Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
NASA Astrophysics Data System (ADS)
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.
Sampling Scattered Data Onto Rectangular Grids for Volume Visualization
1989-12-01
30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.
1988-01-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
NASA Astrophysics Data System (ADS)
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Summary of research in applied mathematics, numerical analysis, and computer sciences
NASA Technical Reports Server (NTRS)
1986-01-01
The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.
NASA Astrophysics Data System (ADS)
Recent experimental, theoretical, and numerical investigations of problems in applied mechanics are discussed in reviews and reports. The fields covered include vibration and stability; the mechanics of elastic and plastic materials; fluid mechanics; the numerical treatment of differential equations; finite and boundary elements; optimization, decision theory, stochastics, and actuarial analysis; applied analysis and mathematical physics; and numerical analysis. Reviews are presented on mathematical applications of geometric-optics methods, biomechanics and implant technology, vibration theory in engineering, the stiffness and strength of damaged materials, and the existence of slow steady flows of viscoelastic fluids of integral type.
Computational fluid dynamics applications to improve crop production systems
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Research in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Astrophysics Data System (ADS)
Duh, J. C.; Yang, Wen-Jei
1989-09-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Numerical analysis of natural convection in liquid droplets by phase change
NASA Technical Reports Server (NTRS)
Duh, J. C.; Yang, Wen-Jei
1989-01-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
Numerical simulation of water evaporation inside vertical circular tubes
NASA Astrophysics Data System (ADS)
Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol
2013-10-01
In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Kim, Seung Jun
In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr; Shon, Chae-Hwa
2015-05-07
A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. Tomore » improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.« less
Flow and Heat Transfer Analysis of an Eyring-Powell Fluid in a Pipe
NASA Astrophysics Data System (ADS)
Ali, N.; Nazeer, F.; Nazeer, Mubbashar
2018-02-01
The steady non-isothermal flow of an Eyring-Powell fluid in a pipe is investigated using both perturbation and numerical methods. The results are presented for two viscosity models, namely the Reynolds model and the Vogel model. The shooting method is employed to compute the numerical solution. Criteria for validity of perturbation solution are developed. When these criteria are met, it is shown that the perturbation solution is in good agreement with the numerical solution. The influence of various emerging parameters on the velocity and temperature field is also shown.
NASA Technical Reports Server (NTRS)
Hussaini, M. Y. (Editor); Kumar, A. (Editor); Salas, M. D. (Editor)
1993-01-01
The purpose here is to assess the state of the art in the areas of numerical analysis that are particularly relevant to computational fluid dynamics (CFD), to identify promising new developments in various areas of numerical analysis that will impact CFD, and to establish a long-term perspective focusing on opportunities and needs. Overviews are given of discretization schemes, computational fluid dynamics, algorithmic trends in CFD for aerospace flow field calculations, simulation of compressible viscous flow, and massively parallel computation. Also discussed are accerelation methods, spectral and high-order methods, multi-resolution and subcell resolution schemes, and inherently multidimensional schemes.
Zou, Ling; Zhao, Haihua; Kim, Seung Jun
2016-11-16
In this study, the classical Welander’s oscillatory natural circulation problem is investigated using high-order numerical methods. As originally studied by Welander, the fluid motion in a differentially heated fluid loop can exhibit stable, weakly instable, and strongly instable modes. A theoretical stability map has also been originally derived from the stability analysis. Numerical results obtained in this paper show very good agreement with Welander’s theoretical derivations. For stable cases, numerical results from both the high-order and low-order numerical methods agree well with the non-dimensional flow rate analytically derived. The high-order numerical methods give much less numerical errors compared to themore » low-order methods. For stability analysis, the high-order numerical methods could perfectly predict the stability map, while the low-order numerical methods failed to do so. For all theoretically unstable cases, the low-order methods predicted them to be stable. The result obtained in this paper is a strong evidence to show the benefits of using high-order numerical methods over the low-order ones, when they are applied to simulate natural circulation phenomenon that has already gain increasing interests in many future nuclear reactor designs.« less
CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe
NASA Astrophysics Data System (ADS)
Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin
2017-08-01
In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.
Spikes and matter inhomogeneities in massless scalar field models
NASA Astrophysics Data System (ADS)
Coley, A. A.; Lim, W. C.
2016-01-01
We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.
Fluid Stochastic Petri Nets: Theory, Applications, and Solution
NASA Technical Reports Server (NTRS)
Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.
1996-01-01
In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.
NASA Astrophysics Data System (ADS)
Ni, Qiao; Luo, Yangyang; Li, Mingwu; Yan, Hao
2017-09-01
Structural model for a slender and uniform pipe conveying fluid, with axially moving supports on both ends, immersed in an incompressible fluid, is formulated. Free vibration and stability of the system are studied through numerical calculation. First, the equations of motion of the system are derived in an absolute coordinate system. An "axial added mass coefficient" is adopted to amend the forces caused by the external fluid. Boundary conditions are fixed by using coordinated conversion. Then, numerical results of the natural frequency are obtained via the Galerkin method, both for pinned-pinned and clamped-clamped supports. The critical speeds of supports and several instability types are discussed. Last, the effects of the system parameters on the dynamics and instability of the system are investigated.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows
NASA Astrophysics Data System (ADS)
Lei, Xin; Li, Jiequan
2018-04-01
This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
NASA Technical Reports Server (NTRS)
Giltrud, M. E.; Lucas, D. S.
1979-01-01
The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.
NASA Astrophysics Data System (ADS)
Problems in applied mathematics and mechanics are addressed in reviews and reports. Areas covered are vibration and stability, elastic and plastic mechanics, fluid mechanics, the numerical treatment of differential equations (general theory and finite-element methods in particular), optimization, decision theory, stochastics, actuarial mathematics, applied analysis and mathematical physics, and numerical analysis. Included are major lectures on separated flows, the transition regime of rarefied-gas dynamics, recent results in nonlinear elasticity, fluid-elastic vibration, the new computer arithmetic, and unsteady wave propagation in layered elastic bodies.
NASA Astrophysics Data System (ADS)
Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif
2018-06-01
The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.
Numerical analysis of the forced convective heat transfer on Al2O3-Cu/water hybrid nanofluid
NASA Astrophysics Data System (ADS)
Rahman, Mohd Rosdzimin Abdul; Leong, Kin Yuen; Idris, Azam Che; Saad, Mohd Rashdan; Anwar, Mahmood
2017-05-01
A numerical investigation to elucidate thermal behavior of hybrid nanofluids consisting of Al2O3 and Cu nanoparticles at ratio of 90:10 was conducted. Numerical domain of a two-dimensional axisymmetric copper tube with a length of 1000 and 10 mm in diameter is used. A uniform axial velocity is assigned at the velocity inlet based on the Reynolds number. The outer wall of the tube consists of non-slip wall condition with a constant heat flux. The assumptions of this numerical analysis are; (1) there is a steady state analysis, (2) effective thermo-physical properties of the nanofluid are depend on the volume concentration, and (3) fluid is continuum. It is found that the dominant nanoparticle in the hybrid nanofluids strongly influences the thermal behavior of the hybrid nanofluids. It was also found that the heat transfer coefficient increases as the volume concentration of the hybrid nanoparticle increases in base fluids and the Reynolds number.
Numerical analysis of eccentric orifice plate using ANSYS Fluent software
NASA Astrophysics Data System (ADS)
Zahariea, D.
2016-11-01
In this paper the eccentric orifice plate is qualitative analysed as compared with the classical concentric orifice plate from the point of view of sedimentation tendency of solid particles in the fluid whose flow rate is measured. For this purpose, the numerical streamlines pattern will be compared for both orifice plates. The numerical analysis has been performed using ANSYS Fluent software. The methodology of CFD analysis is presented: creating the 3D solid model, fluid domain extraction, meshing, boundary condition, turbulence model, solving algorithm, convergence criterion, results and validation. Analysing the numerical streamlines, for the concentric orifice plate can be clearly observed two circumferential regions of separated flows, upstream and downstream of the orifice plate. The bottom part of these regions are the place where the solid particles could sediment. On the other hand, for the eccentric orifice plate, the streamlines pattern suggest that no sedimentation will occur because at the bottom area of the pipe there are no separated flows.
NASA Astrophysics Data System (ADS)
Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid
2014-09-01
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.
The NASTRAN theoretical manual
NASA Technical Reports Server (NTRS)
1981-01-01
Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.
Semiannual report, 1 April - 30 September 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software for parallel computers. Research in these areas is discussed.
Numerical Simulation of Fluid Flow in a Simple Rotor/Stator Pair
1991-06-01
describes a series of numerical experiments dealing with rotor/stator interactions in hydroturbines . The means of analysis was a nonconforming sliding...science and industry is the improvement of the efficiency of the hydroturbine . Numerical flow analysis is essential in order to properly conduct this...evaluation. The hydroturbine is typically modeled as an infinite series of rotor/stator pairs. Figure 1 is an illustration of an axial-flow machine with
NASA Astrophysics Data System (ADS)
Huang, Jie; Li, Piao; Yao, Weixing
2018-05-01
A loosely coupled fluid-structural thermal numerical method is introduced for the thermal protection system (TPS) gap thermal control analysis in this paper. The aerodynamic heating and structural thermal are analyzed by computational fluid dynamics (CFD) and numerical heat transfer (NHT) methods respectively. An interpolation algorithm based on the control surface is adopted for the data exchanges on the coupled surface. In order to verify the analysis precision of the loosely coupled method, a circular tube example was analyzed, and the wall temperature agrees well with the test result. TPS gap thermal control performance was studied by the loosely coupled method successfully. The gap heat flux is mainly distributed in the small region at the top of the gap which is the high temperature region. Besides, TPS gap temperature and the power of the active cooling system (CCS) calculated by the traditional uncoupled method are higher than that calculated by the coupled method obviously. The reason is that the uncoupled method doesn't consider the coupled effect between the aerodynamic heating and structural thermal, however the coupled method considers it, so TPS gap thermal control performance can be analyzed more accurately by the coupled method.
NASA Astrophysics Data System (ADS)
Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.
2015-08-01
The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.
An Integrated Solution for Performing Thermo-fluid Conjugate Analysis
NASA Technical Reports Server (NTRS)
Kornberg, Oren
2009-01-01
A method has been developed which integrates a fluid flow analyzer and a thermal analyzer to produce both steady state and transient results of 1-D, 2-D, and 3-D analysis models. The Generalized Fluid System Simulation Program (GFSSP) is a one dimensional, general purpose fluid analysis code which computes pressures and flow distributions in complex fluid networks. The MSC Systems Improved Numerical Differencing Analyzer (MSC.SINDA) is a one dimensional general purpose thermal analyzer that solves network representations of thermal systems. Both GFSSP and MSC.SINDA have graphical user interfaces which are used to build the respective model and prepare it for analysis. The SINDA/GFSSP Conjugate Integrator (SGCI) is a formbase graphical integration program used to set input parameters for the conjugate analyses and run the models. The contents of this paper describes SGCI and its thermo-fluids conjugate analysis techniques and capabilities by presenting results from some example models including the cryogenic chill down of a copper pipe, a bar between two walls in a fluid stream, and a solid plate creating a phase change in a flowing fluid.
Numerical solution of fluid flow and heat tranfer problems with surface radiation
NASA Technical Reports Server (NTRS)
Ahuja, S.; Bhatia, K.
1995-01-01
This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.
Stability of the iterative solutions of integral equations as one phase freezing criterion.
Fantoni, R; Pastore, G
2003-10-01
A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of hypernetted chain and Percus-Yevick integral equations for the one-dimensional (1D) hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.
Sample processor for chemical analysis
NASA Technical Reports Server (NTRS)
Boettger, Heinz G. (Inventor)
1980-01-01
An apparatus is provided which can process numerous samples that must be chemically analyzed by the application of fluids such as liquid reagents, solvents and purge gases, as well as the application of dumps for receiving the applied fluid after they pass across the sample, in a manner that permits numerous samples to be processed in a relatively short time and with minimal manpower. The processor includes a rotor which can hold numerous cartridges containing inert or adsorbent material for holding samples, and a pair of stators on opposite sides of the rotor. The stators form stations spaced along the path of the cartridges which lie in the rotor, and each station can include an aperture in one stator through which a fluid can be applied to a cartridge resting at that station, and an aperture in the other stator which can receive the fluid which has passed through the cartridge. The stators are sealed to the ends of the cartridges lying on the rotor, to thereby isolate the stations from one another.
NASA Astrophysics Data System (ADS)
Saeed, R. A.; Galybin, A. N.; Popov, V.
2013-01-01
This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.
Numerical analysis on the cutting and finishing efficiency of MRAFF process
NASA Astrophysics Data System (ADS)
Lih, F. L.
2016-03-01
The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.
Advances in numerical and applied mathematics
NASA Technical Reports Server (NTRS)
South, J. C., Jr. (Editor); Hussaini, M. Y. (Editor)
1986-01-01
This collection of papers covers some recent developments in numerical analysis and computational fluid dynamics. Some of these studies are of a fundamental nature. They address basic issues such as intermediate boundary conditions for approximate factorization schemes, existence and uniqueness of steady states for time dependent problems, and pitfalls of implicit time stepping. The other studies deal with modern numerical methods such as total variation diminishing schemes, higher order variants of vortex and particle methods, spectral multidomain techniques, and front tracking techniques. There is also a paper on adaptive grids. The fluid dynamics papers treat the classical problems of imcompressible flows in helically coiled pipes, vortex breakdown, and transonic flows.
2000-12-01
Numerical Simulations ..... ................. .... 42 1.4.1. Impact of a rod on a rigid wall ..... ................. .... 42 1.4.2. Impact of two...dissipative properties of the proposed scheme . . . . 81 II.4. Representative Numerical Simulations ...... ................. ... 84 11.4.1. Forging of...Representative numerical simulations ...... ............. .. 123 111.3. Model Problem II: a Simplified Model of Thin Beams ... ......... ... 127 III
Quantitative image processing in fluid mechanics
NASA Technical Reports Server (NTRS)
Hesselink, Lambertus; Helman, James; Ning, Paul
1992-01-01
The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.
A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.
Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique
NASA Astrophysics Data System (ADS)
Kulkarni, P. S.
2017-04-01
Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.
Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation
NASA Astrophysics Data System (ADS)
Das, K.; Sharma, R. P.; Duari, P. R.
2017-12-01
An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.
Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder
NASA Astrophysics Data System (ADS)
Ito, Atsushi; Ramos, Jesús J.
2018-01-01
The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Bed Erosion Process in Geophysical Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.
2017-12-01
The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.
Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations
Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.
2007-01-01
Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.
Dix, Annika; van der Meer, Elke
2015-04-01
This study investigates cognitive resource allocation dependent on fluid and numerical intelligence in arithmetic/algebraic tasks varying in difficulty. Sixty-six 11th grade students participated in a mathematical verification paradigm, while pupil dilation as a measure of resource allocation was collected. Students with high fluid intelligence solved the tasks faster and more accurately than those with average fluid intelligence, as did students with high compared to average numerical intelligence. However, fluid intelligence sped up response times only in students with average but not high numerical intelligence. Further, high fluid but not numerical intelligence led to greater task-related pupil dilation. We assume that fluid intelligence serves as a domain-general resource that helps to tackle problems for which domain-specific knowledge (numerical intelligence) is missing. The allocation of this resource can be measured by pupil dilation. Copyright © 2014 Society for Psychophysiological Research.
Oscillation characteristics of endodontic files: numerical model and its validation.
Verhaagen, Bram; Lea, Simon C; de Bruin, Gerrit J; van der Sluis, Luc W M; Walmsley, A Damien; Versluis, Michel
2012-11-01
During a root canal treatment, an antimicrobial fluid is injected into the root canal to eradicate all bacteria from the root canal system. Agitation of the fluid using an ultrasonically vibrating miniature file results in a significant improvement in the cleaning efficacy over conventional syringe irrigation. Numerical analysis of the oscillation characteristics of the file, modeled as a tapered, driven rod, shows a sinusoidal wave pattern with an increase in amplitude and decrease in wavelength toward the free end of the file. Measurements of the file oscillation with a scanning laser vibrometer show good agreement with the numerical simulation. The numerical model of endodontic file oscillation has the potential for predicting the oscillation pattern and fracture likeliness of various file types and the acoustic streaming they induce during passive ultrasonic irrigation.
Immunoglobulin E (IgE) and IgE-containing cells in human gastrointestinal fluids and tissues.
Brown, W R; Borthistle, B K; Chen, S T
1975-01-01
Human gastric, small intestinal, colonic and rectal mucosae were examined for IgE-containing cells by single- and double-antibody immunofluorescence techniques, and IgE in intesinal fluids was measured by a double-antibody radioimmunoassay. IgE-containing cells were identified in all tissue specimens and comprised about 2% of all immunoglobulin-containing cells. Although less numerous than cells containing IgA, IgM or IgG, they were remarkably numerous in relation to the concentration of IgE in serum (about 0-001% of total immunoglobulin). IgE immunocytes were significantly more numerous in stomach and proximal small bowel than in colon and rectum, and were very numerous at bases of gastric and duodenal peptic ulcers. Measurable IgE was found in seventy-eight of eighty-five (92%) intestinal fluids. Sucrose gradient ultracentrifugation analysis of four of the fluids revealed that the immunologically reactive IgE was largely in fractions corresponding to molecules of lower molecular weight than that of albumin, which suggests that IgE in gut contents is degraded by proteolytic enzymes. The presence of IgE-forming cells in gastrointestinal tissues, and IgE or a fragment of IgE in intestinal fluids, suggests that IgE antibodies are available for participation in local reaginic-type reactions in the gut. Images FIG. 1 PMID:813925
A numerical method for electro-kinetic flow with deformable fluid interfaces
NASA Astrophysics Data System (ADS)
Booty, Michael; Ma, Manman; Siegel, Michael
2013-11-01
We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.
The numerical dynamic for highly nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Numerical simulation of the cavitation characteristics of a mixed-flow pump
NASA Astrophysics Data System (ADS)
Chen, T.; Li, S. R.; Li, W. Z.; Liu, Y. L.; Wu, D. Z.; Wang, L. Q.
2013-12-01
As a kind of general equipment for fluid transportation, pumps were widely used in industry which includes many applications of high pressure, temperature and toxic fluids transportations. Performances of pumps affect the safety and reliability of the whole special equipment system. Cavitation in pumps cause the loss of performance and erosion of the blade, which could affect the running stability and reliability of the pump system. In this paper, a kind of numerical method for cavitaion performance prediction was presented. In order to investigate the accuracy of the method, CFD flow analysis and cavitation performance predictions of a mixed-flow pump were carried out. The numerical results were compared with the test results.
A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1971-01-01
An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.
Numerical simulation of compressible fluid flow in an ultrasonic suction pump.
Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro
2016-08-01
Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.
Viscous Rayleigh-Taylor instability in spherical geometry
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2016-02-01
We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955), 10.1093/qjmam/8.1.1] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer a somewhat improved one. A third DR, based on transforming a planar DR into a spherical one, suffers no unphysical predictions and compares reasonably well with the exact work of Chandrasekhar and a more recent numerical analysis of the problem [Terrones and Carrara, Phys. Fluids 27, 054105 (2015), 10.1063/1.4921648].
An analysis on the magnetic fluid seal capacity
NASA Astrophysics Data System (ADS)
Meng, Zhao; Jibin, Zou; Jianhui, Hu
2006-08-01
The capacity of the magnetic fluid seal depends on the magnetic field and the saturation magnetization of the magnetic fluid. There are many factors that influence the magnetic field and the seal capacity of the magnetic fluid seal, such as the sealing gap, the shaft eccentricity, the shaft diameter, and the centrifugal force. In this paper, these factors are analyzed by numerical computations. When the material and structure are the same, the magnetic fluid seal capacity will reduce with the increasing of the sealing gap. When the shaft diameter is large the gravity should be considered. The centrifugal force has influence on the magnetic fluid seal capacity.
Design of a microfluidic system for red blood cell aggregation investigation.
Mehri, R; Mavriplis, C; Fenech, M
2014-06-01
The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.
NASA Astrophysics Data System (ADS)
Recent advances in the analytical and numerical treatment of physical and engineering problems are discussed in reviews and reports. Topics addressed include fluid mechanics, numerical methods for differential equations, FEM approaches, and boundary-element methods. Consideration is given to optimization, decision theory, stochastics, actuarial mathematics, applied mathematics and mathematical physics, and numerical analysis.
A finite difference method for a coupled model of wave propagation in poroelastic materials.
Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi
2010-05-01
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface
NASA Astrophysics Data System (ADS)
Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.
2018-03-01
This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.
Crystal Growth and Fluid Mechanics Problems in Directional Solidification
NASA Technical Reports Server (NTRS)
Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.
2001-01-01
Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling
NASA Astrophysics Data System (ADS)
Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen
2018-04-01
This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.
2008-09-01
Element Method. Wellesley- Cambridge Press, Wellesly, MA, 1988. [97] E. F. Toro . Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical...introducing additional state variables, are generally asymptotically dual consistent. Numerical results are presented to confirm the results of the analysis...dependence on the state gradient is handled by introducing additional state variables, are generally asymptotically dual consistent. Numerical results are
Numerical analysis of azimuthal rotating spokes in a crossed-field discharge plasma
NASA Astrophysics Data System (ADS)
Kawashima, R.; Hara, K.; Komurasaki, K.
2018-03-01
Low-frequency rotating spokes are obtained in a cross-field discharge plasma using two-dimensional numerical simulations. A particle-fluid hybrid model is used to model the plasma flow in a configuration similar to a Hall thruster. It has been reported that the drift-diffusion approximation for an electron fluid results in an ill-conditioned matrix when solving for the potential because of the differences in the electron mobilities across the magnetic field and in the direction of the E × B drift. In this paper, we employ a hyperbolic approach that enables stable calculation, namely, better iterative convergence of the electron fluid model. Our simulation results show a coherent rotating structure propagating in the E × B direction with a phase velocity of 2500 m s‑1, which agrees with experimental data. The phase velocity obtained from the numerical simulations shows good agreement with that predicted by the dispersion relation of the gradient drift instability.
Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank
NASA Technical Reports Server (NTRS)
LeClair, A. C.; Hedayat, A.; Majumdar, A. K.
2017-01-01
This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.
NASA Astrophysics Data System (ADS)
Staroń, Waldemar; Herbowski, Leszek; Gurgul, Henryk
2007-04-01
The goal of the work was to determine the values of cumulative parameters of the cerebrospinal fluid. Values of the parameters characterise statistical cerebrospinal fluid obtained by puncture from the patients diagnosed due to suspicion of normotensive hydrocephalus. The cerebrospinal fluid taken by puncture for the routine examinations carried out at the patients suspected of normotensive hydrocephalus was analysed. In the paper there are presented results of examinations of several dozens of puncture samples of the cerebrospinal fluid coming from various patients. Each sample was examined under the microscope and photographed in 20 randomly chosen places. On the basis of analysis of the pictures showing the area of 100 x 100μm, the selected cumulative parameters such as count, numerical density, field area and field perimeter were determined for each sample. Then the average value of the parameters was determined as well.
A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media
NASA Astrophysics Data System (ADS)
Denis, Max Fernand
In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.
Lens-free microscopy of cerebrospinal fluid for the laboratory diagnosis of meningitis
NASA Astrophysics Data System (ADS)
Delacroix, Robin; Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Blandin, Pierre; Dinten, Jean-Marc; Drancourt, Michel; Allier, Cédric
2018-02-01
The cytology of the cerebrospinal fluid is traditionally performed by an operator (physician, biologist) by means of a conventional light microscope. The operator visually counts the leukocytes (white blood cells) present in a sample of cerebrospinal fluid (10 μl). It is a tedious job and the result is operator-dependent. Here in order to circumvent the limitations of manual counting, we approach the question of numeration of erythrocytes and leukocytes for the cytological diagnosis of meningitis by means of lens-free microscopy. In a first step, a prospective counts of leukocytes was performed by five different operators using conventional optical microscopy. The visual counting yielded an overall 16.7% misclassification of 72 cerebrospinal fluid specimens in meningitis/non-meningitis categories using a 10 leukocyte/μL cut-off. In a second step, the lens-free microscopy algorithm was adapted step-by-step for counting cerebrospinal fluid cells and discriminating leukocytes from erythrocytes. The optimization of the automatic lens-free counting was based on the prospective analysis of 215 cerebrospinal fluid specimens. The optimized algorithm yielded a 100% sensitivity and a 86% specificity compared to confirmed diagnostics. In a third step, a blind lens-free microscopic analysis of 116 cerebrospinal fluid specimens, including six cases of microbiology confirmed infectious meningitis, yielded a 100% sensitivity and a 79% specificity. Adapted lens-free microscopy is thus emerging as an operator-independent technique for the rapid numeration of leukocytes and erythrocytes in cerebrospinal fluid. In particular, this technique is well suited to the rapid diagnosis of meningitis at point-of-care laboratories.
Numerical Analysis of Shear Thickening Fluids for Blast Mitigation Applications
2011-12-01
integrate with other types of physics simulation technologies ( ANSYS , 2011). One well-known product offered by ANSYS is the ANSYS CFX . The ANSYS CFD...centered. The ANSYS CFX solver uses coupled algebraic multigrid to achieve its solutions and its engineered scalability ensures a linear increase in CPU...on the user-defined distribution and size. As the numerical analysis focused on the behavior of each individual particle, the ANSYS CFX Rigid Body
NASA Astrophysics Data System (ADS)
Marzec, K.; Kucaba-Pietal, A.
2016-09-01
A series of numerical analysis have been performed to investigate heat transfer characteristics of an impingement cooling array of ten jets directed to the flat surface with different heat flux qw(x). A three-dimensional finite element model was used to solve equations of heat and mass transfer. The study focused on thermal stresses reduction on a cooled surface and aims at answering the question how the Nusselt number distribution on the cooled surface is affected by various inlet flow parameters for different heat flux distributions. The setup consists of a cylindrical plenum with an inline array of ten impingement jets. Simulation has been performed using the Computational Fluid Dynamics (CFD) code Ansys CFX. The k - ω shear stress transport (SST) turbulence model is used in calculations. The numerical analysis of the different mesh density results in good convergence of the GCI index, what excluded mesh size dependency. The physical model is simplified by using the steady state analysis and the incompressible and viscous flow of the fluid.
A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation
NASA Technical Reports Server (NTRS)
Majumdar, Alok
1998-01-01
An unstructured finite volume procedure has been developed for steady and transient thermo-fluid dynamic analysis of fluid systems and components. The procedure is applicable for a flow network consisting of pipes and various fittings where flow is assumed to be one dimensional. It can also be used to simulate flow in a component by modeling a multi-dimensional flow using the same numerical scheme. The flow domain is discretized into a number of interconnected control volumes located arbitrarily in space. The conservation equations for each control volume account for the transport of mass, momentum and entropy from the neighboring control volumes. In addition, they also include the sources of each conserved variable and time dependent terms. The source term of entropy equation contains entropy generation due to heat transfer and fluid friction. Thermodynamic properties are computed from the equation of state of a real fluid. The system of equations is solved by a hybrid numerical method which is a combination of simultaneous Newton-Raphson and successive substitution schemes. The paper also describes the application and verification of the procedure by comparing its predictions with the analytical and numerical solution of several benchmark problems.
Numerical study of fluid motion in bioreactor with two mixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheleva, I., E-mail: izheleva@uni-ruse.bg; Lecheva, A., E-mail: alecheva@uni-ruse.bg
2015-10-28
Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Yanji; Song Junling; Cui Cunyan
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
A new numerical approximation of the fractal ordinary differential equation
NASA Astrophysics Data System (ADS)
Atangana, Abdon; Jain, Sonal
2018-02-01
The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.
Nagaosa, Ryuichi S
2014-04-30
This study proposes a new numerical formulation of the spread of a flammable gas leakage. A new numerical approach has been applied to establish fundamental data for a hazard assessment of flammable gas spread in an enclosed residential space. The approach employs an extended version of a two-compartment concept, and determines the leakage concentration of gas using a mass-balance based formulation. The study also introduces a computational fluid dynamics (CFD) technique for calculating three-dimensional details of the gas spread by resolving all the essential scales of fluid motions without a turbulent model. The present numerical technique promises numerical solutions with fewer uncertainties produced by the model equations while maintaining high accuracy. The study examines the effect of gas density on the concentration profiles of flammable gas spread. It also discusses the effect of gas leakage rate on gas concentration profiles. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.
2009-06-01
Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.
Reaction-Infiltration Instabilities in Fractured and Porous Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, Anthony
In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.
Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect
NASA Astrophysics Data System (ADS)
de Rosis, Alessandro
2014-02-01
In this paper, numerical analysis aiming at simulating biological organisms immersed in a fluid are carried out. The fluid domain is modeled through the lattice Boltzmann (LB) method, while the immersed boundary method is used to account for the position of the organisms idealized as rigid bodies. The time discontinuous Galerkin method is employed to compute body motion. An explicit coupling strategy to combine the adopted numerical methods is proposed. The vertical take-off of a couple of butterflies is numerically simulated in different scenarios, showing the mutual interaction that a butterfly exerts on the other one. Moreover, the effect of lateral wind is investigated. A critical threshold value of the lateral wind is defined, thus corresponding to an increasing arduous take-off.
NASA Technical Reports Server (NTRS)
1994-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in the areas of (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving Langley facilities and scientists; and (4) computer science.
Morphology and dynamics of explosive vents
NASA Astrophysics Data System (ADS)
Gisler, Galen R.; Galland, Olivier; Haug, Øystein T.
2014-05-01
Eruptive processes in nature produce a wide variety of morphologies, including cone sheets, dykes, sills, and pipes. The choice of a particular eruptive style is determined partly by local inhomogeneities, and partly by the gross overall properties of the country rock and the physical properties of the eruptive fluid. In this study we report on experimental and numerical designed to capture a range of morphologies in an eruptive system. Using dimensional analysis we link the experimental and numerical work together and draw implications for field studies. Our experimental work uses silica flour in a Hele-Shaw cell, with air as the eruptive fluid. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high pressure or low depth of fill and diagonal ones at low pressure or high depth of fill. In the numerical work the eruptive fluid is a mixture of basaltic magma, supercritical water, and carbon dioxide, and the ambient material is a fill of basalt with varying material properties. In the numerical work we see three distinct morphologies: vertical pipes are produced at high pressures and softer backgrounds, diagonal pipes at lower pressures and stiffer backgrounds, while horizontal sills are produced in intermediate regimes.
Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1993-01-01
The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.
Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2003-01-01
A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trent, D.S.; Eyler, L.L.; Budden, M.J.
This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.
2015-01-01
In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
NASA Astrophysics Data System (ADS)
Abolghasemi, Mehran; Keshavarz, Ali; Mehrabian, Mozaffar Ali
2012-11-01
The thermal storage unit consists of two concentric cylinders where the working fluid flows through the internal cylinder and the annulus is filled with a phase change material. The system carries out a cyclic operation; each cycle consists of two processes. In the charging process the hot working fluid enters the internal cylinder and transfers heat to the phase change material. In the discharging process the cold working fluid enters the internal cylinder and absorbs heat from the phase change material. The differential equations governing the heat transfer between the two media are solved numerically. The numerical results are compared with the experimental results available in the literature. The performance of an energy storage unit is directly related to the thermal conductivity of nano-particles. The energy consumption of a residential unit whose energy is supplied by a thermal storage system can be reduced by 43 % when using nano-particles.
Error and Uncertainty Quantification in the Numerical Simulation of Complex Fluid Flows
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2010-01-01
The failure of numerical simulation to predict physical reality is often a direct consequence of the compounding effects of numerical error arising from finite-dimensional approximation and physical model uncertainty resulting from inexact knowledge and/or statistical representation. In this topical lecture, we briefly review systematic theories for quantifying numerical errors and restricted forms of model uncertainty occurring in simulations of fluid flow. A goal of this lecture is to elucidate both positive and negative aspects of applying these theories to practical fluid flow problems. Finite-element and finite-volume calculations of subsonic and hypersonic fluid flow are presented to contrast the differing roles of numerical error and model uncertainty. for these problems.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Operation of the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1975-01-01
The ICASE research program is described in detail; it consists of four major categories: (1) efficient use of vector and parallel computers, with particular emphasis on the CDC STAR-100; (2) numerical analysis, with particular emphasis on the development and analysis of basic numerical algorithms; (3) analysis and planning of large-scale software systems; and (4) computational research in engineering and the natural sciences, with particular emphasis on fluid dynamics. The work in each of these areas is described in detail; other activities are discussed, a prognosis of future activities are included.
Analysis of supersonic combustion flow fields with embedded subsonic regions
NASA Technical Reports Server (NTRS)
Dash, S.; Delguidice, P.
1972-01-01
The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.
Numerical simulation of bubble deformation in magnetic fluids by finite volume method
NASA Astrophysics Data System (ADS)
Yamasaki, Haruhiko; Yamaguchi, Hiroshi
2017-06-01
Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.
ICASE semiannual report, April 1 - September 30, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.
Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures
NASA Astrophysics Data System (ADS)
Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna
2010-09-01
Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.
Lagrangian analysis of multiscale particulate flows with the particle finite element method
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy
2014-05-01
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.
Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel
2013-12-01
This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.
Simulation of swimming strings immersed in a viscous fluid flow
NASA Astrophysics Data System (ADS)
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.
NASA Astrophysics Data System (ADS)
Hashim; Khan, Masood; Alshomrani, Ali Saleh
2017-12-01
This article considers a realistic approach to examine the magnetohydrodynamics (MHD) flow of Carreau fluid induced by the shrinking sheet subject to the stagnation-point. This study also explores the impacts of non-linear thermal radiation on the heat transfer process. The governing equations of physical model are expressed as a system of partial differential equations and are transformed into non-linear ordinary differential equations by introducing local similarity variables. The economized equations of the problem are numerically integrated using the Runge-Kutta Fehlberg integration scheme. In this study, we explore the condition of existence, non-existence, uniqueness and dual nature for obtaining numerical solutions. It is found that the solutions may possess multiple natures, upper and lower branch, for a specific range of shrinking parameter. Results indicate that due to an increment in the magnetic parameter, range of shrinking parameter where a dual solution exists, increases. Further, strong magnetic field enhances the thickness of the momentum boundary layer in case of the second solution while for first solution it reduces. We further note that the fluid suction diminishes the fluid velocity and therefore the thickness of the hydrodynamic boundary layer decreases as well. A critical analysis with existing works is performed which shows that outcome are benchmarks with these works.
Space shuttle main engine numerical modeling code modifications and analysis
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1988-01-01
The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).
TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, J.A.
TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.
Efficient simulation of press hardening process through integrated structural and CFD analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek
Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
NASA Technical Reports Server (NTRS)
Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali
2016-01-01
This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.
Seo, Hyeon-Seok; Han, Bongtae; Kim, Youn-Jea
2012-06-01
A new type of electrokinetic micromixer with a ring-type channel is introduced for fast mixing. The proposed mixer takes two fluids from different inlets and combines them in a ring-type mixing chamber. The fluids enter two different inlets (inner radius: 25 microm and outer radius: 50 microm), respectively. The total channel length is 500 microm, and four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with time, having various maximum values of voltage, zeta potential and frequency. Also, in order to compare the mixing performance with different obstacle configurations, we performed a numerical analysis using a commercial code, COMSOL. The concentration of the dissolved substances in the working fluid and the flow and electric fields in the channel were investigated and the results were graphically depicted for various flow and electric conditions.
Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System
NASA Astrophysics Data System (ADS)
Jarrahi, Miad; Holländer, Hartmut
2017-04-01
The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.
Testing a common ice-ocean parameterization with laboratory experiments
NASA Astrophysics Data System (ADS)
McConnochie, C. D.; Kerr, R. C.
2017-07-01
Numerical models of ice-ocean interactions typically rely upon a parameterization for the transport of heat and salt to the ice face that has not been satisfactorily validated by observational or experimental data. We compare laboratory experiments of ice-saltwater interactions to a common numerical parameterization and find a significant disagreement in the dependence of the melt rate on the fluid velocity. We suggest a resolution to this disagreement based on a theoretical analysis of the boundary layer next to a vertical heated plate, which results in a threshold fluid velocity of approximately 4 cm/s at driving temperatures between 0.5 and 4°C, above which the form of the parameterization should be valid.
Cumulative reports and publications through December 31, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.
Guo, Ce; Zhu, Xijing
2018-03-01
The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in ultrasonic assisted machining. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
Transport properties at fluids interfaces: a molecular study for a macroscopic modelling
NASA Astrophysics Data System (ADS)
Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim
2017-11-01
Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.
NASA Astrophysics Data System (ADS)
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.
2018-04-01
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary. A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.
Numerical Analysis of Film Cooling at High Blowing Ratio
NASA Technical Reports Server (NTRS)
El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali
2009-01-01
Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.
Stochastic analysis of multiphase flow in porous media: II. Numerical simulations
NASA Astrophysics Data System (ADS)
Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.
1996-08-01
The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.
Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2012-09-01
Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms
2003-03-01
problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes
NASA Astrophysics Data System (ADS)
Mamatha Upadhya, S.; Mahesha; Raju, C. S. K.
2018-04-01
A theoretical analysis is carried out to investigate the magnetohydrodynamic unsteady flow of Eyring-Powell and Carreau non-Newtonian fluids in a suspension of dust and nickel nanoparticles by considering variable thermal conductivity and thermal radiation. Dispersion of nickel nanoparticles in dusty fluids finds applications in heat exchanger systems, rechargeable batteries, chemical catalysts, metallurgy, conducting paints, magnetic recording media, drug delivery, nanofibers, textiles, etc. The initially arising set of physical governing partial differential equations is transformed to ordinary differential equations (ODEs) with the aid of similarity transformations. Consequentially, the nonlinear ODEs are solved numerically through the Runge-Kutta Fehlberg scheme (RKFS). The computational results for non-dimensional temperature and velocity profiles are presented through graphs. Furthermore, the numerical values of friction factor and heat transfer rate are tabulated numerically for the unsteady and steady cases of the Eyring and Carreau fluid cases and of the dusty non-Newtonian (φ=0) and the dusty non-Newtonian nanofluid (φ≠ 0) cases of the unsteady flow. We also validated the present results with previous published studies and found them to be highly satisfactory. The formulated model reveals that the rate of heat transfer is higher in the mixture of the nickel + Eyring-Powell case compared to the nickel + Carreau case. From this we can highlight that, depending on the industrial appliances, we can use heating or cooling processes for Eyring and Carreau fluids, respectively.
Numerical study of soap-film flow by nonuniform alternating electric fields
NASA Astrophysics Data System (ADS)
Nasiri, M.; Shirsavar, R.; Mollaei, S.; Ramos, A.
2017-02-01
Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.
Numerical study of soap-film flow by nonuniform alternating electric fields.
Nasiri, M; Shirsavar, R; Mollaei, S; Ramos, A
2017-02-01
Fluid flow of suspended liquid films induced by non-uniform alternating electric fields has been reported. The electric fields were generated by two rod-like electrodes perpendicular to the fluid surface. The observed fluid flow was explained qualitatively by considering a charge induction mechanism, where the electric field actuates on the charge induced on the film surface. In this paper we perform a numerical study of this fluid flow taking into account the charge induction mechanism. The numerical results are compared with experiments and good agreement is found. Finally, we propose the application of the device as a new kind of two dimensional fluid pump.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Hydrodynamic focusing investigation in a micro-flow cytometer.
Yang, An-Shik; Hsieh, Wen-Hsin
2007-04-01
Hydrodynamic focusing behavior is characterized by two fluids coflowing at different velocities inside a micro-flow cytometer. In this study, a two-fluid model has been established to describe the flow transport behavior and interaction of sample and sheath fluids. The analysis treats the sample and sheath fluids as two-dimensional, laminar, incompressible, and isothermal. The theoretical model comprises two groups of transient conservation equations of mass and momentum with consideration of the interfacial momentum exchange. The governing equations are solved numerically through an iterative SIMPLEC algorithm to determine the flow properties. Since the ratio of the sheath velocity to the sample velocity varies from 5 to 70, the predicted focusing width and length are in good agreement with the experimental data in the literature. In addition, the present study explored the hydrodynamic focusing flowfield as well as the pressure drop across a micro-flow cytometer and the time needed for the completion of one focusing event in detail. To enhance the understanding of hydrodynamic focusing in the design of cytometers, ten numerical experiments were conducted to examine the effects of the inner nozzle length, inner nozzle exit width, inner nozzle shape, and fluid properties on the width of the focused sample stream.
Aeroelastic analysis of bridge girder section using computer modeling
DOT National Transportation Integrated Search
2001-05-01
This report describes the numerical simulation of wind flow around bridges using the Finite Element Method (FEM) and the principles of Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD). Since, the suspension bridges are p...
NASA Astrophysics Data System (ADS)
Rothe, P. H.
The conference includes such topics as the reduction of fluid transient pressures by minimax optimization, modeling blockage in unsteady slurry flow in conduits, roles of vacuum breaker and air release devices in reducing waterhammer forces, and an analysis of laminar fluid transients in conduits of unconventional shape. Papers are presented on modulation systems for high speed water jets, water hammer analysis needs in nuclear power plant design, tail profile effects on unsteady large scale flow structure in the wing and plate junction, and a numerical study of pressure transients in a borehole due to pipe movement. Consideration is also given to boundary layer growth near a stagnation point, calculation of unsteady mixing in two-dimensional flows, the trailing edge of a pitching airfoil at high reduced frequencies, and a numerical study of instability-wave control through periodic wall suction/blowing.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.
2017-07-01
This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.
Advances in the analysis and prediction of turbulent viscoelastic flows
NASA Astrophysics Data System (ADS)
Gatski, T. B.; Thais, L.; Mompean, G.
2014-08-01
It has been well-known for over six decades that the addition of minute amounts of long polymer chains to organic solvents, or water, can lead to significant turbulent drag reduction. This discovery has had many practical applications such as in pipeline fluid transport, oil well operations, vehicle design and submersible vehicle projectiles, and more recently arteriosclerosis treatment. However, it has only been the last twenty-five years that the full utilization of direct numerical simulation of such turbulent viscoelastic flows has been achieved. The unique characteristics of viscoelastic fluid flow are dictated by the nonlinear differential relationship between the flow strain rate field and the extra-stress induced by the additive polymer. A primary motivation for the analysis of these turbulent fluid flows is the understanding of the effect on the dynamic transfer of energy in the turbulent flow due to the presence of the extra-stress field induced by the presence of the viscoelastic polymer chain. Such analyses now utilize direct numerical simulation data of fully developed channel flow for the FENE-P (Finite Extendable Nonlinear Elastic - Peterlin) fluid model. Such multi-scale dynamics suggests an analysis of the transfer of energy between the various component motions that include the turbulent kinetic energy, and the mean polymeric and elastic potential energies. It is shown that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer.
Direction dependence of displacement time for two-fluid electroosmotic flow.
Lim, Chun Yee; Lam, Yee Cheong
2012-03-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.
Direction dependence of displacement time for two-fluid electroosmotic flow
Lim, Chun Yee; Lam, Yee Cheong
2012-01-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083
NASA Astrophysics Data System (ADS)
Ghelardi, Stefano; Rizzo, Cesare; Villa, Diego
2017-12-01
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al. (2001) in two dimensions and later studied in three dimensions by Valdés Vazquez (2007), Lombardi (2012), and Trimarchi (2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINA™, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver (for the fluid domain) and a finite element solver (for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations.
The effect of magnetohydrodynamic nano fluid flow through porous cylinder
NASA Astrophysics Data System (ADS)
Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran
2017-08-01
This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.
A time step criterion for the stable numerical simulation of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa
2017-04-01
The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)
Kinetic model of turbulence in an incompressible fluid
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1978-01-01
A statistical description of turbulence in an incompressible fluid obeying the Navier-Stokes equations is proposed, where pressure is regarded as a potential for the interaction between fluid elements. A scaling procedure divides a fluctuation into three ranks representing the three transport processes of macroscopic evolution, transport property, and relaxation. Closure is obtained by relaxation, and a kinetic equation is obtained for the fluctuation of the macroscopic rank of the distribution function. The solution gives the transfer function and eddy viscosity. When applied to the inertia subrange of the energy spectrum the analysis recovers the Kolmogorov law and its numerical coefficient.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Supercomputer analysis of sedimentary basins.
Bethke, C M; Altaner, S P; Harrison, W J; Upson, C
1988-01-15
Geological processes of fluid transport and chemical reaction in sedimentary basins have formed many of the earth's energy and mineral resources. These processes can be analyzed on natural time and distance scales with the use of supercomputers. Numerical experiments are presented that give insights to the factors controlling subsurface pressures, temperatures, and reactions; the origin of ores; and the distribution and quality of hydrocarbon reservoirs. The results show that numerical analysis combined with stratigraphic, sea level, and plate tectonic histories provides a powerful tool for studying the evolution of sedimentary basins over geologic time.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
NASA Astrophysics Data System (ADS)
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells
NASA Astrophysics Data System (ADS)
Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.
2013-05-01
This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.
Approximation and Numerical Analysis of Nonlinear Equations of Evolution.
1980-01-31
dominant convective terms, or Stefan type problems such as the flow of fluids through porous media or the melting and freezing of ice. Such problems...means of formulating time-dependent Stefan problems was initiated. Classes of problems considered here include the one-phase and two-phase Stefan ...some new numerical methods were 2 developed for two dimensional, two-phase Stefan problems with time dependent boundary conditions. A variety of example
Peristaltic transport of copper-water nanofluid saturating porous medium
NASA Astrophysics Data System (ADS)
Abbasi, F. M.; Hayat, T.; Ahmad, B.
2015-03-01
Prime goal of present study is to model the problem for peristaltic transport of copper-water nanofluid in an asymmetric channel. The fluid fills porous space. Analysis is carried out in the presence of mixed conviction, viscous dissipation and heat generation/absorption. Long wavelength and low Reynolds number approximations are utilized in problem formulation. Numerical computations are presented for the axial velocity, pressure gradient, streamlines, temperature and heat transfer rate at the boundary. Graphical analysis is carried out to examine the effects of sundry parameters on flow quantities of interest. Results revealed that the axial velocity of copper-water nanofluid decreases with an increase in the nanoparticle volume fraction. Copper nanoparticles prove effective coolant since they sufficiently reduce the fluid temperature and show increase in the heat transfer between the fluid and solid boundary. Moreover temperature of the fluid decreases by increasing the permeability of porous medium.
NASA Astrophysics Data System (ADS)
Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny
2006-12-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
Onset of `stitching' in the fluid mechanical `sewing machine'
NASA Astrophysics Data System (ADS)
Ribe, Neil; Lister, John; Chiu-Webster, Sunny
2006-11-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...
2016-01-01
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.
2015-12-01
Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.
NASA Astrophysics Data System (ADS)
Najafi Khaboshan, Hasan; Nazif, Hamid Reza
2018-04-01
Heat transfer and turbulent flow of Al2O3-water nanofluid within alternating oval cross-section tube are numerically simulated using Eulerian-Eulerian two-phase mixture model. The primary goal of the present study is to investigate the effects of nanoparticles volume fraction, nanoparticles diameter and different inlet velocities on heat transfer, pressure drop and entropy generation characteristics of the alternating oval cross-section tube. For numerical simulation validation, the numerical results were compared with experimental data. Also, constant wall temperature boundary condition was considered on the tube wall. In addition, the comparison of thermal-hydraulic performance and the entropy generation characteristics between alternating oval cross-section tube and circular tube under same fluids were done. The results show that the heat transfer coefficient and pressure drop of alternating oval cross-section tube is more than base tube under same fluids. Also, these two parameters are increased when adding Al2O3 nanoparticle into water fluid, at any inlet velocity for both tubes. Furthermore, compared to the base fluid, the value of the heat transfer enhancement of nanofluid is higher than the increase of friction factor of nanofluid at the same given inlet boundary conditions. The results of entropy generation analysis illustrate that the total entropy generation increase with increasing the nanoparticles volume fraction and decreasing the nanoparticles diameter of nanofluid. The generation of thermal entropy is the main part of irreversibility, and Bejan number with an increase of the nanoparticles diameter slightly increases. Finally, at any given inlet velocity the frictional irreversibility is grown with an increase the nanoparticles volume fraction.
Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube
NASA Astrophysics Data System (ADS)
Zhou, Guangzhao; Xu, Kun; Liu, Feng
2018-01-01
The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.
[Pleural effusion: diagnosis and management].
Pastré, J; Roussel, S; Israël Biet, D; Sanchez, O
2015-04-01
Pleural effusion management is a common clinical situation associated with numerous pulmonary, pleural or extra-pulmonary diseases. A systematic approach is needed to enable a rapid diagnosis and an appropriate treatment. Pleural fluid analysis is the first step to perform which allows a presumptive diagnosis in most cases. Otherwise, further analysis of the pleural fluid or thoracic imaging or pleural biopsy may be necessary. This review aims at highlighting the important elements of the work-up required by a pleural effusion. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing
2015-10-01
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
Numerical Simulation of the ``Fluid Mechanical Sewing Machine''
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil
2011-11-01
A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.
Numerical analysis of ossicular chain lesion of human ear
NASA Astrophysics Data System (ADS)
Liu, Yingxi; Li, Sheng; Sun, Xiuzhen
2009-04-01
Lesion of ossicular chain is a common ear disease impairing the sense of hearing. A comprehensive numerical model of human ear can provide better understanding of sound transmission. In this study, we propose a three-dimensional finite element model of human ear that incorporates the canal, tympanic membrane, ossicular bones, middle ear suspensory ligaments/muscles, middle ear cavity and inner ear fluid. Numerical analysis is conducted and employed to predict the effects of middle ear cavity, malleus handle defect, hypoplasia of the long process of incus, and stapedial crus defect on sound transmission. The present finite element model is shown to be reasonable in predicting the ossicular mechanics of human ear.
Electro-osmotic mobility of non-Newtonian fluids
Zhao, Cunlu; Yang, Chun
2011-01-01
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161
NASA Technical Reports Server (NTRS)
Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.
2010-01-01
A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
NASA Astrophysics Data System (ADS)
Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V.
2016-03-01
Various issues of numerical simulation of supersonic gas flows with allowance for thermochemical nonequilibrium on the basis of fluid dynamic equations in the two-temperature approximation are discussed. The computational tool for modeling flows with thermochemical nonequilibrium is the commercial software package ANSYS Fluent with an additional userdefined open-code module. A comparative analysis of results obtained by various models of vibration-dissociation coupling in binary gas mixtures of nitrogen and oxygen is performed. Results of numerical simulations are compared with available experimental data.
Numerical analysis of a fluidic oscillator
NASA Astrophysics Data System (ADS)
Hoettges, Stefan; Schenkel, Torsten; Oertel, Herbert
2010-11-01
The technology of fluid logic or fluidic has its origins in 1959 when scientists were looking for alternatives to electronics to realize measuring or automatic control tasks. In recent years interest in fluidic components has been renewed. Possible applications of fluidic oscillators have been tested in flow control, to reduce or eliminate separation regions, to avoid resonance noise in the flow past cavities, to improve combustion processes or for efficient cooling of turbine blades or electronic components. The oscillatory motion of the jet is achieved only by suitable shaping of the nozzle geometry and fluid-dynamic interactions, hence no moving components or external sources of energy are necessary. Therefore fluidic oscillators can be used in extreme environmental conditions, such as high temperatures, aggressive media or within electromagnetic fields. In the present study the working principle of the fluidic oscillator has been identified using three-dimensional unsteady RANS simulations and stability analysis. The numerical models used have been validated successfully against experimental data. Furthermore the effects of changes in inlet velocity, geometry and working fluid on the oscillation frequency have been investigated. Based on the results a new dimensionless number has been derived in order to characterize the unsteady behavior of the fluidic oscillator.
A Dynamic Analysis of Hydrodynamic Wave Journal Bearings
NASA Technical Reports Server (NTRS)
Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G.
2008-01-01
The purpose of this paper is to study the dynamic behavior of a three-wave journal bearing using a transient approach. The transient analysis permits the determination of the rotor behavior after the fractional frequency whirl appears. The journal trajectory is determined by solving a set of nonlinear equations of motion using the Runge-Katta method. The fluid film forces are computed by integrating the transient Reynolds equation at each time step location of the shaft with respect to the bearing. Because of the large values of the rotational speeds, turbulent effects were included in the computations. The influence of the temperature on the viscosity was also considered. Numerical results were compared to experimenta1 results obtained at the NASA Glenn Research Center. Comparisons of the theoretical results with experimental data were found to be in good agreement. The numerical and experimental results showed that the fluid film of a three-wave journal bearing having a diameter of 30 mm, a length of 27 mm, and a wave amplitude ratio greater than 0.15 is stable even at rotational speeds of 60,000 RPM. For lower wave amplitude ratios, the threshold speed at which the fluid film becomes unstable depends on the wave amplitude and on the supply pocket pressure. Even if the fluid film is unstable, the wave bearing maintains the whirl orbit inside the bearing clearance.
Numerical Modelling of Three-Fluid Flow Using The Level-set Method
NASA Astrophysics Data System (ADS)
Li, Hongying; Lou, Jing; Shang, Zhi
2014-11-01
This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
NASA Astrophysics Data System (ADS)
Sert, İsmail Ozan; Sezer-Uzol, Nilay; Kakaç, Sadık
2013-10-01
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.
Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.
Mazzotti, M; Marzani, A; Bartoli, I
2014-01-01
A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
Methods for simulation-based analysis of fluid-structure interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E
2016-06-01
The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.
NASA Astrophysics Data System (ADS)
Basir, Mohammad Faisal Mohd; Ismail, Fazreen Amira; Amirsom, Nur Ardiana; Latiff, Nur Amalina Abdul; Ismail, Ahmad Izani Md.
2017-04-01
The effect of multiple slip on a chemically reactive magnetohydrodynamic (MHD) non-Newtonian power law fluid flow over a stretching sheet with microorganism was numerically investigated. The governing partial differential equations were transformed into nonlinear ordinary differential equations using the similarity transformations developed by Lie group analysis. The reduced governing nonlinear ordinary differential equations were then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order method. Good agreement was found between the present numerical solutions with the existing published results to support the validity and the accuracy of the numerical computations. The influences of the velocity, thermal, mass and microorganism slips, the magnetic field parameter and the chemical reaction parameter on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism concentration, the distribution of the density of motile microorganisms have been illustrated graphically. The effects of the governing parameters on the physical quantities, namely, the local heat transfer rate, the local mass transfer rate and the local microorganism transfer rate were analyzed and discussed.
Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate
NASA Astrophysics Data System (ADS)
Jin, Heng; Liu, Yong; Li, Huajun; Fu, Qiang
2017-08-01
Liquid sloshing is a type of free surface flow inside a partially filled water tank. Sloshing exerts a significant effect on the safety of liquid transport systems; in particular, it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank. Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions. In this study, a numerical model based on OpenFOAM (Open Source Field Operation and Manipulation), an open source computed fluid dynamic code, is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate. The numerical results of the free surface elevations are first verified using experimental data, and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples. The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies. This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1981-01-01
The effects of lubricant starvation on minimum film thickness, under conditions of a hydrodynamic point contact, are determined by numerical methods where: (1) starvation is effected by varying the fluid inlet level; (2) the Reynolds boundary conditions are applied at the cavitation boundary; and (3) zero pressure is stipulated at the meniscus or inlet boundary. Seventy-four cases were used to numerically determine a minimum-film-thickness equation, as a function of the ratio of dimensionless load to dimensionless speed for varying degrees of starvation. A film reduction factor was in turn determined as a function of the fluid inlet level, and a starved, fully-flooded boundary was defined along with an expression determining the onset of starvation. It is found that as the degree of starvation increases, the minimum film thickness decreases gradually until the fluid inlet becomes critical. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three-dimensional isometric plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M.
2016-08-15
Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity andmore » temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.« less
Effects of physical properties on thermo-fluids cavitating flows
NASA Astrophysics Data System (ADS)
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
Pumping Characteristics of a Helical Screw Agitator with a Draught Tube
NASA Astrophysics Data System (ADS)
Hwang, Jung-Hoon; Kim, Youn-Jea
In the use of helical type agitator, the mixing process is usually restricted to the laminar flow regime. Common examples of laminar mixing are found where the fluid has a very high viscosity, i.e., pseudoplastic fluids. It can be indicated that a helical type agitator is sufficiently suited to the creeping flow mixing. The pumping characteristic of a Helical Screw Agitator with a draught tube (HSA) is required to evaluate its capacity for the optimal configuration of the mixing chamber. It could be executed by changing some parameters such as the number of helix, the angular velocity and the rotating direction and so on. In this study, the numerical simulation was carried out with the Eulerian multiphase mixture model and the moving mesh approximation. Some of the optimum design parameters have been developed with the aid of numerical data from the Computational Fluid Dynamics (CFD) analysis. Using the commercial code, Fluent, the pumping characteristics in the HSA are investigated from the rheological properties, and the results are graphically depicted.
NASA Astrophysics Data System (ADS)
Abbas, Z.; Shabbir, M. S.; Ali, N.
2018-06-01
In the present theoretical investigation, we have numerically simulated the problem of blood flow through an overlapping stenosed arterial blood vessel under the action of externally applied body acceleration and the periodic pressure gradient. The rheology of blood is characterized by the Sutterby fluid model. The blood is considered as an electrically conducting fluid. A steady uniform magnetic field is applied in the radial direction of the blood vessel. The governing nonlinear partial differential equations of the present flow together with prescribed boundary conditions are solved by employing explicit finite difference scheme. Results concerning the temporal distribution of velocity, flow rate, shear stress and resistance to the flow are displayed through graphs. The effects of various emerging parameters on the flow variables are analyzed and discussed in detail. The analysis reveals that the applied magnetic field and periodic body acceleration have considerable effects on the flow field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhen, E-mail: matzz@nus.edu.sg; Xu, Shixin, E-mail: matxs@nus.edu.sg; Ren, Weiqing, E-mail: matrw@nus.edu.sg
2014-06-15
A continuous model is derived for the dynamics of two immiscible fluids with moving contact lines and insoluble surfactants based on thermodynamic principles. The continuum model consists of the Navier-Stokes equations for the dynamics of the two fluids and a convection-diffusion equation for the evolution of the surfactant on the fluid interface. The interface condition, the boundary condition for the slip velocity, and the condition for the dynamic contact angle are derived from the consideration of energy dissipations. Different types of energy dissipations, including the viscous dissipation, the dissipations on the solid wall and at the contact line, as wellmore » as the dissipation due to the diffusion of surfactant, are identified from the analysis. A finite element method is developed for the continuum model. Numerical experiments are performed to demonstrate the influence of surfactant on the contact line dynamics. The different types of energy dissipations are compared numerically.« less
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste
2017-11-01
We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.
2001-10-25
THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle
NASA Astrophysics Data System (ADS)
Yeo, Haram; Ki, Hyungson
2018-03-01
In this article, we present a novel numerical method for computing thermal residual stresses from a viewpoint of fluid-structure interaction (FSI). In a thermal processing of a material, residual stresses are developed as the material undergoes melting and solidification, and liquid, solid, and a mixture of liquid and solid (or mushy state) coexist and interact with each other during the process. In order to accurately account for the stress development during phase changes, we derived a unified momentum equation from the momentum equations of incompressible fluids and elastoplastic solids. In this approach, the whole fluid-structure system is treated as a single continuum, and the interaction between fluid and solid phases across the mushy zone is naturally taken into account in a monolithic way. For thermal analysis, an enthalpy-based method was employed. As a numerical example, a two-dimensional laser heating problem was considered, where a carbon steel sheet was heated by a Gaussian laser beam. Momentum and energy equations were discretized on a uniform Cartesian grid in a finite volume framework, and temperature-dependent material properties were used. The austenite-martensite phase transformation of carbon steel was also considered. In this study, the effects of solid strains, fluid flow, mushy zone size, and laser heating time on residual stress formation were investigated.
Hydraulic fracture modeling and fracture surface area calculations determined from pressure decay analysis and reservoir numerical flow simulation support estimates of created hydraulic fracture surface areas of 24-60 MM sq ft.
CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers
USDA-ARS?s Scientific Manuscript database
Effective pesticide application is not only essential for specialty crop industries but also very important for addressing increasing concerns about environmental contamination caused by pesticide spray drift. Numerical analysis using computational fluid dynamics (CFD) can contribute to better under...
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1985-01-01
A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.
NASA Astrophysics Data System (ADS)
Krishna, P. Mohan; Sandeep, N.; Sharma, Ram Prakash
2017-05-01
This paper presents the two-dimensional magnetohydrodynamic Carreau fluid flow over a plane and parabolic regions in the form of buoyancy and exponential heat source effects. Soret and Dufour effects are used to examine the heat and mass transfer process. The system of ODE's is obtained by utilizing similarity transformations. The RK-based shooting process is employed to generate the numerical solutions. The impact of different parameters of interest on fluid flow, concentration and thermal fields is characterized graphically. Tabular results are presented to discuss the wall friction, reduced Nusselt and Sherwood numbers. It is seen that the flow, thermal and concentration boundary layers of the plane and parabolic flows of Carreau fluid are non-uniform.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, Gary F.; Banerjee, Prasanta K.; Honkala, Keith A.
1988-01-01
In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state.
Vortex locking in direct numerical simulations of quantum turbulence.
Morris, Karla; Koplik, Joel; Rouson, Damian W I
2008-07-04
Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
Statistical characterization of planar two-dimensional Rayleigh-Taylor mixing layers
NASA Astrophysics Data System (ADS)
Sendersky, Dmitry
2000-10-01
The statistical evolution of a planar, randomly perturbed fluid interface subject to Rayleigh-Taylor instability is explored through numerical simulation in two space dimensions. The data set, generated by the front-tracking code FronTier, is highly resolved and covers a large ensemble of initial perturbations, allowing a more refined analysis of closure issues pertinent to the stochastic modeling of chaotic fluid mixing. We closely approach a two-fold convergence of the mean two-phase flow: convergence of the numerical solution under computational mesh refinement, and statistical convergence under increasing ensemble size. Quantities that appear in the two-phase averaged Euler equations are computed directly and analyzed for numerical and statistical convergence. Bulk averages show a high degree of convergence, while interfacial averages are convergent only in the outer portions of the mixing zone, where there is a coherent array of bubble and spike tips. Comparison with the familiar bubble/spike penetration law h = alphaAgt 2 is complicated by the lack of scale invariance, inability to carry the simulations to late time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method of data analysis. Finally, we use the simulation data to analyze some constitutive properties of the mixing process.
Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.
Loller, Cameron; Buxton, Gavin A; Kerzmann, Tony L
2016-05-01
Burns caused by hot drinks and soups can be both debilitating and costly, especially to pediatric and geriatric patients. This research is aimed at better understanding the fluid properties that can influence the severity of skin burns. We use a standard model which combines heat transfer and biomedical equations to predict burn severity. In particular, experimental data from a physical model serves as the input to our numerical model to determine the severity of scald burns as a consequence of actual fluid flows. This technique enables us to numerically predict the heat transfer from the hot soup into the skin, without the need to numerically estimate the complex fluid mechanics and thermodynamics of the potentially highly viscous and heterogeneous soup. While the temperature of the soup is obviously is the most important fact in determining the degree of burn, we also find that more viscous fluids result in more severe burns, as the slower flowing thicker fluids remain in contact with the skin for longer. Furthermore, other factors can also increase the severity of burn such as a higher initial fluid temperature, a greater fluid thermal conductivity, or a higher thermal capacity of the fluid. Our combined experimental and numerical investigation finds that for average skin properties a very viscous fluid at 100°C, the fluid must be in contact with the skin for around 15-20s to cause second degree burns, and more than 80s to cause a third degree burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1989-01-01
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.
Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure
NASA Astrophysics Data System (ADS)
Szafran, J.; Juszczyk, K.; Kamiński, M.
2017-12-01
The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.
Coupled numerical simulation of fire in tunnel
NASA Astrophysics Data System (ADS)
Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.
2018-01-01
In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
NASA Astrophysics Data System (ADS)
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
NASA Astrophysics Data System (ADS)
Przylucki, R.; Golak, S.; Bulinski, P.; Smolka, J.; Palacz, M.; Siwiec, G.; Lipart, J.; Blacha, L.
2018-05-01
The article includes numerical simulation results for two induction furnace with cold crucible (IFCC). Induction furnaces differ in cold crucible design, while the inductor geometry was preserved for both variants. Numerical simulations were conducted as three dimensional one, with coupled analysis of electromagnetic, thermal and fluid dynamics fields. During the experiment, six calculation variants, differ in amount of molten titanium (three different weights of titanium for each type of cold crucible) were considered. Main parameters controlled during the calculations were: electrical efficiency of the IFCC and the meniscus shape of liquid metal.
Assessment of numerical techniques for unsteady flow calculations
NASA Technical Reports Server (NTRS)
Hsieh, Kwang-Chung
1989-01-01
The characteristics of unsteady flow motions have long been a serious concern in the study of various fluid dynamic and combustion problems. With the advancement of computer resources, numerical approaches to these problems appear to be feasible. The objective of this paper is to assess the accuracy of several numerical schemes for unsteady flow calculations. In the present study, Fourier error analysis is performed for various numerical schemes based on a two-dimensional wave equation. Four methods sieved from the error analysis are then adopted for further assessment. Model problems include unsteady quasi-one-dimensional inviscid flows, two-dimensional wave propagations, and unsteady two-dimensional inviscid flows. According to the comparison between numerical and exact solutions, although second-order upwind scheme captures the unsteady flow and wave motions quite well, it is relatively more dissipative than sixth-order central difference scheme. Among various numerical approaches tested in this paper, the best performed one is Runge-Kutta method for time integration and six-order central difference for spatial discretization.
Proper Orthogonal Decomposition in Optimal Control of Fluids
NASA Technical Reports Server (NTRS)
Ravindran, S. S.
1999-01-01
In this article, we present a reduced order modeling approach suitable for active control of fluid dynamical systems based on proper orthogonal decomposition (POD). The rationale behind the reduced order modeling is that numerical simulation of Navier-Stokes equations is still too costly for the purpose of optimization and control of unsteady flows. We examine the possibility of obtaining reduced order models that reduce computational complexity associated with the Navier-Stokes equations while capturing the essential dynamics by using the POD. The POD allows extraction of certain optimal set of basis functions, perhaps few, from a computational or experimental data-base through an eigenvalue analysis. The solution is then obtained as a linear combination of these optimal set of basis functions by means of Galerkin projection. This makes it attractive for optimal control and estimation of systems governed by partial differential equations. We here use it in active control of fluid flows governed by the Navier-Stokes equations. We show that the resulting reduced order model can be very efficient for the computations of optimization and control problems in unsteady flows. Finally, implementational issues and numerical experiments are presented for simulations and optimal control of fluid flow through channels.
Deformation and breakup of liquid-liquid threads, jets, and drops
NASA Astrophysics Data System (ADS)
Doshi, Pankaj
The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.
NASA Astrophysics Data System (ADS)
Radl, Stefan; Municchi, Federico; Goniva, Christoph
2016-11-01
Understanding transport phenomena in fluid-particle systems is of primary importance for the design of large-scale equipment, e.g., in the chemical industry. Typically, the analysis of such systems is performed by numerically solving a set of partial differential equations modeling the particle phase and the fluid phase as interpenetrating continua. Such models require a number of closure models that are often constructed via spatial filtering of data obtained from particle-resolved direct numerical simulations (PR-DNS). In the present work we make use of PR-DNS to evaluate corrections to existing closure models. Specifically, we aim on accounting for wall effects on the fluid-particle drag force and the particle-individual Nusselt number. We then propose an improved closure model to be used in particle-unresolved Euler-Lagrange (PU-EL) simulations. We demonstrate that such an advanced closure should account for a dimensionless filter size, as well as a normalized distance from the wall. In addition, we make an attempt to model the filtered fluid velocity profile in wall-bounded suspension flows. The authors acknowledge funding from the European Commission through FP7 Grant Agreement No. 604656, as well as VSC-3 and dcluster.tugraz.at.
Hurtado, F J; Kaiser, A S; Zamora, B
2015-03-15
Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Colera, Manuel; Pérez-Saborid, Miguel
2018-06-01
We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Osery, I.A.
1983-12-01
Modelling studies of metal hydride hydrogen storage beds is a part of an extensive R and D program conducted in Egypt on hydrogen energy. In this context two computer programs; namely RET and RET1; have been developed. In RET computer program, a cylindrical conduction bed model is considered and an approximate analytical solution is used for solution of the associated mass and heat transfer problem. This problem is solved in RET1 computer program numerically allowing more flexibility in operating conditions but still limited to cylindrical configuration with only two alternatives for heat exchange; either fluid is passing through tubes imbeddedmore » in the solid alloy matrix or solid rods are surrounded by annular fluid tubes. The present computer code TOBA is more flexible and realistic. It performs the mass and heat transfer dynamic analysis of metal hydride storage beds using a variety of geometrical and operating alternatives.« less
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
Stereo Imaging Velocimetry (SIV) is a NASA Glenn Research Center (GRC) developed fluid physics technique for measuring threedimensional (3-D) velocities in any optically transparent fluid that can be seeded with tracer particles. SIV provides a means to measure 3-D fluid velocities quantitatively and qualitatively at many points. This technique provides full-field 3-D analysis of any optically clear fluid or gas experiment using standard off-the-shelf CCD cameras to provide accurate and reproducible 3-D velocity profiles for experiments that require 3-D analysis. A flame ball is a steady flame in a premixed combustible atmosphere which, due to the transport properties (low Lewis-number) of the mixture, does not propagate but is instead supplied by diffusive transport of the reactants, forming a premixed flame. This flame geometry presents a unique environment for testing combustion theory. We present our analysis of flame ball phenomena utilizing SIV technology in order to accurately calculate the 3-D position of a flame ball(s) during an experiment, which can be used as a direct comparison of numerical simulations.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Theoretical and computational analyses of LNG evaporator
NASA Astrophysics Data System (ADS)
Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong
2017-04-01
Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
Analytical approach on the stiffness of MR fluid filled spring
NASA Astrophysics Data System (ADS)
Sikulskyi, Stanislav; Kim, Daewon
2017-04-01
A solid mechanical spring generally exhibits uniform stiffness. This paper studies a mechanical spring filled with magnetorheological (MR) fluid to achieve controllable stiffness. The hollow spring filled with MR fluid is subjected to a controlled magnetic field in order to change the viscosity of the MR fluid and thereby to change the overall stiffness of the spring. MR fluid is considered as a Bingham viscoplastic linear material in the mathematical model. The goal of this research is to study the feasibility of such spring system by analytically computing the effects of MR fluid on overall spring stiffness. For this purpose, spring mechanics and MR fluid behavior are studied to increase the accuracy of the analysis. Numerical simulations are also performed to generate some assumptions, which simplify calculations in the analytical part. The accuracy of the present approach is validated by comparing the analytical results to previously known experimental results. Overall stiffness variations of the spring are also discussed for different spring designs.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
Lagrangian formulation for penny-shaped and Perkins-Kern geometry models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.S.
1989-09-01
This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostermann, Lars; Seidel, Christian
2015-03-10
The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.
Seismic response reduction of a three-story building by an MR grease damper
NASA Astrophysics Data System (ADS)
Sakurai, Tomoki; Morishita, Shin
2017-06-01
This paper describes an application of magneto- rheological (MR) grease dampers as seismic dampers for a three-story steel structure. MR fluid is widely known as a smart material with rheological properties that can be varied by magnetic field strength. This material has been applied to various types of devices, such as dampers, clutches, and engine mounts. However, the ferromagnetic particles dispersed in MR fluid settle out of the suspension after a certain interval because of the density difference between the particles and their carrier fluid. To overcome this defect, we developed a new type of controllable working fluid using grease as the carrier of magnetic particles. MR grease was introduced into a cylindrical damper, and the seismic performance of the damper was subsequently studied via numerical analysis. The analysis results of the MR grease damper were compared with those of other seismic dampers. We confirmed that the MR grease damper is an effective seismic damper.
Scaling Analysis of Alloy Solidification and Fluid Flow in a Rectangular Cavity
NASA Astrophysics Data System (ADS)
Plotkowski, A.; Fezi, K.; Krane, M. J. M.
A scaling analysis was performed to predict trends in alloy solidification in a side-cooled rectangular cavity. The governing equations for energy and momentum were scaled in order to determine the dependence of various aspects of solidification on the process parameters for a uniform initial temperature and an isothermal boundary condition. This work improved on previous analyses by adding considerations for the cooling bulk fluid flow. The analysis predicted the time required to extinguish the superheat, the maximum local solidification time, and the total solidification time. The results were compared to a numerical simulation for a Al-4.5 wt.% Cu alloy with various initial and boundary conditions. Good agreement was found between the simulation results and the trends predicted by the scaling analysis.
NASA Astrophysics Data System (ADS)
Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han
2012-03-01
Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.
A fast numerical method for ideal fluid flow in domains with multiple stirrers
NASA Astrophysics Data System (ADS)
Nasser, Mohamed M. S.; Green, Christopher C.
2018-03-01
A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman
2015-01-01
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996
Numerical analysis of the non-contacting gas face seals
NASA Astrophysics Data System (ADS)
Blasiak, S.
2017-08-01
The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.
Multiscale modeling of fluid flow and mass transport
NASA Astrophysics Data System (ADS)
Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.
2017-12-01
In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.
NASA Astrophysics Data System (ADS)
Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.
2014-12-01
In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a more thorough understanding of hydrothermal fluid processes. One such attempt will incorporate geometric data of veins in the Bingham porphyry Cu-Mo-Au deposit into our numerical model. The presentation will introduce the numerical model and show examples and first results of the aforementioned applications.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions
Iverson, Richard M.
1997-01-01
Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.
Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck
2018-04-01
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.
Possible effects of two-phase flow pattern on the mechanical behavior of mudstones
NASA Astrophysics Data System (ADS)
Goto, H.; Tokunaga, T.; Aichi, M.
2016-12-01
To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.
2015-08-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].
Computational fluid dynamics combustion analysis evaluation
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.
1992-01-01
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.
NASA Astrophysics Data System (ADS)
Shiraishi, Hiroyuki
2015-09-01
Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.
NASA Astrophysics Data System (ADS)
Miquel, Benjamin
The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.
Numerical modelling of multi-vane expander operating conditions in ORC system
NASA Astrophysics Data System (ADS)
Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr
2017-11-01
Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
Numerical Simulations of Single Flow Element in a Nuclear Thermal Thrust Chamber
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Zahir, Hina; Tanveer, Anum; Alsaedi, Ahmed
2018-03-01
An analysis has been arranged to study the magnetohydrodynamics (MHD) peristaltic flow of Prandtl fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Simultaneous effects of heat and mass transfer with thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects are considered. Convective conditions for heat and mass transfer in the formulation are adopted. Ordinary differential systems using low Reynolds number and long wavelength approximation are obtained. Resulting equations have been solved numerically. The discussion of axial and secondary velocities, temperature, concentration and heat transfer coefficient with respect to emerging parameters embedded in the flow model is presented after sketching plots.
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Reddy, B. Mahesh; Reddy, G. Jithender
2017-09-01
The aim of this research work is to study the influence of thermal radiation on steady magnetohydrodynamic-free convective Casson fluid flow of an optically thick fluid over an inclined vertical plate with heat and mass transfer. Combined phenomenon of heat and mass transfer is considered. Numerical solutions in general form are obtained by using the finite element method. The sum of thermal and mechanical parts is expressed as velocity of fluid. Corresponding limiting solutions are also reduced from the general solutions. It is found that the obtained numerical solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. Numerical results for the controlling flow parameters are drawn graphically and discussed in detail. In some special cases, the obtained numerical results are compared and found to be in good agreement with the previously published results which are available in literature. Applications of this study includes laminar magneto-aerodynamics, materials processing and magnetohydrodynamic propulsion thermo-fluid dynamics, etc.
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
NASA Astrophysics Data System (ADS)
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.
Numerical investigation of Dean vortices in a curved pipe
NASA Astrophysics Data System (ADS)
Bernad, S. I.; Totorean, A.; Bosioc, A.; Stanciu, R.; Bernad, E. S.
2013-10-01
This study is devoted to the three-dimensional numerical simulation of developing secondary flows of Newtonian fluid through a curved circular duct. The numerical simulations produced for different Dean numbers show clearly the presence of two steady Dean vortices. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index.
Beam Flutter and Energy Harvesting in Internal Flow
NASA Astrophysics Data System (ADS)
Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae
2017-11-01
Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.
Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup
NASA Astrophysics Data System (ADS)
Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.
2014-11-01
We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.
Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.
Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.
Van So, Pham; Jun, Hyun Woo; Lee, Jaichan
2013-12-01
We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.
Measurement with microscopic MRI and simulation of flow in different aneurysm models.
Edelhoff, Daniel; Walczak, Lars; Frank, Frauke; Heil, Marvin; Schmitz, Inge; Weichert, Frank; Suter, Dieter
2015-10-01
The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin-lattice relaxation. The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.
PREFACE: Special section on vortex rings Special section on vortex rings
NASA Astrophysics Data System (ADS)
Fukumoto, Yasuhide
2009-10-01
This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)
Multidimensional bioseparation with modular microfluidics
Chirica, Gabriela S.; Renzi, Ronald F.
2013-08-27
A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.
Interfacial gauge methods for incompressible fluid dynamics
Saye, R.
2016-06-10
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less
Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system
NASA Astrophysics Data System (ADS)
Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.
2018-01-01
The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.
NASA Astrophysics Data System (ADS)
Omori, Keiichiro; Nagatsu, Yuichiro
2017-11-01
Viscous fingering (VF) with viscosity changes by chemical reactions in case of miscible systems have been investigated both experimentally and theoretically in the recent years. Nagatsu et al. investigated experimentally miscible VF in which viscosity of the displaced fluid or the displacing one is changed by fast chemical reaction They showed that VF was more dense by the viscosity increase whereas less dense by the viscosity increase regardless of whether the viscosity change occurs in the displaced fluid or displacing one. From a theoretical viewpoint, numerical simulation performed on the reactive VF where viscosity of the displaced fluid is changed by instantaneously fast chemical reaction. The results had a good agreement with those in the corresponding experiment. In this work, we have conducted numerical simulation on such reactive VF where viscosity of the displacing fluid is changed. We have found the results have a good agreement with the corresponding experimental ones.
Nonlinear analysis of a shock-loaded membrane.
NASA Technical Reports Server (NTRS)
Madden, R.; Remington, P. J.
1973-01-01
Results from a computer method for analyzing the unsteady interaction of a fluid stream and a flat circular elastic membrane are presented. The loading on the membrane is assumed to be caused by the firing of a shock tube. The fluid pressures and velocities are determined from a scheme based on the numerical method of characteristics, and the membrane is analyzed using exact relations for membrane strain. The interactive solution is found to give peak stresses 40% lower than a solution which assumes a pressure invariant in space and time.
Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Doiron, Terence a.
2007-01-01
In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.
Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature
Computational approaches to computational aero-acoustics
NASA Technical Reports Server (NTRS)
Hardin, Jay C.
1996-01-01
The various techniques by which the goal of computational aeroacoustics (the calculation and noise prediction of a fluctuating fluid flow) may be achieved are reviewed. The governing equations for compressible fluid flow are presented. The direct numerical simulation approach is shown to be computationally intensive for high Reynolds number viscous flows. Therefore, other approaches, such as the acoustic analogy, vortex models and various perturbation techniques that aim to break the analysis into a viscous part and an acoustic part are presented. The choice of the approach is shown to be problem dependent.
Dissipative nonlinear waves in a gravitating quantum fluid
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2018-02-01
Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.
Bulk viscosity of water in acoustic modal analysis and experiment
NASA Astrophysics Data System (ADS)
Kůrečka, Jan; Habán, Vladimír; Himr, Daniel
2018-06-01
Bulk viscosity is an important factor in the damping properties of fluid systems and exhibits frequency dependent behaviour. A comparison between modal analysis in ANSYS Acoustics, custom code and experimental data is presented in this paper. The measured system consists of closed ended water-filled steel pipes of different lengths. The influence of a pipe wall, flanges on both ends and longitudinal waves in the structural part were included in measurement evaluation. Therefore, the obtained values of sound speed and bulk viscosity are parameters of the fluid. A numerical simulation was carried out only using fluid volume in a range of bulk viscosity. Damping characteristics in this range were compared to measured values. The results show a significant influence of sound speed and subsequently, the use of sound speed value regressed from experimental data yields a better fit between the measurement and the computation.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.
2018-01-01
Boundary layer stagnation point flow of Casson fluid over a Riga plate of variable thickness is investigated in present article. Riga plate is an electromagnetic actuator consists of enduring magnets and gyrated aligned array of alternating electrodes mounted on a plane surface. Physical problem is modeled and simplified under appropriate transformations. Effects of thermal radiation and viscous dissipation are incorporated. These differential equations are solved by Keller Box Scheme using MATLAB. Comparison is given with shooting techniques along with Range-Kutta Fehlberg method of order 5. Graphical and tabulated analysis is drawn. The results reveal that Eckert number, radiation and fluid parameters enhance temperature whereas they contribute in lowering rate of heat transfer. The numerical outcomes of present analysis depicts that Keller Box Method is capable and consistent to solve proposed nonlinear problem with high accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services alsomore » allow the development of coupled mechanics analysis software for a massively parallel computing environment. In the definitions of the commands that follow, the term Real_Max denotes the largest floating point value that can be represented on a given computer. Int_Max is the largest such integer value.« less
Acoustically Generated Flows in Flexural Plate Wave Sensors: a Multifield Analysis
NASA Astrophysics Data System (ADS)
Sayar, Ersin; Farouk, Bakhtier
2011-11-01
Acoustically excited flows in a microchannel flexural plate wave device are explored numerically with a coupled solid-fluid mechanics model. The device can be exploited to integrate micropumps with microfluidic chips. A comprehensive understanding of the device requires the development of coupled two or three-dimensional fluid structure interactive (FSI) models. The channel walls are composed of layers of ZnO, Si3N4 and Al. An isothermal equation of state for the fluid (water) is employed. The flexural motions of the channel walls and the resulting flowfields are solved simultaneously. A parametric analysis is performed by varying the values of the driving frequency, voltage of the electrical signal and the channel height. The time averaged axial velocity is found to be proportional to the square of the wave amplitude. The present approach is superior to the method of successive approximations where the solid-liquid coupling is weak.
NASA Astrophysics Data System (ADS)
Wei, Xin; Sun, Bing
2011-10-01
The fluid-structure interaction may occur in space launch vehicles, which would lead to bad performance of vehicles, damage equipments on vehicles, or even affect astronauts' health. In this paper, analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed, with the effect of fluid-structure interaction (FSI) taken into consideration. The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling. Numerical tests on pipes between the tank and the pump are solved by the finite volume method. Results show that restrictions weaken the interaction between axial and lateral vibrations. The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis, and thus highlight the usefulness of the proposed model. This study would provide a reference to the pipe test, as well as facilitate further studies on oscillation suppression.
NASA Astrophysics Data System (ADS)
Abbas, Nadeem; Saleem, S.; Nadeem, S.; Alderremy, A. A.; Khan, A. U.
2018-06-01
The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2) , Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina-water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper-water nanofluid related to the alumina-water and titania-water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work.
STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs
NASA Astrophysics Data System (ADS)
Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2016-07-01
Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.
NASA Astrophysics Data System (ADS)
Devakar, M.; Raje, Ankush
2018-05-01
The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.
Computing Project, Marc develops high-fidelity turbulence models to enhance simulation accuracy and efficient numerical algorithms for future high performance computing hardware architectures. Research Interests High performance computing High order numerical methods for computational fluid dynamics Fluid
Homogeneous buoyancy-generated turbulence
NASA Technical Reports Server (NTRS)
Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.
1992-01-01
Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.
Unsteady conjugate heat transfer analysis for impinging jet cooling
NASA Astrophysics Data System (ADS)
Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.
2016-10-01
The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.
Laboratory and numerical simulation of internal wave attractors and their instability.
NASA Astrophysics Data System (ADS)
Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias
2015-04-01
Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F.-P. A., Geometric focusing of internal waves. J. Fluid Mech, 1995,. 300, 1-41 L. R. M. Maas, D. Benielli, J. Sommeria, and F.-P. A. Lam, Nature (London) 388, 557 (1997). 2. Dauxois, Thierry; Young, W., Journal of Fluid Mechanics, 1999, vol. 390, Issue 01, p.271-295 3. Grisouard, N., Staquet, C., Pairaud, I., 2008, Journal of Fluid Mechanics, 614, 1 4. Scolan, H., Ermanyuk, E., Dauxois, T., 2013, Physical Review Letters, 110, 234501 5. Mercier, Matthieu J.; Garnier, Nicolas B.; Dauxois, Thierry Reflection and diffraction of internal waves analyzed with the Hilbert transform Physics of Fluids, Volume 20, Issue 8, pp. 086601-086601-10 (2008).
NASA Astrophysics Data System (ADS)
Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.
2015-11-01
A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.
Smart algorithms and adaptive methods in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Tinsley Oden, J.
1989-05-01
A review is presented of the use of smart algorithms which employ adaptive methods in processing large amounts of data in computational fluid dynamics (CFD). Smart algorithms use a rationally based set of criteria for automatic decision making in an attempt to produce optimal simulations of complex fluid dynamics problems. The information needed to make these decisions is not known beforehand and evolves in structure and form during the numerical solution of flow problems. Once the code makes a decision based on the available data, the structure of the data may change, and criteria may be reapplied in order to direct the analysis toward an acceptable end. Intelligent decisions are made by processing vast amounts of data that evolve unpredictably during the calculation. The basic components of adaptive methods and their application to complex problems of fluid dynamics are reviewed. The basic components of adaptive methods are: (1) data structures, that is what approaches are available for modifying data structures of an approximation so as to reduce errors; (2) error estimation, that is what techniques exist for estimating error evolution in a CFD calculation; and (3) solvers, what algorithms are available which can function in changing meshes. Numerical examples which demonstrate the viability of these approaches are presented.
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions.
D'Onofrio, M; Gallotti, A; Salvia, R; Capelli, P; Mucelli, R Pozzi
2011-11-01
To evaluate the ARFI ultrasound imaging with Virtual Touch tissue quantification in studying pancreatic cystic lesions, compared with phantom fluid models. Different phantom fluids at different viscosity or density (water, iodinate contrast agent, and oil) were evaluated by two independent operators. From September to December 2008, 23 pancreatic cystic lesions were prospectively studied. All lesions were pathologically confirmed. Non-numerical values on water and numerical values on other phantoms were obtained. Inter-observer evaluation revealed a perfect correlation (rs=1.00; p<0.0001) between all measurements achieved by both operators per each balloon and fluid. Among the pancreatic cystic lesions, 14 mucinous cystadenomas, 4 pseudocysts, 3 intraductal papillary-mucinous neoplasms and 2 serous cystadenomas were studied. The values obtained ranged from XXXX/0-4,85 m/s in mucinous cystadenomas, from XXXX/0-3,11 m/s in pseudocysts, from XXXX/0-4,57 m/s in intraductal papillary-mucinous neoplasms. In serous cystadenomas all values measured were XXXX/0m/s. Diagnostic accuracy in benign and non-benign differentiation of pancreatic cystic lesions was 78%. Virtual Touch tissue quantification can be applied in the analysis of fluids and is potentially able to differentiate more complex (mucinous) from simple (serous) content in studying pancreatic cystic lesions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Bergkvist, Jonas; Ekström, Simon; Wallman, Lars; Löfgren, Mikael; Marko-Varga, György; Nilsson, Johan; Laurell, Thomas
2002-04-01
A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.
Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2018-05-01
The key role that dust plays in the interstellar medium has motivated the development of numerical codes designed to study the coupled evolution of dust and gas in systems such as turbulent molecular clouds and protoplanetary discs. Drift between dust and gas has proven to be important as well as numerically challenging. We provide simple benchmarking problems for dusty gas codes by numerically solving the two-fluid dust-gas equations for steady, plane-parallel shock waves. The two distinct shock solutions to these equations allow a numerical code to test different forms of drag between the two fluids, the strength of that drag and the dust to gas ratio. We also provide an astrophysical application of J-type dust-gas shocks to studying the structure of accretion shocks on to protoplanetary discs. We find that two-fluid effects are most important for grains larger than 1 μm, and that the peak dust temperature within an accretion shock provides a signature of the dust-to-gas ratio of the infalling material.
Block, Darci R; Algeciras-Schimnich, Alicia
2013-01-01
Requests for testing various analytes in serous fluids (e.g., pleural, peritoneal, pericardial effusions) are submitted daily to clinical laboratories. Testing of these fluids deviates from assay manufacturers' specifications, as most laboratory assays are optimized for testing blood or urine specimens. These requests add a burden to clinical laboratories, which need to validate assay performance characteristics in these fluids to exclude matrix interferences (given the different composition of body fluids) while maintaining regulatory compliance. Body fluid testing for a number of analytes has been reported in the literature; however, understanding the clinical utility of these analytes is critical because laboratories must address the analytic and clinical validation requirements, while educating clinicians on proper test utilization. In this article, we review the published data to evaluate the clinical utility of testing for numerous analytes in body fluid specimens. We also highlight the pre-analytic and analytic variables that need to be considered when reviewing published studies in body fluid testing. Finally, we provide guidance on how published studies might (or might not) guide interpretation of test results in today's clinical laboratories.
Development of an integrated BEM approach for hot fluid structure interaction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1991-01-01
The development of a comprehensive fluid-structure interaction capability within a boundary element computer code is described. This new capability is implemented in a completely general manner, so that quite arbitrary geometry, material properties and boundary conditions may be specified. Thus, a single analysis code can be used to run structures-only problems, fluids-only problems, or the combined fluid-structure problem. In all three cases, steady or transient conditions can be selected, with or without thermal effects. Nonlinear analyses can be solved via direct iteration or by employing a modified Newton-Raphson approach. A number of detailed numerical examples are included at the end of these two sections to validate the formulations and to emphasize both the accuracy and generality of the computer code. A brief review of the recent applicable boundary element literature is included for completeness. The fluid-structure interaction facility is discussed. Once again, several examples are provided to highlight this unique capability. A collection of potential boundary element applications that have been uncovered as a result of work related to the present grant is given. For most of those problems, satisfactory analysis techniques do not currently exist.
Numerical analysis of internal waves in stratified wake flows
NASA Astrophysics Data System (ADS)
Fraunie, Philppe
2014-05-01
In laboratory investigations, increased attention has been given to internal waves generated by stationary placed oscillating sources and moving bodies in stratified fluids [1]. The main attention was paid to study flows past bodies of perfect shapes like sphere [2], cylinder [3] of thin strip [3] which are the best theoretical (analytical or numerical) studies. Due to simplicity of geometry, flow around a strip has a potential to investigate separately effects of a drag and lift forces on the body by changing the slope of the horizontally moving strip which can be placed vertically [1], horizontally [2], or be tilted under some angle to the direction of towing velocity [5]. Numeric modeling of a flow past vertical strip uniformly towing with permanent velocity in horizontal direction in a linearly stratified talk which was based on a finite differences solver adapted to the low Reynolds Navier-Stokes equation with transport equation for salinity (LES simulation [6] and RANS [7]) has demonstrated reasonable agreement with data of Schlieren visualization, density marker and probe measurements of internal wave fields. The chosen test cases allowed demonstrating the ability of selected numerical methods to represent stably stratified flows over horizontal strip [4] and hill type 2D obstacles [1, 3] with generation of internal waves. ACKNOWLEDGMENTS This research work was supported by the Region Provence Alpes Côte d'Azur - Modtercom project. The work was also supported by the Russian Foundation for Basic Research (grant 12-01-00128). REFERENCES [1] Chashechkin Yu.D., Mitkin V.V. Experimental study of a fine structure of 2D wakes and mixing past an obstacle in a continuously stratified fluid // Dynamics of Atmosphere and Oceans. 2001. V. 34. P. 165-187. [2] Chashechkin, Yu. D. Hydrodynamics of a sphere in a stratified fluid // Fluid Dyn. 1989. V.24(1) P. 1-7. [3] Mitkin V. V., Chashechkin Yu. D. Transformation of hanging discontinuities into vortex systems in a stratified flow behind a cylinder // 2007. Fluid Dyn. V. 42 (1). P. 12-23. [4] Bardakov R. N., Mitkin V. V., Chashechkin Yu. D. Fine structure of a stratified flow near a flat-plate surface // J. Appl. Mech. Tech. Phys. 2007. V. 48(6) P. 840-851. [5] Chashechkin Yu. D., Mitkin V. V. An effect of a lift force on the structure of attached internal waves in a continuously stratified fluid // Dokl. Phys. 2001. V. 46 (6). P. 425-428. [6] Houcine H., Chashechkin Yu.D, Fraunié P., Fernando H.J.S., Gharbi A., Lili T. Numerical modeling of the generation of internal waves by uniform stratified flow over a thin vertical barrier // Int J. Num Methods in Fluids. 2012. V.68(4). P. 451-466. DOI: 10.1002/fld.2513 [7] Bodnar T., Benes , Fraunié P., Kozel K.. Application of Compact Finite-Difference Schemes to Simulations of Stably Stratified Fluid Flows. Applied Mathematics and Computation 219 : 3336-3353 2012. doi:10.1016/j.amc.2011.08.058
An Unconditionally Stable Fully Conservative Semi-Lagrangian Method (PREPRINT)
2010-08-07
Alessandrini. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows . J. of Comput. Phys., 228(22):8380–8393, 2009. [11] J.T...and J. Welch. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface . Phys. Fluids, 8:2182–2189, 1965. [14... flow is divergence free , one would generally expect these lines to be commensurate, however, due to numerical errors in interpolation there is some
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Growth and Interaction of Colloid Nuclei
NASA Astrophysics Data System (ADS)
Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou
2017-11-01
We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.
Numerical simulation of heat transfer in power law fluid flow through a stenosed artery
NASA Astrophysics Data System (ADS)
Talib, Amira Husni; Abdullah, Ilyani
2017-11-01
A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
NASA Astrophysics Data System (ADS)
Pothanna, N.; Aparna, P.; Gorla, R. S. R.
2017-12-01
In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented in terms of velocity, temperature and pressure distribution for various values of the material parameters such as the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results and are found to be in excellent agreement. The results of the present study will hopefully enable a better understanding applications of the flow under consideration.
NASA Astrophysics Data System (ADS)
Wang, Hua; Tao, Guo; Shang, Xue-Feng; Fang, Xin-Ding; Burns, Daniel R.
2013-12-01
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius ˜27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is >30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(MPML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d 0. The optimal parameter space for the maximum value of the linear frequency-shifted factor ( α 0) and the scaling factor ( β 0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
NASA Astrophysics Data System (ADS)
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
NASA Astrophysics Data System (ADS)
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)
Mechanism study and numerical simulation of Uranium nitriding induced by high energy laser
NASA Astrophysics Data System (ADS)
Zhu, Yuan; Xu, Jingjing; Qi, Yanwen; Li, Shengpeng; Zhao, Hui
2018-06-01
The gradients of interfacial tension induced by local heating led to Marangoni convection, which had a significant effect on surface formation and the process of mass transport in the laser nitriding of uranium. An experimental observation of the underlying processes was very difficult. In present study, the Marangoni convection was considered and the computational fluid dynamic (CFD) analysis technique of FLUENT program was performed to determine the physical processes such as heat transfer and mass transport. The progress of gas-liquid falling film desorption was presented by combining phase-change model with fluid volume function (VOF) model. The time-dependent distribution of the temperature had been derived. Moreover, the concentration and distribution of nitrogen across the laser spot are calculated. The simulation results matched with the experimental data. The numerical resolution method provided a better approach to know the physical processes and dependencies of the coating formation.
Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid
NASA Astrophysics Data System (ADS)
Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.
2017-05-01
The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.
NASA Astrophysics Data System (ADS)
Bellan, Selvan; Cheok, Cho Hyun; Gokon, Nobuyuki; Matsubara, Koji; Kodama, Tatsuya
2017-06-01
This paper presents a numerical analysis of unconstrained melting of high temperature(>1000K) phase change material (PCM) inside a cylindrical container. Sodium chloride and Silicon carbide have been used as phase change material and shell of the capsule respectively. The control volume discretization approach has been used to solve the conservation equations of mass, momentum and energy. The enthalpy-porosity method has been used to track the solid-liquid interface of the PCM during melting process. Transient numerical simulations have been performed in order to study the influence of radius of the capsule and the Stefan number on the heat transfer rate. The simulation results show that the counter-clockwise Buoyancy driven convection over the top part of the solid PCM enhances the melting rate quite faster than the bottom part.
Development of a New Arterial-Line Filter Design Using Computational Fluid Dynamics Analysis
Herbst, Daniel P.; Najm, Hani K.
2012-01-01
Abstract: Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics softwarewere used to inform decisions on model refinements and how to achieve initial design goals of ≤225 mL prime volume and ≤500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56° from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking. PMID:23198394
Development of a new arterial-line filter design using computational fluid dynamics analysis.
Herbst, Daniel P; Najm, Hani K
2012-09-01
Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.
Jain, Preeti
2014-01-01
An analysis study is presented to study the effects of Hall current and Soret effect on unsteady hydromagnetic natural convection of a micropolar fluid in a rotating frame of reference with slip-flow regime. A uniform magnetic field acts perpendicularly to the porous surface which absorbs the micropolar fluid with variable suction velocity. The effects of heat absorption, chemical reaction, and thermal radiation are discussed and for this Rosseland approximation is used to describe the radiative heat flux in energy equation. The entire system rotates with uniform angular velocity Ω about an axis normal to the plate. The nonlinear coupled partial differential equations are solved by perturbation techniques. In order to get physical insight, the numerical results of translational velocity, microrotation, fluid temperature, and species concentration for different physical parameters entering into the analysis are discussed and explained graphically. Also, the results of the skin-friction coefficient, the couple stress coefficient, Nusselt number, and Sherwood number are discussed with the help of figures for various values of flow pertinent flow parameters. PMID:27350957
Dual domain material point method for multiphase flows
NASA Astrophysics Data System (ADS)
Zhang, Duan
2017-11-01
Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.
NASA Astrophysics Data System (ADS)
Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.
2014-12-01
Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.
Numerical simulation of a shear-thinning fluid through packed spheres
NASA Astrophysics Data System (ADS)
Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol
2012-12-01
Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2010-01-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and an upper bound of the required for stability under-relaxation coefficient is derived. PMID:20981246
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI algorithm. The stabilizing role of under-relaxation is also clarified and the upper bound of the under-relaxation coefficient, required for stability, is derived.
Cumulative reports and publications
NASA Technical Reports Server (NTRS)
1993-01-01
A complete list of Institute for Computer Applications in Science and Engineering (ICASE) reports are listed. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. The major categories of the current ICASE research program are: applied and numerical mathematics, including numerical analysis and algorithm development; theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and computer science.
NASA Astrophysics Data System (ADS)
Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi
2018-02-01
In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves.
Development of an Efficient CFD Model for Nuclear Thermal Thrust Chamber Assembly Design
NASA Technical Reports Server (NTRS)
Cheng, Gary; Ito, Yasushi; Ross, Doug; Chen, Yen-Sen; Wang, Ten-See
2007-01-01
The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed thermo-fluid environments and global characteristics of the internal ballistics for a hypothetical solid-core nuclear thermal thrust chamber assembly (NTTCA). Several numerical and multi-physics thermo-fluid models, such as real fluid, chemically reacting, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver as the underlying computational methodology. The numerical simulations of detailed thermo-fluid environment of a single flow element provide a mechanism to estimate the thermal stress and possible occurrence of the mid-section corrosion of the solid core. In addition, the numerical results of the detailed simulation were employed to fine tune the porosity model mimic the pressure drop and thermal load of the coolant flow through a single flow element. The use of the tuned porosity model enables an efficient simulation of the entire NTTCA system, and evaluating its performance during the design cycle.
Flow of a Casson fluid through a locally-constricted porous channel: a numerical study
NASA Astrophysics Data System (ADS)
Amlimohamadi, Haleh; Akram, Maryammosadat; Sadeghy, Kayvan
2016-05-01
Flow of a Casson fluid through a two-dimensional porous channel containing a local constriction is numerically investigated assuming that the resistance offered by the porous medium obeys the Darcy's law. Treating the constriction as another porous medium which obeys the Darcy-Forcheimer model, the equations governing fluid flow in the main channel and the constriction itself are numerically solved using the finite-volume method (FVM) based on the pseudo-transient SIMPLE algorithm. It is shown that an increase in the porosity of the channel decreases the shear stress exerted on the constriction. On the other hand, an increase in the fluid's yield stress is predicted to increase the maximum shear stress experienced by the constriction near its crest. The porosity of the constriction itself is predicted to have a negligible effect on the plaque's shear stress. But, the momentum of the weak flow passing through the constriction is argued to lower the bulk fluid from separating downstream of the constriction.
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon
NASA Technical Reports Server (NTRS)
Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.;
2015-01-01
The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.
Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed
2014-01-01
This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
2013-08-01
STRUCTURES: EXPERIMENTAL AND NUMERICAL STUDIES by Young W. Kwon August 1, 2013 Approved for public release; distribution is unlimited Prepared...failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...AND SUBTITLE Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Structures: Experimental and Numerical Studies 5a. CONTRACT
NASA Astrophysics Data System (ADS)
Nader, Fadi; Bachaud, Pierre; Michel, Anthony
2015-04-01
Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This contribution is based on several studies that were undertaken on carbonate rocks diagenesis in some of the major reservoir rocks in the Middle East and outcrop analogues in Europe. Here, the main processes at hand are related to fracture-related dolomitization and carbonate dissolution. We would like to present the workflows we have followed and the questioning that resulted for a series of case studies. The way forward, seems evident as the integration of workflows and numerical modelling tools at different scales, bringing better constrains on the boundary data and less uncertainty.
On hydrodynamic phase field models for binary fluid mixtures
NASA Astrophysics Data System (ADS)
Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi
2018-05-01
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.
Ma, Xianghong
2016-01-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914
Wu, Zhangming; Ma, Xianghong
2016-03-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.
Advances of Proteomic Sciences in Dentistry.
Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur
2016-05-13
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.
NASA Astrophysics Data System (ADS)
Hahn, K. E.; Turner, E. C.; Kontak, D. J.; Fayek, M.
2018-02-01
Ancient carbonate rocks commonly contain numerous post-depositional phases (carbonate minerals; quartz) recording successive diagenetic events that can be deciphered and tied to known or inferred geological events using a multi-pronged in situ analytical protocol. The framework voids of large, deep-water microbial carbonate seep-mounds in Arctic Canada (Mesoproterozoic Ikpiarjuk Formation) contain multiple generations of synsedimentary and late cement. An in situ analytical study of the post-seafloor cements used optical and cathodoluminescence petrography, SEM-EDS analysis, fluid inclusion (FI) microthermometry and evaporate mound analysis, LA-ICP-MS analysis, and SIMS δ18O to decipher the mounds' long-term diagenetic history. The six void-filling late cements include, in paragenetic order: inclusion-rich euhedral dolomite (ED), finely crystalline clear dolomite (FCD), hematite-bearing dolomite (HD), coarsely crystalline clear dolomite (CCD), quartz (Q), replacive calcite (RC) and late calcite (LC). Based on the combined analytical results, the following fluid-flow history is defined: (1) ED precipitation by autocementation during shallow burial (fluid 1; Mesoproterozoic); (2) progressive mixing of Ca-rich hydrothermal fluid with the connate fluid, resulting in precipitation of FCD followed by HD (fluid 2; also Mesoproterozoic); (3) precipitation of hydrothermal dolomite (CCD) from high-Ca and K-rich fluids (fluid 3; possibly Mesoproterozoic, but timing unclear); (4) hydrothermal Q precipitation (fluid 4; timing unclear), and (5) RC and LC precipitation from a meteoric-derived water (fluid 5) in or since the Mesozoic. Fluids associated with FCD, HD, and CCD may have been mobilised during deposition of the upper Bylot Supergroup; this time interval was the most tectonically active episode in the region's Mesoproterozoic to Recent history. The entire history of intermittent fluid migration and cement precipitation recorded in seemingly unimportant void-filling mineral phases spans over 1 billion years, and was decipherable only because of the in situ protocol used. The multiple-method in situ analytical protocol employed in this study substantially augments the knowledge of an area's geological history, parts of which cannot be discerned by means other than meticulous study of diagenetic phases, and should become routine in similar studies.
Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term
NASA Astrophysics Data System (ADS)
Debnath, P. S.; Beesham, A.; Paul, B. C.
2018-06-01
Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.
NASA Astrophysics Data System (ADS)
Singh, M.
2017-12-01
The thermal instability of a Kuvshiniski viscoelastic fluid is considered to include the effects of a uniform horizontal magnetic field, suspended particles saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. For the case of stationary convection, the Kuvshiniski viscoelastic fluid behaves like a Newtonian fluid and the magnetic field has a stabilizing effect, whereas medium permeability and suspended particles are found to have a destabilizing effect on the system, oscillatory modes are introduced in the system, in the absence of these the principle of exchange of stabilities is valid. Graphs in each case have been plotted by giving numerical values to the parameters, depicting the stability characteristics. Sufficient conditions for the avoidance of overstability are also obtained.
NASA Technical Reports Server (NTRS)
Reynolds, W. C. (Editor); Maccormack, R. W.
1981-01-01
Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.
Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.
2018-01-01
The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Coupled neutronics and thermal-hydraulics numerical simulations of a Molten Fast Salt Reactor (MFSR)
NASA Astrophysics Data System (ADS)
Laureau, A.; Rubiolo, P. R.; Heuer, D.; Merle-Lucotte, E.; Brovchenko, M.
2014-06-01
Coupled neutronics and thermalhydraulic numerical analyses of a molten salt fast reactor are presented. These preliminary numerical simulations are carried-out using the Monte Carlo code MCNP and the Computation Fluid Dynamic code OpenFOAM. The main objectives of this analysis performed at steady-reactor conditions are to confirm the acceptability of the current neutronic and thermalhydraulic designs of the reactor, to study the effects of the reactor operating conditions on some of the key MSFR design parameters such as the temperature peaking factor. The effects of the precursor's motion on the reactor safety parameters such as the effective fraction of delayed neutrons have been evaluated.
NASA Astrophysics Data System (ADS)
Velioglu Sogut, Deniz; Yalciner, Ahmet Cevdet
2018-06-01
Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ``Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop'' and the ``Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop". The variations between the numerical solutions of these two models are evaluated through statistical error analysis.
Complex blood flow patterns in an idealized left ventricle: A numerical study
NASA Astrophysics Data System (ADS)
Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio
2017-09-01
In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.
Numerical study on the hydrodynamic characteristics of biofouled full-scale net cage
NASA Astrophysics Data System (ADS)
Bi, Chun-wei; Zhao, Yun-peng; Dong, Guo-hai
2015-06-01
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo
2018-04-01
The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.
Chao, Kan; Chen, Bo; Wu, Jiankang
2010-12-01
The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
Stochastic Simulation of Complex Fluid Flows
The PI has developed novel numerical algorithms and computational codes to simulate the Brownian motion of rigidparticles immersed in a viscous fluid...processes and to the design of novel nanofluid materials. Therandom Brownian motion of particles in fluid can be accounted for in fluid-structure
Numerical model of solar dynamic radiator for parametric analysis
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.
1989-01-01
Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.
Numerical simulation of an elastic structure behavior under transient fluid flow excitation
NASA Astrophysics Data System (ADS)
Afanasyeva, Irina N.; Lantsova, Irina Yu.
2017-01-01
This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.
Cumulutive reports and publications through December 31, 1984
NASA Technical Reports Server (NTRS)
1985-01-01
A complete list of the Institute for Computer Applications in Science and Engineering (ICASE) Reports are given. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available. Topics include numerical methods, parameter identification, fluid dynamics, acoustics, structural analysis, and computers.
Previous studies in mice with multiple gestational exposures to perfluorooctanoic acid (PFOA) demonstrate numerous dose dependent growth and developmental effects which appeared to worsen if offspring exposed in utero nursed from PFOA-exposed dams. To evaluate the disposition of ...
Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular Photoreactor
E. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai1
1U.S. EPA, National Risk Management Research Laboratory
Sustainable Technology Division,...
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eylenceoğlu, E.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.
2015-01-15
Two-dimensional hybrid Monte Carlo–fluid numerical code is developed and applied to model the dc glow discharge. The model is based on the separation of electrons into two parts: the low energetic (slow) and high energetic (fast) electron groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Fast electrons, represented by suitable number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume, which are simulated by the Monte Carlo collision method. Electrostatic field is obtained from the solution of Poisson equation. The test calculations weremore » carried out for an argon plasma. Main properties of the glow discharge are considered. Current-voltage curves, electric field reversal phenomenon, and the vortex current formation are developed and discussed. The results are compared to those obtained from the simple and extended fluid models. Contrary to reports in the literature, the analysis does not reveal significant advantages of existing hybrid methods over the extended fluid model.« less
NASA Astrophysics Data System (ADS)
Bibi, Madiha; Khalil-Ur-Rehman; Malik, M. Y.; Tahir, M.
2018-04-01
In the present article, unsteady flow field characteristics of the Williamson fluid model are explored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through coupled partial differential equations to the used shooting method for a numerical solution. The obtained partial differential equations are converted into ordinary differential equations as an initial value problem. The shooting method is used to find a numerical solution. The mathematical modeling yields physical parameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration are a decreasing function of the unsteadiness parameter.
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
NASA Astrophysics Data System (ADS)
Hanoca, P.; Ramakrishna, H. V.
2018-03-01
This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.
Effects of aperture variability and wettability on immiscible displacement in fractures
NASA Astrophysics Data System (ADS)
Yang, Zhibing; Méheust, Yves; Neuweiler, Insa
2017-04-01
Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
NASA Astrophysics Data System (ADS)
Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.
2017-12-01
The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.
NASA Astrophysics Data System (ADS)
Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro
2015-07-01
Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.
Materials processing in a centrifuge - Numerical modeling of macrogravity effects
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Downey, J. P.; Jones, J. C.; Curreri, P. A.
1992-01-01
The fluid mechanics associated with crystal growth processes on a centrifuge is investigated. A simple scaling analysis is used to examine the relative magnitudes of the forces acting on the system and good agreement is obtained with previous studies. A two-dimensional model of crystal growth on a centrifuge is proposed and calculations are undertaken to help in understanding the fundamental transport processes within the crystal growth cell. Results from three-dimensional calculations of actual centrifuge-based crystal growth systems are presented both for the thermodynamically stable and unstable configurations. The calculations show the existence of flow bifurcations in certain configurations but not in all instances. The numerical simulations also show that the centrifugal force is the dominant stabilizing force on fluid convection in the stable configuration. The stabilizing influence of the Coriolis force is found to be only secondary in nature. No significant impact of gravity gradient is found in the calculations. Simulations of unstable configurations show that the Coriolis force has a stabilizing influence on fluid motion by delaying the onset of unsteady convection. Detailed flow and thermal field characteristics are presented for all the different cases that are simulated.
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Fodor, Petru S.
A detailed analysis of the fluid flow in Tadmor's unwound channel model of the single screw extruder is performed by combining numerical and analytical methods. Using the analytical solution for the longitudinal velocity field (in the limit of zero Reynolds number) allows us to devote all the computational resources solely for a detailed numerical solution of the transversal velocity field. This high resolution 3D model of the fluid flow in a single-screw extruder allows us to identify the position and extent of Moffatt eddies that impede mixing. We further consider the erosion of particles (e.g. carbon-black agglomerates) advected by the polymeric flow. We assume a particle to be made of primary fragments bound together. In the erosion process a primary fragment breaks out of a given particle. Particles are advected by the laminar flow and they disperse because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman coupled differential equations used to model radioactivity. Using the particle size distribution we compute an entropic fragmentation index which varies from 0 for a monodisperse system to 1 for an extreme poly-disperse system.
Exergy optimization in a steady moving bed heat exchanger.
Soria-Verdugo, A; Almendros-Ibáñez, J A; Ruiz-Rivas, U; Santana, D
2009-04-01
This work provides an energy and exergy optimization analysis of a moving bed heat exchanger (MBHE). The exchanger is studied as a cross-flow heat exchanger where one of the phases is a moving granular medium. The optimal MBHE dimensions and the optimal particle diameter are obtained for a range of incoming fluid flow rates. The analyses are carried out over operation data of the exchanger obtained in two ways: a numerical simulation of the steady-state problem and an analytical solution of the simplified equations, neglecting the conduction terms. The numerical simulation considers, for the solid, the convection heat transfer to the fluid and the diffusion term in both directions, and for the fluid only the convection heat transfer to the solid. The results are compared with a well-known analytical solution (neglecting conduction effects) for the temperature distribution in the exchanger. Next, the analytical solution is used to derive an expression for the exergy destruction. The optimal length of the MBHE depends mainly on the flow rate and does not depend on particle diameter unless they become very small (thus increasing sharply the pressure drop). The exergy optimal length is always smaller than the thermal one, although the difference is itself small.
NASA Astrophysics Data System (ADS)
Ahmed, Naveed; Adnan; Khan, Umar; Mohyud-Din, Syed Tauseef; Manzoor, Raheela
2017-05-01
This paper aims to study the flow of a nanofluid in the presence of viscous dissipation in an oblique channel (nonparallel plane walls). For thermal conductivity of the nanofluid, the KKL model is utilized. Water is taken as the base fluid and it is assumed to be containing the solid nanoparticles of copper oxide. The appropriate set of partial differential equations is transformed into a self-similar system with the help of feasible similarity transformations. The solution of the model is obtained analytically and to ensure the validity of analytical solutions, numerically one is also calculated. The homotopy analysis method (HAM) and the Runge-Kutta numerical method (coupled with shooting techniques) have been employed for the said purpose. The influence of the different flow parameters in the model on velocity, thermal field, skin friction coefficient and local rate of heat transfer has been discussed with the help of graphs. Furthermore, graphical comparison between the local rate of heat transfer in regular fluids and nanofluids has been made which shows that in case of nanofluids, heat transfer is rapid as compared to regular fluids.
Dynamic force response of spherical hydrostatic journal bearing for cryogenic applications
NASA Technical Reports Server (NTRS)
Sanandres, Luis
1994-01-01
Hydrostatic Journal Bearings (HJB's) are reliable and resilient fluid film rotor support elements ideal to replace roller bearings in cryogenic turbomachinery. HJB' will be used for primary space-power applications due to their long lifetime, low friction and wear, large load capacity, large direct stiffness, and damping force coefficients. An analysis for the performance characteristics of turbulent flow, orifice compensated, spherical hydrostatic journal bearings (HJB's) is presented. Spherical bearings allow tolerance for shaft misalignment without force performance degradation and have also the ability to support axial loads. The spherical HJB combines these advantages to provide a bearing design which could be used efficiently on high performance turbomachinery. The motion of a barotropic liquid on the thin film bearing lands is described by bulk-flow mass and momentum equations. These equations are solved numerically using an efficient CFD method. Numerical predictions of load capacity and force coefficients for a 6 recess, spherical HJB in a LO2 environment are presented. Fluid film axial forces and force coefficients of a magnitude about 20% of the radial load capacity are predicted for the case analyzed. Fluid inertia effects, advective and centrifugal, are found to affect greatly the static and dynamic force performance of the bearing studied.
A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics
NASA Astrophysics Data System (ADS)
D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.
2017-11-01
The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.
Direct numerical simulation of human phonation
NASA Astrophysics Data System (ADS)
Saurabh, Shakti; Bodony, Daniel
2016-11-01
A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).
Computing Thermal Effects of Cavitation in Cryogenic Liquids
NASA Technical Reports Server (NTRS)
Hosangadi, Ashvin; Ahuja, Vineet; Dash, Sanford M.
2005-01-01
A computer program implements a numerical model of thermal effects of cavitation in cryogenic fluids. The model and program were developed for use in designing and predicting the performances of turbopumps for cryogenic fluids. Prior numerical models used for this purpose do not account for either the variability of properties of cryogenic fluids or the thermal effects (especially, evaporative cooling) involved in cavitation. It is important to account for both because in a cryogenic fluid, the thermal effects of cavitation are substantial, and the cavitation characteristics are altered by coupling between the variable fluid properties and the phase changes involved in cavitation. The present model accounts for both thermal effects and variability of properties by incorporating a generalized representation of the properties of cryogenic fluids into a generalized compressible-fluid formulation for a cavitating pump. The model has been extensively validated for liquid nitrogen and liquid hydrogen. Using the available data on the properties of these fluids, the model has been shown to predict accurate temperature-depression values.
NASA Astrophysics Data System (ADS)
de Mier, M.; Costa, F.; Idelsohn, S.
2008-12-01
Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account in the momentum conservation equation through the full shear-stress tensor. The implications of different magma intrusion rates, volumes, and times will be discussed in the context of mafic-silicic magma mixing and eruption triggers.
Measurement with microscopic MRI and simulation of flow in different aneurysm models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin
2015-10-15
Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was usedmore » to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The observed deviations can be caused by the noise in the measurement and by the limited resolution of the simulation. The resulting differences are small enough to allow reliable predictions of the flow distribution in vessels with stents and for pulsed blood flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Peshkov, Ilya, E-mail: peshkov@math.nsc.ru; Romenski, Evgeniy, E-mail: evrom@math.nsc.ru
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. Inmore » that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier–Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.« less
Features and applications of the Groove Analysis Program (GAP)
NASA Technical Reports Server (NTRS)
Ku, Jentung; Nguyen, Tu M.; Brennan, Patrick J.
1995-01-01
An IBM Personal Computer (PC) version of the Groove Analysis program (GAP) was developed to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove geometry and working fluid. In the model, the capillary limit is determined by the numerical solution of the differential equation for momentum conservation with the appropriate boundary conditions. This governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and due to liquid/vapor shear interaction. Back-pumping in both 0-g and 1-g is accounted for in the boundary condition at the condenser end. Slug formation in 0-g and puddle flow in 1-g are also considered in the model. At the user's discretion, the code will perform the analysis for various fluid inventories (undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will also calculate the minimum required heat pipe wall thickness for pressure containment at design temperatures that are greater than or lower than the critical temperature of the working fluid. This paper discusses the theory behind the development of the GAP model. It also presents the many useful and powerful capabilities of the model. Furthermore, a correlation of flight test performance data and the predictions using GAP are presented and discussed.
NASA Astrophysics Data System (ADS)
Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.
2015-06-01
In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.
Dynamics of Solid-Liquid Composite Beams
NASA Astrophysics Data System (ADS)
Matia, Yoav; Gat, Amir
2017-11-01
Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.
Flowers, Tracey C.; Hunt, James R.
2010-01-01
The transport of fluids miscible with water arises in groundwater contamination and during remediation of the subsurface environment. For concentrated salt solutions, i.e., brines, the increased density and viscosity determine mixing processes between these fluids and ambient groundwater. Under downward flow conditions, gravitational and viscous forces work against each other to determine the interfacial mixing processes. Historically, mixing has been modeled as a dispersive process, as viscous fingering, and as a combination of both using approaches that were both analytical and numerical. A compilation of previously reported experimental data on vertical miscible displacements by fluids with significant density and viscosity contrasts reveals some agreement with a stability analysis presented by Hill (1952). Additional experimental data on one-dimensional dispersion during downward displacement of concentrated salt solutions by freshwater and freshwater displacement by brines support the stability analysis and provides an empirical representation for dispersion coefficients as functions of a gravity number and a mobility ratio. PMID:20300476
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
NASA Astrophysics Data System (ADS)
Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.
Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong
2008-12-01
In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10 to 200 Hz. The excitation voltage is the more dominant factor that affects the flow rate of the micropump as compared with the excitation frequency. However, at extremely high excitation frequencies beyond 8,000 Hz, the flow rate drops as the membrane exhibits multiple bending peaks which is not desirable for fluid flow. Following the extensive numerical analysis, actual fabrication and performance characterization of the micropump is presented. The performance of the micropump is characterized in terms of piezoelectric actuator deflection and micropump flow rate at different operational parameters. The set of multifield simulations and experimental measurement of deflection and flow rate at varying voltage and excitation frequency is a significant advance in the study of the electric-solid-fluid coupled field effects as it allows transient, three dimensional piezoelectric and fluid analysis of the micropump thereby facilitating a more realistic multifield analysis. The results of the present study will also help to conduct relevant strength duration tests of integrated drug delivery device with micropump and microneedle array in future.
Influence of the rotor-stator interaction on the dynamic stresses of Francis runners
NASA Astrophysics Data System (ADS)
Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.
2012-11-01
Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its dynamic behaviour using the CFD results are carried out. These calculations will show that the RSI on the medium head Francis runner does not create damage on the runner even if the natural frequencies are closed to the wicket gates passing frequency. The numerical results are reinforced by experimental observations done on runner prototypes showing that the wicket gates passing frequency does not have significant influence on low and medium head Francis runner behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quon, Eliot; Platt, Andrew; Yu, Yi-Hsiang
Extreme loads are often a key cost driver for wave energy converters (WECs). As an alternative to exhaustive Monte Carlo or long-term simulations, the most likely extreme response (MLER) method allows mid- and high-fidelity simulations to be used more efficiently in evaluating WEC response to events at the edges of the design envelope, and is therefore applicable to system design analysis. The study discussed in this paper applies the MLER method to investigate the maximum heave, pitch, and surge force of a point absorber WEC. Most likely extreme waves were obtained from a set of wave statistics data based onmore » spectral analysis and the response amplitude operators (RAOs) of the floating body; the RAOs were computed from a simple radiation-and-diffraction-theory-based numerical model. A weakly nonlinear numerical method and a computational fluid dynamics (CFD) method were then applied to compute the short-term response to the MLER wave. Effects of nonlinear wave and floating body interaction on the WEC under the anticipated 100-year waves were examined by comparing the results from the linearly superimposed RAOs, the weakly nonlinear model, and CFD simulations. Overall, the MLER method was successfully applied. In particular, when coupled to a high-fidelity CFD analysis, the nonlinear fluid dynamics can be readily captured.« less
Hasan, Nusair; Farouk, Bakhtier
2015-10-01
Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.; Shi, Y.
1992-01-01
As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.
Maximum magnitude earthquakes induced by fluid injection
McGarr, Arthur F.
2014-01-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Notes on the KIVA-2 software and chemically reactive fluid mechanics
NASA Astrophysics Data System (ADS)
Holst, M. J.
1992-09-01
Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.
Domain decomposition for aerodynamic and aeroacoustic analyses, and optimization
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
The overarching theme was the domain decomposition, which intended to improve the numerical solution technique for the partial differential equations at hand; in the present study, those that governed either the fluid flow, or the aeroacoustic wave propagation, or the sensitivity analysis for a gradient-based optimization. The role of the domain decomposition extended beyond the original impetus of discretizing geometrical complex regions or writing modular software for distributed-hardware computers. It induced function-space decompositions and operator decompositions that offered the valuable property of near independence of operator evaluation tasks. The objectives have gravitated about the extensions and implementations of either the previously developed or concurrently being developed methodologies: (1) aerodynamic sensitivity analysis with domain decomposition (SADD); (2) computational aeroacoustics of cavities; and (3) dynamic, multibody computational fluid dynamics using unstructured meshes.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
1999-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flowrates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effects resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
2001-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
A Taylor weak-statement algorithm for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Zohrabi, Mo; Cormack, Robert H; Mccullough, Connor; Supekar, Omkar D; Gibson, Emily A; Bright, Victor M; Gopinath, Juliet T
2017-12-11
We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.
NASA Technical Reports Server (NTRS)
1993-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.
Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
1997-01-01
The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.
Fluid Distribution for In-space Cryogenic Propulsion
NASA Technical Reports Server (NTRS)
Lear, William
2005-01-01
The ultimate goal of this task is to enable the use of a single supply of cryogenic propellants for three distinct spacecraft propulsion missions: main propulsion, orbital maneuvering, and attitude control. A fluid distribution system is sought which allows large propellant flows during the first two missions while still allowing control of small propellant flows during attitude control. Existing research has identified the probable benefits of a combined thermal management/power/fluid distribution system based on the Solar Integrated Thermal Management and Power (SITMAP) cycle. Both a numerical model and an experimental model are constructed in order to predict the performance of such an integrated thermal management/propulsion system. This research task provides a numerical model and an experimental apparatus which will simulate an integrated thermal/power/fluid management system based on the SITMAP cycle, and assess its feasibility for various space missions. Various modifications are done to the cycle, such as the addition of a regeneration process that allows heat to be transferred into the working fluid prior to the solar collector, thereby reducing the collector size and weight. Fabri choking analysis was also accounted for. Finally the cycle is to be optimized for various space missions based on a mass based figure of merit, namely the System Mass Ratio (SMR). -. 1 he theoretical and experimental results from these models are be used to develop a design code (JETSIT code) which is able to provide design parameters for such a system, over a range of cooling loads, power generation, and attitude control thrust levels. The performance gains and mass savings will be compared to those of existing spacecraft systems.
NASA Astrophysics Data System (ADS)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.
1995-01-01
This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Zheng, Kang; Shin, Yung C.; Wu, Benxin
2018-07-01
The laser transmission welding of polyethylene terephthalate (PET) and titanium alloy Ti6Al4V involving the evaluating of the resultant geometry and quality of welds is investigated using a fiber laser in this paper. A 3D transient numerical model considering the melting and fluid flow is developed to predict the weld geometry and porosity formation. The temperature field, molten pool and liquid flow are simulated with varying laser power and welding speed based on the model. It is observed that the weld geometry predictions from the numerical simulation are in good agreement with the experimental data. The results show that the porosity consistently appears in the high temperature region due to the decomposition of PET. In addition, it has also been found that the molten pool with a vortex flow pattern is formed only in the PET layer and the welding processing parameters have significant effects on the fluid flow, which eventually affects the heat transfer, molten pool geometry and weld formation. Consequently, it is shown adopting appropriate welding processing parameters based on the proposed model is essential for the sound weld without defects.
Capillary Corner Flows With Partial and Nonwetting Fluids
NASA Technical Reports Server (NTRS)
Bolleddula, D. A.; Weislogel, M. M.
2009-01-01
Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
CFD Activity at Aerojet Related to Seals and Fluid Film Bearing
NASA Technical Reports Server (NTRS)
Bache, George E.
1991-01-01
Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.
Study of blood flow in several benchmark micro-channels using a two-fluid approach.
Wu, Wei-Tao; Yang, Fang; Antaki, James F; Aubry, Nadine; Massoudi, Mehrdad
2015-10-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
NASA Astrophysics Data System (ADS)
Magri, Fabien; Cacace, Mauro; Fischer, Thomas; Kolditz, Olaf; Wang, Wenqing; Watanabe, Norihiro
2017-04-01
In contrast to simple homogeneous 1D and 2D systems, no appropriate analytical solutions exist to test onset of thermal convection against numerical models of complex 3D systems that account for variable fluid density and viscosity as well as permeability heterogeneity (e.g. presence of faults). Owing to the importance of thermal convection for the transport of energy and minerals, the development of a benchmark test for density/viscosity driven flow is crucial to ensure that the applied numerical models accurately simulate the physical processes at hands. The presented study proposes a 3D test case for the simulation of thermal convection in a faulted system that accounts for temperature dependent fluid density and viscosity. The linear stability analysis recently developed by Malkovsky and Magri (2016) is used to estimate the critical Rayleigh number above which thermal convection of viscous fluids is triggered. The numerical simulations are carried out using the finite element technique. OpenGeoSys (Kolditz et al., 2012) and Moose (Gaston et al., 2009) results are compared to those obtained using the commercial software FEFLOW (Diersch, 2014) to test the ability of widely applied codes in matching both the critical Rayleigh number and the dynamical features of convective processes. The methodology and Rayleigh expressions given in this study can be applied to any numerical model that deals with 3D geothermal processes in faulted basins as by example the Tiberas Basin (Magri et al., 2016). References Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., U. J. Görke, T. Kalbacher, G. Kosakowski, McDermott, C. I., Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y., Sun, A., Singh, K., Taron, J., Walther, M., Wang,W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67(2), 589-599. Diersch, H. J, 2014. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-38738-8. Gaston D., Newman C., Hansen G., Lebrun-Grandie D, 2009. MOOSE: A parallel solution framework for coupled systems of nonlinear equations. Nucl. Engrg. Design, 239, 1,768-1778 Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M., Rödiger, T., Rosenthal, E., Siebert, C., 2016. 2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge. Marine and Petroleum Geology 78, 750-758, DOI: /10.1016/j.marpetgeo.2016.10.002 Malkovsky, V. I., Magri, F., 2016. Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: estimation from linear and numerical analyses, Water Resour. Res., 52, 2855-2867, DOI:10.1002/2015WR018001.
NASA Astrophysics Data System (ADS)
Tatomir, Alexandru Bogdan A. C.; Sauter, Martin
2017-04-01
A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2
Computational Fluid Dynamics Symposium on Aeropropulsion
NASA Technical Reports Server (NTRS)
1991-01-01
Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.
Simulating three dimensional wave run-up over breakwaters covered by antifer units
NASA Astrophysics Data System (ADS)
Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader
2014-06-01
The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
NASA Astrophysics Data System (ADS)
Tao, Li-li; Du, Guang-sheng; Liu, Li-ping; Liu, Yong-hui; Shao, Zhu-feng
2013-02-01
The wind-induced vibration of the front windshield concerns the traffic safety and the aerodynamic characteristics of cars. In this paper, the numerical simulation and the experiment are combined to study the wind-induced vibrations of the front windshield at different speeds of a van-body model bus. The Fluid-Structure Interaction (FSI) model is used for the finite element analysis of the vibration characteristics of the front windshield glass in the travelling process, and the wind-induced vibration response characteristics of the glass is obtained. A wind-tunnel experiment with an eddy current displacement sensor is carried out to study the deformation of the windshield at different wind speeds, and to verify the numerical simulation results. It is shown that the windshield of the model bus windshield undergoes a noticeable deformation as the speed changes, and from the deformation curve obtained, it is seen that in the accelerating process, the deformation of the glass increases as the speed increases, and with the speed being stablized, it also tends to a certain value. The results of this study can provide a scientific basis for the safety design of the windshield and the body.
An Experimental and Numerical Study of a Supersonic Burner for CFD Model Development
NASA Technical Reports Server (NTRS)
Magnotti, G.; Cutler, A. D.
2008-01-01
A laboratory scale supersonic burner has been developed for validation of computational fluid dynamics models. Detailed numerical simulations were performed for the flow inside the combustor, and coupled with finite element thermal analysis to obtain more accurate outflow conditions. A database of nozzle exit profiles for a wide range of conditions of interest was generated to be used as boundary conditions for simulation of the external jet, or for validation of non-intrusive measurement techniques. A set of experiments was performed to validate the numerical results. In particular, temperature measurements obtained by using an infrared camera show that the computed heat transfer was larger than the measured value. Relaminarization in the convergent part of the nozzle was found to be responsible for this discrepancy, and further numerical simulations sustained this conclusion.
Non-circulatory fluid forces on porous bodies with application to panel flutter
NASA Astrophysics Data System (ADS)
Hajian, Rozhin; Jaworski, Justin W.
2017-11-01
The non-circulatory fluid forces acting on an oscillating porous panel or airfoil in uniform incompressible flow are derived from linearized potential theory. The fundamental integral equation for Holder-continuous porosity distributions is formulated and solved numerically for the special cases of non-porous and uniformly-porous panels with prescribed structural deformations. The new unsteady aerodynamic forces are then applied to aeroelastic stability predictions for porous panels or liners. Results from this analysis aim to form the basis of a complete unsteady aerodynamic theory for porous airfoils and their acoustic emissions based upon the unique attributes of natural fliers and swimmers.
Advances of Proteomic Sciences in Dentistry
Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur
2016-01-01
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379
Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile
NASA Astrophysics Data System (ADS)
Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan
2015-11-01
Analog systems have recently been used in several experiments in the context of convective mixing of C O2 . We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of C O2 -water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than C O2 -water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments.
Computational fluid dynamics applications at McDonnel Douglas
NASA Technical Reports Server (NTRS)
Hakkinen, R. J.
1987-01-01
Representative examples are presented of applications and development of advanced Computational Fluid Dynamics (CFD) codes for aerodynamic design at the McDonnell Douglas Corporation (MDC). Transonic potential and Euler codes, interactively coupled with boundary layer computation, and solutions of slender-layer Navier-Stokes approximation are applied to aircraft wing/body calculations. An optimization procedure using evolution theory is described in the context of transonic wing design. Euler methods are presented for analysis of hypersonic configurations, and helicopter rotors in hover and forward flight. Several of these projects were accepted for access to the Numerical Aerodynamic Simulation (NAS) facility at the NASA-Ames Research Center.
Noreen, Saima; Qasim, Muhammad
2015-01-01
In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects. The need for a generalized computer program for thermofluid analysis in a flow network has been felt for a long time in aerospace industries. Designers of thermofluid systems often need to know pressures, temperatures, flow rates, concentrations, and heat transfer rates at different parts of a flow circuit for steady state or transient conditions. Such applications occur in propulsion systems for tank pressurization, internal flow analysis of rocket engine turbopumps, chilldown of cryogenic tanks and transfer lines, and many other applications of gas-liquid systems involving fluid transients and conjugate heat and mass transfer. Computer resource requirements to perform time-dependent, three-dimensional Navier-Stokes computational fluid dynamic (CFD) analysis of such systems are prohibitive and therefore are not practical. Available commercial codes are generally suitable for steady state, single-phase incompressible flow. Because of the proprietary nature of such codes, it is not possible to extend their capability to satisfy the above-mentioned needs. Therefore, the Generalized Fluid System Simulation Program (GFSSP1) has been developed at NASA Marshall Space Flight Center (MSFC) as a general fluid flow system solver capable of handling phase changes, compressibility, mixture thermodynamics and transient operations. It also includes the capability to model external body forces such as gravity and centrifugal effects in a complex flow network. The objectives of GFSSP development are: a) to develop a robust and efficient numerical algorithm to solve a system of equations describing a flow network containing phase changes, mixing, and rotation; and b) to implement the algorithm in a structured, easy-to-use computer program. The analysis of thermofluid dynamics in a complex network requires resolution of the system into fluid nodes and branches, and solid nodes and conductors as shown in Figure 1. Figure 1 shows a schematic and GFSSP flow circuit of a counter-flow heat exchanger. Hot nitrogen gas is flowing through a pipe, colder nitrogen is flowing counter to the hot stream in the annulus pipe and heat transfer occurs through metal tubes. The problem considered is to calculate flowrates and temperature distributions in both streams. GFSSP has a unique data structure, as shown in Figure 2, that allows constructing all possible arrangements of a flow network with no limit on the number of elements. The elements of a flow network are boundary nodes where pressure and temperature are specified, internal nodes where pressure and temperature are calculated, and branches where flowrates are calculated. For conjugate heat transfer problems, there are three additional elements: solid node, ambient node, and conductor. The solid and fluid nodes are connected with solid-fluid conductors. GFSSP solves the conservation equations of mass and energy, and equation of state in internal nodes to calculate pressure, temperature and resident mass. The momentum conservation equation is solved in branches to calculate flowrate. It also solves for energy conservation equations to calculate temperatures of solid nodes. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as simultaneous adjustment with successive substitution (SASS), which is a combination of Newton-Raphson and successive substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the successive substitution method. GFSSP is linked with two thermodynamic property programs, GASP2 and WASP3 and GASPAK4, that provide thermodynamic and thermophysical properties of selected fluids. Both programs cover a range of pressure and temperature that allows fluid properties to be evaluated for liquid, liquid-vapor (saturation), and vapor region. GASP and WASP provide properties of 12 fluids. GASPAK includes a library of 36 fluids. GFSSP has three major parts. The first part is the graphical user interface (GUI), visual thermofluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. GFSSP's GUI provides the users a platform to build and run their models. It also allows post-processing of results. The network flow circuit is first built using three basic elements: boundary node, internal node, and branch.
Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.
Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping
2018-02-20
Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.
Surfactants non-monotonically modify the onset of Faraday waves
NASA Astrophysics Data System (ADS)
Strickland, Stephen; Shearer, Michael; Daniels, Karen
2017-11-01
When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.
Periodic folding of viscous sheets
NASA Astrophysics Data System (ADS)
Ribe, Neil M.
2003-09-01
The periodic folding of a sheet of viscous fluid falling upon a rigid surface is a common fluid mechanical instability that occurs in contexts ranging from food processing to geophysics. Asymptotic thin-layer equations for the combined stretching-bending deformation of a two-dimensional sheet are solved numerically to determine the folding frequency as a function of the sheet’s initial thickness, the pouring speed, the height of fall, and the fluid properties. As the buoyancy increases, the system bifurcates from “forced” folding driven kinematically by fluid extrusion to “free” folding in which viscous resistance to bending is balanced by buoyancy. The systematics of the numerically predicted folding frequency are in good agreement with laboratory experiments.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
A design methodology of magentorheological fluid damper using Herschel-Bulkley model
NASA Astrophysics Data System (ADS)
Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.
2003-09-01
Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
Hamlet, Christina; Santhanakrishnan, Arvind; Miller, Laura A
2011-06-01
Mathematical and experimental studies of the flows generated by jellyfish have focused primarily on mechanisms of swimming. More recent work has also considered the fluid dynamics of feeding from currents generated during swimming. Here we capitalize on the benthic lifestyle of the upside-down jellyfish (Cassiopea xamachana) to explore the fluid dynamics of feeding uncoupled from swimming. A two-dimensional mathematical model is developed to capture the fundamental characteristics of the motion of the unique concave bell shape. Given the prominence of the oral arms, this structure is included and modeled as a porous layer that perturbs the flow generated by bell contractions. The immersed boundary method is used to solve the fluid-structure interaction problem. Velocity fields obtained from live organisms using digital particle image velocimetry were used to validate the numerical simulations. Parameter sweeps were used to numerically explore the effects of changes in pulse dynamics and the properties of the oral arms independently. Numerical experiments allow the opportunity to examine physical effects and limits within and beyond the biologically relevant range to develop a better understanding of the system. The presence of the prominent oral arm structures in the field of flow increased the flux of new fluid from along the substrate to the bell. The numerical simulations also showed that the presence of pauses between bell expansion and the next contraction alters the flow of the fluid over the bell and through the oral arms.
Fluid-structure interactions of photo-responsive polymer cantilevers
NASA Astrophysics Data System (ADS)
Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.
2013-02-01
A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.
NASA Astrophysics Data System (ADS)
Gori, G.; Molesini, P.; Persico, G.; Guardone, A.
2017-03-01
The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.
Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones
NASA Astrophysics Data System (ADS)
Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.
2010-03-01
A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.
Multidisciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)
2001-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Multi-Disciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song
1997-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
NASA Astrophysics Data System (ADS)
Polanský, Jiří; Kalmár, László; Gášpár, Roman
2013-12-01
The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.
Experimental and numerical study of a flapping tidal stream generator
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Le, Tuyen Quang; Ko, Jin Hwan; Sitorus, Patar Ebenezer; Tambunan, Indra Hartarto; Kang, Taesam
2017-11-01
The tidal stream turbine is one of the systems that extract kinetic energy from tidal stream, and there are several types of the tidal stream turbine depending on its operating motion. In this research, we conduct experimental and consecutive numerical analyses of a flapping tidal stream generator with a dual configuration flappers. An experimental analysis of a small-scale prototype is conducted in a towing tank, and a numerical analysis is conducted using two-dimensional computational fluid dynamics simulations with an in-house code. Through an experimental analysis conducted while varying these factors, a high applied load and a high input arm angle were found to be advantageous. In consecutive numerical investigations with the kinematics selected from the experiments, it was found that a rear-swing flapper contributes to the total amount of power more than a front-swing flapper with a distance of two times the chord length and with a 90-degree phase difference between the two. This research was a part of the project titled `R&D center for underwater construction robotics', funded by the Ministry of Oceans and Fisheries(MOF), Korea Institute of Marine Science & Technology Promotion(KIMST,PJT200539), and Pohang City in Korea.
Non-Darcy Forchheimer flow of ferromagnetic second grade fluid
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.
This article discusses impacts of thermal radiation, viscous dissipation and magnetic dipole in flow of second grade fluid saturating porous medium. Porous medium is characterized by nonlinear Darcy-Forchheimer relation. Relevant nonlinear ordinary differential systems after using appropriate transformations are solved numerically. Shooting technique is implemented for the numerical treatment. Temperature, velocity, skin fraction and Nusselt number are analyzed.
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillol, Jean-Michel, E-mail: Jean-Michel.Caillol@th.u-psud.fr; Trulsson, Martin, E-mail: martin.trulsson@lptms.u-psud.fr
2014-09-28
We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all themore » formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.« less
A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere
NASA Astrophysics Data System (ADS)
Caillol, Jean-Michel; Trulsson, Martin
2014-09-01
We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.
Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J
2010-03-21
In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.
Flow and Heat Transfer in Sisko Fluid with Convective Boundary Condition
Malik, Rabia; Khan, Masood; Munir, Asif; Khan, Waqar Azeem
2014-01-01
In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a non-isothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like power-law index , magnetic parameter , stretching parameter , generalized Prandtl number Pr and generalized Biot number are presented graphically. It is found that temperature profile increases with the increasing value of and whereas it decreases for . Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case and excellent agreement between results enhance a confidence in the HAM results. PMID:25285822
Surface Tension Driven Convection Experiment (STDCE)
NASA Technical Reports Server (NTRS)
Ostrach, S.; Kamotani, Y.
1996-01-01
This document reports the results obtained from the Surface Tension Driven Convection Experiment (STDCE) conducted aboard the USML-1 Spacelab in 1992. The experiments used 10 cSt silicone oil placed in an open circular container that was 10 cm wide and 5 cm deep. Thermocapillary flow was induced by using either a cylindrical heater placed along the container centerline or by a CO2 laser. The tests were conducted under various power settings, laser beam diameters, and free surface shapes. Thermistors located at various positions in the test section recorded the temperature of the fluid, heater, walls, and air. An infrared imager was used to measure the free surface temperature. The flow field was studied by flow visualization and the data was analyzed by a PTV technique. The results from the flow visualization and the temperature measurements are compared with the numerical analysis that was conducted in conjunction with the experiment. The compared results include the experimental and numerical velocity vector plots, the streamline plots, the fluid temperature, and the surface temperature distribution.
Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.
Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin
2016-01-01
The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
Vectorization on the star computer of several numerical methods for a fluid flow problem
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.
Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier
2018-01-01
Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.
NASA Astrophysics Data System (ADS)
Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.
2017-12-01
Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.
NASA Astrophysics Data System (ADS)
Sabri, Farhad
Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled circular cylindrical shell or truncated conical shell subjected to internal/external pressure and axial compression loading. This is a typical example of external liquid propellant tanks of space shuttles and re-entry vehicles where they may experience this kind of loading during the flight. In the current work, different end boundary conditions of a circular cylindrical shell with different filling ratios were analyzed. To the best author' knowledge this is the first study where this kind of complex loading and boundary conditions are treated together during such an analysis. Only static instability, divergence, was observed where it showed that the fluid filling ratio does not have any effect on the critical buckling pressure and axial compression. It only reduces the vibration frequencies. It also revealed that the pressurized shell loses its stability at a higher critical axial load. (ii) Aeroelastic analysis of empty or partially liquid filled circular cylindrical and conical shells. Different boundary conditions with different geometries of shells subjected to supersonic air flow are studied here. In all of cases shell loses its stability though the coupled mode flutter. The results showed that internal pressure has a stabilizing effect and increases the critical flutter speed. It is seen that the value of critical dynamic pressure changes rapidly and widely as the filling ratio increases from a low value. In addition, by increasing the length ratio the decrement of flutter speed is decreased and vanishes. This rapid change in critical dynamic pressure at low filling ratios and its almost steady behaviour at large filling ratios indicate that the fluid near the bottom of the shell is largely influenced by elastic deformation when a shell is subjected to external subsonic flow. Based on comparison with the existing numerical, analytical and experimental data and the power of capabilities of this hybrid finite element method to model different boundary conditions and complex loadings, this FEM package can be used effectively for the design of advanced aerospace structures. It provides the results at less computational cost compare to the commercial FEM software, which imposes some restrictions when such an analysis is done.
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
Thin-film Faraday patterns in three dimensions
NASA Astrophysics Data System (ADS)
Richter, Sebastian; Bestehorn, Michael
2017-04-01
We investigate the long time evolution of a thin fluid layer in three spatial dimensions located on a horizontal planar substrate. The substrate is subjected to time-periodic external vibrations in normal and in tangential direction with respect to the plane surface. The governing partial differential equation system of our model is obtained from the incompressible Navier-Stokes equations considering the limit of a thin fluid geometry and using the long wave lubrication approximation. It includes inertia and viscous friction. Numerical simulations evince the existence of persistent spatially complex surface patterns (periodic and quasiperiodic) for certain superpositions of two vertical excitations and initial conditions. Additional harmonic lateral excitations cause deformations but retain the basic structure of the patterns. Horizontal ratchet-shaped forces lead to a controllable lateral movement of the fluid. A Floquet analysis is used to determine the stability of the linearized system.
1989-05-01
NUMERICAL ANALYSIS OF STEFAN PROBLEMS FOR GENERALIZED MULTI- DIMENSIONAL PHASE-CHANGE STRUCTURES USING THE ENTHALPY TRANSFORMING MODEL 4.1 Summary...equation St Stefan number, cs(Tm-Tw)/H or cs(Tm-Ti)/H s circumferential distance coordinate, m, Section III s dimensionless interface position along...fluid, kg/m 3 0 viscous dissipation term in the energy eqn. (1.4), Section I; dummy variable, Section IV r dimensionless time, ta/L 2 a Stefan -Boltzmann
NASA Technical Reports Server (NTRS)
Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.
2015-01-01
Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.
Solitary water wave interactions
NASA Astrophysics Data System (ADS)
Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C.
2006-05-01
This article concerns the pairwise nonlinear interaction of solitary waves in the free surface of a body of water lying over a horizontal bottom. Unlike solitary waves in many completely integrable model systems, solitary waves for the full Euler equations do not collide elastically; after interactions, there is a nonzero residual wave that trails the post-collision solitary waves. In this report on new numerical and experimental studies of such solitary wave interactions, we verify that this is the case, both in head-on collisions (the counterpropagating case) and overtaking collisions (the copropagating case), quantifying the degree to which interactions are inelastic. In the situation in which two identical solitary waves undergo a head-on collision, we compare the asymptotic predictions of Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Byatt-Smith [J. Fluid Mech. 49, 625 (1971)], the wavetank experiments of Maxworthy [J. Fluid Mech. 76, 177 (1976)], and the numerical results of Cooker, Weidman, and Bale [J. Fluid Mech. 342, 141 (1997)] with independent numerical simulations, in which we quantify the phase change, the run-up, and the form of the residual wave and its Fourier signature in both small- and large-amplitude interactions. This updates the prior numerical observations of inelastic interactions in Fenton and Rienecker [J. Fluid Mech. 118, 411 (1982)]. In the case of two nonidentical solitary waves, our precision wavetank experiments are compared with numerical simulations, again observing the run-up, phase lag, and generation of a residual from the interaction. Considering overtaking solitary wave interactions, we compare our experimental observations, numerical simulations, and the asymptotic predictions of Zou and Su [Phys. Fluids 29, 2113 (1986)], and again we quantify the inelastic residual after collisions in the simulations. Geometrically, our numerical simulations of overtaking interactions fit into the three categories of Korteweg-deVries two-soliton solutions defined in Lax [Commun. Pure Appl. Math. 21, 467 (1968)], with, however, a modification in the parameter regime. In all cases we have considered, collisions are seen to be inelastic, although the degree to which interactions depart from elastic is very small. Finally, we give several theoretical results: (i) a relationship between the change in amplitude of solitary waves due to a pairwise collision and the energy carried away from the interaction by the residual component, and (ii) a rigorous estimate of the size of the residual component of pairwise solitary wave collisions. This estimate is consistent with the analytic results of Schneider and Wayne [Commun. Pure Appl. Math. 53, 1475 (2000)], Wright [SIAM J. Math. Anal. 37, 1161 (2005)], and Bona, Colin, and Lannes [Arch. Rat. Mech. Anal. 178, 373 (2005)]. However, in light of our numerical data, both (i) and (ii) indicate a need to reevaluate the asymptotic results in Su and Mirie [J. Fluid Mech. 98, 509 (1980)] and Zou and Su [Phys. Fluids 29, 2113 (1986)].
Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
NASA Astrophysics Data System (ADS)
Seric, Ivana; Afkhami, Shahriar; Kondic, Lou
2018-01-01
We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2015-01-01
This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.
External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation
NASA Astrophysics Data System (ADS)
Rituraj, Fnu; Vacca, Andrea
2018-06-01
External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.
Numerical Analysis of Micromixers for Optimization of Mixing Action
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Adhikari, Param
2011-03-01
Micro-bio/chemical applications often require rapid and uniform mixing of a number of fluid streams that carries bio/chemical species in the solution. At microscale, fluid flow is highly laminar with low Reynolds number, fluids mixing mechanism is primarily by diffusion and free from any turbulence. Demand for highly efficient micromixers for microfluidic networks is due to slower mixing process for larger bio-molecules such as peptides, proteins, and nucleic acids compared to micro-scale molecules. Passive and active mixers are two basic mixers that are currently in use for these applications. Passive mixers often require very long mixing channels where are most active mixers require bulky moving parts to stir the fluids. In this study, electroosmotic effects orthogonally aligned with the fluid flowstream are utilized for optimum mixing effect in various micromixers. Cross-dependencies among several geometrical, electrical, and fluid parameters and their significance are studied in order to achieve an optimum mixing effect. It has been planned to optimize the mixer by non-moving stirring actions provided by an external magnetic field. Acknowledgements to School of Graduate Studies and Research at YSU for URC Grant and RP Award 2009-2010.
NASA Astrophysics Data System (ADS)
Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.
2018-01-01
The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.
Numerical Analysis of the Heat Transfer Characteristics within an Evaporating Meniscus
NASA Astrophysics Data System (ADS)
Ball, Gregory
A numerical analysis was performed as to investigate the heat transfer characteristics of an evaporating thin-film meniscus. A mathematical model was used in the formulation of a third order ordinary differential equation. This equation governs the evaporating thin-film through use of continuity, momentum, energy equations and the Kelvin-Clapeyron model. This governing equation was treated as an initial value problem and was solved numerically using a Runge-Kutta technique. The numerical model uses varying thermophysical properties and boundary conditions such as channel width, applied superheat, accommodation coefficient and working fluid which can be tailored by the user. This work focused mainly on the effects of altering accommodation coefficient and applied superheat. A unified solution is also presented which models the meniscus to half channel width. The model was validated through comparison to literature values. In varying input values the following was determined; increasing superheat was found to shorten the film thickness and greatly increase the interfacial curvature overshoot values. The effect of decreasing accommodation coefficient lengthened the thin-film and retarded the evaporative effects.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
NASA Astrophysics Data System (ADS)
Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo
2017-10-01
Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866
Wave scattering by an axisymmetric ice floe of varying thickness
NASA Astrophysics Data System (ADS)
Bennetts, Luke G.; Biggs, Nicholas R. T.; Porter, David
2009-04-01
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh-Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413-443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
NASA Astrophysics Data System (ADS)
Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter
2013-12-01
Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich
Bifurcations and Chaos of AN Immersed Cantilever Beam in a Fluid and Carrying AN Intermediate Mass
NASA Astrophysics Data System (ADS)
AL-QAISIA, A. A.; HAMDAN, M. N.
2002-06-01
The concern of this work is the local stability and period-doubling bifurcations of the response to a transverse harmonic excitation of a slender cantilever beam partially immersed in a fluid and carrying an intermediate lumped mass. The unimodal form of the non-linear dynamic model describing the beam-mass in-plane large-amplitude flexural vibration, which accounts for axial inertia, non-linear curvature and inextensibility condition, developed in Al-Qaisia et al. (2000Shock and Vibration7 , 179-194), is analyzed and studied for the resonance responses of the first three modes of vibration, using two-term harmonic balance method. Then a consistent second order stability analysis of the associated linearized variational equation is carried out using approximate methods to predict the zones of symmetry breaking leading to period-doubling bifurcation and chaos on the resonance response curves. The results of the present work are verified for selected physical system parameters by numerical simulations using methods of the qualitative theory, and good agreement was obtained between the analytical and numerical results. Also, analytical prediction of the period-doubling bifurcation and chaos boundaries obtained using a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of Sound and Vibration244, 453-479) are compared with those of computer simulations. In addition, results of the effect of fluid density, fluid depth, mass ratio, mass position and damping on the period-doubling bifurcation diagrams are studies and presented.
Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.
2017-04-01
The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramadhan, Anwar Ilmar, E-mail: anwar.ilmar@ftumj.ac.id; Diniardi, Ery, E-mail: ery.diniardi@ftumj.ac.id; Dermawan, Erwin, E-mail: erwin.dermawan@ftumj.ac.id
Heating or cooling fluid is a major requirement in the industrial sector, including transport, energy and production needs of the field and the field of electronics. It is known that the thermal properties of the working fluid hold an important role in the development of energy efficiency of heat transfer equipment. The cooling system can be improved either by replacing conventional cooling fluid from the fluid into the fluid of water mixed with nanoparticles (nanofluid). The method of this research is to analyze the calculations and numerical simulations of the nanofluid Al{sub 2}O{sub 3}− Water with the volume fraction ofmore » 1% and 3% coolant fluid using CFD Codes. The results of this research show the rate of heat transfer at the increasing velocity of fluid flow, with the velocity of 5 [m/s]. Whereas the 3% nanofluid have greater value than the 1% nanofluid and water, as well as for the velocity of 10 [m/s] which has almost the same pattern. Shown that the concentration of nanofluid has a value effective for improving heat release along the fluid flow rate.« less
Thermodynamical effects and high resolution methods for compressible fluid flows
NASA Astrophysics Data System (ADS)
Li, Jiequan; Wang, Yue
2017-08-01
One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.
On approximation of non-Newtonian fluid flow by the finite element method
NASA Astrophysics Data System (ADS)
Svácek, Petr
2008-08-01
In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.
Responses, applications, and analysis of microgravity effects on bacteria
NASA Astrophysics Data System (ADS)
Benoit, Michael Robert
Spaceflight causes many changes to the growth and behavior of bacteria, most likely because of microgravity. However, we do not fully understand the gravity-dependent mechanisms that alter bacterial cell physiology. Furthermore, the literature consists of many contradictory results, creating controversy over the mechanisms by which spaceflight affects bacterial cultures. The research described in this dissertation combines empirical, analytical, and numerical modeling techniques aimed at characterizing the various gravity-dependent phenomena that act on bacteria. While reviewing the literature, I identified an interesting trend in prior experimental results regarding bacterial motility. With this information, we can begin to explain some of the seemingly contradictory findings. This discovery should help to resolve several controversial theories in the field of space microbiology. Chapter 3 describes a microbial antibiotic production experiment conducted onboard the International Space Station. The results corroborated earlier findings of increased antibiotic production for samples taken during the first two weeks of spaceflight. For later samples, however, a reversal occurred, showing decreased production in the spaceflight samples. This insight highlights the benefit of conducting long duration experiments in space to fully evaluate biological responses. Chapter 4 describes a novel technique for preventing bacterial cell sedimentation to partially simulate microgravity in ground-based experiments. The results of this study showed a correlation between cell sedimentation and bacterial growth. As documented in Chapter 5, I investigated the use of digital holographic interferometry to measure extracellular fluid density changes caused by bacterial metabolism. The results showed that fluid density changes surrounding individual bacteria were too small to measure directly. Therefore, I used mathematical analyses and numerical model simulations (described in Chapter 6) to evaluate changes in extracellular fluid density on convective mass transport. From the theoretical analysis results, I predicted convective and diffusive transport regimes for bacteria grown under microgravity, 1 g, and hyper-gravity conditions. Finally, using a numerical model, I successfully simulated an experimentally observed phenomenon of buoyancy-driven convection created by cellular metabolism.
Atmospheric cloud physics thermal systems analysis
NASA Technical Reports Server (NTRS)
1977-01-01
Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Shrivastava; Brian Williams; Ali S. Siahpush
2014-06-01
There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. Firstmore » a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.« less
The numerical modelling of falling film thickness flow on horizontal tubes
NASA Astrophysics Data System (ADS)
Hassan, I. A.; Sadikin, A.; Isa, N. Mat
2017-04-01
This paper presents a computational modelling of water falling film flowing over horizontal tubes. The objective of this study is to use numerical predictions for comparing the film thickness along circumferential direction of tube on 2-D CFD models. The results are then validated with a theoretical result in previous literatures. A comprehensive design of 2-D models have been developed according to the real application and actual configuration of the falling film evaporator as well as previous experimental parameters. A computational modelling of the water falling film is presented with the aid of Ansys Fluent software. The Volume of Fluid (VOF) technique is adapted in this analysis since its capabilities of determining the film thickness on tubes surface is highly reliable. The numerical analysis is carried out under influence of ambient pressures at temperature of 27 °C. Three types of CFD numerical models were analyzed in this simulation with inter tube spacing of 30 mm, 20 mm and 10 mm respectively. The use of a numerical simulation tool on water falling film has resulted in a detailed investigation of film thickness. Based on the numerical simulated results, it is found that the average values of water film thickness for each model are 0.53 mm, 0.58 mm, and 0.63 mm.
SPLASH program for three dimensional fluid dynamics with free surface boundaries
NASA Astrophysics Data System (ADS)
Yamaguchi, A.
1996-05-01
This paper describes a three dimensional computer program SPLASH that solves Navier-Stokes equations based on the Arbitrary Lagrangian Eulerian (ALE) finite element method. SPLASH has been developed for application to the fluid dynamics problems including the moving boundary of a liquid metal cooled Fast Breeder Reactor (FBR). To apply SPLASH code to the free surface behavior analysis, a capillary model using a cubic Spline function has been developed. Several sample problems, e.g., free surface oscillation, vortex shedding development, and capillary tube phenomena, are solved to verify the computer program. In the analyses, the numerical results are in good agreement with the theoretical value or experimental observance. Also SPLASH code has been applied to an analysis of a free surface sloshing experiment coupled with forced circulation flow in a rectangular tank. This is a simplified situation of the flow field in a reactor vessel of the FBR. The computational simulation well predicts the general behavior of the fluid flow inside and the free surface behavior. Analytical capability of the SPLASH code has been verified in this study and the application to more practical problems such as FBR design and safety analysis is under way.
A two-layer model for buoyant inertial displacement flows in inclined pipes
NASA Astrophysics Data System (ADS)
Etrati, Ali; Frigaard, Ian A.
2018-02-01
We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599
Droplet breakup driven by shear thinning solutions in a microfluidic T-junction
NASA Astrophysics Data System (ADS)
Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo
2017-12-01
Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.
A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores
NASA Astrophysics Data System (ADS)
Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan
2017-01-01
Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.
Theoretical analyses of Baroclinic flows
NASA Technical Reports Server (NTRS)
Antar, B.
1982-01-01
A stability analysis of a thin horizontal rotating fluid layer which is subjected to arbitrary horizontal and vertical temperature gradients is presented. The basic state is a nonlinear Hadley cell which contains both Ekman and thermal boundary layers; it is given in closed form. The stability analysis is based on the linearized Navier-Stokes equations, and zonally symmetric perturbations in the form of waves propagating in the meridional direction are considered. Numerical methods were used for the stability problem. It was found that the instability sets in when the Richardson number is close to unity and that the critical Richardson number is a non-monotonic function of the Prandtl number. Further, it was found that the critical Richardson number decreases with increasing Ekman number until a critical value of the Ekman number is reached beyond which the fluid is stable.
NASA Astrophysics Data System (ADS)
Chang, Baohua; Allen, Chris; Blackburn, Jon; Hilton, Paul; Du, Dong
2015-04-01
In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.
NASA Lewis Research Center low-gravity fluid management technology program
NASA Technical Reports Server (NTRS)
Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.
1985-01-01
A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.
Development of an integrated BEM for hot fluid-structure interaction
NASA Technical Reports Server (NTRS)
Banerjee, P. K.; Dargush, G. F.
1989-01-01
The Boundary Element Method (BEM) is chosen as a basic analysis tool principally because the definition of quantities like fluxes, temperature, displacements, and velocities is very precise on a boundary base discretization scheme. One fundamental difficulty is, of course, that the entire analysis requires a very considerable amount of analytical work which is not present in other numerical methods. During the last 18 months all of this analytical work was completed and a two-dimensional, general purpose code was written. Some of the early results are described. It is anticipated that within the next two to three months almost all two-dimensional idealizations will be examined. It should be noted that the analytical work for the three-dimensional case has also been done and numerical implementation will begin next year.
Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha
2010-06-01
Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.
Numerical analysis of bubble-cluster formation in an ultrasonic field
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Son, Gihun
2016-11-01
Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.
Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Borhan, A.
1996-01-01
A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.
Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence
NASA Technical Reports Server (NTRS)
Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor
2010-01-01
We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.
Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study
NASA Astrophysics Data System (ADS)
Bhattacharyya, Somnath; Majee, Partha Sarathi
2017-04-01
We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.
Study of blood flow in several benchmark micro-channels using a two-fluid approach
Wu, Wei-Tao; Yang, Fang; Antaki, James F.; Aubry, Nadine; Massoudi, Mehrdad
2015-01-01
It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc. For describing these non-Newtonian and multi-component characteristics of blood, using the framework of mixture theory, a two-fluid model is applied, where the plasma is treated as a Newtonian fluid and the red blood cells (RBCs) are treated as shear-thinning fluid. A computational fluid dynamic (CFD) simulation incorporating the constitutive model was implemented using OpenFOAM® in which benchmark problems including a sudden expansion and various driven slots and crevices were studied numerically. The numerical results exhibited good agreement with the experimental observations with respect to both the velocity field and the volume fraction distribution of RBCs. PMID:26240438
Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
NASA Astrophysics Data System (ADS)
Erçetin, Engin; Düşünür Doǧan, Doǧa
2017-04-01
The aim of the study is to present a numerical temperature and fluid-flow modelling for the topographic effects on hydrothermal circulation. Bathymetry can create a major disturbance on fluid flow pattern. ANSYS Fluent Computational fluid dynamics software is used for simulations. Coupled fluid flow and temperature quations are solved using a 2-Dimensional control volume finite difference approach. Darcy's law is assumed to hold, the fluid is considered to be anormal Boussinesq incompressible fluid neglecting inertial effects. Several topographic models were simulated and both temperature and fluid flow calculations obtained for this study. The preliminary simulations examine the effect of a ingle bathymetric high on a single plume and the secondary study of simulations investigates the effect of multiple bathymetric highs on multiple plume. The simulations were also performed for the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge (MAR), one of the best studied regions along the MAR, where a 3.4 km deep magma chamber extending 6 km along-axis is found at its center. The Lucky Strike segment displays a transitional morphology between that of the FAMOUS - North FAMOUS segments, which are characterized by well-developed axial valleys typical of slow-spreading segments, and that of the Menez Gwen segment, characterized by an axial high at the segment center. Lucky Strike Segment hosts a central volcano and active vent field located at the segment center and thus constitutes an excellent case study to simulate the effects of bathymetry on fluid flow. Results demonstrate that bathymetric relief has an important influence on hydrothermal flow. Subsurface pressure alterations can be formed by bathymetric highs, for this reason, bathymetric relief ought to be considered while simulating hydrothermal circulation systems. Results of this study suggest the dominant effect of bathymetric highs on fluid flow pattern and Darcy velocities will be presented. Keywords: Hydrothermal Circulation, Lucky Strike, Bathymetry - Topography, Vent Location, Fluid Flow, Numerical Modelling
High temperature helical tubular receiver for concentrating solar power system
NASA Astrophysics Data System (ADS)
Hossain, Nazmul
In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.
NASA Astrophysics Data System (ADS)
Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei
2018-05-01
The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Department of Mathematics and Statistics, International Islamic University Islamabad 44000
In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heatmore » transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.« less
NASA Astrophysics Data System (ADS)
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
NASA Astrophysics Data System (ADS)
Nasir, Nor Ain Azeany Mohd; Ishak, Anuar; Pop, Ioan
2018-04-01
In this paper, the heat and mass transfer of an axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects are investigated. An appropriate similarity transformation is used to reduce the highly non-linear partial differential equation into second and third order non-linear ordinary differential equations. Numerical solutions of the reduced governing equations are computed numerically by utilizing the MATLAB's built-in boundary value problem solver, bvp4c. The physical significance of various parameters such as Biot number, fluid parameters and Prandtl number on the velocity and temperature evolution profiles are illustrated graphically. The effects of these governing parameters on the skin friction coefficient and the local Nusselt number are also displayed graphically. It is noticed that the Powell-Eyring fluid parameter gives significant influence on the rates of heat and mass transfer of the fluid.
A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.
Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G
2015-01-01
In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity.
Modeling MHD Stagnation Point Flow of Thixotropic Fluid with Non-uniform Heat Absorption/Generation
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed; Yasmeen, Tabassum
2017-12-01
Here magnetohydrodynamic (MHD) stagnation point flow by nonlinear stretching sheet is discussed. Variable thickness of sheet is accounted. In addition non-uniform heat generation/absorption concept is retained. Numerical treatment to arising nonlinear system is presented. Shooting procedure is adopted for numerical treatment. Graphs and tables lead to physical description of results. It is observed that skin friction enhances for ( H a) and it decays for different rising values of ( K 1), ( K 2) and ( n). Further temperature gradient increases for higher estimation of (Pr) and decreases for larger ( H a). Major findings of present analysis are presented.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
NASA Astrophysics Data System (ADS)
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
NASA Astrophysics Data System (ADS)
Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.
2008-02-01
This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.
Topics in viscous potential flow of two-phase systems
NASA Astrophysics Data System (ADS)
Padrino Inciarte, Juan Carlos
Two-phase flows are ubiquitous, from natural and domestic environments to industrial settings. However, due to their complexity, modeling these fluid systems remains a challenge from both the perspective of fundamental questions on the dynamics of an individual, smooth interface, and the perspective of integral analyses, which involve averaging of the conservation laws over large domains, thereby missing local details of the flow. In this work, we consider a set of five problems concerning the linear and non-linear dynamics of an interface or free surface and the study of cavitation inception. Analyses are carried out by assuming the fluid motion to be irrotational, that is, with zero vorticity, and the fluids to be viscous, although results from rotational analyses are presented for the purpose of comparison. The problems considered here are the following: First, we analyze the non-linear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid. The method of viscous potential flow, in which the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface, is used in the analysis. The governing equations are solved numerically to track the motion of the interface by coupling a boundary element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier.Stokes equations, which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers 3 ≤ We ≤ 6, predictions from viscous potential flow shows good agreement with the results from the Navier.Stokes equations for the bubble break-up time, whereas for larger We, the former underpredicts the results given by the latter. Including viscosity increases the break-up time with respect to the inviscid case. For the drop, as expected, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. In the second problem, we compute the force acting on a spherical bubble of variable radius moving within a liquid with an outer spherical boundary. Viscous potential flow and the dissipation method, which is another purely irrotational approach stemming from the mechanical energy equation, are both systematically implemented. This exposes the role of the choice of the outer boundary condition for the stress on the drag, an issue not explained in the literature known to us. By means of the well-known "cell-model" analysis, the results for the drag are then applied to the case of a swarm of rising bubbles having a certain void fraction. Computations from the dissipation method for the drag coefficient and rise velocity for a bubble swarm agree with numerical solutions; evaluation against experimental data for high Reynolds and low Weber numbers shows that all the models considered, including those given in the literature, overpredict the bubble swarm rise velocity. In the next two problems, we apply the analysis of viscous potential flow and the dissipation method to study the linear dynamics of waves of "small" amplitude acting either on a plane or on a spherical interface separating a liquid from a dynamically inactive fluid. It is shown that the viscous irrational theories exhibit the features of the wave dynamics by comparing with the exact solution. The range of parameters for which good agreement with the exact solution exists is presented. The general trend shows that for long waves the dissipation method results in the best approximation, whereas for short waves, even for very viscous liquids, viscous potential flow demonstrates better agreement. Finally, the problem of cavitation inception for the flow of a viscous liquid past a stationary sphere is studied by means of the theory of stress-induced cavitation. The flow field for a single phase needed in the analysis is found from three different methods, namely, the numerical solution of the Navier--Stokes equations, the irrotational motion of a viscous fluid, and, in the limit of no inertia, the Stokes flow formulation. The new predictions are then compared with those obtained from the classical pressure criterion. The main finding is that at a fixed cavitation number more viscous liquids are at greater risk to cavitation.
Immersed Boundary Methods for Optimization of Strongly Coupled Fluid-Structure Systems
NASA Astrophysics Data System (ADS)
Jenkins, Nicholas J.
Conventional methods for design of tightly coupled multidisciplinary systems, such as fluid-structure interaction (FSI) problems, traditionally rely on manual revisions informed by a loosely coupled linearized analysis. These approaches are both inaccurate for a multitude of applications, and they require an intimate understanding of the assumptions and limitations of the procedure in order to soundly optimize the design. Computational optimization, in particular topology optimization, has been shown to yield remarkable results for problems in solid mechanics using density interpolations schemes. In the context of FSI, however, well defined boundaries play a key role in both the design problem and the mechanical model. Density methods neither accurately represent the material boundary, nor provide a suitable platform to apply appropriate interface conditions. This thesis presents a new framework for shape and topology optimization of FSI problems that uses for the design problem the Level Set method (LSM) to describe the geometry evolution in the optimization process. The Extended Finite Element method (XFEM) is combined with a fictitiously deforming fluid domain (stationary arbitrary Lagrangian-Eulerian method) to predict the FSI response. The novelty of the proposed approach lies in the fact that the XFEM explicitly captures the material boundary defined by the level set iso-surface. Moreover, the XFEM provides a means to discretize the governing equations, and weak immersed boundary conditions are applied with Nitsche's Method to couple the fields. The flow is predicted by the incompressible Navier-Stokes equations, and a finite-deformation solid model is developed and tested for both hyperelastic and linear elastic problems. Transient and stationary numerical examples are presented to validate the FSI model and numerical solver approach. Pertaining to the optimization of FSI problems, the parameters of the discretized level set function are defined as explicit functions of the optimization variables, and the parameteric optimization problem is solved by nonlinear programming methods. The gradients of the objective and constrains are computed by the adjoint method for the global monolithic fluid-solid system. Two types of design problems are explored for optimization of the fluid-structure response: 1) the internal structural topology is varied, preserving the fluid-solid interface geometry, and 2) the fluid-solid interface is manipulated directly, which leads to simultaneously configuring both internal structural topology and outer mold shape. The numerical results show that the LSM-XFEM approach is well suited for designing practical applications, while at the same time reducing the requirement on highly refined mesh resolution compared to traditional density methods. However, these results also emphasize the need for a more robust embedded boundary condition framework. Further, the LSM can exhibit greater dependence on initial design seeding, and can impede design convergence. In particular for the strongly coupled FSI analysis developed here, the thinning and eventual removal of structural members can cause jumps in the evolution of the optimization functions.
Garraud, A.; Velez, C.; Shah, Y.; Garraud, N.; Kozissnik, B.; Yarmola, E. G.; Allen, K. D.; Dobson, J.; Arnold, D. P.
2015-01-01
Goal This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Methods Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a “collection volume” with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. Results The viscosity of the fluid strongly influences the velocity of the magnetic particles towards the magnet, hence the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Conclusion Numerical results showed good agreement with in vitro experimental magnetic collection results. Significance In the long-term, this work aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient. PMID:26208261
Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P
2016-02-01
This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.
NASA Astrophysics Data System (ADS)
Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Jolivet, L.; Gerya, T.
2016-12-01
The Aegean-Anatolian retreating subduction and collision zones have been investigated through 3D numerical geodynamic models involving slab rollback/tearing/breakoff constrained by, for instance, seismic tomography or anisotropy and geochemical proxies. Here we integrate these investigations by using geothermal anomaly measurements from western Turkey. Such data provides insights into the thermal state of the Aegean-Anatolian region at depth and reflects the development of a widespread active geothermal province that is unlikely to be related only to the Quaternary volcanism because this has a too limited extent in space and time. Firstly, we look for possible connections with larger-scale mantle dynamics and use 3D high-resolution petrological and thermo-mechanical numerical models to quantify the potential contribution of the Aegean-Anatolian subduction dynamics to such measured thermal anomalies. Secondly, the subduction-induced thermal signature at the base of the continental crust is then inserted as the imposed basal thermal condition of 2D models dedicated to the understanding of fluid flow in the shallow crust. These models couple heat transfer and fluid flow equations with appropriate fluid and rock physical properties. Results from the 3D numerical models suggest an efficient control of subduction-related asthenospheric return flow on the regional distribution of thermal anomalies. Results from the 2D numerical models also highlight that low angle normal faults (detachments) in the back-arc region can control the bulk of the heat transport and fluid circulation patterns. Such detachments can drain hot crustal and/or mantellic fluids down to several kilometers depths, thus allowing for or fostering deep fluid circulation.
NASA Astrophysics Data System (ADS)
Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq
2018-03-01
An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.
NASA Technical Reports Server (NTRS)
Borgia, Andrea; Spera, Frank J.
1990-01-01
This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.
NASA Astrophysics Data System (ADS)
Jafari, Azadeh; Deville, Michel O.; Fiétier, Nicolas
2008-09-01
This study discusses the capability of the constitutive laws for the matrix logarithm of the conformation tensor (LCT model) within the framework of the spectral elements method. The high Weissenberg number problems (HWNP) usually produce a lack of convergence of the numerical algorithms. Even though the question whether the HWNP is a purely numerical problem or rather a breakdown of the constitutive law of the model has remained somewhat of a mystery, it has been recognized that the selection of an appropriate constitutive equation constitutes a very crucial step although implementing a suitable numerical technique is still important for successful discrete modeling of non-Newtonian flows. The LCT model formulation of the viscoelastic equations originally suggested by Fattal and Kupferman is applied for 2-dimensional (2D) FENE-CR model. The Planar Poiseuille flow is considered as a benchmark problem to test this representation at high Weissenberg number. The numerical results are compared with numerical solution of the standard constitutive equation.
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
Arbitrary amplitude dust kinetic Alfvén solitary waves in the presence of polarization force
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Kaur, Nimardeep; Saini, N. S.
2018-02-01
In this investigation, the effect of polarization force on dust kinetic Alfvén solitary waves (DKASWs) in a magnetized dusty plasma consisting of dust fluid, electrons, and positively charged ions is studied. By incorporating density non-uniformity and polarization force in the fluid model equations, the energy balance equation is derived, and from the expression for Sagdeev pseudopotential, the existence conditions for solitary structures in terms of Mach number are determined. From the numerical analysis of Sagdeev pseudopotential, compressive and rarefactive DKASWs at sub- and super-Alfvénic speeds are observed. These waves are significantly affected by varying polarization force, angle of propagation, plasma beta, and Mach number.
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Hsieh, K. C.
1998-01-01
The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.