating airfoil and a chemically reacting flow of hydrogen in a vitiated supersonic airstream. The turbulence fields in these flow cases are described using multiple-time-scale turbulence equations. For the unsteady transitional over an oscillating airfoil, the fluid flow is described using ensemble-averaged Navier-Stokes equations defined on the Lagrangian-Eulerian coordinates. It is shown that the numerical method successfully predicts the large dynamic stall vortex (DSV) and the trailing edge vortex (TEV) that are periodically generated by the oscillating airfoil. The calculated streaklines are in very good comparison with the experimentally obtained smoke picture. The calculated turbulent viscosity contours show that the transition from laminar to turbulent state and the relaminarization occur widely in space as well as in time. The ensemble-averaged velocity profiles are also in good agreement with the measured data and the good comparison indicates that the numerical method as well as the multipletime-scale turbulence equations successfully predict the unsteady transitional turbulence field. The chemical reactions for the hydrogen in the vitiated supersonic airstream are described using 9 chemical species and 48 reaction-steps. Consider that a fast chemistry can not be used to describe the fine details (such as the instability) of chemically reacting flows while a reduced chemical kinetics can not be used confidently due to the uncertainty contained in the reaction mechanisms. However, the use of a detailed finite rate chemistry may make it difficult to obtain a fully converged solution due to the coupling between the large number of flow, turbulence, and chemical equations. The numerical results obtained in the present study are in good agreement with the measured data. The good comparison is attributed to the numerical method that can yield strongly converged results for the reacting flow and to the use of the multiple-time-scale turbulence equations that can accurately describe the mixing of the fuel and the oxidant.
Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study
NASA Astrophysics Data System (ADS)
Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.
2015-12-01
Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.
A Comparison of Three PML Treatments for CAA (and CFD)
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2008-01-01
In this paper we compare three Perfectly Matched Layer (PML) treatments by means of a series of numerical experiments, using common numerical algorithms, computational grids, and code implementations. These comparisons are with the Linearized Euler Equations, for base uniform base flow. We see that there are two very good PML candidates, and that can both control the introduced error. Furthermore, we also show that corners can be handled with essentially no increase in the introduced error, and that with a good PML, the outer boundary is the most significant source of err
A Comparison of Some Difference Schemes for a Parabolic Problem of Zero-Coupon Bond Pricing
NASA Astrophysics Data System (ADS)
Chernogorova, Tatiana; Vulkov, Lubin
2009-11-01
This paper describes a comparison of some numerical methods for solving a convection-diffusion equation subjected by dynamical boundary conditions which arises in the zero-coupon bond pricing. The one-dimensional convection-diffusion equation is solved by using difference schemes with weights including standard difference schemes as the monotone Samarskii's scheme, FTCS and Crank-Nicolson methods. The schemes are free of spurious oscillations and satisfy the positivity and maximum principle as demanded for the financial and diffusive solution. Numerical results are compared with analytical solutions.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Count on dopamine: influences of COMT polymorphisms on numerical cognition
Júlio-Costa, Annelise; Antunes, Andressa M.; Lopes-Silva, Júlia B.; Moreira, Bárbara C.; Vianna, Gabrielle S.; Wood, Guilherme; Carvalho, Maria R. S.; Haase, Vitor G.
2013-01-01
Catechol-O-methyltransferase (COMT) is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory, and numerical cognition. Elementary school children from 2th to 6th grades were divided into two groups according to their COMT val158met polymorphism [homozygous for valine allele (n = 61) vs. heterozygous plus methionine homozygous children or met+ group (n = 94)]. Both groups were matched for age and intelligence. Working memory was assessed through digit span and Corsi blocks. Symbolic numerical processing was assessed through transcoding and single-digit word problem tasks. Non-symbolic magnitude comparison and estimation tasks were used to assess number sense. Between-group differences were found in symbolic and non-symbolic numerical tasks, but not in working memory tasks. Children in the met+ group showed better performance in all numerical tasks while val homozygous children presented slower development of non-symbolic magnitude representations. These results suggest COMT-related dopaminergic modulation may be related not only to working memory, as found in previous studies, but also to the development of magnitude processing and magnitude representations. PMID:23966969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods,more » e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.« less
Numerical investigations on axial and radial blade rubs in turbo-machinery
NASA Astrophysics Data System (ADS)
Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.
2017-07-01
In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.
Gómez-Velázquez, Fabiola R; Vélez-Pérez, Hugo; Espinoza-Valdez, Aurora; Romo-Vazquez, Rebeca; Salido-Ruiz, Ricardo A; Ruiz-Stovel, Vanessa; Gallardo-Moreno, Geisa B; González-Garrido, Andrés A; Berumen, Gustavo
2017-02-08
Children with mathematical difficulties usually have an impaired ability to process symbolic representations. Functional MRI methods have suggested that early frontoparietal connectivity can predict mathematic achievements; however, the study of brain connectivity during numerical processing remains unexplored. With the aim of evaluating this in children with different math proficiencies, we selected a sample of 40 children divided into two groups [high achievement (HA) and low achievement (LA)] according to their arithmetic scores in the Wide Range Achievement Test, 4th ed.. Participants performed a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger), with simultaneous electrophysiological recording. Partial directed coherence and graph theory methods were used to estimate and depict frontoparietal connectivity in both groups. The behavioral measures showed that children with LA performed significantly slower and less accurately than their peers in the HA group. Significantly higher frontocentral connectivity was found in LA compared with HA; however, when the connectivity analysis was restricted to parietal locations, no relevant group differences were observed. These findings seem to support the notion that LA children require greater memory and attentional efforts to meet task demands, probably affecting early stages of symbolic comparison.
On the numerical modeling of sliding beams: A comparison of different approaches
NASA Astrophysics Data System (ADS)
Steinbrecher, Ivo; Humer, Alexander; Vu-Quoc, Loc
2017-11-01
The transient analysis of sliding beams represents a challenging problem of structural mechanics. Typically, the sliding motion superimposed by large flexible deformation requires numerical methods as, e.g., finite elements, to obtain approximate solutions. By means of the classical sliding spaghetti problem, the present paper provides a guideline to the numerical modeling with conventional finite element codes. For this purpose, two approaches, one using solid elements and one using beam elements, respectively, are employed in the analysis, and the characteristics of each approach are addressed. The contact formulation realizing the interaction of the beam with its support demands particular attention in the context of sliding structures. Additionally, the paper employs the sliding-beam formulation as a third approach, which avoids the numerical difficulties caused by the large sliding motion through a suitable coordinate transformation. The present paper briefly outlines the theoretical fundamentals of the respective approaches for the modeling of sliding structures and gives a detailed comparison by means of the sliding spaghetti serving as a representative example. The specific advantages and limitations of the different approaches with regard to accuracy and computational efficiency are discussed in detail. Through the comparison, the sliding-beam formulation, which proves as an effective approach for the modeling, can be validated for the general problem of a sliding structure subjected to large deformation.
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
Low Graduation Rates among Historically Black Colleges and Universities (HBCU) Student Athletes
ERIC Educational Resources Information Center
Parker, Alvin D.
2017-01-01
A review of literature reveals that there is a dearth of research examining the low graduation rates among student-athletes at historically Black colleges and universities (HBCU's). By comparison, there has been numerous studies that have examined the African American student-athlete attending predominately White institutions (PWI's). The…
USDA-ARS?s Scientific Manuscript database
Numerous studies have been conducted that evaluate the utility of remote sensing for monitoring and assessing vegetation and ground cover to support land management decisions and complement ground-measurements. However, few land cover comparisons have been made using high-resolution imagery and obj...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Symbolic and Nonsymbolic Number Comparison in Children with and without Dyscalculia
ERIC Educational Resources Information Center
Mussolin, Christophe; Mejias, Sandrine; Noel, Marie-Pascale
2010-01-01
Developmental dyscalculia (DD) is a pervasive difficulty affecting number processing and arithmetic. It is encountered in around 6% of school-aged children. While previous studies have mainly focused on general cognitive functions, the present paper aims to further investigate the hypothesis of a specific numerical deficit in dyscalculia. The…
Computer-Assisted Intervention for Children with Low Numeracy Skills
ERIC Educational Resources Information Center
Rasanen, Pekka; Salminen, Jonna; Wilson, Anna J.; Aunio, Pirjo; Dehaene, Stanislas
2009-01-01
We present results of a computer-assisted intervention (CAI) study on number skills in kindergarten children. Children with low numeracy skill (n = 30) were randomly allocated to two treatment groups. The first group played a computer game (The Number Race) which emphasized numerical comparison and was designed to train number sense, while the…
Phthalate esters are high-production volume chemicals used in the manufacture of numerous plastics and consumer products, which generates major concern for potential human exposure and environmental contamination. Several studies have demonstrated adverse effects associated with ...
Taiwanese University Students' Attitudes to Non-Native Speakers English Teachers
ERIC Educational Resources Information Center
Chang, Feng-Ru
2016-01-01
Numerous studies have been conducted to explore issues surrounding non-native speakers (NNS) English teachers and native speaker (NS) teachers which concern, among others, the comparison between the two, the self-perceptions of NNS English teachers and the effectiveness of their teaching, and the students' opinions on and attitudes towards them.…
Comparison of Difficulties and Reliabilities of Math-Completion and Multiple-Choice Item Formats.
ERIC Educational Resources Information Center
Oosterhof, Albert C.; Coats, Pamela K.
Instructors who develop classroom examinations that require students to provide a numerical response to a mathematical problem are often very concerned about the appropriateness of the multiple-choice format. The present study augments previous research relevant to this concern by comparing the difficulty and reliability of multiple-choice and…
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Eaton, John K.
1991-01-01
Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Extension of CE/SE method to non-equilibrium dissociating flows
NASA Astrophysics Data System (ADS)
Wen, C. Y.; Saldivar Massimi, H.; Shen, H.
2018-03-01
In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.
X-ray fluorescence holography studies for a Cu3Au crystal
NASA Astrophysics Data System (ADS)
Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.
2015-12-01
In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.
Long-range monostatic remote sensing of geomaterial structure weak vibrations
NASA Astrophysics Data System (ADS)
Heifetz, Alexander; Bakhtiari, Sasan; Gopalsami, Nachappa; Elmer, Thomas W.; Mukherjee, Souvik
2018-04-01
We study analytically and numerically signal sensitivity in remote sensing measurements of weak mechanical vibration of structures made of typical construction geomaterials, such as concrete. The analysis includes considerations of electromagnetic beam atmospheric absorption, reflection, scattering, diffraction and losses. Comparison is made between electromagnetic frequencies of 35GHz (Ka-band), 94GHz (W-band) and 260GHz (WR-3 waveguide band), corresponding to atmospheric transparency windows of the electromagnetic spectrum. Numerical simulations indicate that 94GHz frequency is optimal in terms of signal sensitivity and specificity for long-distance (>1.5km) sensing of weak multi-mode vibrations.
NASA Technical Reports Server (NTRS)
Drummond, J. P.
1980-01-01
A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.
Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet
NASA Astrophysics Data System (ADS)
Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.
2017-03-01
The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.
NASA Astrophysics Data System (ADS)
Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto
2013-11-01
We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.
Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices
NASA Technical Reports Server (NTRS)
1977-01-01
Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.
Improving the seismic small-scale modelling by comparison with numerical methods
NASA Astrophysics Data System (ADS)
Pageot, Damien; Leparoux, Donatienne; Le Feuvre, Mathieu; Durand, Olivier; Côte, Philippe; Capdeville, Yann
2017-10-01
The potential of experimental seismic modelling at reduced scale provides an intermediate step between numerical tests and geophysical campaigns on field sites. Recent technologies such as laser interferometers offer the opportunity to get data without any coupling effects. This kind of device is used in the Mesures Ultrasonores Sans Contact (MUSC) measurement bench for which an automated support system makes possible to generate multisource and multireceivers seismic data at laboratory scale. Experimental seismic modelling would become a great tool providing a value-added stage in the imaging process validation if (1) the experimental measurement chain is perfectly mastered, and thus if the experimental data are perfectly reproducible with a numerical tool, as well as if (2) the effective source is reproducible along the measurement setup. These aspects for a quantitative validation concerning devices with piezoelectrical sources and a laser interferometer have not been yet quantitatively studied in published studies. Thus, as a new stage for the experimental modelling approach, these two key issues are tackled in the proposed paper in order to precisely define the quality of the experimental small-scale data provided by the bench MUSC, which are available in the scientific community. These two steps of quantitative validation are dealt apart any imaging techniques in order to offer the opportunity to geophysicists who want to use such data (delivered as free data) of precisely knowing their quality before testing any imaging technique. First, in order to overcome the 2-D-3-D correction usually done in seismic processing when comparing 2-D numerical data with 3-D experimental measurement, we quantitatively refined the comparison between numerical and experimental data by generating accurate experimental line sources, avoiding the necessity of geometrical spreading correction for 3-D point-source data. The comparison with 2-D and 3-D numerical modelling is based on the Spectral Element Method. The approach shows the relevance of building a line source by sampling several source points, except the boundaries effects on later arrival times. Indeed, the experimental results highlight the amplitude feature and the delay equal to π/4 provided by a line source in the same manner than numerical data. In opposite, the 2-D corrections applied on 3-D data showed discrepancies which are higher on experimental data than on numerical ones due to the source wavelet shape and interferences between different arrivals. The experimental results from the approach proposed here show that discrepancies are avoided, especially for the reflected echoes. Concerning the second point aiming to assess the experimental reproducibility of the source, correlation coefficients of recording from a repeated source impact on a homogeneous model are calculated. The quality of the results, that is, higher than 0.98, allow to calculate a mean source wavelet by inversion of a mean data set. Results obtained on a more realistic model simulating clays on limestones, confirmed the reproducibility of the source impact.
A comparative study of the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Bai, X.; Deng, X.-L.; Jiang, L.
2018-07-01
In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.
A comparative study of the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Bai, X.; Deng, X.-L.; Jiang, L.
2017-11-01
In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.
NASA Astrophysics Data System (ADS)
Lupoglazoff, N.; Vuillot, F.
Some comparisons between firing tests and numerical simulations of vortex shedding via a simple test case called 'C1experimental' are presented. These experiments are performed to validate further numerical simulations, as well as to serve as a tool for facilitating interpretation. At ignition time, spectra of pressure are more complex: it is the effect of vortex pairings. For 6.5-mm burnt, the second longitudinal mode dominates. For 8-mm burnt, the first longitudinal mode dominates. For 11.5-mm burnt, there is only the first longitudinal mode, with a slight shift of the frequency value. Tables are presented which give the pressure oscillation amplitudes of 'C1experimental' with operating pressures, and these amplitudes relative to the corresponding operating pressure.
Frontal crashworthiness characterisation of a vehicle segment using curve comparison metrics.
Abellán-López, D; Sánchez-Lozano, M; Martínez-Sáez, L
2018-08-01
The objective of this work is to propose a methodology for the characterization of the collision behaviour and crashworthiness of a segment of vehicles, by selecting the vehicle that best represents that group. It would be useful in the development of deformable barriers, to be used in crash tests intended to study vehicle compatibility, as well as for the definition of the representative standard pulses used in numerical simulations or component testing. The characterisation and selection of representative vehicles is based on the objective comparison of the occupant compartment acceleration and barrier force pulses, obtained during crash tests, by using appropriate comparison metrics. This method is complemented with another one, based exclusively on the comparison of a few characteristic parameters of crash behaviour obtained from the previous curves. The method has been applied to different vehicle groups, using test data from a sample of vehicles. During this application, the performance of several metrics usually employed in the validation of simulation models have been analysed, and the most efficient ones have been selected for the task. The methodology finally defined is useful for vehicle segment characterization, taken into account aspects of crash behaviour related to the shape of the curves, difficult to represent by simple numerical parameters, and it may be tuned in future works when applied to larger and different samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Summary of Seismic Discrimination and Explosion Yield Determination Research
1978-11-01
measured and nuemrically simulated displacements .. ........... ... 56 21 Comparison of experimental and numerically simulated source functions expressed...as RVP transforms ...... ..................... 5 22 Comparison of measured and predicted displace- ments for Test 1 ..... .............. ... 57 23...Comparison of measured and predicted displace- ments for the cratering shot (Test 8) . . . . 59 24 The vertical displacement from the complete two
Neural correlates of the number–size interference task in children
Kaufmann, Liane; Koppelstaetter, Florian; Siedentopf, Christian; Haala, Ilka; Haberlandt, Edda; Zimmerhackl, Lothar-Bernd; Felber, Stefan; Ischebeck, Anja
2010-01-01
In this functional magnetic resonance imaging study, 17 children were asked to make numerical and physical magnitude classifications while ignoring the other stimulus dimension (number–size interference task). Digit pairs were either incongruent (3 8) or neutral (3 8). Generally, numerical magnitude interferes with font size (congruity effect). Moreover, relative to numerically adjacent digits far ones yield quicker responses (distance effect). Behaviourally, robust distance and congruity effects were observed in both tasks. imaging baselline contrasts revealed activations in frontal, parietal, occipital and cerebellar areas bilaterally. Different from results usually reported for adultssmaller distances activated frontal, but not (intra-)parietal areas in children. Congruity effects became significant only in physical comparisons. Thus, even with comparable behavioural performance, cerebral activation patterns may differ substantially between children and adults. PMID:16603917
Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.
Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.
Vectorization on the star computer of several numerical methods for a fluid flow problem
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
CFD modeling using PDF approach for investigating the flame length in rotary kilns
NASA Astrophysics Data System (ADS)
Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.
2016-12-01
Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.
A numerical and experimental study on the nonlinear evolution of long-crested irregular waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701
2011-01-15
The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less
On Spurious Numerics in Solving Reactive Equations
NASA Technical Reports Server (NTRS)
Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.
2013-01-01
The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.
Bose-Einstein condensation in atomic alkali gases
NASA Astrophysics Data System (ADS)
Dodd, Robert J.
1998-05-01
I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.
NASA Astrophysics Data System (ADS)
Rabi, R.; Oufni, L.
2017-10-01
Inhalation of radon (222Rn) and its decay products are a major source of natural radiation exposure. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Indoor air conditions and ventilation systems strongly influence the indoor radon concentration. This study focuses on investigating both numerically and experimentally the influence of environmental conditions on the indoor radon concentration and spatial distribution. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on both radon content and distribution. The variations of radon concentration with the ventilation, temperature and relative humidity are discussed. The measurement results show the diurnal variations of the indoor radon concentration are found to exhibit a positive correlation with relative humidity and negatively correlate with the air temperature. The analytic solution is used to validate the numeric results. The comparison amongst analytical, numerical and measurement results shows close agreement.
Faster and More Accurate Transport Procedures for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.
2010-01-01
Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A
2017-06-28
A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results.
Felipe-Sesé, Luis; López-Alba, Elías; Hannemann, Benedikt; Schmeer, Sebastian; Diaz, Francisco A.
2017-01-01
A quasistatic indentation numerical analysis in a round section specimen made of soft material has been performed and validated with a full field experimental technique, i.e., Digital Image Correlation 3D. The contact experiment specifically consisted of loading a 25 mm diameter rubber cylinder of up to a 5 mm indentation and then unloading. Experimental strains fields measured at the surface of the specimen during the experiment were compared with those obtained by performing two numerical analyses employing two different hyperplastic material models. The comparison was performed using an Image Decomposition new methodology that makes a direct comparison of full-field data independently of their scale or orientation possible. Numerical results show a good level of agreement with those measured during the experiments. However, since image decomposition allows for the differences to be quantified, it was observed that one of the adopted material models reproduces lower differences compared to experimental results. PMID:28773081
Review: Modelling chemical kinetics and convective heating in giant planet entries
NASA Astrophysics Data System (ADS)
Reynier, Philippe; D'Ammando, Giuliano; Bruno, Domenico
2018-01-01
A review of the existing chemical kinetics models for H2 / He mixtures and related transport and thermodynamic properties is presented as a pre-requisite towards the development of innovative models based on the state-to-state approach. A survey of the available results obtained during the mission preparation and post-flight analyses of the Galileo mission has been undertaken and a computational matrix has been derived. Different chemical kinetics schemes for hydrogen/helium mixtures have been applied to numerical simulations of the selected points along the entry trajectory. First, a reacting scheme, based on literature data, has been set up for computing the flow-field around the probe at high altitude and comparisons with existing numerical predictions are performed. Then, a macroscopic model derived from a state-to-state model has been constructed and incorporated into a CFD code. Comparisons with existing numerical results from the literature have been performed as well as cross-check comparisons between the predictions provided by the different models in order to evaluate the potential of innovative chemical kinetics models based on the state-to-state approach.
Experimental and numerical studies of beetle-inspired flapping wing in hovering flight.
Van Truong, Tien; Le, Tuyen Quang; Park, Hoon Cheol; Byun, Doyoung
2017-05-17
In this paper, we measure unsteady forces and visualize 3D vortices around a beetle-like flapping wing model in hovering flight by experiment and numerical simulation. The measurement of unsteady forces and flow patterns around the wing were conducted using a dynamically scaled wing model in the mineral-oil tank. The wing kinematics were directly derived from the experiment of a real beetle. The 3D flow structures of the flapping wing were captured by using air bubble visualization while forces were measured by a sensor attached at the wing base. In comparison, the size and topology of spiral leading edge vortex, trailing edge vortex and tip vortex are well matched from experimental and numerical studies. In addition, the time history of forces calculated from numerical simulation is also similar to that from theforce measurement. A difference of average force is in order of 10 percent. The results indicate that the leading edge vortex due to rotational acceleration at the end of the stroke during flapping wing causes significant reduction of lift. The present study provides useful information on hover flight to develop a beetle-like flapping wing Micro Air Vehicle.
Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate
NASA Astrophysics Data System (ADS)
Mehar, Kulmani; Panda, Subrata Kumar
2018-03-01
In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.
Validation of OpenFoam for heavy gas dispersion applications.
Mack, A; Spruijt, M P N
2013-11-15
In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.
Cox, T.J.; Runkel, R.L.
2008-01-01
Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.
CFD-DEM study of effect of bed thickness for bubbling fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul
2011-10-01
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less
Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yupeng; Musser, Jordan M.; Li, Tingwen
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loopmore » circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Pengcheng; Mcclure, Mark; Shiozawa, Sogo
A series of experiments performed at the Fenton Hill hot dry rock site after stage 2 drilling of Phase I reservoir provided intriguing field observations on the reservoir’s responses to injection and venting under various conditions. Two teams participating in the US DOE Geothermal Technologies Office (GTO)’s Code Comparison Study (CCS) used different numerical codes to model these five experiments with the objective of inferring the hydraulic stimulation mechanism involved. The codes used by the two teams are based on different numerical principles, and the assumptions made were also different, due to intrinsic limitations in the codes and the modelers’more » personal interpretations of the field observations. Both sets of models were able to produce the most important field observations and both found that it was the combination of the vertical gradient of the fracture opening pressure, injection volume, and the use/absence of proppant that yielded the different outcomes of the five experiments.« less
A Comparison Study of Two Numerical Tsunami Forecasting Systems
NASA Astrophysics Data System (ADS)
Greenslade, Diana J. M.; Titov, Vasily V.
2008-12-01
This paper presents a comparison of two tsunami forecasting systems: the NOAA/PMEL system (SIFT) and the Australian Bureau of Meteorology system (T1). Both of these systems are based on a tsunami scenario database and both use the same numerical model. However, there are some major differences in the way in which the scenarios are constructed and in the implementation of the systems. Two tsunami events are considered here: Tonga 2006 and Sumatra 2007. The results show that there are some differences in the distribution of maximum wave amplitude, particularly for the Tonga event, however both systems compare well to the available tsunameter observations. To assess differences in the forecasts for coastal amplitude predictions, the offshore forecast results from both systems were used as boundary conditions for a high-resolution model for Hilo, Hawaii. The minor differences seen between the two systems in deep water become considerably smaller at the tide gauge and both systems compare very well with the observations.
NASA Astrophysics Data System (ADS)
Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.
2018-03-01
To reduce heat loses in a flat plate solar collector, double glasses cover is employed. Several studies show that the heat loss from the glass cover is still very significant in comparison with other losses. Here, double glasses cover with attached fins is proposed. In the present work, the fluid flow and heat transfer characteristics of the enclosure between the double glass cover are investigated numerically. The objective is to examine the effect of the fin to the heat transfer rate of the cover. Two-dimensional governing equations are developed. The governing equations and the boundary conditions are solved using commercial Computational Fluid Dynamics code. The fluid flow and heat transfer characteristics are plotted, and numerical results are compared with empirical correlation. The results show that the presence of the fin strongly affects the fluid flow and heat transfer characteristics. The fin can reduce the heat transfer rate up to 22.42% in comparison with double glasses cover without fins.
Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1992-01-01
A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Numerical Study of Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Plates
2009-09-01
FORCE LOAD AND CLAMPED BOUNDARY.................73 APPENDIX F: ADDITIONAL FIGURES FOR COMPOSITE DE NSITY EFFECTS WITH CONCE NTRATED FORCE LOAD AND...Structure Strain and Kine tic Energy Comparison for Elastic Modulus Variations with Concentrated Force and Clamped Boundary .........................31...48 Figure 49. Experiment Strain Gage La yout on Underside of Composite Plate
A Proposal for Measuring Sustainability in Universities: A Case Study of Spain
ERIC Educational Resources Information Center
Larrán Jorge, Manuel; Herrera Madueño, Jesús; Calzado, Yolanda; Andrades, Javier
2016-01-01
Purpose: Numerous sustainability assessment tools are being created and applied in the higher education sector. In light of such diversity, there is a need to provide a common guideline for sustainability assessment which makes easier the comparison among universities. Using as a reference the Spanish university system, the main aim of this paper…
Ramani, Geetha B; Siegler, Robert S
2008-01-01
Theoretical analyses of the development of numerical representations suggest that playing linear number board games should enhance young children's numerical knowledge. Consistent with this prediction, playing such a game for roughly 1 hr increased low-income preschoolers' (mean age = 5.4 years) proficiency on 4 diverse numerical tasks: numerical magnitude comparison, number line estimation, counting, and numeral identification. The gains remained 9 weeks later. Classmates who played an identical game, except for the squares varying in color rather than number, did not improve on any measure. Also as predicted, home experience playing number board games correlated positively with numerical knowledge. Thus, playing number board games with children from low-income backgrounds may increase their numerical knowledge at the outset of school.
Psychiatric epidemiology and international mental health as a career in cultural psychiatry.
Kohn, Robert
2011-04-01
Psychiatric epidemiology is one of the many paths to a career in cultural psychiatry. Psychiatric epidemiology has made numerous substantive contributions to cultural psychiatry. Areas in which psychiatric epidemiologists have contributed to cultural psychiatry include the undertaking of cross-national comparisons, studying the mental health of populations of importance to cultural psychiatry, studying risk factors that are of cultural importance such as immigration and social class, studying trauma, examining the role of stigma in cultural settings, and investigating cultural influences on mental health service delivery. This article highlights examples from the author's own research examining cross-national comparisons, trauma, and mental health service delivery. Research is vital to enable the field of cultural psychiatry to be a vibrant, evidence-based discipline within psychiatry.
Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions
NASA Astrophysics Data System (ADS)
McCullough, Christopher; Bettadpur, Srinivas
2015-04-01
In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.
Intercode comparison of gyrokinetic global electromagnetic modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Görler, T., E-mail: tobias.goerler@ipp.mpg.de; Tronko, N.; Hornsby, W. A.
Aiming to fill a corresponding lack of sophisticated test cases for global electromagnetic gyrokinetic codes, a new hierarchical benchmark is proposed. Starting from established test sets with adiabatic electrons, fully gyrokinetic electrons, and electrostatic fluctuations are taken into account before finally studying the global electromagnetic micro-instabilities. Results from up to five codes involving representatives from different numerical approaches as particle-in-cell methods, Eulerian and Semi-Lagrangian are shown. By means of spectrally resolved growth rates and frequencies and mode structure comparisons, agreement can be confirmed on ion-gyro-radius scales, thus providing confidence in the correct implementation of the underlying equations.
High-resolution digital holography with the aid of coherent diffraction imaging.
Jiang, Zhilong; Veetil, Suhas P; Cheng, Jun; Liu, Cheng; Wang, Ling; Zhu, Jianqiang
2015-08-10
The image reconstructed in ordinary digital holography was unable to bring out desired resolution in comparison to photographic materials; thus making it less preferable for many interesting applications. A method is proposed to enhance the resolution of digital holography in all directions by placing a random phase plate between the specimen and the electronic camera and then using an iterative approach to do the reconstruction. With this method, the resolution is improved remarkably in comparison to ordinary digital holography. Theoretical analysis is supported by numerical simulation. The feasibility of the method is also studied experimentally.
NASA Astrophysics Data System (ADS)
Karami-Lakeh, Hossein; Hosseini-Abardeh, Reza; Kaatuzian, Hassan
2017-05-01
One major problem of solar cells is the decrease in efficiency due to an increase in temperature when operating under constant irradiation of solar energy. The combination of solar cell and a thermoelectric generator is one of the methods proposed to solve this problem. In this paper, the performance of thermo-photovoltaic system is studied experimentally as well as through numerical simulation. In the experimental part, design, manufacture and test of a novel thermo-photovoltaic system assembly are presented. Results of the assembled system showed that with reduction of one degree (Centigrade) in the temperature of solar cell under investigation, and about 0.2 % increase in the efficiency will be obtained in comparison with given efficiency at that specified temperature. The solar cell in a hybrid-assembled system under two cooling conditions (air cooling and water cooling) obtained an efficiency of 8 % and 9.5 %, respectively, while the efficiency of a single cell under the same radiation condition was 6 %. In numerical simulation part, photo-thermoelectric performance of system was analyzed. Two methods for evaluation of thermoelectric performance were used: average properties and finite element method. Results of simulation also demonstrate an increase in solar cell efficiency in the combined system in comparison with that of the single cell configuration.
The effect of mathematics anxiety on the processing of numerical magnitude.
Maloney, Erin A; Ansari, Daniel; Fugelsang, Jonathan A
2011-01-01
In an effort to understand the origins of mathematics anxiety, we investigated the processing of symbolic magnitude by high mathematics-anxious (HMA) and low mathematics-anxious (LMA) individuals by examining their performance on two variants of the symbolic numerical comparison task. In two experiments, a numerical distance by mathematics anxiety (MA) interaction was obtained, demonstrating that the effect of numerical distance on response times was larger for HMA than for LMA individuals. These data support the claim that HMA individuals have less precise representations of numerical magnitude than their LMA peers, suggesting that MA is associated with low-level numerical deficits that compromise the development of higher level mathematical skills.
Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling
NASA Astrophysics Data System (ADS)
Grobbe, N.; Slob, E. C.; Thorbecke, J. W.
2016-07-01
We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.
NASA Technical Reports Server (NTRS)
Allan Brian G.; Owens, Lewis, R.
2006-01-01
This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
NASA Astrophysics Data System (ADS)
Rojali, Aditia; Budiaji, Abdul Somat; Pribadi, Yudhistira Satya; Fatria, Dita; Hadi, Tri Wahyu
2017-07-01
This paper addresses on the numerical modeling approaches for flood inundation in urban areas. Decisive strategy to choose between 1D, 2D or even a hybrid 1D-2D model is more than important to optimize flood inundation analyses. To find cost effective yet robust and accurate model has been our priority and motivation in the absence of available High Performance Computing facilities. The application of 1D, 1D/2D and full 2D modeling approach to river flood study in Jakarta Ciliwung river basin, and a comparison of approaches benchmarked for the inundation study are presented. This study demonstrate the successful use of 1D/2D and 2D system to model Jakarta Ciliwung river basin in terms of inundation results and computational aspect. The findings of the study provide an interesting comparison between modeling approaches, HEC-RAS 1D, 1D-2D, 2D, and ANUGA when benchmarked to the Manggarai water level measurement.
A design procedure for a tension-wire stiffened truss-column
NASA Technical Reports Server (NTRS)
Greene, W. H.
1980-01-01
A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.
Measuring Fraction Comparison Strategies with Eye-Tracking
ERIC Educational Resources Information Center
Obersteiner, Andreas; Tumpek, Christine
2016-01-01
Research suggests that people use a variety of strategies for comparing the numerical values of two fractions. They use holistic strategies that rely on the fraction magnitudes, componential strategies that rely on the fraction numerators or denominators, or a combination of both. We investigated how mathematically skilled adults adapt their…
NASA Astrophysics Data System (ADS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-05-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a more thorough understanding of hydrothermal fluid processes. One such attempt will incorporate geometric data of veins in the Bingham porphyry Cu-Mo-Au deposit into our numerical model. The presentation will introduce the numerical model and show examples and first results of the aforementioned applications.
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
NASA Technical Reports Server (NTRS)
Davy, W. C.; Green, M. J.; Lombard, C. K.
1981-01-01
The factored-implicit, gas-dynamic algorithm has been adapted to the numerical simulation of equilibrium reactive flows. Changes required in the perfect gas version of the algorithm are developed, and the method of coupling gas-dynamic and chemistry variables is discussed. A flow-field solution that approximates a Jovian entry case was obtained by this method and compared with the same solution obtained by HYVIS, a computer program much used for the study of planetary entry. Comparison of surface pressure distribution and stagnation line shock-layer profiles indicates that the two solutions agree well.
Detonation onset following shock wave focusing
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.
2017-06-01
The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, J.
1983-07-14
Correcting the dispersion function in the SLC north arc it turned out that backleg-windings (BLW) acting horizontally as well as BLW acting vertically have to be used. In the latter case the question arose what is the best representation of a defocusing magnet with excited BLW acting in the vertical plane for the computer code TURTLE. Two different schemes, the 14.-scheme and the 20.-scheme were studied and the TURTLE output for one ray through such a magnet compared with the numerical solution of the equation of motion; only terms of first order have been taken into account.
Numerical study of a scramjet engine flow field
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Weidner, E. H.
1981-01-01
A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.
Analysis and modeling of subgrid scalar mixing using numerical data
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Zhou, YE
1995-01-01
Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.
Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J
2001-02-01
This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.
Masaracchio, Michael; Cleland, Joshua A; Hellman, Madeleine; Hagins, Marshall
2013-03-01
Randomized clinical trial. To investigate the short-term effects of thoracic spine thrust manipulation combined with cervical spine nonthrust manipulation (experimental group) versus cervical spine nonthrust manipulation alone (comparison group) in individuals with mechanical neck pain. Research has demonstrated improved outcomes with both nonthrust manipulation directed at the cervical spine and thrust manipulation directed at the thoracic spine in patients with neck pain. Previous studies have not determined if thoracic spine thrust manipulation may increase benefits beyond those provided by cervical nonthrust manipulation alone. Sixty-four participants with mechanical neck pain were randomized into 1 of 2 groups, an experimental or comparison group. Both groups received 2 treatment sessions of cervical spine nonthrust manipulation and a home exercise program consisting of active range-of-motion exercises, and the experimental group received additional thoracic spine thrust manipulations. Outcome measures were collected at baseline and at a 1-week follow-up, and included the numeric pain rating scale, the Neck Disability Index, and the global rating of change. Participants in the experimental group demonstrated significantly greater improvements (P<.001) on both the numeric pain rating scale and Neck Disability Index at the 1-week follow-up compared to those in the comparison group. In addition, 31 of 33 (94%) participants in the experimental group, compared to 11 of 31 participants (35%) in the comparison group, indicated a global rating of change score of +4 or higher at the 1-week follow-up, with an associated number needed to treat of 2. Individuals with neck pain who received a combination of thoracic spine thrust manipulation and cervical spine nonthrust manipulation plus exercise demonstrated better overall short-term outcomes on the numeric pain rating scale, the Neck Disability Index, and the global rating of change.
1982-10-01
Element Unconstrained Variational Formulations," Innovativ’e Numerical Analysis For the Applied Engineering Science, R. P. Shaw, et at, Fitor...Initial Boundary Value of Gun Dynamics Solved by Finite Element Unconstrained Variational Formulations," Innovative Numerical Analysis For the Applied ... Engineering Science, R. P. Shaw, et al, Editors, University Press of Virginia, Charlottesville, pp. 733-741, 1980. 2 J. J. Wu, "Solutions to Initial
Reflections on experimental research in medical education.
Cook, David A; Beckman, Thomas J
2010-08-01
As medical education research advances, it is important that education researchers employ rigorous methods for conducting and reporting their investigations. In this article we discuss several important yet oft neglected issues in designing experimental research in education. First, randomization controls for only a subset of possible confounders. Second, the posttest-only design is inherently stronger than the pretest-posttest design, provided the study is randomized and the sample is sufficiently large. Third, demonstrating the superiority of an educational intervention in comparison to no intervention does little to advance the art and science of education. Fourth, comparisons involving multifactorial interventions are hopelessly confounded, have limited application to new settings, and do little to advance our understanding of education. Fifth, single-group pretest-posttest studies are susceptible to numerous validity threats. Finally, educational interventions (including the comparison group) must be described in detail sufficient to allow replication.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.
1982-01-01
Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.
Numerical and experimental investigation of turbine blade film cooling
NASA Astrophysics Data System (ADS)
Berkache, Amar; Dizene, Rabah
2017-12-01
The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Thames, F. C.
1982-01-01
A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.
Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel
NASA Astrophysics Data System (ADS)
Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.
2017-09-01
Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu
The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less
NASA Astrophysics Data System (ADS)
Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang
2015-04-01
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
Calculation to experiment comparison of SPND signals in various nuclear reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbot, Loic; Radulovic, Vladimir; Fourmentel, Damien
2015-07-01
In the perspective of irradiation experiments in the future Jules Horowitz Reactor (JHR), the Instrumentation Sensors and Dosimetry Laboratory of CEA Cadarache (France) is developing a numerical tool for SPND design, simulation and operation. In the frame of the SPND numerical tool qualification, dedicated experiments have been performed both in the Slovenian TRIGA Mark II reactor (JSI) and very recently in the French CEA Saclay OSIRIS reactor, as well as a test of two detectors in the core of the Polish MARIA reactor (NCBJ). A full description of experimental set-ups and neutron-gamma calculations schemes are provided in the first partmore » of the paper. Calculation to experiment comparison of the various SPNDs in the different reactors is thoroughly described and discussed in the second part. Presented comparisons show promising final results. (authors)« less
Apparently abnormal Wechsler Memory Scale index score patterns in the normal population.
Carrasco, Roman Marcus; Grups, Josefine; Evans, Brittney; Simco, Edward; Mittenberg, Wiley
2015-01-01
Interpretation of the Wechsler Memory Scale-Fourth Edition may involve examination of multiple memory index score contrasts and similar comparisons with Wechsler Adult Intelligence Scale-Fourth Edition ability indexes. Standardization sample data suggest that 15-point differences between any specific pair of index scores are relatively uncommon in normal individuals, but these base rates refer to a comparison between a single pair of indexes rather than multiple simultaneous comparisons among indexes. This study provides normative data for the occurrence of multiple index score differences calculated by using Monte Carlo simulations and validated against standardization data. Differences of 15 points between any two memory indexes or between memory and ability indexes occurred in 60% and 48% of the normative sample, respectively. Wechsler index score discrepancies are normally common and therefore not clinically meaningful when numerous such comparisons are made. Explicit prior interpretive hypotheses are necessary to reduce the number of index comparisons and associated false-positive conclusions. Monte Carlo simulation accurately predicts these false-positive rates.
NASA Astrophysics Data System (ADS)
Lu, Xiao-Ping; Huang, Xiang-Jie; Ip, Wing-Huen; Hsia, Chi-Hao
2018-04-01
In the lightcurve inversion process where asteroid's physical parameters such as rotational period, pole orientation and overall shape are searched, the numerical calculations of the synthetic photometric brightness based on different shape models are frequently implemented. Lebedev quadrature is an efficient method to numerically calculate the surface integral on the unit sphere. By transforming the surface integral on the Cellinoid shape model to that on the unit sphere, the lightcurve inversion process based on the Cellinoid shape model can be remarkably accelerated. Furthermore, Matlab codes of the lightcurve inversion process based on the Cellinoid shape model are available on Github for free downloading. The photometric models, i.e., the scattering laws, also play an important role in the lightcurve inversion process, although the shape variations of asteroids dominate the morphologies of the lightcurves. Derived from the radiative transfer theory, the Hapke model can describe the light reflectance behaviors from the viewpoint of physics, while there are also many empirical models in numerical applications. Numerical simulations are implemented for the comparison of the Hapke model with the other three numerical models, including the Lommel-Seeliger, Minnaert, and Kaasalainen models. The results show that the numerical models with simple function expressions can fit well with the synthetic lightcurves generated based on the Hapke model; this good fit implies that they can be adopted in the lightcurve inversion process for asteroids to improve the numerical efficiency and derive similar results to those of the Hapke model.
NASA Astrophysics Data System (ADS)
Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza
2016-11-01
Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.
Mathematical values in the processing of Chinese numeral classifiers and measure words.
Her, One-Soon; Chen, Ying-Chun; Yen, Nai-Shing
2017-01-01
A numeral classifier is required between a numeral and a noun in Chinese, which comes in two varieties, sortal classifer (C) and measural classifier (M), also known as 'classifier' and 'measure word', respectively. Cs categorize objects based on semantic attributes and Cs and Ms both denote quantity in terms of mathematical values. The aim of this study was to conduct a psycholinguistic experiment to examine whether participants process C/Ms based on their mathematical values with a semantic distance comparison task, where participants judged which of the two C/M phrases was semantically closer to the target C/M. Results showed that participants performed more accurately and faster for C/Ms with fixed values than the ones with variable values. These results demonstrated that mathematical values do play an important role in the processing of C/Ms. This study may thus shed light on the influence of the linguistic system of C/Ms on magnitude cognition.
NASA Astrophysics Data System (ADS)
Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.
2017-12-01
The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
NASA Astrophysics Data System (ADS)
Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol
2016-04-01
We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.
Polyhedral meshing in numerical analysis of conjugate heat transfer
NASA Astrophysics Data System (ADS)
Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata
2018-06-01
Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.
ERIC Educational Resources Information Center
Manches, Andrew; O'Malley, Claire; Benford, Steve
2010-01-01
This research aims to explore the role of physical representations in young children's numerical learning then identify the benefits of using a graphical interface in order to understand the potential for developing interactive technologies in this domain. Three studies are reported that examined the effect of using physical representations…
ERIC Educational Resources Information Center
Hojat, Mohammadreza; And Others
1995-01-01
A survey of 530 male and 137 female graduates of Jefferson Medical College (Pennsylvania) found numerous gender differences in their assessments of selected areas of the medical school curriculum, issues of medical practice and professional life, and specialty choices, professional activities, and research productivity. (Author/MSE)
Something Borrowed, Something Learned? The Transatlantic Market in Education and Training Reform.
ERIC Educational Resources Information Center
Finegold, David, Ed.; And Others
The concentration of numerous case studies of British appropriation of U.S. education and training (ET) policies in a brief period of time (1986-90) provides a unique opportunity to improve understanding of the ET reform process and the role that international comparisons can play in shaping the domestic ET policy agenda. In this book, political…
High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters
2017-04-22
signatures which can be used for direct, non -invasive, comparison with experimental diagnostics can be produced. This research will be directly... experimental campaign is critical to developing general design philosophies for low-power plasmoid formation, the complexity of non -linear plasma processes...advanced space propulsion. The work consists of numerical method development, physical model development, and systematic studies of the non -linear
Impact of fire in two old-growth montane longleaf pine stands
John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow
2013-01-01
The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleafâs range are considered...
Numbers Are Associated with Different Types of Spatial Information Depending on the Task
ERIC Educational Resources Information Center
van Dijck, Jean-Philippe; Gevers, Wim; Fias, Wim
2009-01-01
In this study, we examined the nature of the spatial-numerical associations underlying the SNARC-effect by imposing a verbal or spatial working memory load during a parity judgment and a magnitude comparison task. The results showed a double dissociation between the type of working memory load and type of task. The SNARC-effect disappeared under…
Study of the Polarization Properties of the Crab Nebula and Pulsar with BATSE
NASA Technical Reports Server (NTRS)
Forrest, David J.; Vestrand, W. T.; McConnell, Mark
1997-01-01
Activities carried out under this proposal included: 1) development and refinements of Monte Carlo simulations of the atmospheric reflected albedo hard x-ray emissions, both unpolarized and polarized, 2) modeling and simulations of the off-axis response of the BATSE LAD detectors, and 3) comparison of our simulation results with numerous BATSE flare and cosmic burst data sets.
Early Numeracy Assessment: The Development of the Preschool Numeracy Scales
Purpura, David J.; Lonigan, Christopher J.
2015-01-01
Research Findings The focus of this study was to construct and validate twelve brief early numeracy assessment tasks that measure the skills and concepts identified as key to early mathematics development by the National Council of Teachers of Mathematics (2006) and the National Mathematics Advisory Panel (2008)—as well as critical developmental precursors to later mathematics skill by the Common Core State Standards (CCSS; 2010). Participants were 393 preschool children ages 3 to 5 years old. Measure development and validation occurred through three analytic phases designed to ensure that the measures were brief, reliable, and valid. These measures included: one-to-one counting, cardinality, counting subsets, subitizing, number comparison, set comparison, number order, numeral identification, set-to-numerals, story problems, number combinations, and verbal counting. Practice or Policy Teachers have extensive demands on their time, yet, they are tasked with ensuring that all students’ academic needs are met. To identify individual instructional needs and measure progress, they need to be able to efficiently assess children’s numeracy skills. The measures developed in this study are not only reliable and valid, but also easy to use and can be utilized for measuring the effects of targeted instruction on individual numeracy skills. PMID:25709375
NASA Technical Reports Server (NTRS)
Badavi, F. F.
1989-01-01
Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.
Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows
NASA Astrophysics Data System (ADS)
Mensink, C.
1996-05-01
Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, solving the 2D compressible Reynolds-averaged Navier-Stokes equations on a set of non-overlapping grid blocks that are connected in a conservative way. Comparisons are made with experimental results previously obtained by Sieverding and Heinemann.
Numerical simulation of cavitating flows in shipbuilding
NASA Astrophysics Data System (ADS)
Bagaev, D.; Yegorov, S.; Lobachev, M.; Rudnichenko, A.; Taranov, A.
2018-05-01
The paper presents validation of numerical simulations of cavitating flows around different marine objects carried out at the Krylov State Research Centre (KSRC). Preliminary validation was done with reference to international test objects. The main part of the paper contains results of solving practical problems of ship propulsion design. The validation of numerical simulations by comparison with experimental data shows a good accuracy of the supercomputer technologies existing at Krylov State Research Centre for both hydrodynamic and cavitation characteristics prediction.
One Language, Two Number-Word Systems and Many Problems: Numerical Cognition in the Czech Language
ERIC Educational Resources Information Center
Pixner, S.; Zuber, J.; Hermanova, V.; Kaufmann, L.; Nuerk, H.-C.; Moeller, K.
2011-01-01
Comparing numerical performance between different languages does not only mean comparing different number-word systems, but also implies a comparison of differences regarding culture or educational systems. The Czech language provides the remarkable opportunity to disentangle this confound as there exist two different number-word systems within…
The Effect of Outcome Desirability on Comparisons of Numerical and Linguistic Probabilities
1986-01-01
Shakespeare was thinking of Ann Hathaway when he wrote his twelfth sonnet . Beyth-Marom (1982) suggested other reasons for the use of non-numerical...chance" with reference to the event that Shakespeare was thinking of Ann Hathaway when he wrote his twelfth sonnet . Beyth-Marom (1982) suggested other
MHD-waves in the geomagnetic tail: A review
NASA Astrophysics Data System (ADS)
Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil
2015-03-01
This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.
2010-02-24
A nested Faraday probe was designed and fabricated to assess facility effects in a systematic study of ion migration in a Hall thruster plume...Current density distributions were studied at 8, 12, 16, and 20 thruster diameters downstream of the Hall thruster exit plane with four probe configurations...measurements are a significant improvement for comparisons with numerical simulations and investigations of Hall thruster performance.
Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation
NASA Astrophysics Data System (ADS)
Doru, Zdrenghea
2017-10-01
The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater than that obtained in the experimental tests. Experimental and numerical studies are used to establish the residual characteristic flexural tensile strength minimum guaranteed and limits of applicability of concrete pipes reinforced with steel fibres used in various field and loading situations.
Fluid dynamics and low gravity effects of chemical vapor deposition
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Rosenberger, Franz
1990-01-01
Based on the comparison between experimental data and numerical results for the growth of GaAs from TMGa, it was shown that 3D simulations are necessary to simulate rectangular CVD reactors even when operated under subcritical (Ra) conditions. The important points found are summarized in the three attached reprints. The experimental studies of mixed convection in horizontal channels have shown three regimes of high Ra (22,220) number flows. At Re = 18.5, the rolls develop very quickly, significantly modulating the axial velocity even before it reaches the beginning of the hot plate. A few centimeters downstream, the velocities become asymmetric about the vertical centerplane and at x = 12 cm, become unsteady. These asymmetries were predicted theoretically, but experimental evidence has not been published prior to this work. At Re = 36, the axial velocity is only slightly modified at x = 0. Although the flow remains steady and symmetric about the vertical centerplane, there is a small spatial oscillation in the velocities over the length of the channel. The period of this oscillation was around 5 cm. At Re = 54, the longitudinal rolls developed smoothly over a length of 30 cm, with no asymmetries, unsteadiness, or spatial oscillations. Comparison of numerical simulations of these flows to experiments has revealed the importance and difficulty of setting proper thermal boundary conditions on the sidewalls. Calculated flows and experimentally measured flows showed very similar profiles, but at different axial locations, with the rolls developing more rapidly in the experiments. This is directly attributable to partially conducting sidewalls of the apparatus being hotter in the entrance section than the adiabatic walls of the simulations. A thorough comparison of the experimental data and numerical results for a variety of sidewall boundary conditions is in preparation.
NASA Astrophysics Data System (ADS)
Kozhukhov, Y. V.; Yun, V. K.; Reshetnikova, L. V.; Prokopovich, M. V.
2015-08-01
The goal of this work is numerical experiments for five different types of the centrifugal compressor's inlet chambers with the help of CFD-methods and comparison of the computational results with the results of the real experiment which was held in the Nevskiy Lenin Plant in Saint-Petersburg. In the context of one of the chambers the influence of deflectors on its characteristics was investigated. The objects of investigation are 5 inlet chambers of different types which differ from each other by deflectors’ existence and by its number. The comparative analyze of the results of numerical and real experiments was held by means of comparison of relative velocity and static pressure coefficient distribution on hub and shroud region, and also by means of loss coefficient values change for all five chambers. As a result of the numerical calculation the quantitative and qualitative departure of CFD- calculations results and real experiment were found out. The investigation of the influence of the number of deflectors on flow parameters was carried out. The results of the study prove that the presence of the deflectors on flow path significantly increases the probability of the flow separations and reversed flows appearance on them. At the same time, the complete absence of the deflectors in the chamber significantly increases circumferential distortion of the flow; however the loss coefficient decreases anyway, the high values of which are caused by the shock flow existence. Thus, the profiling of the deflectors of the inlet chamber should be given a special attention.
Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.
2010-08-01
The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1990-01-01
The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.
NASA Astrophysics Data System (ADS)
Rafiee, Seyed Ehsan; Sadeghiazad, M. M.
2016-06-01
Air separators provide safe, clean, and appropriate air flow to engines and are widely used in vehicles with large engines such as ships and submarines. In this operational study, the separation process inside a Ranque-Hilsch vortex tube cleaning (cooling) system is investigated to analyze the impact of the operating gas type on the vortex tube performance; the operating gases used are air, nitrogen, oxygen, carbon dioxide and nitrogen dioxide. The computational fluid dynamic model used is equipped with a three-dimensional structure, and the steady-state condition is applied during computations. The standard k-ɛ turbulence model is employed to resolve nonlinear flow equations, and various key parameters, such as hot and cold exhaust thermal drops, and power separation rates, are described numerically. The results show that nitrogen dioxide creates the greatest separation power out of all gases tested, and the numerical results are validated by good agreement with available experimental data. In addition, a comparison is made between the use of two different boundary conditions, the pressure-far-field and the pressure-outlet, when analyzing complex turbulent flows inside the air separators. Results present a comprehensive and practical solution for use in future numerical studies.
Separating stages of arithmetic verification: An ERP study with a novel paradigm.
Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes
2015-08-01
In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1990-01-01
A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.
Numerical wind-tunnel simulation for Spar platform
NASA Astrophysics Data System (ADS)
Shen, Wenjun
2017-05-01
ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
NASA Astrophysics Data System (ADS)
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
NASA Astrophysics Data System (ADS)
Kitzmann, D.; Patzer, A. B. C.; Rauer, H.
2013-09-01
Context. Owing to their wavelength-dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. The potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. Such a greenhouse effect, however, is a complicated function of the CO2 ice particles' optical properties. Aims: We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. To determine the effectiveness of the scattering greenhouse effect caused by CO2 ice clouds, the radiative transfer calculations are performed over the relevant wide range of particle sizes and optical depths, employing different numerical methods. Methods: We used Mie theory to calculate the optical properties of particle polydispersion. The radiative transfer calculations were done with a high-order discrete ordinate method (DISORT). Two-stream radiative transfer methods were used for comparison with previous studies. Results: The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf, the CO2 ice particles show no strong effective scattering greenhouse effect by using the high-order discrete ordinate method, whereas a positive net greenhouse effect was found for the two-stream radiative transfer schemes. As a result, previous studies of the effects of CO2 ice clouds using two-stream approximations overrated the atmospheric warming caused by the scattering greenhouse effect. Consequently, the scattering greenhouse effect of CO2 ice particles seems to be less effective than previously estimated. In general, higher order radiative transfer methods are needed to describe the effects of CO2 ice clouds accurately as indicated by our numerical radiative transfer studies.
NASA Astrophysics Data System (ADS)
Johnson, Donald R.; Lenzen, Allen J.; Zapotocny, Tom H.; Schaack, Todd K.
2000-11-01
A challenge common to weather, climate, and seasonal numerical prediction is the need to simulate accurately reversible isentropic processes in combination with appropriate determination of sources/sinks of energy and entropy. Ultimately, this task includes the distribution and transport of internal, gravitational, and kinetic energies, the energies of water substances in all forms, and the related thermodynamic processes of phase changes involved with clouds, including condensation, evaporation, and precipitation processes.All of the processes noted above involve the entropies of matter, radiation, and chemical substances, conservation during transport, and/or changes in entropies by physical processes internal to the atmosphere. With respect to the entropy of matter, a means to study a model's accuracy in simulating internal hydrologic processes is to determine its capability to simulate the appropriate conservation of potential and equivalent potential temperature as surrogates of dry and moist entropy under reversible adiabatic processes in which clouds form, evaporate, and precipitate. In this study, a statistical strategy utilizing the concept of `pure error' is set forth to assess the numerical accuracies of models to simulate reversible processes during 10-day integrations of the global circulation corresponding to the global residence time of water vapor. During the integrations, the sums of squared differences between equivalent potential temperature e numerically simulated by the governing equations of mass, energy, water vapor, and cloud water and a proxy equivalent potential temperature te numerically simulated as a conservative property are monitored. Inspection of the differences of e and te in time and space and the relative frequency distribution of the differences details bias and random errors that develop from nonlinear numerical inaccuracies in the advection and transport of potential temperature and water substances within the global atmosphere.A series of nine global simulations employing various versions of Community Climate Models CCM2 and CCM3-all Eulerian spectral numerics, all semi-Lagrangian numerics, mixed Eulerian spectral, and semi-Lagrangian numerics-and the University of Wisconsin-Madison (UW) isentropic-sigma gridpoint model provides an interesting comparison of numerical accuracies in the simulation of reversibility. By day 10, large bias and random differences were identified in the simulation of reversible processes in all of the models except for the UW isentropic-sigma model. The CCM2 and CCM3 simulations yielded systematic differences that varied zonally, vertically, and temporally. Within the comparison, the UW isentropic-sigma model was superior in transporting water vapor and cloud water/ice and in simulating reversibility involving the conservation of dry and moist entropy. The only relative frequency distribution of differences that appeared optimal, in that the distribution remained unbiased and equilibrated with minimal variance as it remained statistically stationary, was the distribution from the UW isentropic-sigma model. All other distributions revealed nonstationary characteristics with spreading and/or shifting of the maxima as the biases and variances of the numerical differences of e and te amplified.
NASA Astrophysics Data System (ADS)
Kiani, Hossein; Sun, Da-Wen
2018-03-01
As novel processes such as ultrasound assisted heat transfer are emerged, new models and simulations are needed to describe these processes. In this paper, a numerical model was developed to study the freezing process of potatoes. Different thermal conductivity models were investigated, and the effect of sonication was evaluated on the convective heat transfer in a fluid to the particle heat transfer system. Potato spheres and sticks were the geometries researched, and the effect of different processing parameters on the results were studied. The numerical model successfully predicted the ultrasound assisted freezing of various shapes in comparison with experimental data of the process. The model was sensitive to processing parameters variation (sound intensity, duty cycle, shape, etc.) and could accurately simulate the freezing process. Among the thermal conductivity correlations studied, de Vries and Maxwell models gave closer estimations. The maximum temperature difference was obtained for the series equation that underestimated the thermal conductivity. Both numerical and experimental data confirmed that an optimum condition of intensity and duty cycle is needed for reducing the freezing time, as increasing the intensity, increased the heat transfer rate and sonically heating rate, simultaneously, that acted against each other.
Holographic entanglement entropy in imbalanced superconductors
NASA Astrophysics Data System (ADS)
Dutta, Arghya; Modak, Sujoy Kumar
2014-01-01
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by using our numerical scheme. Then it is used to compute the HEE for the superconducting case. The cases we study show that in presence of a mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordström black hole phase. Interestingly, the effects of chemical imbalance are different in the contexts of black hole and superconducting phases. For black hole, HEE increases with increasing imbalance parameter while it behaves oppositely for the superconducting phase. The implications of these results are discussed.
Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko
2017-07-10
This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.
NASA Technical Reports Server (NTRS)
Cushman, Paula P.
1993-01-01
Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.
NASA Astrophysics Data System (ADS)
Danish, Syed Noman; Qureshi, Shafiq Rehman; EL-Leathy, Abdelrahman; Khan, Salah Ud-Din; Umer, Usama; Ma, Chaochen
2014-12-01
Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor. Stage characteristics are explored for various tip clearance levels, axial spacings and circumferential clockings. Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle, meridional gas passage and camber distributions in order to have a true comparison with conventional design. Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance. Linear-equation models for correlating stage characteristics with tip clearance are proposed. Comparing two designs, it is clearly evident that the conventional design shows better performance at moderate flow rates. However; near choke flow, tandem design gives better results primarily because of the increase in throat area. Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.
Gilmore, Camilla; Attridge, Nina; Clayton, Sarah; Cragg, Lucy; Johnson, Samantha; Marlow, Neil; Simms, Victoria; Inglis, Matthew
2013-01-01
Given the well-documented failings in mathematics education in many Western societies, there has been an increased interest in understanding the cognitive underpinnings of mathematical achievement. Recent research has proposed the existence of an Approximate Number System (ANS) which allows individuals to represent and manipulate non-verbal numerical information. Evidence has shown that performance on a measure of the ANS (a dot comparison task) is related to mathematics achievement, which has led researchers to suggest that the ANS plays a critical role in mathematics learning. Here we show that, rather than being driven by the nature of underlying numerical representations, this relationship may in fact be an artefact of the inhibitory control demands of some trials of the dot comparison task. This suggests that recent work basing mathematics assessments and interventions around dot comparison tasks may be inappropriate. PMID:23785521
Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven
2016-01-01
Symbolic numerical magnitude processing skills are assumed to be fundamental to arithmetic learning. It is, however, still an open question whether better arithmetic skills are reflected in symbolic numerical magnitude processing skills. To address this issue, Chinese and German third graders were compared regarding their performance in arithmetic tasks and in a symbolic numerical magnitude comparison task. Chinese children performed better in the arithmetic tasks and were faster in deciding which one of two Arabic numbers was numerically larger. The group difference in symbolic numerical magnitude processing was fully mediated by the performance in arithmetic tasks. We assume that a higher degree of familiarity with arithmetic in Chinese compared to German children leads to a higher speed of retrieving symbolic numerical magnitude knowledge. PMID:27630606
Numerical determination of lateral loss coefficients for subchannel analysis in nuclear fuel bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sin Kim; Goon-Cherl Park
1995-09-01
An accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number {kappa}-{epsilon} turbulence model has been adopted in two adjacent subchannels with cross-flow. The secondary flow is estimated accurately by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity field in such subchannel domain, an analytical correlation of the lateral lossmore » coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral flow velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.« less
Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng
2014-01-01
Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning.
NASA Astrophysics Data System (ADS)
Vidanović, Ivana; Bogojević, Aleksandar; Balaž, Antun; Belić, Aleksandar
2009-12-01
In this paper, building on a previous analysis [I. Vidanović, A. Bogojević, and A. Belić, preceding paper, Phys. Rev. E 80, 066705 (2009)] of exact diagonalization of the space-discretized evolution operator for the study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method. We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by many orders of magnitude previously used approximations for discretized matrix elements and allows us to numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonalization. We illustrate this approach on several one- and two-dimensional models. The quality of numerically calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.
Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.
Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J
2013-06-01
We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Numerical methods for engine-airframe integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less
Flow in curved ducts of varying cross-section
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Patel, V. C.
1992-07-01
Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.
Flute-like musical instruments: A toy model investigated through numerical continuation
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Vergez, Christophe; Fabre, Benoît
2013-07-01
Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.
Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.
Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed
2016-01-01
Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.
An adaptive gridless methodology in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, N.T.; Hailey, C.E.
1996-09-01
Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Cosmological perturbations in the DGP braneworld: Numeric solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.
2008-04-15
We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.
NASA Astrophysics Data System (ADS)
Pozorska, Jolanta; Pozorski, Zbigniew
2018-01-01
The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
Studies on equatorial shock formation during plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Singh, N.
1994-01-01
Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.
Symbolic and non-symbolic number magnitude processing in children with developmental dyscalculia.
Castro Cañizares, Danilka; Reigosa Crespo, Vivian; González Alemañy, Eduardo
2012-11-01
The aim of this study was to evaluate if children with Developmental Dyscalculia (DD) exhibit a general deficit in magnitude representations or a specific deficit in the connection of symbolic representations with the corresponding analogous magnitudes. DD was diagnosed using a timed arithmetic task. The experimental magnitude comparison tasks were presented in non-symbolic and symbolic formats. DD and typically developing (TD) children showed similar numerical distance and size congruity effects. However, DD children performed significantly slower in the symbolic task. These results are consistent with the access deficit hypothesis, according to which DD children's deficits are caused by difficulties accessing magnitude information from numerical symbols rather than in processing numerosities per se.
Rabani, Eran; Reichman, David R.; Krilov, Goran; Berne, Bruce J.
2002-01-01
We present a method based on augmenting an exact relation between a frequency-dependent diffusion constant and the imaginary time velocity autocorrelation function, combined with the maximum entropy numerical analytic continuation approach to study transport properties in quantum liquids. The method is applied to the case of liquid para-hydrogen at two thermodynamic state points: a liquid near the triple point and a high-temperature liquid. Good agreement for the self-diffusion constant and for the real-time velocity autocorrelation function is obtained in comparison to experimental measurements and other theoretical predictions. Improvement of the methodology and future applications are discussed. PMID:11830656
Large-eddy simulation of a backward facing step flow using a least-squares spectral element method
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Mittal, Rajat
1996-01-01
We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla
2015-11-01
Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O (10 ) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q ,χBH)=(7 ,±0.4 ),(7 ,±0.6 ) , and (5 ,-0.9 ). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3 , with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit from using SEOBNRv2 waveform templates when focused on neutron star-black hole systems with q ≲7 and χBH≈[-0.9 ,+0.6 ] . For larger black hole spins and/or binary mass ratios, we recommend the models be further investigated as NR simulations in that region of the parameter space become available.
NASA Astrophysics Data System (ADS)
Simos, T. E.
2017-11-01
A family of four stages high algebraic order embedded explicit six-step methods, for the numerical solution of second order initial or boundary-value problems with periodical and/or oscillating solutions, are studied in this paper. The free parameters of the new proposed methods are calculated solving the linear system of equations which is produced by requesting the vanishing of the phase-lag of the methods and the vanishing of the phase-lag's derivatives of the schemes. For the new obtained methods we investigate: • Its local truncation error (LTE) of the methods.• The asymptotic form of the LTE obtained using as model problem the radial Schrödinger equation.• The comparison of the asymptotic forms of LTEs for several methods of the same family. This comparison leads to conclusions on the efficiency of each method of the family.• The stability and the interval of periodicity of the obtained methods of the new family of embedded finite difference pairs.• The applications of the new obtained family of embedded finite difference pairs to the numerical solution of several second order problems like the radial Schrödinger equation, astronomical problems etc. The above applications lead to conclusion on the efficiency of the methods of the new family of embedded finite difference pairs.
Basic Numerical Capacities and Prevalence of Developmental Dyscalculia: The Havana Survey
ERIC Educational Resources Information Center
Reigosa-Crespo, Vivian; Valdes-Sosa, Mitchell; Butterworth, Brian; Estevez, Nancy; Rodriguez, Marisol; Santos, Elsa; Torres, Paul; Suarez, Ramon; Lage, Agustin
2012-01-01
The association of enumeration and number comparison capacities with arithmetical competence was examined in a large sample of children from 2nd to 9th grades. It was found that efficiency on numerical capacities predicted separately more than 25% of the variance in the individual differences on a timed arithmetical test, and this occurred for…
A Comparative Study Of Dust Devils
NASA Astrophysics Data System (ADS)
Lange, C. F.; Prieto, L. E.
2005-12-01
Spatial variations in the column of water vapour in the Martian near-surface are due to the combined effects of several process within water underground reservoirs and the atmosphere. Among these process, dust devils could be an important local factor in the water concentration levels. In fact, the apparently high occurrence of dust devils could potentially affect the mass transfer rate of water vapour from the Martian regolith. A detailed study of these atmospheric vortices may help to better understand the complex relation between the cycle of water and this Martian atmospheric event. Subsequently, field data are required to provide a close estimation of the dynamics presented in Martian surface. The upcoming Phoenix mission is being designed to investigate these natural events on Mars. However, field studies of dust devils are difficult because of their sporadic, unpredictable occurrence and distance. In contrast, laboratory simulations present a better physical insight into this complex swirling flow by consideration of a much simplified, and more controllable and reproducible model flow. The use of numerical simulations in addition to laboratory experiments can provide complementary information on flow properties in regions where measurements are difficult due to flow profiles. Computational models also allow for significant flexibility in the model layout and they are, therefore, ideally suited for a comparison of different types of model flows. A 3-D numerical study is presented for two different types of dust devil laboratory simulators (Ward, 1952 and Greeley et al., 2001). An initial numerical study was conducted to validate the simulation results with previous laboratory measurements (Lund and Snow, 1993). Secondly, a numerical comparison was carried out between the two tornado-like vortex representations based on kinematic similarities to provide a clear method to relate dust devils in several nature environments, laboratory simulations, and computational models. This was accomplished by examining features of the dust devils in the form of three main flow parameters: the ratio of the inflow layer height h to the updraft radius r_0 (aspect ratio), the radial Reynolds number characterizing the updraft zone, and the ratio of the tangential velocity to the mean radial velocity (swirl ratio) at the radius of the updraft zone, r_0. The detailed analysis of the numerical flow solutions led to a simple definition of h and r_0, valid for the types of model flows analyzed. This study is a necessary part of a larger effort to examine and compare both numerical and laboratory simulations of atmospheric vortices in terrestrial and Martian conditions. References [1] R. Greeley et al., XXXII Lunar and Planetary Science, 2001. [2] D. E. Lund and J. T. Snow, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, 1993, p. 297--306. [3] N. B. Ward, J. Atmos. Sci., 1972, 1194--1204.
NASA Technical Reports Server (NTRS)
Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.
1989-01-01
The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.
ERIC Educational Resources Information Center
Weisman, O.; Feldman, R.; Burg-Malki, M.; Keren, M.; Geva, R.; Diesendruck, G.; Gothelf, D.
2017-01-01
Background: Numerous studies have assessed the socio-cognitive profile in Williams syndrome (WS) and, independently, in 22q11.2 deletion syndrome (22q11.2DS). Yet, a cross-syndrome comparison of these abilities between individuals with these two syndromes with known social deficits has not been conducted. Methods: Eighty-two children participated…
Development of multi-touch panel backlight system
NASA Astrophysics Data System (ADS)
Chomiczewski, J.; Długosz, M.; Godlewski, G.; Kochanowicz, M.
2013-10-01
The paper presents design, simulation analysis, and measurements of parameters of optical multi touch panel backlight system. Comparison of optical technology with commercially available solutions was also performed. The numerical simulation of laser based backlight system was made. The influence of the laser power, beam divergence, and placing reflective surfaces on the uniformity of illumination were examined. Optimal illumination system was used for further studies.
Stable Numerical Approach for Fractional Delay Differential Equations
NASA Astrophysics Data System (ADS)
Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.
2017-12-01
In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.
Numerical investigation of galloping instabilities in Z-shaped profiles.
Gomez, Ignacio; Chavez, Miguel; Alonso, Gustavo; Valero, Eusebio
2014-01-01
Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models.
Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach.
Geng, Xiaolong; Boufadel, Michel C; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L; Miller, Richard S
2014-09-01
A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
NASA Astrophysics Data System (ADS)
Ohkitani, Koji
2002-04-01
The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear stretching process of passive vectors (PVs). In particular, we pay special attention to the difference of these processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial conditions with the same energy spectra. The above difference can be explained qualitatively by examining the Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above difference, we examine the probability density functions (PDFs) of the stretching rates of the passive vectors in the vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity gradients and that of passive scalar gradients and a physical interpretation is given to it.
NASA Astrophysics Data System (ADS)
Lacaze, Guilhem; Oefelein, Joseph
2016-11-01
High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.
The comparison of extraction of energy in two-cascade and one-cascade targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgoleva, G. V., E-mail: dolgg@list.ru; Ponomarev, I. V., E-mail: wingof17@mail.ru
2016-01-15
The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy.more » The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.« less
Gomez, Alice; Piazza, Manuela; Jobert, Antoinette; Dehaene-Lambertz, Ghislaine; Dehaene, Stanislas; Huron, Caroline
2015-01-01
At school, children with Developmental Coordination Disorder (DCD) struggle with mathematics. However, little attention has been paid to their numerical cognition abilities. The goal of this study was to better understand the cognitive basis for mathematical difficulties in children with DCD. Twenty 7-to-10 years-old children with DCD were compared to twenty age-matched typically developing children using dot and digit comparison tasks to assess symbolic and nonsymbolic number processing and in a task of single digits additions. Results showed that children with DCD had lower performance in nonsymbolic and symbolic number comparison tasks than typically developing children. They were also slower to solve simple addition problems. Moreover, correlational analyses showed that children with DCD who experienced greater impairments in the nonsymbolic task also performed more poorly in the symbolic tasks. These findings suggest that DCD impairs both nonsymbolic and symbolic number processing. A systematic assessment of numerical cognition in children with DCD could provide a more comprehensive picture of their deficits and help in proposing specific remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water
Dingfelder, M.; Ritchie, R. H.; Turner, J. E.; Friedland, W.; Paretzke, H. G.; Hamm, R. N.
2013-01-01
Monte Carlo computer models that simulate the detailed, event-by-event transport of electrons in liquid water are valuable for the interpretation and understanding of findings in radiation chemistry and radiation biology. Because of the paucity of experimental data, such efforts must rely on theoretical principles and considerable judgment in their development. Experimental verification of numerical input is possible to only a limited extent. Indirect support for model validity can be gained from a comparison of details between two independently developed computer codes as well as the observable results calculated with them. In this study, we compare the transport properties of electrons in liquid water using two such models, PARTRAC and NOREC. Both use interaction cross sections based on plane-wave Born approximations and a numerical parameterization of the complex dielectric response function for the liquid. The models are described and compared, and their similarities and differences are highlighted. Recent developments in the field are discussed and taken into account. The calculated stopping powers, W values, and slab penetration characteristics are in good agreement with one another and with other independent sources. PMID:18439039
Material characterization of a novel new armour steel
NASA Astrophysics Data System (ADS)
Bester, J. N.; Stumpf, W. E.
2012-08-01
The material characterization of a novel new armour steel with comparison to a leading commercial benchmark alloy is presented. Direct ballistic and experimental comparison is drawn. The 5.56 × 45 mm [M193] and 7.62 × 51 mm [NATO Ball] projectiles were used in a cartridge type high pressure barrel configuration to evaluate the superior plugging resistance of the new steel over a range of plate thicknesses. To characterize the dynamic plasticity of the materials, quasi-static, notched and high temperature tensile tests as well as Split Hopkinson Pressure Bar tests in tension and compression were performed. The open source explicit solver, IMPACT (sourceforge.net) is used in an ongoing numerical and sensitivity analysis of ballistic impact. A simultaneous multi variable fitting algorithm is planned to evaluate several selected numerical material models and show their relative correlation to experimental data. This study as well as micro-metallurgical investigation of adiabatic shear bands and localized deformation zones should result in new insights in to the underlying metallurgical and physical behavior of armour plate steels during ballistic perforation.
Flow Modulation and Force Control in Insect Fast Maneuver
NASA Astrophysics Data System (ADS)
Li, Chengyu; Dong, Haibo; Zhang, Wen; Gai, Kuo
2012-11-01
In this work, an integrated study combining high-speed photogrammetry and direct numerical simulation (DNS) is used to study free flying insects in fast maneuver. Quantitative measurement has shown the significant differences between quad-winged flyers such as dragonfly and damselfly and two-winged flyers such as cicada. Comparisons of unsteady 3D vortex formation and associated aerodynamic force production reveal the different mechanisms used by insects in fast turn. This work is supported by NSF CBET-1055949.
Understanding heat and fluid flow in linear GTA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
ERIC Educational Resources Information Center
Brown, Josephine V.; Bakeman, Roger; Sampers, Jackie S.; Korner, Anneliese F.; Constantinou, Janet C.; Anand, K. J. S.
2008-01-01
In spite of numerous recent outcome studies of extremely low birth weight (ELBW) infants, no data exist on their development prior to term. In this study we traced and compared the neurobehavioral development of 251 ELBW (less than 1,000 g) and 240 low birth weight (LBW; 1,000 g-2,500 g) preterms born between 1995 and 2004 from 32 to 37 weeks…
NASA Astrophysics Data System (ADS)
Ghelardi, Stefano; Rizzo, Cesare; Villa, Diego
2017-12-01
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINA™, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.
USDA-ARS?s Scientific Manuscript database
The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...
Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction
NASA Technical Reports Server (NTRS)
Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)
2004-01-01
Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.
Comparison between Euler and quaternion parametrization in UAV dynamics
NASA Astrophysics Data System (ADS)
Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A.
2013-10-01
The main topic addressed in this paper is a comparison between Euler parametrization and Quaternion one in the description of the dynamics of a Unmanned Aerial Vehicle assumed as a rigid body. In details Newton Euler equations are re-written in terms of quaternions due to the singularities that the Euler angles lead. This formulation not only avoids the gimbal lock but also allows a better performance in numerical implementation thanks to the linearity of quaternion algebra. This kind of analysis, proved by some numerical results presented, has a great importance due to the applicability of quaternion to drone control. Indeed, this latter requires a time response as quick as possible, in order to be reliable.
NASA Astrophysics Data System (ADS)
Rǎdulescu, I. R.; Cândea, D.; Kaslik, E.
2017-01-01
In this paper, a delay differential equations (DDEs) model of leukemia is introduced and its dynamical properties are investigated in comparison with the modified fractional-order system where the Caputo's derivative is used. The model takes into account three types of division that a stem-like cell can undergo and cell competition between healthy and leukemia cell populations. The action of the immune system on the leukemic cell populations is also considered. The stability properties of the equilibrium points are established through numerical results and the differences between the two types of approaches are discussed. Medical conclusions are drawn in view of the obtained numerical simulations.
COCOA: Simulating Observations of Star Cluster Simulations
NASA Astrophysics Data System (ADS)
Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele
2017-03-01
COCOA (Cluster simulatiOn Comparison with ObservAtions) creates idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. The code can simulate optical observations from simulation snapshots in which positions and magnitudes of objects are known. The parameters for simulating the observations can be adjusted to mimic telescopes of various sizes. COCOA also has a photometry pipeline that can use standalone versions of DAOPHOT (ascl:1104.011) and ALLSTAR to produce photometric catalogs for all observed stars.
Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study.
Twycross, Jamie; Band, Leah R; Bennett, Malcolm J; King, John R; Krasnogor, Natalio
2010-03-26
Stochastic and asymptotic methods are powerful tools in developing multiscale systems biology models; however, little has been done in this context to compare the efficacy of these methods. The majority of current systems biology modelling research, including that of auxin transport, uses numerical simulations to study the behaviour of large systems of deterministic ordinary differential equations, with little consideration of alternative modelling frameworks. In this case study, we solve an auxin-transport model using analytical methods, deterministic numerical simulations and stochastic numerical simulations. Although the three approaches in general predict the same behaviour, the approaches provide different information that we use to gain distinct insights into the modelled biological system. We show in particular that the analytical approach readily provides straightforward mathematical expressions for the concentrations and transport speeds, while the stochastic simulations naturally provide information on the variability of the system. Our study provides a constructive comparison which highlights the advantages and disadvantages of each of the considered modelling approaches. This will prove helpful to researchers when weighing up which modelling approach to select. In addition, the paper goes some way to bridging the gap between these approaches, which in the future we hope will lead to integrative hybrid models.
Urban pavement surface temperature. Comparison of numerical and statistical approach
NASA Astrophysics Data System (ADS)
Marchetti, Mario; Khalifa, Abderrahmen; Bues, Michel; Bouilloud, Ludovic; Martin, Eric; Chancibaut, Katia
2015-04-01
The forecast of pavement surface temperature is very specific in the context of urban winter maintenance. to manage snow plowing and salting of roads. Such forecast mainly relies on numerical models based on a description of the energy balance between the atmosphere, the buildings and the pavement, with a canyon configuration. Nevertheless, there is a specific need in the physical description and the numerical implementation of the traffic in the energy flux balance. This traffic was originally considered as a constant. Many changes were performed in a numerical model to describe as accurately as possible the traffic effects on this urban energy balance, such as tires friction, pavement-air exchange coefficient, and infrared flux neat balance. Some experiments based on infrared thermography and radiometry were then conducted to quantify the effect fo traffic on urban pavement surface. Based on meteorological data, corresponding pavement temperature forecast were calculated and were compared with fiels measurements. Results indicated a good agreement between the forecast from the numerical model based on this energy balance approach. A complementary forecast approach based on principal component analysis (PCA) and partial least-square regression (PLS) was also developed, with data from thermal mapping usng infrared radiometry. The forecast of pavement surface temperature with air temperature was obtained in the specific case of urban configurtation, and considering traffic into measurements used for the statistical analysis. A comparison between results from the numerical model based on energy balance, and PCA/PLS was then conducted, indicating the advantages and limits of each approach.
Numerosity processing is context driven even in the subitizing range: An fMRI study
Leibovich, Tali; Henik, Avishai; Salti, Moti
2015-01-01
Numerical judgments are involved in almost every aspect of our daily life. They are carried out so efficiently that they are often considered to be automatic and innate. However, numerosity of non-symbolic stimuli is highly correlated with its continuous properties (e.g., density, area), and so it is hard to determine whether numerosity and continuous properties rely on the same mechanism. Here we examined the behavioral and neuronal mechanisms underlying such judgments. We scanned subjects' hemodynamic responses to a numerosity comparison task and to a surface area comparison task. In these tasks, numerical and continuous magnitudes could be either congruent or incongruent. Behaviorally, an interaction between the order of the tasks and the relevant dimension modulated the congruency effects. Continuous magnitudes always interfered with numerosity comparison. Numerosity, on the other hand, interfered with the surface area comparison only when participants began with the numerosity task. Hemodynamic activity showed that context (induced by task order) determined the neuronal pathways in which the dimensions were processed. Starting with the numerosity task led to enhanced activity in the right hemisphere, while starting with the continuous task led to enhanced left hemisphere activity. Continuous magnitudes processing relied on activation of the frontal eye field and the post-central gyrus. Processing of numerosities, on the other hand, relied on deactivation of these areas, suggesting active suppression of the continuous dimension. Accordingly, we suggest that numerosities, even in the subitizing range, are not always processed automatically; their processing depends on context and task demands. PMID:26297625
Coincidental match of numerical simulation and physics
NASA Astrophysics Data System (ADS)
Pierre, B.; Gudmundsson, J. S.
2010-08-01
Consequences of rapid pressure transients in pipelines range from increased fatigue to leakages and to complete ruptures of pipeline. Therefore, accurate predictions of rapid pressure transients in pipelines using numerical simulations are critical. State of the art modelling of pressure transient in general, and water hammer in particular include unsteady friction in addition to the steady frictional pressure drop, and numerical simulations rely on the method of characteristics. Comparison of rapid pressure transient calculations by the method of characteristics and a selected high resolution finite volume method highlights issues related to modelling of pressure waves and illustrates that matches between numerical simulations and physics are purely coincidental.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalk, W.W. III
Early actions of emergency responders during hazardous material releases are intended to assess contamination and potential public exposure. As measurements are collected, an integration of model calculations and measurements can assist to better understand the situation. This study applied a high resolution version of the operational 3-D numerical models used by Lawrence Livermore National Laboratory to a limited meteorological and tracer data set to assist in the interpretation of the dispersion pattern on a 140 km scale. The data set was collected from a tracer release during the morning surface inversion and transition period in the complex terrain of themore » Snake River Plain near Idaho Falls, Idaho in November 1993 by the United States Air Force. Sensitivity studies were conducted to determine model input parameters that best represented the study environment. These studies showed that mixing and boundary layer heights, atmospheric stability, and rawinsonde data are the most important model input parameters affecting wind field generation and tracer dispersion. Numerical models and limited measurement data were used to interpret dispersion patterns through the use of data analysis, model input determination, and sensitivity studies. Comparison of the best-estimate calculation to measurement data showed that model results compared well with the aircraft data, but had moderate success with the few surface measurements taken. The moderate success of the surface measurement comparison, may be due to limited downward mixing of the tracer as a result of the model resolution determined by the domain size selected to study the overall plume dispersion. 8 refs., 40 figs., 7 tabs.« less
Experimental and numerical study of water-filled vessel impacted by flat projectiles
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ren, Peng; Huang, Wei; Gao, Yu Bo
2014-05-01
To understand the failure modes and impact resistance of double-layer plates separated by water, a flat-nosed projectile was accelerated by a two-stage light gas gun against a water-filled vessel which was placed in an air-filled tank. Targets consisted of a tank made of two flat 5A06 aluminum alloy plates held by a high strength steel frame. The penetration process was recorded by a digital high-speed camera. The same projectile-target system was also used to fire the targets placed directly in air for comparison. Parallel numerical tests were also carried out. The result indicated that experimental and numerical results were in good agreement. Numerical simulations were able to capture the main physical behavior. It was also found that the impact resistance of double layer plates separated by water was lager than that of the target plates in air. Tearing was the main failure models of the water-filled vessel targets which was different from that of the target plates in air where the shear plugging was in dominate.
Radiation dominated acoustophoresis driven by surface acoustic waves.
Guo, Jinhong; Kang, Yuejun; Ai, Ye
2015-10-01
Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number
NASA Technical Reports Server (NTRS)
Knaepen, B.; Moin, P.
2003-01-01
In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay
2016-04-01
Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Ryabchikova, T. A.
2018-02-01
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
Dancing with the SNARC: Measuring spatial-numerical associations on a digital dance mat.
Fischer, Ursula; Moeller, Korbinian; Class, Friderike; Huber, Stefan; Cress, Ulrike; Nuerk, Hans-Christoph
2016-12-01
According to the concept of embodied numerosity, bodily experiences influence the way in which we process numerical magnitude. The development of this influence could be anchored in the spatial ordering of numbers along a mental number line representation, which is measured by effects of spatial-numerical associations. The aim of this study was to investigate whether horizontally oriented full-body movement and visual presentation of a number line both contribute to spatial-numerical associations in children. We presented fourth-graders with 2 magnitude comparison tasks that differed in the relevance of magnitude information. In both tasks, we varied the amount of bodily movement in different response conditions (responding verbally, with a foot tap, or by jumping) and the visual presentation (items were presented with or without a number line). From the data, we calculated 2 spatial-numerical effects and expected to find the strongest effects if a full-body response was combined with a number line presentation. The 2 effects were differentially influenced by response modalities, but not presentation. The SNARC (= Spatial Numerical Association of Response Codes) effect was present in all conditions and was not influenced by our manipulations. In contrast, a new relative numerical congruity effect was influenced by the variations in responses in accordance with our hypotheses. The relative numerical congruity effect results suggest that responses involving bodily movement increase activation of spatial-numerical associations compared to verbal responses. These results are the first to demonstrate such an influence in a full-body approach in elementary schoolchildren. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Simulation of wind turbine wakes using the actuator line technique
Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.
2015-01-01
The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang
2018-03-01
In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.
Computational aeroacoustics and numerical simulation of supersonic jets
NASA Technical Reports Server (NTRS)
Morris, Philip J.; Long, Lyle N.
1996-01-01
The research project has been a computational study of computational aeroacoustics algorithms and numerical simulations of the flow and noise of supersonic jets. During this study a new method for the implementation of solid wall boundary conditions for complex geometries in three dimensions has been developed. In addition, a detailed study of the simulation of the flow in and noise from supersonic circular and rectangular jets has been conducted. Extensive comparisons have been made with experimental measurements. A summary of the results of the research program are attached as the main body of this report in the form of two publications. Also, the report lists the names of the students who were supported by this grant, their degrees, and the titles of their dissertations. In addition, a list of presentations and publications made by the Principal Investigators and the research students is also included.
Tao, Tao; Wyer, Robert S; Zheng, Yuhuang
2017-03-01
We propose a two-process conceptualization of numerical information processing to describe how people form impressions of a score that is described along a bounded scale. According to the model, people spontaneously categorize a score as high or low. Furthermore, they compare the numerical discrepancy between the score and the endpoint of the scale to which it is closer, if they are not confident of their categorization, and use implications of this comparison as a basis for judgment. As a result, their evaluation of the score is less extreme when the range of numbers along the scale is large (e.g., from 0 to 100) than when it is small (from 0 to 10). Six experiments support this two-process model and demonstrate its generalizability. Specifically, the magnitude of numbers composing the scale has less impact on judgments (a) when the score being evaluated is extreme, (b) when individuals are unmotivated to engage in endpoint comparison processes (i.e., they are low in need for cognition), and (c) when they are unable to do so (i.e., they are under cognitive load). Moreover, the endpoint to which individuals compare the score can depend on their regulatory focus. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cyber-Based Turbulent Combustion Simulation
2012-02-28
flame thickness by comparing with benchmark of AFRL/RZ ( UNICORN ) suppressing the oscillatory numerical behavior. These improvements in numerical...fraction with the benchmark results of AFRL/RZ. This validating base is generated by the UNICORN program on the finest mesh available and the local...shared kinematic and thermodynamic data from the UNICORN program. The most important and meaningful conclusion can be drawn from this comparison is
Numerical formulation for the prediction of solid/liquid change of a binary alloy
NASA Technical Reports Server (NTRS)
Schneider, G. E.; Tiwari, S. N.
1990-01-01
A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.
Comparison of different 3D wavefront sensing and reconstruction techniques for MCAO
NASA Astrophysics Data System (ADS)
Bello, Dolores; Vérinaud, Christophe; Conan, Jean-Marc; Fusco, Thierry; Carbillet, Marcel; Esposito, Simone
2003-02-01
The vertical distribution of the turbulence limits the field of view of classical adaptive optics due to the anisoplanatism. Multiconjugate adaptive optics (MCAO) uses several deformable mirrors conjugated to different layers in the atmosphere to overcome this effect. In the last few years, many studies and developments have been done regarding the analysis of the turbulence volume, and the choice of the wavefront reconstruction techniques.An extensive study of MCAO modelisation and performance estimation has been done at OAA and ONERA. The developed Monte Carlo codes allow to simulate and investigate many aspects: comparison of turbulence analysis strategies (tomography or layer oriented) and comparison of different reconstruction approaches. For instance in the layer oriented approach, the control for a given deformable mirror can be either deduced from the whole set of wavefront sensor measurements or only using the associated wavefront sensor. Numerical simulations are presented showing the advantages and disadvantages of these different options for several cases depending on the number, geometry and magnitude of the guide stars.
The challenges of numerically simulating analogue brittle thrust wedges
NASA Astrophysics Data System (ADS)
Buiter, Susanne; Ellis, Susan
2017-04-01
Fold-and-thrust belts and accretionary wedges form when sedimentary and crustal rocks are compressed into thrusts and folds in the foreland of an orogen or at a subduction trench. For over a century, analogue models have been used to investigate the deformation characteristics of such brittle wedges. These models predict wedge shapes that agree with analytical critical taper theory and internal deformation structures that well resemble natural observations. In a series of comparison experiments for thrust wedges, called the GeoMod2004 (1,2) and GeoMod2008 (3,4) experiments, it was shown that different numerical solution methods successfully reproduce sandbox thrust wedges. However, the GeoMod2008 benchmark also pointed to the difficulties of representing frictional boundary conditions and sharp velocity discontinuities with continuum numerical methods, in addition to the well-known challenges of numerical plasticity. Here we show how details in the numerical implementation of boundary conditions can substantially impact numerical wedge deformation. We consider experiment 1 of the GeoMod2008 brittle thrust wedge benchmarks. This experiment examines a triangular thrust wedge in the stable field of critical taper theory that should remain stable, that is, without internal deformation, when sliding over a basal frictional surface. The thrust wedge is translated by lateral displacement of a rigid mobile wall. The corner between the mobile wall and the subsurface is a velocity discontinuity. Using our finite-element code SULEC, we show how different approaches to implementing boundary friction (boundary layer or contact elements) and the velocity discontinuity (various smoothing schemes) can cause the wedge to indeed translate in a stable manner or to undergo internal deformation (which is a fail). We recommend that numerical studies of sandbox setups not only report the details of their implementation of boundary conditions, but also document the modelling attempts that failed. References 1. Buiter and the GeoMod2004 Team, 2006. The numerical sandbox: comparison of model results for a shortening and an extension experiment. Geol. Soc. Lond. Spec. Publ. 253, 29-64 2. Schreurs and the GeoMod2004 Team, 2006. Analogue benchmarks of shortening and extension experiments. Geol. Soc. Lond. Spec. Publ. 253, 1-27 3. Buiter, Schreurs and the GeoMod2008 Team, 2016. Benchmarking numerical models of brittle thrust wedges, J. Struct. Geol. 92, 140-177 4. Schreurs, Buiter and the GeoMod2008 Team, 2016. Benchmarking analogue models of brittle thrust wedges, J. Struct. Geol. 92, 116-13
Comparisons of Crosswind Velocity Profile Estimates Used in Fast-Time Wake Vortex Prediction Models
NASA Technical Reports Server (NTRS)
Pruis, Mathew J.; Delisi, Donald P.; Ahmad, Nashat N.
2011-01-01
Five methods for estimating crosswind profiles used in fast-time wake vortex prediction models are compared in this study. Previous investigations have shown that temporal and spatial variations in the crosswind vertical profile have a large impact on the transport and time evolution of the trailing vortex pair. The most important crosswind parameters are the magnitude of the crosswind and the gradient in the crosswind shear. It is known that pulsed and continuous wave lidar measurements can provide good estimates of the wind profile in the vicinity of airports. In this study comparisons are made between estimates of the crosswind profiles from a priori information on the trajectory of the vortex pair as well as crosswind profiles derived from different sensors and a regional numerical weather prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collis, Scott; Protat, Alain; May, Peter T.
2013-08-01
Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less
NASA Astrophysics Data System (ADS)
Himr, D.
2013-04-01
Article describes simulation of unsteady flow during water hammer with two programs, which use different numerical approaches to solve ordinary one dimensional differential equations describing the dynamics of hydraulic elements and pipes. First one is Matlab-Simulink-SimHydraulics, which is a commercial software developed to solve the dynamics of general hydraulic systems. It defines them with block elements. The other software is called HYDRA and it is based on the Lax-Wendrff numerical method, which serves as a tool to solve the momentum and continuity equations. This program was developed in Matlab by Brno University of Technology. Experimental measurements were performed on a simple test rig, which consists of an elastic pipe with strong damping connecting two reservoirs. Water hammer is induced with fast closing the valve. Physical properties of liquid and pipe elasticity parameters were considered in both simulations, which are in very good agreement and differences in comparison with experimental data are minimal.
NASA Technical Reports Server (NTRS)
Riley, Donald R.
2015-01-01
This paper contains a collection of some results of four individual studies presenting calculated numerical values for airfoil aerodynamic stability derivatives in unseparated inviscid incompressible flow due separately to angle-of-attack, pitch rate, flap deflection, and airfoil camber using a discrete vortex method. Both steady conditions and oscillatory motion were considered. Variables include the number of vortices representing the airfoil, the pitch axis / moment center chordwise location, flap chord to airfoil chord ratio, and circular or parabolic arc camber. Comparisons with some experimental and other theoretical information are included. The calculated aerodynamic numerical results obtained using a limited number of vortices provided in each study compared favorably with thin airfoil theory predictions. Of particular interest are those aerodynamic results calculated herein (such as induced drag) that are not readily available elsewhere.
A numerical investigation of the summer 1980 U.S. heat wave
NASA Technical Reports Server (NTRS)
Wolfson, N.; Atlas, R.; Sud, Y.
1985-01-01
The diagnostic framework being utilized by researchers at NASA-Goddard in a numerical analysis of the draught which occurred in the U.S. in 1980 described, along with preliminary results. Attention is focused on the wave structure at 500 mb and comparisons of this structure with NMC data from 1963-77 to define conditions during the initiation, maintenance and decay of a draught. Attempts are also being made to develop a simple index for the diagnosis of heat patterns using as input data from the 500 mb analysis. Early studies involving the examination of the effects of varying boundary conditions have revealed a positive contribution from the soil moisture fields and a negative contribution from the North Pacific sea surface temperature during the event. Studies are continuing to characterize phenomena during draught initiation and decay.
Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E
2015-04-13
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Generalized Fraction: An Entity Smaller than One on the Mental Number Line
ERIC Educational Resources Information Center
Kallai, Arava Y.; Tzelgov, Joseph
2009-01-01
The representation of fractions in long-term memory (LTM) was investigated by examining the automatic processing of such numbers in a physical comparison task, and their intentional processing in a numerical comparison task. The size congruity effect (SiCE) served as a marker of automatic processing and consequently as an indicator of the access…
Impact of basin scale and time-weighted mercury metrics on intra-/inter-basin mercury comparisons
Paul Bradley; Mark E. Brigham
2016-01-01
Understanding anthropogenic and environmental controls on fluvial Mercury (Hg) bioaccumulation over global and national gradients can be challenging due to the need to integrate discrete-sample results from numerous small scale investigations. Two fundamental issues for such integrative Hg assessments are the wide range of basin scales for included studies and how well...
Study on aerodynamics characteristics an urban concept car for energy-efficient race
NASA Astrophysics Data System (ADS)
Ambarita, H.; Siregar, M. R.; Kawai, H.
2018-03-01
"Horas Mesin USU" is a prototype of urban concept vehicle designed by University of Sumatera Utara to participate in the energy-efficient competition. This paper deals with a numerical study on aerodynamic characteristics of the Horas Mesin USU. The numerical analyses are carried out by solving the governing equations using CFD FLUENT commercial code. The turbulent flow is closed using k-epsilon turbulence model. In the results, pathline, velocity vector and pressure distribution are plotted. By using the pressure distributions, drag and lift coefficients are calculated. In order to make a comparison, the aerodynamic characteristics of the present design are compared with commercial city car Ford-Fiesta. The averaged drag coefficients of Horas Mesin USU and Ford-Fiesta are 0.24320 and 0.29598, respectively. On the other hand, the averaged lift coefficients of the Horas Mesin USU and Ford-Fiesta are 0.03192202 and 0.09485621, respectively. This fact suggests that Ford-Fiesta has a better aerodynamic performance in comparison with Horas Mesin USU. The flow field analysis shows that there are many modifications can be proposed to improve the aerodynamic performance of the Horas Mesin USU. It is suggested to perform further analysis to improve the aerodynamic performance of Horas Mesin USU.
A Radial Axial-symmetric Intermediary Model for the Roto-orbital Motion
NASA Astrophysics Data System (ADS)
Crespo, F.; Molero, F. J.; Ferrer, S.; Scheeres, D. J.
2018-03-01
We study the roto-orbital dynamics of a uniform sphere and a body with axial symmetry by means of a radial intermediary, which defines an integrable system. Numerical comparisons of the MacCullagh's truncation of the gravity gradient potential and intermediary models are performed, concluding that the intermediary provides a valuable approximation with small differences when compared with the MacCullagh's one. Our analysis includes the analytical integration and a study of the special solutions and relative equilibria.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Raghunath, R.; Fu, L. L.
1996-01-01
The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.
Study of ATES thermal behavior using a steady flow model
NASA Astrophysics Data System (ADS)
Doughty, C.; Hellstroem, G.; Tsang, C. F.; Claesson, J.
1981-01-01
The thermal behavior of a single well aquifer thermal energy storage system in which buoyancy flow is neglected is studied. A dimensionless formulation of the energy transport equations for the aquifer system is presented, and the key dimensionless parameters are discussed. A simple numerical model is used to generate graphs showing the thermal behavior of the system as a function of these parameters. Some comparisons with field experiments are given to illustrate the use of the dimensionless groups and graphs.
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
Fucci, D; Kabler, H; Webster, D; McColl, D
1999-12-01
The present study concerned the perceptual processing of complex auditory stimuli in 10 children (M age = 8.1) as compared to 10 young adults (M age = 19.3) and 10 older adult subjects (M age = 54.2). The auditory stimulus used was 10 sec. of rock music (Led Zeppelin, 1969). All three groups provided numerical responses to nine intensities of the rock music stimulus (10, 20, 30, 40, 50, 60, 70, 80, 90 dB above threshold). Analysis showed that the children reported a wider range of numerical responses than both adult groups. The mean numerical responses for the children ranged from .54 to 54.24. For the young adults the range was .76 to 11.37, and for the older subjects it was 1.6 to 23.31. Results suggest that the children were not bound by the same set of rules as the adults with regard to magnitude estimation scaling of the loudness of the rock music stimulus. Their internal scaling mechanisms appeared to be more flexible and broader based than those of the adults who participated in this study.
Number sense in infancy predicts mathematical abilities in childhood.
Starr, Ariel; Libertus, Melissa E; Brannon, Elizabeth M
2013-11-05
Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language.
Ignition of expandable polystyrene foam by a hot particle: an experimental and numerical study.
Wang, Supan; Chen, Haixiang; Liu, Naian
2015-01-01
Many serious fires have occurred in recent years due to the ignition of external building insulation materials by hot metallic particles. This work studied the ignition of expandable polystyrene foam by hot metallic particles experimentally and numerically. In each experiment, a spherical steel particle was heated to a high temperature (within 1173-1373K) and then dropped to the surface of an expandable polystyrene foam block. The particles used in experiments ranged from 3mm to 7 mm in radius. The observed results for ignition were categorized into two types: "flaming ignition" and "no ignition", and the flaming ignition limit was determined by statistical analysis. According to the experimental observations, a numerical model was proposed, taking into account the reactant consumption and volatiles convection of expandable polystyrene decomposition in air. Three regimes, no ignition, unstable ignition and stable ignition, were identified, and two critical particle temperatures for separating the three regimes were determined. Comparison with the experimental data shows that the model can predict the range of critical ignition temperatures reasonably well. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical study of influence of molecular diffusion in the Mild combustion regime
NASA Astrophysics Data System (ADS)
Mardani, Amir; Tabejamaat, Sadegh; Ghamari, Mohsen
2010-09-01
In this paper, the importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of Dally et al. [Proc. Combust. Inst. 29 (2002) 1147-1154] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H2/methane jet flame. The importance of molecular diffusion for various O2 levels, jet Reynolds numbers and H2 fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H2 in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.
Number sense in infancy predicts mathematical abilities in childhood
Starr, Ariel; Libertus, Melissa E.; Brannon, Elizabeth M.
2013-01-01
Human infants in the first year of life possess an intuitive sense of number. This preverbal number sense may serve as a developmental building block for the uniquely human capacity for mathematics. In support of this idea, several studies have demonstrated that nonverbal number sense is correlated with mathematical abilities in children and adults. However, there has been no direct evidence that infant numerical abilities are related to mathematical abilities later in childhood. Here, we provide evidence that preverbal number sense in infancy predicts mathematical abilities in preschool-aged children. Numerical preference scores at 6 months of age correlated with both standardized math test scores and nonsymbolic number comparison scores at 3.5 years of age, suggesting that preverbal number sense facilitates the acquisition of numerical symbols and mathematical abilities. This relationship held even after controlling for general intelligence, indicating that preverbal number sense imparts a unique contribution to mathematical ability. These results validate the many prior studies purporting to show number sense in infancy and support the hypothesis that mathematics is built upon an intuitive sense of number that predates language. PMID:24145427
Modeling Shock Train Leading Edge Detection in Dual-Mode Scramjets
NASA Astrophysics Data System (ADS)
Ladeinde, Foluso; Lou, Zhipeng; Li, Wenhai
2016-11-01
The objective of this study is to accurately model the detection of shock train leading edge (STLE) in dual-mode scramjet (DMSJ) engines intended for hypersonic flight in air-breathing propulsion systems. The associated vehicles have applications in military warfare and intelligence, and there is commercial interest as well. Shock trains are of interest because they play a significant role in the inability of a DMSJ engine to develop the required propulsive force. The experimental approach to STLE detection has received some attention; as have numerical calculations. However, virtually all of the numerical work focus on mechanically- (i.e., pressure-) generated shock trains, which are much easier to model relative to the phenomenon in the real system where the shock trains are generated by combustion. A focus on combustion, as in the present studies, enables the investigation of the effects of equivalence ratio, which, together with the Mach number, constitutes an important parameter determining mode transition. The various numerical approaches implemented in our work will be reported, with result comparisons to experimental data. The development of an STLE detection procedure in an a priori manner will also be discussed.
Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis
NASA Astrophysics Data System (ADS)
Taghavi, Farahnaz
In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.
NASA Astrophysics Data System (ADS)
Kronsteiner, J.; Horwatitsch, D.; Zeman, K.
2017-10-01
Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.
Development of a Process Signature for Manufacturing Processes with Thermal Loads
NASA Astrophysics Data System (ADS)
Frerichs, Friedhelm; Meyer, Heiner; Strunk, Rebecca; Kolkwitz, Benjamin; Epp, Jeremy
2018-06-01
The newly proposed concept of Process Signatures enables the comparison of seemingly different manufacturing processes via a process-independent approach based on the analysis of the loading condition and resulting material modification. This contribution compares the recently published results, based on numerically achieved data for the development of Process Signatures for sole surface and volume heatings without phase transformations, with the experimental data. The numerical approach applies the moving heat source theory in combination with energetic quantities. The external thermal loadings of both processes were characterized by the resulting temperature development, which correlates with a change in the residual stress state. The numerical investigations show that surface and volume heatings are interchangeable for certain parameter regimes regarding the changes in the residual stress state. Mainly, temperature gradients and thermal diffusion are responsible for the considered modifications. The applied surface- and volume-heating models are used in shallow cut grinding and induction heating, respectively. The comparison of numerical and experimental data reveals similarities, but also some systematic deviations of the residual stresses at the surface. The evaluation and final discussion support the assertion for very fast stress relaxation processes within the subsurface region. A consequence would be that the stress relaxation processes, which are not yet included in the numerical models, must be included in the Process Signatures for sole thermal impacts.
Sella, Francesco; Berteletti, Ilaria; Lucangeli, Daniela; Zorzi, Marco
2017-01-01
A milestone in numerical development is the acquisition of counting principles which allow children to exactly determine the numerosity of a given set. Moreover, a canonical left-to-right spatial layout for representing numbers also emerges during preschool. These foundational aspects of numerical competence have been extensively studied, but there is sparse knowledge about the interplay between the acquisition of the cardinality principle and spatial mapping of numbers in early numerical development. The present study investigated how these skills concurrently develop before formal schooling. Preschool children were classified according to their performance in Give-a-Number and Number-to-position tasks. Experiment 1 revealed three qualitatively different groups: (i) children who did not master the cardinality principle and lacked any consistent spatial mapping for digits, (ii) children who mastered the cardinality principle and yet failed in spatial mapping, and (iii) children who mastered the cardinality principle and displayed consistent spatial mapping. This suggests that mastery of the cardinality principle does not entail the emergence of spatial mapping. Experiment 2 confirmed the presence of these three developmental stages and investigated their relation with a digit comparison task. Crucially, only children who displayed a consistent spatial mapping of numbers showed the ability to compare digits by numerical magnitude. A congruent (i.e., numerically ordered) positioning of numbers onto a visual line as well as the concept that moving rightwards (in Western cultures) conveys an increase in numerical magnitude mark the mastery of a spatial mapping principle. Children seem to rely on this spatial organization to achieve a full understanding of the magnitude relations between digits. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of Experimental and Computational Aerothermodynamics of a 70-deg Sphere-Cone
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Perkins, John N.
1996-01-01
Numerical solutions for hypersonic flows of carbon-dioxide and air around a 70-deg sphere-cone have been computed using an axisymmetric non-equilibrium Navier-Stokes solver. Freestream flow conditions for these computations were equivalent to those obtained in an experimental blunt-body heat-transfer study conducted in a high-enthalpy, hypervelocity expansion tube. Comparisons have been made between the computed and measured surface heat-transfer rates on the forebody and afterbody of the sphere-cone and on the sting which supported the test model. Computed forebody heating rates were within the estimated experimental uncertainties of 10% on the forebody and 15% in the wake except for within the recirculating flow region of the wake.
Ultrasonically assisted turning of aviation materials: simulations and experimental study.
Babitsky, V I; Mitrofanov, A V; Silberschmidt, V V
2004-04-01
Ultrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration (frequency f approximately 20 kHz, amplitude a approximately 15 microm) superimposed on the cutting tool movement. An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration throughout the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented. The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.
Numerical Simulation of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Chernobrovkin, A. A.; Lakshiminarayana, B.
1999-01-01
An unsteady, multiblock, Reynolds Averaged Navier Stokes solver based on Runge-Kutta scheme and Pseudo-time step for turbo-machinery applications was developed. The code was validated and assessed against analytical and experimental data. It was used to study a variety of physical mechanisms of unsteady, three-dimensional, turbulent, transitional, and cooling flows in compressors and turbines. Flow over a cylinder has been used to study effects of numerical aspects on accuracy of prediction of wake decay and transition, and to modify K-epsilon models. The following simulations have been performed: (a) Unsteady flow in a compressor cascade: Three low Reynolds number turbulence models have been assessed and data compared with Euler/boundary layer predictions. Major flow features associated with wake induced transition were predicted and studied; (b) Nozzle wake-rotor interaction in a turbine: Results compared to LDV data in design and off-design conditions, and cause and effect of unsteady flow in turbine rotors were analyzed; (c) Flow in the low-pressure turbine: Assessed capability of the code to predict transitional, attached and separated flows at a wide range of low Reynolds numbers and inlet freestream turbulence intensity. Several turbulence and transition models have been employed and comparisons made to experiments; (d) leading edge film cooling at compound angle: Comparisons were made with experiments, and the flow physics of the associated vortical structures were studied; and (e) Tip leakage flow in a turbine. The physics of the secondary flow in a rotor was studied and sources of loss identified.
Moussaoui, Ahmed; Bouziane, Touria
2016-01-01
The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison
NASA Technical Reports Server (NTRS)
TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.
Numerical Simulation of Dual-Mode Scramjet Combustors
NASA Technical Reports Server (NTRS)
Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.
2000-01-01
Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
NASA Astrophysics Data System (ADS)
Aarts, Gert; Laurie, Nathan; Tranberg, Anders
2008-12-01
The 1/N expansion of the two-particle irreducible effective action offers a powerful approach to study quantum field dynamics far from equilibrium. We investigate the effective convergence of the 1/N expansion in the O(N) model by comparing results obtained numerically in 1+1 dimensions at leading, next-to-leading and next-to-next-to-leading order in 1/N as well as in the weak coupling limit. A comparison in classical statistical field theory, where exact numerical results are available, is made as well. We focus on early-time dynamics and quasiparticle properties far from equilibrium and observe rapid effective convergence already for moderate values of 1/N or the coupling.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
Analysis of free turbulent shear flows by numerical methods
NASA Technical Reports Server (NTRS)
Korst, H. H.; Chow, W. L.; Hurt, R. F.; White, R. A.; Addy, A. L.
1973-01-01
Studies are described in which the effort was essentially directed to classes of problems where the phenomenologically interpreted effective transport coefficients could be absorbed by, and subsequently extracted from (by comparison with experimental data), appropriate coordinate transformations. The transformed system of differential equations could then be solved without further specifications or assumptions by numerical integration procedures. An attempt was made to delineate different regimes for which specific eddy viscosity models could be formulated. In particular, this would account for the carryover of turbulence from attached boundary layers, the transitory adjustment, and the asymptotic behavior of initially disturbed mixing regions. Such models were subsequently used in seeking solutions for the prescribed two-dimensional test cases, yielding a better insight into overall aspects of the exchange mechanisms.
Physical and numerical modeling of hydrophysical proceses on the site of underwater pipelines
NASA Astrophysics Data System (ADS)
Garmakova, M. E.; Degtyarev, V. V.; Fedorova, N. N.; Shlychkov, V. A.
2018-03-01
The paper outlines issues related to ensuring the exploitation safety of underwater pipelines that are at risk of accidents. The performed research is based on physical and mathematical modeling of local bottom erosion in the area of pipeline location. The experimental studies were performed on the basis of the Hydraulics Laboratory of the Department of Hydraulic Engineering Construction, Safety and Ecology of NSUACE (Sibstrin). In the course of physical experiments it was revealed that the intensity of the bottom soil reforming depends on the deepening of the pipeline. The ANSYS software has been used for numerical modeling. The process of erosion of the sandy bottom was modeled under the pipeline. Comparison of computational results at various mass flow rates was made.
Knops, Andre; Nuerk, Hans-Christoph; Sparing, Roland; Foltys, Henrik; Willmes, Klaus
2006-01-01
Areas around the horizontal part of the intraparietal sulcus (hIPS) have repeatedly been reported to participate in processing numerical magnitude. Using transcranial magnetic stimulation (TMS), we investigated the functional role of the hIPS by examining two effects from the domain of numerical cognition: in magnitude comparison tasks response latencies are inversely related to the numerical distance between two numbers. This distance effect indexes access to the mental number representation. In magnitude comparison tasks responses are faster when decade and unit comparison would lead to the same decision (e.g. 42_57, 4 < 5 and 2 < 7) than when they would not (e.g. 47_62, 4 < 6 but 7 > 2). This compatibility effect reflects unit-decade integration processes. Differential susceptibility of (fe)male participants to TMS was examined. We applied repetitive TMS (rTMS; 1Hz for 10 min) over the left hIPS in 12 participants (6 female). No stimulation and vertex stimulation served as control conditions. The effect of rTMS was mediated by gender: in male participants, the distance effect decreased after TMS over hIPS. For female participants distance and compatibility effect both increased. This modulation of the compatibility effect was limited in duration to no more than 4 min. The hIPS seems to be functionally involved both in number magnitude processing and in integrating unit-decade magnitude information of two-digit numbers. Relative hemispheric specialization of the hIPS with respect to two-digit magnitude comparison is discussed.
A Taylor weak-statement algorithm for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.
Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M
2010-01-01
Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.
Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew .; Hoke, John L.; Schauer, Fred
2011-01-01
A comparison between experimentally measured and numerically simulated, time-averaged, point heat transfer rates in a pulse detonation (PDE) engine is presented. The comparison includes measurements and calculations for heat transfer to a cylinder in crossflow and to the tube wall itself using a novel spool design. Measurements are obtained at several locations and under several operating conditions. The measured and computed results are shown to be in substantial agreement, thereby validating the modeling approach. The model, which is based in computational fluid dynamics (CFD) is then used to interpret the results. A preheating of the incoming fuel charge is predicted, which results in increased volumetric flow and subsequent overfilling. The effect is validated with additional measurements.
Numerical study of water residence time in the Yueqing Bay based on the eulerian approach
NASA Astrophysics Data System (ADS)
Ying, Chao; Li, Xinwen; Liu, Yong; Yao, Wenwei; Li, Ruijie
2018-05-01
The Yueqing Bay was a semi-enclosed bay located in the southeast of Zhejiang Province, China. Due to substantial anthropogenic influences since 1964, the water quality in the bay had deteriorated seriously. Thus urgent measures should be taken to protect the water body. In this study, a numerical model was calibrated for water surface elevation and tidal current from August 14 to August 26, 2011. Comparisons of observed and simulated data showed that the model reproduced the tidal range and phase and the variations of current at different periods fairly well. The calibrated model was then applied to investigate spatial flushing pattern of the bay by calculation of residence time. The results obtained from a series of model experiments demonstrated that the residence time increased from 10 day at the bay mouth to more than 70 day at the upper bay. The average residence time over the whole bay was 49.5 day. In addition, the adaptation of flushing homogeneity curve showed that the residence time in the bay varied smoothly. This study provides a numerical tool to quantify the transport timescale in Yueqing Bay and supports adaptive management of the bay by local authorities.
An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm
Doyle, Barry J.; Corbett, Timothy J.; Callanan, Anthony; Walsh, Michael T.; Vorp, David A.; McGloughlin, Timothy M.
2009-01-01
Purpose: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. Methods: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. Results: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. Conclusion: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study. PMID:19642790
Heine, Angela; Wissmann, Jacqueline; Tamm, Sascha; De Smedt, Bert; Schneider, Michael; Stern, Elsbeth; Verschaffel, Lieven; Jacobs, Arthur M
2013-09-01
The aim of the present study was to probe electrophysiological effects of non-symbolic numerical processing in 20 children with mathematical learning disabilities (mean age = 99.2 months) compared to a group of 20 typically developing matched controls (mean age = 98.4 months). EEG data were obtained while children were tested with a standard non-symbolic numerical comparison paradigm that allowed us to investigate the effects of numerical distance manipulations for different set sizes, i.e., the classical subitizing, counting and estimation ranges. Effects of numerical distance manipulations on event-related potential (ERP) amplitudes as well as activation patterns of underlying current sources were analyzed. In typically developing children, the amplitudes of a late parietal positive-going ERP component showed systematic numerical distance effects that did not depend on set size. For the group of children with mathematical learning disabilities, ERP distance effects were found only for stimuli within the subitizing range. Current source density analysis of distance-related group effects suggested that areas in right inferior parietal regions are involved in the generation of the parietal ERP amplitude differences. Our results suggest that right inferior parietal regions are recruited differentially by controls compared to children with mathematical learning disabilities in response to non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes that exceed the subitizing range. Copyright © 2012 Elsevier Ltd. All rights reserved.
Numerical Analysis on the High-Strength Concrete Beams Ultimate Behaviour
NASA Astrophysics Data System (ADS)
Smarzewski, Piotr; Stolarski, Adam
2017-10-01
Development of technologies of high-strength concrete (HSC) beams production, with the aim of creating a secure and durable material, is closely linked with the numerical models of real objects. The three-dimensional nonlinear finite element models of reinforced high-strength concrete beams with a complex geometry has been investigated in this study. The numerical analysis is performed using the ANSYS finite element package. The arc-length (A-L) parameters and the adaptive descent (AD) parameters are used with Newton-Raphson method to trace the complete load-deflection curves. Experimental and finite element modelling results are compared graphically and numerically. Comparison of these results indicates the correctness of failure criteria assumed for the high-strength concrete and the steel reinforcement. The results of numerical simulation are sensitive to the modulus of elasticity and the shear transfer coefficient for an open crack assigned to high-strength concrete. The full nonlinear load-deflection curves at mid-span of the beams, the development of strain in compressive concrete and the development of strain in tensile bar are in good agreement with the experimental results. Numerical results for smeared crack patterns are qualitatively agreeable as to the location, direction, and distribution with the test data. The model was capable of predicting the introduction and propagation of flexural and diagonal cracks. It was concluded that the finite element model captured successfully the inelastic flexural behaviour of the beams to failure.
NASA Technical Reports Server (NTRS)
Canright, R. B., Jr.; Semler, T. T.
1972-01-01
Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.
Buckling and Damage Resistance of Transversely-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Wardle, Brian L.
1998-01-01
Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into asymmetric deformation modes but were undamaged during testing. Shells in this study which were damaged were not observed to bifurcate. Thus, a direct link between bifurcation and atypical damage could not be established although the mechanism (bifurcation) was identified. Recommendations for further work in these related areas are provided and include extensions of the AMT to other shell geometries and structural problems.
3D early embryogenesis image filtering by nonlinear partial differential equations.
Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O
2010-08-01
We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which are artificially connected due to acquisition error intrinsically linked to physics of LSM. In all studied aspects it turned out that the nonlinear diffusion filter which is called geodesic mean curvature flow (GMCF) has the best performance. Copyright 2010 Elsevier B.V. All rights reserved.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
NASA Astrophysics Data System (ADS)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
Ionospheric Alfvén resonator and aurora: Modeling of MICA observations
NASA Astrophysics Data System (ADS)
Tulegenov, B.; Streltsov, A. V.
2017-07-01
We present results from a numerical study of small-scale, intense magnetic field-aligned currents observed in the vicinity of the discrete auroral arc by the Magnetosphere-Ionosphere Coupling in the Alfvén Resonator (MICA) sounding rocket launched from Poker Flat, Alaska, on 19 February 2012. The goal of the MICA project was to investigate the hypothesis that such currents can be produced inside the ionospheric Alfvén resonator by the ionospheric feedback instability (IFI) driven by the system of large-scale magnetic field-aligned currents interacting with the ionosphere. The trajectory of the MICA rocket crossed two discrete auroral arcs and detected packages of intense, small-scale currents at the edges of these arcs, in the most favorable location for the development of the ionospheric feedback instability, predicted by the IFI theory. Simulations of the reduced MHD model derived in the dipole magnetic field geometry with realistic background parameters confirm that IFI indeed generates small-scale ULF waves inside the ionospheric Alfvén resonator with frequency, scale size, and amplitude showing a good, quantitative agreement with the observations. The comparison between numerical results and observations was performed by "flying" a virtual MICA rocket through the computational domain, and this comparison shows that, for example, the waves generated in the numerical model have frequencies in the range from 0.30 to 0.45 Hz, and the waves detected by the MICA rocket have frequencies in the range from 0.18 to 0.50 Hz.
A technique to remove the tensile instability in weakly compressible SPH
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Yu, Peng
2018-01-01
When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.
A Complex Prime Numerical Representation of Amino Acids for Protein Function Comparison.
Chen, Duo; Wang, Jiasong; Yan, Ming; Bao, Forrest Sheng
2016-08-01
Computationally assessing the functional similarity between proteins is an important task of bioinformatics research. It can help molecular biologists transfer knowledge on certain proteins to others and hence reduce the amount of tedious and costly benchwork. Representation of amino acids, the building blocks of proteins, plays an important role in achieving this goal. Compared with symbolic representation, representing amino acids numerically can expand our ability to analyze proteins, including comparing the functional similarity of them. Among the state-of-the-art methods, electro-ion interaction pseudopotential (EIIP) is widely adopted for the numerical representation of amino acids. However, it could suffer from degeneracy that two different amino acid sequences have the same numerical representation, due to the design of EIIP. In light of this challenge, we propose a complex prime numerical representation (CPNR) of amino acids, inspired by the similarity between a pattern among prime numbers and the number of codons of amino acids. To empirically assess the effectiveness of the proposed method, we compare CPNR against EIIP. Experimental results demonstrate that the proposed method CPNR always achieves better performance than EIIP. We also develop a framework to combine the advantages of CPNR and EIIP, which enables us to improve the performance and study the unique characteristics of different representations.
Dameron, O; Gibaud, B; Morandi, X
2004-06-01
The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.
Quantity discrimination in canids: Dogs (Canis familiaris) and wolves (Canis lupus) compared.
Miletto Petrazzini, Maria Elena; Wynne, Clive D L
2017-11-01
Accumulating evidence indicates that animals are able to discriminate between quantities. Recent studies have shown that dogs' and coyotes' ability to discriminate between quantities of food items decreases with increasing numerical ratio. Conversely, wolves' performance is not affected by numerical ratio. Cross-species comparisons are difficult because of differences in the methodologies employed, and hence it is still unclear whether domestication altered quantitative abilities in canids. Here we used the same procedure to compare pet dogs and wolves in a spontaneous food choice task. Subjects were presented with two quantities of food items and allowed to choose only one option. Four numerical contrasts of increasing difficulty (range 1-4) were used to assess the influence of numerical ratio on the performance of the two species. Dogs' accuracy was affected by numerical ratio, while no ratio effect was observed in wolves. These results align with previous findings and reinforce the idea of different quantitative competences in dogs and wolves. Although we cannot exclude that other variables might have played a role in shaping quantitative abilities in these two species, our results might suggest that the interspecific differences here reported may have arisen as a result of domestication. Copyright © 2017 Elsevier B.V. All rights reserved.
The experimental and numerical investigation of pistol bullet penetrating soft tissue simulant.
Wang, Yongjuan; Shi, Xiaoning; Chen, Aijun; Xu, Cheng
2015-04-01
Gelatin, a representative simulant for soft tissue of the human body, was used to study the effects of 9 mm pistol bullet's penetration. The behavior of a bullet penetrating gelatin was quantified by the temporary cavity sizes in ballistic gelatin and the pressure values of bullet's impact. A numerical simulation model of a bullet penetrating the soft tissue simulant gelatin was built using the finite element method (FEM). The model was validated by the comparison between the numerical results and the experimental results. During a bullet penetrating ballistic gelatin, four stages were clearly observed in both the experiment and the numerical simulation: a smooth attenuation stage, a rolling stage, a full penetration stage, and a stage of expansion and contraction. The cavity evolution, equivalent stress field and the strain field in gelatin were analyzed by numerical simulation. Moreover, the effects of the bullet's impact velocities and angles of incidence on the temporary cavity in gelatin, its velocity attenuation, and its rolling angle were investigated, as well as the bullet's resistance and energy variation. The physical process and the interactive mechanism during a pistol bullet penetrating gelatin were comprehensively revealed. This may be significant for research in wound ballistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Modelization of highly nonlinear waves in coastal regions
NASA Astrophysics Data System (ADS)
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
Numerical comparisons of ground motion predictions with kinematic rupture modeling
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Zurek, B.; Liu, F.; deMartin, B.; Lacasse, M. D.
2017-12-01
Recent advances in large-scale wave simulators allow for the computation of seismograms at unprecedented levels of detail and for areas sufficiently large to be relevant to small regional studies. In some instances, detailed information of the mechanical properties of the subsurface has been obtained from seismic exploration surveys, well data, and core analysis. Using kinematic rupture modeling, this information can be used with a wave propagation simulator to predict the ground motion that would result from an assumed fault rupture. The purpose of this work is to explore the limits of wave propagation simulators for modeling ground motion in different settings, and in particular, to explore the numerical accuracy of different methods in the presence of features that are challenging to simulate such as topography, low-velocity surface layers, and shallow sources. In the main part of this work, we use a variety of synthetic three-dimensional models and compare the relative costs and benefits of different numerical discretization methods in computing the seismograms of realistic-size models. The finite-difference method, the discontinuous-Galerkin method, and the spectral-element method are compared for a range of synthetic models having different levels of complexity such as topography, large subsurface features, low-velocity surface layers, and the location and characteristics of fault ruptures represented as an array of seismic sources. While some previous studies have already demonstrated that unstructured-mesh methods can sometimes tackle complex problems (Moczo et al.), we investigate the trade-off between unstructured-mesh methods and regular-grid methods for a broad range of models and source configurations. Finally, for comparison, our direct simulation results are briefly contrasted with those predicted by a few phenomenological ground-motion prediction equations, and a workflow for accurately predicting ground motion is proposed.
Delayed reward discounting and addictive behavior: a meta-analysis.
MacKillop, James; Amlung, Michael T; Few, Lauren R; Ray, Lara A; Sweet, Lawrence H; Munafò, Marcus R
2011-08-01
Delayed reward discounting (DRD) is a behavioral economic index of impulsivity and numerous studies have examined DRD in relation to addictive behavior. To synthesize the findings across the literature, the current review is a meta-analysis of studies comparing DRD between criterion groups exhibiting addictive behavior and control groups. The meta-analysis sought to characterize the overall patterns of findings, systematic variability by sample and study type, and possible small study (publication) bias. Literature reviews identified 310 candidate articles from which 46 studies reporting 64 comparisons were identified (total N=56,013). From the total comparisons identified, a small magnitude effect was evident (d= .15; p< .00001) with very high heterogeneity of effect size. Based on systematic observed differences, large studies assessing DRD with a small number of self-report items were removed and an analysis of 57 comparisons (n=3,329) using equivalent methods and exhibiting acceptable heterogeneity revealed a medium magnitude effect (d= .58; p< .00001). Further analyses revealed significantly larger effect sizes for studies using clinical samples (d= .61) compared with studies using nonclinical samples (d=.45). Indices of small study bias among the various comparisons suggested varying levels of influence by unpublished findings, ranging from minimal to moderate. These results provide strong evidence of greater DRD in individuals exhibiting addictive behavior in general and particularly in individuals who meet criteria for an addictive disorder. Implications for the assessment of DRD and research priorities are discussed.
Delayed reward discounting and addictive behavior: a meta-analysis
Amlung, Michael T.; Few, Lauren R.; Ray, Lara A.; Sweet, Lawrence H.; Munafò, Marcus R.
2011-01-01
Rationale Delayed reward discounting (DRD) is a behavioral economic index of impulsivity and numerous studies have examined DRD in relation to addictive behavior. To synthesize the findings across the literature, the current review is a meta-analysis of studies comparing DRD between criterion groups exhibiting addictive behavior and control groups. Objectives The meta-analysis sought to characterize the overall patterns of findings, systematic variability by sample and study type, and possible small study (publication) bias. Methods Literature reviews identified 310 candidate articles from which 46 studies reporting 64 comparisons were identified (total N=56,013). Results From the total comparisons identified, a small magnitude effect was evident (d=.15; p<.00001) with very high heterogeneity of effect size. Based on systematic observed differences, large studies assessing DRD with a small number of self-report items were removed and an analysis of 57 comparisons (n=3,329) using equivalent methods and exhibiting acceptable heterogeneity revealed a medium magnitude effect (d=.58; p<.00001). Further analyses revealed significantly larger effect sizes for studies using clinical samples (d=.61) compared with studies using nonclinical samples (d=.45). Indices of small study bias among the various comparisons suggested varying levels of influence by unpublished findings, ranging from minimal to moderate. Conclusions These results provide strong evidence of greater DRD in individuals exhibiting addictive behavior in general and particularly in individuals who meet criteria for an addictive disorder. Implications for the assessment of DRD and research priorities are discussed. PMID:21373791
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus
2012-12-01
In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.
Force-controlled absorption in a fully-nonlinear numerical wave tank
NASA Astrophysics Data System (ADS)
Spinneken, Johannes; Christou, Marios; Swan, Chris
2014-09-01
An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.
NASA Astrophysics Data System (ADS)
Formisano, Antonio; Chiumiento, Giovanni; Fabbrocino, Francesco; Landolfo, Raffaele
2017-07-01
The general objective of the work is to draw attention to the issue of seismic vulnerability analysis of masonry building compounds, which characterise most of the Italian historic towns. The study is based on the analysis of an aggregated construction falling in the town of Arsita (Teramo, Italy) damaged after the 2009 L'Aquila earthquake. A comparison between the seismic verifications carried out by using the 3Muri commercial software and those deriving from the application of the Italian Guidelines on Cultural Heritage has been performed. The comparison has shown that Guidelines provide results on the safe side in predicting the seismic behaviour of the building compound under study. Further analyses should be performed aiming at suggesting some modifications of the used simplified calculation method to better interpret the behaviour of building compounds under earthquake.
Posture and posturology, anatomical and physiological profiles: overview and current state of art.
Carini, Francesco; Mazzola, Margherita; Fici, Chiara; Palmeri, Salvatore; Messina, Massimo; Damiani, Provvidenza; Tomasello, Giovanni
2017-04-28
posture is the position of the body in the space, and is controlled by a set of anatomical structures. The maintenance and the control of posture are a set of interactions between muscle-skeletal, visual, vestibular, and skin system. Lately there are numerous studies that correlate the muscle-skeletal and the maintenance of posture. In particular, the correction of defects and obstruction of temporomandibular disorders, seem to have an impact on posture. The aim of this work is to collect information in literature on posture and the influence of the stomatognathic system on postural system. Comparison of the literature on posture and posturology by consulting books and scientific sites. the results obtained from the comparison of the literature show a discrepancy between the thesis. Some studies support the correlation between stomatognathic system and posture, while others deny such a correlation. further studies are necessary to be able to confirm one or the other argument.
FTIR gas chromatographic analysis of perfumes
NASA Astrophysics Data System (ADS)
Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.
1992-03-01
Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.
Optimal Mass Transport for Shape Matching and Comparison
Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng
2015-01-01
Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n2) to O(n). For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265
Color congruity effect: where do colors and numbers interact in synesthesia?
Cohen Kadosh, Roi; Henik, Avishai
2006-02-01
The traditional size congruity paradigm is a Stroop-like situation where participants are asked to compare the values of two digits and ignore the irrelevant physical sizes of the digits (e.g., 3 5). Here a color congruity paradigm was employed and the irrelevant physical sizes were replaced by irrelevant colors. MM, a digit-color synesthete, yielded the classical congruity effect. Namely, she was slower to identify numerically larger numbers when they deviated from her synesthetic experience than when they matched it. In addition, the effect of color on her comparative judgments was modulated by numerical distance. In contrast, performance of non-synesthetes was not affected by the colors. On the basis of neurophysiological studies of magnitude comparison and interference between numerical and physical information, it is proposed that the interaction between colors and digits in MM occurs at the conceptual level. Moreover, by using the current paradigm it is possible to determine the stage at which color-digit binding in synesthesia occurs.
Numerical Prediction of Chevron Nozzle Noise Reduction using Wind-MGBK Methodology
NASA Technical Reports Server (NTRS)
Engblom, W.A.; Bridges, J.; Khavarant, A.
2005-01-01
Numerical predictions for single-stream chevron nozzle flow performance and farfield noise production are presented. Reynolds Averaged Navier Stokes (RANS) solutions, produced via the WIND flow solver, are provided as input to the MGBK code for prediction of farfield noise distributions. This methodology is applied to a set of sensitivity cases involving varying degrees of chevron inward bend angle relative to the core flow, for both cold and hot exhaust conditions. The sensitivity study results illustrate the effect of increased chevron bend angle and exhaust temperature on enhancement of fine-scale mixing, initiation of core breakdown, nozzle performance, and noise reduction. Direct comparisons with experimental data, including stagnation pressure and temperature rake data, PIV turbulent kinetic energy fields, and 90 degree observer farfield microphone data are provided. Although some deficiencies in the numerical predictions are evident, the correct farfield noise spectra trends are captured by the WIND-MGBK method, including the noise reduction benefit of chevrons. Implications of these results to future chevron design efforts are addressed.