Sample records for numerical computation software

  1. Computer-assisted qualitative data analysis software.

    PubMed

    Cope, Diane G

    2014-05-01

    Advances in technology have provided new approaches for data collection methods and analysis for researchers. Data collection is no longer limited to paper-and-pencil format, and numerous methods are now available through Internet and electronic resources. With these techniques, researchers are not burdened with entering data manually and data analysis is facilitated by software programs. Quantitative research is supported by the use of computer software and provides ease in the management of large data sets and rapid analysis of numeric statistical methods. New technologies are emerging to support qualitative research with the availability of computer-assisted qualitative data analysis software (CAQDAS).CAQDAS will be presented with a discussion of advantages, limitations, controversial issues, and recommendations for this type of software use.

  2. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  3. Fusing Symbolic and Numerical Diagnostic Computations

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    X-2000 Anomaly Detection Language denotes a developmental computing language, and the software that establishes and utilizes the language, for fusing two diagnostic computer programs, one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for realtime detection of events (e.g., failures) in a spacecraft, aircraft, or other complex engineering system. The numerical analysis method is performed by beacon-based exception analysis for multi-missions (BEAMs), which has been discussed in several previous NASA Tech Briefs articles. The symbolic analysis method is, more specifically, an artificial-intelligence method of the knowledge-based, inference engine type, and its implementation is exemplified by the Spacecraft Health Inference Engine (SHINE) software. The goal in developing the capability to fuse numerical and symbolic diagnostic components is to increase the depth of analysis beyond that previously attainable, thereby increasing the degree of confidence in the computed results. In practical terms, the sought improvement is to enable detection of all or most events, with no or few false alarms.

  4. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  5. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  6. Towards Test Driven Development for Computational Science with pFUnit

    NASA Technical Reports Server (NTRS)

    Rilee, Michael L.; Clune, Thomas L.

    2014-01-01

    Developers working in Computational Science & Engineering (CSE)/High Performance Computing (HPC) must contend with constant change due to advances in computing technology and science. Test Driven Development (TDD) is a methodology that mitigates software development risks due to change at the cost of adding comprehensive and continuous testing to the development process. Testing frameworks tailored for CSE/HPC, like pFUnit, can lower the barriers to such testing, yet CSE software faces unique constraints foreign to the broader software engineering community. Effective testing of numerical software requires a comprehensive suite of oracles, i.e., use cases with known answers, as well as robust estimates for the unavoidable numerical errors associated with implementation with finite-precision arithmetic. At first glance these concerns often seem exceedingly challenging or even insurmountable for real-world scientific applications. However, we argue that this common perception is incorrect and driven by (1) a conflation between model validation and software verification and (2) the general tendency in the scientific community to develop relatively coarse-grained, large procedures that compound numerous algorithmic steps.We believe TDD can be applied routinely to numerical software if developers pursue fine-grained implementations that permit testing, neatly side-stepping concerns about needing nontrivial oracles as well as the accumulation of errors. We present an example of a successful, complex legacy CSE/HPC code whose development process shares some aspects with TDD, which we contrast with current and potential capabilities. A mix of our proposed methodology and framework support should enable everyday use of TDD by CSE-expert developers.

  7. Scilab software as an alternative low-cost computing in solving the linear equations problem

    NASA Astrophysics Data System (ADS)

    Agus, Fahrul; Haviluddin

    2017-02-01

    Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

  8. Semiannual report, 1 April - 30 September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software for parallel computers. Research in these areas is discussed.

  9. Open-source meteor detection software for low-cost single-board computers

    NASA Astrophysics Data System (ADS)

    Vida, D.; Zubović, D.; Šegon, D.; Gural, P.; Cupec, R.

    2016-01-01

    This work aims to overcome the current price threshold of meteor stations which can sometimes deter meteor enthusiasts from owning one. In recent years small card-sized computers became widely available and are used for numerous applications. To utilize such computers for meteor work, software which can run on them is needed. In this paper we present a detailed description of newly-developed open-source software for fireball and meteor detection optimized for running on low-cost single board computers. Furthermore, an update on the development of automated open-source software which will handle video capture, fireball and meteor detection, astrometry and photometry is given.

  10. Algorithm-Based Fault Tolerance for Numerical Subroutines

    NASA Technical Reports Server (NTRS)

    Tumon, Michael; Granat, Robert; Lou, John

    2007-01-01

    A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.

  11. Objective and Item Banking Computer Software and Its Use in Comprehensive Achievement Monitoring.

    ERIC Educational Resources Information Center

    Schriber, Peter E.; Gorth, William P.

    The current emphasis on objectives and test item banks for constructing more effective tests is being augmented by increasingly sophisticated computer software. Items can be catalogued in numerous ways for retrieval. The items as well as instructional objectives can be stored and test forms can be selected and printed by the computer. It is also…

  12. An Object-Oriented Approach to Writing Computational Electromagnetics Codes

    NASA Technical Reports Server (NTRS)

    Zimmerman, Martin; Mallasch, Paul G.

    1996-01-01

    Presently, most computer software development in the Computational Electromagnetics (CEM) community employs the structured programming paradigm, particularly using the Fortran language. Other segments of the software community began switching to an Object-Oriented Programming (OOP) paradigm in recent years to help ease design and development of highly complex codes. This paper examines design of a time-domain numerical analysis CEM code using the OOP paradigm, comparing OOP code and structured programming code in terms of software maintenance, portability, flexibility, and speed.

  13. Strategies for the Creation, Design and Implementation of Effective Interactive Computer-Aided Learning Software in Numerate Business Subjects--The Byzantium Experience.

    ERIC Educational Resources Information Center

    Wilkinson-Riddle, G. J.; Patel, Ashok

    1998-01-01

    Discusses courseware development, including intelligent tutoring systems, under the Teaching and Learning Technology Programme and the Byzantium project that was designed to define computer-aided learning performance standards suitable for numerate business subjects; examine reasons to use computer-aided learning; and improve access to educational…

  14. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1981-01-01

    Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.

  15. DIATOM (Data Initialization and Modification) Library Version 7.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.

    DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less

  16. Transfer of numeric ASCII data files between Apple and IBM personal computers.

    PubMed

    Allan, R W; Bermejo, R; Houben, D

    1986-01-01

    Listings for programs designed to transfer numeric ASCII data files between Apple and IBM personal computers are provided with accompanying descriptions of how the software operates. Details of the hardware used are also given. The programs may be easily adapted for transferring data between other microcomputers.

  17. Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution

    ERIC Educational Resources Information Center

    Subramanian, Venkat R.

    2006-01-01

    High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…

  18. CINDA-3G: Improved Numerical Differencing Analyzer Program for Third-Generation Computers

    NASA Technical Reports Server (NTRS)

    Gaski, J. D.; Lewis, D. R.; Thompson, L. R.

    1970-01-01

    The goal of this work was to develop a new and versatile program to supplement or replace the original Chrysler Improved Numerical Differencing Analyzer (CINDA) thermal analyzer program in order to take advantage of the improved systems software and machine speeds of the third-generation computers.

  19. Parallel Fortran-MPI software for numerical inversion of the Laplace transform and its application to oscillatory water levels in groundwater environments

    USGS Publications Warehouse

    Zhan, X.

    2005-01-01

    A parallel Fortran-MPI (Message Passing Interface) software for numerical inversion of the Laplace transform based on a Fourier series method is developed to meet the need of solving intensive computational problems involving oscillatory water level's response to hydraulic tests in a groundwater environment. The software is a parallel version of ACM (The Association for Computing Machinery) Transactions on Mathematical Software (TOMS) Algorithm 796. Running 38 test examples indicated that implementation of MPI techniques with distributed memory architecture speedups the processing and improves the efficiency. Applications to oscillatory water levels in a well during aquifer tests are presented to illustrate how this package can be applied to solve complicated environmental problems involved in differential and integral equations. The package is free and is easy to use for people with little or no previous experience in using MPI but who wish to get off to a quick start in parallel computing. ?? 2004 Elsevier Ltd. All rights reserved.

  20. The new information technologies and psychiatry.

    PubMed

    Fauman, M A

    1989-09-01

    The author reviews the history and technology of the microcomputer and discusses the various classes of software that are presently available. Three major categories of software are described: numeric data processing, text processing, and communications. The application of this software to psychiatric education and practice is briefly discussed. A short curriculum on computers for psychiatric residents is outlined, and a brief bibliography of the recent relevant literature on computer applications to medicine and psychiatry is presented. Predictions are made about the future direction of computer technology and its application to psychiatry.

  1. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  2. Toolpack mathematical software development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterweil, L.

    1982-07-21

    The purpose of this research project was to produce a well integrated set of tools for the support of numerical computation. The project entailed the specification, design and implementation of both a diversity of tools and an innovative tool integration mechanism. This large configuration of tightly integrated tools comprises an environment for numerical software development, and has been named Toolpack/IST (Integrated System of Tools). Following the creation of this environment in prototype form, the environment software was readied for widespread distribution by transitioning it to a development organization for systematization, documentation and distribution. It is expected that public release ofmore » Toolpack/IST will begin imminently and will provide a basis for evaluation of the innovative software approaches taken as well as a uniform set of development tools for the numerical software community.« less

  3. Software Simplifies the Sharing of Numerical Models

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To ease the sharing of climate models with university students, Goddard Space Flight Center awarded SBIR funding to Reston, Virginia-based Parabon Computation Inc., a company that specializes in cloud computing. The firm developed a software program capable of running climate models over the Internet, and also created an online environment for people to collaborate on developing such models.

  4. Code White: A Signed Code Protection Mechanism for Smartphones

    DTIC Science & Technology

    2010-09-01

    analogous to computer security is the use of antivirus (AV) software . 12 AV software is a brute force approach to security. The software ...these users, numerous malicious programs have also surfaced. And while smartphones have desktop-like capabilities to execute software , they do not...11 2.3.1 Antivirus and Mobile Phones ............................................................... 11 2.3.2

  5. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  6. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables.

  7. Cultural and Technological Issues and Solutions for Geodynamics Software Citation

    NASA Astrophysics Data System (ADS)

    Heien, E. M.; Hwang, L.; Fish, A. E.; Smith, M.; Dumit, J.; Kellogg, L. H.

    2014-12-01

    Computational software and custom-written codes play a key role in scientific research and teaching, providing tools to perform data analysis and forward modeling through numerical computation. However, development of these codes is often hampered by the fact that there is no well-defined way for the authors to receive credit or professional recognition for their work through the standard methods of scientific publication and subsequent citation of the work. This in turn may discourage researchers from publishing their codes or making them easier for other scientists to use. We investigate the issues involved in citing software in a scientific context, and introduce features that should be components of a citation infrastructure, particularly oriented towards the codes and scientific culture in the area of geodynamics research. The codes used in geodynamics are primarily specialized numerical modeling codes for continuum mechanics problems; they may be developed by individual researchers, teams of researchers, geophysicists in collaboration with computational scientists and applied mathematicians, or by coordinated community efforts such as the Computational Infrastructure for Geodynamics. Some but not all geodynamics codes are open-source. These characteristics are common to many areas of geophysical software development and use. We provide background on the problem of software citation and discuss some of the barriers preventing adoption of such citations, including social/cultural barriers, insufficient technological support infrastructure, and an overall lack of agreement about what a software citation should consist of. We suggest solutions in an initial effort to create a system to support citation of software and promotion of scientific software development.

  8. Numerical systems on a minicomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jr., Roy Leonard

    1973-02-01

    This thesis defines the concept of a numerical system for a minicomputer and provides a description of the software and computer system configuration necessary to implement such a system. A procedure for creating a numerical system from a FORTRAN program is developed and an example is presented.

  9. Object oriented development of engineering software using CLIPS

    NASA Technical Reports Server (NTRS)

    Yoon, C. John

    1991-01-01

    Engineering applications involve numeric complexity and manipulations of a large amount of data. Traditionally, numeric computation has been the concern in developing an engineering software. As engineering application software became larger and more complex, management of resources such as data, rather than the numeric complexity, has become the major software design problem. Object oriented design and implementation methodologies can improve the reliability, flexibility, and maintainability of the resulting software; however, some tasks are better solved with the traditional procedural paradigm. The C Language Integrated Production System (CLIPS), with deffunction and defgeneric constructs, supports the procedural paradigm. The natural blending of object oriented and procedural paradigms has been cited as the reason for the popularity of the C++ language. The CLIPS Object Oriented Language's (COOL) object oriented features are more versatile than C++'s. A software design methodology based on object oriented and procedural approaches appropriate for engineering software, and to be implemented in CLIPS was outlined. A method for sensor placement for Space Station Freedom is being implemented in COOL as a sample problem.

  10. From Print to Pixels: Practitioners' Reflections on the Use of Qualitative Data Analysis Software.

    ERIC Educational Resources Information Center

    Gilbert, Linda S.

    This paper studied how individual qualitative researchers perceive that their research procedures and perspectives have been influenced by the adoption of computer assisted qualitative data software. The study focused on Nud*Ist software (non-numerical Unstructured Data; Indexing, Searching, and Theorizing). The seven participants ranged from new…

  11. HPC Software Stack Testing Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Cormac

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  12. rpe v5: an emulator for reduced floating-point precision in large numerical simulations

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Düben, Peter D.

    2017-06-01

    This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.

  13. Computational Methods for Identification, Optimization and Control of PDE Systems

    DTIC Science & Technology

    2010-04-30

    focused on the development of numerical methods and software specifically for the purpose of solving control, design, and optimization prob- lems where...that provide the foundations of simulation software must play an important role in any research of this type, the demands placed on numerical methods...y sus Aplicaciones , Ciudad de Cor- doba - Argentina, October 2007. 3. Inverse Problems in Deployable Space Structures, Fourth Conference on Inverse

  14. Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time.

  15. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC, Version 2.0: User's Manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and the NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through October 16, 1987. The technical manual describes the NASARC concept and the algorithms which are used to implement it. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions have been incorporated in the Version 2.0 software over prior versions. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit into the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time reducing computer run time.

  16. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    PubMed

    Cole, Brian S; Moore, Jason H

    2018-03-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  17. Eleven quick tips for architecting biomedical informatics workflows with cloud computing

    PubMed Central

    Moore, Jason H.

    2018-01-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416

  18. ICASE semiannual report, April 1 - September 30, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.

  19. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  20. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  1. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  2. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  3. Development and application of a complex numerical model and software for the computation of dose conversion factors for radon progenies.

    PubMed

    Farkas, Árpád; Balásházy, Imre

    2015-04-01

    A more exact determination of dose conversion factors associated with radon progeny inhalation was possible due to the advancements in epidemiological health risk estimates in the last years. The enhancement of computational power and the development of numerical techniques allow computing dose conversion factors with increasing reliability. The objective of this study was to develop an integrated model and software based on a self-developed airway deposition code, an own bronchial dosimetry model and the computational methods accepted by International Commission on Radiological Protection (ICRP) to calculate dose conversion coefficients for different exposure conditions. The model was tested by its application for exposure and breathing conditions characteristic of mines and homes. The dose conversion factors were 8 and 16 mSv WLM(-1) for homes and mines when applying a stochastic deposition model combined with the ICRP dosimetry model (named PM-A model), and 9 and 17 mSv WLM(-1) when applying the same deposition model combined with authors' bronchial dosimetry model and the ICRP bronchiolar and alveolar-interstitial dosimetry model (called PM-B model). User friendly software for the computation of dose conversion factors has also been developed. The software allows one to compute conversion factors for a large range of exposure and breathing parameters and to perform sensitivity analyses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. 35 Ways to Take a "Byte" out of Software Costs. Fund Raising Ideas from COMPress Customers.

    ERIC Educational Resources Information Center

    COMPress, Wentworth, NH.

    Based on a survey sponsored by COMPress Quarterly of various schools to determine the extent of the problem of lack of funds for purchasing computer software and how schools have coped with the problem, this booklet describes numerous ways to raise funds for software purchases. Nearly 1,000 questionnaires were returned and this booklet was…

  5. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  6. Advanced CNC Programming (EZ-CAM). 439-366.

    ERIC Educational Resources Information Center

    Casey, Joe

    This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…

  7. AdapChem

    NASA Technical Reports Server (NTRS)

    Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William

    2012-01-01

    AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.

  8. The development of an engineering computer graphics laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.; Garrett, R. E.

    1975-01-01

    Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.

  9. Application of SLURM, BOINC, and GlusterFS as Software System for Sustainable Modeling and Data Analytics

    NASA Astrophysics Data System (ADS)

    Kashansky, Vladislav V.; Kaftannikov, Igor L.

    2018-02-01

    Modern numerical modeling experiments and data analytics problems in various fields of science and technology reveal a wide variety of serious requirements for distributed computing systems. Many scientific computing projects sometimes exceed the available resource pool limits, requiring extra scalability and sustainability. In this paper we share the experience and findings of our own on combining the power of SLURM, BOINC and GlusterFS as software system for scientific computing. Especially, we suggest a complete architecture and highlight important aspects of systems integration.

  10. Exciting Normal Distribution

    ERIC Educational Resources Information Center

    Fuchs, Karl Josef; Simonovits, Reinhard; Thaller, Bernd

    2008-01-01

    This paper describes a high school project where the mathematics teaching and learning software M@th Desktop (MD) based on the Computer Algebra System Mathematica was used for symbolical and numerical calculations and for visualisation. The mathematics teaching and learning software M@th Desktop 2.0 (MD) contains the modules Basics including tools…

  11. GridKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peles, Slaven

    2016-11-06

    GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.

  12. Numerical modeling tools for chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J.; Childs, Edward P.

    1992-01-01

    Development of general numerical simulation tools for chemical vapor deposition (CVD) was the objective of this study. Physical models of important CVD phenomena were developed and implemented into the commercial computational fluid dynamics software FLUENT. The resulting software can address general geometries as well as the most important phenomena occurring with CVD reactors: fluid flow patterns, temperature and chemical species distribution, gas phase and surface deposition. The physical models are documented which are available and examples are provided of CVD simulation capabilities.

  13. Algorithms and software for solving finite element equations on serial and parallel architectures

    NASA Technical Reports Server (NTRS)

    George, Alan

    1989-01-01

    Over the past 15 years numerous new techniques have been developed for solving systems of equations and eigenvalue problems arising in finite element computations. A package called SPARSPAK has been developed by the author and his co-workers which exploits these new methods. The broad objective of this research project is to incorporate some of this software in the Computational Structural Mechanics (CSM) testbed, and to extend the techniques for use on multiprocessor architectures.

  14. Simulation of blast action on civil structures using ANSYS Autodyn

    NASA Astrophysics Data System (ADS)

    Fedorova, N. N.; Valger, S. A.; Fedorov, A. V.

    2016-10-01

    The paper presents the results of 3D numerical simulations of shock wave spreading in cityscape area. ANSYS Autodyne software is used for the computations. Different test cases are investigated numerically. On the basis of the computations, the complex transient flowfield structure formed in the vicinity of prismatic bodies was obtained and analyzed. The simulation results have been compared to the experimental data. The ability of two numerical schemes is studied to correctly predict the pressure history in several gauges placed on walls of the obstacles.

  15. Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  16. SIM_EXPLORE: Software for Directed Exploration of Complex Systems

    NASA Technical Reports Server (NTRS)

    Burl, Michael; Wang, Esther; Enke, Brian; Merline, William J.

    2013-01-01

    Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest- fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called "directed exploration" has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials. SIM_EXPLORE is a new computer program that uses directed exploration to explore efficiently complex systems represented by numerical simulations. The software sequentially identifies and runs simulation trials that it believes will be most informative given the results of previous trials. The results of new trials are incorporated into the software's model of the system behavior. The updated model is then used to pick the next round of new trials. This process, implemented as a closed-loop system wrapped around existing simulation code, provides a means to improve the speed and efficiency with which a set of simulations can yield scientifically useful results. The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families.

  17. Operation of the Institute for Computer Applications in Science and Engineering

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The ICASE research program is described in detail; it consists of four major categories: (1) efficient use of vector and parallel computers, with particular emphasis on the CDC STAR-100; (2) numerical analysis, with particular emphasis on the development and analysis of basic numerical algorithms; (3) analysis and planning of large-scale software systems; and (4) computational research in engineering and the natural sciences, with particular emphasis on fluid dynamics. The work in each of these areas is described in detail; other activities are discussed, a prognosis of future activities are included.

  18. Development of a change management system

    NASA Technical Reports Server (NTRS)

    Parks, Cathy Bonifas

    1993-01-01

    The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).

  19. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  20. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  1. What makes computational open source software libraries successful?

    NASA Astrophysics Data System (ADS)

    Bangerth, Wolfgang; Heister, Timo

    2013-01-01

    Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects.

  2. FEBio: finite elements for biomechanics.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A

    2012-01-01

    In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics.

  3. UNIX as an environment for producing numerical software

    NASA Technical Reports Server (NTRS)

    Schryer, N. L.

    1978-01-01

    The UNIX operating system supports a number of software tools; a mathematical equation-setting language, a phototypesetting language, a FORTRAN preprocessor language, a text editor, and a command interpreter. The design, implementation, documentation, and maintenance of a portable FORTRAN test of the floating-point arithmetic unit of a computer is used to illustrate these tools at work.

  4. IBM system/360 assembly language interval arithmetic software

    NASA Technical Reports Server (NTRS)

    Phillips, E. J.

    1972-01-01

    Computer software designed to perform interval arithmetic is described. An interval is defined as the set of all real numbers between two given numbers including or excluding one or both endpoints. Interval arithmetic consists of the various elementary arithmetic operations defined on the set of all intervals, such as interval addition, subtraction, union, etc. One of the main applications of interval arithmetic is in the area of error analysis of computer calculations. For example, it has been used sucessfully to compute bounds on sounding errors in the solution of linear algebraic systems, error bounds in numerical solutions of ordinary differential equations, as well as integral equations and boundary value problems. The described software enables users to implement algorithms of the type described in references efficiently on the IBM 360 system.

  5. An Innovative Learning Model for Computation in First Year Mathematics

    ERIC Educational Resources Information Center

    Tonkes, E. J.; Loch, B. I.; Stace, A. W.

    2005-01-01

    MATLAB is a sophisticated software tool for numerical analysis and visualization. The University of Queensland has adopted Matlab as its official teaching package across large first year mathematics courses. In the past, the package has met severe resistance from students who have not appreciated their computational experience. Several main…

  6. The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.

    ERIC Educational Resources Information Center

    Cattle, S. R.; And Others

    1995-01-01

    A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)

  7. Teach Efficient Production with Modular Fixturing Pallets

    ERIC Educational Resources Information Center

    Creger, Don W.; Payne, Brent A.

    2010-01-01

    Advances in technology have yielded computer numerical control (CNC) machines and computer-aided manufacturing (CAM) software that saves time and increases productivity in today's industrial world. Training students to understand and use these technologies has become a key ingredient in preparing them for work in industry. Teachers of machining…

  8. Teaching Accounting with Computers.

    ERIC Educational Resources Information Center

    Shaoul, Jean

    This paper addresses the numerous ways that computers may be used to enhance the teaching of accounting and business topics. It focuses on the pedagogical use of spreadsheet software to improve the conceptual coverage of accounting principles and practice, increase student understanding by involvement in the solution process, and reduce the amount…

  9. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  10. Scilab and Maxima Environment: Towards Free Software in Numerical Analysis

    ERIC Educational Resources Information Center

    Mora, Angel; Galan, Jose Luis; Aguilera, Gabriel; Fernandez, Alvaro; Merida, Enrique; Rodriguez, Pedro

    2010-01-01

    In this work we will present the ScilabUMA environment we have developed as an alternative to Matlab. This environment connects Scilab (for numerical analysis) and Maxima (for symbolic computations). Furthermore, the developed interface is, in our opinion at least, as powerful as the interface of Matlab. (Contains 3 figures.)

  11. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  12. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: I. Principles and some general algorithms.

    PubMed

    Langenbucher, Frieder

    2002-01-01

    Most computations in the field of in vitro/in vivo correlations can be handled directly by Excel worksheets, without the need for specialized software. Following a summary of Excel features, applications are illustrated for numerical computation of AUC and Mean, Wagner-Nelson and Loo-Riegelman absorption plots, and polyexponential curve fitting.

  13. From Numerical Problem Solving to Model-Based Experimentation Incorporating Computer-Based Tools of Various Scales into the ChE Curriculum

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima

    2009-01-01

    A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…

  14. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  15. Historical perspective on computer development and glossary of terms.

    PubMed

    Honeyman, J C; Dwyer, S J

    1993-01-01

    This article contains a concise history of the development of mechanical and electronic computers, descriptions of the milestones in software development, discussion of the introduction and adoption of computers in radiology, and a glossary of computer terms used frequently in radiology. One of the earliest devices designed to mechanize calculations was the calculating clock, built in 1623. The first programmable electronic computer, the ENIAC (electronic numerical integration and computer), was completed in 1945 at the University of Pennsylvania. Software has developed from early machine language through fourth-generation languages and graphic user interfaces used today. The computer was introduced to radiology initially in the 1960s in nuclear medicine and is now incorporated in many digital imaging modalities throughout radiology. The development of picture archiving and communication systems has resulted in the implementation of several totally digital departments of radiology.

  16. Computing maximum-likelihood estimates for parameters of the National Descriptive Model of Mercury in Fish

    USGS Publications Warehouse

    Donato, David I.

    2012-01-01

    This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.

  17. Computational Solutions for Today’s Navy: New Methods are Being Employed to Meet the Navy’s Changing Software-Development Environment

    DTIC Science & Technology

    2008-03-01

    software- development environment. ▶ Frank W. Bentrem, Ph.D., John T. Sample, Ph.D., and Michael M. Harris he Naval Research Labor - atory (NRL) is the...sonars (Through-the-Sensor technology), supercomputer generated numer- ical models, and historical/ clima - tological databases. It uses a vari- ety of

  18. Markov Chains For Testing Redundant Software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1990-01-01

    Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.

  19. The Chemical Engineer's Toolbox: A Glass Box Approach to Numerical Problem Solving

    ERIC Educational Resources Information Center

    Coronell, Daniel G.; Hariri, M. Hossein

    2009-01-01

    Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…

  20. An Experiment in the Use of Computer-Based Education to Teach Energy Considerations in Architectural Design.

    ERIC Educational Resources Information Center

    Arumi, Francisco N.

    Computer programs capable of describing the thermal behavior of buildings are used to help architectural students understand environmental systems. The Numerical Simulation Laboratory at the Architectural School of the University of Texas at Austin was developed to provide the necessary software capable of simulating the energy transactions…

  1. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  2. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  3. A software simulation study of a (255,223) Reed-Solomon encoder-decoder

    NASA Technical Reports Server (NTRS)

    Pollara, F.

    1985-01-01

    A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT. Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.

  4. Theoretical and experimental analysis of the impacts of removable storage media and antivirus software on viral spread

    NASA Astrophysics Data System (ADS)

    Gan, Chenquan; Yang, Xiaofan

    2015-05-01

    In this paper, a new computer virus propagation model, which incorporates the effects of removable storage media and antivirus software, is proposed and analyzed. The global stability of the unique equilibrium of the model is independent of system parameters. Numerical simulations not only verify this result, but also illustrate the influences of removable storage media and antivirus software on viral spread. On this basis, some applicable measures for suppressing virus prevalence are suggested.

  5. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  6. [The development of a computer model in the quantitative assessment of thallium-201 myocardial scintigraphy].

    PubMed

    Raineri, M; Traina, M; Rotolo, A; Candela, B; Lombardo, R M; Raineri, A A

    1993-05-01

    Thallium-201 scintigraphy is a widely used noninvasive procedure for the detection and prognostic assessment of patients with suspected or proven coronary artery disease. Thallium uptake can be evaluated by a visual analysis or by a quantitative interpretation. Quantitative scintigraphy enhances disease detection in individual coronary arteries, provides a more precise estimate of the amount of ischemic myocardium, distinguishing scar from hypoperfused tissue. Due to the great deal of data, analysis, interpretation and comparison of thallium uptake can be very complex. We designed a computer-based system for the interpretation of quantitative thallium-201 scintigraphy data uptake. We used a database (DataEase 4.2-DataEase Italia). Our software has the following functions: data storage; calculation; conversion of numerical data into different definitions classifying myocardial perfusion; uptake data comparison; automatic conclusion; comparison of different scintigrams for the same patient. Our software is made up by 4 sections: numeric analysis, descriptive analysis, automatic conclusion, clinical remarks. We introduced in the computer system appropriate information, "logical paths", that use the "IF ... THEN" rules. The software executes these rules in order to analyze the myocardial regions in the 3 phases of scintigraphic analysis (stress, redistribution, re-injection), in the 3 projections (LAO 45 degrees, LAT,ANT), considering our uptake cutoff, obtaining, finally, the automatic conclusions. For these reasons, our computer-based system could be considered a real "expert system".

  7. A microkernel design for component-based parallel numerical software systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.

    1999-01-13

    What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less

  8. Integrated computer-aided design using minicomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  9. Numerical solutions for patterns statistics on Markov chains.

    PubMed

    Nuel, Gregory

    2006-01-01

    We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.

  10. Developing Tools for Assessing and Using Commercially Available Reading Software Programs to Promote the Development of Early Reading Skills in Children

    ERIC Educational Resources Information Center

    Wood, Eileen; Gottardo, Alexandra; Grant, Amy; Evans, Mary Ann; Phillips, Linda; Savage, Robert

    2012-01-01

    As computers become an increasingly ubiquitous part of young children's lives there is a need to examine how best to harness digital technologies to promote learning in early childhood education contexts. The development of emergent literacy skills is 1 domain for which numerous software programs are available for young learners. In this study, we…

  11. Quantum chemical parameters in QSAR: what do I use when?

    USGS Publications Warehouse

    Hickey, James P.; Ostrander, Gary K.

    1996-01-01

    This chapter provides a brief overview of the numerous quantum chemical parameters that have been/are currently being used in quantitative structure activity relationships (QSAR), along with a representative bibliography. The parameters will be grouped according to their mechanistic interpretations, and representative biological and physical chemical applications will be mentioned. Parmater computation methods and the appropriate software are highlighted, as are sources for software.

  12. Numerical simulations of the flow with the prescribed displacement of the airfoil and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Řidký, V.; Šidlof, P.; Vlček, V.

    2013-04-01

    The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.

  13. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  14. Chrysler improved numerical differencing analyzer for third generation computers CINDA-3G

    NASA Technical Reports Server (NTRS)

    Gaski, J. D.; Lewis, D. R.; Thompson, L. R.

    1972-01-01

    New and versatile method has been developed to supplement or replace use of original CINDA thermal analyzer program in order to take advantage of improved systems software and machine speeds of third generation computers. CINDA-3G program options offer variety of methods for solution of thermal analog models presented in network format.

  15. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  16. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  17. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    EPA Pesticide Factsheets

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  18. High-performance computing on GPUs for resistivity logging of oil and gas wells

    NASA Astrophysics Data System (ADS)

    Glinskikh, V.; Dudaev, A.; Nechaev, O.; Surodina, I.

    2017-10-01

    We developed and implemented into software an algorithm for high-performance simulation of electrical logs from oil and gas wells using high-performance heterogeneous computing. The numerical solution of the 2D forward problem is based on the finite-element method and the Cholesky decomposition for solving a system of linear algebraic equations (SLAE). Software implementations of the algorithm used the NVIDIA CUDA technology and computing libraries are made, allowing us to perform decomposition of SLAE and find its solution on central processor unit (CPU) and graphics processor unit (GPU). The calculation time is analyzed depending on the matrix size and number of its non-zero elements. We estimated the computing speed on CPU and GPU, including high-performance heterogeneous CPU-GPU computing. Using the developed algorithm, we simulated resistivity data in realistic models.

  19. Numerical simulation of the hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Fortova, S. V.; Shepelev, V. V.; Troshkin, O. V.; Kozlov, S. A.

    2017-09-01

    The paper presents the results of numerical simulation of the development of hydrodynamic instabilities of Richtmyer-Meshkov and Rayleigh-Taylor encountered in experiments [1-3]. For the numerical solution used the TPS software package (Turbulence Problem Solver) that implements a generalized approach to constructing computer programs for a wide range of problems of hydrodynamics, described by the system of equations of hyperbolic type. As numerical methods are used the method of large particles and ENO-scheme of the second order with Roe solver for the approximate solution of the Riemann problem.

  20. Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software

    NASA Astrophysics Data System (ADS)

    Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N.

    2017-01-01

    Nonequilibrium flows of a two-component oxygen mixture O2/O behind a shock wave are studied with due allowance for the state-to-state vibrational and chemical kinetics. The system of gas-dynamic equations is supplemented with kinetic equations including contributions of VT (TV)-exchange and dissociation processes. A method of the numerical solution of this system with the use of the ANSYS Fluent commercial software package is proposed, which is used in a combination with the authors' code that takes into account nonequilibrium kinetics. The computed results are compared with parameters obtained by solving the problem in the shock-fitting formulation. The vibrational temperature is compared with experimental data. The numerical tool proposed in the present paper is applied to study the flow around a cylinder.

  1. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model.

    PubMed

    Ren, Qiang; Nagar, Jogender; Kang, Lei; Bian, Yusheng; Werner, Ping; Werner, Douglas H

    2017-05-18

    A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software. The kernel of this algorithm is the subdomain level discontinuous Galerkin time domain (DGTD) method, which can be viewed as a hybrid of the spectral-element time-domain method (SETD) and the finite-element time-domain (FETD) method. An hp-refinement technique is applied to decrease the Degrees-of-Freedom (DoFs) and computational requirements. The collocated E-J scheme facilitates solving the auxiliary equations by converting the inversions of matrices to simpler vector manipulations. A new hybrid time stepping approach, which couples the Runge-Kutta and Newmark methods, is proposed to solve the temporal auxiliary differential equations (ADEs) with a high degree of efficiency. The advantages of this new approach, in terms of computational resource overhead and accuracy, are validated through comparison with well-known commercial software for three diverse cases, which cover both near-field and far-field properties with plane wave and lumped port sources. The presented work provides the missing link between DCP dispersive models and FETD and/or SETD based algorithms. It is a competitive candidate for numerically studying the wideband plasmonic properties of DCP media.

  2. A large-scale computer facility for computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F., Jr.

    1985-01-01

    As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.

  3. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  4. Implementing Relational Operations in an Object-Oriented Database

    DTIC Science & Technology

    1992-03-01

    computer aided software engineering (CASE) and computer aided design (CAD) tools. There has been some research done in the area of combining...35 2. Prograph Database Engine .................................................................. 38 III. W HY A N R/O...in most business applications where the bulk of data being stored and manipulated is simply textual or numeric data that can be stored and manipulated

  5. Modeling, Analysis, and Optimization Issues for Large Space Structures.

    DTIC Science & Technology

    1983-02-01

    There are numerous opportunities - provided by new advances in computer hardware, firmware, software , CAD/CAM systems, computational algorithms and...Institute Department of Mechanical Engineering Dept. of Civil Engineering & Mechanics Troy, NY 12181 Drexel University Philadelphia, PA 19104 Dr...Mechanical Engineering Hampton, VA 23665 Washington, DC 20059 Dr. K. T. Alfriend Mr. Siva S. Banda Department of the Navy Flight Dynamics LaboratoryNaval

  6. The CP-PACS parallel computer

    NASA Astrophysics Data System (ADS)

    Ukawa, Akira

    1998-05-01

    The CP-PACS computer is a massively parallel computer consisting of 2048 processing units and having a peak speed of 614 GFLOPS and 128 GByte of main memory. It was developed over the four years from 1992 to 1996 at the Center for Computational Physics, University of Tsukuba, for large-scale numerical simulations in computational physics, especially those of lattice QCD. The CP-PACS computer has been in full operation for physics computations since October 1996. In this article we describe the chronology of the development, the hardware and software characteristics of the computer, and its performance for lattice QCD simulations.

  7. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.

    1979-01-01

    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  8. Quantification of video-taped images in microcirculation research using inexpensive imaging software (Adobe Photoshop).

    PubMed

    Brunner, J; Krummenauer, F; Lehr, H A

    2000-04-01

    Study end-points in microcirculation research are usually video-taped images rather than numeric computer print-outs. Analysis of these video-taped images for the quantification of microcirculatory parameters usually requires computer-based image analysis systems. Most software programs for image analysis are custom-made, expensive, and limited in their applicability to selected parameters and study end-points. We demonstrate herein that an inexpensive, commercially available computer software (Adobe Photoshop), run on a Macintosh G3 computer with inbuilt graphic capture board provides versatile, easy to use tools for the quantification of digitized video images. Using images obtained by intravital fluorescence microscopy from the pre- and postischemic muscle microcirculation in the skinfold chamber model in hamsters, Photoshop allows simple and rapid quantification (i) of microvessel diameters, (ii) of the functional capillary density and (iii) of postischemic leakage of FITC-labeled high molecular weight dextran from postcapillary venules. We present evidence of the technical accuracy of the software tools and of a high degree of interobserver reliability. Inexpensive commercially available imaging programs (i.e., Adobe Photoshop) provide versatile tools for image analysis with a wide range of potential applications in microcirculation research.

  9. Providing structural modules with self-integrity monitoring software user's manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    National Aeronautics and Space Administration (NASA) Contract NAS7-961 (A Small Business Innovation and Research (SBIR) contract from NASA) involved research dealing with remote structural damage detection using the concept of substructures. Several approaches were developed. The main two were: (1) the module (substructure) transfer function matrix (MTFM) approach; and (2) modal strain energy distribution method (MSEDM). Either method can be used with a global structure; however, the focus was on substructures. As part of the research contract, computer software was to be developed which would implement the developed methods. This was done and it was used to process all the finite element generated numerical data for the research. The software was written for the IBM AT personal computer. Copies of it were placed on floppy disks. This report serves as a user's manual for the two sets of damage detection software. Sections 2.0 and 3.0 discuss the use of the MTFM and MSEDM software, respectively.

  10. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1977-01-01

    A computer software system is described which computes global numerical solutions of the integro-differential Laplace tidal equations, including dissipation terms and ocean loading and self-gravitation effects, for arbitrary diurnal and semidiurnal tidal constituents. The integration algorithm features a successive approximation scheme for the integro-differential system, with time stepping forward differences in the time variable and central differences in spatial variables. Solutions for M2, S2, N2, K2, K1, O1, P1 tidal constituents neglecting the effects of ocean loading and self-gravitation and a converged M2, solution including ocean loading and self-gravitation effects are presented in the form of cotidal and corange maps.

  11. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    NASA Astrophysics Data System (ADS)

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.

  12. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations

    PubMed Central

    Vergara-Perez, Sandra; Marucho, Marcelo

    2015-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules. PMID:26924848

  13. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.

    PubMed

    Vergara-Perez, Sandra; Marucho, Marcelo

    2016-01-01

    One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.

  14. Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.

    PubMed

    Robinson, Risa J; Snyder, Pam; Oldham, Michael J

    2007-05-01

    Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.

  15. Automated Detection of Events of Scientific Interest

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A report presents a slightly different perspective of the subject matter of Fusing Symbolic and Numerical Diagnostic Computations (NPO-42512), which appears elsewhere in this issue of NASA Tech Briefs. Briefly, the subject matter is the X-2000 Anomaly Detection Language, which is a developmental computing language for fusing two diagnostic computer programs one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for real-time detection of events. In the case of the cited companion NASA Tech Briefs article, the contemplated events that one seeks to detect would be primarily failures or other changes that could adversely affect the safety or success of a spacecraft mission. In the case of the instant report, the events to be detected could also include natural phenomena that could be of scientific interest. Hence, the use of X- 2000 Anomaly Detection Language could contribute to a capability for automated, coordinated use of multiple sensors and sensor-output-data-processing hardware and software to effect opportunistic collection and analysis of scientific data.

  16. FAST: A multi-processed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.

  17. Implicity restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations

    NASA Technical Reports Server (NTRS)

    Sorensen, Danny C.

    1996-01-01

    Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.

  18. Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1996-01-01

    As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.

  19. DVS-SOFTWARE: An Effective Tool for Applying Highly Parallelized Hardware To Computational Geophysics

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Herrera, G. S.

    2015-12-01

    Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  20. Application of multi-grid method on the simulation of incremental forging processes

    NASA Astrophysics Data System (ADS)

    Ramadan, Mohamad; Khaled, Mahmoud; Fourment, Lionel

    2016-10-01

    Numerical simulation becomes essential in manufacturing large part by incremental forging processes. It is a splendid tool allowing to show physical phenomena however behind the scenes, an expensive bill should be paid, that is the computational time. That is why many techniques are developed to decrease the computational time of numerical simulation. Multi-Grid method is a numerical procedure that permits to reduce computational time of numerical calculation by performing the resolution of the system of equations on several mesh of decreasing size which allows to smooth faster the low frequency of the solution as well as its high frequency. In this paper a Multi-Grid method is applied to cogging process in the software Forge 3. The study is carried out using increasing number of degrees of freedom. The results shows that calculation time is divide by two for a mesh of 39,000 nodes. The method is promising especially if coupled with Multi-Mesh method.

  1. Cumulative reports and publications through December 31, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A reports and publications list is given from the Institute for Computer Applications in Science and Engineering (ICASE) through December 31, 1991. The major categories of the current ICASE research program are; numerical methods, control and parameter identification problems, computational problems in engineering and the physical sciences, and computer systems and software. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when available.

  2. Computer Program User’s Manual for FIREFINDER Digital Topographic Data Verification Library Dubbing System. Volume II. Dubbing.

    DTIC Science & Technology

    1982-01-29

    N - Nw .VA COMPUTER PROGRAM USER’S MANUAL FOR . 0FIREFINDER DIGITAL TOPOGRAPHIC DATA VERIFICATION LIBRARY DUBBING SYSTEM VOLUME II DUBBING 29 JANUARY...Digital Topographic Data Verification Library Dubbing System, Volume II, Dubbing 6. PERFORMING ORG. REPORT NUMER 7. AUTHOR(q) S. CONTRACT OR GRANT...Software Library FIREFINDER Dubbing 20. ABSTRACT (Continue an revWee *Ide II necessary end identify by leek mauber) PThis manual describes the computer

  3. Practical Applications of Digital Pathology.

    PubMed

    Saeed-Vafa, Daryoush; Magliocco, Anthony M

    2015-04-01

    Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.

  4. Nozzles for Focusing Aerosol Particles

    DTIC Science & Technology

    2009-10-01

    Fabrication of the nozzle with the desired shape was accomplished using EDM technology. First, a copper tungsten electrode was turned on a CNC lathe . The...small (0.9-mm diameter). The external portions of the nozzles were machined in a more conventional manner using computer numerical control ( CNC ... lathes and milling machines running programs written by computer aided machining (CAM) software. The close tolerance of concentricity of the two

  5. QUARTERLY TECHNICAL PROGRESS REPORT, JULY, AUGUST, SEPTEMBER 1966.

    DTIC Science & Technology

    Contents: Circuit research program; Hardware systems research; Software systems research program; Numerical methods, computer arithmetic and...artificial languages; Library automation; Illiac II service , use, and program development; IBM service , use, and program development; Problem specifications; Switching theory and logical design; General laboratory information.

  6. A software tool for modeling and simulation of numerical P systems.

    PubMed

    Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica

    2011-03-01

    A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Krasnov, M. M.; Kuchugov, P. A.; E Ladonkina, M.; E Lutsky, A.; Tishkin, V. F.

    2017-02-01

    Detailed unstructured grids and numerical methods of high accuracy are frequently used in the numerical simulation of gasdynamic flows in areas with complex geometry. Galerkin method with discontinuous basis functions or Discontinuous Galerkin Method (DGM) works well in dealing with such problems. This approach offers a number of advantages inherent to both finite-element and finite-difference approximations. Moreover, the present paper shows that DGM schemes can be viewed as Godunov method extension to piecewise-polynomial functions. As is known, DGM involves significant computational complexity, and this brings up the question of ensuring the most effective use of all the computational capacity available. In order to speed up the calculations, operator programming method has been applied while creating the computational module. This approach makes possible compact encoding of mathematical formulas and facilitates the porting of programs to parallel architectures, such as NVidia CUDA and Intel Xeon Phi. With the software package, based on DGM, numerical simulations of supersonic flow past solid bodies has been carried out. The numerical results are in good agreement with the experimental ones.

  8. Cost-effective computational method for radiation heat transfer in semi-crystalline polymers

    NASA Astrophysics Data System (ADS)

    Boztepe, Sinan; Gilblas, Rémi; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2018-05-01

    This paper introduces a cost-effective numerical model for infrared (IR) heating of semi-crystalline polymers. For the numerical and experimental studies presented here semi-crystalline polyethylene (PE) was used. The optical properties of PE were experimentally analyzed under varying temperature and the obtained results were used as input in the numerical studies. The model was built based on optically homogeneous medium assumption whereas the strong variation in the thermo-optical properties of semi-crystalline PE under heating was taken into account. Thus, the change in the amount radiative energy absorbed by the PE medium was introduced in the model induced by its temperature-dependent thermo-optical properties. The computational study was carried out considering an iterative closed-loop computation, where the absorbed radiation was computed using an in-house developed radiation heat transfer algorithm -RAYHEAT- and the computed results was transferred into the commercial software -COMSOL Multiphysics- for solving transient heat transfer problem to predict temperature field. The predicted temperature field was used to iterate the thermo-optical properties of PE that varies under heating. In order to analyze the accuracy of the numerical model experimental analyses were carried out performing IR-thermographic measurements during the heating of the PE plate. The applicability of the model in terms of computational cost, number of numerical input and accuracy was highlighted.

  9. Auto-Generated Semantic Processing Services

    NASA Technical Reports Server (NTRS)

    Davis, Rodney; Hupf, Greg

    2009-01-01

    Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.

  10. TomoBank: a tomographic data repository for computational x-ray science

    DOE PAGES

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...

    2018-02-08

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  11. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  12. CARMA: Software for continuous affect rating and media annotation

    PubMed Central

    Girard, Jeffrey M

    2017-01-01

    CARMA is a media annotation program that collects continuous ratings while displaying audio and video files. It is designed to be highly user-friendly and easily customizable. Based on Gottman and Levenson's affect rating dial, CARMA enables researchers and study participants to provide moment-by-moment ratings of multimedia files using a computer mouse or keyboard. The rating scale can be configured on a number of parameters including the labels for its upper and lower bounds, its numerical range, and its visual representation. Annotations can be displayed alongside the multimedia file and saved for easy import into statistical analysis software. CARMA provides a tool for researchers in affective computing, human-computer interaction, and the social sciences who need to capture the unfolding of subjective experience and observable behavior over time. PMID:29308198

  13. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  14. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.

    PubMed

    Tang, Qi-Yi; Zhang, Chuan-Xi

    2013-04-01

    A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  15. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less

  16. New method of processing heat treatment experiments with numerical simulation support

    NASA Astrophysics Data System (ADS)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  17. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    PubMed

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  18. [Numerical finite element modeling of custom car seat using computer aided design].

    PubMed

    Huang, Xuqi; Singare, Sekou

    2014-02-01

    A good cushion can not only provide the sitter with a high comfort, but also control the distribution of the hip pressure to reduce the incidence of diseases. The purpose of this study is to introduce a computer-aided design (CAD) modeling method of the buttocks-cushion using numerical finite element (FE) simulation to predict the pressure distribution on the buttocks-cushion interface. The buttock and the cushion model geometrics were acquired from a laser scanner, and the CAD software was used to create the solid model. The FE model of a true seated individual was developed using ANSYS software (ANSYS Inc, Canonsburg, PA). The model is divided into two parts, i.e. the cushion model made of foam and the buttock model represented by the pelvis covered with a soft tissue layer. Loading simulations consisted of imposing a vertical force of 520N on the pelvis, corresponding to the weight of the user upper extremity, and then solving iteratively the system.

  19. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  20. Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent

    NASA Astrophysics Data System (ADS)

    Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.

    2016-03-01

    Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.

  1. RELAP-7 Software Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis L.; Choi, Yong-Joon; Zou, Ling

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7. The RELAP-7 (Reactor Excursion and Leak Analysis Program) code is a nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on the INL’s modern scientific software development framework – MOOSE (Multi-Physics Object-Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty yearsmore » of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5’s capability and extends the analysis capability for all reactor system simulation scenarios.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manteuffel, T.A.

    The objective of this project is the development of numerical solution techniques for deterministic models of the transport of neutral and charged particles and the demonstration of their effectiveness in both a production environment and on advanced architecture computers. The primary focus is on various versions of the linear Boltzman equation. These equations are fundamental in many important applications. This project is an attempt to integrate the development of numerical algorithms with the process of developing production software. A major thrust of this reject will be the implementation of these algorithms on advanced architecture machines that reside at the Advancedmore » Computing Laboratory (ACL) at Los Alamos National Laboratories (LANL).« less

  3. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  4. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  5. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  6. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  7. The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Gillian, Ronnie E.; Lotts, Christine G.

    1988-01-01

    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers.

  8. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  9. An introduction to quantitative remote sensing. [data processing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J.

    1974-01-01

    The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.

  10. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  11. State-of-the-Art in Improved Parts Programming for Numerically Controlled Machines

    DTIC Science & Technology

    1976-10-01

    than expected let sizes for IIC. Cincinnati lilbcron, Inc., has built a $1.25 million Computer Ilumerical Control ( CNC ) 1,4nufacturing Center to "rw’ t...point-to- point user. Lathe and other turning operations are essentially two-axis opera- tions, and there has been some dissatisfaction over APT’s...a.particular machi-ne (50)." "Software is the key to CNC , the costs of which are easily overlooked. The cost of software development is growing in relation to

  12. Image Understanding: Proceedings of a Workshop (15th) Held at New Orleans, Louisiana on 3-4 October 1984

    DTIC Science & Technology

    1984-10-01

    functions", Numer . Math., Engineering , Massachusetts Institute of Technology, 1980. (see 10, 177-183, 1967. also MIT Al Lab Technical Report 597, 1980...and steady growth. We have augmented our hardware and distance. In related work, we have explored the use of software base (Vax plus Grinnel, running...capabilities will be the body of software currently ac- 8. COMPUTING ENVIRONMENT FOR cumulated in the testbed and other programs now being devel- IU

  13. The MUSOS (MUsic SOftware System) Toolkit: A computer-based, open source application for testing memory for melodies.

    PubMed

    Rainsford, M; Palmer, M A; Paine, G

    2018-04-01

    Despite numerous innovative studies, rates of replication in the field of music psychology are extremely low (Frieler et al., 2013). Two key methodological challenges affecting researchers wishing to administer and reproduce studies in music cognition are the difficulty of measuring musical responses, particularly when conducting free-recall studies, and access to a reliable set of novel stimuli unrestricted by copyright or licensing issues. In this article, we propose a solution for these challenges in computer-based administration. We present a computer-based application for testing memory for melodies. Created using the software Max/MSP (Cycling '74, 2014a), the MUSOS (Music Software System) Toolkit uses a simple modular framework configurable for testing common paradigms such as recall, old-new recognition, and stem completion. The program is accompanied by a stimulus set of 156 novel, copyright-free melodies, in audio and Max/MSP file formats. Two pilot tests were conducted to establish the properties of the accompanying stimulus set that are relevant to music cognition and general memory research. By using this software, a researcher without specialist musical training may administer and accurately measure responses from common paradigms used in the study of memory for music.

  14. Side-branch resonators modelling with Green's function methods

    NASA Astrophysics Data System (ADS)

    Perrey-Debain, E.; Maréchal, R.; Ville, J. M.

    2014-09-01

    This paper deals with strategies for computing efficiently the propagation of sound waves in ducts containing passive components. In many cases of practical interest, these components are acoustic cavities which are connected to the duct. Though standard Finite Element software could be used for the numerical prediction of sound transmission through such a system, the method is known to be extremely demanding, both in terms of data preparation and computation, especially in the mid-frequency range. To alleviate this, a numerical technique that exploits the benefit of the FEM and the BEM approach has been devised. First, a set of eigenmodes is computed in the cavity to produce a numerical impedance matrix connecting the pressure and the acoustic velocity on the duct wall interface. Then an integral representation for the acoustic pressure in the main duct is used. By choosing an appropriate Green's function for the duct, the integration procedure is limited to the duct-cavity interface only. This allows an accurate computation of the scattering matrix of such an acoustic system with a numerical complexity that grows very mildly with the frequency. Typical applications involving Helmholtz and Herschel-Quincke resonators are presented.

  15. GO2OGS 1.0: a versatile workflow to integrate complex geological information with fault data into numerical simulation models

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Naumov, D.; Sattler, S.; Kolditz, O.; Walther, M.

    2015-11-01

    We offer a versatile workflow to convert geological models built with the ParadigmTM GOCAD© (Geological Object Computer Aided Design) software into the open-source VTU (Visualization Toolkit unstructured grid) format for usage in numerical simulation models. Tackling relevant scientific questions or engineering tasks often involves multidisciplinary approaches. Conversion workflows are needed as a way of communication between the diverse tools of the various disciplines. Our approach offers an open-source, platform-independent, robust, and comprehensible method that is potentially useful for a multitude of environmental studies. With two application examples in the Thuringian Syncline, we show how a heterogeneous geological GOCAD model including multiple layers and faults can be used for numerical groundwater flow modeling, in our case employing the OpenGeoSys open-source numerical toolbox for groundwater flow simulations. The presented workflow offers the chance to incorporate increasingly detailed data, utilizing the growing availability of computational power to simulate numerical models.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  17. [Use of computer technologies for studying the morphological characteristics of the iris color in anthropology].

    PubMed

    Dorofeeva, A A; Khrustalev, A V; Krylov, Iu V; Bocharov, D A; Negasheva, M A

    2010-01-01

    Digital images of the iris were received for study peculiarities of the iris color during the anthropological examination of 578 students aged 16-24 years. Simultaneously with the registration of the digital images, the visual assessment of the eye color was carried out using the traditional scale of Bunak, based on 12 ocular prostheses. Original software for automatic determination of the iris color based on 12 classes scale of Bunak was designed, and computer version of that scale was developed. The software proposed allows to conduct the determination of the iris color with high validity based on numerical evaluation; its application may reduce the bias due to subjective assessment and methodological divergences of the different researchers. The software designed for automatic determination of the iris color may help develop both theoretical and applied anthropology, it may be used in forensic and emergency medicine, sports medicine, medico-genetic counseling and professional selection.

  18. Computing the stability of steady-state solutions of mathematical models of the electrical activity in the heart.

    PubMed

    Tveito, Aslak; Skavhaug, Ola; Lines, Glenn T; Artebrant, Robert

    2011-08-01

    Instabilities in the electro-chemical resting state of the heart can generate ectopic waves that in turn can initiate arrhythmias. We derive methods for computing the resting state for mathematical models of the electro-chemical process underpinning a heartbeat, and we estimate the stability of the resting state by invoking the largest real part of the eigenvalues of a linearized model. The implementation of the methods is described and a number of numerical experiments illustrate the feasibility of the methods. In particular, we test the methods for problems where we can compare the solutions with analytical results, and problems where we have solutions computed by independent software. The software is also tested for a fairly realistic 3D model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  20. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  1. Denuded Data! Grounded Theory Using the NUDIST Computer Analysis Program: In Researching the Challenge to Teacher Self-Efficacy Posed by Students with Learning Disabilities in Australian Education.

    ERIC Educational Resources Information Center

    Burroughs-Lange, Sue G.; Lange, John

    This paper evaluates the effects of using the NUDIST (Non-numerical, Unstructured Data Indexing, Searching and Theorising) computer program to organize coded, qualitative data. The use of the software is discussed within the context of the study for which it was used: an Australian study that aimed to develop a theoretical understanding of the…

  2. Supercomputing '91; Proceedings of the 4th Annual Conference on High Performance Computing, Albuquerque, NM, Nov. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)

  3. Program Aids Visualization Of Data

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1995-01-01

    Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.

  4. An open trial assessment of "The Number Race", an adaptive computer game for remediation of dyscalculia

    PubMed Central

    Wilson, Anna J; Revkin, Susannah K; Cohen, David; Cohen, Laurent; Dehaene, Stanislas

    2006-01-01

    Background In a companion article [1], we described the development and evaluation of software designed to remediate dyscalculia. This software is based on the hypothesis that dyscalculia is due to a "core deficit" in number sense or in its access via symbolic information. Here we review the evidence for this hypothesis, and present results from an initial open-trial test of the software in a sample of nine 7–9 year old children with mathematical difficulties. Methods Children completed adaptive training on numerical comparison for half an hour a day, four days a week over a period of five-weeks. They were tested before and after intervention on their performance in core numerical tasks: counting, transcoding, base-10 comprehension, enumeration, addition, subtraction, and symbolic and non-symbolic numerical comparison. Results Children showed specific increases in performance on core number sense tasks. Speed of subitizing and numerical comparison increased by several hundred msec. Subtraction accuracy increased by an average of 23%. Performance on addition and base-10 comprehension tasks did not improve over the period of the study. Conclusion Initial open-trial testing showed promising results, and suggested that the software was successful in increasing number sense over the short period of the study. However these results need to be followed up with larger, controlled studies. The issues of transfer to higher-level tasks, and of the best developmental time window for intervention also need to be addressed. PMID:16734906

  5. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.

  6. Identification and evaluation of software measures

    NASA Technical Reports Server (NTRS)

    Card, D. N.

    1981-01-01

    A large scale, systematic procedure for identifying and evaluating measures that meaningfully characterize one or more elements of software development is described. The background of this research, the nature of the data involved, and the steps of the analytic procedure are discussed. An example of the application of this procedure to data from real software development projects is presented. As the term is used here, a measure is a count or numerical rating of the occurrence of some property. Examples of measures include lines of code, number of computer runs, person hours expended, and degree of use of top down design methodology. Measures appeal to the researcher and the manager as a potential means of defining, explaining, and predicting software development qualities, especially productivity and reliability.

  7. New computing systems, future computing environment, and their implications on structural analysis and design

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Housner, Jerrold M.

    1993-01-01

    Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.

  8. VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.

    2015-12-01

    A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.

  9. Using technology to support investigations in the electronic age: tracking hackers to large scale international computer fraud

    NASA Astrophysics Data System (ADS)

    McFall, Steve

    1994-03-01

    With the increase in business automation and the widespread availability and low cost of computer systems, law enforcement agencies have seen a corresponding increase in criminal acts involving computers. The examination of computer evidence is a new field of forensic science with numerous opportunities for research and development. Research is needed to develop new software utilities to examine computer storage media, expert systems capable of finding criminal activity in large amounts of data, and to find methods of recovering data from chemically and physically damaged computer storage media. In addition, defeating encryption and password protection of computer files is also a topic requiring more research and development.

  10. Calculus domains modelled using an original bool algebra based on polygons

    NASA Astrophysics Data System (ADS)

    Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.

    2016-08-01

    Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.

  11. TomoBank: a tomographic data repository for computational x-ray science

    NASA Astrophysics Data System (ADS)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  12. Numerical Investigation on Detection of Prestress Losses in a Prestressed Concrete Slab by Modal Analysis

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.

    2017-10-01

    The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.

  13. International Symposium on Numerical Methods in Engineering, 5th, Ecole Polytechnique Federale de Lausanne, Switzerland, Sept. 11-15, 1989, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul

    Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.

  14. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  15. Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests

    NASA Astrophysics Data System (ADS)

    Toth, G.; Keppens, R.; Botchev, M. A.

    1998-04-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.

  16. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  17. Inverse kinematics of a dual linear actuator pitch/roll heliostat

    NASA Astrophysics Data System (ADS)

    Freeman, Joshua; Shankar, Balakrishnan; Sundaram, Ganesh

    2017-06-01

    This work presents a simple, computationally efficient inverse kinematics solution for a pitch/roll heliostat using two linear actuators. The heliostat design and kinematics have been developed, modeled and tested using computer simulation software. A physical heliostat prototype was fabricated to validate the theoretical computations and data. Pitch/roll heliostats have numerous advantages including reduced cost potential and reduced space requirements, with a primary disadvantage being the significantly more complicated kinematics, which are solved here. Novel methods are applied to simplify the inverse kinematics problem which could be applied to other similar problems.

  18. Geometric Nonlinear Computation of Thin Rods and Shells

    NASA Astrophysics Data System (ADS)

    Grinspun, Eitan

    2011-03-01

    We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.

  19. WATERLOPP V2/64: A highly parallel machine for numerical computation

    NASA Astrophysics Data System (ADS)

    Ostlund, Neil S.

    1985-07-01

    Current technological trends suggest that the high performance scientific machines of the future are very likely to consist of a large number (greater than 1024) of processors connected and communicating with each other in some as yet undetermined manner. Such an assembly of processors should behave as a single machine in obtaining numerical solutions to scientific problems. However, the appropriate way of organizing both the hardware and software of such an assembly of processors is an unsolved and active area of research. It is particularly important to minimize the organizational overhead of interprocessor comunication, global synchronization, and contention for shared resources if the performance of a large number ( n) of processors is to be anything like the desirable n times the performance of a single processor. In many situations, adding a processor actually decreases the performance of the overall system since the extra organizational overhead is larger than the extra processing power added. The systolic loop architecture is a new multiple processor architecture which attemps at a solution to the problem of how to organize a large number of asynchronous processors into an effective computational system while minimizing the organizational overhead. This paper gives a brief overview of the basic systolic loop architecture, systolic loop algorithms for numerical computation, and a 64-processor implementation of the architecture, WATERLOOP V2/64, that is being used as a testbed for exploring the hardware, software, and algorithmic aspects of the architecture.

  20. Techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert

    1993-01-01

    The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.

  1. User's Manual for FOMOCO Utilities-Force and Moment Computation Tools for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Buning, Pieter G.

    1996-01-01

    In the numerical computations of flows around complex configurations, accurate calculations of force and moment coefficients for aerodynamic surfaces are required. When overset grid methods are used, the surfaces on which force and moment coefficients are sought typically consist of a collection of overlapping surface grids. Direct integration of flow quantities on the overlapping grids would result in the overlapped regions being counted more than once. The FOMOCO Utilities is a software package for computing flow coefficients (force, moment, and mass flow rate) on a collection of overset surfaces with accurate accounting of the overlapped zones. FOMOCO Utilities can be used in stand-alone mode or in conjunction with the Chimera overset grid compressible Navier-Stokes flow solver OVERFLOW. The software package consists of two modules corresponding to a two-step procedure: (1) hybrid surface grid generation (MIXSUR module), and (2) flow quantities integration (OVERINT module). Instructions on how to use this software package are described in this user's manual. Equations used in the flow coefficients calculation are given in Appendix A.

  2. Modeling of diatomic molecule using the Morse potential and the Verlet algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidiani, Elok

    Performing molecular modeling usually uses special software for Molecular Dynamics (MD) such as: GROMACS, NAMD, JMOL etc. Molecular dynamics is a computational method to calculate the time dependent behavior of a molecular system. In this work, MATLAB was used as numerical method for a simple modeling of some diatomic molecules: HCl, H{sub 2} and O{sub 2}. MATLAB is a matrix based numerical software, in order to do numerical analysis, all the functions and equations describing properties of atoms and molecules must be developed manually in MATLAB. In this work, a Morse potential was generated to describe the bond interaction betweenmore » the two atoms. In order to analyze the simultaneous motion of molecules, the Verlet Algorithm derived from Newton’s Equations of Motion (classical mechanics) was operated. Both the Morse potential and the Verlet algorithm were integrated using MATLAB to derive physical properties and the trajectory of the molecules. The data computed by MATLAB is always in the form of a matrix. To visualize it, Visualized Molecular Dynamics (VMD) was performed. Such method is useful for development and testing some types of interaction on a molecular scale. Besides, this can be very helpful for describing some basic principles of molecular interaction for educational purposes.« less

  3. Toward the S3DVAR data assimilation software for the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Arcucci, Rossella; Celestino, Simone; Toumi, Ralf; Laccetti, Giuliano

    2017-07-01

    Data Assimilation (DA) is an uncertainty quantification technique used to incorporate observed data into a prediction model in order to improve numerical forecasted results. The forecasting model used for producing oceanographic prediction into the Caspian Sea is the Regional Ocean Modeling System (ROMS). Here we propose the computational issues we are facing in a DA software we are developing (we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimilation model for assimilating sea surface temperature (SST) values collected into the Caspian Sea with observations provided by the Group of High resolution sea surface temperature (GHRSST). We present the algorithmic strategies we employ and the numerical issues on data collected in two of the months which present the most significant variability in water temperature: August and March.

  4. Analysis of key technologies for virtual instruments metrology

    NASA Astrophysics Data System (ADS)

    Liu, Guixiong; Xu, Qingui; Gao, Furong; Guan, Qiuju; Fang, Qiang

    2008-12-01

    Virtual instruments (VIs) require metrological verification when applied as measuring instruments. Owing to the software-centered architecture, metrological evaluation of VIs includes two aspects: measurement functions and software characteristics. Complexity of software imposes difficulties on metrological testing of VIs. Key approaches and technologies for metrology evaluation of virtual instruments are investigated and analyzed in this paper. The principal issue is evaluation of measurement uncertainty. The nature and regularity of measurement uncertainty caused by software and algorithms can be evaluated by modeling, simulation, analysis, testing and statistics with support of powerful computing capability of PC. Another concern is evaluation of software features like correctness, reliability, stability, security and real-time of VIs. Technologies from software engineering, software testing and computer security domain can be used for these purposes. For example, a variety of black-box testing, white-box testing and modeling approaches can be used to evaluate the reliability of modules, components, applications and the whole VI software. The security of a VI can be assessed by methods like vulnerability scanning and penetration analysis. In order to facilitate metrology institutions to perform metrological verification of VIs efficiently, an automatic metrological tool for the above validation is essential. Based on technologies of numerical simulation, software testing and system benchmarking, a framework for the automatic tool is proposed in this paper. Investigation on implementation of existing automatic tools that perform calculation of measurement uncertainty, software testing and security assessment demonstrates the feasibility of the automatic framework advanced.

  5. A Parallel Numerical Micromagnetic Code Using FEniCS

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Williams, W.; Mitchell, L.

    2013-12-01

    Many problems in the geosciences depend on understanding the ability of magnetic minerals to provide stable paleomagnetic recordings. Numerical micromagnetic modelling allows us to calculate the domain structures found in naturally occurring magnetic materials. However the computational cost rises exceedingly quickly with respect to the size and complexity of the geometries that we wish to model. This problem is compounded by the fact that the modern processor design no longer focuses on the speed at which calculations are performed, but rather on the number of computational units amongst which we may distribute our calculations. Consequently to better exploit modern computational resources our micromagnetic simulations must "go parallel". We present a parallel and scalable micromagnetics code written using FEniCS. FEniCS is a multinational collaboration involving several institutions (University of Cambridge, University of Chicago, The Simula Research Laboratory, etc.) that aims to provide a set of tools for writing scientific software; in particular software that employs the finite element method. The advantages of this approach are the leveraging of pre-existing projects from the world of scientific computing (PETSc, Trilinos, Metis/Parmetis, etc.) and exposing these so that researchers may pose problems in a manner closer to the mathematical language of their domain. Our code provides a scriptable interface (in Python) that allows users to not only run micromagnetic models in parallel, but also to perform pre/post processing of data.

  6. Predicting debris-flow initiation and run-out with a depth-averaged two-phase model and adaptive numerical methods

    NASA Astrophysics Data System (ADS)

    George, D. L.; Iverson, R. M.

    2012-12-01

    Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.

  7. Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures.

    PubMed

    Gok, Kadir; Inal, Sermet; Gok, Arif; Gulbandilar, Eyyup

    2017-05-01

    In this study, biomechanical behaviors of three different screw materials (stainless steel, titanium and cobalt-chromium) have analyzed to fix with triangle fixation under axial loading in femoral neck fracture and which material is best has been investigated. Point cloud obtained after scanning the human femoral model with the three dimensional (3D) scanner and this point cloud has been converted to 3D femoral model by Geomagic Studio software. Femoral neck fracture was modeled by SolidWorks software for only triangle configuration and computer-aided numerical analyses of three different materials have been carried out by AnsysWorkbench finite element analysis (FEA) software. The loading, boundary conditions and material properties have prepared for FEA and Von-Misses stress values on upper and lower proximity of the femur and screws have been calculated. At the end of numerical analyses, the best advantageous screw material has calculated as titanium because it creates minimum stress at the upper and lower proximity of the fracture line.

  8. Analyzing Dynamics of Cooperating Spacecraft

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.

    2004-01-01

    A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.

  9. Browser-Based Accessibility Evaluation Tools for Beginners

    ERIC Educational Resources Information Center

    McHale, Nina

    2011-01-01

    There are hundreds of Web accessibility software options out in the world that serve many different functions. Not surprisingly, many of them are designed for users with a wide range of abilities, with the intent of making the use of computers and the Internet easier for both work and entertainment. There are, however, numerous products available…

  10. Spectral and Spatial Coherent Emission of Thermal Radiation from Metal-Semiconductor Nanostructures

    DTIC Science & Technology

    2012-03-01

    Coupled Wave Analysis (RCWA) numerical technique and Computer Simulation Technology (CST) electromagnetic modeling software, two structures were...Stephanie Gray, IR-VASE and modeling  Dr. Kevin Gross, FTIR  Mr. Richard Johnston, Cleanroom and Photolithography  Ms. Abbey Juhl, Nanoscribe...Appendix B. Supplemental IR-VASE Measurements and Modeling .............................114 Bibliography

  11. Numerical Integration with GeoGebra in High School

    ERIC Educational Resources Information Center

    Herceg, Dorde; Herceg, Dragoslav

    2010-01-01

    The concept of definite integral is almost always introduced as the Riemann integral, which is defined in terms of the Riemann sum, and its geometric interpretation. This definition is hard to understand for high school students. With the aid of mathematical software for visualisation and computation of approximate integrals, the notion of…

  12. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    ERIC Educational Resources Information Center

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  13. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  14. Efficient and Robust Optimization for Building Energy Simulation

    PubMed Central

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-01-01

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell’s Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell’s method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell’s Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell’s Hybrid method presently used in HVACSIM+. PMID:27325907

  15. Efficient and Robust Optimization for Building Energy Simulation.

    PubMed

    Pourarian, Shokouh; Kearsley, Anthony; Wen, Jin; Pertzborn, Amanda

    2016-06-15

    Efficiently, robustly and accurately solving large sets of structured, non-linear algebraic and differential equations is one of the most computationally expensive steps in the dynamic simulation of building energy systems. Here, the efficiency, robustness and accuracy of two commonly employed solution methods are compared. The comparison is conducted using the HVACSIM+ software package, a component based building system simulation tool. The HVACSIM+ software presently employs Powell's Hybrid method to solve systems of nonlinear algebraic equations that model the dynamics of energy states and interactions within buildings. It is shown here that the Powell's method does not always converge to a solution. Since a myriad of other numerical methods are available, the question arises as to which method is most appropriate for building energy simulation. This paper finds considerable computational benefits result from replacing the Powell's Hybrid method solver in HVACSIM+ with a solver more appropriate for the challenges particular to numerical simulations of buildings. Evidence is provided that a variant of the Levenberg-Marquardt solver has superior accuracy and robustness compared to the Powell's Hybrid method presently used in HVACSIM+.

  16. A new parallel-vector finite element analysis software on distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1993-01-01

    A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.

  17. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, James R; Kuhn, Michael J; Gradle, Colleen

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integratedmore » into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.« less

  18. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.

    PubMed

    Carswell, Dave; Hilton, Andy; Chan, Chris; McBride, Diane; Croft, Nick; Slone, Avril; Cross, Mark; Foster, Graham

    2013-08-01

    The objective of this study was to demonstrate the potential of Computational Fluid Dynamics (CFD) simulations in predicting the levels of haemolysis in ventricular assist devices (VADs). Three different prototypes of a radial flow VAD have been examined experimentally and computationally using CFD modelling to assess device haemolysis. Numerical computations of the flow field were computed using a CFD model developed with the use of the commercial software Ansys CFX 13 and a set of custom haemolysis analysis tools. Experimental values for the Normalised Index of Haemolysis (NIH) have been calculated as 0.020 g/100 L, 0.014 g/100 L and 0.0042 g/100 L for the three designs. Numerical analysis predicts an NIH of 0.021 g/100 L, 0.017 g/100 L and 0.0057 g/100 L, respectively. The actual differences between experimental and numerical results vary between 0.0012 and 0.003 g/100 L, with a variation of 5% for Pump 1 and slightly larger percentage differences for the other pumps. The work detailed herein demonstrates how CFD simulation and, more importantly, the numerical prediction of haemolysis may be used as an effective tool in order to help the designers of VADs manage the flow paths within pumps resulting in a less haemolytic device. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Metabolic Flux Analysis in Isotope Labeling Experiments Using the Adjoint Approach.

    PubMed

    Mottelet, Stephane; Gaullier, Gil; Sadaka, Georges

    2017-01-01

    Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.

  20. L3 Interactive Data Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, Michael; Adams, Paul

    2006-09-05

    The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less

  1. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  2. The educational effectiveness of computer-based instruction

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Taylor, Holly A.

    2000-07-01

    Although numerous studies have shown that computer-based education is effective for enhancing rote memorization, the impact of these tools on higher-order cognitive skills, such as critical thinking, is less clear. Existing methods for evaluating educational effectiveness, such as surveys, quizzes and pre- or post-interviews, may not be effective for evaluating impact on critical thinking skills because students are not always aware of the effects the software has on their thought processes. We review an alternative evaluation strategy whereby the student's mastery of a specific cognitive skill is directly assessed both before and after participating in a computer-based exercise. Methodologies for assessing cognitive skill are based on recent advances in the fields of cognitive science. Results from two studies show that computer-based exercises can positively impact the higher-order cognitive skills of some students. However, a given exercise will not impact all students equally. This suggests that further work is needed to understand how and why CAI software is more or less effective within a given population.

  3. A special purpose silicon compiler for designing supercomputing VLSI systems

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.

    1991-01-01

    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.

  4. Computer program for solving laminar, transitional, or turbulent compressible boundary-layer equations for two-dimensional and axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Harris, J. E.; Blanchard, D. K.

    1982-01-01

    A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.

  5. Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations

    NASA Astrophysics Data System (ADS)

    Johnson, Daniel; Huerta, E. A.; Haas, Roland

    2018-01-01

    Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.

  6. Making interdisciplinary solid Earth modeling and analysis tools accessible in a diverse undergraduate and graduate classroom

    NASA Astrophysics Data System (ADS)

    Becker, T. W.

    2011-12-01

    I present results from ongoing, NSF-CAREER funded educational and research efforts that center around making numerical tools in seismology and geodynamics more accessible to a broader audience. The goal is not only to train students in quantitative, interdisciplinary research, but also to make methods more easily accessible to practitioners across disciplines. I describe the two main efforts that were funded, the Solid Earth Research and Teaching Environment (SEATREE, geosys.usc.edu/projects/seatree/), and a new Numerical Methods class. SEATREE is a modular and user-friendly software framework to facilitate using solid Earth research tools in the undergraduate and graduate classroom and for interdisciplinary, scientific collaboration. We use only open-source software, and most programming is done in the Python computer language. We strive to make use of modern software design and development concepts while remaining compatible with traditional scientific coding and existing, legacy software. Our goals are to provide a fully contained, yet transparent package that lets users operate in an easy, graphically supported "black box" mode, while also allowing to look under the hood, for example to conduct numerous forward models to explore parameter space. SEATREE currently has several implemented modules, including on global mantle flow, 2D phase velocity tomography, and 2D mantle convection and was used at the University of Southern California, Los Angeles, and at a 2010 CIDER summer school tutorial. SEATREE was developed in collaboration with engineering and computer science undergraduate students, some of which have gone on to work in Earth Science projects. In the long run, we envision SEATREE to contribute to new ways of sharing scientific research, and making (numerical) experiments truly reproducible again. The other project is a set of lecture notes and Matlab exercises on Numerical Methods in solid Earth, focusing on finite difference and element methods. The class has been taught several times at USC to a broad audience of Earth science students with very diverse levels of exposure to math and physics. It is our goal to bring everyone up to speed and empower students, and we have seen structural geology students with very little exposure to math go on to construct their own numerical models of pTt-paths in a core-complex setting. This exemplifies the goal of teaching students to both be able to put together simple numerical models from scratch, and, perhaps more importantly, to truly understand the basic concepts, capabilities, and pitfalls of the more powerful community codes that are being increasingly used. SEATREE and the Numerical Methods class material are freely available at geodynamics.usc.edu/~becker.

  7. Leaf-GP: an open and automated software application for measuring growth phenotypes for arabidopsis and wheat.

    PubMed

    Zhou, Ji; Applegate, Christopher; Alonso, Albor Dobon; Reynolds, Daniel; Orford, Simon; Mackiewicz, Michal; Griffiths, Simon; Penfield, Steven; Pullen, Nick

    2017-01-01

    Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with environmental change as well as respond to different treatments. Although the importance of measuring dynamic growth traits is widely recognised, available open software tools are limited in terms of batch image processing, multiple traits analyses, software usability and cross-referencing results between experiments, making automated phenotypic analysis problematic. Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be executed on different computing platforms. To facilitate diverse scientific communities, we provide three software versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat ( Triticum aestivum ) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes over time, we have identified diverse plant growth patterns between different genotypes under several experimental conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smartphones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated analysis workflow and customised computer vision based feature extraction software implementation can facilitate a broader plant research community for their growth and development studies. Furthermore, because we implemented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenomics analytic solutions, in a efficient and effective way. Leaf-GP is a sophisticated software application that provides three approaches to quantify growth phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological applications: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents the advancement of how to integrate computer vision, image analysis, machine learning and software engineering in plant phenomics software implementation. To serve the plant research community, our modulated source code, detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

  8. Numerical ‘health check’ for scientific codes: the CADNA approach

    NASA Astrophysics Data System (ADS)

    Scott, N. S.; Jézéquel, F.; Denis, C.; Chesneaux, J.-M.

    2007-04-01

    Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical 'health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.

  9. Operating System For Numerically Controlled Milling Machine

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1992-01-01

    OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.

  10. Introduction to Computational Physics for Undergraduates

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Weber, Fridolin

    2018-03-01

    This is an introductory textbook on computational methods and techniques intended for undergraduates at the sophomore or junior level in the fields of science, mathematics, and engineering. It provides an introduction to programming languages such as FORTRAN 90/95/2000 and covers numerical techniques such as differentiation, integration, root finding, and data fitting. The textbook also entails the use of the Linux/Unix operating system and other relevant software such as plotting programs, text editors, and mark up languages such as LaTeX. It includes multiple homework assignments.

  11. Feasibility of video codec algorithms for software-only playback

    NASA Astrophysics Data System (ADS)

    Rodriguez, Arturo A.; Morse, Ken

    1994-05-01

    Software-only video codecs can provide good playback performance in desktop computers with a 486 or 68040 CPU running at 33 MHz without special hardware assistance. Typically, playback of compressed video can be categorized into three tasks: the actual decoding of the video stream, color conversion, and the transfer of decoded video data from system RAM to video RAM. By current standards, good playback performance is the decoding and display of video streams of 320 by 240 (or larger) compressed frames at 15 (or greater) frames-per- second. Software-only video codecs have evolved by modifying and tailoring existing compression methodologies to suit video playback in desktop computers. In this paper we examine the characteristics used to evaluate software-only video codec algorithms, namely: image fidelity (i.e., image quality), bandwidth (i.e., compression) ease-of-decoding (i.e., playback performance), memory consumption, compression to decompression asymmetry, scalability, and delay. We discuss the tradeoffs among these variables and the compromises that can be made to achieve low numerical complexity for software-only playback. Frame- differencing approaches are described since software-only video codecs typically employ them to enhance playback performance. To complement other papers that appear in this session of the Proceedings, we review methods derived from binary pattern image coding since these methods are amenable for software-only playback. In particular, we introduce a novel approach called pixel distribution image coding.

  12. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James Russell

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equationmore » of state and for the JWL equation of state.« less

  13. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    NASA Astrophysics Data System (ADS)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured grids is presented.

  14. Wind conditions in urban layout - Numerical and experimental research

    NASA Astrophysics Data System (ADS)

    Poćwierz, Marta; Zielonko-Jung, Katarzyna

    2018-01-01

    This paper presents research which compares the numerical and the experimental results for different cases of airflow around a few urban layouts. The study is concerned mostly with the analysis of parameters, such as pressure and velocity fields, which are essential in the building industry. Numerical simulations have been performed by the commercial software Fluent, with the use of a few different turbulence models, including popular k-ɛ, k-ɛ realizable or k-ω. A particular attention has been paid to accurate description of the conditions on the inlet and the selection of suitable computing grid. The pressure measurement near buildings and oil visualization were undertaken and described accordingly.

  15. An Overview of High Performance Computing and Challenges for the Future

    ScienceCinema

    Google Tech Talks

    2017-12-09

    In this talk we examine how high performance computing has changed over the last 10-year and look toward the future in terms of trends. These changes have had and will continue to have a major impact on our software. A new generation of software libraries and lgorithms are needed for the effective and reliable use of (wide area) dynamic, distributed and parallel environments. Some of the software and algorithm challenges have already been encountered, such as management of communication and memory hierarchies through a combination of compile--time and run--time techniques, but the increased scale of computation, depth of memory hierarchies, range of latencies, and increased run--time environment variability will make these problems much harder. We will focus on the redesign of software to fit multicore architectures. Speaker: Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester Jack Dongarra received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his Ph.D. in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Electrical Engineering and Computer Science Department at the University of Tennessee, has the position of a Distinguished Research Staff member in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL), Turing Fellow in the Computer Science and Mathematics Schools at the University of Manchester, and an Adjunct Professor in the Computer Science Department at Rice University. He specializes in numerical algorithms in linear algebra, parallel computing, the use of advanced-computer architectures, programming methodology, and tools for parallel computers. His research includes the development, testing and documentation of high quality mathematical software. He has contributed to the design and implementation of the following open source software packages and systems: EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and PAPI. He has published approximately 200 articles, papers, reports and technical memoranda and he is coauthor of several books. He was awarded the IEEE Sid Fernbach Award in 2004 for his contributions in the application of high performance computers using innovative approaches. He is a Fellow of the AAAS, ACM, and the IEEE and a member of the National Academy of Engineering.

  16. An Overview of High Performance Computing and Challenges for the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Google Tech Talks

    In this talk we examine how high performance computing has changed over the last 10-year and look toward the future in terms of trends. These changes have had and will continue to have a major impact on our software. A new generation of software libraries and lgorithms are needed for the effective and reliable use of (wide area) dynamic, distributed and parallel environments. Some of the software and algorithm challenges have already been encountered, such as management of communication and memory hierarchies through a combination of compile--time and run--time techniques, but the increased scale of computation, depth of memory hierarchies,more » range of latencies, and increased run--time environment variability will make these problems much harder. We will focus on the redesign of software to fit multicore architectures. Speaker: Jack Dongarra University of Tennessee Oak Ridge National Laboratory University of Manchester Jack Dongarra received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his Ph.D. in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Electrical Engineering and Computer Science Department at the University of Tennessee, has the position of a Distinguished Research Staff member in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL), Turing Fellow in the Computer Science and Mathematics Schools at the University of Manchester, and an Adjunct Professor in the Computer Science Department at Rice University. He specializes in numerical algorithms in linear algebra, parallel computing, the use of advanced-computer architectures, programming methodology, and tools for parallel computers. His research includes the development, testing and documentation of high quality mathematical software. He has contributed to the design and implementation of the following open source software packages and systems: EISPACK, LINPACK, the BLAS, LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, and PAPI. He has published approximately 200 articles, papers, reports and technical memoranda and he is coauthor of several books. He was awarded the IEEE Sid Fernbach Award in 2004 for his contributions in the application of high performance computers using innovative approaches. He is a Fellow of the AAAS, ACM, and the IEEE and a member of the National Academy of Engineering.« less

  17. Evaluation of Visualization Software

    NASA Technical Reports Server (NTRS)

    Globus, Al; Uselton, Sam

    1995-01-01

    Visualization software is widely used in scientific and engineering research. But computed visualizations can be very misleading, and the errors are easy to miss. We feel that the software producing the visualizations must be thoroughly evaluated and the evaluation process as well as the results must be made available. Testing and evaluation of visualization software is not a trivial problem. Several methods used in testing other software are helpful, but these methods are (apparently) often not used. When they are used, the description and results are generally not available to the end user. Additional evaluation methods specific to visualization must also be developed. We present several useful approaches to evaluation, ranging from numerical analysis of mathematical portions of algorithms to measurement of human performance while using visualization systems. Along with this brief survey, we present arguments for the importance of evaluations and discussions of appropriate use of some methods.

  18. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking

    PubMed Central

    Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178

  19. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    PubMed

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.

  20. Algorithm Diversity for Resilent Systems

    DTIC Science & Technology

    2016-06-27

    data structures. 15. SUBJECT TERMS computer security, software diversity, program transformation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...systematic method for transforming Datalog rules with general universal and existential quantification into efficient algorithms with precise complexity...worst case in the size of the ground rules. There are numerous choices during the transformation that lead to diverse algorithms and different

  1. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia.

    PubMed

    Wilson, Anna J; Dehaene, Stanislas; Pinel, Philippe; Revkin, Susannah K; Cohen, Laurent; Cohen, David

    2006-05-30

    Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations). The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article describes the evolution of number sense and arithmetic scores before and after training. The software, open-source and freely available online, is designed for learning disabled children aged 5-8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains.

  2. Ground Support Software for Spaceborne Instrumentation

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent; Thorpe, rob; Fletcher, Greg; Waite, Hunter; Xu, Hykua; Walter, Erin; Frick, Kristie; Farris, Greg; Gell, Dave; Furman, Jufy; hide

    2004-01-01

    ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.

  3. 48 CFR 227.7203-15 - Subcontractor rights in computer software or computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... computer software or computer software documentation. 227.7203-15 Section 227.7203-15 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-15 Subcontractor rights in computer software or computer software documentation. (a...

  4. 48 CFR 227.7203-15 - Subcontractor rights in computer software or computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... computer software or computer software documentation. 227.7203-15 Section 227.7203-15 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-15 Subcontractor rights in computer software or computer software documentation. (a...

  5. 48 CFR 227.7203-15 - Subcontractor rights in computer software or computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... computer software or computer software documentation. 227.7203-15 Section 227.7203-15 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-15 Subcontractor rights in computer software or computer software documentation. (a...

  6. 48 CFR 227.7203-15 - Subcontractor rights in computer software or computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... computer software or computer software documentation. 227.7203-15 Section 227.7203-15 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-15 Subcontractor rights in computer software or computer software documentation. (a...

  7. 48 CFR 227.7203-15 - Subcontractor rights in computer software or computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... computer software or computer software documentation. 227.7203-15 Section 227.7203-15 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-15 Subcontractor rights in computer software or computer software documentation. (a...

  8. Computational Aspects of Data Assimilation and the ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, A.

    2003-01-01

    The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.

  9. 48 CFR 227.7202 - Commercial computer software and commercial computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... software and commercial computer software documentation. 227.7202 Section 227.7202 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202 Commercial computer software and commercial computer software documentation. ...

  10. 48 CFR 227.7203 - Noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... software and noncommercial computer software documentation. 227.7203 Section 227.7203 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203 Noncommercial computer software and noncommercial computer software documentation. ...

  11. 48 CFR 227.7203 - Noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... software and noncommercial computer software documentation. 227.7203 Section 227.7203 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203 Noncommercial computer software and noncommercial computer software documentation. ...

  12. 48 CFR 227.7203 - Noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... software and noncommercial computer software documentation. 227.7203 Section 227.7203 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203 Noncommercial computer software and noncommercial computer software documentation. ...

  13. 48 CFR 227.7202 - Commercial computer software and commercial computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... software and commercial computer software documentation. 227.7202 Section 227.7202 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202 Commercial computer software and commercial computer software documentation. ...

  14. 48 CFR 227.7203 - Noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... software and noncommercial computer software documentation. 227.7203 Section 227.7203 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203 Noncommercial computer software and noncommercial computer software documentation. ...

  15. 48 CFR 227.7202 - Commercial computer software and commercial computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... software and commercial computer software documentation. 227.7202 Section 227.7202 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202 Commercial computer software and commercial computer software documentation. ...

  16. 48 CFR 227.7202 - Commercial computer software and commercial computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... software and commercial computer software documentation. 227.7202 Section 227.7202 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202 Commercial computer software and commercial computer software documentation. ...

  17. 48 CFR 227.7202 - Commercial computer software and commercial computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... software and commercial computer software documentation. 227.7202 Section 227.7202 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202 Commercial computer software and commercial computer software documentation. ...

  18. 48 CFR 227.7203 - Noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... software and noncommercial computer software documentation. 227.7203 Section 227.7203 Federal Acquisition... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203 Noncommercial computer software and noncommercial computer software documentation. ...

  19. 48 CFR 227.7202-3 - Rights in commercial computer software or commercial computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... computer software or commercial computer software documentation. 227.7202-3 Section 227.7202-3 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202-3 Rights in commercial computer software or commercial computer software documentation...

  20. 48 CFR 227.7202-3 - Rights in commercial computer software or commercial computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... computer software or commercial computer software documentation. 227.7202-3 Section 227.7202-3 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202-3 Rights in commercial computer software or commercial computer software documentation...

  1. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  2. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  3. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  4. 48 CFR 227.7203-10 - Contractor identification and marking of computer software or computer software documentation to...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and marking of computer software or computer software documentation to be furnished with restrictive... Rights in Computer Software and Computer Software Documentation 227.7203-10 Contractor identification and marking of computer software or computer software documentation to be furnished with restrictive markings...

  5. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  6. 48 CFR 227.7202-3 - Rights in commercial computer software or commercial computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... computer software or commercial computer software documentation. 227.7202-3 Section 227.7202-3 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202-3 Rights in commercial computer software or commercial computer software documentation...

  7. 48 CFR 227.7203-10 - Contractor identification and marking of computer software or computer software documentation to...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and marking of computer software or computer software documentation to be furnished with restrictive... Rights in Computer Software and Computer Software Documentation 227.7203-10 Contractor identification and marking of computer software or computer software documentation to be furnished with restrictive markings...

  8. 48 CFR 227.7202-3 - Rights in commercial computer software or commercial computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... computer software or commercial computer software documentation. 227.7202-3 Section 227.7202-3 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202-3 Rights in commercial computer software or commercial computer software documentation...

  9. 48 CFR 227.7203-10 - Contractor identification and marking of computer software or computer software documentation to...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and marking of computer software or computer software documentation to be furnished with restrictive... Rights in Computer Software and Computer Software Documentation 227.7203-10 Contractor identification and marking of computer software or computer software documentation to be furnished with restrictive markings...

  10. 48 CFR 227.7202-3 - Rights in commercial computer software or commercial computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... computer software or commercial computer software documentation. 227.7202-3 Section 227.7202-3 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7202-3 Rights in commercial computer software or commercial computer software documentation...

  11. 48 CFR 227.7203-10 - Contractor identification and marking of computer software or computer software documentation to...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and marking of computer software or computer software documentation to be furnished with restrictive... Rights in Computer Software and Computer Software Documentation 227.7203-10 Contractor identification and marking of computer software or computer software documentation to be furnished with restrictive markings...

  12. 48 CFR 227.7203-10 - Contractor identification and marking of computer software or computer software documentation to...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and marking of computer software or computer software documentation to be furnished with restrictive... Rights in Computer Software and Computer Software Documentation 227.7203-10 Contractor identification and marking of computer software or computer software documentation to be furnished with restrictive markings...

  13. 48 CFR 227.7203-2 - Acquisition of noncommercial computer software and computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... noncommercial computer software and computer software documentation. 227.7203-2 Section 227.7203-2 Federal... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-2 Acquisition of noncommercial computer software and computer software documentation. (a...

  14. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Research on regional numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1976-01-01

    Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.

  16. Numerical Simulations for Distribution Characteristics of Internal Forces on Segments of Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Li, Shouju; Shangguan, Zichang; Cao, Lijuan

    A procedure based on FEM is proposed to simulate interaction between concrete segments of tunnel linings and soils. The beam element named as Beam 3 in ANSYS software was used to simulate segments. The ground loss induced from shield tunneling and segment installing processes is simulated in finite element analysis. The distributions of bending moment, axial force and shear force on segments were computed by FEM. The commutated internal forces on segments will be used to design reinforced bars on shield linings. Numerically simulated ground settlements agree with observed values.

  17. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation.

    PubMed

    Bergeron, Dominic; Tremblay, A-M S

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ^{2} with respect to α, and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  18. Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic; Tremblay, A.-M. S.

    2016-08-01

    Analytic continuation of numerical data obtained in imaginary time or frequency has become an essential part of many branches of quantum computational physics. It is, however, an ill-conditioned procedure and thus a hard numerical problem. The maximum-entropy approach, based on Bayesian inference, is the most widely used method to tackle that problem. Although the approach is well established and among the most reliable and efficient ones, useful developments of the method and of its implementation are still possible. In addition, while a few free software implementations are available, a well-documented, optimized, general purpose, and user-friendly software dedicated to that specific task is still lacking. Here we analyze all aspects of the implementation that are critical for accuracy and speed and present a highly optimized approach to maximum entropy. Original algorithmic and conceptual contributions include (1) numerical approximations that yield a computational complexity that is almost independent of temperature and spectrum shape (including sharp Drude peaks in broad background, for example) while ensuring quantitative accuracy of the result whenever precision of the data is sufficient, (2) a robust method of choosing the entropy weight α that follows from a simple consistency condition of the approach and the observation that information- and noise-fitting regimes can be identified clearly from the behavior of χ2 with respect to α , and (3) several diagnostics to assess the reliability of the result. Benchmarks with test spectral functions of different complexity and an example with an actual physical simulation are presented. Our implementation, which covers most typical cases for fermions, bosons, and response functions, is available as an open source, user-friendly software.

  19. 48 CFR 227.7203-16 - Providing computer software or computer software documentation to foreign governments, foreign...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... software or computer software documentation to foreign governments, foreign contractors, or international... Rights in Computer Software and Computer Software Documentation 227.7203-16 Providing computer software or computer software documentation to foreign governments, foreign contractors, or international...

  20. 48 CFR 227.7203-16 - Providing computer software or computer software documentation to foreign governments, foreign...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... software or computer software documentation to foreign governments, foreign contractors, or international... Rights in Computer Software and Computer Software Documentation 227.7203-16 Providing computer software or computer software documentation to foreign governments, foreign contractors, or international...

  1. 48 CFR 227.7203-16 - Providing computer software or computer software documentation to foreign governments, foreign...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... software or computer software documentation to foreign governments, foreign contractors, or international... Rights in Computer Software and Computer Software Documentation 227.7203-16 Providing computer software or computer software documentation to foreign governments, foreign contractors, or international...

  2. 48 CFR 227.7203-16 - Providing computer software or computer software documentation to foreign governments, foreign...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... software or computer software documentation to foreign governments, foreign contractors, or international... Rights in Computer Software and Computer Software Documentation 227.7203-16 Providing computer software or computer software documentation to foreign governments, foreign contractors, or international...

  3. 48 CFR 227.7203-16 - Providing computer software or computer software documentation to foreign governments, foreign...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... software or computer software documentation to foreign governments, foreign contractors, or international... Rights in Computer Software and Computer Software Documentation 227.7203-16 Providing computer software or computer software documentation to foreign governments, foreign contractors, or international...

  4. DEVELOPMENTS IN GRworkbench

    NASA Astrophysics Data System (ADS)

    Moylan, Andrew; Scott, Susan M.; Searle, Anthony C.

    2006-02-01

    The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.

  5. 48 CFR 227.7203-3 - Early identification of computer software or computer software documentation to be furnished to...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... computer software or computer software documentation to be furnished to the Government with restrictions on..., DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-3 Early identification of computer software or computer software documentation to be furnished to the Government with...

  6. 48 CFR 227.7203-3 - Early identification of computer software or computer software documentation to be furnished to...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... computer software or computer software documentation to be furnished to the Government with restrictions on..., DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-3 Early identification of computer software or computer software documentation to be furnished to the Government with...

  7. 48 CFR 227.7203-3 - Early identification of computer software or computer software documentation to be furnished to...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... computer software or computer software documentation to be furnished to the Government with restrictions on..., DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-3 Early identification of computer software or computer software documentation to be furnished to the Government with...

  8. 48 CFR 227.7203-3 - Early identification of computer software or computer software documentation to be furnished to...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... computer software or computer software documentation to be furnished to the Government with restrictions on..., DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-3 Early identification of computer software or computer software documentation to be furnished to the Government with...

  9. 48 CFR 227.7203-3 - Early identification of computer software or computer software documentation to be furnished to...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... computer software or computer software documentation to be furnished to the Government with restrictions on..., DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-3 Early identification of computer software or computer software documentation to be furnished to the Government with...

  10. SOLARTRAK. Solar Array Tracking Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manish, A.B.; Dudley, J.

    1995-06-01

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board`s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  11. Solar Array Tracking Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maish, Alexander

    1995-06-22

    SolarTrak used in conjunction with various versions of 68HC11-based SolarTrack hardware boards provides control system for one or two axis solar tracking arrays. Sun position is computed from stored position data and time from an on-board clock/calendar chip. Position feedback can be by one or two offset motor turn counter square wave signals per axis, or by a position potentiometer. A limit of 256 counts resolution is imposed by the on-board analog to digital (A/D) convertor. Control is provided for one or two motors. Numerous options are provided to customize the controller for specific applications. Some options are imposed atmore » compile time, some are setable during operation. Software and hardware board designs are provided for Control Board and separate User Interface Board that accesses and displays variables from Control Board. Controller can be used with range of sensor options ranging from a single turn count sensor per motor to systems using dual turn-count sensors, limit sensors, and a zero reference sensor. Dual axis trackers oriented azimuth elevation, east west, north south, or polar declination can be controlled. Misalignments from these orientations can also be accommodated. The software performs a coordinate transformation using six parameters to compute sun position in misaligned coordinates of the tracker. Parameters account for tilt of tracker in two directions, rotation about each axis, and gear ration errors in each axis. The software can even measure and compute these prameters during an initial setup period if current from a sun position sensor or output from photovoltaic array is available as an anlog voltage to the control board''s A/D port. Wind or emergency stow to aj present position is available triggered by digital or analog signals. Night stow is also available. Tracking dead band is adjustable from narrow to wide. Numerous features of the hardware and software conserve energy for use with battery powered systems.« less

  12. Uncertainty Analysis for a Jet Flap Airfoil

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Cruz, Josue

    2006-01-01

    An analysis of variance (ANOVA) study was performed to quantify the potential uncertainties of lift and pitching moment coefficient calculations from a computational fluid dynamics code, relative to an experiment, for a jet flap airfoil configuration. Uncertainties due to a number of factors including grid density, angle of attack and jet flap blowing coefficient were examined. The ANOVA software produced a numerical model of the input coefficient data, as functions of the selected factors, to a user-specified order (linear, 2-factor interference, quadratic, or cubic). Residuals between the model and actual data were also produced at each of the input conditions, and uncertainty confidence intervals (in the form of Least Significant Differences or LSD) for experimental, computational, and combined experimental / computational data sets were computed. The LSD bars indicate the smallest resolvable differences in the functional values (lift or pitching moment coefficient) attributable solely to changes in independent variable, given just the input data points from selected data sets. The software also provided a collection of diagnostics which evaluate the suitability of the input data set for use within the ANOVA process, and which examine the behavior of the resultant data, possibly suggesting transformations which should be applied to the data to reduce the LSD. The results illustrate some of the key features of, and results from, the uncertainty analysis studies, including the use of both numerical (continuous) and categorical (discrete) factors, the effects of the number and range of the input data points, and the effects of the number of factors considered simultaneously.

  13. Roadmap for cardiovascular circulation model

    PubMed Central

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  14. Roadmap for cardiovascular circulation model.

    PubMed

    Safaei, Soroush; Bradley, Christopher P; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R; Omholt, Stig W; Chase, J Geoffrey; Müller, Lucas O; Watanabe, Sansuke M; Blanco, Pablo J; de Bono, Bernard; Hunter, Peter J

    2016-12-01

    Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides

    NASA Astrophysics Data System (ADS)

    Glushkov, E. V.; Glushkova, N. V.; Evdokimov, A. A.

    2018-01-01

    Numerical simulation of traveling wave excitation, propagation, and diffraction in structures with local inhomogeneities (obstacles) is computationally expensive due to the need for mesh-based approximation of extended domains with the rigorous account for the radiation conditions at infinity. Therefore, hybrid numerical-analytic approaches are being developed based on the conjugation of a numerical solution in a local vicinity of the obstacle and/or source with an explicit analytic representation in the remaining semi-infinite external domain. However, in standard finite-element software, such a coupling with the external field, moreover, in the case of multimode expansion, is generally not provided. This work proposes a hybrid computational scheme that allows realization of such a conjugation using a standard software. The latter is used to construct a set of numerical solutions used as the basis for the sought solution in the local internal domain. The unknown expansion coefficients on this basis and on normal modes in the semi-infinite external domain are then determined from the conditions of displacement and stress continuity at the boundary between the two domains. We describe the implementation of this approach in the scalar and vector cases. To evaluate the reliability of the results and the efficiency of the algorithm, we compare it with a semianalytic solution to the problem of traveling wave diffraction by a horizontal obstacle, as well as with a finite-element solution obtained for a limited domain artificially restricted using absorbing boundaries. As an example, we consider the incidence of a fundamental antisymmetric Lamb wave onto surface and partially submerged elastic obstacles. It is noted that the proposed hybrid scheme can also be used to determine the eigenfrequencies and eigenforms of resonance scattering, as well as the characteristics of traveling waves in embedded waveguides.

  16. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  17. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and warranty of computer software and computer software documentation. 227.7203-14 Section 227.7203-14... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...

  18. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and warranty of computer software and computer software documentation. 227.7203-14 Section 227.7203-14... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...

  19. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and warranty of computer software and computer software documentation. 227.7203-14 Section 227.7203-14... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...

  20. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., and warranty of computer software and computer software documentation. 227.7203-14 Section 227.7203-14... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...

  1. 48 CFR 227.7203-14 - Conformity, acceptance, and warranty of computer software and computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and warranty of computer software and computer software documentation. 227.7203-14 Section 227.7203-14... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-14 Conformity, acceptance, and warranty of computer software and computer...

  2. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  3. Evaluating foodservice software: a suggested approach.

    PubMed

    Fowler, K D

    1986-09-01

    In an era of cost containment, the computer has become a viable management tool. Its use in health care has demonstrated accelerated growth in recent years, and a literature review supports an increased trend in this direction. Foodservice, which is a major cost center, is no exception to this predicted trend. Because software has proliferated, foodservice managers and dietitians are experiencing growing concern about how to evaluate the numerous software packages from which to choose. A suggested approach to evaluating software is offered to dietitians and managers alike to lessen the confusion in software selection and to improve the system satisfaction level post-purchase. Steps of the software evaluatory approach include: delineation of goals, assessment of needs, assignment of value weight factors, development of a vendor checklist, survey of vendors by means of the vendor checklist and elimination of inappropriate systems, thorough development of the request for proposal (RFP) for submission to the selected vendors, an analysis of the returned RFPs in terms of system features and cost factors, and selection of the system(s) for implementation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.; Kempner, L. Jr.; Mueller, W. III

    The concept of an Expert System is not new. It has been around since the days of the early computers when scientists had dreams of robot automation to do everything from washing windows to automobile design. This paper discusses an application of an expert system and addresses software development issues and various levels of expert system development form a structural engineering viewpoint. An expert system designed to aid the structural engineer in first order inelastic analysis of latticed steel transmission powers is presented. The utilization of expert systems with large numerical analysis programs is discussed along with the software developmentmore » of such a system.« less

  5. Preliminary Computational Analysis of the (HIRENASD) Configuration in Preparation for the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Florance, Jennifer P.; Heeg, Jennifer; Wieseman, Carol D.; Perry, Boyd P.

    2011-01-01

    This paper presents preliminary computational aeroelastic analysis results generated in preparation for the first Aeroelastic Prediction Workshop (AePW). These results were produced using FUN3D software developed at NASA Langley and are compared against the experimental data generated during the HIgh REynolds Number Aero- Structural Dynamics (HIRENASD) Project. The HIRENASD wind-tunnel model was tested in the European Transonic Windtunnel in 2006 by Aachen University0s Department of Mechanics with funding from the German Research Foundation. The computational effort discussed here was performed (1) to obtain a preliminary assessment of the ability of the FUN3D code to accurately compute physical quantities experimentally measured on the HIRENASD model and (2) to translate the lessons learned from the FUN3D analysis of HIRENASD into a set of initial guidelines for the first AePW, which includes test cases for the HIRENASD model and its experimental data set. This paper compares the computational and experimental results obtained at Mach 0.8 for a Reynolds number of 7 million based on chord, corresponding to the HIRENASD test conditions No. 132 and No. 159. Aerodynamic loads and static aeroelastic displacements are compared at two levels of the grid resolution. Harmonic perturbation numerical results are compared with the experimental data using the magnitude and phase relationship between pressure coefficients and displacement. A dynamic aeroelastic numerical calculation is presented at one wind-tunnel condition in the form of the time history of the generalized displacements. Additional FUN3D validation results are also presented for the AGARD 445.6 wing data set. This wing was tested in the Transonic Dynamics Tunnel and is commonly used in the preliminary benchmarking of computational aeroelastic software.

  6. Changes and challenges in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose

    1994-01-01

    Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization, the Flight Dynamics Division (FDD), develops, maintains, and manages complex flight dynamics systems. The SEL is composed of three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation. During the past 18 years, the SEL's overall goal has remained the same: to improve the FDD's software products and processes in a measured manner. This requires that each development and maintenance effort be viewed, in part, as a SEL experiment which examines a specific technology or builds a model of interest for use on subsequent efforts. The SEL has undertaken many technology studies while developing operational support systems for numerous NASA spacecraft missions.

  7. 48 CFR 227.7203-8 - Deferred delivery and deferred ordering of computer software and computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... deferred ordering of computer software and computer software documentation. 227.7203-8 Section 227.7203-8... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-8 Deferred delivery and deferred ordering of computer software and computer...

  8. 48 CFR 227.7203-8 - Deferred delivery and deferred ordering of computer software and computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... deferred ordering of computer software and computer software documentation. 227.7203-8 Section 227.7203-8... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-8 Deferred delivery and deferred ordering of computer software and computer...

  9. 48 CFR 227.7203-8 - Deferred delivery and deferred ordering of computer software and computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... deferred ordering of computer software and computer software documentation. 227.7203-8 Section 227.7203-8... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-8 Deferred delivery and deferred ordering of computer software and computer...

  10. 48 CFR 227.7203-8 - Deferred delivery and deferred ordering of computer software and computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... deferred ordering of computer software and computer software documentation. 227.7203-8 Section 227.7203-8... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-8 Deferred delivery and deferred ordering of computer software and computer...

  11. 48 CFR 227.7203-8 - Deferred delivery and deferred ordering of computer software and computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... deferred ordering of computer software and computer software documentation. 227.7203-8 Section 227.7203-8... GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-8 Deferred delivery and deferred ordering of computer software and computer...

  12. Multi-axis control based on movement control cards in NC systems

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Wei, Yunquan

    2005-12-01

    Today most movement control cards need special control software of topper computers and are only suitable for fixed-axis controls. Consequently, the number of axes which can be controlled is limited. Advanced manufacture technology develops at a very high speed, and that development brings forth. New requirements for movement control in mechanisms and electronics. This paper introduces products of the 5th generation of movement control cards, PMAC 2A-PC/104, made by the Delta Tau Company in the USA. Based on an analysis of PMAC 2A-PC/104, this paper first describes two aspects relevant to the hardware structure of movement control cards and the interrelated software of the topper computers. Then, two methods are presented for solving these problems. The first method is to set limit switches on the movement control cards; all of them can be used to control each moving axis. The second method is to program applied software with existing programming language (for example, VC ++, Visual Basic, Delphi, and so forth). This program is much easier to operate and expand by its users. By using a limit switch, users can choose different axes in movement control cards. Also, users can change parts of the parameters in the control software of topper computers to realize different control axes. Combining these 2 methods proves to be convenient for realizing multi-axis control in numerical control systems.

  13. 48 CFR 252.227-7014 - Rights in noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... computer software and noncommercial computer software documentation. 252.227-7014 Section 252.227-7014... Rights in noncommercial computer software and noncommercial computer software documentation. As prescribed in 227.7203-6(a)(1), use the following clause. Rights in Noncommercial Computer Software and...

  14. 48 CFR 252.227-7014 - Rights in noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... computer software and noncommercial computer software documentation. 252.227-7014 Section 252.227-7014... Rights in noncommercial computer software and noncommercial computer software documentation. As prescribed in 227.7203-6(a)(1), use the following clause. Rights in Noncommercial Computer Software and...

  15. 48 CFR 252.227-7014 - Rights in noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... computer software and noncommercial computer software documentation. 252.227-7014 Section 252.227-7014... Rights in noncommercial computer software and noncommercial computer software documentation. As prescribed in 227.7203-6(a)(1), use the following clause. Rights in Noncommercial Computer Software and...

  16. 48 CFR 252.227-7014 - Rights in noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... computer software and noncommercial computer software documentation. 252.227-7014 Section 252.227-7014... Rights in noncommercial computer software and noncommercial computer software documentation. As prescribed in 227.7203-6(a)(1), use the following clause. Rights in Noncommercial Computer Software and...

  17. 48 CFR 252.227-7014 - Rights in noncommercial computer software and noncommercial computer software documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... computer software and noncommercial computer software documentation. 252.227-7014 Section 252.227-7014... Rights in noncommercial computer software and noncommercial computer software documentation. As prescribed in 227.7203-6(a)(1), use the following clause. Rights in Noncommercial Computer Software and...

  18. Numerical propulsion system simulation

    NASA Technical Reports Server (NTRS)

    Lytle, John K.; Remaklus, David A.; Nichols, Lester D.

    1990-01-01

    The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.

  19. Symbolic Processing Combined with Model-Based Reasoning

    NASA Technical Reports Server (NTRS)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  20. Visualizing Economic Development with ArcGIS Explorer

    ERIC Educational Resources Information Center

    Webster, Megan L.; Milson, Andrew J.

    2011-01-01

    Numerous educators have noted that Geographic Information Systems (GIS) is a powerful tool for social studies teaching and learning. Yet the use of GIS has been hampered by issues such as the cost of the software and the management of large spatial data files. One trend that shows great promise for GIS in education is the move to cloud computing.…

  1. Sending Learning Pills to Mobile Devices in Class to Enhance Student Performance and Motivation in Network Services Configuration Courses

    ERIC Educational Resources Information Center

    Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, C. D.

    2012-01-01

    Teaching electrical and computer software engineers how to configure network services normally requires the detailed presentation of many configuration commands and their numerous parameters. Students tend to find it difficult to maintain acceptable levels of motivation. In many cases, this results in their not attending classes and not dedicating…

  2. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    PubMed

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  3. Open-Source Software for Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don

    2004-01-01

    The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.

  4. Verification of floating-point software

    NASA Technical Reports Server (NTRS)

    Hoover, Doug N.

    1990-01-01

    Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.

  5. A Simplified Mesh Deformation Method Using Commercial Structural Analysis Software

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Chang, Chau-Lyan; Samareh, Jamshid

    2004-01-01

    Mesh deformation in response to redefined or moving aerodynamic surface geometries is a frequently encountered task in many applications. Most existing methods are either mathematically too complex or computationally too expensive for usage in practical design and optimization. We propose a simplified mesh deformation method based on linear elastic finite element analyses that can be easily implemented by using commercially available structural analysis software. Using a prescribed displacement at the mesh boundaries, a simple structural analysis is constructed based on a spatially varying Young s modulus to move the entire mesh in accordance with the surface geometry redefinitions. A variety of surface movements, such as translation, rotation, or incremental surface reshaping that often takes place in an optimization procedure, may be handled by the present method. We describe the numerical formulation and implementation using the NASTRAN software in this paper. The use of commercial software bypasses tedious reimplementation and takes advantage of the computational efficiency offered by the vendor. A two-dimensional airfoil mesh and a three-dimensional aircraft mesh were used as test cases to demonstrate the effectiveness of the proposed method. Euler and Navier-Stokes calculations were performed for the deformed two-dimensional meshes.

  6. Sampling and sensitivity analyses tools (SaSAT) for computational modelling

    PubMed Central

    Hoare, Alexander; Regan, David G; Wilson, David P

    2008-01-01

    SaSAT (Sampling and Sensitivity Analysis Tools) is a user-friendly software package for applying uncertainty and sensitivity analyses to mathematical and computational models of arbitrary complexity and context. The toolbox is built in Matlab®, a numerical mathematical software package, and utilises algorithms contained in the Matlab® Statistics Toolbox. However, Matlab® is not required to use SaSAT as the software package is provided as an executable file with all the necessary supplementary files. The SaSAT package is also designed to work seamlessly with Microsoft Excel but no functionality is forfeited if that software is not available. A comprehensive suite of tools is provided to enable the following tasks to be easily performed: efficient and equitable sampling of parameter space by various methodologies; calculation of correlation coefficients; regression analysis; factor prioritisation; and graphical output of results, including response surfaces, tornado plots, and scatterplots. Use of SaSAT is exemplified by application to a simple epidemic model. To our knowledge, a number of the methods available in SaSAT for performing sensitivity analyses have not previously been used in epidemiological modelling and their usefulness in this context is demonstrated. PMID:18304361

  7. Interoperability of Neuroscience Modeling Software

    PubMed Central

    Cannon, Robert C.; Gewaltig, Marc-Oliver; Gleeson, Padraig; Bhalla, Upinder S.; Cornelis, Hugo; Hines, Michael L.; Howell, Fredrick W.; Muller, Eilif; Stiles, Joel R.; Wils, Stefan; De Schutter, Erik

    2009-01-01

    Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19-20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance. PMID:17873374

  8. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  9. Scientific Visualization and Computational Science: Natural Partners

    NASA Technical Reports Server (NTRS)

    Uselton, Samuel P.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization is developing rapidly, stimulated by computational science, which is gaining acceptance as a third alternative to theory and experiment. Computational science is based on numerical simulations of mathematical models derived from theory. But each individual simulation is like a hypothetical experiment; initial conditions are specified, and the result is a record of the observed conditions. Experiments can be simulated for situations that can not really be created or controlled. Results impossible to measure can be computed.. Even for observable values, computed samples are typically much denser. Numerical simulations also extend scientific exploration where the mathematics is analytically intractable. Numerical simulations are used to study phenomena from subatomic to intergalactic scales and from abstract mathematical structures to pragmatic engineering of everyday objects. But computational science methods would be almost useless without visualization. The obvious reason is that the huge amounts of data produced require the high bandwidth of the human visual system, and interactivity adds to the power. Visualization systems also provide a single context for all the activities involved from debugging the simulations, to exploring the data, to communicating the results. Most of the presentations today have their roots in image processing, where the fundamental task is: Given an image, extract information about the scene. Visualization has developed from computer graphics, and the inverse task: Given a scene description, make an image. Visualization extends the graphics paradigm by expanding the possible input. The goal is still to produce images; the difficulty is that the input is not a scene description displayable by standard graphics methods. Visualization techniques must either transform the data into a scene description or extend graphics techniques to display this odd input. Computational science is a fertile field for visualization research because the results vary so widely and include things that have no known appearance. The amount of data creates additional challenges for both hardware and software systems. Evaluations of visualization should ultimately reflect the insight gained into the scientific phenomena. So making good visualizations requires consideration of characteristics of the user and the purpose of the visualization. Knowledge about human perception and graphic design is also relevant. It is this breadth of knowledge that stimulates proposals for multidisciplinary visualization teams and intelligent visualization assistant software. Visualization is an immature field, but computational science is stimulating research on a broad front.

  10. Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve

    NASA Astrophysics Data System (ADS)

    Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata

    The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.

  11. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    NASA Astrophysics Data System (ADS)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  12. Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS

    NASA Astrophysics Data System (ADS)

    Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun

    2018-03-01

    ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.

  13. Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software

    NASA Astrophysics Data System (ADS)

    Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.

    2011-06-01

    Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.

  14. A numerical differentiation library exploiting parallel architectures

    NASA Astrophysics Data System (ADS)

    Voglis, C.; Hadjidoukas, P. E.; Lagaris, I. E.; Papageorgiou, D. G.

    2009-08-01

    We present a software library for numerically estimating first and second order partial derivatives of a function by finite differencing. Various truncation schemes are offered resulting in corresponding formulas that are accurate to order O(h), O(h), and O(h), h being the differencing step. The derivatives are calculated via forward, backward and central differences. Care has been taken that only feasible points are used in the case where bound constraints are imposed on the variables. The Hessian may be approximated either from function or from gradient values. There are three versions of the software: a sequential version, an OpenMP version for shared memory architectures and an MPI version for distributed systems (clusters). The parallel versions exploit the multiprocessing capability offered by computer clusters, as well as modern multi-core systems and due to the independent character of the derivative computation, the speedup scales almost linearly with the number of available processors/cores. Program summaryProgram title: NDL (Numerical Differentiation Library) Catalogue identifier: AEDG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73 030 No. of bytes in distributed program, including test data, etc.: 630 876 Distribution format: tar.gz Programming language: ANSI FORTRAN-77, ANSI C, MPI, OPENMP Computer: Distributed systems (clusters), shared memory systems Operating system: Linux, Solaris Has the code been vectorised or parallelized?: Yes RAM: The library uses O(N) internal storage, N being the dimension of the problem Classification: 4.9, 4.14, 6.5 Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, etc. The parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Restrictions: The library uses only double precision arithmetic. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 15 ms for the serial distribution, 0.6 s for the OpenMP and 4.2 s for the MPI parallel distribution on 2 processors.

  15. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.

    1993-01-01

    In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.

  16. Present status of computational tools for maglev development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z.; Chen, S.S.; Rote, D.M.

    1991-10-01

    High-speed vehicles that employ magnetic levitation (maglev) have received great attention worldwide as a means of relieving both highway and air-traffic congestion. At this time, Japan and Germany are leading the development of maglev. After fifteen years of inactivity that is attributed to technical policy decisions, the federal government of the United States has reconsidered the possibility of using maglev in the United States. The National Maglev Initiative (NMI) was established in May 1990 to assess the potential of maglev in the United States. One of the tasks of the NMI, which is also the objective of this report, ismore » to determine the status of existing computer software that can be applied to maglev-related problems. The computational problems involved in maglev assessment, research, and development can be classified into two categories: electromagnetic and mechanical. Because most maglev problems are complicated and difficult to solve analytically, proper numerical methods are needed to find solutions. To determine the status of maglev-related software, developers and users of computer codes were surveyed. The results of the survey are described in this report. 25 refs.« less

  17. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  18. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  19. Techniques and Tools for Performance Tuning of Parallel and Distributed Scientific Applications

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekhar R.; VanderWijngaart, Rob F.; Castagnera, Karen (Technical Monitor)

    1994-01-01

    Performance degradation in scientific computing on parallel and distributed computer systems can be caused by numerous factors. In this half-day tutorial we explain what are the important methodological issues involved in obtaining codes that have good performance potential. Then we discuss what are the possible obstacles in realizing that potential on contemporary hardware platforms, and give an overview of the software tools currently available for identifying the performance bottlenecks. Finally, some realistic examples are used to illustrate the actual use and utility of such tools.

  20. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  1. Improvements in the efficiency of turboexpanders in cryogenic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.; Lin, M.C.; Ershaghi, B.

    1996-12-31

    Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.

  2. Paranoia.Ada: A diagnostic program to evaluate Ada floating-point arithmetic

    NASA Technical Reports Server (NTRS)

    Hjermstad, Chris

    1986-01-01

    Many essential software functions in the mission critical computer resource application domain depend on floating point arithmetic. Numerically intensive functions associated with the Space Station project, such as emphemeris generation or the implementation of Kalman filters, are likely to employ the floating point facilities of Ada. Paranoia.Ada appears to be a valuabe program to insure that Ada environments and their underlying hardware exhibit the precision and correctness required to satisfy mission computational requirements. As a diagnostic tool, Paranoia.Ada reveals many essential characteristics of an Ada floating point implementation. Equipped with such knowledge, programmers need not tremble before the complex task of floating point computation.

  3. Cumulative reports and publications through 31 December 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    All reports for the calendar years 1975 through December 1983 are listed by author. Since ICASE reports are intended to be preprints of articles for journals and conference proceedings, the published reference is included when available. Thirteen older journal and conference proceedings references are included as well as five additional reports by ICASE personnel. Major categories of research covered include: (1) numerical methods, with particular emphasis on the development and analysis of basic algorithms; (2) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; and (3) computer systems and software, especially vector and parallel computers, microcomputers, and data management.

  4. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia

    PubMed Central

    Wilson, Anna J; Dehaene, Stanislas; Pinel, Philippe; Revkin, Susannah K; Cohen, Laurent; Cohen, David

    2006-01-01

    Background Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. Methods "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations). Results The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article [1] describes the evolution of number sense and arithmetic scores before and after training. Conclusion The software, open-source and freely available online, is designed for learning disabled children aged 5–8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains. PMID:16734905

  5. Features in simulation of crystal growth using the hyperbolic PFC equation and the dependence of the numerical solution on the parameters of the computational grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starodumov, Ilya; Kropotin, Nikolai

    2016-08-10

    We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less

  6. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    NASA Astrophysics Data System (ADS)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  7. Notes on the KIVA-2 software and chemically reactive fluid mechanics

    NASA Astrophysics Data System (ADS)

    Holst, M. J.

    1992-09-01

    Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.

  8. [AERA. Dream machines and computing practices at the Mathematical Center].

    PubMed

    Alberts, Gerard; De Beer, Huub T

    2008-01-01

    Dream machines may be just as effective as the ones materialised. Their symbolic thrust can be quite powerful. The Amsterdam 'Mathematisch Centrum' (Mathematical Center), founded February 11, 1946, created a Computing Department in an effort to realise its goal of serving society. When Aad van Wijngaarden was appointed as head of the Computing Department, however, he claimed space for scientific research and computer construction, next to computing as a service. Still, the computing service following the five stage style of Hartree's numerical analysis remained a dominant characteristic of the work of the Computing Department. The high level of ambition held by Aad van Wijngaarden lead to ever renewed projections of big automatic computers, symbolised by the never-built AERA. Even a machine that was actually constructed, the ARRA which followed A.D. Booth's design of the ARC, never made it into real operation. It did serve Van Wijngaarden to bluff his way into the computer age by midsummer 1952. Not until January 1954 did the computing department have a working stored program computer, which for reasons of policy went under the same name: ARRA. After just one other machine, the ARMAC, had been produced, a separate company, Electrologica, was set up for the manufacture of computers, which produced the rather successful X1 computer. The combination of ambition and absence of a working machine lead to a high level of work on programming, way beyond the usual ideas of libraries of subroutines. Edsger W. Dijkstra in particular led the way to an emphasis on the duties of the programmer within the pattern of numerical analysis. Programs generating programs, known elsewhere as autocoding systems, were at the 'Mathematisch Centrum' called 'superprograms'. Practical examples were usually called a 'complex', in Dutch, where in English one might say 'system'. Historically, this is where software begins. Dekker's matrix complex, Dijkstra's interrupt system, Dijkstra and Zonneveld's ALGOL compiler--which for housekeeping contained 'the complex'--were actual examples of such super programs. In 1960 this compiler gave the Mathematical Center a leading edge in the early development of software.

  9. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  10. Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation

    NASA Astrophysics Data System (ADS)

    Trujillo Arredondo, Mariana

    2014-06-01

    We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.

  11. Computational Software to Fit Seismic Data Using Epidemic-Type Aftershock Sequence Models and Modeling Performance Comparisons

    NASA Astrophysics Data System (ADS)

    Chu, A.

    2016-12-01

    Modern earthquake catalogs are often analyzed using spatial-temporal point process models such as the epidemic-type aftershock sequence (ETAS) models of Ogata (1998). My work implements three of the homogeneous ETAS models described in Ogata (1998). With a model's log-likelihood function, my software finds the Maximum-Likelihood Estimates (MLEs) of the model's parameters to estimate the homogeneous background rate and the temporal and spatial parameters that govern triggering effects. EM-algorithm is employed for its advantages of stability and robustness (Veen and Schoenberg, 2008). My work also presents comparisons among the three models in robustness, convergence speed, and implementations from theory to computing practice. Up-to-date regional seismic data of seismic active areas such as Southern California and Japan are used to demonstrate the comparisons. Data analysis has been done using computer languages Java and R. Java has the advantages of being strong-typed and easiness of controlling memory resources, while R has the advantages of having numerous available functions in statistical computing. Comparisons are also made between the two programming languages in convergence and stability, computational speed, and easiness of implementation. Issues that may affect convergence such as spatial shapes are discussed.

  12. A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media

    NASA Astrophysics Data System (ADS)

    Lambrecht, L.; Lamert, A.; Friederich, W.; Möller, T.; Boxberg, M. S.

    2018-03-01

    A nodal discontinuous Galerkin (NDG) approach is developed and implemented for the computation of viscoelastic wavefields in complex geological media. The NDG approach combines unstructured tetrahedral meshes with an element-wise, high-order spatial interpolation of the wavefield based on Lagrange polynomials. Numerical fluxes are computed from an exact solution of the heterogeneous Riemann problem. Our implementation offers capabilities for modelling viscoelastic wave propagation in 1-D, 2-D and 3-D settings of very different spatial scale with little logistical overhead. It allows the import of external tetrahedral meshes provided by independent meshing software and can be run in a parallel computing environment. Computation of adjoint wavefields and an interface for the computation of waveform sensitivity kernels are offered. The method is validated in 2-D and 3-D by comparison to analytical solutions and results from a spectral element method. The capabilities of the NDG method are demonstrated through a 3-D example case taken from tunnel seismics which considers high-frequency elastic wave propagation around a curved underground tunnel cutting through inclined and faulted sedimentary strata. The NDG method was coded into the open-source software package NEXD and is available from GitHub.

  13. Assessment and prediction of urban air pollution caused by motor transport exhaust gases using computer simulation methods

    NASA Astrophysics Data System (ADS)

    Boyarshinov, Michael G.; Vaismana, Yakov I.

    2016-10-01

    The following methods were used in order to identify the pollution fields of urban air caused by the motor transport exhaust gases: the mathematical model, which enables to consider the influence of the main factors that determine pollution fields formation in the complex spatial domain; the authoring software designed for computational modeling of the gas flow, generated by numerous mobile point sources; the results of computing experiments on pollutant spread analysis and evolution of their concentration fields. The computational model of exhaust gas distribution and dispersion in a spatial domain, which includes urban buildings, structures and main traffic arteries, takes into account a stochastic character of cars apparition on the borders of the examined territory and uses a Poisson process. The model also considers the traffic lights switching and permits to define the fields of velocity, pressure and temperature of the discharge gases in urban air. The verification of mathematical model and software used confirmed their satisfactory fit to the in-situ measurements data and the possibility to use the obtained computing results for assessment and prediction of urban air pollution caused by motor transport exhaust gases.

  14. Modeling and analysis of visual digital impact model for a Chinese human thorax.

    PubMed

    Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He

    2017-01-01

    To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.

  15. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  16. SSME Bearing and Seal Tester Data Compilation, Analysis and Reporting; and Refinement of the Cryogenic Bearing Analysis Mathematical Model

    NASA Technical Reports Server (NTRS)

    Moore, James; Marty, Dave; Cody, Joe

    2000-01-01

    SRS and NASA/MSFC have developed software with unique capabilities to couple bearing kinematic modeling with high fidelity thermal modeling. The core thermomechanical modeling software was developed by SRS and others in the late 1980's and early 1990's under various different contractual efforts. SRS originally developed software that enabled SHABERTH (Shaft Bearing Thermal Model) and SINDA (Systems Improved Numerical Differencing Analyzer) to exchange data and autonomously allowing bearing component temperature effects to propagate into the steady state bearing mechanical model. A separate contract was issued in 1990 to create a personal computer version of the software. At that time SRS performed major improvements to the code. Both SHABERTH and SINDA were independently ported to the PC and compiled. SRS them integrated the two programs into a single program that was named SINSHA. This was a major code improvement.

  17. SSME Bearing and Seal Tester Data Compilation, Analysis, and Reporting; and Refinement of the Cryogenic Bearing Analysis Mathematical Model

    NASA Technical Reports Server (NTRS)

    Moore, James; Marty, Dave; Cody, Joe

    2000-01-01

    SRS and NASA/MSFC have developed software with unique capabilities to couple bearing kinematic modeling with high fidelity thermal modeling. The core thermomechanical modeling software was developed by SRS and others in the late 1980's and early 1990's under various different contractual efforts. SRS originally developed software that enabled SHABERTH (Shaft Bearing Thermal Model) and SINDA (Systems Improved Numerical Differencing Analyzer) to exchange data and autonomously allowing bearing component temperature effects to propagate into the steady state bearing mechanical model. A separate contract was issued in 1990 to create a personal computer version of the software. At that time SRS performed major improvements to the code. Both SHABERTH and SINDA were independently ported to the PC and compiled. SRS them integrated the two programs into a single program that was named SINSHA. This was a major code improvement.

  18. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.

    PubMed

    Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun

    2017-11-14

    With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.

  19. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  1. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  2. Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics

    NASA Astrophysics Data System (ADS)

    Caley, Thomas M.

    This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when experimental data is available, creating a more accurate model without noticeably increasing the complexity or computational time.

  3. Analysis of Plane-Parallel Electron Beam Propagation in Different Media by Numerical Simulation Methods

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.

    2018-04-01

    Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.

  4. Numerical simulation of mushrooms during freezing using the FEM and an enthalpy: Kirchhoff formulation

    NASA Astrophysics Data System (ADS)

    Santos, M. V.; Lespinard, A. R.

    2011-12-01

    The shelf life of mushrooms is very limited since they are susceptible to physical and microbial attack; therefore they are usually blanched and immediately frozen for commercial purposes. The aim of this work was to develop a numerical model using the finite element technique to predict freezing times of mushrooms considering the actual shape of the product. The original heat transfer equation was reformulated using a combined enthalpy-Kirchhoff formulation, therefore an own computational program using Matlab 6.5 (MathWorks, Natick, Massachusetts) was developed, considering the difficulties encountered when simulating this non-linear problem in commercial softwares. Digital images were used to generate the irregular contour and the domain discretization. The numerical predictions agreed with the experimental time-temperature curves during freezing of mushrooms (maximum absolute error <3.2°C) obtaining accurate results and minimum computer processing times. The codes were then applied to determine required processing times for different operating conditions (external fluid temperatures and surface heat transfer coefficients).

  5. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs. PMID:26555444

  6. RNA Thermodynamic Structural Entropy.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http://bioinformatics.bc.edu/clotelab/RNAentropy, including source code and ancillary programs.

  7. 48 CFR 227.7202-4 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Software and Computer Software Documentation 227.7202-4 Contract clause. A specific contract clause governing the Government's rights in commercial computer software or commercial computer software..., release, perform, display, or disclose computer software or computer software documentation shall be...

  8. 48 CFR 227.7202-4 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Software and Computer Software Documentation 227.7202-4 Contract clause. A specific contract clause governing the Government's rights in commercial computer software or commercial computer software..., release, perform, display, or disclose computer software or computer software documentation shall be...

  9. 48 CFR 227.7202-4 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Software and Computer Software Documentation 227.7202-4 Contract clause. A specific contract clause governing the Government's rights in commercial computer software or commercial computer software..., release, perform, display, or disclose computer software or computer software documentation shall be...

  10. 48 CFR 227.7202-4 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Software and Computer Software Documentation 227.7202-4 Contract clause. A specific contract clause governing the Government's rights in commercial computer software or commercial computer software..., release, perform, display, or disclose computer software or computer software documentation shall be...

  11. 48 CFR 227.7202-4 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Software and Computer Software Documentation 227.7202-4 Contract clause. A specific contract clause governing the Government's rights in commercial computer software or commercial computer software..., release, perform, display, or disclose computer software or computer software documentation shall be...

  12. Using special functions to model the propagation of airborne diseases

    NASA Astrophysics Data System (ADS)

    Bolaños, Daniela

    2014-06-01

    Some special functions of the mathematical physics are using to obtain a mathematical model of the propagation of airborne diseases. In particular we study the propagation of tuberculosis in closed rooms and we model the propagation using the error function and the Bessel function. In the model, infected individual emit pathogens to the environment and this infect others individuals who absorb it. The evolution in time of the concentration of pathogens in the environment is computed in terms of error functions. The evolution in time of the number of susceptible individuals is expressed by a differential equation that contains the error function and it is solved numerically for different parametric simulations. The evolution in time of the number of infected individuals is plotted for each numerical simulation. On the other hand, the spatial distribution of the pathogen around the source of infection is represented by the Bessel function K0. The spatial and temporal distribution of the number of infected individuals is computed and plotted for some numerical simulations. All computations were made using software Computer algebra, specifically Maple. It is expected that the analytical results that we obtained allow the design of treatment rooms and ventilation systems that reduce the risk of spread of tuberculosis.

  13. Artificial Intelligence and Virology - quo vadis

    PubMed Central

    Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T.

    2017-01-01

    Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology. PMID:29379259

  14. Influence of RF channels mismatch and mutual coupling phenomenon on performance of a multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Górski, Maksymilian

    2010-09-01

    In the paper we analyze the influence of RF channels mismatch and mutual coupling effect on the performance of the multistatic passive radar with Uniform Circular Array (UCA) configuration. The problem was tested intensively in numerous different scenarios with a reference virtual multistatic passive radar. Finally, exemplary results of the computer software simulations are provided and discussed.

  15. Guide to NavyFOAM V1.0

    DTIC Science & Technology

    2011-04-01

    NavyFOAM has been developed using an open-source CFD software tool-kit ( OpenFOAM ) that draws heavily upon object-oriented programming. The...numerical methods and the physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy and robustness of...computational fluid dynamics OpenFOAM , Object Oriented Programming (OOP) (CFD), NavyFOAM, 16. SECURITY CLASSIFICATION OF: a. REPORT UNCLASSIFIED b

  16. The Displacement of Water from a Steel Surface.

    DTIC Science & Technology

    1982-11-08

    example Report No. NADC-78015-20 indicates the fifteeth Center report for the year 1978, and prepared by the Systems. Directorate. The numerical ...50 Software Computer Directorate 60 Aircraft & Crew Systems Technology Directorate 70 Planning Assessment Resources 80 Eneing.Support Group . PRODUCT...Table I.- Water Displacement Tests TEST METHD Continuous water layer, A thin continuous layer of water is references (a) and (d) placed onto a steel

  17. Artificial Intelligence and Virology - quo vadis.

    PubMed

    Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T

    2017-01-01

    Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.

  18. Assisting Design Given Multiple Performance Criteria

    DTIC Science & Technology

    1988-08-01

    with uninstantiated operators is created then each operator’s implementation is selected. g - Keywords: computer-aided design, artificial...IEEE Trans- actions on Software Engineering, SE-7(1), 1981. [BG86] Forrest D. Brewer and Daniel D. Gajski . An expert-system paradigm for de- sign. In...Teukolsky, api William T. Vet- terling. Numerical Recipes. Cambridge University Press, Cambridge, England, 1987. [RFS83] G . G . Rassweiler, M. D

  19. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  20. Extended precision data types for the development of the original computer aided engineering applications

    NASA Astrophysics Data System (ADS)

    Pescaru, A.; Oanta, E.; Axinte, T.; Dascalescu, A.-D.

    2015-11-01

    Computer aided engineering is based on models of the phenomena which are expressed as algorithms. The implementations of the algorithms are usually software applications which are processing a large volume of numerical data, regardless the size of the input data. In this way, the finite element method applications used to have an input data generator which was creating the entire volume of geometrical data, starting from the initial geometrical information and the parameters stored in the input data file. Moreover, there were several data processing stages, such as: renumbering of the nodes meant to minimize the size of the band length of the system of equations to be solved, computation of the equivalent nodal forces, computation of the element stiffness matrix, assemblation of system of equations, solving the system of equations, computation of the secondary variables. The modern software application use pre-processing and post-processing programs to easily handle the information. Beside this example, CAE applications use various stages of complex computation, being very interesting the accuracy of the final results. Along time, the development of CAE applications was a constant concern of the authors and the accuracy of the results was a very important target. The paper presents the various computing techniques which were imagined and implemented in the resulting applications: finite element method programs, finite difference element method programs, applied general numerical methods applications, data generators, graphical applications, experimental data reduction programs. In this context, the use of the extended precision data types was one of the solutions, the limitations being imposed by the size of the memory which may be allocated. To avoid the memory-related problems the data was stored in files. To minimize the execution time, part of the file was accessed using the dynamic memory allocation facilities. One of the most important consequences of the paper is the design of a library which includes the optimized solutions previously tested, that may be used for the easily development of original CAE cross-platform applications. Last but not least, beside the generality of the data type solutions, there is targeted the development of a software library which may be used for the easily development of node-based CAE applications, each node having several known or unknown parameters, the system of equations being automatically generated and solved.

  1. The numerical modelling of falling film thickness flow on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Hassan, I. A.; Sadikin, A.; Isa, N. Mat

    2017-04-01

    This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.

  2. 48 CFR 12.212 - Computer software.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Computer software. 12.212... software. (a) Commercial computer software or commercial computer software documentation shall be acquired... required to— (1) Furnish technical information related to commercial computer software or commercial...

  3. 48 CFR 12.212 - Computer software.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Computer software. 12.212... software. (a) Commercial computer software or commercial computer software documentation shall be acquired... required to— (1) Furnish technical information related to commercial computer software or commercial...

  4. 48 CFR 12.212 - Computer software.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Computer software. 12.212... software. (a) Commercial computer software or commercial computer software documentation shall be acquired... required to— (1) Furnish technical information related to commercial computer software or commercial...

  5. 48 CFR 12.212 - Computer software.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Computer software. 12.212... software. (a) Commercial computer software or commercial computer software documentation shall be acquired... required to— (1) Furnish technical information related to commercial computer software or commercial...

  6. 48 CFR 12.212 - Computer software.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Computer software. 12.212... software. (a) Commercial computer software or commercial computer software documentation shall be acquired... required to— (1) Furnish technical information related to commercial computer software or commercial...

  7. An intelligent CNC machine control system architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D.J.; Loucks, C.S.

    1996-10-01

    Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less

  8. Multimodal visualization interface for data management, self-learning and data presentation.

    PubMed

    Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M

    2006-10-01

    A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.

  9. Computer output microfilm (FR80) systems software documentation, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system consists of a series of programs which convert digital data from magnetic tapes into alpha-numeric characters, graphic plots, and imagery that is recorded on the face of a cathode ray tube. A special camera photographs the face of the tube on microfilm for subsequent display on a film reader. The applicable documents which apply to this system are delineated. The functional relationship between the system software, the standard insert routines, and the applications programs is described; all the applications programs are described in detail. Instructions for locating those documents are presented along with test preparations sheets for all baseline and/or program modification acceptance tests.

  10. Painting models

    NASA Astrophysics Data System (ADS)

    Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.

    2015-12-01

    The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .

  11. Strategy for reflector pattern calculation - Let the computer do the work

    NASA Technical Reports Server (NTRS)

    Lam, P. T.; Lee, S.-W.; Hung, C. C.; Acosta, R.

    1986-01-01

    Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. It is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

  12. Strategy for reflector pattern calculation: Let the computer do the work

    NASA Technical Reports Server (NTRS)

    Lam, P. T.; Lee, S. W.; Hung, C. C.; Acousta, R.

    1985-01-01

    Using high frequency approximations, the secondary pattern of a reflector antenna can be calculated by numerically evaluating a radiation integral I(u,v). In recent years, tremendous effort has been expended to reducing I(u,v) to Fourier integrals. These reduction schemes are invariably reflector geometry dependent. Hence, different analyses/computer software development must be carried out for different reflector shapes/boundaries. it is pointed out, that, as the computer power improves, these reduction schemes are no longer necessary. Comparable accuracy and computation time can be achieved by evaluating I(u,v) by a brute force FFT described in this note. Furthermore, there is virtually no restriction on the reflector geometry by using the brute force FFT.

  13. Commercialization of NESSUS: Status

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Millwater, Harry R.

    1991-01-01

    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.

  14. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  15. Drawing the PDB: Protein-Ligand Complexes in Two Dimensions.

    PubMed

    Stierand, Katrin; Rarey, Matthias

    2010-12-09

    The two-dimensional representation of molecules is a popular communication medium in chemistry and the associated scientific fields. Computational methods for drawing small molecules with and without manual investigation are well-established and widely spread in terms of numerous software tools. Concerning the planar depiction of molecular complexes, there is considerably less choice. We developed the software PoseView, which automatically generates two-dimensional diagrams of macromolecular complexes, showing the ligand, the interactions, and the interacting residues. All depicted molecules are drawn on an atomic level as structure diagrams; thus, the output plots are clearly structured and easily readable for the scientist. We tested the performance of PoseView in a large-scale application on nearly all druglike complexes of the PDB (approximately 200000 complexes); for more than 92% of the complexes considered for drawing, a layout could be computed. In the following, we will present the results of this application study.

  16. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  17. An expert system for prediction of chemical toxicity

    USGS Publications Warehouse

    Hickey, James P.; Aldridge, Andrew J.; Passino-Reader, Dora R.; Frank, Anthony M.

    1992-01-01

    The National Fisheries Research Center- Great Lakes has developed an interactive computer program that uses the structure of an organic molecule to predict its acute toxicity to four aquatic species. The expert system software, written in the muLISP language, identifies the skeletal structures and substituent groups of an organic molecule from a user-supplied standard chemical notation known as a SMILES string, and then generates values for four solvatochromic parameters. Multiple regression equations relate these parameters to the toxicities (expressed as log10LC50s and log10EC50s, along with 95% confidence intervals) for four species. The system is demonstrated by prediction of toxicity for anilide-type pesticides to the fathead minnow (Pimephales promelas). This software is designed for use on an IBM-compatible personal computer by personnel with minimal toxicology background for rapid estimation of chemical toxicity. The system has numerous applications, with much potential for use in the pharmaceutical industry

  18. Development of computer-aided design system of elastic sensitive elements of automatic metering devices

    NASA Astrophysics Data System (ADS)

    Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.

    2018-05-01

    The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.

  19. Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chiou, Jin-Chern

    1990-01-01

    Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.

  20. Engaging Undergraduate Math Majors in Geoscience Research using Interactive Simulations and Computer Art

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Hymiak, B.; Reslink, C. F.; Baxter, C.; Aziz, S.

    2012-12-01

    As part of the NSF-sponsored 'URGE (Undergraduate Research Group Experiences) to Compute' program, Dr. Matott has been collaborating with talented Math majors to explore the design of cost-effective systems to safeguard groundwater supplies from contaminated sites. Such activity is aided by a combination of groundwater modeling, simulation-based optimization, and high-performance computing - disciplines largely unfamiliar to the students at the outset of the program. To help train and engage the students, a number of interactive and graphical software packages were utilized. Examples include: (1) a tutorial for exploring the behavior of evolutionary algorithms and other heuristic optimizers commonly used in simulation-based optimization; (2) an interactive groundwater modeling package for exploring alternative pump-and-treat containment scenarios at a contaminated site in Billings, Montana; (3) the R software package for visualizing various concepts related to subsurface hydrology; and (4) a job visualization tool for exploring the behavior of numerical experiments run on a large distributed computing cluster. Further engagement and excitement in the program was fostered by entering (and winning) a computer art competition run by the Coalition for Academic Scientific Computation (CASC). The winning submission visualizes an exhaustively mapped optimization cost surface and dramatically illustrates the phenomena of artificial minima - valley locations that correspond to designs whose costs are only partially optimal.

  1. An Object-Oriented Network-Centric Software Architecture for Physical Computing

    NASA Astrophysics Data System (ADS)

    Palmer, Richard

    1997-08-01

    Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.

  2. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  3. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  4. What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root-soil system

    DOE PAGES

    Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...

    2017-05-04

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less

  5. Vertical marginal gap evaluation of conventional cast and computer numeric controlled-milled titanium full-arch implant-supported frameworks.

    PubMed

    Alfadda, Sara A

    2014-01-01

    To use a novel approach to measure the amount of vertical marginal gap in computer numeric controlled (CNC)-milled titanium frameworks and conventional cast frameworks. Ten cast frameworks were fabricated on the mandibular master casts of 10 patients. Then, 10 CNC-milled titanium frameworks were fabricated by laser scanning the cast frameworks. The vertical marginal gap was measured and analyzed using the Contura-G2 coordinate measuring machine and special computer software. The CNC-milled titanium frameworks showed an overall reduced mean vertical gap compared with the cast frameworks in all five analogs. This difference was highly statistically significant in the distal analogs. The largest mean gap in the cast framework was recorded in the most distal analogs, and the least amount was in the middle analog. Neither of the two types of frameworks provided a completely gap-free superstructure. The CNCmilled titanium frameworks showed a significantly smaller vertical marginal gap than the cast frameworks.

  6. Proceedings of the Workshop on software tools for distributed intelligent control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herget, C.J.

    1990-09-01

    The Workshop on Software Tools for Distributed Intelligent Control Systems was organized by Lawrence Livermore National Laboratory for the United States Army Headquarters Training and Doctrine Command and the Defense Advanced Research Projects Agency. The goals of the workshop were to the identify the current state of the art in tools which support control systems engineering design and implementation, identify research issues associated with writing software tools which would provide a design environment to assist engineers in multidisciplinary control design and implementation, formulate a potential investment strategy to resolve the research issues and develop public domain code which can formmore » the core of more powerful engineering design tools, and recommend test cases to focus the software development process and test associated performance metrics. Recognizing that the development of software tools for distributed intelligent control systems will require a multidisciplinary effort, experts in systems engineering, control systems engineering, and compute science were invited to participate in the workshop. In particular, experts who could address the following topics were selected: operating systems, engineering data representation and manipulation, emerging standards for manufacturing data, mathematical foundations, coupling of symbolic and numerical computation, user interface, system identification, system representation at different levels of abstraction, system specification, system design, verification and validation, automatic code generation, and integration of modular, reusable code.« less

  7. Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.

    2016-10-01

    Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.

  8. Infinite possibilities: Computational structures technology

    NASA Astrophysics Data System (ADS)

    Beam, Sherilee F.

    1994-12-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will evolve. By using CST in the design and operation of future structures systems, engineers will have a better understanding of how a system responds and lasts, more cost-effective methods of designing and testing models, and improved productivity. For informational and educational purposes, a videotape is being produced using both static and dynamic images from research institutions, software and hardware companies, private individuals, and historical photographs and drawings. The extensive number of CST resources indicates its widespread use. Applications run the gamut from simpler university-simulated problems to those requiring solutions on supercomputers. In some cases, an image or an animation will be mapped onto the actual structure to show the relevance of the computer model to the structure.

  9. Infinite possibilities: Computational structures technology

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1994-01-01

    Computational Fluid Dynamics (or CFD) methods are very familiar to the research community. Even the general public has had some exposure to CFD images, primarily through the news media. However, very little attention has been paid to CST--Computational Structures Technology. Yet, no important design can be completed without it. During the first half of this century, researchers only dreamed of designing and building structures on a computer. Today their dreams have become practical realities as computational methods are used in all phases of design, fabrication and testing of engineering systems. Increasingly complex structures can now be built in even shorter periods of time. Over the past four decades, computer technology has been developing, and early finite element methods have grown from small in-house programs to numerous commercial software programs. When coupled with advanced computing systems, they help engineers make dramatic leaps in designing and testing concepts. The goals of CST include: predicting how a structure will behave under actual operating conditions; designing and complementing other experiments conducted on a structure; investigating microstructural damage or chaotic, unpredictable behavior; helping material developers in improving material systems; and being a useful tool in design systems optimization and sensitivity techniques. Applying CST to a structure problem requires five steps: (1) observe the specific problem; (2) develop a computational model for numerical simulation; (3) develop and assemble software and hardware for running the codes; (4) post-process and interpret the results; and (5) use the model to analyze and design the actual structure. Researchers in both industry and academia continue to make significant contributions to advance this technology with improvements in software, collaborative computing environments and supercomputing systems. As these environments and systems evolve, computational structures technology will evolve. By using CST in the design and operation of future structures systems, engineers will have a better understanding of how a system responds and lasts, more cost-effective methods of designing and testing models, and improved productivity. For informational and educational purposes, a videotape is being produced using both static and dynamic images from research institutions, software and hardware companies, private individuals, and historical photographs and drawings. The extensive number of CST resources indicates its widespread use. Applications run the gamut from simpler university-simulated problems to those requiring solutions on supercomputers. In some cases, an image or an animation will be mapped onto the actual structure to show the relevance of the computer model to the structure. Transferring the digital files to videotape presents a number of problems related to maintaining the quality of the original image, while still producing a broadcast quality videotape. Since researchers normally do not create a computer image using traditional composition theories or video production requirements, often the image loses some of its original digital quality and impact when transferred to videotape. Although many CST images are currently available, those that are edited into the final project must meet two important criteria: they must complement the narration, and they must be broadcast quality when recorded on videotape.

  10. AN EFFICIENT HIGHER-ORDER FAST MULTIPOLE BOUNDARY ELEMENT SOLUTION FOR POISSON-BOLTZMANN BASED MOLECULAR ELECTROSTATICS

    PubMed Central

    Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander

    2011-01-01

    In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayer, Vidya M.; Miguez, Sheila; Toby, Brian H.

    Scientists have been central to the historical development of the computer industry, but the importance of software only continues to grow for all areas of scientific research and in particular for powder diffraction. Knowing how to program a computer is a basic and useful skill for scientists. The article introduces the three types of programming languages and why scripting languages are now preferred for scientists. Of them, the authors assert Python is the most useful and easiest to learn. Python is introduced. Also presented is an overview to a few of the many add-on packages available to extend the capabilitiesmore » of Python, for example, for numerical computations, scientific graphics and graphical user interface programming.« less

  12. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  13. Analysis of impact of general-purpose graphics processor units in supersonic flow modeling

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.

    2017-06-01

    Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  14. Efficient computation of the joint sample frequency spectra for multiple populations.

    PubMed

    Kamm, John A; Terhorst, Jonathan; Song, Yun S

    2017-01-01

    A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity.

  15. Efficient computation of the joint sample frequency spectra for multiple populations

    PubMed Central

    Kamm, John A.; Terhorst, Jonathan; Song, Yun S.

    2016-01-01

    A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity. PMID:28239248

  16. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).

    PubMed

    Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin

    2015-01-15

    Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  18. Validation of DNA-based identification software by computation of pedigree likelihood ratios.

    PubMed

    Slooten, K

    2011-08-01

    Disaster victim identification (DVI) can be aided by DNA-evidence, by comparing the DNA-profiles of unidentified individuals with those of surviving relatives. The DNA-evidence is used optimally when such a comparison is done by calculating the appropriate likelihood ratios. Though conceptually simple, the calculations can be quite involved, especially with large pedigrees, precise mutation models etc. In this article we describe a series of test cases designed to check if software designed to calculate such likelihood ratios computes them correctly. The cases include both simple and more complicated pedigrees, among which inbred ones. We show how to calculate the likelihood ratio numerically and algebraically, including a general mutation model and possibility of allelic dropout. In Appendix A we show how to derive such algebraic expressions mathematically. We have set up these cases to validate new software, called Bonaparte, which performs pedigree likelihood ratio calculations in a DVI context. Bonaparte has been developed by SNN Nijmegen (The Netherlands) for the Netherlands Forensic Institute (NFI). It is available free of charge for non-commercial purposes (see www.dnadvi.nl for details). Commercial licenses can also be obtained. The software uses Bayesian networks and the junction tree algorithm to perform its calculations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Interstellar journeys in human lifetimes: numerical computations

    NASA Astrophysics Data System (ADS)

    Riggs, Peter J.

    2017-05-01

    Contrary to some contemporary accounts, a spacecraft with low acceleration can reach speeds very close to the speed of light in just a few years. In support of the teaching of special relativity, an easy to use software application has been created which calculates the values for travel times and distances to astronomical objects for such a spacecraft. This spreadsheet application may be conveniently employed as a basis for class exercises.

  20. Multidisciplinary Thermal Analysis of Hot Aerospace Structures

    DTIC Science & Technology

    2010-05-02

    Seidel iteration. Such a strategy simplifies explicit/implicit treatment , subcycling, load balancing, software modularity, and replacements as better... Stefan -Boltzmann constant , E is the emissivity of the surface, f is the form factor from the surface to the reference surface, Br is the temperature of...Stokes equations using Gauss- Seidel line Relaxation, Computers and Fluids, 17, pp.l35-150, 1989. [22] Hung C.M. and MacCormack R.W., Numerical

  1. CDC to CRAY FORTRAN conversion manual

    NASA Technical Reports Server (NTRS)

    Mcgary, C.; Diebert, D.

    1983-01-01

    Documentation describing software differences between two general purpose computers for scientific applications is presented. Descriptions of the use of the FORTRAN and FORTRAN 77 high level programming language on a CDC 7600 under SCOPE and a CRAY XMP under COS are offered. Itemized differences of the FORTRAN language sets of the two machines are also included. The material is accompanied by numerous examples of preferred programming techniques for the two machines.

  2. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  3. Wildlife software: procedures for publication of computer software

    USGS Publications Warehouse

    Samuel, M.D.

    1990-01-01

    Computers and computer software have become an integral part of the practice of wildlife science. Computers now play an important role in teaching, research, and management applications. Because of the specialized nature of wildlife problems, specific computer software is usually required to address a given problem (e.g., home range analysis). This type of software is not usually available from commercial vendors and therefore must be developed by those wildlife professionals with particular skill in computer programming. Current journal publication practices generally prevent a detailed description of computer software associated with new techniques. In addition, peer review of journal articles does not usually include a review of associated computer software. Thus, many wildlife professionals are usually unaware of computer software that would meet their needs or of major improvements in software they commonly use. Indeed most users of wildlife software learn of new programs or important changes only by word of mouth.

  4. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    PubMed Central

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  5. Algorithms and Libraries

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our inquiry into algorithms and applications that would benefit by latency tolerant approach to algorithm building, including the construction of new algorithms where appropriate. In a multithreaded execution, when a processor reaches a point where remote memory access is necessary, the request is sent out on the network and a context--switch occurs to a new thread of computation. This effectively masks a long and unpredictable latency due to remote loads, thereby providing tolerance to remote access latency. We began to develop standards to profile various algorithm and application parameters, such as the degree of parallelism, granularity, precision, instruction set mix, interprocessor communication, latency etc. These tools will continue to develop and evolve as the Information Power Grid environment matures. To provide a richer context for this research, the project also focused on issues of fault-tolerance and computation migration of numerical algorithms and software. During the initial phase we tried to increase our understanding of the bottlenecks in single processor performance. Our work began by developing an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. Based on the results we achieved in this study we are planning to study other architectures of interest, including development of cost models, and developing code generators appropriate to these architectures.

  6. Embedded Web Technology: Internet Technology Applied to Real-Time System Control

    NASA Technical Reports Server (NTRS)

    Daniele, Carl J.

    1998-01-01

    The NASA Lewis Research Center is developing software tools to bridge the gap between the traditionally non-real-time Internet technology and the real-time, embedded-controls environment for space applications. Internet technology has been expanding at a phenomenal rate. The simple World Wide Web browsers (such as earlier versions of Netscape, Mosaic, and Internet Explorer) that resided on personal computers just a few years ago only enabled users to log into and view a remote computer site. With current browsers, users not only view but also interact with remote sites. In addition, the technology now supports numerous computer platforms (PC's, MAC's, and Unix platforms), thereby providing platform independence.In contrast, the development of software to interact with a microprocessor (embedded controller) that is used to monitor and control a space experiment has generally been a unique development effort. For each experiment, a specific graphical user interface (GUI) has been developed. This procedure works well for a single-user environment. However, the interface for the International Space Station (ISS) Fluids and Combustion Facility will have to enable scientists throughout the world and astronauts onboard the ISS, using different computer platforms, to interact with their experiments in the Fluids and Combustion Facility. Developing a specific GUI for all these users would be cost prohibitive. An innovative solution to this requirement, developed at Lewis, is to use Internet technology, where the general problem of platform independence has already been partially solved, and to leverage this expanding technology as new products are developed. This approach led to the development of the Embedded Web Technology (EWT) program at Lewis, which has the potential to significantly reduce software development costs for both flight and ground software.

  7. Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.

    2012-09-01

    Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.

  8. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.; Lytle, John K. (Technical Monitor)

    2002-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT). This paper discusses the salient features of the NPSS Architecture including its interface layer, object layer, implementation for accessing legacy codes, numerical zooming infrastructure and its computing layer. The computing layer focuses on the use and deployment of these propulsion simulations on parallel and distributed computing platforms which has been the focus of NASA Ames. Additional features of the object oriented architecture that support MultiDisciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects will be discussed. Included will be a discussion of the successes, challenges and benefits of implementing this architecture.

  9. Hermite regularization of the lattice Boltzmann method for open source computational aeroacoustics.

    PubMed

    Brogi, F; Malaspinas, O; Chopard, B; Bonadonna, C

    2017-10-01

    The lattice Boltzmann method (LBM) is emerging as a powerful engineering tool for aeroacoustic computations. However, the LBM has been shown to present accuracy and stability issues in the medium-low Mach number range, which is of interest for aeroacoustic applications. Several solutions have been proposed but are often too computationally expensive, do not retain the simplicity and the advantages typical of the LBM, or are not described well enough to be usable by the community due to proprietary software policies. An original regularized collision operator is proposed, based on the expansion of Hermite polynomials, that greatly improves the accuracy and stability of the LBM without significantly altering its algorithm. The regularized LBM can be easily coupled with both non-reflective boundary conditions and a multi-level grid strategy, essential ingredients for aeroacoustic simulations. Excellent agreement was found between this approach and both experimental and numerical data on two different benchmarks: the laminar, unsteady flow past a 2D cylinder and the 3D turbulent jet. Finally, most of the aeroacoustic computations with LBM have been done with commercial software, while here the entire theoretical framework is implemented using an open source library (palabos).

  10. 48 CFR 227.7203-17 - Overseas contracts with foreign sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-17 Overseas contracts with foreign sources. (a) The clause at 252.227-7032, Rights in Technical Data and Computer Software... Noncommercial Computer Software and Noncommercial Computer Software Documentation, when the Government requires...

  11. 48 CFR 227.7203-17 - Overseas contracts with foreign sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-17 Overseas contracts with foreign sources. (a) The clause at 252.227-7032, Rights in Technical Data and Computer Software... Noncommercial Computer Software and Noncommercial Computer Software Documentation, when the Government requires...

  12. 48 CFR 227.7203-17 - Overseas contracts with foreign sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-17 Overseas contracts with foreign sources. (a) The clause at 252.227-7032, Rights in Technical Data and Computer Software... Noncommercial Computer Software and Noncommercial Computer Software Documentation, when the Government requires...

  13. 48 CFR 227.7203-17 - Overseas contracts with foreign sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-17 Overseas contracts with foreign sources. (a) The clause at 252.227-7032, Rights in Technical Data and Computer Software... Noncommercial Computer Software and Noncommercial Computer Software Documentation, when the Government requires...

  14. 48 CFR 227.7203-17 - Overseas contracts with foreign sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-17 Overseas contracts with foreign sources. (a) The clause at 252.227-7032, Rights in Technical Data and Computer Software... Noncommercial Computer Software and Noncommercial Computer Software Documentation, when the Government requires...

  15. Analysis of a hydraulic a scaled asymmetric labyrinth weir with Ansys-Fluent

    NASA Astrophysics Data System (ADS)

    Otálora Carmona, Andrés Humberto; Santos Granados, Germán Ricardo

    2017-04-01

    This document presents the three dimensional computational modeling of a labyrinth weir, using the version 17.0 of the Computational Fluid Dynamics (CFD) software ANSYS - FLUENT. The computational characteristics of the model such as the geometry consideration, the mesh sensitivity, the numerical scheme, and the turbulence modeling parameters. The volume fraction of the water mixture - air, the velocity profile, the jet trajectory, the discharge coefficient and the velocity field are analyzed. With the purpose of evaluating the hydraulic behavior of the labyrinth weir of the Naveta's hydroelectric, in Apulo - Cundinamarca, was development a 1:21 scale model of the original structure, which was tested in the laboratory of the hydraulic studies in the Escuela Colombiana de Ingeniería Julio Garavito. The scale model of the structure was initially developed to determine the variability of the discharge coefficient with respect to the flow rate and their influence on the water level. It was elaborate because the original weir (labyrinth weir with not symmetrical rectangular section), did not have the capacity to work with the design flow of 31 m3/s, because over 15 m3/s, there were overflows in the adduction channel. This variation of efficiency was due to the thickening of the lateral walls by structural requirements. During the physical modeling doing by Rodríguez, H. and Matamoros H. (2015) in the test channel, it was found that, with the increase in the width of the side walls, the discharge coefficient is reduced an average by 34%, generating an increase of the water level by 0.26 m above the structure. This document aims to develop a splicing methodology between the physical models of a labyrinth weir and numerical modeling, using concepts of computational fluid dynamics and finite volume theories. For this, was carried out a detailed analysis of the variations in the different directions of the main hydraulic variables involved in the behavior, such as, the components of the velocity and the distribution of pressures, For the numerical development, we worked with ANSYS - FLUENT software modeling version 17.0. Initially, a digital model of a conventional triangular weir with a vertical angle of 102° was developed in order to find the most appropriate numerical scheme and conditions. The numerical results were compared with conventional theories, evaluating the path and discharge coefficient. Subsequently, one of the five cycles that compose the labyrinth weir was simulated, evaluating the behavior of the discharge coefficient, the water level, the streamline and the velocity field, with the purpose of understanding the hydraulic variables that are related in these geometries. According to the previous results, the numerical modeling of labyrinth weir was performed, comparing the obtained results with the data of the physical scale model, analyzing the variation of the discharge coefficient, the streamline, velocity field, pressure distribution and shear stress. Finally, based on the lessons learned from physical and numerical modeling, a methodological guide was created for any user with a computational and hydraulic fluid mechanics knowledge to develop a good practice of a computational and physical modeling.

  16. Two-Dimensional Quantum Model of a Nanotransistor

    NASA Technical Reports Server (NTRS)

    Govindan, T. R.; Biegel, B.; Svizhenko, A.; Anantram, M. P.

    2009-01-01

    A mathematical model, and software to implement the model, have been devised to enable numerical simulation of the transport of electric charge in, and the resulting electrical performance characteristics of, a nanotransistor [in particular, a metal oxide/semiconductor field-effect transistor (MOSFET) having a channel length of the order of tens of nanometers] in which the overall device geometry, including the doping profiles and the injection of charge from the source, gate, and drain contacts, are approximated as being two-dimensional. The model and software constitute a computational framework for quantitatively exploring such device-physics issues as those of source-drain and gate leakage currents, drain-induced barrier lowering, and threshold voltage shift due to quantization. The model and software can also be used as means of studying the accuracy of quantum corrections to other semiclassical models.

  17. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  18. SiMon: Simulation Monitor for Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  19. A floating-point/multiple-precision processor for airborne applications

    NASA Technical Reports Server (NTRS)

    Yee, R.

    1982-01-01

    A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.

  20. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  1. A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; O'Nualláin, Breanndán; Heggie, Douglas; Lombardi, James; Hut, Piet; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Fuji, Michiko; Gaburov, Evghenii; Glebbeek, Evert; Groen, Derek; Harfst, Stefan; Izzard, Rob; Jurić, Mario; Justham, Stephen; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a "Noah's Ark" milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.

  2. Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; anMey, Dieter; Hatay, Ferhat F.

    2003-01-01

    With the advent of parallel hardware and software technologies users are faced with the challenge to choose a programming paradigm best suited for the underlying computer architecture. With the current trend in parallel computer architectures towards clusters of shared memory symmetric multi-processors (SMP), parallel programming techniques have evolved to support parallelism beyond a single level. Which programming paradigm is the best will depend on the nature of the given problem, the hardware architecture, and the available software. In this study we will compare different programming paradigms for the parallelization of a selected benchmark application on a cluster of SMP nodes. We compare the timings of different implementations of the same CFD benchmark application employing the same numerical algorithm on a cluster of Sun Fire SMP nodes. The rest of the paper is structured as follows: In section 2 we briefly discuss the programming models under consideration. We describe our compute platform in section 3. The different implementations of our benchmark code are described in section 4 and the performance results are presented in section 5. We conclude our study in section 6.

  3. Software Framework for Development of Web-GIS Systems for Analysis of Georeferenced Geophysical Data

    NASA Astrophysics Data System (ADS)

    Okladnikov, I.; Gordov, E. P.; Titov, A. G.

    2011-12-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated software framework for rapid development of providing such support information-computational systems based on Web-GIS technologies has been created. The software framework consists of 3 basic parts: computational kernel developed using ITTVIS Interactive Data Language (IDL), a set of PHP-controllers run within specialized web portal, and JavaScript class library for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology. Computational kernel comprise of number of modules for datasets access, mathematical and statistical data analysis and visualization of results. Specialized web-portal consists of web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript library aiming at graphical user interface development is based on GeoExt library combining ExtJS Framework and OpenLayers software. Based on the software framework an information-computational system for complex analysis of large georeferenced data archives was developed. Structured environmental datasets available for processing now include two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, meteorological observational data for the territory of the former USSR for the 20th century, and others. Current version of the system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The software framework presented allows rapid development of Web-GIS systems for geophysical data analysis thus providing specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. This work is partially supported by RFBR grants #10-07-00547, #11-05-01190, and SB RAS projects 4.31.1.5, 4.31.2.7, 4, 8, 9, 50 and 66.

  4. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang

    Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).

  5. Traumatic eye injuries as a result of blunt impact: computational issues

    NASA Astrophysics Data System (ADS)

    Clemente, C.; Esposito, L.; Bonora, N.; Limido, J.; Lacome, J. L.; Rossi, T.

    2014-05-01

    The detachment or tearing of the retina in the human eye as a result of a collision is a phenomenon that occurs very often. Reliable numerical simulations of eye impact can be very useful tools to understand the physical mechanisms responsible for traumatic eye injuries accompanying blunt impact. The complexity and variability of the physical and mechanical properties of the biological materials, the lack of agreement on their related experimental data as well as the unsuitability of specific numerical codes and models are only some of the difficulties when dealing with this matter. All these challenging issues must be solved to obtain accurate numerical analyses involving dynamic behavior of biological soft tissues. To this purpose, a numerical and experimental investigation of the dynamic response of the eye during an impact event was performed. Numerical simulations were performed with IMPETUS-AFEA, a new general non-linear finite element (FE) software which offers non uniform rational B-splines (NURBS) FE technology for the simulation of large deformation and fracture in materials. IMPETUS code was selected in order to solve hourglass and locking problems typical of nearly incompressible materials like eye tissues. Computational results were compared with the experimental results on fresh enucleated porcine eyes impacted with airsoft pellets.

  6. OMPC: an Open-Source MATLAB®-to-Python Compiler

    PubMed Central

    Jurica, Peter; van Leeuwen, Cees

    2008-01-01

    Free access to scientific information facilitates scientific progress. Open-access scientific journals are a first step in this direction; a further step is to make auxiliary and supplementary materials that accompany scientific publications, such as methodological procedures and data-analysis tools, open and accessible to the scientific community. To this purpose it is instrumental to establish a software base, which will grow toward a comprehensive free and open-source language of technical and scientific computing. Endeavors in this direction are met with an important obstacle. MATLAB®, the predominant computation tool in many fields of research, is a closed-source commercial product. To facilitate the transition to an open computation platform, we propose Open-source MATLAB®-to-Python Compiler (OMPC), a platform that uses syntax adaptation and emulation to allow transparent import of existing MATLAB® functions into Python programs. The imported MATLAB® modules will run independently of MATLAB®, relying on Python's numerical and scientific libraries. Python offers a stable and mature open source platform that, in many respects, surpasses commonly used, expensive commercial closed source packages. The proposed software will therefore facilitate the transparent transition towards a free and general open-source lingua franca for scientific computation, while enabling access to the existing methods and algorithms of technical computing already available in MATLAB®. OMPC is available at http://ompc.juricap.com. PMID:19225577

  7. Radiation breakage of DNA: a model based on random-walk chromatin structure

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Sachs, R. K.

    2001-01-01

    Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic "randomly-located-clusters" formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase.

  8. The effect of balance holes to centrifugal pump performance

    NASA Astrophysics Data System (ADS)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  9. AMRITA -- A computational facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, J.E.; Quirk, J.J.

    1998-02-23

    Amrita is a software system for automating numerical investigations. The system is driven using its own powerful scripting language, Amrita, which facilitates both the composition and archiving of complete numerical investigations, as distinct from isolated computations. Once archived, an Amrita investigation can later be reproduced by any interested party, and not just the original investigator, for no cost other than the raw CPU time needed to parse the archived script. In fact, this entire lecture can be reconstructed in such a fashion. To do this, the script: constructs a number of shock-capturing schemes; runs a series of test problems, generatesmore » the plots shown; outputs the LATEX to typeset the notes; performs a myriad of behind-the-scenes tasks to glue everything together. Thus Amrita has all the characteristics of an operating system and should not be mistaken for a common-or-garden code.« less

  10. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  11. Perspectives in numerical astrophysics:

    NASA Astrophysics Data System (ADS)

    Reverdy, V.

    2016-12-01

    In this discussion paper, we investigate the current and future status of numerical astrophysics and highlight key questions concerning the transition to the exascale era. We first discuss the fact that one of the main motivation behind high performance simulations should not be the reproduction of observational or experimental data, but the understanding of the emergence of complexity from fundamental laws. This motivation is put into perspective regarding the quest for more computational power and we argue that extra computational resources can be used to gain in abstraction. Then, the readiness level of present-day simulation codes in regard to upcoming exascale architecture is examined and two major challenges are raised concerning both the central role of data movement for performances and the growing complexity of codes. Software architecture is finally presented as a key component to make the most of upcoming architectures while solving original physics problems.

  12. The spectral cell method in nonlinear earthquake modeling

    NASA Astrophysics Data System (ADS)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  13. Spectrum response estimation for deep-water floating platforms via retardation function representation

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin

    2017-08-01

    The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.

  14. Simulation of complex pharmacokinetic models in Microsoft Excel.

    PubMed

    Meineke, Ingolf; Brockmöller, Jürgen

    2007-12-01

    With the arrival of powerful personal computers in the office numerical methods are accessible to everybody. Simulation of complex processes therefore has become an indispensible tool in research and education. In this paper Microsoft EXCEL is used as a platform for a universal differential equation solver. The software is designed as an add-in aiming at a minimum of required user input to perform a given task. Four examples are included to demonstrate both, the simplicity of use and the versatility of possible applications. While the layout of the program is admittedly geared to the needs of pharmacokineticists, it can be used in any field where sets of differential equations are involved. The software package is available upon request.

  15. 48 CFR 252.227-7027 - Deferred ordering of technical data or computer software.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technical data or computer software. 252.227-7027 Section 252.227-7027 Federal Acquisition Regulations... data or computer software. As prescribed at 227.7103-8(b), use the following clause: Deferred Ordering of Technical Data or Computer Software (APR 1988) In addition to technical data or computer software...

  16. 48 CFR 252.227-7027 - Deferred ordering of technical data or computer software.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technical data or computer software. 252.227-7027 Section 252.227-7027 Federal Acquisition Regulations... data or computer software. As prescribed at 227.7103-8(b), use the following clause: Deferred Ordering of Technical Data or Computer Software (APR 1988) In addition to technical data or computer software...

  17. 48 CFR 252.227-7027 - Deferred ordering of technical data or computer software.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technical data or computer software. 252.227-7027 Section 252.227-7027 Federal Acquisition Regulations... data or computer software. As prescribed at 227.7103-8(b), use the following clause: Deferred Ordering of Technical Data or Computer Software (APR 1988) In addition to technical data or computer software...

  18. 48 CFR 252.227-7027 - Deferred ordering of technical data or computer software.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technical data or computer software. 252.227-7027 Section 252.227-7027 Federal Acquisition Regulations... data or computer software. As prescribed at 227.7103-8(b), use the following clause: Deferred Ordering of Technical Data or Computer Software (APR 1988) In addition to technical data or computer software...

  19. 48 CFR 252.227-7027 - Deferred ordering of technical data or computer software.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technical data or computer software. 252.227-7027 Section 252.227-7027 Federal Acquisition Regulations... data or computer software. As prescribed at 227.7103-8(b), use the following clause: Deferred Ordering of Technical Data or Computer Software (APR 1988) In addition to technical data or computer software...

  20. 48 CFR 227.7203-1 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-1 Policy. (a) DoD policy is to acquire only the computer software and computer software documentation, and the rights in such software or documentation, necessary...

  1. 48 CFR 227.7203-1 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-1 Policy. (a) DoD policy is to acquire only the computer software and computer software documentation, and the rights in such software or documentation, necessary...

  2. 48 CFR 227.7203-1 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-1 Policy. (a) DoD policy is to acquire only the computer software and computer software documentation, and the rights in such software or documentation, necessary...

  3. 48 CFR 227.7203-1 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-1 Policy. (a) DoD policy is to acquire only the computer software and computer software documentation, and the rights in such software or documentation, necessary...

  4. 48 CFR 227.7203-1 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227.7203-1 Policy. (a) DoD policy is to acquire only the computer software and computer software documentation, and the rights in such software or documentation, necessary...

  5. 48 CFR 227.7205 - Contracts for special works.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Computer Software and Computer Software Documentation 227.7205 Contracts for special works. (a) Use the... a specific need to control the distribution of computer software or computer software documentation..., modification, reproduction, release, performance, display, or disclosure of such software or documentation. Use...

  6. 48 CFR 227.7205 - Contracts for special works.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Computer Software and Computer Software Documentation 227.7205 Contracts for special works. (a) Use the... a specific need to control the distribution of computer software or computer software documentation..., modification, reproduction, release, performance, display, or disclosure of such software or documentation. Use...

  7. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C. A.; Somerville, P.; Jordan, T. H.

    2014-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving geoscientists, earthquake engineers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform (BBP) is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms for a well-observed historical earthquake. Then, the BBP calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, and several new data products, such as map and distance-based goodness of fit plots. As the number and complexity of scenarios simulated using the Broadband Platform increases, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  8. Scilab software package for the study of dynamical systems

    NASA Astrophysics Data System (ADS)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE and Lyapunov exponents calculation.

  9. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    NASA Astrophysics Data System (ADS)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  10. Using the Landlab toolkit to evaluate and compare alternative geomorphic and hydrologic model formulations

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Adams, J. M.; Doty, S. G.; Gasparini, N. M.; Hill, M. C.; Hobley, D. E. J.; Hutton, E.; Istanbulluoglu, E.; Nudurupati, S. S.

    2016-12-01

    Developing a better understanding of catchment hydrology and geomorphology ideally involves quantitative hypothesis testing. Often one seeks to identify the simplest mathematical and/or computational model that accounts for the essential dynamics in the system of interest. Development of alternative hypotheses involves testing and comparing alternative formulations, but the process of comparison and evaluation is made challenging by the rigid nature of many computational models, which are often built around a single assumed set of equations. Here we review a software framework for two-dimensional computational modeling that facilitates the creation, testing, and comparison of surface-dynamics models. Landlab is essentially a Python-language software library. Its gridding module allows for easy generation of a structured (raster, hex) or unstructured (Voronoi-Delaunay) mesh, with the capability to attach data arrays to particular types of element. Landlab includes functions that implement common numerical operations, such as gradient calculation and summation of fluxes within grid cells. Landlab also includes a collection of process components, which are encapsulated pieces of software that implement a numerical calculation of a particular process. Examples include downslope flow routing over topography, shallow-water hydrodynamics, stream erosion, and sediment transport on hillslopes. Individual components share a common grid and data arrays, and they can be coupled through the use of a simple Python script. We illustrate Landlab's capabilities with a case study of Holocene landscape development in the northeastern US, in which we seek to identify a collection of model components that can account for the formation of a series of incised canyons that have that developed since the Laurentide ice sheet last retreated. We compare sets of model ingredients related to (1) catchment hydrologic response, (2) hillslope evolution, and (3) stream channel and gully incision. The case-study example demonstrates the value of exploring multiple working hypotheses, in the form of multiple alternative model components.

  11. Numerical Analysis of Thermo Hydraulic Conditions in Car Fog Lamp

    NASA Astrophysics Data System (ADS)

    Ramšak, M.; Žunič, Z.; Škerget, L.; Jurejevčič, T.

    2009-08-01

    In the article a coupled heat transfer in the solid and fluid inside of a car fog lamp is presented using CFD software CFX [1]. All three basic principles of heat transfer are dealt with: conduction, convection and radiation. Two different approaches to radiation modeling are compared. Laminar and turbulent flow modeling are compared since computed Rayleight number indicates transitional flow regime. Results are in good agreement with the measurements.

  12. An Artificial Neural Networks Method for Solving Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2010-09-01

    While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.

  13. Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes

    NASA Astrophysics Data System (ADS)

    Piro, Markus Hans Alexander

    Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system components at each iterative step, and the objective is to minimize the residuals of the mass balance equations. Several numerical advantages are achieved through this simplification. In particular, computational expense is reduced and the rate of convergence is enhanced. Furthermore, the software has demonstrated the ability to solve systems involving as many as 118 component elements. An early version of the code has already been integrated into the Advanced Multi-Physics (AMP) code under development by the Oak Ridge National Laboratory, Los Alamos National Laboratory, Idaho National Laboratory and Argonne National Laboratory. Keywords: Engineering, Nuclear -- 0552, Engineering, Material Science -- 0794, Chemistry, Mathematics -- 0405, Computer Science -- 0984

  14. Development of the Software for 30 inch Telescope Control System at KHAO

    NASA Astrophysics Data System (ADS)

    Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.

    2006-12-01

    Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).

  15. Shifter: Containers for HPC

    NASA Astrophysics Data System (ADS)

    Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho

    2017-10-01

    Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.

  16. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  17. Numerical simulation of the Earth satellites motion using parallel computing. accounting of weak disturbances. (Russian Title: Прогнозирование движения ИСЗ с использованием параллельных вычислений. учет слабых возмущений)

    NASA Astrophysics Data System (ADS)

    Chuvashov, I. N.

    2010-12-01

    The features of high-precision numerical simulation of the Earth satellite motion using parallel computing are discussed on example the implementation of the cluster "Skiff Cyberia" software complex "Numerical model of the motion of system satellites". It is shown that the use of 128 bit word length allows considering weak perturbations from the high-order harmonics in the expansion of the geopotential and the effect of strain geopotential harmonics arising due to the combination of tidal perturbations associated with exposure to the moon and sun on the solid Earth and its oceans.

  18. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    NASA Technical Reports Server (NTRS)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  19. 48 CFR 227.7203-6 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Software and Computer Software Documentation 227.7203-6 Contract clauses. (a)(1) Use the clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software Documentation, in solicitations and contracts when the successful offeror(s) will be required to deliver computer software or...

  20. 48 CFR 227.7203-6 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Software and Computer Software Documentation 227.7203-6 Contract clauses. (a)(1) Use the clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software Documentation, in solicitations and contracts when the successful offeror(s) will be required to deliver computer software or...

  1. 48 CFR 227.7203-6 - Contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Software and Computer Software Documentation 227.7203-6 Contract clauses. (a)(1) Use the clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software Documentation, in solicitations and contracts when the successful offeror(s) will be required to deliver computer software or...

  2. 48 CFR 227.7203-6 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Software and Computer Software Documentation 227.7203-6 Contract clauses. (a)(1) Use the clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software Documentation, in solicitations and contracts when the successful offeror(s) will be required to deliver computer software or...

  3. 48 CFR 227.7203-6 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Software and Computer Software Documentation 227.7203-6 Contract clauses. (a)(1) Use the clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software Documentation, in solicitations and contracts when the successful offeror(s) will be required to deliver computer software or...

  4. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  5. APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane

    PubMed Central

    Callenberg, Keith M.; Choudhary, Om P.; de Forest, Gabriel L.; Gohara, David W.; Baker, Nathan A.; Grabe, Michael

    2010-01-01

    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated. PMID:20949122

  6. APBSmem: a graphical interface for electrostatic calculations at the membrane.

    PubMed

    Callenberg, Keith M; Choudhary, Om P; de Forest, Gabriel L; Gohara, David W; Baker, Nathan A; Grabe, Michael

    2010-09-29

    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.

  7. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  8. 48 CFR 52.227-14 - Rights in Data-General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... software. Computer software—(1) Means (i) Computer programs that comprise a series of instructions, rules... or computer software documentation. Computer software documentation means owner's manuals, user's... medium, that explain the capabilities of the computer software or provide instructions for using the...

  9. 48 CFR 227.7203-9 - Copyright.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Software and Computer Software Documentation 227.7203-9 Copyright. (a) Copyright license. (1) The clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software... Government to reproduce the software or documentation, distribute copies, perform or display the software or...

  10. 48 CFR 227.7203-9 - Copyright.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Software and Computer Software Documentation 227.7203-9 Copyright. (a) Copyright license. (1) The clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software... Government to reproduce the software or documentation, distribute copies, perform or display the software or...

  11. 48 CFR 227.7203-9 - Copyright.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Software and Computer Software Documentation 227.7203-9 Copyright. (a) Copyright license. (1) The clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software... Government to reproduce the software or documentation, distribute copies, perform or display the software or...

  12. 48 CFR 227.7203-9 - Copyright.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Software and Computer Software Documentation 227.7203-9 Copyright. (a) Copyright license. (1) The clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software... Government to reproduce the software or documentation, distribute copies, perform or display the software or...

  13. 48 CFR 227.7203-9 - Copyright.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Software and Computer Software Documentation 227.7203-9 Copyright. (a) Copyright license. (1) The clause at 252.227-7014, Rights in Noncommercial Computer Software and Noncommercial Computer Software... Government to reproduce the software or documentation, distribute copies, perform or display the software or...

  14. seismo-live: Training in Computational Seismology using Jupyter Notebooks

    NASA Astrophysics Data System (ADS)

    Igel, H.; Krischer, L.; van Driel, M.; Tape, C.

    2016-12-01

    Practical training in computational methodologies is still underrepresented in Earth science curriculae despite the increasing use of sometimes highly sophisticated simulation technologies in research projects. At the same time well-engineered community codes make it easy to return simulation-based results yet with the danger that the inherent traps of numerical solutions are not well understood. It is our belief that training with highly simplified numerical solutions (here to the equations describing elastic wave propagation) with carefully chosen elementary ingredients of simulation technologies (e.g., finite-differencing, function interpolation, spectral derivatives, numerical integration) could substantially improve this situation. For this purpose we have initiated a community platform (www.seismo-live.org) where Python-based Jupyter notebooks can be accessed and run without and necessary downloads or local software installations. The increasingly popular Jupyter notebooks allow combining markup language, graphics, equations with interactive, executable python codes. We demonstrate the potential with training notebooks for the finite-difference method, pseudospectral methods, finite/spectral element methods, the finite-volume and the discontinuous Galerkin method. The platform already includes general Python training, introduction to the ObsPy library for seismology as well as seismic data processing and noise analysis. Submission of Jupyter notebooks for general seismology are encouraged. The platform can be used for complementary teaching in Earth Science courses on compute-intensive research areas.

  15. Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.

    2017-01-01

    A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.

  16. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.

  17. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  18. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  19. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  20. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  1. 48 CFR 227.7203-13 - Government right to review, verify, challenge and validate asserted restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Computer Software and Computer Software Documentation 227..., reproduce, release, or disclose computer software or computer software documentation do not, by themselves, determine the extent of the Government's rights in such software or documentation. The Government may...

  2. Integrated design optimization research and development in an industrial environment

    NASA Astrophysics Data System (ADS)

    Kumar, V.; German, Marjorie D.; Lee, S.-J.

    1989-04-01

    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.

  3. Integrated design optimization research and development in an industrial environment

    NASA Technical Reports Server (NTRS)

    Kumar, V.; German, Marjorie D.; Lee, S.-J.

    1989-01-01

    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.

  4. Simulating three dimensional wave run-up over breakwaters covered by antifer units

    NASA Astrophysics Data System (ADS)

    Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader

    2014-06-01

    The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

  5. Computer program documentation for the dynamic analysis of a noncontacting mechanical face seal

    NASA Technical Reports Server (NTRS)

    Auer, B. M.; Etsion, I.

    1980-01-01

    A computer program is presented which achieves a numerical solution for the equations of motion of a noncontacting mechanical face seal. The flexibly-mounted primary seal ring motion is expressed by a set of second order differential equations for three degrees of freedom. These equations are reduced to a set of first order equations and the GEAR software package is used to solve the set of first order equations. Program input includes seal design parameters and seal operating conditions. Output from the program includes velocities and displacements of the seal ring about the axis of an inertial reference system. One example problem is described.

  6. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  7. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  8. A constitutive model and numerical simulation of sintering processes at macroscopic level

    NASA Astrophysics Data System (ADS)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  9. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  10. Computer software.

    PubMed

    Rosenthal, L E

    1986-10-01

    Software is the component in a computer system that permits the hardware to perform the various functions that a computer system is capable of doing. The history of software and its development can be traced to the early nineteenth century. All computer systems are designed to utilize the "stored program concept" as first developed by Charles Babbage in the 1850s. The concept was lost until the mid-1940s, when modern computers made their appearance. Today, because of the complex and myriad tasks that a computer system can perform, there has been a differentiation of types of software. There is software designed to perform specific business applications. There is software that controls the overall operation of a computer system. And there is software that is designed to carry out specialized tasks. Regardless of types, software is the most critical component of any computer system. Without it, all one has is a collection of circuits, transistors, and silicone chips.

  11. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  12. Simulation of Quantum Many-Body Dynamics for Generic Strongly-Interacting Systems

    NASA Astrophysics Data System (ADS)

    Meyer, Gregory; Machado, Francisco; Yao, Norman

    2017-04-01

    Recent experimental advances have enabled the bottom-up assembly of complex, strongly interacting quantum many-body systems from individual atoms, ions, molecules and photons. These advances open the door to studying dynamics in isolated quantum systems as well as the possibility of realizing novel out-of-equilibrium phases of matter. Numerical studies provide insight into these systems; however, computational time and memory usage limit common numerical methods such as exact diagonalization to relatively small Hilbert spaces of dimension 215 . Here we present progress toward a new software package for dynamical time evolution of large generic quantum systems on massively parallel computing architectures. By projecting large sparse Hamiltonians into a much smaller Krylov subspace, we are able to compute the evolution of strongly interacting systems with Hilbert space dimension nearing 230. We discuss and benchmark different design implementations, such as matrix-free methods and GPU based calculations, using both pre-thermal time crystals and the Sachdev-Ye-Kitaev model as examples. We also include a simple symbolic language to describe generic Hamiltonians, allowing simulation of diverse quantum systems without any modification of the underlying C and Fortran code.

  13. Profugus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Thomas; Hamilton, Steven; Slattery, Stuart

    Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less

  14. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

    PubMed Central

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-01-01

    Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367

  15. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  16. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    PubMed

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-06-15

    The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.

  17. Leveraging e-Science infrastructure for electrochemical research.

    PubMed

    Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F

    2011-08-28

    As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.

  18. WetNet: Using SSM/I data interactively for global distribution of tropical rainfall and precipitable water

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Mcguirk, James P.

    1993-01-01

    The research objectives were the following: (1) to use SSM/I to categorize, measure, and parameterize effects of rainfall systems around the globe, especially mesoscale convective systems; (2) to use SSM/I to monitor key components of the global hydrologic cycle, including tropical rainfall and precipitable water, and links to increasing sea surface temperatures; and (3) to assist in the development of efficient methods of exchange of massive satellite data bases and of analysis techniques, especially their use at a university. Numerous tasks have been initiated. First and foremost has been the integration and startup of the WetNet computer system into the TAMU computer network. Scientific activity was infeasible before completion of this activity. Final hardware delivery was not completed until October 1991, after which followed a period of identification and solution of several hardware and software and software problems. Accomplishments representing approximately four months work with the WetNEt system are presented.

  19. HolT Hunter: Software for Identifying and Characterizing Low-Strain DNA Holliday Triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman W. B.

    2012-06-05

    Synthetic DNA nanostructures are most commonly held together via Holliday junctions. These junctions allow for a wide variety of different angles between the double helices they connect. Nevertheless, only constructs with a very limited selection of angles have been built, to date, because of the computational complexity of identifying structures that fit together with low strain at odd angles. I have developed an algorithm that finds over 95% of the possible solutions by breaking the problem down into two portions. First, there is a problem of how smooth rods can form triangles by lying across one another. This problem ismore » easily handled by numerical computation. Second, there is the question of how distorted DNA double helices would need to be to fit onto the rod structure. This strain is calculated directly. The algorithm has been implemented in a Mathematica 8 notebook called Holliday Triangle Hunter. A large database of solutions has been identified. Additional interface software is available to facilitate drawing and viewing models.« less

  20. The design and implementation of a parallel unstructured Euler solver using software primitives

    NASA Technical Reports Server (NTRS)

    Das, R.; Mavriplis, D. J.; Saltz, J.; Gupta, S.; Ponnusamy, R.

    1992-01-01

    This paper is concerned with the implementation of a three-dimensional unstructured grid Euler-solver on massively parallel distributed-memory computer architectures. The goal is to minimize solution time by achieving high computational rates with a numerically efficient algorithm. An unstructured multigrid algorithm with an edge-based data structure has been adopted, and a number of optimizations have been devised and implemented in order to accelerate the parallel communication rates. The implementation is carried out by creating a set of software tools, which provide an interface between the parallelization issues and the sequential code, while providing a basis for future automatic run-time compilation support. Large practical unstructured grid problems are solved on the Intel iPSC/860 hypercube and Intel Touchstone Delta machine. The quantitative effect of the various optimizations are demonstrated, and we show that the combined effect of these optimizations leads to roughly a factor of three performance improvement. The overall solution efficiency is compared with that obtained on the CRAY-YMP vector supercomputer.

Top