Sample records for numerical control

  1. An Introduction to Numerical Control. Problems for Numerical Control Part Programming.

    ERIC Educational Resources Information Center

    Campbell, Clifton P.

    This combination text and workbook is intended to introduce industrial arts students to numerical control part programming. Discussed in the first section are the impact of numerical control, training efforts, numerical control in established programs, related information for drafting, and the Cartesian Coordinate System and dimensioning…

  2. Machine Shop. Module 8: CNC (Computerized Numerical Control). Instructor's Guide.

    ERIC Educational Resources Information Center

    Crosswhite, Dwight

    This document consists of materials for a five-unit course on the following topics: (1) safety guidelines; (2) coordinates and dimensions; (3) numerical control math; (4) programming for numerical control machines; and (5) setting and operating the numerical control machine. The instructor's guide begins with a list of competencies covered in the…

  3. An Experimental Comparison of Two Methods Of Teaching Numerical Control Manual Programming Concepts; Visual Media Versus Hands-On Equipment.

    ERIC Educational Resources Information Center

    Biekert, Russell

    Accompanying the rapid changes in technology has been a greater dependence on automation and numerical control, which has resulted in the need to find ways of preparing programers for industrial machines using numerical control. To compare the hands-on equipment method and a visual media method of teaching numerical control, an experimental and a…

  4. The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement.

    PubMed

    Starr, Ariel; DeWind, Nicholas K; Brannon, Elizabeth M

    2017-11-01

    Numerical acuity, frequently measured by a Weber fraction derived from nonsymbolic numerical comparison judgments, has been shown to be predictive of mathematical ability. However, recent findings suggest that stimulus controls in these tasks are often insufficiently implemented, and the proposal has been made that alternative visual features or inhibitory control capacities may actually explain this relation. Here, we use a novel mathematical algorithm to parse the relative influence of numerosity from other visual features in nonsymbolic numerical discrimination and to examine the strength of the relations between each of these variables, including inhibitory control, and mathematical ability. We examined these questions developmentally by testing 4-year-old children, 6-year-old children, and adults with a nonsymbolic numerical comparison task, a symbolic math assessment, and a test of inhibitory control. We found that the influence of non-numerical features decreased significantly over development but that numerosity was a primary determinate of decision making at all ages. In addition, numerical acuity was a stronger predictor of math achievement than either non-numerical bias or inhibitory control in children. These results suggest that the ability to selectively attend to number contributes to the maturation of the number sense and that numerical acuity, independent of inhibitory control, contributes to math achievement in early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  6. Computerized Numerical Control Curriculum Guide.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide is intended for use in a course in programming and operating a computerized numerical control system. Addressed in the course are various aspects of programming and planning, setting up, and operating machines with computerized numerical control, including selecting manual or computer-assigned programs and matching them with…

  7. Computer Numerical Control: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Sinn, John W.

    This instructional manual contains five learning activity packets for use in a workshop on computer numerical control for computer-aided manufacturing. The lessons cover the following topics: introduction to computer-aided manufacturing, understanding the lathe, using the computer, computer numerically controlled part programming, and executing a…

  8. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  9. Neural computing for numeric-to-symbolic conversion in control systems

    NASA Technical Reports Server (NTRS)

    Passino, Kevin M.; Sartori, Michael A.; Antsaklis, Panos J.

    1989-01-01

    A type of neural network, the multilayer perceptron, is used to classify numeric data and assign appropriate symbols to various classes. This numeric-to-symbolic conversion results in a type of information extraction, which is similar to what is called data reduction in pattern recognition. The use of the neural network as a numeric-to-symbolic converter is introduced, its application in autonomous control is discussed, and several applications are studied. The perceptron is used as a numeric-to-symbolic converter for a discrete-event system controller supervising a continuous variable dynamic system. It is also shown how the perceptron can implement fault trees, which provide useful information (alarms) in a biological system and information for failure diagnosis and control purposes in an aircraft example.

  10. Technical Report on Occupations in Numerically Controlled Metal-Cutting Machining.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Employment Service.

    At the present time, only 5 percent of the short-run metal-cutting machining in the United States is done by numerically controlled machined tools, but within the next decade it is expected to increase by 50 percent. Numerically controlled machines use taped data which is changed into instructions and directs the machine to do certain steps…

  11. Professional mathematicians differ from controls in their spatial-numerical associations.

    PubMed

    Cipora, Krzysztof; Hohol, Mateusz; Nuerk, Hans-Christoph; Willmes, Klaus; Brożek, Bartosz; Kucharzyk, Bartłomiej; Nęcka, Edward

    2016-07-01

    While mathematically impaired individuals have been shown to have deficits in all kinds of basic numerical representations, among them spatial-numerical associations, little is known about individuals with exceptionally high math expertise. They might have a more abstract magnitude representation or more flexible spatial associations, so that no automatic left/small and right/large spatial-numerical association is elicited. To pursue this question, we examined the Spatial Numerical Association of Response Codes (SNARC) effect in professional mathematicians which was compared to two control groups: Professionals who use advanced math in their work but are not mathematicians (mostly engineers), and matched controls. Contrarily to both control groups, Mathematicians did not reveal a SNARC effect. The group differences could not be accounted for by differences in mean response speed, response variance or intelligence or a general tendency not to show spatial-numerical associations. We propose that professional mathematicians possess more abstract and/or spatially very flexible numerical representations and therefore do not exhibit or do have a largely reduced default left-to-right spatial-numerical orientation as indexed by the SNARC effect, but we also discuss other possible accounts. We argue that this comparison with professional mathematicians also tells us about the nature of spatial-numerical associations in persons with much less mathematical expertise or knowledge.

  12. Learning Model and Form of Assesment toward the Inferensial Statistical Achievement by Controlling Numeric Thinking Skills

    ERIC Educational Resources Information Center

    Widiana, I. Wayan; Jampel, I. Nyoman

    2016-01-01

    This study aimed to find out the effect of learning model and form of assessment toward inferential statistical achievement after controlling numeric thinking skills. This study was quasi experimental study with 130 students as the sample. The data analysis used ANCOVA. After controlling numeric thinking skills, the result of this study show that:…

  13. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  14. Advanced rotorcraft control using parameter optimization

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.

  15. SEMTAP (Serpentine End Match TApe program): The Easy Way to Program Your Numerically Controlled Router for the Production of SEM Joints

    Treesearch

    Ronald E. Coleman

    1977-01-01

    SEMTAP (Serpentine End Match TApe Program) is an easy and inexpensive method of programing a numerically controlled router for the manufacture of SEM (Serpentine End Matching) joints. The SEMTAP computer program allows the user to issue commands that will accurately direct a numerically controlled router along any SEM path. The user need not be a computer programer to...

  16. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    PubMed

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  17. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime.

    PubMed

    Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus

    2018-06-07

    Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.

  18. Numerical optimization methods for controlled systems with parameters

    NASA Astrophysics Data System (ADS)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  19. Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as an example

    PubMed Central

    Tu, Jia-Ying; Hsiao, Wei-De; Chen, Chih-Ying

    2014-01-01

    Testing techniques of dynamically substructured systems dissects an entire engineering system into parts. Components can be tested via numerical simulation or physical experiments and run synchronously. Additional actuator systems, which interface numerical and physical parts, are required within the physical substructure. A high-quality controller, which is designed to cancel unwanted dynamics introduced by the actuators, is important in order to synchronize the numerical and physical outputs and ensure successful tests. An adaptive forward prediction (AFP) algorithm based on delay compensation concepts has been proposed to deal with substructuring control issues. Although the settling performance and numerical conditions of the AFP controller are improved using new direct-compensation and singular value decomposition methods, the experimental results show that a linear dynamics-based controller still outperforms the AFP controller. Based on experimental observations, the least-squares fitting technique, effectiveness of the AFP compensation and differences between delay and ordinary differential equations are discussed herein, in order to reflect the fundamental issues of actuator modelling in relevant literature and, more specifically, to show that the actuator and numerical substructure are heterogeneous dynamic components and should not be collectively modelled as a homogeneous delay differential equation. PMID:25104902

  20. Numerical research of the optimal control problem in the semi-Markov inventory model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  1. Value-Engineering Review for Numerical Control

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  2. Numerical solutions of a control problem governed by functional differential equations

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Thrift, P. R.; Burns, J. A.; Cliff, E. M.

    1978-01-01

    A numerical procedure is proposed for solving optimal control problems governed by linear retarded functional differential equations. The procedure is based on the idea of 'averaging approximations', due to Banks and Burns (1975). For illustration, numerical results generated on an IBM 370/158 computer, which demonstrate the rapid convergence of the method are presented.

  3. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    ERIC Educational Resources Information Center

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  4. A study of numerical methods of solution of the equations of motion of a controlled satellite under the influence of gravity gradient torque

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.

    1973-01-01

    Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.

  5. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale; Pesenti, Mauro; Dormal, Valérie

    2017-09-01

    Numerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes. To assess whether or not the processing of non-numerical magnitudes is impaired in DD, the performance of 15 adults with DD and 15 control participants was compared in four categorization tasks using numerosities, lengths, durations, and faces (as non-magnitude-based control stimuli). Results showed that adults with DD were impaired in processing numerosity and duration, while their performance in length and face categorization did not differ from controls' performance. Our findings support the idea of a nonsymbolic magnitude deficit in DD, affecting numerosity and duration processing but not length processing.

  6. Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2

    DTIC Science & Technology

    1988-04-01

    instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens

  7. Study report on guidelines and test procedures for investigating stability of nonlinear cardiovascular control system models

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    A general study of the stability of nonlinear as compared to linear control systems is presented. The analysis is general and, therefore, applies to other types of nonlinear biological control systems as well as the cardiovascular control system models. Both inherent and numerical stability are discussed for corresponding analytical and graphic methods and numerical methods.

  8. Numerical processing efficiency improved in children using mental abacus: ERP evidence utilizing a numerical Stroop task

    PubMed Central

    Yao, Yuan; Du, Fenglei; Wang, Chunjie; Liu, Yuqiu; Weng, Jian; Chen, Feiyan

    2015-01-01

    This study examined whether long-term abacus-based mental calculation (AMC) training improved numerical processing efficiency and at what stage of information processing the effect appeard. Thirty-three children participated in the study and were randomly assigned to two groups at primary school entry, matched for age, gender and IQ. All children went through the same curriculum except that the abacus group received a 2-h/per week AMC training, while the control group did traditional numerical practice for a similar amount of time. After a 2-year training, they were tested with a numerical Stroop task. Electroencephalographic (EEG) and event related potential (ERP) recording techniques were used to monitor the temporal dynamics during the task. Children were required to determine the numerical magnitude (NC) (NC task) or the physical size (PC task) of two numbers presented simultaneously. In the NC task, the AMC group showed faster response times but similar accuracy compared to the control group. In the PC task, the two groups exhibited the same speed and accuracy. The saliency of numerical information relative to physical information was greater in AMC group. With regards to ERP results, the AMC group displayed congruity effects both in the earlier (N1) and later (N2 and LPC (late positive component) time domain, while the control group only displayed congruity effects for LPC. In the left parietal region, LPC amplitudes were larger for the AMC than the control group. Individual differences for LPC amplitudes over left parietal area showed a positive correlation with RTs in the NC task in both congruent and neutral conditions. After controlling for the N2 amplitude, this correlation also became significant in the incongruent condition. Our results suggest that AMC training can strengthen the relationship between symbolic representation and numerical magnitude so that numerical information processing becomes quicker and automatic in AMC children. PMID:26042012

  9. Neighboring extremal optimal control design including model mismatch errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T.J.; Hull, D.G.

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  10. Confessions of a robot lobotomist

    NASA Technical Reports Server (NTRS)

    Gottshall, R. Marc

    1994-01-01

    Since its inception, numerically controlled (NC) machining methods have been used throughout the aerospace industry to mill, drill, and turn complex shapes by sequentially stepping through motion programs. However, the recent demand for more precision, faster feeds, exotic sensors, and branching execution have existing computer numerical control (CNC) and distributed numerical control (DNC) systems running at maximum controller capacity. Typical disadvantages of current CNC's include fixed memory capacities, limited communication ports, and the use of multiple control languages. The need to tailor CNC's to meet specific applications, whether it be expanded memory, additional communications, or integrated vision, often requires replacing the original controller supplied with the commercial machine tool with a more powerful and capable system. This paper briefly describes the process and equipment requirements for new controllers and their evolutionary implementation in an aerospace environment. The process of controller retrofit with currently available machines is examined, along with several case studies and their computational and architectural implications.

  11. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  12. Intentional and automatic numerical processing as predictors of mathematical abilities in primary school children

    PubMed Central

    Pina, Violeta; Castillo, Alejandro; Cohen Kadosh, Roi; Fuentes, Luis J.

    2015-01-01

    Previous studies have suggested that numerical processing relates to mathematical performance, but it seems that such relationship is more evident for intentional than for automatic numerical processing. In the present study we assessed the relationship between the two types of numerical processing and specific mathematical abilities in a sample of 109 children in grades 1–6. Participants were tested in an ample range of mathematical tests and also performed both a numerical and a size comparison task. The results showed that numerical processing related to mathematical performance only when inhibitory control was involved in the comparison tasks. Concretely, we found that intentional numerical processing, as indexed by the numerical distance effect in the numerical comparison task, was related to mathematical reasoning skills only when the task-irrelevant dimension (the physical size) was incongruent; whereas automatic numerical processing, indexed by the congruency effect in the size comparison task, was related to mathematical calculation skills only when digits were separated by small distance. The observed double dissociation highlights the relevance of both intentional and automatic numerical processing in mathematical skills, but when inhibitory control is also involved. PMID:25873909

  13. A control problem for Burgers' equation with bounded input/output

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Kang, Sungkwon

    1990-01-01

    A stabilization problem for Burgers' equation is considered. Using linearization, various controllers are constructed which minimize certain weighted energy functionals. These controllers produce the desired degree of stability for the closed-loop nonlinear system. A numerical scheme for computing the feedback gain functional is developed and several numerical experiments are performed to show the theoretical results.

  14. Residual number processing in dyscalculia☆

    PubMed Central

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008

  15. Residual number processing in dyscalculia.

    PubMed

    Cappelletti, Marinella; Price, Cathy J

    2014-01-01

    Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  16. Numerical natural rubber curing simulation, obtaining a controlled gradient of the state of cure in a thick-section part

    NASA Astrophysics Data System (ADS)

    El Labban, A.; Mousseau, P.; Bailleul, J. L.; Deterre, R.

    2007-04-01

    Although numerical simulation has proved to be a useful tool to predict the rubber vulcanization process, few applications in the process control have been reported. Because the end-use rubber properties depend on the state of cure distribution in the parts thickness, the prediction of the optimal distribution remains a challenge for the rubber industry. The analysis of the vulcanization process requires the determination of the thermal behavior of the material and the cure kinetics. A nonisothermal vulcanization model with nonisothermal induction time is used in this numerical study. Numerical results are obtained for natural rubber (NR) thick-section part curing. A controlled gradient of the state of cure in the part thickness is obtained by a curing process that consists not only in mold heating phase, but also a forced convection mold cooling phase in order to stop the vulcanization process and to control the vulcanization distribution. The mold design that allows this control is described. In the heating phase, the state of cure is mainly controlled by the chemical kinetics (the induction time), but in the cooling phase, it is the heat diffusion that controls the state of cure distribution. A comparison among different cooling conditions is shown and a good state of cure gradient control is obtained.

  17. Phase Control in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  18. Designing Adaptive Low Dissipative High Order Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)

    2002-01-01

    Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.

  19. Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2005-01-01

    The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.

  20. Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Guden, Yigitcan

    2014-11-01

    Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.

  1. Numerical Modeling of Cavitating Venturi: A Flow Control Element of Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Saxon, Jeff (Technical Monitor)

    2002-01-01

    In a propulsion system, the propellant flow and mixture ratio could be controlled either by variable area flow control valves or by passive flow control elements such as cavitating venturies. Cavitating venturies maintain constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressures, thereby maintain constant, engine thrust and mixture ratio. The flowrate through the venturi reaches a constant value and becomes independent of outlet pressure when the pressure at throat becomes equal to vapor pressure. In order to develop a numerical model of propulsion system, it is necessary to model cavitating venturies in propellant feed systems. This paper presents a finite volume model of flow network of a cavitating venturi. The venturi was discretized into a number of control volumes and mass, momentum and energy conservation equations in each control volume are simultaneously solved to calculate one-dimensional pressure, density, and flowrate and temperature distribution. The numerical model predicts cavitations at the throat when outlet pressure was gradually reduced. Once cavitation starts, with further reduction of downstream pressure, no change in flowrate is found. The numerical predictions have been compared with test data and empirical equation based on Bernoulli's equation.

  2. Novel Numerical Methods for Optimal Control Problems Involving Fractional-Order Differential Equations

    DTIC Science & Technology

    2018-03-14

    pricing, Appl. Math . Comp. Vol.305, 174-187 (2017) 5. W. Li, S. Wang, Pricing European options with proportional transaction costs and stochastic...for fractional differential equation. Numer. Math . Theor. Methods Appl. 5, 229–241, 2012. [23] Kilbas A.A. and Marzan, S.A., Cauchy problem for...numerical technique for solving fractional optimal control problems, Comput. Math . Appl., 62, Issue 3, 1055–1067, 2011. [26] Lotfi A., Yousefi SA., Dehghan M

  3. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers

    PubMed Central

    Thompson, Clarissa A.; Opfer, John E.

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688

  4. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  5. Effect of correlations on controllability transition in network control

    PubMed Central

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-01-01

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294

  6. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  7. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  8. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  9. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  10. A History of Computer Numerical Control.

    ERIC Educational Resources Information Center

    Haggen, Gilbert L.

    Computer numerical control (CNC) has evolved from the first significant counting method--the abacus. Babbage had perhaps the greatest impact on the development of modern day computers with his analytical engine. Hollerith's functioning machine with punched cards was used in tabulating the 1890 U.S. Census. In order for computers to become a…

  11. Computerized Numerical Control Test Item Bank.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This guide contains 285 test items for use in teaching a course in computerized numerical control. All test items were reviewed, revised, and validated by incumbent workers and subject matter instructors. Items are provided for assessing student achievement in such aspects of programming and planning, setting up, and operating machines with…

  12. Multiaxis Computer Numerical Control Internship Report

    ERIC Educational Resources Information Center

    Rouse, Sharon M.

    2012-01-01

    (Purpose) The purpose of this paper was to examine the issues associated with bringing new technology into the classroom, in particular, the vocational/technical classroom. (Methodology) A new Haas 5 axis vertical Computer Numerical Control machining center was purchased to update the CNC machining curriculum at a community college and the process…

  13. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  14. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  15. Factorization and reduction methods for optimal control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Powers, R. K.

    1985-01-01

    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.

  16. Active Control of Flow Separation Over an Airfoil

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  17. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1994-01-01

    The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.

  18. Solving a Local Boundary Value Problem for a Nonlinear Nonstationary System in the Class of Feedback Controls

    NASA Astrophysics Data System (ADS)

    Kvitko, A. N.

    2018-01-01

    An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.

  19. Selected aspects of microelectronics technology and applications: Numerically controlled machine tools. Technology trends series no. 2

    NASA Astrophysics Data System (ADS)

    Sigurdson, J.; Tagerud, J.

    1986-05-01

    A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.

  20. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  1. The Numerical Calculation and Experimental Measurement of the Inductance Parameters for Permanent Magnet Synchronous Motor in Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Qiao, Mingzhong; Zhu, Peng

    2017-12-01

    A permanent magnet synchronous motor with radial magnetic circuit and built-in permanent magnet is designed for the electric vehicle. Finite element numerical calculation and experimental measurement are adopted to obtain the direct axis and quadrature axis inductance parameters of the motor which are vital important for the motor control. The calculation method is simple, the measuring principle is clear, the results of numerical calculation and experimental measurement are mutual confirmation. A quick and effective method is provided to obtain the direct axis and quadrature axis inductance parameters of the motor, and then improve the design of motor or adjust the control parameters of the motor controller.

  2. Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson's blowflies equation.

    PubMed

    Wang, Yuanyuan; Wang, Lisha

    In this article, for delayed Nicholson's blowflies equation, we propose a hybrid control nonstandard finite-difference (NSFD) scheme in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. Firstly, the local stability of the positive equilibria for hybrid control delay differential equation is discussed according to Hopf bifurcation theory. Then, for any step-size, a hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired point. Finally, numerical simulation results confirm that the control strategy is efficient in controlling the Neimark-Sacker bifurcation. At the same time, the results show that the NSFD control scheme is better than the Euler control method.

  3. A stochastic regulator for integrated communication and control systems. I - Formulation of control law. II - Numerical analysis and simulation

    NASA Technical Reports Server (NTRS)

    Liou, Luen-Woei; Ray, Asok

    1991-01-01

    A state feedback control law for integrated communication and control systems (ICCS) is formulated by using the dynamic programming and optimality principle on a finite-time horizon. The control law is derived on the basis of a stochastic model of the plant which is augmented in state space to allow for the effects of randomly varying delays in the feedback loop. A numerical procedure for synthesizing the control parameters is then presented, and the performance of the control law is evaluated by simulating the flight dynamics model of an advanced aircraft. Finally, recommendations for future work are made.

  4. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  5. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  6. A double-panel active segmented partition module using decoupled analog feedback controllers: numerical model.

    PubMed

    Sagers, Jason D; Leishman, Timothy W; Blotter, Jonathan D

    2009-06-01

    Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.

  7. Computer-Numerical-Control and the EMCO Compact 5 Lathe.

    ERIC Educational Resources Information Center

    Mullen, Frank M.

    This laboratory manual is intended for use in teaching computer-numerical-control (CNC) programming using the Emco Maier Compact 5 Lathe. Developed for use at the postsecondary level, this material contains a short introduction to CNC machine tools. This section covers CNC programs, CNC machine axes, and CNC coordinate systems. The following…

  8. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  9. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  10. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  11. Curriculums in Industrial Technology. Plastics Technology. Industrial Maintenance. Computer Numerical Control. Teacher's Manuals and Student Learning Guides.

    ERIC Educational Resources Information Center

    El Paso Community Coll., TX.

    Curriculum guides are provided for plastics technology, industrial maintenance, and computer numerical control. Each curriculum is divided into a number of courses. For each course these instructor materials are presented in the official course outline: course description, course objectives, unit titles, texts and materials, instructor resources,…

  12. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  13. Interface between a printed circuit board computer aided design tool (Tektronix 4051 based) and a numerical paper tape controlled drill press (Slo-Syn 530: 100 w/ Dumore Automatic Head Number 8391)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, B.K.; Chinn, V.K.

    1981-01-01

    The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)

  14. Appropriate control time constant in relation to characteristics of the baroreflex vascular system in 1/R control of the total artificial heart.

    PubMed

    Mizuta, Sora; Saito, Itsuro; Isoyama, Takashi; Hara, Shintaro; Yurimoto, Terumi; Li, Xinyang; Murakami, Haruka; Ono, Toshiya; Mabuchi, Kunihiko; Abe, Yusuke

    2017-09-01

    1/R control is a physiological control method of the total artificial heart (TAH) with which long-term survival was obtained with animal experiments. However, 1/R control occasionally diverged in the undulation pump TAH (UPTAH) animal experiment. To improve the control stability of the 1/R control, appropriate control time constant in relation to characteristics of the baroreflex vascular system was investigated with frequency analysis and numerical simulation. In the frequency analysis, data of five goats in which the UPTAH was implanted were analyzed with first Fourier transform technique to examine the vasomotion frequency. The numerical simulation was carried out repeatedly changing baroreflex parameters and control time constant using the elements-expanded Windkessel model. Results of the frequency analysis showed that the 1/R control tended to diverge when very low frequency band that was an indication of the vasomotion frequency was relative high. In numerical simulation, divergence of the 1/R control could be reproduced and the boundary curves between the divergence and convergence of the 1/R control varied depending on the control time constant. These results suggested that the 1/R control tended to be unstable when the TAH recipient had high reflex speed in the baroreflex vascular system. Therefore, the control time constant should be adjusted appropriately with the individual vasomotion frequency.

  15. Numerical simulation study on rolling-chemical milling process of aluminum-lithium alloy skin panel

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Sun, Z. G.; Sun, X. F.; Li, X. Q.

    2017-09-01

    Single curvature parts such as aircraft fuselage skin panels are usually manufactured by rolling-chemical milling process, which is usually faced with the problem of geometric accuracy caused by springback. In most cases, the methods of manual adjustment and multiple roll bending are used to control or eliminate the springback. However, these methods can cause the increase of product cost and cycle, and lead to material performance degradation. Therefore, it is of significance to precisely control the springback of rolling-chemical milling process. In this paper, using the method of experiment and numerical simulation on rolling-chemical milling process, the simulation model for rolling-chemical milling process of 2060-T8 aluminum-lithium alloy skin was established and testified by the comparison between numerical simulation and experiment results for the validity. Then, based on the numerical simulation model, the relative technological parameters which influence on the curvature of the skin panel were analyzed. Finally, the prediction of springback and the compensation can be realized by controlling the process parameters.

  16. Adaptive Grid Generation for Numerical Solution of Partial Differential Equations.

    DTIC Science & Technology

    1983-12-01

    numerical solution of fluid dynamics problems is presented. However, the method is applicable to the numer- ical evaluation of any partial differential...emphasis is being placed on numerical solution of the governing differential equations by finite difference methods . In the past two decades, considerable...original equations presented in that paper. The solution of the second problem is more difficult. 2 The method of Thompson et al. provides control for

  17. Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab

    DOE PAGES

    Li, Nailu; Balas, Mark J.; Yang, Hua; ...

    2015-01-01

    This paper presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less

  18. Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nailu; Balas, Mark J.; Yang, Hua

    2015-01-01

    This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less

  19. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less

  20. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  1. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  2. Computer numerical control grinding of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Scott, H. Wayne

    1991-01-01

    The development of Computer Numerical Control (CNC) spiral bevel gear grinding has paved the way for major improvement in the production of precision spiral bevel gears. The object of the program was to decrease the setup, maintenance of setup, and pattern development time by 50 percent of the time required on conventional spiral bevel gear grinders. Details of the process are explained.

  3. Time optimal control of a jet engine using a quasi-Hermite interpolation model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Comiskey, J. G.

    1979-01-01

    This work made preliminary efforts to generate nonlinear numerical models of a two-spooled turbofan jet engine, and subject these models to a known method of generating global, nonlinear, time optimal control laws. The models were derived numerically, directly from empirical data, as a first step in developing an automatic modelling procedure.

  4. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  5. Corrigendum to ;Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows; [J. Comput. Phys. 307 (2016) 189-202

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, Björn; Kritsuk, A. G.

    2018-01-01

    The authors regret for the typographic errors that were made in equation (4) and missing phrase after equation (4) in the article "Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows" [J. Comput. Phys. 307 (2016) 189-202].

  6. Technology and Jobs: Computer-Aided Design. Numerical-Control Machine-Tool Operators. Office Automation.

    ERIC Educational Resources Information Center

    Stanton, Michael; And Others

    1985-01-01

    Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…

  7. Numerical Recovering of a Speed of Sound by the BC-Method in 3D

    NASA Astrophysics Data System (ADS)

    Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr

    We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.

  8. Numerical solution of a conspicuous consumption model with constant control delay☆

    PubMed Central

    Huschto, Tony; Feichtinger, Gustav; Hartl, Richard F.; Kort, Peter M.; Sager, Sebastian; Seidl, Andrea

    2011-01-01

    We derive optimal pricing strategies for conspicuous consumption products in periods of recession. To that end, we formulate and investigate a two-stage economic optimal control problem that takes uncertainty of the recession period length and delay effects of the pricing strategy into account. This non-standard optimal control problem is difficult to solve analytically, and solutions depend on the variable model parameters. Therefore, we use a numerical result-driven approach. We propose a structure-exploiting direct method for optimal control to solve this challenging optimization problem. In particular, we discretize the uncertainties in the model formulation by using scenario trees and target the control delays by introduction of slack control functions. Numerical results illustrate the validity of our approach and show the impact of uncertainties and delay effects on optimal economic strategies. During the recession, delayed optimal prices are higher than the non-delayed ones. In the normal economic period, however, this effect is reversed and optimal prices with a delayed impact are smaller compared to the non-delayed case. PMID:22267871

  9. High output lamp with high brightness

    DOEpatents

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  10. A numerical study of transition control by periodic suction-blowing

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat

    1987-01-01

    The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.

  11. Effect of rotation rate on the forces of a rotating cylinder: Simulation and control

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Ou, Yuh-Roung

    1993-01-01

    In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.

  12. Multiple control strategies for prevention of avian influenza pandemic.

    PubMed

    Ullah, Roman; Zaman, Gul; Islam, Saeed

    2014-01-01

    We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this, we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influenza, the antiviral treatment of infected individuals, and the effort to reduce the number of infected birds. We completely characterized the optimal control and compute numerical solution of the optimality system by using an iterative method.

  13. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    NASA Astrophysics Data System (ADS)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  14. Insights into numerical cognition: considering eye-fixations in number processing and arithmetic.

    PubMed

    Mock, J; Huber, S; Klein, E; Moeller, K

    2016-05-01

    Considering eye-fixation behavior is standard in reading research to investigate underlying cognitive processes. However, in numerical cognition research eye-tracking is used less often and less systematically. Nevertheless, we identified over 40 studies on this topic from the last 40 years with an increase of eye-tracking studies on numerical cognition during the last decade. Here, we review and discuss these empirical studies to evaluate the added value of eye-tracking for the investigation of number processing. Our literature review revealed that the way eye-fixation behavior is considered in numerical cognition research ranges from investigating basic perceptual aspects of processing non-symbolic and symbolic numbers, over assessing the common representational space of numbers and space, to evaluating the influence of characteristics of the base-10 place-value structure of Arabic numbers and executive control on number processing. Apart from basic results such as reading times of numbers increasing with their magnitude, studies revealed that number processing can influence domain-general processes such as attention shifting-but also the other way round. Domain-general processes such as cognitive control were found to affect number processing. In summary, eye-fixation behavior allows for new insights into both domain-specific and domain-general processes involved in number processing. Based thereon, a processing model of the temporal dynamics of numerical cognition is postulated, which distinguishes an early stage of stimulus-driven bottom-up processing from later more top-down controlled stages. Furthermore, perspectives for eye-tracking research in numerical cognition are discussed to emphasize the potential of this methodology for advancing our understanding of numerical cognition.

  15. CIM at GE's factory of the future

    NASA Astrophysics Data System (ADS)

    Waldman, H.

    Functional features of a highly automated aircraft component batch processing factory are described. The system has processing, working, and methodology components. A rotating parts operation installed 20 yr ago features a high density of numerically controlled machines, and is connected to a hierarchical network of data communications and apparatus for moving the rotating parts and tools of engines. Designs produced at one location in the country are sent by telephone link to other sites for development of manufacturing plans, tooling, numerical control programs, and process instructions for the rotating parts. Direct numerical control is implemented at the work stations, which have instructions stored on tape for back-up in case the host computer goes down. Each machine is automatically monitored at 48 points and notice of failure can originate from any point in the system.

  16. Implicit and Explicit Number-Space Associations Differentially Relate to Interference Control in Young Adults With ADHD

    PubMed Central

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2018-01-01

    Behavioral evidence for the link between numerical and spatial representations comes from the spatial-numerical association of response codes (SNARC) effect, consisting in faster reaction times to small/large numbers with the left/right hand respectively. The SNARC effect is, however, characterized by considerable intra- and inter-individual variability. It depends not only on the explicit or implicit nature of the numerical task, but also relates to interference control. To determine whether the prevalence of the latter relation in the elderly could be ascribed to younger individuals’ ceiling performances on executive control tasks, we determined whether the SNARC effect related to Stroop and/or Flanker effects in 26 young adults with ADHD. We observed a divergent pattern of correlation depending on the type of numerical task used to assess the SNARC effect and the type of interference control measure involved in number-space associations. Namely, stronger number-space associations during parity judgments involving implicit magnitude processing related to weaker interference control in the Stroop but not Flanker task. Conversely, stronger number-space associations during explicit magnitude classifications tended to be associated with better interference control in the Flanker but not Stroop paradigm. The association of stronger parity and magnitude SNARC effects with weaker and better interference control respectively indicates that different mechanisms underlie these relations. Activation of the magnitude-associated spatial code is irrelevant and potentially interferes with parity judgments, but in contrast assists explicit magnitude classifications. Altogether, the present study confirms the contribution of interference control to number-space associations also in young adults. It suggests that magnitude-associated spatial codes in implicit and explicit tasks are monitored by different interference control mechanisms, thereby explaining task-related intra-individual differences in number-space associations. PMID:29881363

  17. The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.

    PubMed

    Roh, S D; Kim, S W; Cho, W S

    2001-10-01

    The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.

  18. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  19. The Impact of Numerical Control Technology and Computer Aided Manufacturing on Curriculum Development in Industrial Education and Technology. A Final Report.

    ERIC Educational Resources Information Center

    Bauch, Klaus Dieter

    The study was designed to investigate the effects of Numerical Control Technology and Computer-Aided Manufacturing (NC/CAM) in American industry on industrial education and engineering technology education. The specific purpose was to identify a data base and rationale for curriculum development in NC/CAM through a comparison of views by…

  20. Numerical Control/Computer Aided Manufacturing (NC/CAM), A Descom Study

    DTIC Science & Technology

    1979-07-01

    CAM machines operate directly from computers, but most get instructions in the form of punched tape. The applications of NC/CAM are virtually...Although most NC/CAM equipment is metal working, its applications include electronics manufacturing, glass making, food processing, materiel handling...drafting, woodworking, plastics and inspection, just to name a few. Numerical control, like most technologies, is an advancing and evolutionary process

  1. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    NASA Technical Reports Server (NTRS)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  2. Effects of Extreme Prematurity on Numerical Skills and Executive Function in Kindergarten Children: An Application of Partially Ordered Classification Modeling

    PubMed Central

    Tatsuoka, Curtis; McGowan, Bridget; Yamada, Tomoko; Espy, Kimberly Andrews; Minich, Nori; Taylor, H. Gerry

    2016-01-01

    Although mathematics disabilities (MD) are common in extremely preterm/extremely low birth weight (EPT/ELBW) children, little is known about the nature of these problems. In this study partially ordered set (POSET) models were applied to classify 140 EPT/ELBW kindergarten children (gestational age <28 weeks and/or birth weight <1000 g) and 110 normal birth weight (NBW) controls into profiles of numerical and cognitive skills. Models based on five numerical skills and five executive function and processing speed skills provided a good fit to performance data. The EPT/ELBW group had poorer skills in all areas than NBW controls but the models also revealed substantial individual variability in skill profiles. Weaknesses in executive function were associated with poorer mastery of numerical skills. The findings illustrate the applicability of POSET models to research on MD and suggest distinct types of early numerical deficits in EPT/ELBW children that are related to their impairments in executive function. PMID:27818602

  3. Effects of Extreme Prematurity on Numerical Skills and Executive Function in Kindergarten Children: An Application of Partially Ordered Classification Modeling.

    PubMed

    Tatsuoka, Curtis; McGowan, Bridget; Yamada, Tomoko; Espy, Kimberly Andrews; Minich, Nori; Taylor, H Gerry

    2016-07-01

    Although mathematics disabilities (MD) are common in extremely preterm/extremely low birth weight (EPT/ELBW) children, little is known about the nature of these problems. In this study partially ordered set (POSET) models were applied to classify 140 EPT/ELBW kindergarten children (gestational age <28 weeks and/or birth weight <1000 g) and 110 normal birth weight (NBW) controls into profiles of numerical and cognitive skills. Models based on five numerical skills and five executive function and processing speed skills provided a good fit to performance data. The EPT/ELBW group had poorer skills in all areas than NBW controls but the models also revealed substantial individual variability in skill profiles. Weaknesses in executive function were associated with poorer mastery of numerical skills. The findings illustrate the applicability of POSET models to research on MD and suggest distinct types of early numerical deficits in EPT/ELBW children that are related to their impairments in executive function.

  4. Problem-Based Instructional Strategy and Numerical Ability as Determinants of Senior Secondary Achievement in Mathematics

    ERIC Educational Resources Information Center

    Badru, Ademola K.

    2016-01-01

    The study investigated Problem-based Instructional Strategy and Numerical ability as determinants of Senior Secondary Achievement in Mathematics. This study used 4 x 2 x 2 non-randomised control group Pretest-Posttest Quasi-experimental Factorial design. It consisted of two independent variables (treatment and Numerical ability) and one moderating…

  5. Combined Effect of Random Transmit Power Control and Inter-Path Interference Cancellation on DS-CDMA Packet Mobile Communications

    NASA Astrophysics Data System (ADS)

    Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki

    In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.

  6. Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude.

    PubMed

    Holloway, Ian D; Ansari, Daniel

    2010-11-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic numerals) and nonsymbolic (arrays of squares) numerical comparison tasks as well as two control tasks while their brains were scanned using fMRI. In a preliminary analysis, we calculated the conjunction between symbolic and nonsymbolic numerical comparison. We then examined in which brain regions this conjunction differed between children and adults. This analysis revealed a large network of visual and parietal regions that showed greater activation in adults relative to children. In our primary analysis, we examined age-related differences in the conjunction of symbolic and nonsymbolic comparison after subtracting the control tasks. This analysis revealed a much more limited set of regions including the right inferior parietal lobe near the intraparietal sulcus. In addition to showing increased activation to both symbolic and nonsymbolic magnitudes over and above activation related to response selection, this region showed age-related differences in the distance effect. Our findings demonstrate that the format-independent representation of numerical magnitude in the right inferior parietal lobe is the product of developmental processes of cortical specialization and highlight the importance of using appropriate control tasks when conducting developmental neuroimaging studies.

  7. Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives

    NASA Astrophysics Data System (ADS)

    Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.

    2017-06-01

    The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.

  8. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  9. The divergence characteristics of constrained-sheath optics systems for use with 5-eV atomic oxygen sources

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Wilbur, Paul J.

    1989-01-01

    The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.

  10. A numerical method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation

    NASA Astrophysics Data System (ADS)

    Mamehrashi, K.; Yousefi, S. A.

    2017-02-01

    This paper presents a numerical solution for solving a nonlinear 2-D optimal control problem (2DOP). The performance index of a nonlinear 2DOP is described with a state and a control function. Furthermore, dynamic constraint of the system is given by a classical diffusion equation. It is preferred to use the Ritz method for finding the numerical solution of the problem. The method is based upon the Legendre polynomial basis. By using this method, the given optimisation nonlinear 2DOP reduces to the problem of solving a system of algebraic equations. The benefit of the method is that it provides greater flexibility in which the given initial and boundary conditions of the problem are imposed. Moreover, compared with the eigenfunction method, the satisfactory results are obtained only in a small number of polynomials order. This numerical approach is applicable and effective for such a kind of nonlinear 2DOP. The convergence of the method is extensively discussed and finally two illustrative examples are included to observe the validity and applicability of the new technique developed in the current work.

  11. Design of a microfluidic system for red blood cell aggregation investigation.

    PubMed

    Mehri, R; Mavriplis, C; Fenech, M

    2014-06-01

    The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.

  12. Optimal control on bladder cancer growth model with BCG immunotherapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Dewi, C.; Trisilowati

    2015-03-01

    In this paper, an optimal control model of the growth of bladder cancer with BCG (Basil Calmate Guerin) immunotherapy and chemotherapy is discussed. The purpose of this optimal control is to determine the number of BCG vaccine and drug should be given during treatment such that the growth of bladder cancer cells can be suppressed. Optimal control is obtained by applying Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. Numerical simulations show the effectiveness of the vaccine and drug in controlling the growth of cancer cells. Hence, it can reduce the number of cancer cells that is not infected with BCG as well as minimize the cost of the treatment.

  13. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  14. Simulation of a class of hazardous situations in the ICS «INM RAS - Baltic Sea»

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Agoshkov, Valery; Aseev, Nikita; Parmuzin, Eugene; Sheloput, Tateana; Shutyaev, Victor

    2017-04-01

    Development of Informational Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in mathematical modeling, theory of adjoint equations and optimal control, inverse problems, numerical methods theory, numerical algebra, scientific computing and processing of satellite data. In this work the results on the ICS development for PC-ICS "INM RAS - Baltic Sea" are presented. We discuss practical problems studied by ICS. The System includes numerical model of the Baltic Sea thermodynamics, the new oil spill model describing the propagation of a slick at the Sea surface (Agoshkov, Aseev et al., 2014) and the optimal ship route calculating block (Agoshkov, Zayachkovsky et al., 2014). The ICS is based on the INMOM numerical model of the Baltic Sea thermodynamics (Zalesny et al., 2013). It is possible to calculate main hydrodynamic parameters (temperature, salinity, velocities, sea level) using user-friendly interface of the ICS. The System includes data assimilation procedures (Agoshkov, 2003, Parmuzin, Agoshkov, 2012) and one can use the block of variational assimilation of the sea surface temperature in order to obtain main hydrodynamic parameters. Main possibilities of the ICS and several numerical experiments are presented in the work. By the problem of risk control is meant a problem of determination of optimal resources quantity which are necessary for decreasing the risk to some acceptable value. Mass of oil slick is chosen as a function of control. For the realization of the random variable the quadratic "functional of cost" is introduced. It comprises cleaning costs and deviation of damage of oil pollution from its acceptable value. The problem of minimization of this functional is solved based on the methods of optimal control and the theory of adjoint equations. The solution of this problem is explicitly found. The study was supported by the Russian Foundation for Basic Research (project 16-31-00510) and by the Russian Science Foundation (project №14-11-00609). V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Modelling 28 (2013), No. 1, 85-100. V.I. Agoshkov, A.O. Zayachkovskiy, R. Aps, P. Kujala, and J. Rytkönen. Risk theory based solution to the problem of optimal vessel route // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 69-78. Agoshkov, V., Aseev, N., Aps, R., Kujala, P., Rytkönen, J., Zalesny, V. The problem of control of oil pollution risk in the Baltic Sea // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 93-105. E. I. Parmuzin and V. I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling 27 (2012), No. 1, 69-94. Olof Liungman and Johan Mattsson. Scientic Documentation of Seatrack Web; physical processes, algorithms and references, 2011.

  15. A comparison of control strategies for wave energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.

    In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less

  16. A comparison of control strategies for wave energy converters

    DOE PAGES

    Coe, Ryan G.; Bacelli, Giorgio; Wilson, David G.; ...

    2017-11-15

    In this study, we employ a numerical model to compare the performance of a number of wave energy converter control strategies. The controllers selected for evaluation span a wide range in their requirements for implementation. Each control strategy is evaluated using a single numerical model with a set of sea states to represent a deployment site off the coast of Newport, OR. A number of metrics, ranging from power absorption to kinematics, are employed to provide a comparison of each control strategy’s performance that accounts for both relative benefits and costs. The results show a wide range of performances frommore » the different controllers and highlight the need for a holistic design approach which considers control design as a parallel component within the larger process WEC design.« less

  17. A multilevel control system for the large space telescope. [numerical analysis/optimal control

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.

    1975-01-01

    A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.

  18. Geometric versus numerical optimal control of a dissipative spin-(1/2) particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapert, M.; Sugny, D.; Zhang, Y.

    2010-12-15

    We analyze the saturation of a nuclear magnetic resonance (NMR) signal using optimal magnetic fields. We consider both the problems of minimizing the duration of the control and its energy for a fixed duration. We solve the optimal control problems by using geometric methods and a purely numerical approach, the grape algorithm, the two methods being based on the application of the Pontryagin maximum principle. A very good agreement is obtained between the two results. The optimal solutions for the energy-minimization problem are finally implemented experimentally with available NMR techniques.

  19. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 4. Thermal Effects on the Accuracy of Numerically Controlled Machine Tools.

    DTIC Science & Technology

    1985-10-01

    83K0385 FINAL REPORT D Vol. 4 00 THERMAL EFFECTS ON THE ACCURACY OF LD NUME" 1ICALLY CONTROLLED MACHINE TOOLS PREPARED BY I Raghunath Venugopal and M...OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AJ’HOR(S) Venunorial, Raghunath and M. M. Barash 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...TOOLS Prepared by Raghunath Venugopal and M. M. Barash Accesion For Unannounced 0 Justification ........................................... October 1085

  20. Satellite recovery - Attitude dynamics of the targets

    NASA Technical Reports Server (NTRS)

    Cochran, J. E., Jr.; Lahr, B. S.

    1986-01-01

    The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.

  1. A neural network based implementation of an MPC algorithm applied in the control systems of electromechanical plants

    NASA Astrophysics Data System (ADS)

    Marusak, Piotr M.; Kuntanapreeda, Suwat

    2018-01-01

    The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.

  2. Computational Methods for Identification, Optimization and Control of PDE Systems

    DTIC Science & Technology

    2010-04-30

    focused on the development of numerical methods and software specifically for the purpose of solving control, design, and optimization prob- lems where...that provide the foundations of simulation software must play an important role in any research of this type, the demands placed on numerical methods...y sus Aplicaciones , Ciudad de Cor- doba - Argentina, October 2007. 3. Inverse Problems in Deployable Space Structures, Fourth Conference on Inverse

  3. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  4. Robotic reactions: Delay-induced patterns in autonomous vehicle systems

    NASA Astrophysics Data System (ADS)

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  5. AN EIGHT WEEK SEMINAR IN AN INTRODUCTION TO NUMERICAL CONTROL ON TWO- AND THREE-AXIS MACHINE TOOLS FOR VOCATIONAL AND TECHNICAL MACHINE TOOL INSTRUCTORS. FINAL REPORT.

    ERIC Educational Resources Information Center

    BOLDT, MILTON; POKORNY, HARRY

    THIRTY-THREE MACHINE SHOP INSTRUCTORS FROM 17 STATES PARTICIPATED IN AN 8-WEEK SEMINAR TO DEVELOP THE SKILLS AND KNOWLEDGE ESSENTIAL FOR TEACHING THE OPERATION OF NUMERICALLY CONTROLLED MACHINE TOOLS. THE SEMINAR WAS GIVEN FROM JUNE 20 TO AUGUST 12, 1966, WITH COLLEGE CREDIT AVAILABLE THROUGH STOUT STATE UNIVERSITY. THE PARTICIPANTS COMPLETED AN…

  6. Numerical Algorithm for Delta of Asian Option

    PubMed Central

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271

  7. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  8. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two-input/two-output drone flight control system.

  9. The use of singular value gradients and optimization techniques to design robust controllers for multiloop systems

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Mukhopadhyay, V.

    1983-01-01

    A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.

  10. Research on ARM Numerical Control System

    NASA Astrophysics Data System (ADS)

    Wei, Xu; JiHong, Chen

    Computerized Numerical Control (CNC) machine tools is the foundation of modern manufacturing systems, whose advanced digital technology is the key to solve the problem of sustainable development of machine tool manufacturing industry. The paper is to design CNC system embedded on ARM and indicates the hardware design and the software systems supported. On the hardware side: the driving chip of the motor control unit, as the core of components, is MCX314AL of DSP motion control which is developed by NOVA Electronics Co., Ltd. of Japan. It make convenient to control machine because of its excellent performance, simple interface, easy programming. On the Software side, the uC/OS-2 is selected as the embedded operating system of the open source, which makes a detailed breakdown of the modules of the CNC system. Those priorities are designed according to their actual requirements. The ways of communication between the module and the interrupt response are so different that it guarantees real-time property and reliability of the numerical control system. Therefore, it not only meets the requirements of the current social precision machining, but has good man-machine interface and network support to facilitate a variety of craftsmen use.

  11. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    NASA Astrophysics Data System (ADS)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  12. Shock Generation and Control Using DBD Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Patel, Mehul P.; Cain, Alan B.; Nelson, Christopher C.; Corke, Thomas C.; Matlis, Eric H.

    2012-01-01

    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance.

  13. Binocular device for displaying numerical information in field of view

    NASA Technical Reports Server (NTRS)

    Fuller, H. V. (Inventor)

    1977-01-01

    An apparatus is described for superimposing numerical information on the field of view of binoculars. The invention has application in the flying of radio-controlled model airplanes. Information such as airspeed and angle of attack are sensed on a model airplane and transmitted back to earth where this information is changed into numerical form. Optical means are attached to the binoculars that a pilot is using to track the model air plane for displaying the numerical information in the field of view of the binoculars. The device includes means for focusing the numerical information at infinity whereby the user of the binoculars can see both the field of view and the numerical information without refocusing his eyes.

  14. Andean Mountain Building: An Integrated Topographic, GPS, Seismological and Numerical Study

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Stein, Seth

    2003-01-01

    The main objective of this project was to better understand the geodynamics controlling the mountain building and topographic evolution in the central Andes using an integrated approach that combines GPS, seismological, and numerical studies.

  15. Proceedings of the IMOG (Interagency Manufacturing Operations Group) Numerical Systems Group. 62nd Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, G.J.

    1993-10-01

    This document contains the proceedings of the 62nd Interagency Manufacturing Operations Group (IMOG) Numerical Systems Group. Included are the minutes of the 61st meeting and the agenda for the 62nd meeting. Presentations at the meeting are provided in the appendices to this document. Presentations were: 1992 NSG Annual Report to IMOG Steering Committee; Charter for the IMOG Numerical Systems Group; Y-12 Coordinate Measuring Machine Training Project; IBH NC Controller; Automatically Programmed Metrology Update; Certification of Anvil-5000 for Production Use at the Y-12 Plant; Accord Project; Sandia National Laboratories {open_quotes}Accord{close_quotes}; Demo/Anvil Tool Path Generation 5-Axis; Demo/Video Machine/Robot Animation Dynamics; Demo/Certification ofmore » Anvil Tool Path Generation; Tour of the M-60 Inspection Machine; Distributed Numerical Control Certification; Spline Usage Method; Y-12 NC Engineering Status; and Y-12 Manufacturing CAD Systems.« less

  16. Editing of EIA coded, numerically controlled, machine tool tapes

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  17. Metric Use in the Tool Industry. A Status Report and a Test of Assessment Methodology.

    DTIC Science & Technology

    1982-04-20

    Weights and Measures) CIM - Computer-Integrated Manufacturing CNC - Computer Numerical Control DOD - Department of Defense DODISS - DOD Index of...numerically-controlled ( CNC ) machines that have an inch-millimeter selection switch and a corresponding dual readout scale. S -4- The use of both metric...satisfactorily met the demands of both domestic and foreign customers for metric machine tools by providing either metric- capable machines or NC and CNC

  18. Doing better by getting worse: posthypnotic amnesia improves random number generation.

    PubMed

    Terhune, Devin Blair; Brugger, Peter

    2011-01-01

    Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number) during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation.

  19. Doing Better by Getting Worse: Posthypnotic Amnesia Improves Random Number Generation

    PubMed Central

    Terhune, Devin Blair; Brugger, Peter

    2011-01-01

    Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number) during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation. PMID:22195022

  20. Assessment of semi-active friction dampers

    NASA Astrophysics Data System (ADS)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  1. A software tool for modeling and simulation of numerical P systems.

    PubMed

    Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica

    2011-03-01

    A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  3. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  4. A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case

    NASA Astrophysics Data System (ADS)

    Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.

    2017-12-01

    In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.

  5. Research on the control of large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1983-01-01

    The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.

  6. Computer numeric control generation of toric surfaces

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Ball, Gary A.; Keller, John R.

    1994-05-01

    Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.

  7. Boundary control of bidomain equations with state-dependent switching source functions in the ionic model

    NASA Astrophysics Data System (ADS)

    Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl

    2014-09-01

    Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.

  8. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  9. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  10. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  11. Improving Preschoolers’ Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training

    PubMed Central

    2016-01-01

    The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on different magnitude representations and that it is the ability to build an exact representation of symbolic numbers that underlies math learning. Support for these hypotheses has come mainly from correlative studies with inconsistent results. In this study, we developed two training programs aiming at enhancing the magnitude processing of either non-symbolic numbers or symbolic numbers and compared their effects on arithmetic skills. Fifty-six preschoolers were randomly assigned to one of three 10-session-training conditions: (1) non-symbolic training (2) symbolic training and (3) control training working on story understanding. Both numerical training conditions were significantly more efficient than the control condition in improving magnitude processing. Moreover, symbolic training led to a significantly larger improvement in arithmetic than did non-symbolic training and the control condition. These results support the dual-representation view. PMID:27875540

  12. Influence of biases in numerical magnitude allocation on human prosocial decision making.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Siddiqui, Shuaib; Franka, Mustafa; Mediratta, Saniya; Ramachandaran, Sanjeev; Lobo, Rhannon; Malhotra, Paresh A; Roberts, R E; Bronstein, Adolfo M

    2017-12-01

    Over the past decade neuroscientific research has attempted to probe the neurobiological underpinnings of human prosocial decision making. Such research has almost ubiquitously employed tasks such as the dictator game or similar variations (i.e., ultimatum game). Considering the explicit numerical nature of such tasks, it is surprising that the influence of numerical cognition on decision making during task performance remains unknown. While performing these tasks, participants typically tend to anchor on a 50:50 split that necessitates an explicit numerical judgement (i.e., number-pair bisection). Accordingly, we hypothesize that the decision-making process during the dictator game recruits overlapping cognitive processes to those known to be engaged during number-pair bisection. We observed that biases in numerical magnitude allocation correlated with the formulation of decisions during the dictator game. That is, intrinsic biases toward smaller numerical magnitudes were associated with the formulation of less favorable decisions, whereas biases toward larger magnitudes were associated with more favorable choices. We proceeded to corroborate this relationship by subliminally and systematically inducing biases in numerical magnitude toward either higher or lower numbers using a visuo-vestibular stimulation paradigm. Such subliminal alterations in numerical magnitude allocation led to proportional and corresponding changes to an individual's decision making during the dictator game. Critically, no relationship was observed between neither intrinsic nor induced biases in numerical magnitude on decision making when assessed using a nonnumerical-based prosocial questionnaire. Our findings demonstrate numerical influences on decisions formulated during the dictator game and highlight the necessity to control for confounds associated with numerical cognition in human decision-making paradigms. NEW & NOTEWORTHY We demonstrate that intrinsic biases in numerical magnitude can directly predict the amount of money donated by an individual to an anonymous stranger during the dictator game. Furthermore, subliminally inducing perceptual biases in numerical-magnitude allocation can actively drive prosocial choices in the corresponding direction. Our findings provide evidence for numerical influences on decision making during performance of the dictator game. Accordingly, without the implementation of an adequate control for numerical influences, the dictator game and other tasks with an inherent numerical component (i.e., ultimatum game) should be employed with caution in the assessment of human behavior. Copyright © 2017 the American Physiological Society.

  13. Numerical study on the influence of boss cap fins on efficiency of controllable-pitch propeller

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Wang, Zhanzhi; Qi, Wanjiang

    2013-03-01

    Numerical simulation is investigated to disclose how propeller boss cap fins (PBCF) operate utilizing Reynolds-averaged Navier-Stokes (RANS) method. In addition, exploration of the influencing mechanism of PBCF on the open water efficiency of one controllable-pitch propeller is analyzed through the open water characteristic curves, blade surface pressure distribution and hub streamline distribution. On this basis, the influence of parameters including airfoil profile, diameter, axial position of installation and circumferential installation angle on the open water efficiency of the controllable-pitch propeller is investigated. Numerical results show: for the controllable-pitch propeller, the thrust generated is at the optimum when the radius of boss cap fins is 1.5 times of propeller hub with an optimal installation position in the axial direction, and its optimal circumferential installation position is the midpoint of the extension line of the front and back ends of two adjacent propeller roots in the front of fin root. Under these optimal parameters, the gain of open water efficiency of the controllable-pitch propeller with different advance velocity coefficients is greater than 0.01, which accounts for approximately an increase of 1%-5% of open water efficiency.

  14. Constrained H1-regularization schemes for diffeomorphic image registration

    PubMed Central

    Mang, Andreas; Biros, George

    2017-01-01

    We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361

  15. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    PubMed

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with amusia may present a deficit in accessing nonsymbolic numerical representations from symbolic representations. The symbolic access deficit could reflect a widespread impairment in the establishment of cortico-cortical connections between association areas.

  16. Continuous glucose monitors: use of waveform versus glycemic values in the improvements of glucose control, quality of life, and fear of hypoglycemia.

    PubMed

    Walker, Tomas C; Yucha, Carolyn B

    2014-05-01

    How patients are benefitting from continuous glucose monitoring (CGM) remains poorly understood. The focus on numerical glucose values persists, even though access to the glucose waveform and rate of change may contribute more to improved control. This pilot study compared outcomes of patients using CGMs with or without access to the numerical values on their CGM. Ten persons with type 1 diabetes, naïve to CGM use, enrolled in a 12-week study. Subjects were randomly assigned to either unmodified CGM receivers, or to CGM receivers that had their numerical values obscured but otherwise functioned normally. HbA1c, quality of life (QLI-D), and fear of hypoglycemia (HFS) were assessed, at baseline and at week 12. Baseline HbA1c for the entire group was 7.46 ± 1.27%. At week 12 the experimental group HbA1c reduction was 1.5 ± 0.9% (p < .05), the control group's reduction was 0.06 ± 0.61% (p > .05). Repeated measures testing revealed no significant difference in HbA1c reduction between groups. Both groups had reductions in HFS; these reductions were statistically significant within groups (p < .05), but not between groups. QLI-D indices demonstrated improvements (p < .05) in QLI-D total and the health and family subscales, but not between groups. The results of this pilot study suggest that benefits of CGM extend beyond reductions in HbA1c to reductions in fear of hypoglycemia and improvements in quality of life. The display of a numerical glucose value did not improve control when compared to numerically blinded units. © 2014 Diabetes Technology Society.

  17. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  18. Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions

    USGS Publications Warehouse

    Friedly, John C.; Rubin, Jacob

    1992-01-01

    A new approach is applied to the problem of modeling solute transport accompanied by many chemical reactions. The approach, based on concepts of the concentration space and its stoichiometric subspaces, uses elements of the subspaces as primary dependent variables. It is shown that the resulting model equations are compact in form, isolate the chemical reaction expressions from flow expressions, and can be used for either equilibrium or kinetically controlled reactions. The implications of the results on numerical algorithms for solving the equations are discussed. The application of the theory is illustrated throughout with examples involving a simple but broadly representative set of reactions previously considered in the literature. Numerical results are presented for four interconnected reactions: a homogeneous complexation reaction, two sorption reactions, and a dissolution/precipitation reaction. Three cases are considered: (1) four kinetically controlled reactions, (2) four equilibrium-controlled reactions, and (3) a system with two kinetically controlled reactions and two equilibrium-controlled reactions.

  19. Control-based continuation: Bifurcation and stability analysis for physical experiments

    NASA Astrophysics Data System (ADS)

    Barton, David A. W.

    2017-02-01

    Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.

  20. Optimization of block-floating-point realizations for digital controllers with finite-word-length considerations.

    PubMed

    Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian

    2003-01-01

    The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.

  1. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    NASA Astrophysics Data System (ADS)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  2. The laterality effect: myth or truth?

    PubMed

    Cohen Kadosh, Roi

    2008-03-01

    Tzelgov and colleagues [Tzelgov, J., Meyer, J., and Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 166-179.], offered the existence of the laterality effect as a post-hoc explanation for their results. According to this effect, numbers are classified automatically as small/large versus a standard point under autonomous processing of numerical information. However, the genuinity of the laterality effect was never examined, or was confounded with the numerical distance effect. In the current study, I controlled the numerical distance effect and observed that the laterality effect does exist, and affects the processing of automatic numerical information. The current results suggest that the laterality effect should be taken into account when using paradigms that require automatic numerical processing such as Stroop-like or priming tasks.

  3. Analysis of Piezoelectric Actuator for Vibration Control of Composite plate

    NASA Astrophysics Data System (ADS)

    Gomaa, Ahmed R.; Hai, Huang

    2017-07-01

    Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.

  4. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  5. The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions.

    PubMed

    Leibovich, Tali; Ansari, Daniel

    2016-03-01

    How do numerical symbols, such as number words, acquire semantic meaning? This question, also referred to as the "symbol-grounding problem," is a central problem in the field of numerical cognition. Present theories suggest that symbols acquire their meaning by being mapped onto an approximate system for the nonsymbolic representation of number (Approximate Number System or ANS). In the present literature review, we first asked to which extent current behavioural and neuroimaging data support this theory, and second, to which extent the ANS, upon which symbolic numbers are assumed to be grounded, is numerical in nature. We conclude that (a) current evidence that has examined the association between the ANS and number symbols does not support the notion that number symbols are grounded in the ANS and (b) given the strong correlation between numerosity and continuous variables in nonsymbolic number processing tasks, it is next to impossible to measure the pure association between symbolic and nonsymbolic numerosity. Instead, it is clear that significant cognitive control resources are required to disambiguate numerical from continuous variables during nonsymbolic number processing. Thus, if there exists any mapping between the ANS and symbolic number, then this process of association must be mediated by cognitive control. Taken together, we suggest that studying the role of both cognitive control and continuous variables in numerosity comparison tasks will provide a more complete picture of the symbol-grounding problem. (c) 2016 APA, all rights reserved).

  6. Optimal reorientation of asymmetric underactuated spacecraft using differential flatness and receding horizon control

    NASA Astrophysics Data System (ADS)

    Cai, Wei-wei; Yang, Le-ping; Zhu, Yan-wei

    2015-01-01

    This paper presents a novel method integrating nominal trajectory optimization and tracking for the reorientation control of an underactuated spacecraft with only two available control torque inputs. By employing a pseudo input along the uncontrolled axis, the flatness property of a general underactuated spacecraft is extended explicitly, by which the reorientation trajectory optimization problem is formulated into the flat output space with all the differential constraints eliminated. Ultimately, the flat output optimization problem is transformed into a nonlinear programming problem via the Chebyshev pseudospectral method, which is improved by the conformal map and barycentric rational interpolation techniques to overcome the side effects of the differential matrix's ill-conditions on numerical accuracy. Treating the trajectory tracking control as a state regulation problem, we develop a robust closed-loop tracking control law using the receding-horizon control method, and compute the feedback control at each control cycle rapidly via the differential transformation method. Numerical simulation results show that the proposed control scheme is feasible and effective for the reorientation maneuver.

  7. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  8. Semiannual report, 1 April - 30 September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software for parallel computers. Research in these areas is discussed.

  9. Effects of Fluid-Structure Interaction on Dynamic Response of Composite Structures: Experimental and Numerical Studies

    DTIC Science & Technology

    2013-08-01

    STRUCTURES: EXPERIMENTAL AND NUMERICAL STUDIES by Young W. Kwon August 1, 2013 Approved for public release; distribution is unlimited Prepared...failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...AND SUBTITLE Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Structures: Experimental and Numerical Studies 5a. CONTRACT

  10. An electrophysiological investigation of non-symbolic magnitude processing: numerical distance effects in children with and without mathematical learning disabilities.

    PubMed

    Heine, Angela; Wissmann, Jacqueline; Tamm, Sascha; De Smedt, Bert; Schneider, Michael; Stern, Elsbeth; Verschaffel, Lieven; Jacobs, Arthur M

    2013-09-01

    The aim of the present study was to probe electrophysiological effects of non-symbolic numerical processing in 20 children with mathematical learning disabilities (mean age = 99.2 months) compared to a group of 20 typically developing matched controls (mean age = 98.4 months). EEG data were obtained while children were tested with a standard non-symbolic numerical comparison paradigm that allowed us to investigate the effects of numerical distance manipulations for different set sizes, i.e., the classical subitizing, counting and estimation ranges. Effects of numerical distance manipulations on event-related potential (ERP) amplitudes as well as activation patterns of underlying current sources were analyzed. In typically developing children, the amplitudes of a late parietal positive-going ERP component showed systematic numerical distance effects that did not depend on set size. For the group of children with mathematical learning disabilities, ERP distance effects were found only for stimuli within the subitizing range. Current source density analysis of distance-related group effects suggested that areas in right inferior parietal regions are involved in the generation of the parietal ERP amplitude differences. Our results suggest that right inferior parietal regions are recruited differentially by controls compared to children with mathematical learning disabilities in response to non-symbolic numerical magnitude processing tasks, but only for stimuli with set sizes that exceed the subitizing range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Centralized, decentralized, and independent control of a flexible manipulator on a flexible base

    NASA Technical Reports Server (NTRS)

    Li, Feiyue; Bainum, Peter M.; Xu, Jianke

    1991-01-01

    The dynamics and control of a flexible manipulator arm with payload mass on a flexible base in space are considered. The controllers are provided by one torquer at the center of the base and one torquer at the connection joint of the robot and the base. The nonlinear dynamics of the system is modeled by applying the finite element method and Lagrangian formula. Three control strategies are considered and compared, i.e., centralized control, decentralized control, and independent control. All these control designs are based on the linear quadratic regulator theory. A mathematical decomposition is used in the decentralization process so that the coupling between the subsystems is weak, while a physical decomposition is used in the independent control design process. For both the decentralized and the independent controls, the stability of the overall linear system is checked before a numerical simulations is initiated. Two numerical examples show that the response of the independent control system are close to those of the centralized control system, while the responses of the decentralized control system are not.

  12. Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Zhu, Ren-chuan; Miao, Guo-ping; Fan, Ju

    2014-08-01

    A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.

  13. Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment

    NASA Technical Reports Server (NTRS)

    Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.

    1987-01-01

    A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.

  14. Reliability-Based Control Design for Uncertain Systems

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.

    2005-01-01

    This paper presents a robust control design methodology for systems with probabilistic parametric uncertainty. Control design is carried out by solving a reliability-based multi-objective optimization problem where the probability of violating design requirements is minimized. Simultaneously, failure domains are optimally enlarged to enable global improvements in the closed-loop performance. To enable an efficient numerical implementation, a hybrid approach for estimating reliability metrics is developed. This approach, which integrates deterministic sampling and asymptotic approximations, greatly reduces the numerical burden associated with complex probabilistic computations without compromising the accuracy of the results. Examples using output-feedback and full-state feedback with state estimation are used to demonstrate the ideas proposed.

  15. Gain optimization with non-linear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1984-01-01

    An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.

  16. Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.

  17. Numerical study on influence of single control surface on aero elastic behavior of forward-swept wing

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei

    2017-10-01

    In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.

  18. Numerical magnitude processing in children with mild intellectual disabilities.

    PubMed

    Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert

    2011-01-01

    The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children with MID on a symbolic (digits) and a non-symbolic (dot-arrays) comparison task with the performance of two control groups of typically developing children: one group matched on chronological age and one group matched on mathematical ability level. Findings revealed that children with MID performed more poorly than their typically developing chronological age-matched peers on both the symbolic and non-symbolic comparison tasks, while their performance did not substantially differ from the ability-matched control group. These findings suggest that the development of numerical magnitude representation in children with MID is marked by a delay. This performance pattern was observed for both symbolic and non-symbolic comparison tasks, although difficulties on the former task were more prominent. Interventions in children with MID should therefore foster both the development of magnitude representations and the connections between symbols and the magnitudes they represent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Fuzzy coordinator in control problems

    NASA Technical Reports Server (NTRS)

    Rueda, A.; Pedrycz, W.

    1992-01-01

    In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.

  20. Interferometric correction system for a numerically controlled machine

    DOEpatents

    Burleson, Robert R.

    1978-01-01

    An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.

  1. Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu

    2011-11-01

    The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.

  2. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  3. Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason

    2014-01-01

    Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.

  4. Event-related potentials, cognition, and behavior: a biological approach.

    PubMed

    Kotchoubey, Boris

    2006-01-01

    The prevailing cognitive-psychological accounts of event-related brain potentials (ERPs) assume that ERP components manifest information processing operations leading from stimulus to response. Since this view encounters numerous difficulties already analyzed in previous studies, an alternative view is presented here that regards cortical control of behavior as a repetitive sensorimotor cycle consisting of two phases: (i) feedforward anticipation and (ii) feedback cortical performance. This view allows us to interpret in an integrative manner numerous data obtained from very different domains of ERP studies: from biophysics of ERP waves to their relationship to the processing of language, in which verbal behavior is viewed as likewise controlled by the same two basic control processes: feedforward (hypothesis building) and feedback (hypothesis checking). The proposed approach is intentionally simplified, explaining numerous effects on the basis of few assumptions and relating several levels of analysis: neurophysiology, macroelectrical processes (i.e. ERPs), cognition and behavior. It can, therefore, be regarded as a first approximation to a general theory of ERPs.

  5. A compensation controller based on a regional pole-assignment method for AMD control systems with a time-varying delay

    NASA Astrophysics Data System (ADS)

    Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying

    2018-04-01

    Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.

  6. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  7. A neural network controller for hydronic heating systems of solar buildings.

    PubMed

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.

  8. Numerical and experimental study of blowing jet on a high lift airfoil

    NASA Astrophysics Data System (ADS)

    Bobonea, A.; Pricop, M. V.

    2013-10-01

    Active manipulation of separated flows over airfoils at moderate and high angles of attack in order to improve efficiency or performance has been the focus of a number of numerical and experimental investigations for many years. One of the main methods used in active flow control is the usage of blowing devices with constant and pulsed blowing. Through CFD simulation over a 2D high-lift airfoil, this study is trying to highlight the impact of pulsed blowing over its aerodynamic characteristics. The available wind tunnel data from INCAS low speed facility are also beneficial for the validation of the numerical analysis. This study intends to analyze the impact of the blowing jet velocity and slot geometry on the efficiency of an active flow control.

  9. Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu

    This work deals with a numerical method for solving a mean-field type control problem with congestion. It is the continuation of an article by the same authors, in which suitably defined weak solutions of the system of partial differential equations arising from the model were discussed and existence and uniqueness were proved. Here, the focus is put on numerical methods: a monotone finite difference scheme is proposed and shown to have a variational interpretation. Then an Alternating Direction Method of Multipliers for solving the variational problem is addressed. It is based on an augmented Lagrangian. Two kinds of boundary conditionsmore » are considered: periodic conditions and more realistic boundary conditions associated to state constrained problems. Various test cases and numerical results are presented.« less

  10. Two-strain Tuberculosis Transmission Model under Three Control Strategies

    NASA Astrophysics Data System (ADS)

    Rayhan, S. N.; Bakhtiar, T.; Jaharuddin

    2017-03-01

    In 1997, Castillo-Chavez and Feng developed a two-strain tuberculosis (TB) model, which is typical TB and resistant TB. Castillo-Chavez and Feng’s model was then subsequently developed by Jung et al. (2002) by adding two control variables. In this work, Jung et al.’s model was modified by introducing a new control variable so that there are three controls, namely chemoprophylaxis and two treatment strategies, with the application of three different scenarios related to the objective functional form and control application. Pontryagin maximum principle was applied to derive the differential equations system as a condition that must be satisfied by the optimal control variables. Furthermore, the fourth-order Runge-Kutta method was exploited to determine the numerical solution of the optimal control problem. In this numerical solution, it is shown that the controls treated on TB transmission model provide a good effect because latent and infected individuals are decreasing, and the number of individuals that is treated effectively is increasing.

  11. Market-based control strategy for long-span structures considering the multi-time delay issue

    NASA Astrophysics Data System (ADS)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  12. A comparison of WEC control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David G.; Bacelli, Giorgio; Coe, Ryan Geoffrey

    2016-04-01

    The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed formore » both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.« less

  13. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  14. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Vezewski, D. J.

    1980-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary, differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scalar or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  15. Applying integrals of motion to the numerical solution of differential equations

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1979-01-01

    A method is developed for using the integrals of systems of nonlinear, ordinary differential equations in a numerical integration process to control the local errors in these integrals and reduce the global errors of the solution. The method is general and can be applied to either scaler or vector integrals. A number of example problems, with accompanying numerical results, are used to verify the analysis and support the conjecture of global error reduction.

  16. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  17. Impact of numerical information on risk knowledge regarding human papillomavirus (HPV) vaccination among schoolgirls: a randomised controlled trial.

    PubMed

    Steckelberg, Anke; Albrecht, Martina; Kezle, Anna; Kasper, Jürgen; Mühlhauser, Ingrid

    2013-01-01

    In Germany the implementation of human papillomavirus (HPV) vaccination for women aged 12-17 years was accompanied by various campaigns. Evidence-based information including numerical data was not provided. However, standard information leads to overestimation of cancer risk and effects of HPV vaccination. Confidence in children's ability to deal with numerical data is low, especially in disadvantaged pupils. The aim of the present study was to compare the effects of a standard leaflet with an information leaflet supplemented with numerical data on 'risk knowledge' regarding HPV vaccination among schoolgirls. Randomised-controlled short-term trial. All 108 schoolgirls of seven school classes were asked to participate and 105 agreed. Participants were vocational schoolgirls who were preparing for grade 10 graduation and who were members of the target group for HPV vaccination. The control group was asked to read a standard leaflet on HPV vaccination of the German Women's Health Network. The intervention group received the same leaflet, but it was supplemented with numerical information on cancer risk and assumed effects of the HPV vaccination on cancer prevention. As baseline characteristics we surveyed: age, vaccination status, attitude towards HPV vaccination and aspects regarding migration background. The primary end point was 'risk knowledge'. Questionnaire surveys were performed under experimental conditions. Individual randomisation, participants, and intention-to-treat data analyses were blinded. The study was approved by the Ministry of Education and Culture of Schleswig-Holstein and the ethics committee of the Hamburg Chamber of Physicians. We analysed 'risk knowledge' for all 105 randomised participants. Baseline characteristics of the two groups were comparable. Numerical risk information recipients were more likely to give correct answers compared to standard information recipients: Mean value of risk knowledge score (0-5 points): 4.6±1.0 vs. 2.6±1.2 (mean difference 2.0 (95% CI 1.6-2.4)); (P<0.001). Post hoc distractor analysis of single items was performed. Incorrect answers of control participants indicated that cervical cancer risk was highly overestimated whereas total cancer risk was mostly underestimated, and possible impact of HPV vaccination on cancer prevention was overestimated. Supplementing health information on HPV vaccination with numerical data improves 'risk knowledge' among schoolgirls.

  18. An Improved Method to Control the Critical Parameters of a Multivariable Control System

    NASA Astrophysics Data System (ADS)

    Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John

    2017-10-01

    The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.

  19. Efficient adaptive pseudo-symplectic numerical integration techniques for Landau-Lifshitz dynamics

    NASA Astrophysics Data System (ADS)

    d'Aquino, M.; Capuano, F.; Coppola, G.; Serpico, C.; Mayergoyz, I. D.

    2018-05-01

    Numerical time integration schemes for Landau-Lifshitz magnetization dynamics are considered. Such dynamics preserves the magnetization amplitude and, in the absence of dissipation, also implies the conservation of the free energy. This property is generally lost when time discretization is performed for the numerical solution. In this work, explicit numerical schemes based on Runge-Kutta methods are introduced. The schemes are termed pseudo-symplectic in that they are accurate to order p, but preserve magnetization amplitude and free energy to order q > p. An effective strategy for adaptive time-stepping control is discussed for schemes of this class. Numerical tests against analytical solutions for the simulation of fast precessional dynamics are performed in order to point out the effectiveness of the proposed methods.

  20. Relations of different types of numerical magnitude representations to each other and to mathematics achievement.

    PubMed

    Fazio, Lisa K; Bailey, Drew H; Thompson, Clarissa A; Siegler, Robert S

    2014-07-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both magnitude comparison and number line estimation tasks. After controlling for non-mathematical cognitive proficiency, both symbolic and non-symbolic numerical magnitude understandings were uniquely related to mathematics achievement, but the relation was much stronger for symbolic numbers. A meta-analysis of 19 published studies indicated that relations between non-symbolic numerical magnitude knowledge and mathematics achievement are present but tend to be weak, especially beyond 6 years of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Research on numerical control system based on S3C2410 and MCX314AL

    NASA Astrophysics Data System (ADS)

    Ren, Qiang; Jiang, Tingbiao

    2008-10-01

    With the rapid development of micro-computer technology, embedded system, CNC technology and integrated circuits, numerical control system with powerful functions can be realized by several high-speed CPU chips and RISC (Reduced Instruction Set Computing) chips which have small size and strong stability. In addition, the real-time operating system also makes the attainment of embedded system possible. Developing the NC system based on embedded technology can overcome some shortcomings of common PC-based CNC system, such as the waste of resources, low control precision, low frequency and low integration. This paper discusses a hardware platform of ENC (Embedded Numerical Control) system based on embedded processor chip ARM (Advanced RISC Machines)-S3C2410 and DSP (Digital Signal Processor)-MCX314AL and introduces the process of developing ENC system software. Finally write the MCX314AL's driver under the embedded Linux operating system. The embedded Linux operating system can deal with multitask well moreover satisfy the real-time and reliability of movement control. NC system has the advantages of best using resources and compact system with embedded technology. It provides a wealth of functions and superior performance with a lower cost. It can be sure that ENC is the direction of the future development.

  2. Number versus Extent in Newborns' Spontaneous Preference for Collections of Dots

    ERIC Educational Resources Information Center

    Turati, Chiara; Gava, Lucia; Valenza, Eloisa; Ghirardi, Valentina

    2013-01-01

    This study investigated processing of number and extent in newborns. Using visual preference, we showed that newborns discriminated between small sets of dot collections relying solely on implicit numerical information when non-numerical continuous variables were strictly controlled (Experiment 1), and solely on continuous information when…

  3. Probabilistic numerics and uncertainty in computations

    PubMed Central

    Hennig, Philipp; Osborne, Michael A.; Girolami, Mark

    2015-01-01

    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321

  4. Probabilistic numerics and uncertainty in computations.

    PubMed

    Hennig, Philipp; Osborne, Michael A; Girolami, Mark

    2015-07-08

    We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.

  5. Neuro-fuzzy control of structures using acceleration feedback

    NASA Astrophysics Data System (ADS)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  6. Thermal protection system gap analysis using a loosely coupled fluid-structural thermal numerical method

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Li, Piao; Yao, Weixing

    2018-05-01

    A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.

  7. Numerical simulation and sensitivity analysis of a low-Reynolds-number flow around a square cylinder controlled using plasma actuators

    NASA Astrophysics Data System (ADS)

    Anzai, Yosuke; Fukagata, Koji; Meliga, Philippe; Boujo, Edouard; Gallaire, François

    2017-04-01

    Flow around a square cylinder controlled using plasma actuators (PAs) is numerically investigated by direct numerical simulation in order to clarify the most effective location of actuator installation and to elucidate the mechanism of control effect. The Reynolds number based on the cylinder diameter and the free-stream velocity is set to be 100 to study the fundamental effect of PAs on two-dimensional vortex shedding, and three different locations of PAs are considered. The mean drag and the root-mean-square of lift fluctuations are found to be reduced by 51% and 99% in the case where two opposing PAs are aligned vertically on the rear surface. In that case, a jet flow similar to a base jet is generated by the collision of the streaming flows induced by the two opposing PAs, and the vortex shedding is completely suppressed. The simulation results are ultimately revisited in the frame of linear sensitivity analysis, whose computational cost is much lower than that of performing the full simulation. A good agreement is reported for low control amplitudes, which allows further discussion of the linear optimal arrangement for any number of PAs.

  8. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    NASA Astrophysics Data System (ADS)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  9. A technique for designing active control systems for astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Creedon, J. F.

    1973-01-01

    The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.

  10. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less

  11. Pinning synchronization of delayed complex dynamical networks with nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin

    2014-11-01

    In this paper, we find that complex networks with the Watts-Strogatz or scale-free BA random topological architecture can be synchronized more easily by pin-controlling fewer nodes than regular systems. Theoretical analysis is included by means of Lyapunov functions and linear matrix inequalities (LMI) to make all nodes reach complete synchronization. Numerical examples are also provided to illustrate the importance of our theoretical analysis, which implies that there exists a gap between the theoretical prediction and numerical results about the minimum number of pinning controlled nodes.

  12. Analysis and control of hourglass instabilities in underintegrated linear and nonlinear elasticity

    NASA Technical Reports Server (NTRS)

    Jacquotte, Olivier P.; Oden, J. Tinsley

    1994-01-01

    Methods are described to identify and correct a bad finite element approximation of the governing operator obtained when under-integration is used in numerical code for several model problems: the Poisson problem, the linear elasticity problem, and for problems in the nonlinear theory of elasticity. For each of these problems, the reason for the occurrence of instabilities is given, a way to control or eliminate them is presented, and theorems of existence, uniqueness, and convergence for the given methods are established. Finally, numerical results are included which illustrate the theory.

  13. Numerical simulation of axisymmetric valve operation for different outer cone angle

    NASA Astrophysics Data System (ADS)

    Smyk, Emil

    One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet) the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve's nozzle) by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.

  14. Optimal control applied to a model for species augmentation.

    PubMed

    Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne

    2008-10-01

    Species augmentation is a method of reducing species loss via augmenting declining or threatened populations with individuals from captive-bred or stable, wild populations. In this paper, we develop a differential equations model and optimal control formulation for a continuous time augmentation of a general declining population. We find a characterization for the optimal control and show numerical results for scenarios of different illustrative parameter sets. The numerical results provide considerably more detail about the exact dynamics of optimal augmentation than can be readily intuited. The work and results presented in this paper are a first step toward building a general theory of population augmentation, which accounts for the complexities inherent in many conservation biology applications.

  15. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  16. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  17. Dynamics and Control of Vehicles

    Science.gov Websites

    Contacts Researchers Thrust Area 1: Dynamics and Control of Vehicles Thrust Area Leader: Dr. Tulga Ersal economy, mobility, and safety of modern vehicles heavily rely on the numerous control systems that fulfill storage in electrified powertrains. All these vehicle control systems rely in turn on a solid

  18. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1984-01-01

    The technical progress of researches Alternatives for Jet Engine Control is reported. A numerical study employing feedback tensors for optimal control of nonlinear systems was completed. It is believed that these studies are the first of their kind. State regulation, with a decrease in control power is demonstrated. A detailed treatment follows.

  19. Fail-safe numerical control

    NASA Technical Reports Server (NTRS)

    Thompson, G. A.

    1970-01-01

    System provides duplicate set of control logic circuitry. Comparators insure that the same data is present in both circuits. If any discrepancy is found, the machine is automatically stopped, before damage can occur.

  20. Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating

    NASA Astrophysics Data System (ADS)

    Chen, Liangji; Guo, Guangsong; Li, Huiying

    2017-07-01

    NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.

  1. A numerical study of active structural acoustic control in a stiffened, double wall cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Coats, T. J.; Lester, H. C.; Silcox, R. J.

    1994-01-01

    It is demonstrated that active structural acoustic control of complex structural/acoustic coupling can be numerically modeled using finite element and boundary element techniques in conjunction with an optimization procedure to calculate control force amplitudes. Appreciable noise reduction is obtained when the structure is excited at a structural resonance of the outer shell or an acoustic resonance of the inner cavity. Adding ring stiffeners as a connection between the inner and outer shells provides an additional structural transmission path to the interior cavity and coupled the modal behavior of the inner and outer shells. For the case of excitation at the structural resonance of the unstiffened outer shell, adding the stiffeners raises the structural resonance frequencies. The effectiveness of the control forces is reduced due to the off resonance structural response. For excitation at an acoustic cavity resonance, the controller effectiveness is enhanced.

  2. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  3. A multi-scale residual-based anti-hourglass control for compatible staggered Lagrangian hydrodynamics

    DOE PAGES

    Kucharik, M.; Scovazzi, Guglielmo; Shashkov, Mikhail Jurievich; ...

    2017-10-28

    Hourglassing is a well-known pathological numerical artifact affecting the robustness and accuracy of Lagrangian methods. There exist a large number of hourglass control/suppression strategies. In the community of the staggered compatible Lagrangian methods, the approach of sub-zonal pressure forces is among the most widely used. However, this approach is known to add numerical strength to the solution, which can cause potential problems in certain types of simulations, for instance in simulations of various instabilities. To avoid this complication, we have adapted the multi-scale residual-based stabilization typically used in the finite element approach for staggered compatible framework. In this study, wemore » describe two discretizations of the new approach and demonstrate their properties and compare with the method of sub-zonal pressure forces on selected numerical problems.« less

  4. Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Duck, P. W.

    1992-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.

  5. Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves

    NASA Technical Reports Server (NTRS)

    Bodonyi, R. J.; Duck, P. W.

    1990-01-01

    A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.

  6. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.

    PubMed

    Salomir, Rares; Rata, Mihaela; Cadis, Daniela; Petrusca, Lorena; Auboiroux, Vincent; Cotton, François

    2009-10-01

    Endocavitary high intensity contact ultrasound (HICU) may offer interesting therapeutic potential for fighting localized cancer in esophageal or rectal wall. On-line MR guidance of the thermotherapy permits both excellent targeting of the pathological volume and accurate preoperatory monitoring of the temperature elevation. In this article, the authors address the issue of the automatic temperature control for endocavitary phased-array HICU and propose a tailor-made thermal model for this specific application. The convergence and stability of the feedback loop were investigated against tuning errors in the controller's parameters and against input noise, through ex vivo experimental studies and through numerical simulations in which nonlinear response of tissue was considered as expected in vivo. An MR-compatible, 64-element, cooled-tip, endorectal cylindrical phased-array applicator of contact ultrasound was integrated with fast MR thermometry to provide automatic feedback control of the temperature evolution. An appropriate phase law was applied per set of eight adjacent transducers to generate a quasiplanar wave, or a slightly convergent one (over the circular dimension). A 2D physical model, compatible with on-line numerical implementation, took into account (1) the ultrasound-mediated energy deposition, (2) the heat diffusion in tissue, and (3) the heat sink effect in the tissue adjacent to the tip-cooling balloon. This linear model was coupled to a PID compensation algorithm to obtain a multi-input single-output static-tuning temperature controller. Either the temperature at one static point in space (situated on the symmetry axis of the beam) or the maximum temperature in a user-defined ROI was tracked according to a predefined target curve. The convergence domain in the space of controller's parameters was experimentally explored ex vivo. The behavior of the static-tuning PID controller was numerically simulated based on a discrete-time iterative solution of the bioheat transfer equation in 3D and considering temperature-dependent ultrasound absorption and blood perfusion. The intrinsic accuracy of the implemented controller was approximately 1% in ex vivo trials when providing correct estimates for energy deposition and heat diffusivity. Moreover, the feedback loop demonstrated excellent convergence and stability over a wide range of the controller's parameters, deliberately set to erroneous values. In the extreme case of strong underestimation of the ultrasound energy deposition in tissue, the temperature tracking curve alone, at the initial stage of the MR-controlled HICU treatment, was not a sufficient indicator for a globally stable behavior of the feedback loop. Our simulations predicted that the controller would be able to compensate for tissue perfusion and for temperature-dependent ultrasound absorption, although these effects were not included in the controller's equation. The explicit pattern of acoustic field was not required as input information for the controller, avoiding time-consuming numerical operations. The study demonstrated the potential advantages of PID-based automatic temperature control adapted to phased-array MR-guided HICU therapy. Further studies will address the integration of this ultrasound device with a miniature RF coil for high resolution MRI and, subsequently, the experimental behavior of the controller in vivo.

  7. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  8. Basic numerical competences in large-scale assessment data: Structure and long-term relevance.

    PubMed

    Hirsch, Stefa; Lambert, Katharina; Coppens, Karien; Moeller, Korbinian

    2018-03-01

    Basic numerical competences are seen as building blocks for later numerical and mathematical achievement. The current study aimed at investigating the structure of early numeracy reflected by different basic numerical competences in kindergarten and its predictive value for mathematical achievement 6 years later using data from large-scale assessment. This allowed analyses based on considerably large sample sizes (N > 1700). A confirmatory factor analysis indicated that a model differentiating five basic numerical competences at the end of kindergarten fitted the data better than a one-factor model of early numeracy representing a comprehensive number sense. In addition, these basic numerical competences were observed to reliably predict performance in a curricular mathematics test in Grade 6 even after controlling for influences of general cognitive ability. Thus, our results indicated a differentiated view on early numeracy considering basic numerical competences in kindergarten reflected in large-scale assessment data. Consideration of different basic numerical competences allows for evaluating their specific predictive value for later mathematical achievement but also mathematical learning difficulties. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Working memory deficits in developmental dyscalculia: The importance of serial order.

    PubMed

    Attout, Lucie; Majerus, Steve

    2015-01-01

    Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.

  10. Streamline integration as a method for two-dimensional elliptic grid generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.

    We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less

  11. Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Yang-Qing; Wang, Jian-Hua; Chen, Jin-Jian; Li, Ming-Guang

    2017-05-01

    Groundwater drawdown and strata settlements induced by dewatering in confined aquifers can be relieved by artificial recharge. In this study, numerical simulations of a field multi-well pumping-recharge test in a deep confined aquifer are conducted to analyze the responses of groundwater and strata to pumping and recharge. A three-dimensional numerical model is developed in a finite-difference software, which considers the fluid-mechanical interaction using the Biot consolidation theory. The predicted groundwater drawdown and ground settlements are compared to the measured data to confirm the validation of the numerical analysis of the pumping and recharge. Both numerical results and measured data indicate that the effect of recharge on controlling the groundwater drawdown and strata settlements correlates with the injection rate and well arrangements. Since the groundwater drawdown induced by pumping can be controlled by artificial recharge, soil compression can be relieved by reducing the changes of effective stress of the soils. Consequently, strata settlement induced by pumping can be relieved by artificial recharge and ground settlements can be eliminated if an appropriate injection rate and well arrangement are being determined. Moreover, the changes of the pore pressure and seepage force induced by pumping and recharge will also result in significant horizontal deformations in the strata near the recharge wells.

  12. Fundamental Experimental and Numerical Investigation of Active Control of 3-D Flows

    DTIC Science & Technology

    2011-10-06

    Unmanned Aerial Vehicle”, AIAA Journal, 46, 2530- 2544. Gallas , Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M. and Cattafesta, L., 2003, “Lumped...McGraw-Hill, 1959. Trofimova, A.V., Tejada- Martinez , A.E., Jansen, K.E. and Lahey, R.T., 2009, “Direct Numerical Simulation of Turbulent Channel Flows

  13. Numerical Acuity Enhancement in Kindergarten: How Much Does Material Presentation Form Mean?

    ERIC Educational Resources Information Center

    Mascia, Maria Lidia; Fastame, Maria Chiara; Agus, Mirian; Lucangeli, Daniela; Penna, Maria Pietronilla

    2016-01-01

    The current study aimed at exploring the impact of the modality in which numerical trainings proposed in kindergarten school. Participants were recruited from some Sardinian kindergarten schools and were then divided into three groups: a control group, which had to carry out the activities planned by the educational curriculum, and two…

  14. Chaos in the fractional order logistic delay system: Circuit realization and synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskonus, Haci Mehmet; Hammouch, Zakia; Mekkaoui, Toufik

    2016-06-08

    In this paper, we present a numerical study and a circuit design to prove existence of chaos in the fractional order Logistic delay system. In addition, we investigate an active control synchronization scheme in this system. Numerical and cicruit simulations show the effectiveness and feasibility of this method.

  15. Numerical Activities of Daily Living in Adults with Neurofibromatosis Type 1

    ERIC Educational Resources Information Center

    Burgio, F.; Benavides-Varela, S.; Arcara, G.; Trevisson, E.; Frizziero, D.; Clementi, M.; Semenza, C.

    2017-01-01

    Background: This study aimed to identify the mathematical domains affected in adults with neurofibromatosis 1 (NF1) and the impact of the numerical difficulties on the patients' activities of daily living. Methods: We assessed 28 adult patients with NF1 and 28 healthy control participants. All participants completed the standardised battery of…

  16. Role of Beliefs and Emotions in Numerical Problem Solving in University Physics Education

    ERIC Educational Resources Information Center

    Bodin, Madelen; Winberg, Mikael

    2012-01-01

    Numerical problem solving in classical mechanics in university physics education offers a learning situation where students have many possibilities of control and creativity. In this study, expertlike beliefs about physics and learning physics together with prior knowledge were the most important predictors of the quality of performance of a task…

  17. Numerical Simulation of Adaptive Control Applicaton to Unstable Solid Rocket Motors

    DTIC Science & Technology

    2001-06-01

    la Technologie des Lanceurs "Vi- Sciences Meeting & Exhibit, Reno, Jan. 15-18. bration des Lanceurs , Toulouse", 1999. AIAA Paper 96-0759, 1996. 7-8...Schmidt. Some recent de- in the presence of pipeline acoustic resonance. velopments in numerical methods for transonic J. Fluids and Structures ., 5:207

  18. Spatial and Numerical Predictors of Measurement Performance: The Moderating Effects of Community Income and Gender

    ERIC Educational Resources Information Center

    Casey, Beth M.; Dearing, Eric; Vasilyeva, Marina; Ganley, Colleen M.; Tine, Michele

    2011-01-01

    Spatial reasoning and numerical predictors of measurement performance were investigated in 4th graders from low-income and affluent communities. Predictors of 2 subtypes of measurement performance (spatial-conceptual and formula based) were assessed while controlling for verbal and spatial working memory. Consistent with prior findings, students…

  19. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  20. Numerical simulation of the casting process of titanium tooth crowns and bridges.

    PubMed

    Wu, M; Augthun, M; Wagner, I; Sahm, P R; Spiekermann, H

    2001-06-01

    The objectives of this paper were to simulate the casting process of titanium tooth crowns and bridges; to predict and control porosity defect. A casting simulation software, MAGMASOFT, was used. The geometry of the crowns with fine details of the occlusal surface were digitized by means of laser measuring technique, then converted and read in the simulation software. Both mold filling and solidification were simulated, the shrinkage porosity was predicted by a "feeding criterion", and the gas pore sensitivity was studied based on the mold filling and solidification simulations. Two types of dental prostheses (a single-crown casting and a three-unit-bridge) with various sprue designs were numerically "poured", and only one optimal design for each prosthesis was recommended for real casting trial. With the numerically optimized design, real titanium dental prostheses (five replicas for each) were made on a centrifugal casting machine. All the castings endured radiographic examination, and no porosity was detected in the cast prostheses. It indicates that the numerical simulation is an efficient tool for dental casting design and porosity control. Copyright 2001 Kluwer Academic Publishers

  1. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  2. Influence of the Roof Movement Control Method on the Stability of Remnant

    NASA Astrophysics Data System (ADS)

    Adach-Pawelus, Karolina

    2017-12-01

    In the underground mines, there are geological and mining situations that necessitate leaving behind remnants in the mining field. Remnants, in the form of small, irregular parcels, are usually separated in the case of: significant problems with maintaining roof stability, high rockburst hazard, the occurrence of complex geological conditions and for random reasons (ore remnants), as well as for economic reasons (undisturbed rock remnants). Remnants left in the mining field become sites of high stress values concentration and may affect the rock in their vicinity. The values of stress inside the remnant and its vicinity, as well as the stability of the remnant, largely depend on the roof movement control method used in the mining field. The article presents the results of the numerical analysis of the influence of roof movement control method on remnant stability and the geomechanical situation in the mining field. The numerical analysis was conducted for the geological and mining conditions characteristic of Polish underground copper mines owned by KGHM Polska Miedz S.A. Numerical simulations were performed in a plane strain state by means of Phase 2 v. 8.0 software, based on the finite element method. The behaviour of remnant and rock mass in its vicinity was simulated in the subsequent steps of the room and pillar mining system for three types of roof movement control method: roof deflection, dry backfill and hydraulic backfill. The parameters of the rock mass accepted for numerical modelling were calculated by means of RocLab software on the basis of the Hoek-Brown classification. The Mohr-Coulomb strength criterion was applied.

  3. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  4. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, Petros

    1994-01-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  5. The calculating brain: an fMRI study.

    PubMed

    Rickard, T C; Romero, S G; Basso, G; Wharton, C; Flitman, S; Grafman, J

    2000-01-01

    To explore brain areas involved in basic numerical computation, functional magnetic imaging (fMRI) scanning was performed on college students during performance of three tasks; simple arithmetic, numerical magnitude judgment, and a perceptual-motor control task. For the arithmetic relative to the other tasks, results for all eight subjects revealed bilateral activation in Brodmann's area 44, in dorsolateral prefrontal cortex (areas 9 and 10), in inferior and superior parietal areas, and in lingual and fusiform gyri. Activation was stronger on the left for all subjects, but only at Brodmann's area 44 and the parietal cortices. No activation was observed in the arithmetic task in several other areas previously implicated for arithmetic, including the angular and supramarginal gyri and the basal ganglia. In fact, angular and supramarginal gyri were significantly deactivated by the verification task relative to both the magnitude judgment and control tasks for every subject. Areas activated by the magnitude task relative to the control were more variable, but in five subjects included bilateral inferior parietal cortex. These results confirm some existing hypotheses regarding the neural basis of numerical processes, invite revision of others, and suggest productive lines for future investigation.

  6. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros

    1994-12-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  7. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.

    2016-12-01

    This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.

  9. Report: EPA’s Office of Environmental Information Should Improve Ariel Rios and Potomac Yard Computer Room Security Controls

    EPA Pesticide Factsheets

    Report #12-P-0879, September 26, 2012. The security posture and in-place environmental control review of the computer rooms in the Ariel Rios and Potomac Yard buildings revealed numerous security and environmental control deficiencies.

  10. Acceleration of fusion in mouse palates by in vitro exposure to excess G

    NASA Technical Reports Server (NTRS)

    Duke, J.; Janer, L.; Campbell, M.

    1984-01-01

    Palatal shelves from 13- and 14-day mouse embryos were excised and cultured in contiguous pairs. Experimental cultures were exposed to 2.6 G in a culture centrifuge; controls were in the same incubator. After 24 hours, palates were prepared for light or electron microscopy. Scoring of paraffin sections according to the stage of fusion seen in the medial epithelial edges (MEE) showed that palates exposed to excess G were in more advanced stages of fusion than were controls. Ultrastructurally, control MEE had tightly apposed cell membranes and numerous desmosomes; in centrifuged MEE, desmosomes had been removed and there was much intercellular space. Nuclear membranes were intact in control MEE, but showed marked deterioration in MEE of centrifuged palates. Few lysosomes and no necrosis were seen in control MEE; centrifuged MEE had numerous lysosomes as well as necrotic cells. Basal lamina were intact in controls, but interrupted in centrifuged palates. The results confirm the hypothesis that gravitational increases speed up the differentiative process.

  11. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  12. Numerical analysis of a variable camber rotor blade as a lift control device

    NASA Technical Reports Server (NTRS)

    Awani, A. O.; Stroub, R. H.

    1984-01-01

    A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.

  13. Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2013-01-01

    Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.

  14. The investigation of a variable camber blade lift control for helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Awani, A. O.

    1982-01-01

    A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.

  15. Predictor-Based Model Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  16. Numerical evaluation of the limit of concentration of colloidal samples for their study with digital lensless holographic microscopy.

    PubMed

    Restrepo, John F; Garcia-Sucerquia, Jorge

    2013-01-01

    The number of colloidal particles per unit of volume that can be imaged correctly with digital lensless holographic microscopy (DLHM) is determined numerically. Typical in-line DLHM holograms with controlled concentration are modeled and reconstructed numerically. By quantifying the ratio of the retrieved particles from the reconstructed hologram to the number of the seeding particles in the modeled intensity, the limit of concentration of the colloidal suspensions up to which DLHM can operate successfully is found numerically. A new shadow density parameter for spherical illumination is defined. The limit of performance of DLHM is determined from a graph of the shadow density versus the efficiency of the microscope.

  17. An express method for optimally tuning an analog controller with respect to integral quality criteria

    NASA Astrophysics Data System (ADS)

    Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.

    2014-03-01

    An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.

  18. Tool setting device

    DOEpatents

    Brown, Raymond J.

    1977-01-01

    The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.

  19. Numerical study of MHD supersonic flow control

    NASA Astrophysics Data System (ADS)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  20. An OKQPSK modem incorporating numerically controlled carrier synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oetken, R.E.

    1988-04-04

    The feasibility of incorporating numerically controlled oscillators (NCO) in communication related applications is evaluated. NCO generation of sinusoids may prove useful in systems requiring precise frequency control, tuning linearity, and orthogonality versus frequency. An OKQPSK modem operating at a data rate of 200 kb/s was fabricated. The modem operates in a back to back hardwired channel and thus does not incorporate carrier or symbol timing recovery. Spectra of the NCO generated sinusoids are presented along with waveforms from the modulation and demodulation process. Generation of sinusoids in the digital domain is a viable alternative to analog oscillators. Implementation of anmore » NCO should be considered when frequency allocation, tuning bandwidth, or frequency hopped transmission requires precise frequency synthesis. 24 figs.« less

  1. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    PubMed Central

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  2. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    PubMed

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  3. An unconditionally stable method for numerically solving solar sail spacecraft equations of motion

    NASA Astrophysics Data System (ADS)

    Karwas, Alex

    Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach is capable of accurately simulating sailcraft motion. Sailcraft and spacecraft simulations are compared to flight data and to other numerical solution techniques. The new formulation shows an increase in accuracy over a widely used trajectory propagation technique. Simulations for two-dimensional, three-dimensional, and variable attitude trajectories are presented to show the multiple capabilities of the new technique. An element of optimal control is also part of the new technique. An additional equation is added to the sailcraft equations of motion that maximizes thrust in a specific direction. A technical description and results of an example optimization problem are presented. The spacecraft attitude dynamics equations take the simulation a step further by providing control torques using the angular rate and acceleration outputs of the numerical formulation.

  4. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslinger, Jaroslav, E-mail: hasling@karlin.mff.cuni.cz; Stebel, Jan, E-mail: stebel@math.cas.cz

    2011-04-15

    We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.

  5. Power characteristics in GMAW: Experimental and numerical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Szekely, J.; Madigan, R.B.

    1995-03-01

    The voltage and power distributions in gas metal arc welding (GMAW) were studied both experimentally and numerically. The principal voltage drop takes place in the arc, which also constitutes the dominant power contribution. Within the arc, the dominating voltage contributions are from the arc column and the cathode fall, while the anode fall and the electrode regions are less significant. The power input to the arc column increases with both increasing current and increasing arc length. These results indicate that it is critical to control the arc length in order to control the power input to the system.

  6. Strange non-chaotic attractors in a state controlled-cellular neural network-based quasiperiodically forced MLC circuit

    NASA Astrophysics Data System (ADS)

    Ezhilarasu, P. Megavarna; Inbavalli, M.; Murali, K.; Thamilmaran, K.

    2018-07-01

    In this paper, we report the dynamical transitions to strange non-chaotic attractors in a quasiperiodically forced state controlled-cellular neural network (SC-CNN)-based MLC circuit via two different mechanisms, namely the Heagy-Hammel route and the gradual fractalisation route. These transitions were observed through numerical simulations and hardware experiments and confirmed using statistical tools, such as maximal Lyapunov exponent spectrum and its variance and singular continuous spectral analysis. We find that there is a remarkable agreement of the results from both numerical simulations as well as from hardware experiments.

  7. Analytical formulation of selected activities of the remote manipulator system

    NASA Technical Reports Server (NTRS)

    Zimmerman, K. J.

    1977-01-01

    Existing analysis of Orbiter-RMS-Payload kinematics were surveyed, including equations dealing with the two body kinematics in the presence of a massless RMS and compares analytical explicit solutions with numerical solutions. For the following operational phases of the RMS numerical demonstration, problems are provided: (1) payload capture; (2) payload stowage and removal from cargo bay; and (3) payload deployment. The equation of motion provided accounted for RMS control forces and torque moments and could be extended to RMS flexibility and control loop simulation without increasing the degrees of freedom of the two body system.

  8. Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.

    PubMed

    Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J

    2016-11-09

    We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.

  9. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  10. Numerical orbit generators of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  11. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  12. Introduction to 2009 Symposium on Alternative Methods of Controlling Pests and Diseases

    USDA-ARS?s Scientific Manuscript database

    Numerous pests and diseases limit potato productivity, and control of weeds, insects and pathogens remains a costly part of potato production. Although conventional agrichemical pest control is amazingly effective, interest in non-synthetic chemical and integrated methods of pest management is drive...

  13. 8 CFR 207.6 - Control over approved refugee numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Control over approved refugee numbers. 207.6 Section 207.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS ADMISSION OF REFUGEES § 207.6 Control over approved refugee numbers. Current numerical accounting of...

  14. 8 CFR 207.6 - Control over approved refugee numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Control over approved refugee numbers. 207.6 Section 207.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS ADMISSION OF REFUGEES § 207.6 Control over approved refugee numbers. Current numerical accounting of...

  15. 8 CFR 207.6 - Control over approved refugee numbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Control over approved refugee numbers. 207.6 Section 207.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS ADMISSION OF REFUGEES § 207.6 Control over approved refugee numbers. Current numerical accounting of...

  16. 8 CFR 207.6 - Control over approved refugee numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Control over approved refugee numbers. 207.6 Section 207.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS ADMISSION OF REFUGEES § 207.6 Control over approved refugee numbers. Current numerical accounting of...

  17. 8 CFR 207.6 - Control over approved refugee numbers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Control over approved refugee numbers. 207.6 Section 207.6 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS ADMISSION OF REFUGEES § 207.6 Control over approved refugee numbers. Current numerical accounting of...

  18. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  19. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  20. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  1. 40 CFR 1054.230 - How do I select emission families?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control for engine operation, other than governing (mechanical or electronic). (9) The numerical level of... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT..., divide your product line into families of engines that are expected to have similar emission...

  2. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS INTERPRETATIONS.... “Numerical control” units include computers with add-on “motion control boards”. A computer with add-on “motion control boards” for machine tools may be controlled under ECCN 2B001.a even when the computer...

  3. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS INTERPRETATIONS.... “Numerical control” units include computers with add-on “motion control boards”. A computer with add-on “motion control boards” for machine tools may be controlled under ECCN 2B001.a even when the computer...

  4. 15 CFR 770.2 - Item interpretations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS INTERPRETATIONS.... “Numerical control” units include computers with add-on “motion control boards”. A computer with add-on “motion control boards” for machine tools may be controlled under ECCN 2B001.a even when the computer...

  5. Linking Physical and Numerical Modelling in Hydrogeology Using Sand Tank Experiments and Comsol Multiphysics

    ERIC Educational Resources Information Center

    Singha, Kamini; Loheide, Steven P., II

    2011-01-01

    Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…

  6. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  7. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission family are designed to operate. You must meet the numerical emission standards for hydrocarbons in... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK...

  8. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission family are designed to operate. You must meet the numerical emission standards for hydrocarbons in... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK...

  9. Numerical simulation of intelligent compaction technology for construction quality control.

    DOT National Transportation Integrated Search

    2014-12-01

    Intelligent compaction (IC) technique is a fast-developing technology for compaction quality control and acceptance. Proof rolling using the intelligent compaction rollers after completing compaction can eectively identify : the weak spots and sig...

  10. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    PubMed

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    NASA Astrophysics Data System (ADS)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  12. Analysis of control system responses for aircraft stability and efficient numerical techniques for real-time simulations

    NASA Astrophysics Data System (ADS)

    Stroe, Gabriela; Andrei, Irina-Carmen; Frunzulica, Florin

    2017-01-01

    The objectives of this paper are the study and the implementation of both aerodynamic and propulsion models, as linear interpolations using look-up tables in a database. The aerodynamic and propulsion dependencies on state and control variable have been described by analytic polynomial models. Some simplifying hypotheses were made in the development of the nonlinear aircraft simulations. The choice of a certain technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. The engine power dynamic response was modeled with an additional state equation as first order lag in the actual power level response to commanded power level was computed as a function of throttle position. The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation. A linear time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations present. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences, including the perturbations of the state and control variables. For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.

  13. Trajectory controllability of semilinear systems with multiple variable delays in control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klamka, Jerzy, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl; Niezabitowski, Michał, E-mail: Jerzy.Klamka@polsl.pl, E-mail: Michal.Niezabitowski@polsl.pl

    In this paper, finite-dimensional dynamical control system described by semilinear differential state equation with multiple variable delays in control are considered. The concept of controllability we extend on trajectory controllability for systems with multiple point delays in control. Moreover, remarks and comments on the relationships between different concepts of controllability are presented. Finally, simple numerical example, which illustrates theoretical considerations is also given. The possible extensions are also proposed.

  14. The impact of numeric and graphic displays of ST-segment deviation levels on cardiologists' decisions of reperfusion therapy for patients with acute coronary occlusion.

    PubMed

    Nimmermark, Magnus O; Wang, John J; Maynard, Charles; Cohen, Mauricio; Gilcrist, Ian; Heitner, John; Hudson, Michael; Palmeri, Sebastian; Wagner, Galen S; Pahlm, Olle

    2011-01-01

    The study purpose is to determine whether numeric and/or graphic ST measurements added to the display of the 12-lead electrocardiogram (ECG) would influence cardiologists' decision to provide myocardial reperfusion therapy. Twenty ECGs with borderline ST-segment deviation during elective percutaneous coronary intervention and 10 controls before balloon inflation were included. Only 5 of the 20 ECGs during coronary balloon occlusion met the 2007 American Heart Association guidelines for ST-elevation myocardial infarction (STEMI). Fifteen cardiologists read 4 sets of these ECGs as the basis for a "yes/no" reperfusion therapy decision. Sets 1 and 4 were the same 12-lead ECGs alone. Set 2 also included numeric ST-segment measurements, and set 3 included both numeric and graphically displayed ST measurements ("ST Maps"). The mean (range) positive reperfusion decisions were 10.6 (2-15), 11.4 (1-19), 9.7 (2-14), and 10.7 (1-15) for sets 1 to 4, respectively. The accuracies of the observers for the 5 STEMI ECGs were 67%, 69%, and 77% for the standard format, the ST numeric format, and the ST graphic format, respectively. The improved detection rate (77% vs 67%) with addition of both numeric and graphic displays did achieve statistical significance (P < .025). The corresponding specificities for the 10 control ECGs were 85%, 79%, and 89%, respectively. In conclusion, a wide variation of reperfusion decisions was observed among clinical cardiologists, and their decisions were not altered by adding ST deviation measurements in numeric and/or graphic displays. Acute coronary occlusion detection rate was low for ECGs meeting STEMI criteria, and this was improved by adding ST-segment measurements in numeric and graphic forms. These results merit further study of the clinical value of this technique for improved acute coronary occlusion treatment decision support. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Experiments study on attitude coupling control method for flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  16. Configuration maintaining control of three-body ring tethered system based on thrust compensation

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Liu, Binbin; Zhang, Fan

    2016-06-01

    Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.

  17. Spray characterization of ULV sprayers typically used in vector control

    USDA-ARS?s Scientific Manuscript database

    Numerous spray machines are used to apply products for the control of human disease vectors, such as mosquitoes and flies. However, the selection and setup of these machines significantly affect the level of control achieved during an application. The droplet spectra produced by nine different ULV...

  18. Design of conveyor type machine with numerical control for manufacturing of extrusion thermoplastic thread

    NASA Astrophysics Data System (ADS)

    Gorbunova, T. N.; Koltunov, I. I.; Tumanova, M. B.

    2018-05-01

    The article is devoted to the development of a model and control program for a 3D printer working based on extrusion technology. The article contains descriptions of all components of the machine and blocks of the interface of the control program.

  19. Adaptive control of a manipulator with a flexible link

    NASA Technical Reports Server (NTRS)

    Yang, Y. P.; Gibson, J. S.

    1988-01-01

    An adaptive controller for a manipulator with one rigid link and one flexible link is presented. The performance and robustness of the controller are demonstrated by numerical simulation results. In the simulations, the manipulator moves in a gravitational field and a finite element model represents the flexible link.

  20. EXPERIMENTAL PERFORMANCE OF A CONTROLLABLE-PITCH SUPERCAVITATING PROPELLER.

    DTIC Science & Technology

    Studies were made of cavitation performance and open-water characteristics of a controllable-pitch supercavitating propeller with two, three, and...By means of several numerical examples, the feasibility of using a controllable-pitch supercavitating propeller is demonstrated. A practical application to a hydrofoil boat is also presented. (Author)

  1. Differential Flatness and Cooperative Tracking in the Lorenz System

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.

    2002-01-01

    In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.

  2. Evaluation of traffic control devices : fifth-year activities.

    DOT National Transportation Integrated Search

    2009-02-01

    This project was established to provide a means of conducting limited scope evaluations of numerous traffic : control device issues. During the fifth, and final, year of the project, researchers conducted four activities: : improving the interface fo...

  3. The computation of the post-stall behavior of a circulation controlled airfoil

    NASA Technical Reports Server (NTRS)

    Linton, Samuel W.

    1993-01-01

    The physics of the circulation controlled airfoil is complex and poorly understood, particularly with regards to jet stall, which is the eventual breakdown of lift augmentation by the jet at some sufficiently high blowing rate. The present paper describes the numerical simulation of stalled and unstalled flows over a two-dimensional circulation controlled airfoil using a fully implicit Navier-Stokes code, and the comparison with experimental results. Mach numbers of 0.3 and 0.5 and jet total to freestream pressure ratios of 1.4 and 1.8 are investigated. The Baldwin-Lomax and k-epsilon turbulence models are used, each modified to include the effect of strong streamline curvature. The numerical solutions of the post-stall circulation controlled airfoil show a highly regular unsteady periodic flowfield. This is the result of an alternation between adverse pressure gradient and shock induced separation of the boundary layer on the airfoil trailing edge.

  4. Optimal control for a tuberculosis model with undetected cases in Cameroon

    NASA Astrophysics Data System (ADS)

    Moualeu, D. P.; Weiser, M.; Ehrig, R.; Deuflhard, P.

    2015-03-01

    This paper considers the optimal control of tuberculosis through education, diagnosis campaign and chemoprophylaxis of latently infected. A mathematical model which includes important components such as undiagnosed infectious, diagnosed infectious, latently infected and lost-sight infectious is formulated. The model combines a frequency dependent and a density dependent force of infection for TB transmission. Through optimal control theory and numerical simulations, a cost-effective balance of two different intervention methods is obtained. Seeking to minimize the amount of money the government spends when tuberculosis remain endemic in the Cameroonian population, Pontryagin's maximum principle is used to characterize the optimal control. The optimality system is derived and solved numerically using the forward-backward sweep method (FBSM). Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods. It comes out that combining chemoprophylaxis and education, the burden of TB can be reduced by 80% in 10 years.

  5. Real time control and numerical simulation of pipeline subjected to landslide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuscuna, S.; Giusti, G.; Gramola, C.

    1984-06-01

    This paper describes SNAM research activity in the study of behaviour and real-time control of pipelines in landslide areas. The subject can be delt considering three different aspects: 1. Geotechnical characterization of unstable soils. The mechanical parameters of soil and the landslide types are defined; 2. Structural analysis of pipe-soil system. By means of a finite element program it's possible to study the pipe-soil interaction; in this numerical code the soil parameters attend by the non-linear elastic behaviour of pipe restraints. The results of this analysis are the location of the expected most stressed sections of pipe and the globalmore » behaviour of pipe inside the soil. 3. Instrumental control. The adoption of a suitable appliance of vibrating wire strain gauges allows the strain control of pipe in time. The aim is to make possible timely interventions in order to guarantee the installation safety.« less

  6. Finite element solution of optimal control problems with inequality constraints

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.

    1990-01-01

    A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.

  7. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  8. Development of an Intelligent Monitoring and Control System for a Heterogeneous Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.

    1996-01-01

    The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.

  9. The dynamics and control of large flexible space structures-IV

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; Krishna, R.; Reddy, A. S. S. R.

    1981-01-01

    The effects of solar radiation pressure as the main environmental disturbance torque were incorporated into the model of the rigid orbiting shallow shell and computer simulation results indicate that within the linear range the rigid modal amplitudes are excited in proportion to the area to mass ratio. The effect of higher order terms in the gravity-gradient torque expressions previously neglected was evaluated and found to be negligible for the size structures under consideration. A graph theory approach was employed for calculating the eigenvalues of a large flexible system by reducing the system (stiffness) matrix to lower ordered submatrices. The related reachability matrix and term rank concepts are used to verify controllability and can be more effective than the alternate numerical rank tests. Control laws were developed for the shape and orientation control of the orbiting flexible shallow shell and numerical results presented.

  10. Design of the BRISC study: a multicentre controlled clinical trial to optimize the communication of breast cancer risks in genetic counselling.

    PubMed

    Ockhuysen-Vermey, Caroline F; Henneman, Lidewij; van Asperen, Christi J; Oosterwijk, Jan C; Menko, Fred H; Timmermans, Daniëlle R M

    2008-10-03

    Understanding risks is considered to be crucial for informed decision-making. Inaccurate risk perception is a common finding in women with a family history of breast cancer attending genetic counseling. As yet, it is unclear how risks should best be communicated in clinical practice. This study protocol describes the design and methods of the BRISC (Breast cancer RISk Communication) study evaluating the effect of different formats of risk communication on the counsellee's risk perception, psychological well-being and decision-making regarding preventive options for breast cancer. The BRISC study is designed as a pre-post-test controlled group intervention trial with repeated measurements using questionnaires. The intervention-an additional risk consultation-consists of one of 5 conditions that differ in the way counsellee's breast cancer risk is communicated: 1) lifetime risk in numerical format (natural frequencies, i.e. X out of 100), 2) lifetime risk in both numerical format and graphical format (population figures), 3) lifetime risk and age-related risk in numerical format, 4) lifetime risk and age-related risk in both numerical format and graphical format, and 5) lifetime risk in percentages. Condition 6 is the control condition in which no intervention is given (usual care). Participants are unaffected women with a family history of breast cancer attending one of three participating clinical genetic centres in the Netherlands. The BRISC study allows for an evaluation of the effects of different formats of communicating breast cancer risks to counsellees. The results can be used to optimize risk communication in order to improve informed decision-making among women with a family history of breast cancer. They may also be useful for risk communication in other health-related services. Current Controlled Trials ISRCTN14566836.

  11. Semantic and perceptual processing of number symbols: evidence from a cross-linguistic fMRI adaptation study.

    PubMed

    Holloway, Ian D; Battista, Christian; Vogel, Stephan E; Ansari, Daniel

    2013-03-01

    The ability to process the numerical magnitude of sets of items has been characterized in many animal species. Neuroimaging data have associated this ability to represent nonsymbolic numerical magnitudes (e.g., arrays of dots) with activity in the bilateral parietal lobes. Yet the quantitative abilities of humans are not limited to processing the numerical magnitude of nonsymbolic sets. Humans have used this quantitative sense as the foundation for symbolic systems for the representation of numerical magnitude. Although numerical symbol use is widespread in human cultures, the brain regions involved in processing of numerical symbols are just beginning to be understood. Here, we investigated the brain regions underlying the semantic and perceptual processing of numerical symbols. Specifically, we used an fMRI adaptation paradigm to examine the neural response to Hindu-Arabic numerals and Chinese numerical ideographs in a group of Chinese readers who could read both symbol types and a control group who could read only the numerals. Across groups, the Hindu-Arabic numerals exhibited ratio-dependent modulation in the left IPS. In contrast, numerical ideographs were associated with activation in the right IPS, exclusively in the Chinese readers. Furthermore, processing of the visual similarity of both digits and ideographs was associated with activation of the left fusiform gyrus. Using culture as an independent variable, we provide clear evidence for differences in the brain regions associated with the semantic and perceptual processing of numerical symbols. Additionally, we reveal a striking difference in the laterality of parietal activation between the semantic processing of the two symbols types.

  12. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia

    PubMed Central

    2012-01-01

    Background The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information) is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots) or in the symbolic numerical representation system (e.g., Arabic numerals) has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4) which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4) which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. Methods DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task) or the relevant quantity of digits (in the non symbolic task) while ignoring the irrelevant aspect. Result DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. Conclusion These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic). Additionally DD have deficiencies in the non symbolic counting range. PMID:23190433

  13. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia.

    PubMed

    Furman, Tamar; Rubinsten, Orly

    2012-11-28

    The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information) is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots) or in the symbolic numerical representation system (e.g., Arabic numerals) has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4) which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4) which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task) or the relevant quantity of digits (in the non symbolic task) while ignoring the irrelevant aspect. DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic). Additionally DD have deficiencies in the non symbolic counting range.

  14. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  15. Distributed numerical controllers

    NASA Astrophysics Data System (ADS)

    Orban, Peter E.

    2001-12-01

    While the basic principles of Numerical Controllers (NC) have not changed much during the years, the implementation of NCs' has changed tremendously. NC equipment has evolved from yesterday's hard-wired specialty control apparatus to today's graphics intensive, networked, increasingly PC based open systems, controlling a wide variety of industrial equipment with positioning needs. One of the newest trends in NC technology is the distributed implementation of the controllers. Distributed implementation promises to offer robustness, lower implementation costs, and a scalable architecture. Historically partitioning has been done along the hierarchical levels, moving individual modules into self contained units. The paper discusses various NC architectures, the underlying technology for distributed implementation, and relevant design issues. First the functional requirements of individual NC modules are analyzed. Module functionality, cycle times, and data requirements are examined. Next the infrastructure for distributed node implementation is reviewed. Various communication protocols and distributed real-time operating system issues are investigated and compared. Finally, a different, vertical system partitioning, offering true scalability and reconfigurability is presented.

  16. H∞ memory feedback control with input limitation minimization for offshore jacket platform stabilization

    NASA Astrophysics Data System (ADS)

    Yang, Jia Sheng

    2018-06-01

    In this paper, we investigate a H∞ memory controller with input limitation minimization (HMCIM) for offshore jacket platforms stabilization. The main objective of this study is to reduce the control consumption as well as protect the actuator when satisfying the requirement of the system performance. First, we introduce a dynamic model of offshore platform with low order main modes based on mode reduction method in numerical analysis. Then, based on H∞ control theory and matrix inequality techniques, we develop a novel H∞ memory controller with input limitation. Furthermore, a non-convex optimization model to minimize input energy consumption is proposed. Since it is difficult to solve this non-convex optimization model by optimization algorithm, we use a relaxation method with matrix operations to transform this non-convex optimization model to be a convex optimization model. Thus, it could be solved by a standard convex optimization solver in MATLAB or CPLEX. Finally, several numerical examples are given to validate the proposed models and methods.

  17. Combined control-structure optimization

    NASA Technical Reports Server (NTRS)

    Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.

    1989-01-01

    An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.

  18. A numerical study of the controlled flow tunnel for a high lift model

    NASA Technical Reports Server (NTRS)

    Parikh, P. C.

    1984-01-01

    A controlled flow tunnel employs active control of flow through the walls of the wind tunnel so that the model is in approximately free air conditions during the test. This improves the wind tunnel test environment, enhancing the validity of the experimentally obtained test data. This concept is applied to a three dimensional jet flapped wing with full span jet flap. It is shown that a special treatment is required for the high energy wake associated with this and other V/STOL models. An iterative numerical scheme is developed to describe the working of an actual controlled flow tunnel and comparisons are shown with other available results. It is shown that control need be exerted over only part of the tunnel walls to closely approximate free air flow conditions. It is concluded that such a tunnel is able to produce a nearly interference free test environment even with a high lift model in the tunnel.

  19. Quantifying errors in trace species transport modeling.

    PubMed

    Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M

    2008-12-16

    One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.

  20. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

    NASA Astrophysics Data System (ADS)

    Nemoto, Takahiro; Jack, Robert L.; Lecomte, Vivien

    2017-03-01

    We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.

  1. Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells

    PubMed Central

    Hu, Guozhong

    2015-01-01

    The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438

  2. Method for simulating discontinuous physical systems

    DOEpatents

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  3. Numerical study of three-dimensional separation and flow control at a wing/body junction

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Lakshmanan, Balakrishnan

    1989-01-01

    The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.

  4. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  5. An adaptive wing for a small-aircraft application with a configuration of fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mieloszyk, M.; Krawczuk, M.; Zak, A.; Ostachowicz, W.

    2010-08-01

    In this paper a concept of an adaptive wing for small-aircraft applications with an array of fibre Bragg grating (FBG) sensors has been presented and discussed. In this concept the shape of the wing can be controlled and altered thanks to the wing design and the use of integrated shape memory alloy actuators. The concept has been tested numerically by the use of the finite element method. For numerical calculations the commercial finite element package ABAQUS® has been employed. A finite element model of the wing has been prepared in order to estimate the values of the wing twisting angles and distributions of the twist for various activation scenarios. Based on the results of numerical analysis the locations and numbers of the FBG sensors have also been determined. The results of numerical calculations obtained by the authors confirmed the usefulness of the assumed wing control strategy. Based on them and the concept developed of the adaptive wing, a wing demonstration stand has been designed and built. The stand has been used to verify experimentally the performance of the adaptive wing and the usefulness of the FBG sensors for evaluation of the wing condition.

  6. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  7. Advective transport in heterogeneous aquifers: Are proxy models predictive?

    NASA Astrophysics Data System (ADS)

    Fiori, A.; Zarlenga, A.; Gotovac, H.; Jankovic, I.; Volpi, E.; Cvetkovic, V.; Dagan, G.

    2015-12-01

    We examine the prediction capability of two approximate models (Multi-Rate Mass Transfer (MRMT) and Continuous Time Random Walk (CTRW)) of non-Fickian transport, by comparison with accurate 2-D and 3-D numerical simulations. Both nonlocal in time approaches circumvent the need to solve the flow and transport equations by using proxy models to advection, providing the breakthrough curves (BTC) at control planes at any x, depending on a vector of five unknown parameters. Although underlain by different mechanisms, the two models have an identical structure in the Laplace Transform domain and have the Markovian property of independent transitions. We show that also the numerical BTCs enjoy the Markovian property. Following the procedure recommended in the literature, along a practitioner perspective, we first calibrate the parameters values by a best fit with the numerical BTC at a control plane at x1, close to the injection plane, and subsequently use it for prediction at further control planes for a few values of σY2≤8. Due to a similar structure and Markovian property, the two methods perform equally well in matching the numerical BTC. The identified parameters are generally not unique, making their identification somewhat arbitrary. The inverse Gaussian model and the recently developed Multi-Indicator Model (MIM), which does not require any fitting as it relates the BTC to the permeability structure, are also discussed. The application of the proxy models for prediction requires carrying out transport field tests of large plumes for a long duration.

  8. Numerical Studies of an Array of Fluidic Diverter Actuators for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2011-01-01

    In this paper, we study the effect of boundary conditions on the behavior of an array of uniformly-spaced fluidic diverters with an ultimate goal to passively control their output phase. This understanding will aid in the development of advanced designs of actuators for flow control applications in turbomachinery. Computations show that a potential design is capable of generating synchronous outputs for various inlet boundary conditions if the flow inside the array is initiated from quiescence. However, when the array operation is originally asynchronous, several approaches investigated numerically demonstrate that re-synchronization of the actuators in the array is not practical since it is very sensitive to asymmetric perturbations and imperfections. Experimental verification of the insights obtained from the present study is currently being pursued.

  9. Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control

    NASA Astrophysics Data System (ADS)

    Syed Ali, M.; Yogambigai, J.; Kwon, O. M.

    2018-03-01

    Finite-time boundedness and finite-time passivity for a class of switched stochastic complex dynamical networks (CDNs) with coupling delays, parameter uncertainties, reaction-diffusion term and impulsive control are studied. Novel finite-time synchronisation criteria are derived based on passivity theory. This paper proposes a CDN consisting of N linearly and diffusively coupled identical reaction- diffusion neural networks. By constructing of a suitable Lyapunov-Krasovskii's functional and utilisation of Jensen's inequality and Wirtinger's inequality, new finite-time passivity criteria for the networks are established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Finally, two interesting numerical examples are given to show the effectiveness of the theoretical results.

  10. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  11. Modified Newton-Raphson GRAPE methods for optimal control of spin systems

    NASA Astrophysics Data System (ADS)

    Goodwin, D. L.; Kuprov, Ilya

    2016-05-01

    Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

  12. Maternal Support of Children's Early Numerical Concept Learning Predicts Preschool and First-Grade Math Achievement.

    PubMed

    Casey, Beth M; Lombardi, Caitlin M; Thomson, Dana; Nguyen, Hoa Nha; Paz, Melissa; Theriault, Cote A; Dearing, Eric

    2018-01-01

    The primary goal in this study was to examine maternal support of numerical concepts at 36 months as predictors of math achievement at 4½ and 6-7 years. Observational measures of mother-child interactions (n = 140) were used to examine type of support for numerical concepts. Maternal support that involved labeling the quantities of sets of objects was predictive of later child math achievement. This association was significant for preschool (d = .45) and first-grade math (d = .49), controlling for other forms of numerical support (identifying numerals, one-to-one counting) as well as potential confounding factors. The importance of maternal support of labeling set sizes at 36 months is discussed as a precursor to children's eventual understanding of the cardinal principle. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  13. Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems

    PubMed Central

    Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.

    2016-01-01

    Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383

  14. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  15. Minimum energy control and optimal-satisfactory control of Boolean control network

    NASA Astrophysics Data System (ADS)

    Li, Fangfei; Lu, Xiwen

    2013-12-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  16. Markov Chains For Testing Redundant Software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1990-01-01

    Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.

  17. Membrane wrinkling patterns and control with SMA and SMPC actuators

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Li, Yunliang; Tan, Huifeng; Zhou, Limin

    2009-07-01

    Wrinkling is a main factor affecting the performance of the membrane structures and is always considered to be a failure as it can cause dramatic decrease of shape accuracy. The study of membrane wrinkling control has the analytical and experimental meanings. In this paper, a feasible membrane shape control method is presented. An expression of wrinkle wavelength using stress extremum principle is established based on the tension field theory and the Von Karman large deflection formula which verifies the generation and evolution reason of membrane wrinkles. The control mechanism for membrane wrinkles is developed using shape memory alloy (SMA) and shape memory polymer composite (SMPC) actuators which are attached to the boundaries of the membrane for producing contraction/expansion forces to adjust the shape of the membrane. The whole control process is monitored by photogrammetric technique. Numerical simulations are also conducted using ANSYS finite element software with the nonlinear post-buckling analytical method. Both the experimental and numerical results show that the amplitudes of wrinkles are effectively controlled by SMA and SMPC actuators. The method introduced in this paper provides the foundation for shape control of the membrane wrinkling and is important to the future work on vibration control of space membrane structures.

  18. Decentralized semi-active damping of free structural vibrations by means of structural nodes with an on/off ability to transmit moments

    NASA Astrophysics Data System (ADS)

    Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz

    2018-02-01

    This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.

  19. Numerical Control Device for Preparation Nano-Carbon Granule Coating Superhydrophobic Template and Its Application

    NASA Astrophysics Data System (ADS)

    Shang, G. R.; Li, Y.

    2017-12-01

    It is one of the ways for changing surface property by fabricating superhydrophibic coating with the help of template that is made of depositing nano-carbon particles of fuel flame on substrate such as pure copper or aluminium alloy. In the process of making template, it is difficult to keep the deposition layer uniformed. In this work, the problem was solved by manufacturing a set of numerical control equipment. It has been proved by application test that the deposition layer was uniformed by means of this facility. The contact angle is more than 150°. A new way has been developed for making superhydrohibic template.

  20. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  1. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    NASA Astrophysics Data System (ADS)

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  2. Detailed analysis of the Japanese version of the Rapid Dementia Screening Test, revised version.

    PubMed

    Moriyama, Yasushi; Yoshino, Aihide; Muramatsu, Taro; Mimura, Masaru

    2017-11-01

    The number-transcoding task on the Japanese version of the Rapid Dementia Screening Test (RDST-J) requires mutual conversion between Arabic and Chinese numerals (209 to , 4054 to , to 681, to 2027). In this task, question and answer styles of Chinese numerals are written horizontally. We investigated the impact of changing the task so that Chinese numerals are written vertically. Subjects were 211 patients with very mild to severe Alzheimer's disease and 42 normal controls. Mini-Mental State Examination scores ranged from 26 to 12, and Clinical Dementia Rating scores ranged from 0.5 to 3. Scores of all four subtasks of the transcoding task significantly improved in the revised version compared with the original version. The sensitivity and specificity of total scores ≥9 on the RDST-J original and revised versions for discriminating between controls and subjects with Clinical Dementia Rating scores of 0.5 were 63.8% and 76.6% on the original and 60.1% and 85.8% on revised version. The revised RDST-J total score had low sensitivity and high specificity compared with the original RDST-J for discriminating subjects with Clinical Dementia Rating scores of 0.5 from controls. © 2017 Japanese Psychogeriatric Society.

  3. A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    1998-01-01

    An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.

  4. A matched case-control study of convenience store robbery risk factors.

    PubMed

    Hendricks, S A; Landsittel, D P; Amandus, H E; Malcan, J; Bell, J

    1999-11-01

    Convenience store clerks have been shown to be at high risk for assault and homicide, mostly owing to robbery or robbery attempts. Although the literature consistently indicates that at least some environmental designs are effective deterrents of robbery, the significance of individual interventions and policies has differed across past studies. To address these issues, a matched case-control study of 400 convenience store robberies in three metropolitan areas of Virginia was conducted. Conditional logistic regression was implemented to evaluate the significance of various environmental designs and other factors possibly related to convenience store robbery. Findings indicate that numerous characteristics of the surrounding environment and population were significantly associated with convenience store robbery. Results also showed that, on a univariate level, most crime prevention factors were significantly associated with a lower risk for robbery. Using a forward selection process, a multivariate model, which included cash handling policy, bullet-resistant shielding, and numerous characteristics of the surrounding area and population, was identified. This study addressed numerous limitations of the previous literature by prospectively collecting extensive data on a large sample of diverse convenience stores and directly addressing the current theory on the robbers' selection of a target store through a matched case-control design.

  5. A comparative study of integrated pest management strategies based on impulsive control.

    PubMed

    Páez Chávez, Joseph; Jungmann, Dirk; Siegmund, Stefan

    2018-12-01

    The paper presents a comprehensive numerical study of mathematical models used to describe complex biological systems in the framework of integrated pest management. Our study considers two specific ecosystems that describe the application of control mechanisms based on pesticides and natural enemies, implemented in an impulsive and periodic manner, due to which the considered models belong to the class of impulsive differential equations. The present work proposes a numerical approach to study such type of models in detail, via the application of path-following (continuation) techniques for nonsmooth dynamical systems, via the novel continuation platform COCO (Dankowicz and Schilder). In this way, a detailed study focusing on the influence of selected system parameters on the effectiveness of the pest control scheme is carried out for both ecological scenarios. Furthermore, a comparative study is presented, with special emphasis on the mechanisms upon which a pest outbreak can occur in the considered ecosystems. Our study reveals that such outbreaks are determined by the presence of a branching point found during the continuation analysis. The numerical investigation concludes with an in-depth study of the state-dependent pesticide mortality considered in one of the ecological scenarios.

  6. Minority Threat, Crime Control, and Police Resource Allocation in the Southwestern United States

    ERIC Educational Resources Information Center

    Holmes, Malcolm D.; Smith, Brad W.; Freng, Adrienne B.; Munoz, Ed A.

    2008-01-01

    Numerous studies have examined political influences on communities' allocations of fiscal and personnel resources to policing. Rational choice theory maintains that these resources are distributed in accordance with the need for crime control, whereas conflict theory argues that they are allocated with the aim of controlling racial and ethnic…

  7. An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control

    ERIC Educational Resources Information Center

    Rivera-Guillen, J. R.; de Jesus Rangel-Magdaleno, J.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R. A.; Guevara-Gonzalez, R. G.

    2012-01-01

    Servomotors are widely used in computerized numerically controlled (CNC) machines, hence motion control is a major topic covered in undergraduate/graduate engineering courses. Despite the fact that several syllabi include the motion dynamics topic in their courses, there are neither suitable tools available for designing and simulating multi-axis…

  8. Solving rational matrix equations in the state space with applications to computer-aided control-system design

    NASA Technical Reports Server (NTRS)

    Packard, A. K.; Sastry, S. S.

    1986-01-01

    A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.

  9. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  10. A Quantitative Quality Control Model for Parallel and Distributed Crowdsourcing Tasks

    ERIC Educational Resources Information Center

    Zhu, Shaojian

    2014-01-01

    Crowdsourcing is an emerging research area that has experienced rapid growth in the past few years. Although crowdsourcing has demonstrated its potential in numerous domains, several key challenges continue to hinder its application. One of the major challenges is quality control. How can crowdsourcing requesters effectively control the quality…

  11. Dynamic control and information processing in chemical reaction systems by tuning self-organization behavior

    NASA Astrophysics Data System (ADS)

    Lebiedz, Dirk; Brandt-Pollmann, Ulrich

    2004-09-01

    Specific external control of chemical reaction systems and both dynamic control and signal processing as central functions in biochemical reaction systems are important issues of modern nonlinear science. For example nonlinear input-output behavior and its regulation are crucial for the maintainance of the life process that requires extensive communication between cells and their environment. An important question is how the dynamical behavior of biochemical systems is controlled and how they process information transmitted by incoming signals. But also from a general point of view external forcing of complex chemical reaction processes is important in many application areas ranging from chemical engineering to biomedicine. In order to study such control issues numerically, here, we choose a well characterized chemical system, the CO oxidation on Pt(110), which is interesting per se as an externally forced chemical oscillator model. We show numerically that tuning of temporal self-organization by input signals in this simple nonlinear chemical reaction exhibiting oscillatory behavior can in principle be exploited for both specific external control of dynamical system behavior and processing of complex information.

  12. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  13. Active chatter suppression with displacement-only measurement in turning process

    NASA Astrophysics Data System (ADS)

    Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua

    2017-08-01

    Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.

  14. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  15. Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions

    DTIC Science & Technology

    2014-07-09

    quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once

  16. Synthesis of multi-loop automatic control systems by the nonlinear programming method

    NASA Astrophysics Data System (ADS)

    Voronin, A. V.; Emelyanova, T. A.

    2017-01-01

    The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used.

  17. The Eradication of Leisure.

    ERIC Educational Resources Information Center

    Boggis, Jean J.

    2001-01-01

    Interviews and observations in a British clothing factory that introduced a new computer numerical control system and teamwork/empowerment showed that "teamwork" actually meant little worker control over daily work; deployment of workers often disrupted group cohesiveness. Worker responses included increased absence and turnover.…

  18. CONTROLS ON WATER CHEMISTRY OF AN OREGON COAST RANGE STREAM

    EPA Science Inventory

    Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...

  19. The Effect of Resection Angle on Stress Distribution after Root-End Surgery.

    PubMed

    Monteiro, Jaiane Bandoli; Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie

    2018-01-01

    This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application. A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45 º occlusal load of 200 N/cm 2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Apicectomy at 90 º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45 ° could be a good choice for clinicians.

  20. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  1. Active control of sound transmission through a double panel partition

    NASA Astrophysics Data System (ADS)

    Sas, P.; Bao, C.; Augusztinovicz, F.; Desmet, W.

    1995-03-01

    The feasibility of improving the insertion loss of lightweight double panel partitions by using small loudspeakers as active noise control sources inside the air gap between both panels of the partition is investigated analytically, numerically and experimentally in this paper. A theoretical analysis of the mechanisms of the fluid-structure interaction of double panel structures is presented in order to gain insight into the physical phenomena underlying the behaviour of a coupled vibro-acoustic system controlled by active methods. The analysis, based on modal coupling theory, enables one to derive some qualitative predictions concerning the potentials and limitations of the proposed approach. The theoretical analysis is valid only for geometrically simple structures. For more complex geometries, numerical simulations are required. Therefore the potential use of active noise control inside double panel structures has been analyzed by using coupled finite element and boundary element methods. To verify the conclusions drawn from the theoretical analysis and the numerical calculation and, above all, to demonstrate the potential of the proposed approach, experiments have been conducted with a laboratory set-up. The performance of the proposed approach was evaluated in terms of relative insertion loss measurements. It is shown that a considerable improvement of the insertion loss has been achieved around the lightly damped resonances of the system for the frequency range investigated (60-220 Hz).

  2. The Development and Empowerment of Mathematical Abilities: The Impact of Pencil and Paper and Computerised Interventions for Preschool Children

    ERIC Educational Resources Information Center

    Mascia, Maria Lidia; Agus, Mirian; Fastame, Maria Chiara; Penna, Maria Pietronilla; Sale, Eliana; Pessa, Eliano

    2015-01-01

    The development of numerical abilities was examined in three groups of 5 year-olds: one including 13 children accomplishing a numerical training in pencil-and-paper format (EG1); another group including 21 children accomplished a homologous training in computerized format; the remaining 24 children were assigned to the control group (CG). The…

  3. Variational data assimilation for limited-area models: solution of the open boundary control problem and its application for the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Sheloput, Tatiana; Agoshkov, Valery

    2017-04-01

    The problem of modeling water areas with `liquid' (open) lateral boundaries is discussed. There are different known methods dealing with open boundaries in limited-area models, and one of the most efficient is data assimilation. Although this method is popular, there are not so many articles concerning its implementation for recovering boundary functions. However, the problem of specifying boundary conditions at the open boundary of a limited area is still actual and important. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method that is used for time approximation in the model allows to consider the data assimilation problem as a sequence of linear problems. One of such `simple' temperature (salinity) assimilation problem is investigated in the study. Using well known techniques of study and solution of inverse problems and optimal control problems [1], we propose an iterative solution algorithm and we obtain conditions for existence of the solution, for unique and dense solvability of the problem and for convergence of the iterative algorithm. The investigation shows that if observations satisfy certain conditions, the proposed algorithm converges to the solution of the boundary control problem. Particularly, it converges when observational data are given on the `liquid' boundary [2]. Theoretical results are confirmed by the results of numerical experiments. The numerical algorithm was implemented to water area of the Baltic Sea. Two numerical experiments were carried out in the Gulf of Finland: one with the application of the assimilation procedure and the other without. The analyses have shown that the surface temperature field in the first experiment is close to the observed one, while the result of the second experiment misfits. Number of iterations depends on the regularisation parameter, but generally the algorithm converges after 10 iterations. The results of the numerical experiments show that the usage of the proposed method makes sense. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] Agoshkov V. I. Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). [2] Agoshkov V.I., Sheloput T.O. The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries // Russ. J. Numer. Anal. Math. Modelling. 2016. Vol. 31, No. 2. P. 71-80.

  4. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model

    PubMed Central

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng

    2016-01-01

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284

  5. Activity in the fronto-parietal network indicates numerical inductive reasoning beyond calculation: An fMRI study combined with a cognitive model.

    PubMed

    Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng

    2016-05-19

    Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.

  6. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    NASA Astrophysics Data System (ADS)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.

  7. ICASE semiannual report, April 1 - September 30, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.

  8. 3D numerical simulations of oblique droplet impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Reijers, Sten A.; Gielen, Marise; Sleutel, Pascal; Lohse, Detlef; Xie, Zhihua; Pain, Christopher C.; Matar, Omar K.

    2017-11-01

    We study the fluid dynamics of three-dimensional oblique droplet impact, which results in phenomena that include splashing and cavity formation. An adaptive, unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to better represent the underlying physics of droplet dynamics, and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a volume-of-fluid-type method for the interface-capturing based on a compressive control-volume advection method. The framework also features second-order finite-element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in many simulations involving capillary-driven flows. The numerical results generated using this framework are compared with high-speed images of the interfacial shapes of the deformed droplet, and the cavity formed upon impact, yielding good agreement. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  9. Diffusion Influenced Adsorption Kinetics.

    PubMed

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  10. Testing numerical models for boulder transport due to high energy marine wave events: examples from the Saurashtra coast, Western India

    NASA Astrophysics Data System (ADS)

    Chavare, Kushal; Bhatt, Nilesh; Prizomwala, Siddharth

    2017-04-01

    The boulder deposits on the coasts are interpreted and evaluated as high energy marine wave events like tsunami. Several numerical models are now available to estimate wave height and/or run up of the tsunami wave. The coast of Saurashtra, facing the Arabian Sea on its west hosts such deposits in younger ( 1 and 6 ka) and older ( 35 ka) coastal records. The dimensions, characteristics and morphology of these boulders were studied with different numeric models and were applied with reference to submerged, sub-aerial and joint bounded boulder scenarios which were combined with the local control variables like roughness coefficient, slope of platforms, fractures, shoaling effect, etc. The application of these models indicated a significant role of local control variables in boulder dislodgment, transport and final emplacement on shore platform. Examples from three different sites from the coast of Saurashtra, western India are reported and discussed in detail.

  11. The future of EUV lithography: enabling Moore's Law in the next decade

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; van Schoot, Jan; Troost, Kars; van Ballegoij, Rob; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos; Finders, Jo; Meiling, Hans; van Setten, Eelco; Mika, Niclas; Dredonx, Jeannot; Stamm, Uwe; Kneer, Bernhard; Thuering, Bernd; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha

    2017-03-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their development activities on a EUV exposure tool with Numerical Aperture greater than 0.5. The purpose of this scanner, targeting a resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, has been developed to provide the required Numerical Aperture; this lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling, and possibly in the metrology concepts. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the key technology innovations and infrastructure requirements for the next generation EUV systems.

  12. Network-level reproduction number and extinction threshold for vector-borne diseases.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2015-06-01

    The basic reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or not. Thresholds for disease extinction contribute crucial knowledge of disease control, elimination, and mitigation of infectious diseases. Relationships between basic reproduction numbers of two deterministic network-based ordinary differential equation vector-host models, and extinction thresholds of corresponding stochastic continuous-time Markov chain models are derived under some assumptions. Numerical simulation results for malaria and Rift Valley fever transmission on heterogeneous networks are in agreement with analytical results without any assumptions, reinforcing that the relationships may always exist and proposing a mathematical problem for proving existence of the relationships in general. Moreover, numerical simulations show that the basic reproduction number does not monotonically increase or decrease with the extinction threshold. Consistent trends of extinction probability observed through numerical simulations provide novel insights into mitigation strategies to increase the disease extinction probability. Research findings may improve understandings of thresholds for disease persistence in order to control vector-borne diseases.

  13. Sled Control and Safety System

    NASA Technical Reports Server (NTRS)

    Forrest, L. J.

    1982-01-01

    Computerized system for controlling motion of linear-track accelerator applied to other automated equipment, such as numerically-controlled machine tools and robot manipulators on assembly lines. System controls motions of sled with sine-wave signal created digitally by microprocessor. Dynamic parameters of sled motion are monitored so sled may be stopped safely if malfunction occurs. Sled is capable of sinusoidal accelerations up to 0.5 g with 125-kg load.

  14. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  15. Handling qualities of large flexible control-configured aircraft

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.

    1980-01-01

    The effects on handling qualities of low frequency symmetric elastic mode interaction with the rigid body dynamics of a large flexible aircraft was analyzed by use of a mathematical pilot modeling computer simulation. An extension of the optimal control model for a human pilot was made so that the mode interaction effects on the pilot's control task could be assessed. Pilot ratings were determined for a longitudinal tracking task with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes made to induce varying amounts of mode interaction. Relating numerical performance index values associated with the frequency variations used in several dynamic cases, to a numerical Cooper-Harper pilot rating has proved successful in discriminating when the mathematical pilot can or cannot separate rigid from elastic response in the tracking task.

  16. Numerical analysis and experimental studies on solenoid common rail diesel injector with worn control valve

    NASA Astrophysics Data System (ADS)

    Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.

    2018-03-01

    A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).

  17. An analytic-numerical method for the construction of the reference law of operation for a class of mechanical controlled systems

    NASA Astrophysics Data System (ADS)

    Mizhidon, A. D.; Mizhidon, K. A.

    2017-04-01

    An analytic-numerical method for the construction of a reference law of operation for a class of dynamic systems describing vibrations in controlled mechanical systems is proposed. By the reference law of operation of a system, we mean a law of the system motion that satisfies all the requirements for the quality and design features of the system under permanent external disturbances. As disturbances, we consider polyharmonic functions with known amplitudes and frequencies of the harmonics but unknown initial phases. For constructing the reference law of motion, an auxiliary optimal control problem is solved in which the cost function depends on a weighting coefficient. The choice of the weighting coefficient ensures the design of the reference law. Theoretical foundations of the proposed method are given.

  18. Periodic motion planning and control for underactuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Wang, Zeguo; Freidovich, Leonid B.; Zhang, Honghua

    2018-06-01

    We consider the problem of periodic motion planning and of designing stabilising feedback control laws for such motions in underactuated mechanical systems. A novel periodic motion planning method is proposed. Each state is parametrised by a truncated Fourier series. Then we use numerical optimisation to search for the parameters of the trigonometric polynomial exploiting the measure of discrepancy in satisfying the passive dynamics equations as a performance index. Thus an almost feasible periodic motion is found. Then a linear controller is designed and stability analysis is given to verify that solutions of the closed-loop system stay inside a tube around the planned approximately feasible periodic trajectory. Experimental results for a double rotary pendulum are shown, while numerical simulations are given for models of a spacecraft with liquid sloshing and of a chain of mass spring system.

  19. Stratal Control Volumes and Stratal Control Trajectories: A New Method to Constrain, Understand and Reconcile Results from Stratigraphic Outcrop Analysis, Subsurface Analysis and Analogue and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Burgess, P. M.; Steel, R. J.

    2016-12-01

    Decoding a history of Earth's surface dynamics from strata requires robust quantitative understanding of supply and accommodation controls. The concept of stratigraphic solution sets has proven useful in this decoding, but application and development of this approach has so far been surprisingly limited. Stratal control volumes, areas and trajectories are new approaches defined here, building on previous ideas about stratigraphic solution sets, to help analyse and understand the sedimentary record of Earth surface dynamics. They may have particular application reconciling results from outcrop and subsurface analysis with results from analogue and numerical experiments. Stratal control volumes are sets of points in a three-dimensional volume, with axes of subsidence, sediment supply and eustatic rates of change, populated with probabilities derived from analysis of subsidence, supply and eustasy timeseries (Figure 1). These empirical probabilities indicate the likelihood of occurrence of any particular combination of control rates defined by any point in the volume. The stratal control volume can then by analysed to determine which parts of the volume represent relative sea-level fall and rise, where in the volume particular stacking patterns will occur, and how probable those stacking patterns are. For outcrop and subsurface analysis, using a stratal control area with eustasy and subsidence combined on a relative sea-level axis allows similar analysis, and may be preferable. A stratal control trajectory is a history of supply and accommodation creation rates, interpreted from outcrop or subsurface data, or observed in analogue and numerical experiments, and plotted as a series of linked points forming a trajectory through the stratal control volume (Figure 1) or area. Three examples are presented, one from outcrop and two theoretical. Much work remains to be done to build a properly representative database of stratal controls, but careful comparison of stratal control volume and trajectories constructed from outcrop analysis, subsurface analysis and experimental models may help the convergence, reconciliation and future evolution of these different approaches.

  20. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  1. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  2. Proper Orthogonal Decomposition in Optimal Control of Fluids

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.

  3. Application of optimal control strategies to HIV-malaria co-infection dynamics

    NASA Astrophysics Data System (ADS)

    Fatmawati; Windarto; Hanif, Lathifah

    2018-03-01

    This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.

  4. HANDBOOK: CONTROL TECHNIQUES FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    This manual is a revision of the first (1986) edition of the Handbook: Control Technologies for Hazardous Air Pollutants, which incorporated information from numerous sources into a single, self-contained reference source focusing on the design and cost of VOC and partic...

  5. CONTROLS ON STREAM CHEMISTRY IN AN OREGON COASTAL WATERSHED: THE SALMON RIVER

    EPA Science Inventory

    Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...

  6. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  7. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  8. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  9. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  10. 40 CFR 86.094-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methane. Non-Methane Hydrocarbon Equivalent means the sum of the carbon mass emissions of non-oxygenated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Loaded Vehicle Weight means the numerical average of vehicle curb weight and GVWR. Bi-directional control...

  11. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  12. Minimal time spiking in various ChR2-controlled neuron models.

    PubMed

    Renault, Vincent; Thieullen, Michèle; Trélat, Emmanuel

    2018-02-01

    We use conductance based neuron models, and the mathematical modeling of optogenetics to define controlled neuron models and we address the minimal time control of these affine systems for the first spike from equilibrium. We apply tools of geometric optimal control theory to study singular extremals, and we implement a direct method to compute optimal controls. When the system is too large to theoretically investigate the existence of singular optimal controls, we observe numerically the optimal bang-bang controls.

  13. Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control

    NASA Astrophysics Data System (ADS)

    Varan, Metin; Akgul, Akif

    2018-04-01

    In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.

  14. A novel single thruster control strategy for spacecraft attitude stabilization

    NASA Astrophysics Data System (ADS)

    Godard; Kumar, Krishna Dev; Zou, An-Min

    2013-05-01

    Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.

  15. The dynamics and control of large flexible space structures, 2. Part A: Shape and orientation control using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.

    1979-01-01

    The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.

  16. Improving the vibration suppression capabilities of a magneto-rheological damper using hybrid active and semi-active control

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Irfan; Wagg, David; Sims, Neil D.

    2016-08-01

    This paper presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the magneto-rheological damper to achieve a performance as close to a fully active device as possible. This is achieved by ensuring that the active actuator can assist the magneto-rheological damper in the regions where energy is required. In addition, the hybrid active and semi-active controller is designed to minimize the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system, and then compared as part of a validation study. The experimental system uses hardware-in-the-loop to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the magneto-rheological damper that approach the performance of an active device.

  17. 75 FR 2452 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Reasonable Further...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... Lightering Operations. Since there will be no new VOC controls for point sources, non-point source sector... equivalent to 1.52 x 1.74 = 2.64 tpd NO X reduction shortfall. Delaware has implemented numerous controls... achieved ``as expeditious as practicable.'' Control measures under RACT constitute a major group of RACM...

  18. Spline approximations for nonlinear hereditary control systems

    NASA Technical Reports Server (NTRS)

    Daniel, P. L.

    1982-01-01

    A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.

  19. Solid-state Distributed Temperature Control for International Space Station

    NASA Technical Reports Server (NTRS)

    Holladay, Jon B.; Reagan, Shawn E.; Day, Greg

    2004-01-01

    A newly developed solid-state temperature controller will offer greater flexibility in the thermal control of aerospace vehicle structures. A status of the hardware development along with its implementation on the Multi- Purpose Logistics Module will be provided. Numerous advantages of the device will also be discussed with regards to current and future flight vehicle implementations.

  20. The Complex Relationship between Parental Divorce and the Sense of Control

    ERIC Educational Resources Information Center

    Kim, Joongbaeck; Woo, Hyeyoung

    2011-01-01

    How does parental divorce influence the sense of control in adult offspring? Numerous studies have examined the implications of parental divorce on adult psychological well-being. However, little attention has been paid to the long-term consequences of parental divorce for adult sense of control. Using data from the Survey of Aging, Status, and…

  1. Environmental controls on drainage behavior of an ephemeral stream

    USGS Publications Warehouse

    Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.

    2010-01-01

    Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.

  2. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  3. CONDIF - A modified central-difference scheme for convective flows

    NASA Technical Reports Server (NTRS)

    Runchal, Akshai K.

    1987-01-01

    The paper presents a method, called CONDIF, which modifies the CDS (central-difference scheme) by introducing a controlled amount of numerical diffusion based on the local gradients. The numerical diffusion can be adjusted to be negligibly low for most problems. CONDIF results are significantly more accurate than those obtained from the hybrid scheme when the Peclet number is very high and the flow is at large angles to the grid.

  4. Computational analysis for biodegradation of exogenously depolymerizable polymer

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Kawai, F.

    2018-03-01

    This study shows that microbial growth and decay in a biodegradation process of exogenously depolymerizable polymer are controlled by consumption of monomer units. Experimental outcomes for residual polymer were incorporated in inverse analysis for a degradation rate. The Gauss-Newton method was applied to an inverse problem for two parameter values associated with the microbial population. A biodegradation process of polyethylene glycol was analyzed numerically, and numerical outcomes were obtained.

  5. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  6. Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Model Setup

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-04-01

    Pumped storage stations undergo numerous transition processes, which make the pump turbines go through the unstable S-shaped region. The hydraulic transient in S-shaped region has normally been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. In this research, a pumped storage model composed of a piping system, two model units, two electrical control systems, a measurement system and a collection system was set up to study the transition processes. The model platform can be applied to simulate almost any hydraulic transition process that occurs in real power stations, such as load rejection, startup, frequency control and grid connection.

  7. Three-dimensional control of crystal growth using magnetic fields

    NASA Astrophysics Data System (ADS)

    Dulikravich, George S.; Ahuja, Vineet; Lee, Seungsoo

    1993-07-01

    Two coupled systems of partial differential equations governing three-dimensional laminar viscous flow undergoing solidification or melting under the influence of arbitrarily oriented externally applied magnetic fields have been formulated. The model accounts for arbitrary temperature dependence of physical properties including latent heat release, effects of Joule heating, magnetic field forces, and mushy region existence. On the basis of this model a numerical algorithm has been developed and implemented using central differencing on a curvilinear boundary-conforming grid and Runge-Kutta explicit time-stepping. The numerical results clearly demonstrate possibilities for active and practically instantaneous control of melt/solid interface shape, the solidification/melting front propagation speed, and the amount and location of solid accrued.

  8. Numerical Simulation of Measurements during the Reactor Physical Startup at Unit 3 of Rostov NPP

    NASA Astrophysics Data System (ADS)

    Tereshonok, V. A.; Kryakvin, L. V.; Pitilimov, V. A.; Karpov, S. A.; Kulikov, V. I.; Zhylmaganbetov, N. M.; Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A.; Shevchenko, S. A.; Semenova, T. V.

    2017-12-01

    The results of numerical calculations and measurements of some reactor parameters during the physical startup tests at unit 3 of Rostov NPP are presented. The following parameters are considered: the critical boron acid concentration and the currents from ionization chambers (IC) during the scram system efficiency evaluation. The scram system efficiency was determined using the inverse point kinetics equation with the measured and simulated IC currents. The results of steady-state calculations of relative power distribution and efficiency of the scram system and separate groups of control rods of the control and protection system are also presented. The calculations are performed using several codes, including precision ones.

  9. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  10. Renal Sympathetic Denervation – A Review of Applications in Current Practice

    PubMed Central

    Kapil, Vikas; Jain, Ajay K

    2014-01-01

    Resistant hypertension is associated with high morbidity and mortality despite numerous pharmacological strategies. A wealth of preclinical and clinical data have demonstrated that resistant hypertension is associated with elevated renal and central sympathetic tone. The development of interventional therapies to modulate the sympathetic nervous system potentially represents a paradigm shift in the strategy for blood pressure control in this subset of patients. Initial first-in-man and pivotal, randomised controlled trials of endovascular, radio-frequency renal sympathetic denervation have spawned numerous iterations of similar technology, as well as many novel concepts for achieving effective renal sympatholysis. This review details the current knowledge of these devices and the evidence base behind each technology. PMID:29588780

  11. Real-time feedback control of the plasma density profile on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team

    2011-04-01

    The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.

  12. Gimbal-Angle Vectors of the Nonredundant CMG Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Bang, Hyochoong

    2018-05-01

    This paper deals with the method using the preferred gimbal angles of a control moment gyro (CMG) cluster for controlling spacecraft attitude. To apply the method to the nonredundant CMG cluster, analytical gimbal-angle solutions for the zero angular momentum state are derived, and the gimbal-angle vectors for the nonzero angular momentum states are studied by a numerical method. It will be shown that the number of the gimbal-angle vectors is determined from the given skew angle and the angular momentum state of the CMG cluster. Through numerical examples, it is shown that the method using the preferred gimbal-angle is an efficient approach to avoid internal singularities for the nonredundant CMG cluster.

  13. Computer numeric control subaperture aspheric surface polishing-microroughness evaluation

    NASA Astrophysics Data System (ADS)

    Prochaska, Frantisek; Polak, Jaroslav; Matousek, Ondrej; Tomka, David

    2014-09-01

    The aim of this work was an investigation of surface microroughness and shape accuracy achieved on an aspheric lens by subaperture computer numeric control (CNC) polishing. Different optical substrates were polished (OHARA S-LAH 58, SF4, ZERODUR) using a POLITEX™ polishing pad, synthetic pitch, and the natural optical pitch. Surface roughness was measured by light interferometer. The best results were achieved on the S-LAH58 glass and the ZERODUR™ using the natural optical pitch. In the case of SF4 glass, the natural optical pitch showed a tendency to scratch the surface. Experiments also indicated a problem in surface form deterioration when using the natural optical pitch, regardless of the type of optical material.

  14. Nature and origins of mathematics difficulties in very preterm children: a different etiology than developmental dyscalculia.

    PubMed

    Simms, Victoria; Gilmore, Camilla; Cragg, Lucy; Clayton, Sarah; Marlow, Neil; Johnson, Samantha

    2015-02-01

    Children born very preterm (<32 wk) are at high risk for mathematics learning difficulties that are out of proportion to other academic and cognitive deficits. However, the etiology of mathematics difficulties in very preterm children is unknown. We sought to identify the nature and origins of preterm children's mathematics difficulties. One hundred and fifteen very preterm children aged 8-10 y were assessed in school with a control group of 77 term-born classmates. Achievement in mathematics, working memory, visuospatial processing, inhibition, and processing speed were assessed using standardized tests. Numerical representations and specific mathematics skills were assessed using experimental tests. Very preterm children had significantly poorer mathematics achievement, working memory, and visuospatial skills than term-born controls. Although preterm children had poorer performance in specific mathematics skills, there was no evidence of imprecise numerical representations. Difficulties in mathematics were associated with deficits in visuospatial processing and working memory. Mathematics difficulties in very preterm children are associated with deficits in working memory and visuospatial processing not numerical representations. Thus, very preterm children's mathematics difficulties are different in nature from those of children with developmental dyscalculia. Interventions targeting general cognitive problems, rather than numerical representations, may improve very preterm children's mathematics achievement.

  15. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  16. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  17. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  18. Negative priming in a numerical Piaget-like task as evidenced by ERP.

    PubMed

    Daurignac, Elsa; Houdé, Olivier; Jouvent, Roland

    2006-05-01

    Inhibition is a key executive function in adults and children for the acquisition and expression of cognitive abilities. Using event-related potentials in a priming adaptation of a Piaget-like numerical task taken from developmental psychology, we report a negative priming effect in adults measured just after the cognitive inhibition of a misleading strategy, the visuospatial length-equals-number bias. This effect was determined in the N200 information processing stage through increased N200 amplitude. We show here that for accuracy in numerical quantification, the adult brain still had to control the child-like cognition biases that are stored in a kind of "developmental memory."

  19. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1993-01-01

    The first section is on 3-D numerical modeling of terrain-induced circulations and covers the following: (1) additional insights into gravity wave generation mechanisms based on the control simulation; (2) ongoing nested-grid numerical simulations; (3) work to be completed during the remainder of FY-93; and (4) work objectives for FY-94. The second section is on linear theory and theoretical modeling and covers the following: (1) the free response of a uniform barotropic flow to an initially stationary unbalanced (ageostrophic) zonal wind anomaly; and (2) the free response of a uniform barotropic flow to an initially stationary balanced zonal wind anomaly.

  20. 40 CFR 61.12 - Compliance with standards and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions § 61.12 Compliance with standards and maintenance requirements. (a) Compliance with numerical... otherwise specified in an individual subpart. (b) Compliance with design, equipment, work practice or... pollution control, in a manner consistent with good air pollution control practice for minimizing emissions...

  1. Anerobic soil disinfestation efficacy associated with altered soil microbiome and metabolome

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) has demonstrated potential to control numerous soil-borne pathogens in a diversity of production systems. A variety of environmental, biological and application attributes have potential to determine the overall capacity of ASD to provide effective disease control...

  2. Second generation heliostat development for solar central receiver systems. Volume 4, appendices F-J: Control software test results manufacturing pile installation pile coatings

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Support documentation for a second generation heliostat project is presented. Flowcharts of control software are included. Numerical and graphic test results are provided. Project management information is also provided.

  3. Microbial control of Asian longhorned beetles - what are fungal bands?

    Treesearch

    Ann E. Hajek; Thomas Dubois; Jennifer Lund; Ryan Shanley; Leah Bauer; Michael Smith; Peng Fan; Huang Bo; Hu Jiafu; Zengzhi Li

    2007-01-01

    In Japan, the entomopathogenic fungus Beauveria brongniartii is grown in nonwoven fiber bands that are placed around trunks of orchard trees for control of numerous cerambycid pests, including Anoplophora chinensis (= A. malasiaca). The Japanese company producing bands, Nitto Denko in Osaka, markets bands...

  4. Combining Fire and Chemicals For the Control of Rhododendron Thickets

    Treesearch

    Robert M. Romancier

    1971-01-01

    A combination of fire and silvicides will control rosebay rhododendron growing on lands primarily valuable for timber production. The numerous sprouts that typically follow prescribed burning are readily killed by several different silvicides applied either with a basal sprayer or a mist blower.

  5. Practical Control Algorithms for Nonlinear Dynamical Systems Using Phase-Space Knowledge and Mixed Numeric and Geometric Computation.

    DTIC Science & Technology

    1997-10-01

    Research results include: (1) Developed empirical performance criteria for characterizing stabilities and robustness of the maglev control... Maglev Experience’ at HS󈨥: Fifth International Hybrid Systems Workshop, Notre Dame, IN, Sept. 11-13,1997

  6. Significance of Plankton Community Structure and Nutrient Availability for the Control of Dinoflagellate Blooms by Parasites: A Modeling Approach

    PubMed Central

    Alves-de-Souza, Catharina; Pecqueur, David; Le Floc’h, Emilie; Mas, Sébastien; Roques, Cécile; Mostajir, Behzad; Vidussi, Franscesca; Velo-Suárez, Lourdes; Sourisseau, Marc; Fouilland, Eric; Guillou, Laure

    2015-01-01

    Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole. PMID:26030411

  7. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  8. Introduction of a male-harming mitochondrial haplotype via 'Trojan Females' achieves population suppression in fruit flies.

    PubMed

    Wolff, Jonci Nikolai; Gemmell, Neil J; Tompkins, Daniel M; Dowling, Damian K

    2017-05-03

    Pests are a global threat to biodiversity, ecosystem function, and human health. Pest control approaches are thus numerous, but their implementation costly, damaging to non-target species, and ineffective at low population densities. The Trojan Female Technique (TFT) is a prospective self-perpetuating control technique that is species-specific and predicted to be effective at low densities. The goal of the TFT is to harness naturally occurring mutations in the mitochondrial genome that impair male fertility while having no effect on females. Here, we provide proof-of-concept for the TFT, by showing that introduction of a male fertility-impairing mtDNA haplotype into replicated populations of Drosophila melanogaster causes numerical population suppression, with the magnitude of effect positively correlated with its frequency at trial inception. Further development of the TFT could lead to establishing a control strategy that overcomes limitations of conventional approaches, with broad applicability to invertebrate and vertebrate species, to control environmental and economic pests.

  9. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  10. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  11. Waterhammer modeling for the Ares I Upper Stage Reaction Control System cold flow development test article

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan Hunter

    The Upper Stage Reaction Control System provides in-flight three-axis attitude control for the Ares I Upper Stage. The system design must accommodate rapid thruster firing to maintain proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted at Marshall Space Flight Center in 2009 were performed using a water-flow test article to better understand fluid characteristics of the Upper Stage Reaction Control System. A subset of the tests examined the waterhammer pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  12. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  13. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  14. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  15. Chaos and Chaos Control of the Frenkel-Kontorova Model with Dichotomous Noise

    NASA Astrophysics Data System (ADS)

    Lei, Youming; Zheng, Fan; Shao, Xizhen

    Chaos and chaos control of the Frenkel-Kontorova (FK) model with dichotomous noise are studied theoretically and numerically. The threshold conditions for the onset of chaos in the FK model are firstly derived by applying the random Melnikov method with a mean-square criterion to the soliton equation, which is a fundamental topological mode of the FK model and accounts for its nonlinear phenomena. We found that dichotomous noise can induce stochastic chaos in the FK model, and the threshold of noise amplitude for the onset of chaos increases with the increase of its transition rate. Then the analytical criterion of chaos control is obtained by means of the time-delay feedback method. Since the time-delay feedback control raises the threshold of noise amplitude for the onset of chaos, chaos in the FK model is effectively suppressed. Through numerical simulations including the mean top Lyapunov exponent and the safe basin, we demonstrate the validity of the analytical predictions of chaos. Furthermore, time histories and phase portraits are utilized to verify the effectiveness of the proposed control.

  16. Direct numerical simulation of turbulent channel flow with spanwise alternatively distributed strips control

    NASA Astrophysics Data System (ADS)

    Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng

    2018-05-01

    The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.

  17. Experimental and numerical study of control of flow separation of a symmetric airfoil with trapped vortex cavity

    NASA Astrophysics Data System (ADS)

    Shahid, Abdullah Bin; Mashud, Mohammad

    2017-06-01

    This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.

  18. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  19. Minimal Time Problem with Impulsive Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunisch, Karl, E-mail: karl.kunisch@uni-graz.at; Rao, Zhiping, E-mail: zhiping.rao@ricam.oeaw.ac.at

    Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.

  20. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  1. Attosecond twin-pulse control by generalized kinetic heterodyne mixing.

    PubMed

    Raith, Philipp; Ott, Christian; Pfeifer, Thomas

    2011-01-15

    Attosecond double-pulse (twin-pulse) production in high-order harmonic generation is manipulated by a combination of two-color and carrier-envelope phase-control methods. As we show in numerical simulations, both relative amplitude and phase of the double pulse can be independently set by making use of multidimensional parameter control. Two technical implementation routes are discussed: kinetic heterodyning using second-harmonic generation and split-spectrum phase-step control.

  2. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    NASA Astrophysics Data System (ADS)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  3. Controller reduction by preserving impulse response energy

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng

    1989-01-01

    A model order reduction algorithm based on a Krylov recurrence formulation is developed to reduce order of controllers. The reduced-order controller is obtained by projecting the full-order LQG controller onto a Krylov subspace in which either the controllability or the observability grammian is equal to the identity matrix. The reduced-order controller preserves the impulse response energy of the full-order controller and has a parameter-matching property. Two numerical examples drawn from other controller reduction literature are used to illustrate the efficacy of the proposed reduction algorithm.

  4. Differences in duration of eye fixation for conditions in a numerical stroop-effect experiment.

    PubMed

    Crespo, Antonio; Cabestrero, Raúl; Quirós, Pilar

    2009-02-01

    Durations of eye fixation were recorded for a numerical Stroop effect experiment. Participants (6 men, 19 women; M age=22 yr.) reported the number of characters present in sequences of variable length (2 to 5 characters) while attempting to ignore the identity of the character. Three conditions were included: congruent (the number of characters and the numeral were matched, e.g., responding "two" to 22), incongruent (the number of characters and the numeral were mismatched, e.g., responding "two" to 55), and control (baseline of stimuli made up of "X"s, e.g., responding "two" to XX). Comparisons among the three conditions produced the longest response times and average durations of fixation for the incongruent condition. The shortest response times and average durations of fixation were obtained for the congruent condition.

  5. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    PubMed Central

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  6. Combined structures-controls optimization of lattice trusses

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.

  7. Resolution power in digital in-line holography

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Klages, P.; Kreuzer, H. J.

    2006-01-01

    Digital in-line holographic microscopy (DIHM) can achieve wavelength resolution both laterally and in depth with the simple optical setup consisting of a laser illuminating a wavelength-sized pinhole and a CCD camera for recording the hologram. The reconstruction is done numerically on the basis of the Kirchhoff-Helmholtz transform which yields a three-dimensional image of the objects throughout the sample volume. Resolution in DIHM depends on several controllable factors or parameters: (1) pinhole size controlling spatial coherence, (2) numerical aperture given by the size and positioning of the recording CCD chip, (3) pixel density and dynamic range controlling fringe resolution and noise level in the hologram and (4) wavelength. We present a detailed study of the individual and combined effects of these factors by doing an analytical analysis coupled with numerical simulations of holograms and their reconstruction. The result of this analysis is a set of criteria, also in the form of graphs, which can be used for the optimum design of the DIHM setup. We will also present a series of experimental results that test and confirm our theoretical analysis. The ultimate resolution to date is the imaging of the motion of submicron spheres and bacteria, a few microns apart, with speeds of hundreds of microns per second.

  8. Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.

    PubMed

    Rawson, Joey; Prommer, Henning; Siade, Adam; Carr, Jackson; Berg, Michael; Davis, James A; Fendorf, Scott

    2016-03-01

    Millions of individuals worldwide are chronically exposed to hazardous concentrations of arsenic from contaminated drinking water. Despite massive efforts toward understanding the extent and underlying geochemical processes of the problem, numerical modeling and reliable predictions of future arsenic behavior remain a significant challenge. One of the key knowledge gaps concerns a refined understanding of the mechanisms that underlie arsenic mobilization, particularly under the onset of anaerobic conditions, and the quantification of the factors that affect this process. In this study, we focus on the development and testing of appropriate conceptual and numerical model approaches to represent and quantify the reductive dissolution of iron oxides, the concomitant release of sorbed arsenic, and the role of iron-mineral transformations. The initial model development in this study was guided by data and hypothesized processes from a previously reported,1 well-controlled column experiment in which arsenic desorption from ferrihydrite coated sands by variable loads of organic carbon was investigated. Using the measured data as constraints, we provide a quantitative interpretation of the processes controlling arsenic mobility during the microbial reductive transformation of iron oxides. Our analysis suggests that the observed arsenic behavior is primarily controlled by a combination of reductive dissolution of ferrihydrite, arsenic incorporation into or co-precipitation with freshly transformed iron minerals, and partial arsenic redox transformations.

  9. Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.

    2016-01-01

    Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.

  10. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1984-01-01

    The technical progress of researches on alternatives for jet engine control is reported. Extensive numerical testing is included. It is indicated that optimal inputs contribute significantly to the process of calculating tensor approximations for nonlinear systems, and that the resulting approximations may be order-reduced in a systematic way.

  11. Requirements for sustainable schistosomiasis control.

    PubMed

    Traoré, M

    1996-01-01

    In Mali the increased transmission of schistosomiasis following the construction of numerous reservoirs and irrigation schemes, together with experience gained in tackling the disease, have led to a major effort to train personnel in control methods, to achieve decentralized delivery and management, and to foster self-reliance in this field. The author outlines the essential components of a sound national control programme requiring long-term commitment.

  12. Robustness of controllers designed using Galerkin type approximations

    NASA Technical Reports Server (NTRS)

    Morris, K. A.

    1990-01-01

    One of the difficulties in designing controllers for infinite-dimensional systems arises from attempting to calculate a state for the system. It is shown that Galerkin type approximations can be used to design controllers which will perform as designed when implemented on the original infinite-dimensional system. No assumptions, other than those typically employed in numerical analysis, are made on the approximating scheme.

  13. Anti-control of chaos of single time-scale brushless DC motor.

    PubMed

    Ge, Zheng-Ming; Chang, Ching-Ming; Chen, Yen-Sheng

    2006-09-15

    Anti-control of chaos of single time-scale brushless DC motors is studied in this paper. In order to analyse a variety of periodic and chaotic phenomena, we employ several numerical techniques such as phase portraits, bifurcation diagrams and Lyapunov exponents. Anti-control of chaos can be achieved by adding an external constant term or an external periodic term.

  14. Numerical dissipation vs. subgrid-scale modelling for large eddy simulation

    NASA Astrophysics Data System (ADS)

    Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos

    2017-05-01

    This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.

  15. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  16. Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.

    PubMed

    Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho

    2009-07-01

    A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.

  17. Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking

    PubMed Central

    Huang, Hsiao-Yun

    2015-01-01

    tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair. PMID:25848089

  18. Numerical Analysis on Seepage in the deep overburden CFRD

    NASA Astrophysics Data System (ADS)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  19. The Young and the Stressed: Stress, Impulse Control, and Health in College Students.

    PubMed

    Leppink, Eric W; Odlaug, Brian L; Lust, Katherine; Christenson, Gary; Grant, Jon E

    2016-12-01

    High levels of stress are common among young adults, particularly those enrolled in college. These degrees of stress have shown numerous deleterious effects across both academic and health variables. Findings regarding the role of stress in the presentation of impulse control disorders, particular among college students, are limited. This study examined potential associations between perceived stress, academic achievement, physical/mental health, and impulse control disorders in young adults. A total of 1805 students completed an online survey and were included in the analysis. Responders were grouped by their overall score on the Perceived Stress Scale into mild, moderate, or severe. Severe perceived stress was associated with worse academic achievement and worse physical health, as well as higher rates of psychiatric and impulsive disorders. These findings may suggest associations between stress and numerous aspects of mental/physical health in young adults, which could be an important consideration for individuals working with college students.

  20. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  1. The Effect of Resection Angle on Stress Distribution after Root-End Surgery

    PubMed Central

    Monteiro, Jaiane Bandoli; Dal Piva, Amanda Maria de Oliveira; Tribst, João Paulo Mendes; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie

    2018-01-01

    Introduction: This study aimed to investigate the influence of the resection angle on the stress distribution of retrograde endodontic treated maxillary incisors under oblique-load application. Methods and Materials: A maxillary central incisor which was endodontically treated and restored with a fiber glass post was obtained in a 3-dimensional numerical model and distributed into three groups according to type of resection: control; restored with fiber post without retrograde obturation, R45 and R90 with 45º and 90º resection from tooth axial axis, respectively and restored with Fuji II LC (GC America). The numerical models received a 45º occlusal load of 200 N/cm2 on the middle of lingual surface. All materials and structures were considered linear elastic, homogeneous and isotropic. Numerical models were plotted and meshed with isoparametric elements, and the results were analyzed using maximum principal stress (MPS). Results: MPS showed greater stress values in the bone tissue for control group than the other groups. Groups with apicectomy showed acceptable stress distribution on the fiber post, cement layer and root dentin, presenting more improved values than control group. Conclusion: Apicectomy at 90º promotes more homogeneity on stress distribution on the fiber post, cement layer and root dentin, which suggests less probability of failure. However, due to its facility and stress distribution also being better than control group, apicectomy at 45° could be a good choice for clinicians. PMID:29707013

  2. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and the analysis of simulation data that a flow control device's influence on boundary layer quality is a function of three factors: (1) the strength of the longitudinal vortex emanating from the flow control device or devices, (2) the height of the vortex core above the surface and, when a synthetic jet is present, (3) the momentum added to the boundary layer flow.

  3. Melt Stabilization of PbSnTe in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.

    1999-01-01

    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe.

  4. Pre-emptive ice cube cryotherapy for reducing pain from local anaesthetic injections for simple lacerations: a randomised controlled trial.

    PubMed

    Song, JaeWoo; Kim, HyukHoon; Park, EunJung; Ahn, Jung Hwan; Yoon, Eunhui; Lampotang, Samsun; Gravenstein, Nikolaus; Choi, SangChun

    2018-02-01

    Subcutaneous local anaesthetic injection can be painful to patients in the ED. We evaluated the effect of cryotherapy by application of an ice cube to the injection site prior to injection in patients with simple lacerations. We conducted a prospective, randomised, controlled trial in consented patients with simple lacerations needing primary repair at a single emergency centre from April to July 2016. We randomly assigned patients undergoing repair for simple lacerations to either the cryotherapy group or the control group (standard care; no cryotherapy or other pretreatment of the injection site). In cryotherapy group subjects, we applied an ice cube (size: 1.5×1.5×1.5 cm) placed inside a sterile glove on the wound at the anticipated subcutaneous lidocaine injection site for 2 min prior to injection. The primary outcome was a subjective numeric rating (0-10 scale) of the perceived pain from the subcutaneous local anaesthetic injections. Secondary outcomes were (a) perceived pain on a numeric scale for cryotherapy itself, that is, pain from contact of the ice cube/glove with the skin and (b) the rate of complications after primary laceration repair. Fifty patients were enrolled, consented and randomised, with 25 in the cryotherapy group and 25 in the control group. The numeric rating scale for subcutaneous anaesthetic injections was median, IQR, 95% CI 2.0 (1 to 3.5), 1.81 to 3.47, respectively, in the cryotherapy group and 5.0 (3 to 7), 3.91 to 6.05 in the control group (Mann-Whitney U=147.50, p=0.001). No wound complications occurred in either group. The numeric rating scale for cryotherapy itself was median, IQR, 95% CI: 2.0 (1 to 3.5), 1.90 to 3.70. Pre-emptive topical injection site cryotherapy lasting 2 min before subcutaneous local anaesthetic injections can significantly reduce perceived pain from subcutaneous local anaesthetic injections in patients presenting for simple laceration repair. KCT0001990. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Quasi-laminar stability and sensitivity analyses for turbulent flows: Prediction of low-frequency unsteadiness and passive control

    NASA Astrophysics Data System (ADS)

    Mettot, Clément; Sipp, Denis; Bézard, Hervé

    2014-04-01

    This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.

  6. Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities?

    PubMed

    Fuchs, Lynn S; Geary, David C; Compton, Donald L; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Bryant, Joan D; Schatschneider, Christopher

    2010-11-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (N = 280; mean age = 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations, and word problems in fall and then reassessed on procedural calculations and word problems in spring. Development was indexed by latent change scores, and the interplay between numerical and domain-general abilities was analyzed by multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of procedural calculations and word problems development. Yet, for procedural calculations development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for word problems development, the set of domain-general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive.

  7. Do Different Types of School Mathematics Development Depend on Different Constellations of Numerical versus General Cognitive Abilities?

    PubMed Central

    Fuchs, Lynn S.; Geary, David C.; Compton, Donald L.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Bryant, Joan D.; Schatschneider, Christopher

    2010-01-01

    The purpose of this study was to examine the interplay between basic numerical cognition and domain-general abilities (such as working memory) in explaining school mathematics learning. First graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs and WPs in spring. Development was indexed via latent change scores, and the interplay between numerical and domain-general abilities was analyzed via multiple regression. Results suggest that the development of different types of formal school mathematics depends on different constellations of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for PC development, the additional amount of variance explained by the set of domain-general abilities was not significant, and only counting span was uniquely predictive. By contrast, for WP development, the set of domain- general abilities did provide additional explanatory value, accounting for about the same amount of variance as the basic numerical cognition variables. Language, attentive behavior, nonverbal problem solving, and listening span were uniquely predictive. PMID:20822213

  8. Stability of Nonlinear Swarms on Flat and Curved Surfaces

    DTIC Science & Technology

    numerical experiments have shown that the system either converges to a rotating circular limit cycle with a fixed center of mass, or the agents clump ...Swarming is a near-universal phenomenon in nature. Many mathematical models of swarms exist , both to model natural processes and to control robotic...agents. We study a swarm of agents with spring-like at-traction and nonlinear self-propulsion. Swarms of this type have been studied numerically, but

  9. Foreword

    NASA Astrophysics Data System (ADS)

    Bergheau, Jean-Michel; Drapier, Sylvain; Feulvarch, Éric; Ponthot, Jean-Philippe

    2016-04-01

    In the face of increasingly fierce global competition, industrial companies must develop products more and more quickly and cheaply. In such a context, the numerical simulation of manufacturing processes is a big challenge and a key factor for success. Indeed, numerical simulation enables the control of manufacturing processes and of the consequences that they induce on the manufactured parts in terms of material modifications, geometrical changes or residual stresses, each of them playing an important role in the lifetime of the component.

  10. A new unified approach to analyze wing-body-tail configurations with control surfaces in steady, oscillatory and fully unsteady, subsonic and supersonic flows

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.

  11. Numerical Solution of Optimal Control Problem under SPDE Constraints

    DTIC Science & Technology

    2011-10-14

    Faure and Sobol sequences are used to evaluate high dimensional integrals, and the errors in the numerical results for over 30 dimensions become quite...sequence; right: 1000 points of dimension 26 and 27 projection for optimal Kronecker sequence. benchmark Faure and Sobol methods. 2.2 High order...J. Goodman and J. O’Rourke, Handbook of discrete and computational geome- try, CRC Press, Inc., (2004). [5] S. Joe and F. Kuo, Constructing Sobol

  12. A New Control Paradigm for Stochastic Differential Equations

    NASA Astrophysics Data System (ADS)

    Schmid, Matthias J. A.

    This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.

  13. Event-triggered attitude control of spacecraft

    NASA Astrophysics Data System (ADS)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  14. Optimal control problems of epidemic systems with parameter uncertainties: application to a malaria two-age-classes transmission model with asymptomatic carriers.

    PubMed

    Mwanga, Gasper G; Haario, Heikki; Capasso, Vicenzo

    2015-03-01

    The main scope of this paper is to study the optimal control practices of malaria, by discussing the implementation of a catalog of optimal control strategies in presence of parameter uncertainties, which is typical of infectious diseases data. In this study we focus on a deterministic mathematical model for the transmission of malaria, including in particular asymptomatic carriers and two age classes in the human population. A partial qualitative analysis of the relevant ODE system has been carried out, leading to a realistic threshold parameter. For the deterministic model under consideration, four possible control strategies have been analyzed: the use of Long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic and asymptomatic individuals. The numerical results show that using optimal control the disease can be brought to a stable disease free equilibrium when all four controls are used. The Incremental Cost-Effectiveness Ratio (ICER) for all possible combinations of the disease-control measures is determined. The numerical simulations of the optimal control in the presence of parameter uncertainty demonstrate the robustness of the optimal control: the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the designing of cost-effective strategies for disease controls with multiple interventions, even under considerable uncertainty of model parameters. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND... section 4 of the Toxic Substances Control Act (TSCA) (15 U.S.C. 2601). (2) Background. The source material... designed to measure numerical aberrations and is not routinely used for that purpose. Chromosome mutations...

  16. Eco-geophysical imaging of watershed-scale soil patterns links with plant community spatial patterns

    USDA-ARS?s Scientific Manuscript database

    The extent to which soil resource availability, nutrients or 1 moisture, control the structure, function and diversity of plant communities has aroused considerable interest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water o...

  17. Problems in air traffic management. V., Identification and potential aptitude test measures for selection of tower air traffic controller trainees.

    DOT National Transportation Integrated Search

    1965-07-01

    A study of over 200 Terminal Air Traffic Control Specialists indicated that their training performance could be well predicted by a composite of four aptitude tests measuring: numerical ability, non-verbal abstract reasoning, ability to solve simplif...

  18. Drilling Precise Orifices and Slots

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Seidler, J. E.

    1983-01-01

    Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.

  19. Sharka epidemiology and worldwide management strategies: learning lessons to optimize disease control in perennial plants

    USDA-ARS?s Scientific Manuscript database

    Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, Plum pox virus (PPV;, genus Potyvirus), has been classified as a quarantine pathogen in numerous countries. As a result, ...

  20. What Students Learn from Hands-On Activities

    ERIC Educational Resources Information Center

    Schwichow, Martin; Zimmerman, Corinne; Croker, Steve; Härtig, Hendrik

    2016-01-01

    The ability to design and interpret controlled experiments is an important scientific process skill and a common objective of science standards. Numerous intervention studies have investigated how the control-of-variables-strategy (CVS) can be introduced to students. However, a meta-analysis of 72 intervention studies found that the opportunity to…

  1. Alocomotino Control Algorithm for Robotic Linkage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohner, Jeffrey L.

    This dissertation describes the development of a control algorithm that transitions a robotic linkage system between stabilized states producing responsive locomotion. The developed algorithm is demonstrated using a simple robotic construction consisting of a few links with actuation and sensing at each joint. Numerical and experimental validation is presented.

  2. Onion and weed response to mustard (Sinapis alba) seed meal

    USDA-ARS?s Scientific Manuscript database

    Weed control in organic onion production is often difficult and expensive, requiring numerous cultivations and extensive hand-weeding. Onion safety and weed control with mustard seed meal (MSM) derived from Sinapis alba was evaluated in greenhouse and field trials. MSM applied at 110, 220, and 440 g...

  3. Opportunities for improving risk communication during the permitting process for entomophagous biological control agents: A review of current systems

    USDA-ARS?s Scientific Manuscript database

    Concerns about potentially irreversible non-target impacts from the importation and release of entomophagous biological control agents (BCAs) have resulted in increasingly stringent import requirements by National Plant Protection Organizations. Despite numerous scientific publications on the poten...

  4. Control optimization, stabilization and computer algorithms for aircraft applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.

  5. Active Control of Surge in Compressors Which Exhibit Abrupt Stall

    DTIC Science & Technology

    2001-06-01

    sensor (of pressure, flow rate, etc.) is fed to a controller which applies a proper control law to drive the actuator (valve, The present paper reports...1993), who analyzed the influence of sensor and numerical simulation shows that: t) the predictions of control acutrsltin o th mxmm sabizd opesr...a sensor of compressor face total pressure), a The present paper considers the active suppression of surge in a butterfly throttle/actuation valve

  6. A convex penalty for switching control of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clason, Christian; Rund, Armin; Kunisch, Karl

    2016-01-19

    A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.

  7. Retrospective Cost Adaptive Control with Concurrent Closed-Loop Identification

    NASA Astrophysics Data System (ADS)

    Sobolic, Frantisek M.

    Retrospective cost adaptive control (RCAC) is a discrete-time direct adaptive control algorithm for stabilization, command following, and disturbance rejection. RCAC is known to work on systems given minimal modeling information which is the leading numerator coefficient and any nonminimum-phase (NMP) zeros of the plant transfer function. This information is normally needed a priori and is key in the development of the filter, also known as the target model, within the retrospective performance variable. A novel approach to alleviate the need for prior modeling of both the leading coefficient of the plant transfer function as well as any NMP zeros is developed. The extension to the RCAC algorithm is the use of concurrent optimization of both the target model and the controller coefficients. Concurrent optimization of the target model and controller coefficients is a quadratic optimization problem in the target model and controller coefficients separately. However, this optimization problem is not convex as a joint function of both variables, and therefore nonconvex optimization methods are needed. Finally, insights within RCAC that include intercalated injection between the controller numerator and the denominator, unveil the workings of RCAC fitting a specific closed-loop transfer function to the target model. We exploit this interpretation by investigating several closed-loop identification architectures in order to extract this information for use in the target model.

  8. Complexity and dynamics of switched human balance control during quiet standing.

    PubMed

    Nema, Salam; Kowalczyk, Piotr; Loram, Ian

    2015-10-01

    In this paper, we use a combination of numerical simulations, time series analysis, and complexity measures to investigate the dynamics of switched systems with noise, which are often used as models of human balance control during quiet standing. We link the results with complexity measures found in experimental data of human sway motion during quiet standing. The control model ensuring balance, which we use, is based on an act-and-wait control concept, that is, a human controller is switched on when a certain sway angle is reached. Otherwise, there is no active control present. Given a time series data, we determine how does it look a typical pattern of control strategy in our model system. We detect the switched nonlinearity in the system using a frequency analysis method in the absence of noise. We also analyse the effect of time delay on the existence of limit cycles in the system in the absence of noise. We perform the entropy and detrended fluctuation analyses in view of linking the switchings (and the dead zone) with the occurrences of complexity in the model system in the presence of noise. Finally, we perform the entropy and detrended fluctuation analyses on experimental data and link the results with numerical findings in our model example.

  9. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  10. How Math Anxiety Relates to Number-Space Associations.

    PubMed

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  11. How Math Anxiety Relates to Number–Space Associations

    PubMed Central

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  12. Reactive recruitment of attentional control in math anxiety: an ERP study of numeric conflict monitoring and adaptation.

    PubMed

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2014-01-01

    This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial's congruence in current interference. To this end, 17 low math-anxious (LMA) and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information.

  13. Reactive Recruitment of Attentional Control in Math Anxiety: An ERP Study of Numeric Conflict Monitoring and Adaptation

    PubMed Central

    Suárez-Pellicioni, Macarena; Núñez-Peña, María Isabel; Colomé, Àngels

    2014-01-01

    This study uses event-related brain potentials (ERPs) to investigate the electrophysiological correlates of numeric conflict monitoring in math-anxious individuals, by analyzing whether math anxiety is related to abnormal processing in early conflict detection (as shown by the N450 component) and/or in a later, response-related stage of processing (as shown by the conflict sustained potential; Conflict-SP). Conflict adaptation effects were also studied by analyzing the effect of the previous trial’s congruence in current interference. To this end, 17 low math-anxious (LMA) and 17 high math-anxious (HMA) individuals were presented with a numerical Stroop task. Groups were extreme in math anxiety but did not differ in trait or state anxiety or in simple math ability. The interference effect of the current trial (incongruent-congruent) and the interference effect preceded by congruence and by incongruity were analyzed both for behavioral measures and for ERPs. A greater interference effect was found for response times in the HMA group than in the LMA one. Regarding ERPs, the LMA group showed a greater N450 component for the interference effect preceded by congruence than when preceded by incongruity, while the HMA group showed greater Conflict-SP amplitude for the interference effect preceded by congruence than when preceded by incongruity. Our study showed that the electrophysiological correlates of numeric interference in HMA individuals comprise the absence of a conflict adaptation effect in the first stage of conflict processing (N450) and an abnormal subsequent up-regulation of cognitive control in order to overcome the conflict (Conflict-SP). More concretely, our study shows that math anxiety is related to a reactive and compensatory recruitment of control resources that is implemented only when previously exposed to a stimuli presenting conflicting information. PMID:24918584

  14. Thermal analysis of the vortex tube based thermocycler for fast DNA amplification: Experimental and two-dimensional numerical results

    NASA Astrophysics Data System (ADS)

    Raghavan, V.; Whitney, Scott E.; Ebmeier, Ryan J.; Padhye, Nisha V.; Nelson, Michael; Viljoen, Hendrik J.; Gogos, George

    2006-09-01

    In this article, experimental and numerical analyses to investigate the thermal control of an innovative vortex tube based polymerase chain reaction (VT-PCR) thermocycler are described. VT-PCR is capable of rapid DNA amplification and real-time optical detection. The device rapidly cycles six 20μl 96bp λ-DNA samples between the PCR stages (denaturation, annealing, and elongation) for 30cycles in approximately 6min. Two-dimensional numerical simulations have been carried out using computational fluid dynamics (CFD) software FLUENT v.6.2.16. Experiments and CFD simulations have been carried out to measure/predict the temperature variation between the samples and within each sample. Heat transfer rate (primarily dictated by the temperature differences between the samples and the external air heating or cooling them) governs the temperature distribution between and within the samples. Temperature variation between and within the samples during the denaturation stage has been quite uniform (maximum variation around ±0.5 and 1.6°C, respectively). During cooling, by adjusting the cold release valves in the VT-PCR during some stage of cooling, the heat transfer rate has been controlled. Improved thermal control, which increases the efficiency of the PCR process, has been obtained both experimentally and numerically by slightly decreasing the rate of cooling. Thus, almost uniform temperature distribution between and within the samples (within 1°C) has been attained for the annealing stage as well. It is shown that the VT-PCR is a fully functional PCR machine capable of amplifying specific DNA target sequences in less time than conventional PCR devices.

  15. Numerical simulation of immiscible viscous fingering using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Adam, A.; Salinas, P.; Percival, J. R.; Pavlidis, D.; Pain, C.; Muggeridge, A. H.; Jackson, M.

    2015-12-01

    Displacement of one fluid by another in porous media occurs in various settings including hydrocarbon recovery, CO2 storage and water purification. When the invading fluid is of lower viscosity than the resident fluid, the displacement front is subject to a Saffman-Taylor instability and is unstable to transverse perturbations. These instabilities can grow, leading to fingering of the invading fluid. Numerical simulation of viscous fingering is challenging. The physics is controlled by a complex interplay of viscous and diffusive forces and it is necessary to ensure physical diffusion dominates numerical diffusion to obtain converged solutions. This typically requires the use of high mesh resolution and high order numerical methods. This is computationally expensive. We demonstrate here the use of a novel control volume - finite element (CVFE) method along with dynamic unstructured mesh adaptivity to simulate viscous fingering with higher accuracy and lower computational cost than conventional methods. Our CVFE method employs a discontinuous representation for both pressure and velocity, allowing the use of smaller control volumes (CVs). This yields higher resolution of the saturation field which is represented CV-wise. Moreover, dynamic mesh adaptivity allows high mesh resolution to be employed where it is required to resolve the fingers and lower resolution elsewhere. We use our results to re-examine the existing criteria that have been proposed to govern the onset of instability.Mesh adaptivity requires the mapping of data from one mesh to another. Conventional methods such as consistent interpolation do not readily generalise to discontinuous fields and are non-conservative. We further contribute a general framework for interpolation of CV fields by Galerkin projection. The method is conservative, higher order and yields improved results, particularly with higher order or discontinuous elements where existing approaches are often excessively diffusive.

  16. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  17. Control of the maneuvering SCOLE structure

    NASA Technical Reports Server (NTRS)

    Lim, S.; Meirovitch, L.

    1992-01-01

    This paper is concerned with the vibration control of the SCOLE structure while it undergoes a slewing maneuver. The control law is designed according to the linear quadratic regulator theory. In view of saturation limits on the actuators, the actual implementation is modified so as to observe these limits, resulting in suboptimal control. State estimation is carried out by means of a Kalman filter. The control and state estimation are carried out in discrete time. Numerical simulations for several cases of interest are presented.

  18. Design of optimised backstepping controller for the synchronisation of chaotic Colpitts oscillator using shark smell algorithm

    NASA Astrophysics Data System (ADS)

    Fouladi, Ehsan; Mojallali, Hamed

    2018-01-01

    In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master-slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm optimisation (PSO) algorithm. Simulation results show better performance in terms of accuracy and convergence for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller.

  19. The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal

    NASA Astrophysics Data System (ADS)

    Ratna Sari, Eminugroho; Insani, Nur; Lestari, Dwi

    2017-06-01

    Behaviour analysis for host-vector model without control of dengue disease is based on the value of basic reproduction number obtained using next generation matrices. Furthermore, the model is further developed involving a preventive control to minimize the contact between host and vector. The purpose is to obtain an optimal preventive strategy with minimal cost. The Pontryagin Minimum Principal is used to find the optimal control analytically. The derived optimality model is then solved numerically to investigate control effort to reduce infected class.

  20. Numerical Simulation Analysis of High-precision Dispensing Needles for Solid-liquid Two-phase Grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Hu, Jinglei; Wang, Binyu; Sheng, Liang; Zhang, Xinming

    2018-03-01

    In order to investigate the effect of abrasive flow polishing surface variable diameter pipe parts, with high precision dispensing needles as the research object, the numerical simulation of the process of polishing high precision dispensing needle was carried out. Analysis of different volume fraction conditions, the distribution of the dynamic pressure and the turbulence viscosity of the abrasive flow field in the high precision dispensing needle, through comparative analysis, the effectiveness of the abrasive grain polishing high precision dispensing needle was studied, controlling the volume fraction of silicon carbide can change the viscosity characteristics of the abrasive flow during the polishing process, so that the polishing quality of the abrasive grains can be controlled.

Top